Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Estimating Fuel Consumption from GPS Data

Estimating Fuel Consumption from GPS Data

Título
Estimating Fuel Consumption from GPS Data
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2015
Autores
Vilaca, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Carlos Soares
(Autor)
FEUP
Ata de Conferência Internacional
Páginas: 672-682
7th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)
Santiago de Compostela, SPAIN, JUN 17-19, 2015
Classificação Científica
CORDIS: Ciências Físicas > Ciência de computadores > Cibernética > Inteligência artificial
FOS: Ciências exactas e naturais > Ciências da computação e da informação
Outras Informações
ID Authenticus: P-00G-69B
Abstract (EN): The road transportation sector is responsible for 87% of the human CO2 emissions. The estimation and prediction of fuel consumption plays a key role in the development of systems that foster the reduction of those emissions through trip planing. In this paper, we present a predictive regression model of instantaneous fuel consumption for diesel and gasoline light-duty vehicles, based on their instantaneous speed and acceleration and on road inclination. The parameters are extracted from GPS data, thus the models do not require data from dedicated vehicle sensors. We use data collected by 17 drivers during their daily commutes using the SenseMyCity crowdsensor. We perform an empyrical comparison of several regression algorithms for prediction across trips of the same vehicle and for prediction across vehicles. The results show that models trained for a vehicle show similar RMSE when are applied to other vehicles with similar characteristics. Relying on these results, we propose fuel type specific models that provide an accurate prediction for vehicles with similar characteristics to those on which the models were trained.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Das mesmas áreas científicas

Web mining for the integration of data mining with business intelligence in web-based decision support systems (2014)
Capítulo ou Parte de Livro
Marcos Aurélio Domingues; Alípio M. Jorge; Carlos Soares; Solange Oliveira Rezende
Using Multivariate Adaptive Regression Splines in the Construction of Simulated Soccer Team's Behavior Models (2013)
Artigo em Revista Científica Internacional
Pedro Henriques Abreu; Daniel Castro Silva; Joao Mendes Moreira; Luis Paulo Reis; Julio Garganta
Optimal leverage association rules with numerical interval conditions (2012)
Artigo em Revista Científica Internacional
Alipio Mario Jorge; Paulo J Azevedo
Improving the accuracy of long-term travel time prediction using heterogeneous ensembles (2015)
Artigo em Revista Científica Internacional
Joao Mendes Moreira; Alipio Mario Jorge; Jorge Freire de Sousa; Carlos Soares

Ver todas (56)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-14 às 17:42:05 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico