Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Towards an airtightness compliance tool based on machine learning models for naturally ventilated dwellings

Towards an airtightness compliance tool based on machine learning models for naturally ventilated dwellings

Título
Towards an airtightness compliance tool based on machine learning models for naturally ventilated dwellings
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
M. Lurdes Simões
(Autor)
FEUP
Vitor E. M. Cardoso
(Autor)
FEUP
Nuno Ramos
(Autor)
FEUP
Revista
Título: Energy and BuildingsImportada do Authenticus Pesquisar Publicações da Revista
Vol. 285 112922
ISSN: 0378-7788
Editora: Elsevier
Outras Informações
ID Authenticus: P-00X-XNZ
Abstract (EN): Physical models and probabilistic applications often guide the study and characterization of natural phenomena in engineering. Such is the case of the study of air change rates (ACHs) in buildings for their complex mechanisms and high variability. It is not uncommon for the referred applications to be costly and impractical in both time and computation, resulting in the use of simplified methodologies and setups. The incorporation of airtightness limits to quantify adequate ACHs in national transpositions of the Energy Performance Building Directive (EPBD) exemplifies the issue. This research presents a roadmap for developing an alternative instrument, a compliance tool built with a Machine Learning (ML) framework, that overcomes some simplification issues regarding policy implementation while fulfilling practitioners' needs and general societal use. It relies on dwellings' terrain, geometric and airtightness characteristics, and meteorological data. Results from previous work on a region with a mild heating season in southern Europe apply in training and testing the proposed tool. The tool outputs numerical information on the air change rates performance of the building envelope, and a label, accordingly. On the test set, the best regressor showed mean absolute errors (MAE) below 1.02% for all the response variables, while the best classifier presented an average accuracy of 97.32%. These results are promising for the generalization of this methodology, with potential for application at regional, national, and European Union levels. The developed tool could be a complementary asset to energy certification programmes of either public or private initiatives. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 10
Documentos
Não foi encontrado nenhum documento associado à publicação com acesso permitido.
Publicações Relacionadas

Da mesma revista

Thermal enhancement of plastering mortars with Phase Change Materials: Experimental and numerical approach (2012)
Outra Publicação em Revista Científica Internacional
sa, av; azenha, m; de sousa, h; samagaio, a
Performance sensitivity study of mixed ventilation systems in multifamily residential buildings in Portugal (2017)
Outra Publicação em Revista Científica Internacional
Pinto, M; Viegas, J; Vasco Peixoto De Freitas
Meta-analysis of district-level solutions towards energy, carbon and economic targets (2025)
Outra Publicação em Revista Científica Internacional
Cardoso, P; Azevedo, I; Vítor Leal; Silva, C; da Costa, C
Tracer Gas Dispersion in Ducts – Study of a New Compact Device using Arrays of Sonic Micro Jets (2004)
Artigo em Revista Científica Internacional
António Rocha e Silva; Clito Afonso
Tracer gas dispersion in ducts - study of a new compact device usiny arrays of sonic micro jets (2004)
Artigo em Revista Científica Internacional
A. R. Silva; Clito Afonso

Ver todas (44)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-20 às 18:15:10 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico