Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Preconditioned iterative methods for coupled discretizations of fluid flow problems

Preconditioned iterative methods for coupled discretizations of fluid flow problems

Título
Preconditioned iterative methods for coupled discretizations of fluid flow problems
Tipo
Artigo em Revista Científica Internacional
Ano
1998
Autores
Vasconcelos, PB
(Autor)
FEP
d'Almeida,FD
(Autor)
FEUP
Revista
Vol. 18
Páginas: 385-397
ISSN: 0272-4979
Classificação Científica
FOS: Ciências exactas e naturais > Matemática
Outras Informações
ID Authenticus: P-001-7JH
Abstract (EN): Computational fluid dynamics, where simulations require large computation times, is one of the areas of application of high performance computing. Schemes such as the SIMPLE (semi-implicit method for pressure-linked equations) algorithm are often used to solve the discrete Navier-Stokes equations. Generally these schemes take a short time per iteration but require a large number of iterations. For simple geometries (or coarser grids) the overall CPU time is small. However, for finer grids or more complex geometries the increase in the number of iterations may be a drawback and the decoupling of the differential equations involved implies a slow convergence of rotationally dominated problems that can be very time consuming for realistic applications. So we analyze here another approach, DIRECTO, that solves the equations in a coupled way. With recent advances in hardware technology and software design, it became possible to solve coupled Navier-Stokes systems, which are more robust but imply increasing computational requirements (both in terms of memory and CPU time). Two approaches are described here (band block LU factorization and preconditioned GMRES) for the linear solver required by the DIRECTO algorithm that solves the fluid flow equations as a coupled system. Comparisons of the effectiveness of incomplete factorization preconditioners applied to the GMRES (generalized minimum residual) method are shown. Some numerical results are presented showing that it is possible to minimize considerably the CPU time of the coupled approach so that it can be faster than the decoupled one.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 13
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Two Numerical Approaches for Nonlinear Weakly Singular Integral Equations (2022)
Trabalho Académico
vasconcelos, pb; M. Ahues; Filomena Dias d Almeida; R. Fernandes
Comparison of two Different Discretizations for Spectral Computations for Integral Operators - Pre-print CMUP 2010-32 (2010)
Trabalho Académico
vasconcelos, pb; Filomena Dias d Almeida; Alain Largillier; Mario Ahues
Parallelization of an Implicit Algorithm for Fluid Flow Problems (1999)
Capítulo ou Parte de Livro
F. D. d'Almeida; P. B. Vasconcelos
Iterative refinement schemes for an ill-conditioned transfer equation in Astrophysics (2002)
Capítulo ou Parte de Livro
Mario Ahues; Filomena d'Almeida; Alain Largillier; Olivier Titaud; Paulo Vasconcelos

Ver todas (18)

Da mesma revista

Preconditioning Iterative Methods in Coupled Discretization of Fluid Flow Problems (1998)
Artigo em Revista Científica Internacional
Paulo José Abreu Beleza de Vasconcelos; Filomena Dias d'Almeida
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-17 às 04:38:24 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico