Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Finding Groups in Obstructive Sleep Apnea Patients: A Categorical Cluster Analysis

Finding Groups in Obstructive Sleep Apnea Patients: A Categorical Cluster Analysis

Título
Finding Groups in Obstructive Sleep Apnea Patients: A Categorical Cluster Analysis
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2018
Ata de Conferência Internacional
Páginas: 387-392
31st IEEE International Symposium on Computer-Based Medical Systems, CBMS 2018
18 June 2018 through 21 June 2018
Indexação
Outras Informações
ID Authenticus: P-00P-268
Abstract (EN): Obstructive sleep apnea (OSA) is a significant sleep problem with various clinical presentations that have not been formally characterized. This poses critical challenges for its recognition, resulting in missed or delayed diagnosis. Recently, cluster analysis has been used in different clinical domains, particularly within numeric variables. We applied an extension of k-means to be used in categorical variables: k-modes, to identify groups of OSA patients. Demographic, physical examination, clinical history, and comorbidities characterization variables (n=46) were collected from 318 patients; missing values were all imputed with k-nearest neighbors (k-NN). Feature selection, through Chi-square test, was executed and 17 variables were inserted in cluster analysis, resulting in three clusters. Cluster 1 having an age between 65 and 90 years (54%), 78% of males, with the presence of diabetes and gastroesophageal reflux, and high OSA prevalence; Cluster 2 presented a lower percentage of OSA (46%), with middle-aged women without comorbidities, but with gastroesophageal reflux; and Cluster 3 was very similar to cluster 1, only differing in age (45-64) and comorbidities were not present. Our results suggest that there are different groups of OSA patients, creating the need to rethink the baseline characteristics of these patients before being sent to perform polysomnography (gold standard exam for diagnosis). © 2018 IEEE.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

The Association Between Comorbidities and Prescribed Drugs in Patients With Suspected Obstructive Sleep Apnea: Inductive Rule Learning Approach (2023)
Outra Publicação em Revista Científica Internacional
Ferreira-Santos, D; Pedro Pereira Rodrigues
Helping early obstructive sleep apnea diagnosis with machine learning: A systematic review (Preprint) (2022)
Outras Publicações
Ferreira-Santos, D; Amorim, P; Silva Martins, T; Monteiro-Soares, M; Pedro Pereira Rodrigues
Obstructive sleep apnea: A categorical cluster analysis and visualization (2021)
Artigo em Revista Científica Internacional
Ferreira Santos, D; Pedro Pereira Rodrigues
Enhancing Obstructive Sleep Apnea Diagnosis With Screening Through Disease Phenotypes: Algorithm Development and Validation (2021)
Artigo em Revista Científica Internacional
Ferreira Santos, D; Pedro Pereira Rodrigues

Ver todas (14)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-11-15 às 01:32:01 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico