Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Gradient and Hamiltonian coupled systems on undirected networks

Gradient and Hamiltonian coupled systems on undirected networks

Título
Gradient and Hamiltonian coupled systems on undirected networks
Tipo
Artigo em Revista Científica Internacional
Ano
2019
Autores
Manuela Aguiar
(Autor)
FEP
dias, aps
(Autor)
FCUP
Manoel, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 16
Páginas: 4622-4644
ISSN: 1547-1063
Indexação
Outras Informações
ID Authenticus: P-00Q-MP4
Abstract (EN): Many real world applications are modelled by coupled systems on undirected networks. Two striking classes of such systems are the gradient and the Hamiltonian systems. In fact, within these two classes, coupled systems are admissible only by the undirected networks. For the coupled systems associated with a network, there can be flow-invariant spaces (synchrony subspaces where some subsystems evolve synchronously), whose existence is independent of the systems equations and depends only on the network topology. Moreover, any coupled system on the network, when restricted to such a synchrony subspace, determines a new coupled system associated with a smaller network (quotient). The original network is said to be a lift of the quotient network. In this paper, we characterize the conditions for the coupled systems property of being gradient or Hamiltonian to be preserved by the lift and quotient coupled systems. This characterization is based on determining necessary and sufficient conditions for a quotient (lift) network of an undirected network to be also undirected. We show that the extra gradient or Hamiltonian structure of a coupled system admissible by an undirected network can be lost by the systems admissible by a (directed) quotient network. Conversely, gradient (Hamiltonian) dynamics can appear for an undirected quotient network of a directed network or of an undirected network whose associated dynamics is not gradient (Hamiltonian). We illustrate with a neural network given by two groups of neurons that are mutually coupled through either excitatory or inhibitory synapses, which is modelled by a coupled system exhibiting both gradient and Hamiltonian structures.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 23
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Strategies for the treatment of breast cancer: from classical drugs to mathematical models (2021)
Artigo em Revista Científica Internacional
Costa, A; Nuno Vale
On application of optimal control to SEIR normalized models: Pros and cons (2017)
Artigo em Revista Científica Internacional
Maria do Rosário de Pinho; Filipa Nunes Nogueira
A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus (2019)
Artigo em Revista Científica Internacional
Afsar, A.; Martins. F.; Oliveira, B.M.P.M.; Pinto, A.A.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-12 às 16:39:12 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico