Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers

Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers

Título
Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2017
Autores
Carlos Soares
(Autor)
FEUP
de Carvalho, ACPLF
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ata de Conferência Internacional
Páginas: 189-203
20th International Conference on Discovery Science (DS)
Kyoto, JAPAN, OCT 15-17, 2017
Outras Informações
ID Authenticus: P-00N-083
Abstract (EN): Recommender Systems have become increasingly popular, propelling the emergence of several algorithms. As the number of algorithms grows, the selection of the most suitable algorithm for a new task becomes more complex. The development of new Recommender Systems would benefit from tools to support the selection of the most suitable algorithm. Metalearning has been used for similar purposes in other tasks, such as classification and regression. It learns predictive models to map characteristics of a dataset with the predictive performance obtained by a set of algorithms. For such, different types of characteristics have been proposed: statistical and/or information-theoretical, model-based and landmarkers. Recent studies argue that landmarkers are successful in selecting algorithms for different tasks. We propose a set of landmarkers for a Metalearning approach to the selection of Collaborative Filtering algorithms. The performance is compared with a state of the art systematic metafeatures approach using statistical and/or information-theoretical metafeatures. The results show that the metalevel accuracy performance using landmarkers is not statistically significantly better than the metafeatures obtained with a more traditional approach. Furthermore, the baselevel results obtained with the algorithms recommended using landmarkers are worse than the ones obtained with the other metafeatures. In summary, our results show that, contrary to the results obtained in other tasks, these landmarkers are not necessarily the best metafeatures for algorithm selection in Collaborative Filtering.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 15
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Metalearning and Recommender Systems: A literature review and empirical study on the algorithm selection problem for Collaborative Filtering (2018)
Outra Publicação em Revista Científica Internacional
Cunha, T; Carlos Soares; de Carvalho, ACPLF
Metalearning for Context-aware Filtering: Selection of Tensor Factorization Algorithms (2017)
Artigo em Livro de Atas de Conferência Internacional
Cunha, T; Carlos Soares; de Carvalho, ACPLF
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Centro de Desporto da Universidade do Porto I Termos e Condições I Acessibilidade I Índice A-Z
Página gerada em: 2025-10-24 às 11:10:27 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico