Abstract (EN): 
Performing fatigue characterisation is often an expensive task, being both time consuming and expensive. Taking that into account, ultrasonic fatigue testing is an interesting solution, since it can be thousands of times faster than traditional experiments. In ultrasonic fatigue testing, excitation frequencies are in the order of magnitude of 20 kHz, while common fatigue testing frequencies are typically approximately a few hundreds of Hz. Although promising, ultrasonic fatigue testing has some challenges, like high strain rates, heat generation and complex specimen design. Regarding the latter, since the working principle of ultrasonic fatigue tests relies on exciting the specimen in one of its natural frequencies, finding a specimen geometry to resonate at this given frequency might be challenging. Additionally, some materials often present challenges associated with high temperature during tests. The goal of this paper is to provide guidelines for specimen design, encompassing the effects of critical factors and their impact on important test parameters, like temperature and dimensions. The proposed methodology developed a parameter able to quantify the heat generation severity during ultrasonic fatigue testing for several materials based on their physical properties. Moreover, the effects of the geometry and material properties in the temperature during loading cycles, with special focus on thermal gradients were enumerated.
Language: 
English
Type (Professor's evaluation): 
Scientific
No. of pages: 
21