Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions using a convolutional neural network

Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions using a convolutional neural network

Título
Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions using a convolutional neural network
Tipo
Artigo em Revista Científica Internacional
Ano
2021-07-02
Autores
Helder Cardoso
(Autor)
FMUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
Parente, MPL
(Autor)
FEUP
Revista
A Revista está pendente de validação pelos Serviços Administrativos.
Vol. 34
Páginas: 820-828
ISSN: 1108-7471
Outras Informações
ID Authenticus: P-00V-RFV
Abstract (EN): Background Capsule endoscopy (CE) is the first line for evaluation of patients with obscure gastrointestinal bleeding. A wide range of small intestinal vascular lesions with different hemorrhagic potential are frequently found in these patients. Nevertheless, reading CE exams is time-consuming and prone to errors. Convolutional neural networks (CNN) are artificial intelligence tools with high performance levels in image analysis. This study aimed to develop a CNN-based model for identification and differentiation of vascular lesions with distinct hemorrhagic potential in CE images. Methods The development of the CNN was based on a database of CE images. This database included images of normal small intestinal mucosa, red spots, and angiectasia/varices. The hemorrhagic risk was assessed by Saurin's classification. For CNN development, 11,588 images (9525 normal mucosa, 1026 red spots, and 1037 angiectasia/varices) were ultimately extracted. Two image datasets were created for CNN training and testing. Results The network was 91.8% sensitive and 95.9% specific for detection of vascular lesions, providing accurate predictions in 94.4% of cases. In particular, the CNN had a sensitivity and specificity of 97.1% and 95.3%, respectively, for detection of red spots. Detection of angiectasia/varices occurred with a sensitivity of 94.1% and a specificity of 95.1%. The CNN had a frame reading rate of 145 frames/sec. Conclusions The developed algorithm is the first CNN-based model to accurately detect and distinguish enteric vascular lesions with different hemorrhagic risk. CNN-assisted CE reading may improve the diagnosis of these lesions and overall CE efficiency.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 9
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Endoscopic management of esophageal and gastric lesions with underlying varices (2022)
Outra Publicação em Revista Científica Internacional
Dias, E; Marques, M; Macedo G
Retrospective analysis of the outcomes of endoscopic submucosal dissection for the diagnosis and treatment of subepithelial lesions in a center with high expertise (2022)
Artigo em Revista Científica Internacional
João Santos-Antunes; Marques, M; Morais, R; Baldaque Silva, F; Vilas Boas, F; Moutinho Ribeiro, P; Lopes, S; Carneiro F; Macedo, G
Liver biopsy in inflammatory bowel disease patients with sustained abnormal liver function tests: a retrospective single-center study (2023)
Artigo em Revista Científica Internacional
Dias, E; Andrade, P; Lopes, S; Goncalves, R; Cardoso, P; Gaspar, R; Cardoso, H; Lopes, J; Carneiro F; Macedo G
Infectious proctitis: what every gastroenterologist needs to know (2023)
Artigo em Revista Científica Internacional
Coelho, R; Ribeiro, T; Abreu, N; Goncalves, R; Macedo G
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-14 às 14:19:09 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico