Abstract (EN):
In this work, a novel high birefringent (HiBi) fiber loop mirror sensor based on a "figure-of-eight" constructed with a 3x3 fiber coupler, is presented. The "figure-of-eight" is formed by two fiber loop mirrors (FLM's) made by four of the six fiber arms of the 3x3 fiber coupler. The other two remaining fiber ports of the 3x3 coupler are used as input and output fibers of the compound sensor. The sensing head is located in the one of the FLM and it is formed by a spliced section of HiBi elliptical core fiber. The spectral response of this "figure-of-eight" configuration presents two interference optical signals that can be easily tuned by a polarization controller that is located in the other FLM, and which is made only of standard singlemode fiber from two arms of the 3x3 coupler. The sensor head was optically characterized both in temperature and strain, showing wavelength dependence sensitivities of -0.23 nm/degrees C and - 2.6 pm/mu epsilon, for temperature and strain, respectively. It is noticed that these sensitivities are practically the same for the two interference signals. Future work will explore the possibility to use the singlemode FLM to interrogate the sensor head made by HiBi fiber section, and providing elimination of phase fluctuations that can occur, increasing its potential for remote sensing applications.
Language:
English
Type (Professor's evaluation):
Scientific