Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Practical applications of numerical procedures for structural integrity assessment
Publication

Practical applications of numerical procedures for structural integrity assessment

Title
Practical applications of numerical procedures for structural integrity assessment
Type
Article in International Conference Proceedings Book
Year
2015
Authors
S.D. Pastrama
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
P.M.G.P. Moreira
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Paulo Tavares de Castro
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
Pages: 140-148
1st International Conference on Structural Integrity (ICSI)
Funchal, PORTUGAL, SEP 01-04, 2015
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00G-TST
Abstract (EN): The paper presents two practical applications in which the weight function method is used to determine the stress intensity factor as the main structural integrity assessment parameter in linear elastic fracture mechanics. In this method, one may obtain the solution for the stress intensity factor for a given crack configuration and a certain loading, provided a complete solution (the Mode I stress intensity factor K-Ir(a) and the displacements of the crack faces u(Ir)(x, a)) for the same crack problem is known in another loading case called the reference case. Three different cases can be encountered when the weight function method is used: i. The stress intensity factor K-Ir(a) and the displacement field u(Ir)(x, a) are known; ii. Only the stress intensity factor K-Ir(a) is known and iii. Both K-Ir(a) and u(Ir)(x, a) are unknown. In the first case, the method can be applied directly. This paper presents two practical applications for the second and the third case: Stress intensity factors for a strip with a cracked hole subjected to point loads (case 2) and stress intensity factors for an axially cracked thick walled cylinder subjected to internal pressure (case 3). For case 2, the reference stress intensity factors were first calculated using the compounding technique in a reference case (uniform remote traction). Then, an approximate expression of the displacements field found in the literature was used to calculate the weight function. In case 3, the authors propose a solution based on curve fitting of the crack face displacements obtained through finite element analysis. The obtained results were compared with the ones from the literature (where available). In all cases the agreement was very good, showing the reliability of the proposed solutions. (C) 2015 The Authors. Published by Elsevier Ltd.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2024 © Serviços Partilhados da Universidade do Porto I Terms and Conditions I Acessibility I Index A-Z I Guest Book
Page created on: 2024-09-27 18:23:56 | Acceptable Use Policy | Data Protection Policy | Complaint Portal