Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > TEFu-Net: A time-aware late fusion architecture for robust multi-modal ego-motion estimation

TEFu-Net: A time-aware late fusion architecture for robust multi-modal ego-motion estimation

Título
TEFu-Net: A time-aware late fusion architecture for robust multi-modal ego-motion estimation
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Agostinho, L
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pereira, D
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Hiolle, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pinto, A
(Autor)
FEUP
Revista
Vol. 177
ISSN: 0921-8890
Editora: Elsevier
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-010-AF9
Abstract (EN): Ego -motion estimation plays a critical role in autonomous driving systems by providing accurate and timely information about the vehicle's position and orientation. To achieve high levels of accuracy and robustness, it is essential to leverage a range of sensor modalities to account for highly dynamic and diverse scenes, and consequent sensor limitations. In this work, we introduce TEFu-Net, a Deep -Learning -based late fusion architecture that combines multiple ego -motion estimates from diverse data modalities, including stereo RGB, LiDAR point clouds and GNSS/IMU measurements. Our approach is non -parametric and scalable, making it adaptable to different sensor set configurations. By leveraging a Long Short -Term Memory (LSTM), TEFu-Net produces reliable and robust spatiotemporal ego -motion estimates. This capability allows it to filter out erroneous input measurements, ensuring the accuracy of the car's motion calculations over time. Extensive experiments show an average accuracy increase of 63% over TEFu-Net's input estimators and on par results with the state-of-the-art in real -world driving scenarios. We also demonstrate that our solution can achieve accurate estimates under sensor or input failure. Therefore, TEFu-Net enhances the accuracy and robustness of ego -motion estimation in real -world driving scenarios, particularly in challenging conditions such as cluttered environments, tunnels, dense vegetation, and unstructured scenes. As a result of these enhancements, it bolsters the reliability of autonomous driving functions.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Visual motion perception for mobile robots through dense optical flow fields (2017)
Artigo em Revista Científica Internacional
Pinto, AM; Paulo Gomes da Costa; Correia, M. V.; Aníbal Castilho Coimbra de Matos; António Paulo Moreira
Urban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques (2018)
Artigo em Revista Científica Internacional
Ana Rita Gaspar; Alexandra Nunes; Andry Maykol Pinto; Aníbal Matos
Robust 3/6 DoF self-localization system with selective map update for mobile robot platforms (2016)
Artigo em Revista Científica Internacional
Costa, CM; Sobreira, HM; Armando Jorge Sousa; Germano Veiga
Robust biped locomotion using deep reinforcement learning on top of an analytical control approach (2021)
Artigo em Revista Científica Internacional
Kasaei, M; Abreu, M; Lau, N; Pereira, A; reis, lp
Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems (2021)
Artigo em Revista Científica Internacional
André Silva Aguiar; Filipe Neves Santos; Héber Sobreira; José Boaventura Cunha; Armando Jorge Sousa

Ver todas (15)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-08 às 04:55:46 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico