Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Clustering source code from automated assessment of programming assignments

Clustering source code from automated assessment of programming assignments

Título
Clustering source code from automated assessment of programming assignments
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Paiva, JC
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
José Paulo Leal
(Autor)
FCUP
Figueira, A
(Autor)
FCUP
Revista
Outras Informações
ID Authenticus: P-010-ETY
Abstract (EN): Clustering of source code is a technique that can help improve feedback in automated program assessment. Grouping code submissions that contain similar mistakes can, for instance, facilitate the identification of students' difficulties to provide targeted feedback. Moreover, solutions with similar functionality but possibly different coding styles or progress levels can allow personalized feedback to students stuck at some point based on a more developed source code or even detect potential cases of plagiarism. However, existing clustering approaches for source code are mostly inadequate for automated feedback generation or assessment systems in programming education. They either give too much emphasis to syntactical program features, rely on expensive computations over pairs of programs, or require previously collected data. This paper introduces an online approach and implemented tool-AsanasCluster-to cluster source code submissions to programming assignments. The proposed approach relies on program attributes extracted from semantic graph representations of source code, including control and data flow features. The obtained feature vector values are fed into an incremental k-means model. Such a model aims to determine the closest cluster of solutions, as they enter the system, timely, considering clustering is an intermediate step for feedback generation in automated assessment. We have conducted a twofold evaluation of the tool to assess (1) its runtime performance and (2) its precision in separating different algorithmic strategies. To this end, we have applied our clustering approach on a public dataset of real submissions from undergraduate students to programming assignments, measuring the runtimes for the distinct tasks involved: building a model, identifying the closest cluster to a new observation, and recalculating partitions. As for the precision, we partition two groups of programs collected from GitHub. One group contains implementations of two searching algorithms, while the other has implementations of several sorting algorithms. AsanasCluster matches and, in some cases, improves the state-of-the-art clustering tools in terms of runtime performance and precision in identifying different algorithmic strategies. It does so without requiring the execution of the code. Moreover, it is able to start the clustering process from a dataset with only two submissions and continuously partition the observations as they enter the system.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Automated Assessment in Computer Science Education: A State-of-the-Art Review (2022)
Outra Publicação em Revista Científica Internacional
Paiva, JC; José Paulo Leal; Figueira, A
PROGpedia: Collection of source-code submitted to introductory programming assignments (2023)
Outras Publicações
Paiva, JC; José Paulo Leal; Figueira, A
Comparing Semantic Graph Representations of Source Code: The Case of Automatic Feedback on Programming Assignments (2024)
Artigo em Revista Científica Internacional
Paiva, JC; José Paulo Leal; Figueira, A
Bibliometric Analysis of Automated Assessment in Programming Education: A Deeper Insight into Feedback (2023)
Artigo em Revista Científica Internacional
Paiva, JC; Figueira, A; José Paulo Leal
Automated Assessment in Computer Science: A Bibliometric Analysis of the Literature (2023)
Artigo em Livro de Atas de Conferência Internacional
Paiva, JC; Figueira, A; José Paulo Leal

Da mesma revista

Using network features for credit scoring in microfinance (2021)
Artigo em Revista Científica Internacional
Paraiso, P; Ruiz, S; Gomes, P; Rodrigues, L; João Gama
Using network features for credit scoring in microfinance (2021)
Artigo em Revista Científica Internacional
Paraíso, P; Ruiz, S; Gomes, P; Rodrigues, L; João Gama
Resampling strategies for imbalanced time series forecasting (2017)
Artigo em Revista Científica Internacional
Moniz, N; Branco, P; Torgo, L
Reducing algorithm configuration spaces for efficient search (2025)
Artigo em Revista Científica Internacional
Freitas, F; Brazdil, P; Carlos Soares
Personalised medicine challenges: quality of data (2018)
Artigo em Revista Científica Internacional
Ricardo Cruz Correia; Ferreira, D; Bacelar, G; Marques, P; Maranhão, P

Ver todas (14)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-20 às 14:26:11 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico