Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Knowledge-based Reliability Metrics for Social Media Accounts

Knowledge-based Reliability Metrics for Social Media Accounts

Título
Knowledge-based Reliability Metrics for Social Media Accounts
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2020
Autores
Guimaraes, N
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Figueira, A
(Autor)
FCUP
Torgo, L
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Outras Informações
ID Authenticus: P-00V-280
Abstract (EN): The growth of social media as an information medium without restrictive measures on the creation of new accounts led to the rise of malicious agents with the intend to diffuse unreliable information in the network, ultimately affecting the perception of users in important topics such as political and health issues. Although the problem is being tackled within the domain of bot detection, the impact of studies in this area is still limited due to 1) not all accounts that spread unreliable content are bots, 2) human-operated accounts are also responsible for the diffusion of unreliable information and 3) bot accounts are not always malicious (e.g. news aggregators). Also, most of these methods are based on supervised models that required annotated data and updates to maintain their performance through time. In this work, we build a framework and develop knowledge-based metrics to complement the current research in bot detection and characterize the impact and behavior of a Twitter account, independently of the way it is operated (human or bot). We proceed to analyze a sample of the accounts using the metrics proposed and evaluate the necessity of these metrics by comparing them with the scores from a bot detection system. The results show that the metrics can characterize different degrees of unreliable accounts, from unreliable bot accounts with a high number of followers to human-operated accounts that also spread unreliable content (but with less impact on the network). Furthermore, evaluating a sample of the accounts with a bot detection system shown that bots compose around 11% of the sample of unreliable accounts extracted and that the bot score is not correlated with the proposed metrics. In addition, the accounts that achieve the highest values in our metrics present different characteristics than the ones that achieve the highest bot score. This provides evidence on the usefulness of our metrics in the evaluation of unreliable accounts in social networks. Copyright
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Twitter as a Source for Time- and Domain-Dependent Sentiment Lexicons (2018)
Artigo em Livro de Atas de Conferência Internacional
Guimaraes, N; Torgo, L; Figueira, A
Profiling Accounts Political Bias on Twitter (2021)
Artigo em Livro de Atas de Conferência Internacional
Guimaraes, N; Figueira, A; Torgo, L
Lexicon Expansion System for Domain and Time Oriented Sentiment Analysis (2016)
Artigo em Livro de Atas de Conferência Internacional
Guimaraes, N; Torgo, L; Figueira, A
Analysis and Detection of Unreliable Users in Twitter: Two Case Studies (2020)
Artigo em Livro de Atas de Conferência Internacional
Guimaraes, N; Figueira, A; Torgo, L
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-12-05 às 11:19:55 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico