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Introductionxxii

Laminated composites are becoming the preferred material system in a variety
of industrial applications, such as aeronautical and aerospace structures, ship
hulls in naval engineering, automotive structural parts, micro-electro-
mechanical systems as also civil structures for strengthening concrete members.
The increased strength and stiffness for a given weight, increased toughness,
increased mechanical damping, increased chemical and corrosion resistance
in comparison to conventional metallic materials and potential for structural
tailoring are some of the factors that have contributed to the advancement of
laminated composites. Their increased use has underlined the need for
understanding their modes of failure and evolving technologies for the continual
enhancement of their performance.

The principal mode of failure of layered composites is the separation
along the interfaces of the layers, viz. delamination. This type of failure is
induced by interlaminar tension and shear that develop due to a variety of
factors such as: Free edge effects, structural discontinuities, localized
disturbances during manufacture and in working condition, such as impact
of falling objects, drilling during manufacture, moisture and temperature
variations and internal failure mechanisms such as matrix cracking. Hidden
from superficial visual inspection, delamination lies often buried between
the layers, and can begin to grow in response to an appropriate mode of
loading, drastically reducing the stiffness of the structure and thus the life of
the structure. The delamination growth often occurs in conjunction with
other modes of failure, particularly matrix cracking.

A study of composite delamination, as does any technological discipline,
has two complementary aspects: An in depth understanding of the phenomenon
by analysis and experimentation and the development of strategies for
effectively dealing with the problem. These in turn lead to a number of
specific topics that we need to consider in the present context. These comprise
of:

1. An understanding of the basic principles that govern the initiation of
delamination, its growth and its potential interaction with other modes
of failure of composites. This is the theme of the first chapter, but several
authors return to this theme in their own respective contributions.

2. The determination of material parameters that govern delamination
initiation and growth by appropriate testing. These must necessarily be
interfacial strength parameters which govern interlaminar fracture initiation
and interlaminar fracture toughness parameters, viz. critical strain energy
release rates that must govern interlaminar crack growth. The book contains
several valuable contributions from leading international authorities in
the field of testing of composites.

3. Development of analytical tools : What are the methodologies one may
employ to assess the possibility of delamination onset and growth under

WH-Delamination-Pre 6/6/08, 6:33 PM22
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Introduction xxiii

typical loading scenarios? This may be approached from the points of
view of fracture mechanics, damage mechanics, cohesive modeling
approach and approaches which draw from and combine these. In particular,
the cohesive modeling approach has proven to be a powerful and versatile
tool in that when embedded in a nonlinear finite element analysis, it can
trace the two-dimensional delamination growth without user interference,
is robust from the point of view of numerical convergence, and can
potentially account for a variety of interfacial failure mechanisms. This
subject is discussed thoroughly in several authoritative contributions.

4. Detection of delamination: Ability to diagnose the presence of delamination
and to be able to capture in graphical terms the extent of delamination
damage is a desideratum towards which the composite industry is
continuing to make progress. Several nondestructive evaluation tools
are available and have been used with varying degrees of success. Acoustic
emission, Lamb-wave and Piezo-electric technologies are discussed in
the context of delamination detection in the present work.

5. Prevention of delamination: Several techniques of either inhibiting
delamination or altogether suppressing it are available. The book contains
a section treating the following techniques of delamination prevention/
inhibition: ‘Self-healing’ composites which internally exude adhesive
material as soon as crack advances thus effectively arresting the crack;
Z-pin bridging in which fibers are introduced across the interlaminar
surfaces, liable to delaminate, artfully tapering off discontinuities which
are sources of potential delamination and the use of toughened epoxies.

6. Delamination driven structural failure: Certain loading scenarios can
cause delamination growth if there is some preexisting delamination in
the structural component which in turn can lead to structural failure.
Typically these are: Impact, cyclic loading (delamination due to fatigue),
compressive loading causing localized buckling in the vicinity of
delamination and dynamic loading in the presence of in-plane compression.
Impact loading and any form of dynamic loading in the presence of
significant compressive stress in sandwich structures are known to trigger
delamination failure which is abrupt and total. These aspects have been
discussed in several contributions.

The book has been divided into several sections to address the issues
mentioned in the foregoing. It has been a pleasure to work with a number of
authors of international standing and reputation who had spent a great deal
of effort in developing their respective chapters. The references cited at the
end of each chapter should supplement and corroborate the concepts developed
in the chapter. We hope that researchers and engineers who are concerned to
apply state of the art technologies to composite structural analysis, design
and evaluation of risk of failure will find this book useful and a valuable
source of insight.
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310

10.1 Introduction

The application of composite materials in the aircraft and automobile industries
has led to an increase of research into the fracture behaviour of composites.
One of the most significant mechanical properties of fibre reinforced polymer
composites is its resistance to delamination onset and propagation. It is
known that delamination can induce significant stiffness reduction leading
to premature failures. Delamination can be viewed as a crack propagation
phenomenon, thus justifying a typical application of fracture mechanics
concepts. In this context, the interlaminar fracture characterization of
composites acquires remarkable relevancy. There are several tests proposed
in the literature in order to measure the interlaminar strain energies release
rates in mode I, mode II and mixed mode I/II. Whilst mode I has already
been extensively studied and the Double Cantilever Test (DCB) test is
universally accepted, mode II is not so well studied, which can be explained
by some difficulties inherent to experimental tests. Moreover, in many real
situations delaminations propagate predominantly in mode II, as is the case
of composite plates under low velocity impact (Choi and Chang, 1992). This
gives relevancy to the determination of toughness propagation values instead
of the initiation ones commonly considered in design. Some non-negligible
differences can be achieved considering the R-curve effects (de Morais and
Pereira, 2007). These issues make the fracture characterization in mode II an
actual and fundamental research topic. However, problems related to unstable
crack growth and to crack monitoring during propagation preclude a rigorous
measurement of GIIc. In fact, in the mode II fracture characterization tests
the crack tends to close due to the applied load, which hinders a clear
visualization of its tip. In addition, the classical data reduction schemes,
based on beam theory analysis and compliance calibration, require crack
monitoring during propagation. On the other hand, a quite extensive Fracture
Process Zone (FPZ) ahead of crack tip exists under mode II loading. This
non-negligible FPZ affects the measured toughness as a non-negligible amount

10
Interlaminar mode II fracture

characterization

M.  F.  S.  F.  d e  M O U R A, Faculdade de Engenharia da
Universidade do Porto, Portugal
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dof energy is dissipated on it. Consequently, its influence should be taken into

account, which does not occur when the real crack length is used in the
selected data reduction scheme. To overcome these difficulties a new data
reduction scheme based on crack equivalent concepts and depending only on
the specimen compliance is presented in the next section. The main objective
of the proposed methodology is to increase the accuracy of experimental
mode II fracture tests on the GIIc measurements. In fact, a rigorous monitoring
of the crack length during propagation is one of the complexities of these
tests.

10.2 Static mode II fracture characterization

There are three fundamental experimental tests used to measure GIIc. The
most popular one is the End Notched Flexure (ENF), which was developed
for wood fracture characterization (Barrett and Foschi, 1977). The test consists
on a pre-cracked specimen under three point bending loading (see Fig. 10.1).

a δ, P

ENF 2h

L L

δ, P

ELS 2h

a

L

δ, P

4ENF 2h

a d

L L

10.1 Schematic representations of the mode II tests.
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dUnstable crack propagation constitutes one of the disadvantages of the ENF

test. Another possibility is the End Loaded Split (ELS) test which is based on
cantilever beam geometry (see Fig. 10.1). Although the ELS test involves
more complexities during experiments relatively to the ENF test, it provides
a larger range of crack length where the crack propagates stably. In fact, the
ENF test requires a0/L>0.7 to obtain stable crack propagation (Carlsson et
al., 1986), whereas in the ELS test a0/L>0.55 is sufficient (Wang and Vu-
Khanh, 1996). However, both of these tests present a common difficulty
related to the crack length measurement during the experimental test. Different
methods have been proposed in literature to address these difficulties.
Kageyama et al. (1991) proposed a Stabilized End Notched Flexure (SENF)
test for experimental characterization of mode II crack growth. A special
displacement gage was developed for direct measurement of the relative
shear slip between crack surfaces of the ENF specimen. The test was performed
under constant crack shear displacement rate, which guarantees stable crack
propagation. Yoshihara et al. (Yoshihara and Ohta, 2000) recommended the
use of Crack Shear Displacement method (CSD) to obtain the mode II R-
curve since the crack length is implicitly included in the CSD. Tanaka et al.
(Tanaka et al., 1995) concluded that to extend the stabilized crack propagation
range in the ENF test, the test should be done under a condition of controlled
CSD. Although the CSD method provides the measurement of the mode II
toughness without crack length monitoring, this method requires a servo
valve-controlled testing machine and the testing procedure is more complicated
than that under the loading point displacement condition. Alternatively the
Four Point End Notched Flexure test (4ENF) (Fig. 10.1) can be used to
evaluate the mode II R-curve. This test does not require crack monitoring but
involves a more sophisticated setup and larger friction effects were observed
(Shuecker and Davidson, 2000). In the following, a summary of the classical
reduction schemes used for these experimental tests is presented.

10.2.1 Classical methods

Compliance calibration method (CCM)

The CCM is the most used. During the test the values of load, applied
displacement and crack length (P-δ-a) are registered in order to calculate the
critical strain energy release rate using the Irwin-Kies equation (Kanninen
and Popelar, 1985)

G P
B

dC
daIIc

2
 = 

2
 10.1

where B is the specimen width and C = δ/P the compliance. In the ENF and
ELS tests a cubic relationship between the compliance (C) and the measured
crack length a is usually assumed (Davies et al., 2001)
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where D and m are constants. GIIc is then obtained from

G
P m a

BIIc

2 2

 = 
3

2
10.3

For the 4ENF test a linear relationship (Yoshihara, 2004) between the
compliance (C) and the measured crack length a is used

C = D + ma 10.4

being D and m the respective coefficients. It should be noted that relations
C = f(a) given by Equations 10.2 and 10.4 are based on the beam theory
approach, as it will be shown in the next sub-section. GIIc is given by

G P
B

mIIc

2
 = 

2
10.5

The three tests require the calibration of the compliance in function of the
crack length. This can be done by measurement of crack length during
propagation or, alternatively, considering several specimens with different
initial cracks lengths to establish the compliance–crack length relation, which
is regressed by cubic (Equation 10.2) and linear (Equation 10.4) functions.

Beam theory

Beam theory methods are also frequently used to obtain GIIc in mode II tests.
In the case of ENF test Wang and Williams (1992) proposed the Corrected
Beam Theory (CBT)

G
a P

B h EIIc
I

2 2

2 3
1

 = 
9(  + 0.42 )

1
∆

6
10.6

where E1 is the axial modulus and ∆I a crack length correction to account for
shear deformation

∆ I
1

13

2

 = 
11

3 – 2
1 + 

h
E
G

Γ
Γ( )





10.7

with

Γ = 1.18 1 2

13

E E
G

10.8

where E2 and G13 are the transverse and shear moduli, respectively. In the
ELS case a similar expression is proposed (Wang and Williams, 1992)

G
a P

B h EIIc
I

2 2

2 3
1

 = 
9(  + 0.49 )∆

4
10.9
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2006)

C d
E I

d a d L d L = 
24

 (18  –  20  + 60  –  6 )
1

2 2 10.10

where I is the second moment of area and d represents the distance between
each support and its nearest loading actuator (Fig. 10.1). Using Equation
[10.1] GIIc can be obtained from

G P d
E B hIIc

2 2

1
2 3 = 9

16
10.11

In summary, the application of beam theory to ENF and ELS tests involves
the crack length, which does not occur in the 4ENF test. However, it should
be emphasized that 4ENF setup is more complex. Also, friction effects
(Shuecker and Davidson, 2000) and system compliance (Davidson and Sun,
2005) can affect the results. Owing to these drawbacks of the 4ENF test, the
ENF and ELS tests emerge as the most appropriate to fracture characterization
of composites in mode II. In this context, a new data reduction scheme, not
depending on the crack length measurements, is proposed in the following
section for these experimental tests.

10.2.2 Compliance based beam method (CBBM)

In order to overcome the difficulties associated to classical data reduction
schemes a new method is proposed. The method is based on crack equivalent
concept and depends only on the specimen compliance. The application of
the method to ENF and ELS tests is described in the following.

ENF test

Following strength of materials analysis, the strain energy of the specimen
due to bending and including shear effects is

U
M

E I
dx

G
Bdy dx

L
f

f

L

h

h

 = 
2

 + 
20

2 2

0

2

–

2

13∫ ∫ ∫ τ 10.12

where Mf is the bending moment and

τ = 3
2

 1 –  
2

2

V
A

y
c

i

i i







10.13

where Ai, ci and Vi represent, respectively, the cross-section area, half-thickness
of the beam and the transverse load of the i segment (0 ≤ x  ≤ a, a ≤ x ≤ L or
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dL ≤ x ≤ 2L). From the Castigliano theorem, the displacement at the loading

point for a crack length a is

δ =  = 
(3  + 2 )
8

 + 
3

10

3 3

3
13

dU
dP

P a L
E Bh

PL
G Bhf

10.14

Since the flexural modulus of the specimen plays a fundamental role on the
P-δ relationship, it can be calculated from Equation 10.14 using the initial
compliance C0 and the initial crack length a0

E
a L

Bh
C

L
G Bhf = 

3  + 2

8
– 

3
10

0
3 3

3 0
13

–1




 10.15

This procedure takes into account the variableness of the material properties
between different specimens and several effects that are not included in
beam theory, e.g., stress concentration near the crack tip and contact between
the two arms. In fact, these phenomena affect the specimen behavior and
consequently the P-δ curve, even in the elastic regime. Using this methodology
their influence are accounted for through the calculated flexural modulus.
On the other hand, it is known that, during propagation, there is a region
ahead of crack tip (Fracture Process Zone), where materials undergo properties
degradation by different ways, e.g., micro-cracking, fibre bridging and inelastic
processes. These phenomena affect the material compliance and should be
accounted for in the mode II tests. Consequently, during crack propagation
a correction of the real crack length is considered in the equation of compliance
(10.14) to include the FPZ effect

C
a a L

E Bh
L

G Bhf

 = 
3(  + ) + 2

8
 + 

3
10

FPZ
3 3

3
13

∆
10.16

and consequently,

a a a
C
C

a
C
C

Leq FPZ
corr

0 corr
0
3 corr

0 corr

3

1/3

=  + =  + 2
3

 – 1∆ 













 10.17

where Ccorr is given by

C C
L

G Bhcorr
13

 =  –  
3

10
10.18

GIIc can now be obtained from

G
P a

B E hf
IIc

2
eq
2

2 3 = 
9

16
10.19
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methodology crack measurements are unnecessary. Experimentally, it is only
necessary to register the values of applied load and displacement. Therefore,
the method is designated as Compliance-Based Beam Method (CBBM).
Using this procedure the FPZ effects, that are pronounced in mode II tests,
are included on the toughness measurement. Moreover, the flexural modulus
is calculated from the initial compliance and initial crack length, thus avoiding
the influence of specimen variability on the results. The unique material
property needed in this approach is G13. However, its effect on the measured
GIIc was verified to be negligible (de Moura et al., 2006), which means that
a typical value can be used rendering unnecessary to measure it.

ELS test

Following a procedure similar to the one described for the ENF test, the
applied P-δ relationship is

δ =  = 
(3  + )
2

 + 
3

5

3 3

3
1 13

dU
dP

P a L
Bh E

PL
BhG

10.20

In order to include the root rotation effects at clamping and the details of
crack tip stresses or strains not included in the beam theory, an effective
beam length (Lef) can be achieved. In fact, considering in Equation 10.20 the
initial crack length (a0) and the initial compliance (C0) experimentally
measured, it can be written

C
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3
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10.21

To take account for the FPZ influence a correction to the real crack length
(∆aFPZ) should be considered. From Equation 10.20 the compliance (C)
during crack propagation can be expressed as

C
a a

Bh E
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Bh E
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BhG
 –  

3(  + )
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2

 + 
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3
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Combining Equations 10.22 and 10.21, the equivalent crack length can be
given by

a a a C C
Bh E

aeq FPZ 0

3
1

0
3

1/3

 =  + = (  –  )
2

3
 + ∆ 





10.23

GIIc can now be obtained from

G
P a

B h EIIc

2
eq
2

2 3
1

 = 
9

4
10.24
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dFollowing this procedure GIIc can be obtained without crack measurement

during propagation which can be considered an important advantage. Equation
10.24 only depends on applied load and displacement during crack growth.
Additionally, the influence of root rotation at the clamping point and singularity
effects at the crack tip are accounted for, through initial compliance C0.
During propagation, the effect of FPZ on the compliance is also included
using this methodology. In this case (ELS test) it is necessary to measure the
longitudinal modulus.

10.2.3 Numerical simulations

In order to verify the performance of the CBBM on the determination of GIIc

of unidirectional composites, numerical simulations of the ENF and ELS
tests were performed. A cohesive mixed-mode damage model based on interface
finite elements was considered to simulate damage initiation and propagation.
A constitutive relation between the vectors of stresses (σ) and relative
displacements (δ) is postulated (Fig. 10.2). The method requires local strengths
(σu,i, i = I, II, III) and the critical strain energy release rates (Gic) as inputted
data parameters [8, 9]. Damage onset is predicted using a quadratic stress
criterion

σ
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where σi, (i = I, II, III) represent the stresses in each mode. Crack propagation
was simulated by a linear energy criterion

G
G

G
G

G
G

I

Ic

II

IIc

III

IIIc
 +  +  = 1 10.26

Basically, it is assumed that the area under the minor triangle of Fig. 10.2 is
the energy released in each mode, which is compared to the respective critical
fracture energy represented by the bigger triangle. The subscripts o and u
refer to the onset and ultimate relative displacement and the subscript m
applies to the mixed-mode case. More details about this model are presented
in de Moura et al. (2006).

Three-dimensional approaches (Figs 10.3 and 10.4) were carried out to
include all the effects that can influence the measured GIIc. The interface
elements were placed at the mid-plane of the specimens to simulate damage
progression. Very refined meshes were considered in the region of interest
corresponding to crack initiation and growth. The specimens’ geometry and
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σ u,i

σ um,i

σ om,i

Gi

δo,i

Gic

Pure mode
model

i = I, II, III

Mixed-mode
model

δ i

δum,i δu,i

10.2 Pure and mixed-mode damage model.

10.3 The mesh used for the ENF test: global view and detail of the
refined mesh at the region of crack initiation and growth.

material properties and are listed in Tables 10.1, 10.2 and 10.3, respectively.
An analysis of G’s distributions at the crack front showed a clear predominance
of mode II along the specimens’ width, although some spurious mode III
exists at the specimens edges (de Moura et al., 2006 and Silva et al., 2007).

10.4 The mesh used for the ELS test.
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Appropriate values of critical strain energy release rates were considered for
each of the three modes, respectively (see Table 10.3). Consequently, the
efficacy of the proposed data reduction scheme can be evaluated by its
capacity to reproduce the inputted GIIc from the P-δ results obtained
numerically.

The application of the CBBM is performed by three main steps. The first
one is the measurement of the initial compliance C0 from the initial slope of
the P-δ curves (Figs (10.5) or (10.7)). This parameter is then used to estimate
the flexural modulus in the ENF test (Equation 10.15). The next step is the

Table 10.1 Specimens’ geometry

L (mm) b (mm) h (mm) a0 (mm)

ENF 100 10 1.5 75
ELS 100 10 1.5 60

Table 10.2 Material properties

E1 E2 = E3 ν12 = ν13 ν23 G12 = G13 G23

(GPa) (GPa) (GPa) (GPa)

150 11 0.25 0.4 6 3.9

Table 10.3 Strength properties

σu,i (i = I,II,III) GIc GIIc GIIIc

(MPa) (N/mm) (N/mm) (N/mm)

40 0.3 0.7 1.0

P
 (

N
)

140

120

100

80

60

40

20

0
0 2 4 6 8 10

δ (mm)

10.5 P-δ curve of the ENF specimen.
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devaluation of the equivalent crack length (Equations 10.17 or 10.23) in function

of the current (C) and initial compliance (C0). Finally, the R-curves, Figs
(10.6) and (10.8), can be obtained from Equations 10.19 and 10.24, respectively.
It should be noted that crack propagation occurs after peak load in both tests.
During crack growth P decreases with the increase of equivalent crack length.
This originates a plateau on the R-curves, which corresponds to the critical
strain energy release rate in mode II (GIIc). These plateau values are compared
with the reference value (Figs (10.6) and (10.8)), which represents the inputted
GIIc. The excellent agreement obtained in both cases demonstrates the

GII (CBBM)

GIIc (Reference value)

G
II 

(N
/m

m
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
75 80 85 90 95 100

aeq (mm)

10.6 R-curve of the ENF specimen.

P
 (

N
)

70

60

50

40

30

20

10

0
0 2 4 6 8 10 12 14 16

δ (mm)

10.7 P-δ curve of the ELS specimen.
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effectiveness of the CBBM as a suitable data reduction scheme to determine
GIIc, without crack length monitoring during propagation. As the ENF test is
much simpler to execute than the ELS one, it can be concluded that using the
CBBM, the ENF test is the most suitable for the determination of GIIc and it
should be considered as the principal candidate for standardization.

10.3 Dynamic mode II fracture characterization

The research on dynamic crack propagation in composites has become the
focus of several authors in the recent years. The dynamic fracture
characterization of composites is not easy to perform. In fact, it is experimentally
difficult to induce high speed delamination growth in a simple and controlled
manner (Guo and Sun, 1998). However, the determination of dynamic fracture
toughness of composites is of fundamental importance in the prediction of
the dynamic delamination propagation in composite structures. In addition,
it is known that the impact delamination is mainly governed by mode II
fracture (Wang and Vu-Khanh, 1991). However, there are several unclear
phenomena related to dynamic crack propagation. One of the most important
issues is related to the influence of rate effects on the propagation of dynamic
cracks. An example of this occurrence is the dynamic delamination propagation
occurring in composites submitted to low velocity impact. In this case, rate
effects in the FPZ can interact with the well known rate-dependency of
polymers leading to a very complicated phenomenon. In addition, Kumar
and Narayanan (1993) verified that when glass fibre reinforced epoxy laminates
are impacted, the total delamination area between the various plies multiplied
by the quasi-static energy release rate exceeds the energy of the impacting

10.8 R-curve of the ELS specimen.
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dmass. This suggests that under high crack speeds, delamination propagates

at lower toughness which leads to larger damaged areas. In order to explain
this behaviour, Maikuma et al. (1990) suggest that the calculation of critical
strain energy release rate should account for the kinetic energy (Ekin) in
Equation 10.26

G P
B

dC
da

dE
BdaIIc

2
kin= 

2
 –  10.27

The kinetic energy expression can be obtained from

E B h
dw x

dt
dx

Lt

kin
0

2

 = 1
2

2  
( )ρ ∫ 



 10.28

where ρ and Lt are the mass density and the total length of the specimen,
respectively, t represents the time and w(x) the displacement field. The quasi-
static approach may provide an adequate approximation to the dynamic
problem if the contribution of kinetic energy is small.

Wang and Vu-Khanh (1995) have suggested that the dynamic fracture
behaviour of materials depends on the balance between the energy released
by the structure over a unit area of crack propagation (G) and the material
resistance (R), which can be viewed as the energy dissipated in creating the
fracture surface. When unstable crack growth occurs, the difference G-R is
converted into kinetic energy. If G increases with crack growth the crack
speed also increases because more energy is available. Crack arrest will
occur when G becomes lower than R and, consequently, no kinetic energy is
available for crack growth. Thus, it can be affirmed that fracture stability
depends on the variations of the strain energy release rate and the materials
resistance during crack growth. On the other hand, the fracture resistance of
polymer composites is generally sensitive to loading rate. Under impact load
or during rapid delamination growth, the strain rate at the crack tip can be
very high and the material toughness significantly reduced. The fracture
surface exhibited ductile tearing and large scale plastic deformation of the
matrix. The dynamic fracture surface in the initiation exhibits less plastic
deformation; during propagation even less deformation is observed. It was
also verified that plastic zone size at the crack tip diminishes with increasing
rate. Consequently, the decrease in mode II interlaminar fracture toughness
is attributed to a transition from ductile to brittle matrix dominated failure
with increasing rate.

The decreasing trend of toughness with increase of crack speed was also
observed by Kumar and Kishore (1998). The authors used a combination of
numerical and experimental techniques on the DCB specimens to carry out
dynamic interlaminar toughness measurements of unidirectional glass fibre
epoxy laminate. They observed a sharp decrease of dynamic toughness values
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drelatively to the quasi-static ones. In fact, they measured dynamic toughness

initiation values of 90–230 N/m2 against quasi-static values of 344–478
N/m2. Propagation values of 0–50 N/m2 were obtained for crack speed ranging
between 622–1016 m/s.

The majority of the experimental studies consider unidirectional laminates.
Lambros and Rosakis (1997) performed an experimental investigation of
dynamic crack initiation and growth in unidirectional fibre-reinforced
polymeric-matrix thick composite plates. Edge-notched plates were impacted
in a one-point bend configuration using a drop-weight tower. Using an optical
method the authors carried out a real-time visualization of dynamic fracture
initiation and growth for crack speeds up to 900 m/s. They verified that the
elastic constants of the used material are rate sensitive and the measured
fracture toughness values are close to those typical of epoxies. This was
considered consistent, because in unidirectional lay-ups crack initiation and
growth occurs in the matrix.

Tsai et al. (2001) used a modified ENF specimen to determine the mode
II dominated dynamic delamination fracture toughness of fiber composites
at high crack propagation speeds. A strip of adhesive film with higher toughness
was placed at the tip of interlaminar crack created during laminate lay-up.
The objective was to delay the onset of crack extension and produce crack
propagation at high speeds (700 m/s). Sixteen pure aluminium conductive
lines were put on the specimen edge side using the vapour deposition technique,
to carry out crack speed measurements. The authors concluded that the mode
II dynamic energy release rate of unidirectional S2/8553 glass/epoxy composite
seems to be insensitive to crack speed within the range of 350 and 700 m/s.
The authors also simulated mixed mode crack propagation by moving the
pre-crack from the mid-plane to 1/3 of the ENF specimen thickness of
unidirectional AS4/3501-6 carbon/epoxy laminates. The maximum induced
crack speed produced was 1100 m/s. They found that that the critical dynamic
energy release rate is not affected by the crack speed and lies within the
scatter range of the respective static values.

For numerical simulations of the dynamic crack propagation the cohesive
damage models emerge as the most promising tools. The major difficulty is
the incorporation of the rate-dependent effects in the constitutive laws.
Corigliano et al. (2003) developed a cohesive crack model with a rate-
dependent exponential interface law to simulate the nucleation and propagation
of cracks subjected to mode I dynamic loading. The model is able to simulate
the rate-dependent effects on the dynamic debonding process in composites.
The authors concluded that the softening process occurs under larger relative
displacements in comparison to rate-independent models. They verified that
the type of rate-dependency can affect dynamic crack processes, namely the
time to rupture and fracture energy. They also state that these effects diminish
when inertial terms become dominant.
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dIn summary, dynamic fracture toughness characterization of composite

materials has been the centre of attention of several authors with no apparent
consensus on the results. Although the majority of the studies point to a
decrease of the fracture toughness with increasing load rate there is no
unanimity about this topic. Some authors observed the opposite trend
(Corigliano et al., 2003) and others detected no remarkable influence of
crack speed on toughness (Tsai et al., 2001). Although some of these
discrepancies can eventually be explained by different behaviour of the tested
materials, and the attained crack speed values, it is obvious that more profound
studies about the subject are necessary.

10.4 Conclusions

Interlaminar fracture characterization of composites in mode II acquires
special relevancy namely under transverse loading such as low velocity
impact. Up to now there is no standardized test in order to measure the
critical strain energy release rate in mode II. Due to their simplicity, the ENF
and ELS tests become the principal candidates to standardization. However,
they present a common difficulty associated with crack monitoring during
propagation which is fundamental to obtaining the R-curves, following the
classical data reduction schemes. To surmount these difficulties a new data
reduction scheme based on specimen compliance is proposed. The method
does not require crack length measurement during propagation, and accounts
for the effects of the quite extensive FPZ on the measured critical strain
energy release rate. Numerical simulations of the ENF and ELS tests
demonstrated the adequacy and suitability of the proposed method to obtain
the mode II R-curves of composites. Due to its simplicity the ENF test is
proposed for standardization.

Little work has been done on dynamic fracture of composite materials,
namely under mode II loading. This is due to experimental difficulties related
to inducing high crack speeds in a monitored way. Although the majority of
the published works point to a decrease of the dynamic toughness with
increase of crack speed, it appears that dynamic toughness can be similar to
the respective quasi-static value up to a given crack speed (Tsai et al., 2001).
Undoubtedly, more research about this topic is necessary. In fact, an unsafe
structural design can occur if the quasi-static values of toughness are used in
a dynamically loaded structure.
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