
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Test Automation in Continuous
Integration for Hardware Validation

Pedro Dias Faria

DISSERTATION

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Filipe Lima Maranhão de Abreu

Co- Supervisor::

Pedro Moreira - Synopsys Portugal

February 19, 2017

Test Automation in Continuous Integration for Hardware
Validation

Pedro Dias Faria

Mestrado Integrado em Engenharia Informática e Computação

February 19, 2017

Abstract

As in software development where bugs ought to be detected and fixed as soon as possible, hard-
ware validation is in the same level of priority when used in applications that seek to dramatically
reduce costs and extend systems life.

In these complex embedded systems, various interface systems, such as Field-Programmable
Gate Arrays (FPGAs), are distributed across multiple hardware blocks.

The interaction between the various systems involves an integration of firmware and its hard-
ware. With the growing complexity of this systems, specially this interaction, it is imperative to
reduce the time of the functional validation process of the hardware.

To achieve this, there is the need to implement an automatic validation hardware environment,
allowing systematic and automatic tests on the hardware, as well as showing performance metrics
of the hardware with a specific combination of each element in the system board, such as the Driver
version on the CPU, the Verilog version configuring the FPGA, and the board version itself.

In this thesis, being conducted at Synopsys Porto, it will be described how an automatic test
validation environment in continuous integration is structured and apply it on the context of hard-
ware validation.

It will be also outlined the process to create a dashboard view with the different information
related to the systems in testing, with the intent of helping stakeholders within the development
teams have a more streamlined view of the process results.

Keywords: Continuous Integration, Hardware Validation

Classification:

• Software and its engineering→ Software creation and management→ Software verification
and validation;

• Hardware→ Hardware validation

i

ii

Resumo

Assim como no desenvolvimento de software onde os bugs devem ser detectados e corrigidos o
mais rapidamente possível, a validação de hardware está ao mesmo nível de prioridade quando
usada em aplicações que procuram reduzir drasticamente os custos e estender a vida útil dos
sistemas.

Nestes sistemas embutidos complexos, vários sistemas de interface, tais como os Field-
Programmable Gate Arrays (FPGAs), são distribuídos em vários blocos de hardware.

A interação entre os vários sistemas envolve uma integração do firmware e o seu hardware.
Com a complexidade crescente desses sistemas, especialmente nessa interação, é imperativo re-
duzir o tempo do processo de validação funcional do hardware.

Para se alcançar isso, propomos implementar um ambiente de hardware de validação au-
tomática, permitindo testes sistemáticos e automáticos no hardware, assim como mostrar métricas
de desempenho do hardware com uma combinação específica de cada elemento na placa do sis-
tema, como a versão do Driver no CPU, a versão do Verilog configurada no FPGA, assim como a
própria versão da placa.

Nesta tese, realizada na Synopsys Porto, será descrita a estrutura de um ambiente de validação
de testes automáticos em integração contínua, e aplicá-lo no contexto de validação de hardware.

Será também delineado o processo de criação um painel com as diferentes informações rela-
cionadas aos sistemas em teste, com o objetivo de ajudar os stakeholders numa equipa de desen-
volvimento a ter uma vista dos resultados do processo mais simplificada.

Palavras Chave: Continuous Integration, Hardware Validation

Classificação:

• Software and its engineering→ Software creation and management→ Software verification
and validation;

• Hardware→ Hardware validation

iii

iv

“Do. Or do not.
There is no try.”

Master Yoda

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Motivation and Goals . 2
1.4 Document Structure . 3

2 State of the Art 5
2.1 Continuous Integration . 5

2.1.1 Process . 5
2.1.2 Components . 6
2.1.3 Value . 7

2.2 Continuous Integration Tools . 7
2.2.1 Jenkins CI . 8

2.3 Hardware Validation Architectures . 10
2.3.1 LAVA . 10

2.4 Conclusions . 12

3 Research Problem 13
3.1 The System architecture . 13

3.1.1 Communication Interfaces . 15
3.1.2 CI-flow . 17

3.2 Solution Requirements . 18
3.2.1 Project Views Alignment . 19

3.3 Project Build Spreadsheet . 19
3.4 Conclusion . 20

4 The Dashboard Solution 23
4.1 Use Cases . 23
4.2 Jenkins Plugin - Filtered Dashboard View . 24

4.2.1 Auxiliary Plugins . 25
4.2.2 Server Side Implementation Design . 27
4.2.3 Front-End Implementation Design . 30

4.3 Metadata and Pipeline Workaround . 33
4.4 Conclusion . 34

5 Evaluation 37
5.1 Setup . 37
5.2 Requirements . 37

vii

CONTENTS

5.3 Results . 37
5.4 Conclusions . 38

6 Conclusions and Future work 39
6.1 Contributions . 39
6.2 Limitations . 39
6.3 Future Work . 40

References 41

viii

List of Figures

2.1 Continuous Integration Process . 6
2.2 Common connection scheme [Nen16] . 9
2.3 LAVA Workflow . 11

3.1 View of an example Build . 14
3.2 CI environment for Hardware Validation Context 15
3.3 HAPS R©-Developer eXpress (HAPS-DX) . 16
3.4 ARC interface architecture . 16
3.5 PCI Express (PCIe) interface architecture . 17
3.6 Project Views organized in the Jenkins system. 19
3.7 Hardware Test Summary Results . 19
3.8 Different tools and controller Versions . 20

4.1 Dashboard plugin Use Case diagram . 24
4.2 View creation menu . 24
4.3 Dashboard customization menu . 24
4.4 Mission Control Plugin UI . 25
4.5 XML file containing a Builds’ information . 26
4.6 Metadata option inside a Job customization panel 27
4.7 CLI command update-metadata . 27
4.8 Top-down approach diagram . 28
4.9 Filtered Dashboard View classes diagram . 29
4.10 Interaction Diagram . 30
4.11 Dashboard Landing page . 31
4.12 Overall view of a Project . 32
4.13 Overall view of the same Project (Fig. 4.12) with filters applied 32
4.14 Parameterized project selection . 33

ix

LIST OF FIGURES

x

Abbreviations

API Application Programming Interface
CI Continuous Integration
CLI Command Line Interface
CPU Central Processing Unit
FPGA Field-programmable gate array
HAPS High-performance ASIC Prototyping Systems
HW Hardware
IDE Integrated Development Environment
IP Intellectual Property
R&D Research and Development
SoC System on a Chip
SW Software
UI User Interface

xi

Chapter 1

Introduction

Hardware validation process is essential when the hardware is used on complex embedded inte-

grated systems in applications that pretend to reduce drastically the system costs and expand its

durability[Sco].

In embedded systems, various interfaces are distributed by multiple blocs of hardware. The

interaction between these systems wraps an integration of the Firmware and its respective hard-

ware. Examples of these systems are the Reset and Clock, energy management, security and other

blocks[ASV].

Although the growing complexity of the systems, namely the interaction between firmware

and hardware, the process of functional hardware validation needs to be drastically reduced and

become more effective due to the "time-to-market". This requirement is even more relevant on

the mobile communication industry, making the validation process a major part of the project

development cost[PJ15].

These criteria motivate the creation of an automatic hardware validation environment, with

characteristics that permit conducting systematic and automatic tests, as well as providing verifi-

cation indicators tracking and test quality[SYP15][GPD+11].

In this document we describe the development of a solution to help development teams track

their work progress in their Jenkins projects. It is expected to help the validation process both in

Hardware and Software development by creating a certain level of abstraction, so it can be applied

to both

This chapter presents an introduction to the document, by making an overview of the problem,

explaining our motivation and the goals we pretend to achieve and the dissertation structure.

1.1 Context

This Dissertation was proposed by Synopsys Portugal, chosen as the MSc Dissertation in Infor-

matics and Computing Engineering of the Faculty of Engineering of the University of Porto. It

1

Introduction

emerged from the need to monitor and exhibit the status of current projects in development to

stakeholders not accustomed to the used development tools. In this case, the Jenkins CI.

In order to mitigate the complexity of the problem, new validation techniques will have to

be investigated in which functional requirements are verified by stimulating the Hardware with

configurations and specific test sequences.

SNPS Portugal Lda office is located at Maia (Tecmaia) and it is one of the offices of Synopsys

Inc, the leading American company by sales in the Electronic Design Automation industry.

The Synopsys IPK R&D team, the one collaborating with this project, is the team responsible

for the validation process of the developed IP designs [Moy], following a specific set of require-

ments and specifications to be verified accordingly a series of compliance tests defined by the

technologies consortia [HLA] [PS].

This team raised the need of having a more centralized and reliable source of information

regarding the validation process of their projects. These projects consist of developing and opti-

mizing the firmware utilized in HDMI and PCI-express sockets.

1.2 Problem Statement

The subjectivity of validation process in any kind of software development requires the use of some

type of structure and categorization of data. This can help an easier access in troubleshooting flaws

in the development.

The hypothesis is that with our solution, the productivity in development teams will increase

by having this information displayed in a streamlined, precise and straightforward way.

In order to validate this, the system has to be implemented in a real project and feedback

collected by the team to understand if the value added is noticeable.

1.3 Motivation and Goals

The hardware validation process is directly related with verifying if the different clients configu-

rations will be fulfilled. As such, the validation process can become a subjective process, since

it involves assessing how the behavior of the hardware will operate in the most diverse applica-

tions and conditions. The process typically consists of activities which include system modeling,

prototyping and evaluation by the user.

With this dissertation, we helped to build up a continuous integration environment for hard-

ware validation by developing a Jenkins plugin in form of a dashboard in order to help Synopsys

R&D teams on the hardware prototyping process.

To achieve this, the goals for the dissertation are:

• Define an automatic test management structure for Hardware validation;

• Define techniques to label and manage the Hardware validation test results;

2

Introduction

• Development of an web application to support the automatic test system;

• Test the web application and validate its usefulness.

1.4 Document Structure

In addition to the introduction, this dissertation report contains 5 other chapters. Chapter 2 de-

scribes the state of the art and present related work. Chapter 3 presents the system we want to

base our study on and test. Chapter 4 describes the implementation of our application. Results

and evaluation are shown in chapter 5. Finally, in chapter 6, is presented the conclusions and

future work suggestions.

3

Introduction

4

Chapter 2

State of the Art

In this chapter is described the state of the art of related work and technologies. It is divided in

three parts. Section 2.1 is explained the Continuous Integration process. In section 2.2 is presented

the different tools for continuous integration in software development for future contextualization

in hardware validation. In section 2.3 is presented one hardware validation architecture in which

will be based our solution.

2.1 Continuous Integration

Continuous Integration (CI), in Software Engineering, is the process of merging all the working

copies of developers to a shared mainline several times a day. It was first mentioned by Grady

Booch in his 1994 book "Object-Oriented Analysis and Design with Applications" [Boo94], al-

though he did not advocate integrating several times a day.

Extreme programming (XP) adopted this concept, when Kent Beck described XP [Bec99] as

an agile methodology designed for improving productivity, flexibility and teamwork in projects,

and did advocate integrating more than once per day, not leaving "unintegrated" code for more

than a couple of hours, thus presenting CI as one of its practices.

CI was set to resolve prevent integration problems, referred to "Integration Hell" in early

characterizations of XP, where developers used to divide work in modules, that once completed,

would be integrated to create the application as a whole. It was a costly process in terms of time

and effort, arising a number of bugs in the process.

The idea behind CI is to reduce this issues by integrating early and often, so as to avoid the

"integration hell".

2.1.1 Process

Continuous Integration is a cyclic process, as seen in the figure 2.1, divided in the following steps:

5

State of the Art

1. Commit - Developer modifies the code, tests it and commits to the repository;

2. Build - Code is fetched from the repository, integrated and built;

3. Test - Tests are performed on the build, followed by a report of the outcome;

4. Report - Developers are notified about the build and tests results

Figure 2.1: Continuous Integration Process

The process is dependent of the build and tests duration. It is expected to be fast so it can be

run several times a day.

2.1.2 Components

In this section are enumerated each component in the CI process.

2.1.2.1 Developers

Code developers are responsible for the creation of software. Continuous Integration is backed by

several important principles and practices [PSA07]:

• Check in frequently - Frequent commits means that smaller amount of code changed,

which leads to an easier process of finding bugs;

• Create automated tests - Tests should be automated and have high code coverage;

• Don’t check in broken code - Before commit, developers should test the code locally so

errors aren’t unnecessary introduced;

6

State of the Art

• Don’t check in when the build is broken - If a build is broken, it should be made top

priority an effort in fixing it, so the errors do not propagate.

Many teams develop rituals around these policies, meaning the teams effectively manage them-

selves, knowing that if software is broken, they will receive immediate feedback.

2.1.2.2 Repository

A central repository with the project code using a Source Code Management (SCM) tool or Version

Control System (VCS) is needed to perform a successful CI, maintaining the code reachable so

the developers can get the most recent version of the source code. This systems are important for

software development as they serve as backup for programmers. It is possible to revert changes

or pull previous code, allowing its use without the risk of breaking working code. Repositories

should contain the source code and everything else needed to create a build, such as: test files and

scripts, database schemas, libraries and install scripts. Everything needed to run the software in a

new machine.

2.1.2.3 CI Server

The CI server is the instrument behind Continuous Integration. It is used to implement continuous

process of applying quality control of the software, by pulling the latest code from the repository,

create a build and report the developers a feedback of the outcome. There are several CI tools

implementing this system, which we will talk in section 2.2 with more detail.

2.1.3 Value

By adopting Continuous Integration, you not only reduce risks and catch bugs quickly, but also

move rapidly to working software.

With low-risk releases, you can quickly adapt to business requirements and user needs. This

allows for greater collaboration between ops and delivery, fueling real change in your organization,

and turning your release process into a business advantage.

2.2 Continuous Integration Tools

In order to set up a successful agile software development environment, it is essential to include

a method of continuous integration in the process [AF12]. This practice can be easily adapted to

the hardware validation process, since it operates the same way as in software development:

1. Hardware logic is modified;

2. Firmware is built and deployed on the physical hardware;

3. Automated tests are run;

7

State of the Art

4. Hardware is validated.

To contextualize this process into the hardware validation process, we must first choose a

continuous integration tool before designing the architecture of the system. It is known that there

is a wide range of choices for continuous integration tools available, but for this project it was

selected Jenkins as the preferred one.

2.2.1 Jenkins CI

Jenkins [Jen16] is a continuous integration and continuous delivery tool application, used to build

and test software projects and help developers integrate new changes and features to the project. It

also provides ways to delineate customized build pipelines and integrate with several testing and

deployment technologies.

It is the application of choice to create our system thanks to the several features it offers, such

as:

• Open Source - Jenkins can be extended and modified in its majority, and makes uncompli-

cated to develop new plugins. This allows the creation of the dashboard plugin proposed;

• Automated Jobs / Jobs Management - Jenkins can integrate with most software configu-

ration management and build tools available. With this it is possible an easy script manage-

ment of jobs to build, deploy and test the firmware developed;

• Build Reports - The tool can automatically receive and generate logs of successful or failed

builds, which can then be parsed (for example into an XML) and eventually used in a plugin

or external application;

• Distributed System - Jenkins can distribute builds and test loads to specific machines with

the requested configurations.

2.2.1.1 Jenkins Pipeline Jobs

In modern environment, delivering innovative ideas in a fast and reliable manner is extremely

significant for any organization to better respond the dynamic market requirements [Son15].

Recently, inside the Jenkins tool, was created a new ecosystem that allows implementing jobs

in a domain specific language. It is referred to as Pipeline [CIb] (formerly known as Workflow).

Pipeline is a powerful tool available for Jenkins users to implement various software delivery

pipelines in code.

Since any peripheral hardware device can be attached to a Jenkins node, and these nodes

requiring Java only, almost every development machine can be attached. A Sample scheme can be

seen in the figure 2.2.

8

State of the Art

Figure 2.2: Common connection scheme [Nen16]

When connected, Jenkins jobs could invoke common EDA tools via command-line interfaces,

which can be easily done by a Execute shell build steps in free-style projects.

Pipeline as Code is an approach for describing complex automation flows in software lifecy-

cles, e.g: build, delivery, deployment.

In Jenkins there are two most popular plugins: Pipeline [CIb] and Job DSL [JADM]. JobDSL

Plugin internally generates common freestyle jobs according to the script, so it’s functionality is

similar to the classic approaches. Pipeline is fundamentally different, because it provides a new

engine controlling flows independently from particular nodes and workspaces. So it provides a

higher job description level, which was not available in Jenkins before.

Accordingly to Oleg Nenashev [Nen16], there are several Pipeline features that may be of

value to embedded and hardware projects.

• Robustness against restarts of Jenkins master.

• Robustness against network disconnects. sh() steps are based on the Durable Task plu-

gin [Gli], so Jenkins can safely continue the execution flow once the node reconnects to the

master.

• Possibility to run tasks on multiple nodes without creating complex flows based on job

triggers and copy artifact steps. Achieved via combination of parallel() and node() steps.

• Ability to store the shared logic in standalone Pipeline libraries

In conclusion, Jenkins is a powerful automation framework that can be used in many areas.

Although it has no dedicated plugins for test runs on hardware, it provides diverse general-purpose

"building blocks", that allow the implementation of any flow.

9

State of the Art

Pipeline as code can greatly simplify these complex implementations in Jenkins. It continues

to evolve and extend support of use-cases.

2.3 Hardware Validation Architectures

Subsequently to deciding the CI tool to use, we must start designing the architecture of the target

environment. The framework we came across that accomplishes our goal to some extent was the

LAVA project.

2.3.1 LAVA

The Linaro Automated Validation Architecture (LAVA) project [Lin16] is a "continuous integra-

tion system for deploying operating systems onto physical and virtual hardware for running tests".

It can run simple boot loading and system level tests, where the results can be exported and in-

spected subsequently.

It is composed by two main components, as seen in the figure 2.3:

• The LAVA Server: a web application that provides a central scheduler, dashboard for job

monitoring and test result visualization;

• The LAVA Dispatcher: a sub-system that manages communication to the physical test de-

vices.

The overall idea is allowing us to make continuous testing, quality control and automatic

validation for projects of all sizes.

10

State of the Art

Figure 2.3: LAVA Workflow

It is to note that LAVA itself doesn’t run the tests, it is only an enabler as it does not define

what can be run. It is a merely black-box to CI, since the test jobs still have to be provided by an

external source (usually Jenkins).

The framework serves to test the boards from the Linaro validation lab in Cambridge, where all

devices have the same LAVA interface.

11

State of the Art

2.4 Conclusions

The market is full of CI tools available to use, but it is not very explored in the hardware validation

context.

Since Synopsys already started to implement a Continuous Integration environment using

Jenkins, with automated jobs by this time created in the application, and it providing key fea-

tures for the goal system, makes sense to continue this approach to develop a new plugin for the

tool.

Concluding, we can adapt the LAVA architecture to Synopsys interfaces using Jenkins, by

using the job management and distributed system features as the central scheduler and dispatcher,

and creating the dashboard plugin to supervise the test results.

12

Chapter 3

Research Problem

In this chapter, we present how the Continuous Integration System of the R&D IPK team in Syn-

opsys Porto is arranged and what needs to be improved.

We will describe its architecture in section 3.1, with a little description of its different com-

munication interfaces in section 3.1.1 and current continuous integration flow in section 3.1.2. It

is also listed the requirements we will implement in the solution in section 3.2, following by the

current method of displaying the project builds information in section 3.3. Finally a conclusion in

section 3.4 about the problem in study.

3.1 The System architecture

Most compliance tests take long periods to finish (aprox. 4 hours, as displayed in the figure 3.1

top-right corner). In addition to setting up and recreating the test environment for each run, it

is felt as a waste of time. The current test automation environment, due to its manual labor has

some issues such as the inconsistency between tests and the lack of traceability among product

versions in testing. Hereupon, we want to increase efficiency and productivity of the R&D teams

in HW/SW testing and improve reporting to these teams.

To this goal, it is desirable to create an automated test architecture that eliminates the need of

employing an engineer to configure the equipment by using automated test equipment, which will

allow the continuous testing of different features configurations through automation. By conse-

quence this permits an improved and robust test coverage, as well as increasing their number and

velocity. This will summarize in a more refined and consistent testing process, with an improved

degree of trust and certainty on the results.

This architecture should meet the following requirements:

• Speed up testing to allow for accelerated releases which:

– Reduces testing costs;

– Reduces time in testing phase.

• Allow testing IP’s features continuously;

13

Research Problem

• Improve test coverage;

• Ensure consistency;

• Improve the reliability of testing;

– Consolidate the testing process

Figure 3.1: View of an example Build

The block diagram shown in the figure 3.2 shows the hardware testing architecture which is

analogous to a common continuous integration software development setup.

14

Research Problem

Figure 3.2: CI environment for Hardware Validation Context

This architecture contains all the components used for a successful CI environment, as de-

scribed in section 2.1.2, being the object of test and analysis the multiple IP configurations, for the

different communication interfaces, namely PCIe and ARC (see sections 3.1.1.3 and 3.1.1.2).

3.1.1 Communication Interfaces

Here are succinctly described the HAPS platform and the different communication interfaces uti-

lized as test objects by the IPK team.

3.1.1.1 HAPS

HAPS (High-performance ASIC Prototyping Systems) is an integrated and scalable hardware-

software solution utilized by design and verification teams to improve their ASIC design schedules

and avoid costly device re-spins[Sync].

This prototyping solution consists of a collection of modular, easy-to-use products for ASIC

and SoC prototyping that include HAPS hardware components supported by an integrated software

tool flow for design planning, FPGA synthesis, and debug.

15

Research Problem

Figure 3.3: HAPS R©-Developer eXpress (HAPS-DX)

3.1.1.2 ARC

Synopsys’ DesignWare R© ARC R© Processors[Syna] are a family of 32-bit CPUs that SoC de-

signers can optimize for a wide range of uses, from deeply embedded to high-performance host

applications in a variety of market segments, such as Automotive and Industrial, Internet of Things

or mobile.

Designers can adapt their products by using configuration technology to tailor each ARC pro-

cessor instance to meet specific performance, power and area requirements. These processors are

also extendable, allowing designers to add their own custom instructions to increase performance.

Figure 3.4: ARC interface architecture

16

Research Problem

3.1.1.3 PCIe

PCI Express (Peripheral Component Interconnect Express), is a high-speed serial computer ex-

pansion bus standard, designed to replace the older bus standards[Wikb][Synb]. Recent revisions

of the PCIe standard provide hardware support for I/O virtualization.

The PCI Express electrical interface is also used in a variety of other standards, most notably

in ExpressCard as a laptop expansion card interface, and in SATA Express as a computer storage

interface.

Figure 3.5: PCI Express (PCIe) interface architecture

3.1.2 CI-flow

To better understand how the test automation for hardware/software validation works, the rundown

of the process is described as follows:

1. The R&D teams create an hardware image with a specific IP configuration to be deployed

to the HAPS platform. At the same time, a firmware is packaged with its specific drivers to

be deployed in the target interface, e.g. ARC and PCIe;

2. These files are committed to a VCS repository;

17

Research Problem

3. The Jenkins Master node receives notification of these changes and proceeds to run the

associated Job. The Job is dispatched to the appropriate slave node, as seen in the figures

3.5 and 3.4, in a test automation rack that will trigger a set of sub-steps:

3.1. program the HAPS FPGA with the submitted hardware image;

3.2. boot the host interface and loads the firmware;

3.3. run a set of tests (IP compliance tests) from the test equipment and a log is generated;

4. The log is then parsed and a spreadsheet (detailed in section 3.3), containing all the relevant

information is created. The spreadsheet is then validated by the R&D teams.

The last step of this flow is is faulted mainly by three dissatisfactory characteristics:

• The use of a spreadsheet file, which we detail its faults thoroughly in section 3.3, that has

no correlation with the Jenkins environment;

• Jenkins default views of the IP projects do not display enough information to reach conclu-

sions about the test results with ease;

• Jenkins build views do not contain specific information about the configuration of the tested

hardware, as seen in the figure 3.1.

Ultimately, these are the points we want to correct in order to improve the last step, with this

dissertation work.

3.2 Solution Requirements

For the display of the desired information in order for a better test result analysis, it was decided

to implement a dashboard plugin as solution. Since dashboards allow stakeholders to monitor the

contribution of the various elements in the organization. They allow the display of specific data

points of the system in question, provided in a single "snapshot" [Wika].

Presently, R&D teams utilize an Excel spreadsheet created by its IP Prototyping Team, where

most of the time the data is manually input with the test results obtained from a test compliance log.

This method is a poor solution since it does not provide consistency between tests, nor automatic

traceability among the different tested versions, as explained in section 3.3.

The dashboard plugin will serve as a project monitoring view where the R&D teams can

constantly observe the results of the hardware validation phase testing. The main features of the

dashboard include:

• View customized to each development team;

• Information of each test configuration;

• Display of test results and build performance indicators (e.g. build average time of each

configuration).

18

Research Problem

3.2.1 Project Views Alignment

The R&D Jenkins environment is currently organized by different Views, each referencing a dif-

ferent project. As seen in the figure 3.6, a project View is very unidimensional, not displaying

enough information.

Aware that each R&D team can have more than one Project associated to it, this is one require-

ment we had in mind while creating our solution, as explained in section 4.2.2.

Figure 3.6: Project Views organized in the Jenkins system.

3.3 Project Build Spreadsheet

The IPK team uses an Excel Spreadsheet to track the overall status of each job with different test

configurations, illustrated in figures 3.7 and 3.8.

Figure 3.7: Hardware Test Summary Results

Figure 3.7 depicts an example build run information in a PCIe interface. It is structured by the

following elements:

19

Research Problem

• The labels in line 1 contain the project information, about the hardware build, namely the

host interface, the PHY[Wikc] and top level hardware configurations, and date of the build;

• The subsequent rows contain the test details, with the columns displaying information about

the test result.

Figure 3.8: Different tools and controller Versions

In figure 3.8 it is represented more information about the same build run, in a different sheet,

showing the Controller Version in the first line, followed with the used tool versions for each

configuration.

This exposes various problems, such as:

• Traceability - A new spreadsheet has to be created each time a new data-set of test results

is created.

• Susceptible to Human Error - If an error while populating the spreadsheet data is encoun-

tered, a manual fix is needed to correct it.

• Availability - Every stakeholder in the process needs a copy of the spreadsheet for analysis.

• Difficulty to troubleshoot - The need of correcting a failed test leads the user to search for

it in the system.

A dashboard inside Jenkins will resolve this issues by aggregating the information in a single

snapshot.

3.4 Conclusion

Accuracy and speed need to be improved in the hardware validation process. Having a more

centralized information access would greatly aid this improvement.

Despite the fact that the organization of each project is well structured in Views, there is the

need of a factor that facilitates its analysis, eliminating some of irrelevant information displayed.

The current solution is inefficient, with information disperse and more than required for the

time being.

20

Research Problem

With this, it is safe to assume a View in form of a dashboard inside Jenkins is one optimal

way to achieve this goal. Jenkins has a great API that allows access of its items inside its various

Extension Points [CIa].

This will eliminate the issues of using a spreadsheet, since all the information is retrieved

automatically from the Jenkins server in a reliable manner, and displayed available to every user

inside the tool. It will make the validation process faster, concentrating the relevant information

in a single view.

21

Research Problem

22

Chapter 4

The Dashboard Solution

In this chapter, we will describe the Dashboard solution, its implementation and methodology

under its development.

Since Synopsys had already setup the CI server in Jenkins, it was chosen to develop the Plugin

for it. We also take the avantage of Jenkins being very customizable, with hundreds of extension

points and plugins available to support our needs [Jen16] [CIa].

Nonetheless, it is not a simple task to develop a plugin due to lack of documentation. In order

to find out how plugins work, it was crucial to look into other plugins source code.

Our plugin, named Filtered Dashboard View plugin [Far17], will be referenced from here on

simply as Dashboard.

4.1 Use Cases

Taking into consideration the R&D project organization of Jenkins, described in section 3.2.1, it

was discussed with the collaborating IPK team that the best option was to develop the Dashboard

as a View plugin, implementing the class ViewGroup, in order to aggregate different views inside

it.

In the Use Case diagram in the figure 4.1 are pictured the actions a user can perform to display

our Dashboard in the Jenkins environment.

The plugin is designed to be as simple as creating a new View inside the tool, selecting which

other Views are requested to display, as shown in the figure 4.2. Afterwards, the user can freely

change its configuration, namely add, remove or change which views will be displayed, demon-

strated in the figure 4.3.

It is important to note that all kinds of Views should be allowed to display inside the Dash-

board, with the exception of itself and other instances of the same View Class, so no loops are

originated from this process.

23

The Dashboard Solution

Figure 4.1: Dashboard plugin Use Case diagram

Figure 4.2: View creation menu Figure 4.3: Dashboard customization menu

4.2 Jenkins Plugin - Filtered Dashboard View

In this section it will be described the thought process of designing our plugin, including the

research of similar and auxiliary plugins in 4.2.1, our implementation design in section 4.2.2, and

24

The Dashboard Solution

finally the display of the User Interface of the final product in section 4.2.3.2.

4.2.1 Auxiliary Plugins

Since Jenkins [Jen16] supports plugins, with an abundance of extension points which allow it to

be extended to meet specific needs of individual projects, it was appropriate to investigate what

similar plugins already exist that can be extended or modified as base to our own solution.

In this section, it will be described 2 plugins used to help achieve our final application.

4.2.1.1 Mission Control Plugin

Accounting that we want to create a Dashboard, we came across the Mission Control Plugin [She15],

that has practically all the base to work with, a full dashboard view that features:

• Job status display;

• Build history and build queue;

• Extends a View Object [Kaw], which can be added to the main dashboard.

Despite being a starting point, the information displayed in the figure 4.4, needed to be

trimmed and adapted to our requirements.

Nevertheless, after making a profound source code analysis of this plugin, we had a good

understanding on how we could interact with the Jenkins API in various ways, such as retrieving

information of all necessary items in our Jenkins instance, exportation of this information and its

interaction with the front-end.

Figure 4.4: Mission Control Plugin UI

25

The Dashboard Solution

4.2.1.2 Metadata Plugin

Considering that one of the requirements is filtering the data displayed with the information of each

test configuration, as said in section 3.1, and since Jenkins has the possibility to store information

on each of its CI items in XML format, exemplified in the figure 4.5, then it could be stored some

type of metadata as well.

To facilitate this, we used the extension point that Metadata Plugin [RT12] provides, in con-

junction with the Jenkins API, to apply relevant filters on each job for an easier parsing of these

configurations information.

Figure 4.5: XML file containing a Builds’ information

This Metadata can be applied to Jobs simply through the customization menu, as seen in the

figure 4.6, which will apply it to every future Build after this point.

26

The Dashboard Solution

Figure 4.6: Metadata option inside a Job customization panel

Or alternatively, automate the process simply by calling a post-build CLI command that is

provided from the same plugin, using the format demonstrated in the figure 4.7.

Figure 4.7: CLI command update-metadata

4.2.2 Server Side Implementation Design

Understanding how the back end in Java interacts with Jenkins and how projects were organized

in Views, as explained in section 3.2.1, we defined a Top-down strategy to obtain and parse the

information of our items of interest. This means we had to process View by View as individual

projects to relate their child items in our Dashboard as seen in the figure 4.8.

27

The Dashboard Solution

Figure 4.8: Top-down approach diagram

It was took in consideration the association between Views and Jobs inside Jenkins, namely

that one Job is not associated to any View. Therefore each Job could be displayed multiple times,

being represented by the same object.

We also needed a way to store information about the filters that can be applied, so we decided

to implement a new Tag child in each Build.

Based on this, our final plugin consists in this five different classes, depicted in the figure 4.9,

that work together in parsing the information to display:

• FilteredDashboardView - The main class of the Dashboard. It collects all the Data from

the Views selected and parses them into our other custom classes. After this collection,

it exports the information to Jenkins API, which will be used to render and display in the

front-end.

This class refreshes all the information when a new request is made by the front-end, which

happens in a predefined time with an auto-refresh to capture new changes in the Jenkins

instance, as schemed in the diagram 4.10.

We also ensure concurrency of the Views between all the life cycle of the class with a simple

CopyOnWriteArrayList<View> views = new CopyOnWriteArrayList<View>()

on its instantiation, which safeguards any View modification or deletion in the server.

To ensure our approach scheme is followed, and prevent unnecessary duplicates of Jobs,

these mapped in a variable Map<String, JobData> jobsMap, with their name serv-

ing as identifier, as well each Project mapped with its respective Jobs as Map<String,

ArrayList<String» jobsInProjectMap.

28

The Dashboard Solution

• Project - Custom class representing a View. Contains a list of all Jobs inside the View

as ArrayList<JobData> projectJobs. It is defined by its name projectNane and

overall project status projectStatus. This status is calculated after all jobs are parsed

and is set as the worst case scenario between them (i.e. if one Job fails, the whole project is

set as Fail).

• JobData - Custom class representing a Job. Contains a list of all Builds made by its

represented Job as ArrayList<Build> builds.

It has a subclass JobVar that keeps information of its variables, such as its URL, name

and status. This concept was chosen for an easier access in the front-end, where we simply

iterate through all these variables for display.

• Build - Custom class representing a Build. Contains a list of Tags as ArrayList<Tag>

tags associated to this Build.

• Tag - Class that represents a Metadata, from the plugin described in section 4.2.1.2, label

and value contained in a Build, that will be used to apply filters in the Dashboard. Each

Tag is the depiction of the configuration parameters utilized during the test process in sec-

tion 3.1.2.

Figure 4.9: Filtered Dashboard View classes diagram

29

The Dashboard Solution

Figure 4.10: Interaction Diagram

To eliminate some clustering of information, in the front-end we display only the last N builds

of each job. This number can be increased in the customization panel from figure 4.3, however it

will also increase its processing time proportionally.

Finally, the addition of Tags to filter the information is the key feature of our Dashboard.

This concept helps to maintain track of each configuration as requested in section 3.2, with the

minimum requisite of adding, or modifying, these labels to Jobs in the building process.

This design permits a totally scalable structure, since it has no limitations on the number of

Views associated to the Dashboard, nor its Jobs and Builds. It can also be extendable to put more

information in each of its custom classes for additional metrics and indicators in the future if

desired. All this information only depends on the Jenkins API and what it supports.

4.2.3 Front-End Implementation Design

After the development of the server side, it was needed some brainstorming on how to organize

the information structured and display it in the browser.

For this, in the front-end display of the Dashboard, we based on the same scripts of the Mission

Control Plugin, described in section 4.2.1.1, along with several common Web Application libraries

and frameworks such as Javascript, jQuery and Bootstrap, all processed in Apache Jelly [SF], a

Java and XML based scripting and processing engine that allows Jenkins its UI to be extended by

plugins.

Since the data exported to the API is already well structured, the presentation process was

completed with ease, only requiring a way to exhibit the view of a project with an intuitive display.

To accomplish the aforementioned, was decided to display every Job inside the project as a

column in a table, using the library referenced in section 4.2.3.1, being each row cell its Builds or-

ganized in a descending chronological order. Each cell has its Tags associated for a quick reference

of the configurations utilized in the respective Build.

30

The Dashboard Solution

4.2.3.1 Auxliary Library: DataTables - jQuery

DataTables [Ltd] is a plugin for the jQuery Javascript library. It is a highly flexible tool that helped

to create and add advanced interaction controls to any HTML table.

Is one of the key components of the front-end that made possible and simple the creation of a

display table within the Dashboard, as well the search interaction with the added Tag filters.

4.2.3.2 User Interface

Once the Dashboard is selected, it displays every View selected previously, as seen in the figure

4.2, and the overall status of those projects. It also shows all the Jobs inside those Views, and a

Build history resulted from these, organized chronologically from the most recent. It is to note

that every one of this items is linked directly to its object inside the Jenkins tool, eliminating the

need of searching for them in the system.

In the figure 4.11 its is shown the Synopsys IPK R&D team’s Dashboard, which are associated

both HDMI and PCIe projects.

Figure 4.11: Dashboard Landing page

It displays a "straight to the point" facet, that helps to identify exactly which Job or Build is

not corresponding to the expected results.

Inside of each sub-view, the user can see information about Jobs, Builds and overall Project

status, as well as the different filters defined by the Metadata inputs, referring to the different test

configurations, displayed in the figure 4.12.

31

The Dashboard Solution

Figure 4.12: Overall view of a Project

For a quick filtering through the Tags, the user simply needs to select them in the respective

section (Fig. 4.13). This search is made following a regular expression using the AND operator

through all the selected Tags, displaying only the Builds that follow it. With this, we attain the

desired streamlined perspective to troubleshoot and validate the configurations.

Figure 4.13: Overall view of the same Project (Fig. 4.12) with filters applied

32

The Dashboard Solution

4.3 Metadata and Pipeline Workaround

One issue that was discovered while developing our plugin, was the incompatibility between the

Metadata Plugin, from section 4.2.1.2, and the Pipeline Jobs [CIb]. This occurs because the Meta-

data Plugin only supports Abstract Jobs, while Workflow Jobs (created in Pipeline) are not inher-

ited from this class, since it was created in a pre-Workflow era.

To workaround this problem, it was created a function, exemplified in the snippet 4.1, that can

be patched in Pipeline Jobs groovy scripts and still maintain their complete functionality while

being used in our Dashboard.

For this, one has to allow Pipeline builds to be Parameterized, as seen in figure 4.14, and add

String Parameters with the following structure: metadata:name, where name can be any string

the user wishes to reference the name of the metadata. This is valid because the inclusion of both

Metadata and Parameters in Builds, are extended from the Action extension point of Jenkins.

Afterwards, only this function is needed in the Groovy script.

Figure 4.14: Parameterized project selection

1 import hudson.model.*

2

3 @NonCPS

4 def setMetadata(map){

5 def npl = new ArrayList<ParametersAction>();

6 for(e in map){

7 npl.add(new StringParameterValue(e.key.toString(), e.value.toString()));

8 }

9 def newPa = null

10 def oldPa = currentBuild.build().getAction(ParametersAction.class)

11 if (oldPa != null) {

12 currentBuild.build().actions.remove(oldPa)

13 newPa = oldPa.createUpdated(npl)

14 } else {

15 newPa = new ParametersAction(npl)

16 }

17 currentBuild.build().actions.add(newPa);

18 }

19 def map = [:]

20

21 //Example to populate the map:

22 map[’metadata:core_name’] = ’DWIPK_HDMI_RX’;

33

The Dashboard Solution

23 map[’metadata:core_version’] = ’1.0’;

24 setMetadata(map);

Listing 4.1: Groovy Script Workaround

This information will be parsed inside our dashboard with a condition statement, displayed

in our snippet 4.2 function, that creates exactly the same output for Pipelines as if other Job was

being processed.

1 public ArrayList<Tag> getBuildTags(String jobName, int buildNr) {

2 ArrayList<Tag> tags = new ArrayList<Tag>();

3 Job job = Jenkins.getInstance().getItemByFullName(jobName, Job.class);

4 Run build = job.getBuildByNumber(buildNr);

5

6 if (job.getClass().getName().equals("org.jenkinsci.plugins.workflow.job.

WorkflowJob")) {

7 ParametersAction parameterActions = build.getAction(ParametersAction.

class);

8 if (parameterActions != null) {

9 for (ParameterValue parameter : parameterActions.getAllParameters()

) {

10 if (parameter.getClass().equals(StringParameterValue.class)) {

11 if (StringUtils.substring(parameter.getName(), 0, "metadata

:".length()).equals("metadata:") &&

12 !parameter.getValue().equals("")) {

13 String name = parameter.getName().replace("metadata:",

"");

14 tags.add(new Tag(name.toUpperCase(), parameter.getValue

().toString().toLowerCase()));

15 }

16 }

17 }

18 }

19 }...

20 }

Listing 4.2: Java Condition Statement Workaround

4.4 Conclusion

In this chapter the Dashboard solution was fully detailed along with the fixes one must do to make

it fully functional with Pipelines. It is divided in simple classes that can be used as base for future

extensions to the main View.

We can safely disclose that every obstacle in the previous Spreadsheet solution, detailed in

section 3.3, was surpassed:

34

The Dashboard Solution

• Traceability - The Dashboard is automatically updated when a new test is made.

• Susceptible to Human Error - All the information comes from inside Jenkins, so there is

no human interference in the process of displaying the information.

• Availability - The only requirement is being a user inside the Jenkins tool and having

permission to see the View.

• Difficulty to troubleshoot - Every item on the Dashboard is linked directly to the original

inside Jenkins, making the process a "one click" distance.

The plugin is made abstract enough so it can be used not only by our main target environment,

but to help other software development teams equally.

35

The Dashboard Solution

36

Chapter 5

Evaluation

This project was made with the support and constant review of the collaborating team at Synopsys,

adapting every iteration towards the final goal product. For a final validation process, it was asked

the IPK R&D team leader and manager short considerations about the whole project and process

itself.

5.1 Setup

A prototyping kit is quite a complex design in great extent due to its nature of multiple configu-

rations. To automate the process of test compliance of the prototyping kits and with it reducing

considerably the effort needed during the testing phase, jobs were implemented in Jenkins to auto-

mate the testing of the kits during their compliance testing phase. Nonetheless, the configurations

to be tested scale quite exponentially and maintain their traceability can be a time consuming ef-

fort. In addition, the life time of the IPK with new versions occurring at a very fast pace makes

the analysis of data extremely cumbersome, erroneous and time consuming.

5.2 Requirements

The requirements for the development of the Jenkins’ Dashboard were to improve the analysis,

readability, usability and traceability during the lifecycle span of the IPKs. The Dashboard should

arrange and consolidate the most need information related with the parameters of a specific project

build, this way the product development can be monitored in a single snapshot.

5.3 Results

The Dashboard developed appears to be a powerful tool to help reducing the analysis of the state

of specific IPK configuration and respective version. It fills the requirements of filtering and

37

Evaluation

keep traceability of the specific relevant information of each configuration. In addition, it is very

effective as it is accurate and complete in showing the defined important metadata information

of the specific product configuration. Accurate, because it shows the job state of the builds to

the defined information (metadata), namely product version or configuration of the image tested.

Complete, since the data is well presented. The efficiency is also improved as the time required

to find the successful and unsuccessful builds is now reduced. Moreover, it is easier to categorize

which are the IPK product configurations that require less effort to successful pass the compliance

test during the testing phase.

5.4 Conclusions

The overall Dashboard satisfies greatly all the requirements proposed, some works need to be done

to improve the cosmetic aspect of the Dashboard to make it more appealing to the eye. It is now a

work of the IPK team to update the jobs so that the Dashboard can be used at its full extent.

38

Chapter 6

Conclusions and Future work

In the end of this project we were able to develop successfully the intended Dashboard application.

Although narrowed down some features expected in the beginning of the project, such as

displaying metrics about the hardware validation process due to time constraints between the end

of development and testing of the Plugin, we believe it will greatly help development teams to

keep track of their projects in a simpler and streamlined way.

6.1 Contributions

This Dashboard Plugin gathers all the needed information for any development team using Jenkins,

for a quick glance at the status of their projects. It was designed considering people that are

not used to Jenkins and its UI, so they can track this process with ease and improve the team

productivity.

The fact that it is all maintained inside of Jenkins, without the need of updating any file or

distributing information by other means, has the advantage of giving anyone within the system

access to this information.

With the use of Metadata and applying tags to projects, creates the habit of keeping these

organized for quick information access at any time.

The plugin can also be obtained within the Jenkins plugin repository, under the name Filtered
Dashboard View Plugin [Far17].

6.2 Limitations

As referenced in the Implementation in section 4, the only limitation is the impossibility of di-

rectly addition of metadata inside a Pipeline Job, but it is provided a workaround for this issue in

section 4.3.

39

Conclusions and Future work

6.3 Future Work

The Dashboard Jenkins plugin is completely functional and will immediately help Synopsys devel-

opment teams, as well as whoever Jenkins user that wants to utilize it. However some continuous

work is needed to improve it to fulfill future demands.

As any Jenkins plugin, there will be the need of maintaining it. Every new version of the tool

can introduce unanticipated bugs. This is also true for the interaction with other untested plugins.

Part of the maintainability includes the improvement of the UI. Due to time restrictions, it was

not put a lot of effort on it, since we prioritized the functionality of the plugin.

It would add great value as well to include some metrics inside each project (e.g. average build

time, average number of builds to pass in tests). For this, new parameters should be added and

calculated inside the Dashboard custom classes.

Finally, we would like to contribute even more to the Jenkins community by helping in the

maintenance of the Metadata Plugin [RT12] so the workaround provided in section 4.3 is not

needed anymore, and covers all types of Jobs for a total functionality of the Dashboard filtering

and organizing feature.

40

References

[AF12] Fazreil Amreen Abdul and Mensely Cheah Siow Fhang. Implementing continuous
integration towards rapid application development. In ICIMTR 2012 - 2012 Interna-
tional Conference on Innovation, Management and Technology Research, 2012.

[ASV] Yael Abarbanel, Eli Singerman, and Moshe Y Vardi. Validation of SoC Firmware-
Hardware Flows: Challenges and Solution Directions.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, 1999.

[Boo94] Grady Booch. Object-Oriented Analysis and Design with applications. Addison-
Wesley, 2 edition, 1994.

[CIa] Jenkins CI. Jenkins extension points. https://wiki.jenkins-ci.org/
display/JENKINS/Extension+points.

[CIb] Jenkins CI. Jenkins pipeline. https://jenkins.io/doc/book/pipeline/.

[Far17] Pedro Faria. Filtered views dashboard plugin - jenkins. https://wiki.
jenkins-ci.org/display/JENKINS/Filtered+Views+Dashboard+
Plugin, 2017.

[Gli] Jesse Glick. Durable task plugin - jenkins. https://wiki.jenkins-ci.org/
display/JENKINS/Durable+Task+Plugin.

[GPD+11] Shekhar Gupta, Msc Presentation, Prof Dr, Ir. Arjan, J. C. Van Gemund, Prof Dr,
C. Witteveen, Dr. Ir, Rui Abreu, Dr. Ir, and Stefan Dulman. Antares: Automatic
diagnosis of software/hardware systems, 2011.

[HLA] Inc HDMI Licensing Administrator. Hdmi consortium, test compliance requirements.
http://www.hdmi.org/manufacturer/testing_policies.aspx.

[JADM] Justin Ryan, Andrew Harmel-Law, Daniel Spilker, and Matt Sheehan. Job dsl plugin
- jenkins. https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+
Plugin.

[Jen16] JenkinsCI. Jenkins continuous integration tool. https://jenkins.io/, June
2016.

[Kaw] Kohsuke Kawaguchi. Jenkins class view. http://javadoc.jenkins.io/
hudson/model/View.html.

[Lin16] Linaro. Linaro automated validation architecture (lava). https://wiki.linaro.
org/LAVA, June 2016.

41

https://wiki.jenkins-ci.org/display/JENKINS/Extension+points
https://wiki.jenkins-ci.org/display/JENKINS/Extension+points
https://jenkins.io/doc/book/pipeline/
https://wiki.jenkins-ci.org/display/JENKINS/Filtered+Views+Dashboard+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Filtered+Views+Dashboard+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Filtered+Views+Dashboard+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Durable+Task+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Durable+Task+Plugin
http://www.hdmi.org/manufacturer/testing_policies.aspx
https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://jenkins.io/
http://javadoc.jenkins.io/hudson/model/View.html
http://javadoc.jenkins.io/hudson/model/View.html
https://wiki.linaro.org/LAVA
https://wiki.linaro.org/LAVA

REFERENCES

[Ltd] SpryMedia Ltd. Datatables, table plug-in for jquery.

[Moy] Bryon Moyer. Synopsys’s ip initiative. http://www.eejournal.com/blog/
synopsyss-ip-initiative/.

[Nen16] Oleg Nenashev. Automating test runs on hardware with pipeline as code. https:
//jenkins.io/blog/2016/04/07/pipeline-for-runs-on-hardware/,
April 2016.

[PJ15] Stephan Puri-Jobi. Test Automation for NFC ICs using Jenkins and NUnit. In 2015
IEEE Eighth International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pages 1–4. IEEE, apr 2015.

[PS] PCI-SIG. Pcie consortium, compliance workshop. https://pcisig.com.

[PSA07] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improv-
ing Software Quality and Reducing Risk. Addison-Wesley, 2007.

[RT12] Robert Sandell and Tomas Westling. Metadata plugin - jenkins. https://wiki.
jenkins-ci.org/display/JENKINS/Metadata+Plugin, 2012.

[Sco] Troy Scott. Modern fpga-based prototyping systems accelerate the transition
from stand-alone ip block validation to integrated systems. https://www.
synopsys.com/designware-ip/newsletters/technical-bulletin/
modern-prototyping-systems.html.

[SF] The Apache Software Foundation. Jelly: Executable xml. http://commons.
apache.org/proper/commons-jelly/.

[She15] Andrey Shevtsov. Mission control plugin - jenkins. https://wiki.jenkins-ci.
org/display/JENKINS/Mission+Control+Plugin, 2015.

[Son15] Mitesh Soni. End to End Automation On Cloud with Build Pipeline- The case for
DevOps in Insurance Industry. In 2015 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM), pages 85–89. IEEE, nov 2015.

[Syna] Synopsys. Designware arc processor cores. https://www.synopsys.com/
designware-ip/processor-solutions/arc-processors.html.

[Synb] Synopsys. Designware ip solutions for pci express. https://www.synopsys.
com/designware-ip/interface-ip/pci-express.html.

[Sync] Synopsys. Haps R© family of physical prototyping solutions - physical prototyping
made easy. https://www.synopsys.com/verification/prototyping/
physical-prototyping/haps.html.

[SYP15] Shixiao Yan, Yu Zhao, and Ping Chen. Automated test platform for FPGA Software
Validation. 2015 China Semiconductor Technology International Conference, pages
1–3, 2015.

[Wika] Wikipedia. Dashboard (business) — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/wiki/Dashboard_(business).

[Wikb] Wikipedia. Pci express — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/PCI_Express.

42

http://www.eejournal.com/blog/synopsyss-ip-initiative/
http://www.eejournal.com/blog/synopsyss-ip-initiative/
https://jenkins.io/blog/2016/04/07/pipeline-for-runs-on-hardware/
https://jenkins.io/blog/2016/04/07/pipeline-for-runs-on-hardware/
https://pcisig.com
https://wiki.jenkins-ci.org/display/JENKINS/Metadata+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Metadata+Plugin
https://www.synopsys.com/designware-ip/newsletters/technical-bulletin/modern-prototyping-systems.html
https://www.synopsys.com/designware-ip/newsletters/technical-bulletin/modern-prototyping-systems.html
https://www.synopsys.com/designware-ip/newsletters/technical-bulletin/modern-prototyping-systems.html
http://commons.apache.org/proper/commons-jelly/
http://commons.apache.org/proper/commons-jelly/
https://wiki.jenkins-ci.org/display/JENKINS/Mission+Control+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Mission+Control+Plugin
https://www.synopsys.com/designware-ip/processor-solutions/arc-processors.html
https://www.synopsys.com/designware-ip/processor-solutions/arc-processors.html
https://www.synopsys.com/designware-ip/interface-ip/pci-express.html
https://www.synopsys.com/designware-ip/interface-ip/pci-express.html
https://www.synopsys.com/verification/prototyping/physical-prototyping/haps.html
https://www.synopsys.com/verification/prototyping/physical-prototyping/haps.html
https://en.wikipedia.org/wiki/Dashboard_(business)
https://en.wikipedia.org/wiki/Dashboard_(business)
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/PCI_Express

REFERENCES

[Wikc] Wikipedia. Phy (chip) — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/PHY_(chip).

43

https://en.wikipedia.org/wiki/PHY_(chip)
https://en.wikipedia.org/wiki/PHY_(chip)

	Front Page
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Motivation and Goals
	1.4 Document Structure

	2 State of the Art
	2.1 Continuous Integration
	2.1.1 Process
	2.1.2 Components
	2.1.3 Value

	2.2 Continuous Integration Tools
	2.2.1 Jenkins CI

	2.3 Hardware Validation Architectures
	2.3.1 LAVA

	2.4 Conclusions

	3 Research Problem
	3.1 The System architecture
	3.1.1 Communication Interfaces
	3.1.2 CI-flow

	3.2 Solution Requirements
	3.2.1 Project Views Alignment

	3.3 Project Build Spreadsheet
	3.4 Conclusion

	4 The Dashboard Solution
	4.1 Use Cases
	4.2 Jenkins Plugin - Filtered Dashboard View
	4.2.1 Auxiliary Plugins
	4.2.2 Server Side Implementation Design
	4.2.3 Front-End Implementation Design

	4.3 Metadata and Pipeline Workaround
	4.4 Conclusion

	5 Evaluation
	5.1 Setup
	5.2 Requirements
	5.3 Results
	5.4 Conclusions

	6 Conclusions and Future work
	6.1 Contributions
	6.2 Limitations
	6.3 Future Work

	References

