Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Clinical model for Hereditary Transthyretin Amyloidosis age of onset prediction

Clinical model for Hereditary Transthyretin Amyloidosis age of onset prediction

Título
Clinical model for Hereditary Transthyretin Amyloidosis age of onset prediction
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
Maria Pedroto
(Autor)
FCUP
Coelho, T
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Jorge, AM
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
João Mendes-Moreira
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Revista
Vol. 14
ISSN: 1664-2295
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00Y-P1Z
Abstract (EN): IntroductionHereditary transthyretin amyloidosis (ATTRv amyloidosis) is a rare neurological hereditary disease clinically characterized as severe, progressive, and life-threatening while the age of onset represents the moment in time when the first symptoms are felt. In this study, we present and discuss our results on the study, development, and evaluation of an approach that allows for time-to-event prediction of the age of onset, while focusing on genealogical feature construction. Materials and methodsThis research was triggered by the need to answer the medical problem of when will an asymptomatic ATTRv patient show symptoms of the disease. To do so, we defined and studied the impact of 77 features (ranging from demographic and genealogical to familial disease history) we studied and compared a pool of prediction algorithms, namely, linear regression (LR), elastic net (EN), lasso (LA), ridge (RI), support vector machines (SV), decision tree (DT), random forest (RF), and XGboost (XG), both in a classification as well as a regression setting; we assembled a baseline (BL) which corresponds to the current medical knowledge of the disease; we studied the problem of predicting the age of onset of ATTRv patients; we assessed the viability of predicting age of onset on short term horizons, with a classification framing, on localized sets of patients (currently symptomatic and asymptomatic carriers, with and without genealogical information); and we compared the results with an out-of-bag evaluation set and assembled in a different time-frame than the original data in order to account for data leakage. ResultsCurrently, we observe that our approach outperforms the BL model, which follows a set of clinical heuristics and represents current medical practice. Overall, our results show the supremacy of SV and XG for both the prediction tasks although impacted by data characteristics, namely, the existence of missing values, complex data, and small-sized available inputs. DiscussionWith this study, we defined a predictive model approach capable to be well-understood by medical professionals, compared with the current practice, namely, the baseline approach (BL), and successfully showed the improvement achieved to the current medical knowledge.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 11
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Heterogeneity in families with ATTRV30M amyloidosis: a historical and longitudinal Portuguese case study impact for genetic counselling (2024)
Artigo em Revista Científica Internacional
Maria Pedroto; Coelho, T; Fernandes, J; Oliveira, A; Jorge, AM; João Mendes-Moreira
Predicting Age of Onset in TTR-FAP Patients with Genealogical Features (2018)
Artigo em Livro de Atas de Conferência Internacional
Maria Pedroto; Jorge, AM; João Mendes-Moreira; Coelho, T
Improving the Prediction of Age of Onset of TTR-FAP Patients Using Graph-Embedding Features (2022)
Artigo em Livro de Atas de Conferência Internacional
Maria Pedroto; Jorge, AM; João Mendes-Moreira; Coelho, T

Da mesma revista

Editorial: Metals and cognitive decline: Pathophysiology, treatment, and prevention (2023)
Outra Publicação em Revista Científica Internacional
Koseoglu, E; Liu, G; Agostinho Almeida
Spectral Domain-Optical Coherence Tomography As a New Diagnostic Marker for Idiopathic Normal Pressure Hydrocephalus (2017)
Artigo em Revista Científica Internacional
Afonso, JM; Manuel Falcão; Schlichtenbrede, F; Falcão-Reis F; Silva, SE; Schneider, TM
Readmissions and Mortality During the First Year After Stroke-Data From a Population-Based Incidence Study (2020)
Artigo em Revista Científica Internacional
Pedro Abreu; Magalhaes, R; Baptista, D; Elsa Azevedo; silva, mc; Correia, M
Pain in Portuguese patients with multiple sclerosis (2011)
Artigo em Revista Científica Internacional
Seixas, D; Sa, MJ; Galhardo, V; Guimaraes, J; Lima, D
Multiple Sclerosis Patient Management During the COVID-19 Pandemic: Practical Recommendations From the Portuguese Multiple Sclerosis Study Group (GEEM) (2021)
Artigo em Revista Científica Internacional
Cerqueira, JJ; Ladeira, AF; Silva, AM; Timoteo, A; Vale, J; Sousa, L; Arenga, M; Pedro Abreu; Guerreiro, R; de Sa, J

Ver todas (17)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-25 às 02:38:16 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico