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Abstract. We introduce a notion of sensitivity with respect to a continuous real-valued
bounded map which provides a sufficient condition for a continuous transformation, acting
on a Baire metric space, to exhibit a Baire generic subset of points with historic behavior
(also known as irregular points). The applications of this criterion recover, and extend,
several known theorems on the genericity of the irregular set, besides yielding a number of
new results, including information on the irregular set of geodesic flows, in both negative
and non-positive curvature, and semigroup actions.

1. Introduction

1.1. Historic behavior. In what follows, we shall write X to denote a compact metric space
and Y will stand for an arbitrary metric space. Given such a space Y and A ⊂ Y , denote
by A′ ⊂ Y the set of non-isolated accumulation points in A, that is, y ∈ A′ if and only if y
belongs to the closure A \ {y}. Let C(Y,R) be the set of real-valued continuous maps on Y
and Cb(Y,R) be its subset of bounded elements endowed with the supremum norm ‖ · ‖∞.

A topological space Z is said to be a Baire space if the intersection of countably many open
dense subsets in Z is dense in Z. We say that a set A ⊆ Z is Baire generic in a Baire space
Z if it contains an intersection of countably many open dense sets of Z (that is, A contains
a dense Gδ set).

Given a Baire metric space (Y, d), a continuous map T : Y → Y and ϕ ∈ Cb(Y,R), the set
of (T, ϕ)-irregular points, or points with historic behavior, is defined by

I(T, ϕ) =
{
y ∈ Y :

(
1
n

n−1∑
j=0

ϕ(T j(y))
)
n∈N

does not converge
}

.

Birkhoff’s ergodic theorem ensures that, for any Borel T -invariant probability measure µ and
every µ-integrable observable ϕ : Y → R, the sequence of averages

(
1
n

∑n−1
j=0 ϕ(T j(y))

)
n∈N

converges at µ-almost every point y in Y . So, the set of (T, ϕ)-irregular points is negligible
with respect to any T -invariant probability measure. In the last decades, though, there has
been an intense study concerning the set of points for which Cesàro averages do not converge.
Contrary to the previous measure-theoretical description, the set of the irregular points may
be Baire generic and, moreover, have full topological pressure, full metric mean dimension
or full Hausdorff dimension (see [2, 5, 3, 4, 24, 26, 35]). In [9], the first and the fourth
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named authors obtained a simple and unifying criterion, using first integrals, to guarantee
that I(T, ϕ) is Baire generic in X whenever T : X → X is a continuous dynamics acting on a
compact metric space X. More precisely, given ϕ ∈ C(X,R), consider the map Lϕ : X → R
defined by

x ∈ X 7→ Lϕ(x) = lim sup
n→∞

1

n

n−1∑
j=0

ϕ ◦ T j(x). (1.1)

This is a first integral with respect to the map T , that is, Lϕ ◦ T = Lϕ. The existence of
dense sets of discontinuity points for this first integral turns out to be a sufficient condition
for the genericity of the historic behavior.

Theorem 1.1. [9, Theorem A] Let (X, d) be a compact metric space, T : X → X be a
continuous map and ϕ : X → R be a continuous observable. Assume that there exist two
dense subsets A,B ⊂ X such that the restrictions of Lϕ to A and to B are constant, though
the value at A is different from the one at B. Then I(T, ϕ) is a Baire generic subset of X.

The assumptions of the previous theorem are satisfied by a vast class of continuous maps on
compact metric spaces, including minimal non-uniquely ergodic homeomorphisms, non-trivial
homoclinic classes, continuous maps with the specification property, Viana maps and some
partially hyperbolic diffeomorphisms (cf. [9]).

In this work we establish a criterion with a wider scope than the one of Theorem 1.1. It
applies to Baire metric spaces and general sequences of bounded continuous real-valued maps,
rather than just Cesàro averages, subject to a weaker requirement than the one demanded in
the previous theorem. In particular, one obtains new results on the irregular set of several
classes of maps and flows, which comprise geodesic flows on certain non-compact Riemannian
manifolds, countable Markov shifts and endomorphisms with two physical measures exhibiting
intermingled basins of attraction. Regarding semigroup actions, we note that irregular points
for group actions with respect to Cesàro averages were first studied in [17]. We will provide
additional information on the Baire genericity of irregular sets for averages that take into
account the group structure. We refer the reader to Sections 10 and 11 for the precise
statements.

In the next subsections we will state our main definitions and results.

1.2. Sensitivity and genericity of historic behavior. Given a metric space (Y, d), a
sequence Φ = (ϕn)n∈N ∈ Cb(Y,R)N and y ∈ Y , let

WΦ(y) =
{
ϕn(y) : n ∈ N

}′
denote the set of accumulation points of the sequence (ϕn(y))n∈N. The next notion is inspired
by the concept of sensitivity to initial conditions.

Definition 1. Let (Y, d) be a metric space and Φ ∈ Cb(Y,R)N. We say that Y is Φ-sensitive
(or sensitive with respect to the sequence Φ) if there exist dense subsets A, B ⊂ Y , where B
can be equal to A, and ε > 0 such that for any (a, b) ∈ A×B one has

sup
r∈WΦ(a), s∈WΦ(b)

|r − s| > ε.
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In the particular case of a sequence Φ of Cesàro averages

(ϕn)n∈N =
( 1

n

n−1∑
j=0

ϕ ◦ T j
)
n∈N

associated with a potential ϕ ∈ Cb(Y,R) and a continuous map T : Y → Y , we say that Y is
(T, ϕ)-sensitive if the space Y is Φ-sensitive, and write Wϕ instead of WΦ.

We refer the reader to Example 2 for an illustration of this definition. We observe that
being (T, ϕ)-sensitive is a direct consequence of the assumption on Lϕ stated in Theorem 1.1,
though it may be strictly weaker (cf. Example 4). Our first result concerns Φ-sensitive
sequences and strengths Theorem 1.1.

Theorem 1.2. Let (Y, d) be a Baire metric space and Φ = (ϕn)n∈N ∈ Cb(Y,R)N be a sequence
of continuous bounded maps such that lim supn→+∞ ‖ϕn‖∞ < +∞. If Y is Φ-sensitive then
the set

I(Φ) =
{
y ∈ Y : lim

n→+∞
ϕn(y) does not exist

}
is a Baire generic subset of Y . In particular, if T : Y → Y is a continuous map, ϕ belongs
to Cb(Y,R) and Y is (T, ϕ)-sensitive, then I(T, ϕ) is a Baire generic subset of Y .

We emphasize that the previous statement does not require a guiding dynamical system, so
it may be applied to general sequences of bounded continuous real-valued maps rather than
just Cesàro averages. In particular, we may address the Baire genericity of the irregular set
of semigroup actions with respect to averages that take into account the group structure (cf.
Section 11 for more details).

1.3. Irregular points for continuous maps on Baire metric spaces with dense orbits.
In this subsection, building over [15, 20], we will discuss the relation between transitivity,
existence of dense orbits and the size of the set of irregular points for continuous maps on
Baire metric spaces.

Definition 2. Given a continuous map T : Y → Y on a Baire metric space (Y, d), one says
that:

• T is transitive if for every non-empty open sets U, V ⊂ Y there exists n ∈ N such
that U ∩ T−n(V ) 6= ∅.
• T is strongly transitive if

⋃
n> 0 T

n(U) = Y for every non-empty open set U ⊂ Y .

• T has a dense orbit if there is y ∈ Y such that {T j(y) : j ∈ N ∪ {0}} is dense in Y .

It is worthwhile observing that, if the metric space is compact and has no isolated points,
then the map is transitive if and only if it has a dense orbit (see [1, Theorem 1.4] and
Example 1).

Denote by Trans(Y, T ) the set

{y ∈ Y : the orbit of y by T is dense in Y }
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and consider the following notation:

H(Y, T ) := {ϕ ∈ Cb(Y,R) : I(T, ϕ) 6= ∅}

D(Y, T ) := {ϕ ∈ Cb(Y,R) : I(T, ϕ) is dense in Y }

R(Y, T ) := {ϕ ∈ Cb(Y,R) : I(T, ϕ) is Baire generic in Y }.
The set of completely irregular points with respect to T is precisely the intersection⋂

ϕ∈H(Y,T )

I(T, ϕ).

ClearlyR(Y, T ) ⊂ D(Y, T ) ⊂ H(Y, T ). Inspired by [20], we aim at finding sufficient conditions
on (Y, T ) under which the sets R(Y, T ) and D(Y, T ) coincide. We note that the set H(Y, T )
may be uncountable. Moreover, in (cf. [34, Theorem 2.1]), Tian proved that, if Y is compact
and T has the almost-product and uniform separation properties, then the set of completely
irregular points is either empty or carries full topological entropy. More recently, in [20], Hou,
Lin and Tian showed that, for each transitive continuous map on a compact metric space Y ,
either every point with dense orbit is contained in the basin of attraction of some invariant
probability measure µ, defined by

B(µ) =
{
x ∈ X : lim

n→+∞

1

n

n−1∑
j=0

δT j(x) = µ (convergence in the weak∗ topology)
}

(so those points are regular with respect to any continuous potential), or irregular behavior
occurs on Trans(Y, T ) and the irregular set is Baire generic for every ϕ belonging to an open
dense subset of C(Y,R) (described in [20, Theorem A]). The next consequence of Theorem 1.2
generalizes this information.

Corollary 1.3. Let (Y, d) be a Baire metric space and T : Y → Y be a continuous map such
that Trans(Y, T ) 6= ∅. Then:

(i) When (Y, d) has an isolated point,

D(Y, T ) 6= ∅ ⇔ Trans(Y, T ) ⊆
⋂

ϕ∈D(Y,T )

I(T, ϕ).

Moreover, if Y has an isolated point and D(Y, T ) 6= ∅, then R(Y, T ) = D(Y, T ).

(ii) If F ⊂ Cb(Y,R) and
⋂
ϕ∈F

I(T, ϕ) is Baire generic in Y , then

Trans(Y, T ) ∩
⋂
ϕ∈F

I(T, ϕ) 6= ∅.

1.4. Oscillation of the time averages. Define, for any ϕ ∈ Cb(Y,R) and y ∈ Y ,

`ϕ(y) = lim inf
n→+∞

1

n

n−1∑
j=0

ϕ(T jy) and Lϕ(y) = lim sup
n→+∞

1

n

n−1∑
j=0

ϕ(T jy)

and consider

`∗ϕ = inf
y ∈Trans(Y,T )

`ϕ(y) and L∗ϕ = sup
y ∈Trans(Y,T )

Lϕ(y). (1.2)
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For each α 6 β, take the sets

Iϕ[α, β] =
{
y ∈ Y : `ϕ(y) = α and β = Lϕ(y)

}
and

̂Iϕ[α, β] =
{
y ∈ Y : `ϕ(y) 6 α and β 6 Lϕ(y)

}
.

The next result estimates the topological size of the previous level sets for dynamics with
dense orbits.

Theorem 1.4. Let (Y, d) be a Baire metric space and T : Y → Y be a continuous map with
a dense orbit. Given ϕ ∈ Cb(Y,R), one has:

(i) Iϕ[`∗ϕ, L
∗
ϕ] is a Baire generic subset of Y . In particular, I(T, ϕ) is either Baire generic

or meagre in Y .

(ii) I(T, ϕ) is a meagre subset of Y if and only if there exists Cϕ ∈ R such that

Iϕ[Cϕ, Cϕ] =
{
y ∈ Y : lim

n→+∞

1

n

n−1∑
j=0

ϕ(T j(y)) = Cϕ

}
is a Baire generic set containing Trans(Y, T ).

Consequently, if (Y, d) is a Baire metric space, T : Y → Y is a continuous map with a
dense orbit and

⋃
ϕ∈Cb(Y,T ) I(T, ϕ) is not Baire generic, then Y \ I(T, ϕ) is Baire generic for

every ϕ ∈ Cb(Y,R), and there exists a linear functional F : Cb(Y,R)→ R such that

Trans(Y, T ) ⊂
{
y ∈ Y : lim

n→+∞

1

n

n−1∑
j=0

ϕ(T j(y)) = F(ϕ) ∀ϕ ∈ Cb(Y,R)
}
.

Note that, if Y is compact, F is represented by the space of Borel invariant measures with
the weak∗-topology. More generally, if Y is a metric space, then the dual of Cb(Y,R) is
represented by the regular, bounded, finitely additive set functions with the norm of total
variation (cf. [16, Theorem 2, IV.6.2]).

Remark 1.5. Theorem 1.4 implies that, if (Y, d) is a Baire metric space and T : Y → Y is
a continuous minimal map (that is, Trans(Y, T ) = Y ), then for every ϕ ∈ Cb(X,R) either
I(T, ϕ) = ∅ or I(T, ϕ) is Baire generic.

Remark 1.6. It is unknown whether there exist a Baire metric space (Y, d), a continuous
map T : Y → Y and ϕ ∈ Cb(Y,R) such that T has a dense orbit and I(T, ϕ) is a non-empty
meagre set.

As a consequence of the proof of Theorem 1.2 and Corollary 1.3 we obtain the next corollary
as a counterpart of [20, Lemma 3.1] for continuous maps on Baire metric spaces.

Corollary 1.7. Let (Y, d) be a Baire metric space and T : Y → Y be a continuous map with
a dense orbit, and take ϕ ∈ Cb(Y,R). The following conditions are equivalent:

(i) Y is (T, ϕ)-sensitive.

(ii) I(T, ϕ) is Baire generic in X.

(iii) Trans(Y, T ) ∩ I(T, ϕ) 6= ∅.
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Remark 1.8. Under the assumptions of Corollary 1.7, if Y is (T, ϕ)-sensitive then one has
R(Y, T ) =

{
ϕ ∈ Cb(Y,R) : `∗ϕ < L∗ϕ

}
. We also note that one has (i) ⇒ (ii) in Corollary 1.7

even without assuming the existence of dense orbits.

Remark 1.9. An immediate consequence of the proof of Corollary 1.7 is that, within the
setting of continuous maps T : Y → Y acting on a Baire metric space Y and having a dense
orbit, the Definition 1 of (T, ϕ)-sensitivity is equivalent to the following statement: There
exist a dense set A ⊂ Y and ε > 0 such that for any a ∈ A one has

sup
r∈Wϕ(a), s∈Wϕ(a)

|r − s| > ε.

Indeed, the latter statement clearly implies Definition 1. Conversely, if X is (T, ϕ)-sensitive,
then we may take a dense orbit A = {T j(x0) : j ∈ N ∪ {0}} contained in I(T, ϕ), whose
existence is guaranteed by item (iii) of Corollary 1.7. So, given two distinct accumulation
points r0, s0 in Wϕ(x0) and choosing ε > |r0 − s0| > 0, then for every a, b ∈ A one has
Wϕ(a) = Wϕ(b) = Wϕ(x0) and supra ∈Wϕ(a), rb ∈Wϕ(b) |ra − rb| > |r0 − s0| > ε.

The remainder of the paper is organized as follows. In Section 2, we convey the previous
results to the particular case of continuous dynamics acting on compact metric spaces. The
aforementioned results are then proved in the ensuing sections, where we also discuss their
scope and compare them with properties established in other references. In Section 10 we test
our assumptions on some examples and in Section 11 we provide some applications, namely
within the settings of semigroup actions and geodesic flows on non-compact manifolds.

2. Irregular points for continuous maps on compact metric spaces

Suppose now that (X, d) is a compact metric space. Let P(X) stand for the set of Borel
probability measures on X with the weak∗-topology and consider a continuous map T :
X → X with a dense orbit. For every x ∈ X, let δx be the Dirac measure supported at x
and denote the set of accumulation points in P(X) of the sequence of empirical measures(

1
n

∑n−1
j=0 δT jx

)
n∈N by VT (x). Our next result imparts new information about the irregular

set without requiring any assumption about the existence of isolated points in X.

The next result is a consequence of [36, Proposition 1 and Proposition 2], [20, Corollary
2.2 and Proposition 3.1] and Theorem 1.4.

Corollary 2.1. Let (X, d) be a compact metric space and T : X → X be a continuous map
with a dense orbit. Then:

(a) X∆ :=
{
x ∈ X :

⋃
t∈Trans(X,T ) VT (t) ⊆ VT (x)

}
is Baire generic in X. Moreover,

X∆ ⊆
⋂
ϕ∈C(X,R)

̂Iϕ[`∗ϕ, L
∗
ϕ], so the latter set is Baire generic as well.

(b)
⋃
ϕ∈C(X,R) I(T, ϕ) is either Baire generic or meagre. If it is meagre, there exists a

Borel T -invariant measure µ such that

Trans(X,T ) ⊂
{
x ∈ X : lim

n→+∞

1

n

n−1∑
j=0

ϕ(T j(x)) =

∫
ϕdµ ∀ϕ ∈ C(X,R)

}
.
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(c)
⋂
ϕ∈H(X,T ) I(T, ϕ) is either Baire generic or meagre. In addition,⋂

ϕ∈H(X,T )

I(T, ϕ) is Baire generic ⇔
{
ϕ ∈ C(X,R) : I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ

}
= ∅.

We may ask whether the notion of (T, ϕ)-sensitivity (cf. Definition 1) is somehow related
to the classical concepts of sensitivity to initial conditions and expansiveness. Let us recall
these two notions.

Definition 3. Let T : X → X be a continuous map on a compact metric space (X, d). We
say that:

• T has sensitivity to initial conditions if there exists ε > 0 such that, for every x ∈ X
and any δ > 0, there is z ∈ B(x, δ) satisfying

sup
n∈N

d(Tn(x), Tn(z)) > ε.

• T is (positively) expansive if there exists ε > 0 such that, for any points x, z ∈ X with
x 6= z, one has

sup
n∈N

d(Tn(x), Tn(z)) > ε.

It is clear that an expansive map has sensitivity to initial conditions. Our next result shows
that the condition of (T, ϕ)-sensitivity often implies sensitivity to initial conditions.

Theorem 2.2. Let X be a compact metric space, T : X → X be a continuous map and
ϕ ∈ C(X,R). If X is (T, ϕ)-sensitive then either T has sensitivity to initial conditions or
I(T, ϕ) has non-empty interior. In particular, if T has a dense set of periodic orbits and X
is (T, ϕ)-sensitive, then T has sensitivity to initial conditions.

The previous discussion together with well known examples yield the following scheme of
connections:

T is strongly transitive
and has dense periodic orbits

⇓
T has dense periodic orbits

and dense pre-orbits Expansiveness
⇓ ⇓ 6⇑

∃ϕ ∈ C(X,R) : X is (T, ϕ)− sensitive ⇒ Sensitivity to initial conditions.
and the interior of I(T, ϕ) = ∅

(2.1)

When X is a compact topological manifold there is a link between expansiveness and
sensitivity with respect to a well chosen continuous map ϕ : X → R. Indeed, Coven and
Reddy (cf. [14]) proved that, if T : X → X is a continuous expansive map acting on a

compact topological manifold, then there exists a metric d̃ compatible with the topology of
(X, d) such that T : (X, d̃) → (X, d̃) is a Ruelle-expanding map: there are constants λ > 1
and δ0 > 0 such that, for all x, y, z ∈ X, one has

• d̃(T (x), T (y)) > λd̃(x, y) whenever d̃(x, y) < δ0;

• B(x, δ0) ∩ T−1({z}) is a singleton whenever d̃(T (x), z) < δ0.
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In particular, if X is connected then T is topologically mixing. Moreover, as Ruelle-expanding
maps admit finite Markov partitions and are semiconjugate to subshifts of finite type, one can
choose ϕ ∈ C(X,R) such that I(T, ϕ) is a Baire generic subset of X. Moreover, the interior
of I(T, ϕ) is empty by the denseness of the set of periodic points of T . Therefore, summoning
Corollary 1.7, we conclude that:

Corollary 2.3. Let (X, d) be a compact connected topological manifold and T : X → X be a
continuous expansive map. Then there exists ϕ ∈ C(X,R) such that X is (T, ϕ)-sensitive.

It is still an open question whether for each expansive map T on a compact metric space
X there exists ϕ ∈ C(X,R) such that X is (T, ϕ)-sensitive. Although we have no examples,
it is likely to exist continuous maps on compact metric spaces which have sensitivity to initial
conditions but for which X is not (T, ϕ)-sensitive for every ϕ ∈ C(X,R).

Another consequence of Theorem 1.2 concerns the irregular sets for continuous maps sat-
isfying the strong transitivity condition (see Definition 2).

Corollary 2.4. Let T : X → X be a continuous map on a compact metric space X. If T
is strongly transitive and ϕ ∈ C(X,R), then either I(T, ϕ) = ∅ or I(T, ϕ) is a Baire generic
subset of X.

We note that, as strongly transitive homeomorphisms on a compact metric space X are
minimal, Corollary 2.4 extends the information in Remark 1.5 to strongly transitive continu-
ous maps on compact metric spaces.

3. Proof of Theorem 1.2

The argument is a direct adaptation of the one used to show [9, Theorem 1]. Suppose that
there are dense subsets A,B of Y and ε > 0 such that for any (a, b) ∈ A × B there exist
(ra, rb) ∈ {ϕn(a) : n ≥ 1}′ × {ϕn(b) : n ≥ 1}′ satisfying |ra − rb| > ε. Fix 0 < η < ε

3 . Since
the maps ϕn are continuous, given an integer N ∈ N the set

ΛN =
{
y ∈ Y : |ϕn(y)− ϕm(y)| 6 η ∀m,n > N

}
is closed in Y . Moreover:

Lemma 3.1. ΛN has empty interior for every N ∈ N.

Proof. Assume that there exists N ∈ N such that ΛN has non-empty interior (which we
abbreviate into int(ΛN ) 6= ∅). Hence there exists a ∈ A such that a ∈ int(ΛN ). Since ϕN is
continuous, there exists δN > 0 such that |ϕN (a) − ϕN (y)| < η for every y ∈ Y satisfying
d(a, y) < δN . By the denseness of B, one can choose b ∈ B such that b ∈ int(ΛN ) and
d(a, b) < δN . Besides, according to the the definition of ΛN one has

|ϕn(a)− ϕm(a)| 6 η and |ϕn(b)− ϕm(b)| 6 η ∀m,n > N.

For the previous pair (a, b) ∈ A × B, choose (ra, rb) ∈ {ϕn(a) : n ≥ 1}′ × {ϕn(b) : n ≥ 1}′
satisfying |ra−rb| > ε. Fixing m = N , taking the limit as n goes to +∞ in the first inequality
along a subsequence converging to ra and taking the limit as n tends to +∞ in the second
inequality along a subsequence convergent to rb, we conclude that

|ra − ϕN (a)| 6 η and |rb − ϕN (b)| 6 η.
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Therefore,

ε < |ra − rb| 6 |ϕN (a)− ra|+ |ϕN (b)− rb|+ |ϕN (a)− ϕN (b)| 6 3η

contradicting the choice of η. Thus ΛN must have empty interior. �

We can now finish the proof of Theorem 1.2. Using the fact that lim supn→+∞ ‖ϕn‖∞ <
+∞, one deduces that Y \I(Φ) ⊂

⋃∞
N=1 ΛN . Thus, by Lemma 3.1, the set of Φ-regular points

(that is, those points for which Φ is a convergent sequence) is contained in a countable union
of closed sets with empty interior. This shows that I(Φ) is Baire generic, as claimed.

The second statement in the theorem is a direct consequence of the first one. �

Remark 3.2. It is worth mentioning that the proof of Theorem 1.2 also shows that one has

{y ∈ Y : lim sup
n

ϕn(y)− lim inf
n

ϕn(y) < η} ⊆
∞⋃
N=1

ΛN

and so the set

{y ∈ Y : lim sup
n

ϕn(y)− lim inf
n

ϕn(y) > η}

is Baire generic in Y .

Remark 3.3. The argument used in the proof of Theorem 1.2 adapts naturally to the con-
text of continuous-time dynamical systems. This fact will be used later, when applying
Theorem 1.2 to geodesic flows on non-positive curvature (see Example 6).

4. Proof of Corollary 1.3

We start by showing that the existence of an irregular point with respect to an observable
ϕ whose orbit by T is dense is enough to ensure that Y is (T, ϕ)-sensitive.

Lemma 4.1. Let (Y, d) be a Baire metric space, T : Y → Y be a continuous map such
that (Y, T ) has a dense orbit, and ϕ ∈ Cb(Y,R). If I(T, ϕ) ∩ Trans(Y, T ) 6= ∅ then Y is
(T, ϕ)-sensitive.

Proof. Suppose that ϕ ∈ Cb(Y,R) and I(T, ϕ)∩Trans(Y, T ) 6= ∅. Let y ∈ Y be a point in this
intersection. Then there is ε > 0 such that ε < lim supn→+∞ ϕn(y) − lim infn→+∞ ϕn(y).
Since ϕ is a bounded function, the values

lim inf
n→+∞

1

n

n−1∑
j=0

ϕ(T j(z)) and lim sup
n→+∞

1

n

n−1∑
j=0

ϕ(T j(z))

are constant for every z ∈ {T j(y) : j ∈ N ∪ {0}}. This invariance, combined with the fact
that {Tn(y) : n ∈ N ∪ {0}} is a dense subset of Y , implies that Y is (T, ϕ)-sensitive. �

Let us resume the proof of Corollary 1.3.

(i) Take y ∈ Trans(Y, T ). Assume that Y has an isolated point and D(Y, T ) 6= ∅. Then there
exists N ∈ N ∪ {0} such that TN (y) is an isolated point of Y . Take ψ ∈ D(Y, T ) whose set
I(T, ψ) is dense in Y . Since {TN (y)} is an open subset of Y , one has {TN (y)}∩ I(T, ψ) 6= ∅,
hence TN (y) belongs to I(T, ψ). Therefore, TN (y) ∈

⋂
ψ ∈D(Y,T ) I(T, ψ).
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In fact, more is true: y ∈
⋂
ψ ∈D(Y,T ) I(T, ψ). Indeed, suppose that there exists ψ0 ∈

D(Y, T ) such that y ∈ Y \ I(T, ψ0). Consider the aforementioned integer N ∈ N ∪ {0} such
that TN (y) ∈

⋂
ψ ∈D(Y,T ) I(T, ψ). As Y \ I(T, ψ) is T -invariant and y ∈ Y \ I(T, ψ0), we

have TN (y) ∈ Y \ I(T, ψ0). This contradicts the choice of N . So, we have shown that
Trans(Y, T ) ⊆

⋂
ψ ∈D(Y,T ) I(T, ψ).

We are left to prove that, if (Y, d) has an isolated point and D(Y, T ) 6= ∅, then R(Y, T ) =
D(Y, T ). Suppose thatD(Y, T ) 6= ∅. As we have just proved, Trans(Y, T ) ⊆

⋂
ψ ∈D(Y,T ) I(T, ψ).

This implies that for each ψ ∈ D(Y, T ) one has I(T, ψ) ∩ Trans(Y, T ) 6= ∅. By Lemma 4.1
and Theorem 1.2 we conclude that I(T, ψ) is Baire generic, so ψ ∈ R(Y, T ).

(ii) Suppose that
⋂
ϕ∈F I(T, ϕ) is Baire generic. By hypothesis, there exists y in Y such that

Ωy = {Tn(y) : n ∈ N ∪ {0}} = Y

so Y is separable. This implies that, if ω(y) = Ωy, then Y does not have isolated points, and
so T is transitive. Since Y is a Baire separable metric space, Trans(Y, T ) is Baire generic as
well (cf. [1, Proposition 4.7]). Therefore, Trans(Y, T ) ∩

⋂
ϕ∈F I(T, ϕ) is also Baire generic.

Thus Trans(Y, T ) ∩
⋂
ϕ∈F I(T, ϕ) is not empty.

Assume now that ω(y) ( Ωy. Then Y has an isolated point. As ∅ 6= F ⊆ D(Y, T ) and Y
has an isolated point, by item (i) we know that Trans(Y, T ) ⊆

⋂
ϕ∈D(Y,T ) I(T, ϕ). Moreover,

as F ⊆ D(Y, T ), one has
⋂
ϕ∈D(Y,T ) I(T, ϕ) ⊆

⋂
ϕ∈F I(T, ϕ). Consequently,

Trans(Y, T ) ⊆
⋂
ϕ∈F
I(T, ϕ).

�

5. Proof of Theorem 1.4

We will adapt the proof of [20, Lemma 4.1]. Consider the sets

A`∗ϕ =
{
y ∈ Y : lim inf

n→+∞

1

n

n−1∑
j=0

ϕ(T jy) = `∗ϕ

}

AL∗
ϕ

= {y ∈ Y : lim sup
n→+∞

1

n

n−1∑
j=0

ϕ(T jy) = L∗ϕ

}
and, for every α > `∗ϕ,

Bα =

+∞⋂
N=1

+∞⋃
n=N

{
y ∈ Y :

1

n

n−1∑
i=0

ϕ(T iy) < α
}
.

As α > `∗ϕ, there exists y0 ∈ Trans(Y, T ) such that y0 ∈ Bα. Consequently, for every N ∈ N
the set

⋃+∞
n=N

{
y ∈ Y : 1

n

∑n−1
i=0 ϕ(T iy) < α} is an open, dense subset of Y . Therefore, Bα is

Baire generic in Y for any α > `∗ϕ.
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Take a convergent sequence {αn}+∞n=1 in R such that limn→+∞ αn = `∗ϕ and αn > `∗ϕ for

every n ∈ N. Then
⋂+∞
n=1Bαn ⊆ A`∗ϕ . This implies that A`∗ϕ is Baire generic in Y . We deduce

similarly that AL∗
ϕ

is Baire generic in Y . Thus A`∗ϕ ∩AL∗
ϕ

= Iϕ[`∗ϕ, L
∗
ϕ] is Baire generic in Y .

We are now going to show that either Iϕ[`∗ϕ, L
∗
ϕ] ⊆ I(T, ϕ) or Iϕ[`∗ϕ, L

∗
ϕ] ⊆ Y \ I(T, ϕ). For

any y ∈ Iϕ[`∗ϕ, L
∗
ϕ], we have

lim inf
n→+∞

1

n

n−1∑
j=0

ϕ(T j(y)) = `∗ϕ 6 L∗ϕ = lim sup
n→+∞

1

n

n−1∑
j=0

ϕ(T j(y)).

Therefore, if `∗ϕ < L∗ϕ, then Iϕ[`∗ϕ, L
∗
ϕ] ⊆ I(T, ϕ) and I(T, ϕ) is Baire generic in Y . Otherwise,

if `∗ϕ = L∗ϕ, then Iϕ[`∗ϕ, L
∗
ϕ] ⊆ Y \ I(T, ϕ). These inclusions imply that I(T, ϕ) is either Baire

generic or meagre, and characterize the case of a meagre I(T, ϕ). �

Remark 5.1. According to [30, Proposition 3.11], in the context of Baire ergodic maps T ,
for any Baire measurable function ϕ : Y → R there exist a Baire generic subset R of Y and
constants cϕ− and cϕ+ such that

`ϕ(y) = cϕ− and Lϕ(y) = cϕ+ ∀ y ∈ R.

6. Proof of Corollary 1.7

(i) ⇒ (ii) By Remark 3.2 there exists η > 0 such that D = {y ∈ Y : Lϕ(y) − `ϕ(y) ≥ η} is
a Baire generic, hence dense, subset of Y . Note that, for any z and w in D, one has either
|Lϕ(z) − `ϕ(w)| > η

2 or |Lϕ(w) − `ϕ(z)| > η
2 . This implies that Y is (T, ϕ)-sensitive, and so,

by Theorem 1.2, the set I(T, ϕ) is Baire generic.

(ii)⇒ (iii) Apply item (ii) of Corollary 1.3 with F = {ϕ}.

(iii) ⇒ (i) Assume that Trans(Y, T ) ∩ I(T, ϕ) 6= ∅. Then, there are y0, y1 ∈ Trans(Y, T )
(possibly equal) and convergent subsequences (ϕnk(y0))k∈N and (ϕmk(y1))k∈N whose limits
are distinct. Let A be the (dense) orbit of y0, B the (dense) orbit of y1 and ε equal to half the
distance between the limits of the convergent subsequences (ϕnk(y0))k∈N and (ϕmk(y1))k∈N.
This is enough data to confirm that Y is (T, ϕ)-sensitive. �

7. Proof of Corollary 2.1

(a) Suppose that X is a compact metric space that has a dense orbit. From [36, Proposition
1 and Proposition 2] or [20, Corollary 2.2 and Proposition 3.1], we know that X∆ is Baire
generic in X.

We proceed by showing that X∆ ⊆
⋂
ϕ∈C(X,R)

̂Iϕ[`∗ϕ, L
∗
ϕ]. Take x in X∆ and ϕ ∈ C(X,R).

We claim that `ϕ(x) 6 `∗ϕ and L∗ϕ 6 Lϕ(x). Assume, on the contrary, that `ϕ(x) > `∗ϕ. Then
there exists a transitive point x0 such that `ϕ(x) > `ϕ(x0). Therefore, there is a subsequence
(nk)k∈N such that

`ϕ(x) > `ϕ(x0) = lim
k→+∞

1

nk

nk−1∑
j=0

ϕ(T j(x0)).
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Reducing to a subsequence if necessary, we find µ ∈ VT (x0) such that 1
nk

∑nk−1
j=0 δT j(y) con-

verges to µ in the weak∗-topology as k goes to +∞, and so `ϕ(x) > `ϕ(x0) =
∫
ϕdµ.

Since, by hypothesis, µ belongs to VT (x), there exists an infinite sequence (nq)q ∈N such

that 1
nq

∑nq−1
j=0 δT j(x) converges to µ as q goes to +∞. This yields to∫

ϕdµ = lim
q→+∞

1

nq

nq−1∑
j=0

ϕ(T j(x)) > `ϕ(x) > `ϕ(x0) =

∫
ϕdµ

which is a contradiction. Therefore, we must have `ϕ(x) 6 `∗ϕ.

We prove similarly that L∗ϕ 6 Lϕ(x) for every x ∈ X∆. Thus x ∈ ̂Iϕ[`∗ϕ, L
∗
ϕ].

(b) We start by establishing the following auxiliary result.

Lemma 7.1. Let (X, d) be a compact metric space, T : X → X be a continuous map with a
dense orbit. If R(X,T ) = ∅, then

⋂
ϕ∈C(X,R) X \ I(T, ϕ) is Baire generic in X.

Proof. Since R(X,T ) = ∅, from Theorem 1.4 we know that I(T, ϕ) is meagre for every
ϕ ∈ C(X,R). Hence X \ I(T, ϕ) is Baire generic for all ϕ ∈ C(X,R). Let S be a countable,
dense subset of C(X,R), which exists because X is compact (cf. [22]). Then

⋂
ψ ∈S X\I(T, ψ)

is Baire generic in X. We are left to prove that⋂
ψ ∈S

X \ I(T, ψ) ⊆
⋂

ϕ∈C(X,R)

X \ I(T, ϕ).

Take x ∈
⋂
ψ ∈S X\I(T, ψ) and ϕ ∈ C(X,R); we need to show that x belongs to X\I(T, ϕ).

As S is dense, given ε > 0 there exists ψ ∈ S such that ‖ϕ−ψ‖∞ < ε
3 . Since x ∈ X \I(T, ψ),

there is N ∈ N∪{0} such that, for every n,m > N , we have ‖ψn(x)−ψm(x)‖ < ε
3 . Therefore,

‖ϕn(x)− ϕm(x)‖ 6 ‖ϕn(x)− ψn(x)‖+ ‖ψn(x)− ψm(x)‖+ ‖ψm(x)− ϕm(x)‖ < ε

so x is in X \ I(T, ϕ). �

Let us go back to the proof of item (b). We begin by showing that
⋃
ϕ∈C(X,R) I(T, ϕ)

is either Baire generic or meagre. Suppose that
⋃
ϕ∈C(X,R) I(T, ϕ) is not Baire generic, so

R(X,T ) is empty. By Lemma 7.1, the set
⋂
ϕ∈C(X,R)X \ I(T, ϕ) is Baire generic in X,

and so
⋃
ϕ∈C(X,R) I(T, ϕ) is a meagre set. Moreover, due to the compactness of X, Riesz

representation theorem and Theorem 1.4, there exists a Borel invariant probability measure
µ such that

Trans(X,T ) ⊂
{
x ∈ X : lim

n→+∞

1

n

n−1∑
j=0

ϕ(T j(x)) =

∫
ϕdµ ∀ϕ ∈ C(X,R)

}
.

Hence, X∆ = {x ∈ X : µ ∈ VT (x)} thus, by item (a), X∆ is Baire generic in X. This implies
that the set

X∆ ∩
⋂

ϕ∈C(X,R)

X \ I(T, ϕ) =
{
x ∈ X : lim

n→+∞

1

n

n−1∑
j=0

ϕ(T j(x)) =

∫
ϕdµ ∀ϕ ∈ C(X,R)

}
is Baire generic in X.
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(c) Firstly, we note that, since Corollary 1.7 shows that

R(X,T ) = {ϕ ∈ C(X,R) : `∗ϕ < L∗ϕ}

then one has

H(X,T ) = R(X,T ) ∪ {ϕ ∈ C(X,R) : I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ}.

Proposition 7.2. Let (X, d) be a compact metric space and T : X → X be a continuous map
with a dense orbit. The following statements are equivalent:

(i) #
( ⋃
t∈Trans(X,T )

VT (t)
)
> 1.

(ii) R(X,T ) 6= ∅.
(iii) R(X,T ) is open and dense in C(X,R).

(iv) X∆ ⊆
⋂
ϕ∈R(X,T ) I(T, ϕ).

(v)
⋂
ϕ∈R(X,T ) I(T, ϕ) is Baire generic.

(vi) Trans(X,T ) ∩
⋂
ϕ∈R(X,T ) I(T, ϕ) 6= ∅.

(vii)
⋃
ϕ∈C(X,R) I(T, ϕ) is Baire generic.

Proof. We will prove that (i)⇔ (ii), (ii)⇒ · · · ⇒ (vii) and (vii)⇒ (ii).

(i) ⇒ (ii) Suppose that #
(
∪x∈Trans(X,T )VT (x)

)
> 1. Then there exist two distinct Borel

probability measures µ, ν in ∪x∈Trans(X,T )VT (x) and ϕ ∈ C(X,R) such that
∫
ϕdµ 6=

∫
ϕdν.

This implies that {µ, ν} ⊆ VT (x) for all x ∈ X∆, and so X∆ ⊆ I(T, ϕ). Therefore, I(T, ϕ) is
Baire generic since, by item (a), the set X∆ is Baire generic.

(ii)⇒ (i) Suppose that that there exists ϕ ∈ C(X,R) such that I(T, ϕ) is Baire generic. By
Corollary 1.7, one has Trans(X,T ) ∩ I(T, ϕ) 6= ∅. Given y ∈ Trans(X,T ) ∩ I(T, ϕ), one has
`ϕ(y) < Lϕ(y), and so #VT (y) > 1.

(ii) ⇒ (iii) For every x ∈ X, denote by Ux the set {ϕ ∈ C(X,R) : x ∈ I(T, ϕ)}. If Ux 6= ∅,
then Ux is an open dense subset of C(X,R) (see [20, Lemma 3.2]) and, by Corollary 1.7,
R(X,T ) =

⋃
x∈Trans(X,T ) Ux. Therefore, if R(X,T ) 6= ∅, then R(X,T ) is open and dense in

C(X,R).

(iii) ⇒ (iv) Suppose that R(X,T ) is open and dense in C(X,R). In particular, R(X,T ) is
not empty. From Corollary 1.7, R(X,T ) = {ϕ ∈ C(X,R) : `∗ϕ < L∗ϕ}. Using item (a), we

know that X∆ ⊆
⋂
ϕ∈C(X,R)

̂Iϕ[`∗ϕ, L
∗
ϕ]. Moreover,

X∆ ⊆
⋂

ϕ∈C(X,R)

̂Iϕ[`∗ϕ, L
∗
ϕ] =

 ⋂
`∗ϕ<L

∗
ϕ

̂Iϕ[`∗ϕ, L
∗
ϕ]

 ∩
 ⋂
`∗ϕ=L∗

ϕ

̂Iϕ[`∗ϕ, L
∗
ϕ]


and

X∆ ⊆
⋂

`∗ϕ<L
∗
ϕ

̂Iϕ[`∗ϕ, L
∗
ϕ].
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Consequently,

X∆ ⊆
⋂

`∗ϕ<L
∗
ϕ

I(T, ϕ) =
⋂

ϕ∈R(X,T )

I(T, ϕ).

(iv) ⇒ (v) Suppose that X∆ ⊆
⋂
ϕ∈R(X,T ) I(T, ϕ). By item (a), X∆ is Baire generic; hence⋂

ϕ∈R(X,T ) I(T, ϕ) is Baire generic in X.

(v) ⇒ (vi) Suppose that
⋂
ϕ∈R(X,T ) I(T, ϕ) is Baire generic. By item (ii) of Corollary 1.3,

we know that Trans(X,T ) ∩
⋂
ϕ∈R(X,T ) I(T, ϕ) 6= ∅.

(vi)⇒ (vii) This is clear from Corollary 1.7.

(vii) ⇒ (ii) Suppose that
⋃
ϕ∈C(X,R) I(T, ϕ) is Baire generic. If R(X,T ) = ∅, using

Lemma 7.1 one deduces that
⋂
ϕ∈C(X,R)X \ I(T, ϕ) is Baire generic. Then

∅ =
( ⋃
ϕ∈C(X,R)

I(T, ϕ)
)
∩
( ⋂
ϕ∈C(X,R)

X \ I(T, ϕ)
)

is Baire generic as well, so it is not empty. This contradiction ensures that R(X,T ) 6= ∅.
�

We now resume the proof of item (c). Suppose thatH(X,T ) is not empty. If {ϕ ∈ C(X,R) :
I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ} is empty, then H(X,T ) = R(X,T ) is not empty. Therefore, by
Proposition 7.2, we conclude that

⋂
ϕ∈H(X,T ) I(T, ϕ) is Baire generic.

Assume, otherwise, that {ϕ ∈ C(X,R) : I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ} is not empty. Then
there exists ϕ ∈ C(X,R) such that I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ.

Claim: The set I(T, ϕ) is meagre.

In fact, suppose that I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ. Denote by γ this common value. Then
by item (i) of Theorem 1.4, the set Iϕ[γ, γ] is Baire generic in Y . Moreover, we have
Trans(X,T ) ⊆ Iϕ[γ, γ]. Therefore, by item (ii) of Theorem 1.4, I(T, ϕ) is meagre. �

As
⋂
ϕ∈H(X,T ) I(T, ϕ) ⊆ I(T, ϕ), we conclude from the previous Claim that the set⋂

ϕ∈H(X,T ) I(T, ϕ) is meagre as well. So, we have shown that
⋂
ϕ∈H(X,T ) I(T, ϕ) is either

Baire generic or meagre.

Actually, we have proved more: the set
⋂
ϕ∈H(X,T ) I(T, ϕ) is Baire generic if and only if

{ϕ ∈ C(X,R) : I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ} is empty. �

As a consequence of the Corollary 2.1 we get the following dichotomy between uniquely
ergodicity and Baire genericity of historic behavior.

Scholium 7.3. If (X, d) is a compact metric space and T : X → X is a continuous minimal
map, then either T is uniquely ergodic or the set

⋂
ϕ∈H(X,T ) I(T, ϕ) is Baire generic.

Proof. Let T : X → X be a continuous minimal map which is not uniquely ergodic. Suppose,
by contradiction, that there is ϕ in C(X,R) such that I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ. Then there
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exists x0 ∈ X such that `ϕ(x0) < Lϕ(x0). Since T is minimal, one has Trans(X,T ) = X; in
particular, the orbit of x0 is dense in X. Consequently,

`∗ϕ 6 `ϕ(x0) < Lϕ(x0) 6 L∗ϕ.

But this contradicts the assumption `∗ϕ = L∗ϕ. Thus{
ϕ ∈ C(X,R) : I(T, ϕ) 6= ∅ and `∗ϕ = L∗ϕ

}
= ∅

and therefore, by item (c) of Corollary 2.1, the set
⋂
ϕ∈H(X,T ) I(T, ϕ) is Baire generic. �

8. Proof of Theorem 2.2

Let (X, d) be a compact metric space and ϕ ∈ C(X,R) such that X is (T, ϕ)-sensitive.
Recall that this means that there exist dense sets A,B ⊂ X and ε > 0 such that, for any pair
(a, b) ∈ A× B there is (ra, rb) ∈ {ϕn(a) : n ∈ N}′ × {ϕn(b) : n ∈ N}′ satisfying |ra − rb| > ε.
Using the uniform continuity of ϕ, one can choose δ > 0 such that |ϕ(z)−ϕ(w)| < ε

2 for every
z, w ∈ X with d(z, w) < δ.

Assume, by contradiction, that I(T, ϕ) has empty interior and T has no sensitivity to initial
conditions. The latter condition implies that for each θ > 0 there exist xθ ∈ X and an open
neighborhood Uxθ of xθ such that d(Tn(xθ), T

n(x)) 6 θ for every x ∈ Uxθ and n ∈ N ∪ {0}.
Choose θ = δ

3 and take xθ and Uxθ as above.

As I(T, ϕ) has empty interior, the set X \ I(T, ϕ) is dense in X. Therefore, there are
a ∈ A ∩ Uxθ , b ∈ B ∩ Uxθ and a ϕ-regular point c ∈ Uxθ satisfying

|ϕ(Tn(a))− ϕ(Tn(c))| < ε
2 and |ϕ(Tm(b))− ϕ(Tm(c))| < ε

2 ∀n,m ∈ N ∪ {0}.

Consequently, for every n,m ∈ N ∪ {0}, one has∣∣∣∣∣ 1
n

n−1∑
j=0

ϕ(T j(a))− 1
n

n−1∑
j=0

ϕ(T j(c))

∣∣∣∣∣ < ε
2 and

∣∣∣∣∣ 1
m

m−1∑
j=0

ϕ(T j(b))− 1
m

m−1∑
j=0

ϕ(T j(c))

∣∣∣∣∣ < ε
2 .

Taking the limit as n goes to +∞ in the first inequality along a subsequence (nk)k∈N converg-
ing to ra and taking the limit as m tends to +∞ in the second inequality along a subsequence
(mk)k∈N convergent to rb, and using that c is a ϕ-regular point, we obtain∣∣∣∣∣∣ra − lim

k→+∞

1

nk

nk−1∑
j=0

ϕ(T j(c))

∣∣∣∣∣∣ 6 ε

2
and

∣∣∣∣∣∣rb − lim
k→∞

1

mk

mk−1∑
j=0

ϕ(T j(c))

∣∣∣∣∣∣ 6 ε

2

and so |ra − rb| 6 ε. We have reached a contradiction, thus proving that either T has
sensitivity on initial conditions or the irregular set I(T, ϕ) has non-empty interior, as claimed.

Assume now that X is (T, ϕ)-sensitive and T has a dense set of periodic orbits. As the
periodic points of T are ϕ-regular and form a dense subset of X, the set I(T, ϕ) must have
empty interior. Thus, by the previous statement, T has sensitivity on initial conditions. �

9. Proof of Corollary 2.4

Let T : X → X be a strongly transitive continuous endomorphism of a compact metric
space X. Given ϕ ∈ C(X,R) satisfying I(T, ϕ) 6= ∅, let us show that I(T, ϕ) is a Baire
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generic subset of X. Fix x0 ∈ I(T, ϕ) and let ε = Lϕ(x0)−`ϕ(x0) > 0. The strong transitivity
assumption ensures that, for every non-empty open subset U of X, there is N ∈ N∪{0} such
that x0 ∈ TN (U). Thus, the pre-orbit O−T (x0) =

{
x ∈ X : Tn(x) = x0 for some n ∈ N

}
of

x0 is dense in X. Moreover,

sup
r, s∈Wϕ(x)

|r − s| > ε ∀x ∈ O−T (x0).

This proves that X is (T, ϕ)-sensitive and so, by Theorem 1.2, the set I(T, ϕ) is Baire generic
in X. �

10. Examples

In this section we discuss the hypothesis and derive some consequences of the main results.
The first example helps to clarify the requirements in Theorem 1.2 and Corollary 1.3, besides
calling our attention to the difference between transitivity and the existence of a dense orbit.

Example 1. Consider the space X = {1/n : n ∈ N}∪{0} endowed with the Euclidean metric.
Let T : X → X be the continuous map given by T (0) = 0 and T (1/n) = 1/(n+ 1) for every
n ∈ N. Notice that X has isolated points and T has a dense orbit, though Trans(X,T ) = {1}.
However, T is not transitive. Moreover, I(T, ϕ) = ∅ for every ϕ ∈ C(X,R).

The second example illustrates Definition 1.

Example 2. Consider the shift space X = {0, 1}N endowed with the metric defined by

d((an)n∈N, (bn)n∈N) =

+∞∑
n=1

|an − bn|
2n

and take the shift map σ : X → X given by σ( (an)n∈N ) = (an+1)n∈N. Then the sets

A =
{

(an)n∈N | ∃N ∈ N : an = 0 ∀n > N
}

B =
{

(an)n∈N | ∃N ∈ N : an = 1 ∀n > N
}

are the stable sets of the fixed points 0 and 1 of σ, and are dense subsets of X. Besides, if
ϕ ∈ C(X,R), then for every a ∈ A and b ∈ B one has

lim
n→+∞

ϕ(σn(a)) = ϕ(0) and lim
n→+∞

ϕ(σn(a)) = ϕ(1).

Therefore,

lim
n→+∞

1

n

n−1∑
j=1

ϕ(σj(a)) = ϕ(0) and lim
n→+∞

1

n

n−1∑
j=1

ϕ(σj(b)) = ϕ(1).

And so, if ϕ(0) 6= ϕ(1) and one chooses ε = |ϕ(0)− ϕ(1)|/2, then we conclude that for every
(a, b) ∈ A×B there are ra ∈Wϕ(a) and rb ∈Wϕ(b) such that |ra−rb| > ε. Consequently, X is
(σ, ϕ)-sensitive with respect to any ϕ ∈ C(X,R) satisfying ϕ(0) 6= ϕ(1). So, by Theorem 1.2,
for every such maps ϕ the set I(T, ϕ) is Baire generic in X.

Remark 10.1. We note that a similar reasoning shows that, if T : Y → Y is a continuous
map acting on a Baire metric space such that T has two periodic points with dense pre-orbits,
then there exists ϕ ∈ Cb(Y,R) whose set I(T, ϕ) is Baire generic in Y .
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In the following example we will address the irregular set in the context of countable Markov
shifts. These symbolic systems appear naturally as models for non-uniformly hyperbolic
dynamical systems on compact manifolds (see [29] and references therein), hyperbolic systems
with singularities [10], including Sinai dispersing billiards, and certain classes of piecewise
monotone interval maps [19], which encompass the piecewise expanding Lorenz interval maps,
just to mention a few.

Example 3. Let A be a countable set, A = (ai,j)i,j ∈A be a matrix of zeroes and ones and

ΣA ⊂ AN be the subset

ΣA =
{

(xn)n∈N ∈ AN : axn,xn+1 = 1 ∀n ∈ N
}
.

Endow ΣA with the metric

d((xn)n∈N, (yn)n∈N) =

{
2−min {k∈N : xk 6= yk} if {k ∈ N : xk 6= yk} 6= ∅
0 otherwise.

We note that ai,j = 0 for all but finitely many values of (i, j) ∈ A × A if and only if ΣA
is a compact metric space. Besides, the metric space (ΣA, d) has a countable basis for the
topology, generated by the countably many cylinders, and it is invariant by the shift map
σ : AN → AN.

If σ|ΣA has the periodic specification property (see examples in [32]), then the set of periodic
points of σ|ΣA is dense in ΣA and all the points in ΣA have dense pre-orbits. Therefore, there

exists ϕ ∈ Cb(ΣA,R) such that ΣA is (σ, ϕ)-sensitive, whose I(σ, ϕ) is Baire generic by
Theorem 1.2. Indeed, for each ϕ ∈ Cb(ΣA,R),

(a) either there exists a constant cϕ ∈ R such that, for every periodic point p,

1

π(p)

π(p)−1∑
j=0

ϕ(σj(p)) = cϕ

where π(p) ∈ N denotes the minimal period of p;

(b) or there are two periodic points p, q ∈ ΣA such that

1

π(p)

π(p)−1∑
j=0

ϕ(σj(p)) 6= 1

π(q)

π(q)−1∑
j=0

ϕ(σj(q))

and so ΣA is (σ, ϕ)-sensitive, since the pre-orbits of p and q are dense and therefore
provide two sets A and B complying with the Definition 1 (see Remark 10.1).

The next example shows that the existence of a discontinuous first integral Lϕ with two
dense level sets for a continuous map T : Y → Y acting on a metric space Y may be indeed
stronger than requiring (T, ϕ)-sensitivity.

Example 4. Let (Ψt)t∈R be the Bowen’s example, that is, a smooth Morse-Smale flow
on S2 with hyperbolic singularities {σ1, σ2, σ3, σ4, S,N} and displaying an attracting union
of four separatrices, as illustrated in Figure 1. More precisely, there exist four separatrices
γ1, γ2, γ3 and γ4 associated to hyperbolic singularities σ1, σ2 of saddle type, while all the other
singularities are repellers. Let ϕ : S2 → R be a continuous observable satisfying ϕ(x) ∈ [0, 1]
for every x ∈ S2, ϕ(σ1) = 1 and ϕ(σ2) = 0. Consider the time-one map T : Y → Y of the flow
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Figure 1. Flow with historic behavior.

(Ψt)t∈R. As the orbit by T of every point in Y = S2 \
(⋃4

i=1 γi
)

accumulate on the closure
of the union of the separatrices, it is immediate that the first integral Lϕ, defined by (1.1), is
everywhere constant in Y : Lϕ(y) = 1 for every y ∈ Y . However, as Wϕ(y) = [0, 1] for every
y ∈ Y , the space Y is (T, ϕ)-sensitive.

Our final example in this section concerns a skew-product admitting two invariant proba-
bility measures whose basins of attraction have positive Lebesgue measure and are dense.

Example 5. Consider the annulus A = S1 × [0, 1] and the map T : A→ A given by

T (x, t) =
(

3x (mod 1), t+
t(1− t)

32
cos(2πx)

)
∀ (x, t) ∈ S1 × [0, 1].

In [21], Kan proved that T admits two physical measures (that is, T -invariant probability
measures whose basins of attraction have positive Lebesgue measure), namely µ0 = LebS1×δ0

and µ1 = LebS1 × δ1, whose basins of attraction B(µ0) and B(µ1) are intermingled, that is,
for every non-empty open set U ⊂ A

LebA
(
U ∩B(µ0)

)
> 0 and LebA

(
U ∩B(µ1)

)
> 0

where

B(µ) =
{
x ∈ A :

( 1

n

n−1∑
j=0

ϕ(T j(y))
)
n∈N

converges to

∫
ϕdµ, ∀ϕ ∈ C(A,R)

}
.

Later, Bonatti, Dı́az and Viana introduced in [6] the concept of Kan-like map and proved
that any such map robustly admits two physical measures. More recently, Gan and Shi [18]
showed that, in the space of C2 diffeomorphisms of A preserving the boundary, every C2

Kan-like map T0 admits a C2-open neighborhood V such that the following holds: for each
T ∈ V and every non-empty open set U ⊂ A,

the interior of A ⊂
⋃
n> 0

Tn(U).

Using Theorem 1.2 we conclude that, if T is a Kan-like map and ϕ ∈ C(A,R) satisfies the
inequality

∫
ϕdµ0 6=

∫
ϕdµ1, then I(T, ϕ) is a Baire generic subset of A. More generally, the

argument that established Corollary 2.4 also ensures that, for any ϕ ∈ C(A,R), one has

(a) either I(T, ϕ) ∩ interior of A = ∅
(b) or I(T, ϕ) is a Baire generic subset of A.
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In particular, when I(T, ϕ) is dense then it is Baire generic; thus D(A, T ) = R(A, T ).

11. Applications

As it will become clear in the remainder of this section, Theorem 1.2 has a wide range of
applications according to the class of sequences Φ = (ϕn)n≥1 of observables one considers.
Let us provide two such applications, one with a geometric motivation and another in the
context of semigroup actions.

Application 1. The irregular sets of uniformly hyperbolic maps and flows on compact
Riemannian manifolds have been extensively studied. One of the reasons for this success is
that these dynamical systems can be modeled by symbolic dynamical systems which satisfy
the so-called specification property. Irregular sets for continuous maps acting on compact
metric spaces and satisfying the specification property have been studied in [23]. Many
difficulties arise, though, if one drops the compactness assumption. An important example of
a hyperbolic dynamical system with non-compact phase space is given by the geodesic flow
on a complete connected negatively curved manifold. The next example applies Theorem 1.2
precisely to this setting.

Example 6. Let (M, g) be a connected, complete Riemannian manifold. We will discuss
the Baire genericity of points with historic behavior in the following two cases (we refer the
reader to [12] for precise definitions and more information):

(I) (M, g) is negatively curved and the non-wandering set of the geodesic flow (Ψg
t )t∈R

contains more than two hyperbolic periodic orbits.

(II) (M, g) has non-positive curvature, its universal curvature has no flat strips and the
geodesic flow (Ψg

t )t∈R has at least three periodic orbits.

Regarding (I), by [12, Theorem 1.1] it is known that the space E of Borel ergodic probability
measures fully supported on the non-wandering set Ω (that is, every point in Ω belongs to
their support) is a Gδ dense subset of all Borel probability measures on T 1M which are
invariant by the geodesic flow. In particular, as #E > 2 due to the assumption that the
geodesic flow has at least two distinct periodic orbits, one can choose a continuous observable
ϕ : T 1M → R such that

inf
µ∈E

∫
ϕdµ < sup

µ∈E

∫
ϕdµ.

As the ergodic basins of attraction of the probability measures in E are dense in Ω, one
concludes that

Lϕ(·) = lim sup
t→+∞

1

t

∫ t

0
ϕ(Ψg

s(·)) ds

is a first integral for the geodesic flow (Ψg
t )t∈R. Moreover, there are subsets A,B ⊂ T 1M

which are dense in Ω and whose Lϕ value is constant, though the value in A is different from
the one in B. The existence of A and B means that Ω is (T,Φ)-sensitive, where T = Ψg

1 is the

time-1 map of the geodesic flow and Φ is defined by Φ =
∫ 1

0 (ϕ ◦ Ψg
s) ds. Then Theorem 1.2

ensures that I(T,Φ) is Baire generic. Consequently,

I((Ψg
t )t∈R, ϕ) =

{
y ∈ Ω : lim

t→+∞

1

t

∫ t

0
ϕ(Ψg

s(y)) ds does not exist
}
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is a Baire generic subset of Ω as well.

The previous argument can be easily adapted to the case (II) to yield the conclusion that
I((Ψg

t )t∈R, ϕ) is Baire generic since, according to [13, Theorem 1.1], the space E of Borel
ergodic probability measures with full support on the non-wandering set Ω also form a Gδ
dense set.

Application 2. Recall that a locally compact group G is amenable if for every compact
set K ⊂ G and δ > 0 there is a compact set F ⊂ G, called (K, δ)-invariant, such that
m(F∆KF ) < δm(F ), where m denotes the counting measure on G if G is discrete, and stands
for the Haar measure in G otherwise. We refer the reader to [28] for alternative formulations
of this concept. A sequence (Fn)n of compact subsets of G is a Følner sequence if, for every
compact K ⊂ G and every δ > 0, the set Fn is (K, δ)-invariant for every sufficiently large
n ∈ N (whose estimate depends on K). A Følner sequence (Fn)n is tempered if there exists
C > 0 such that

m
( ⋃

16 k<n

F−1
k Fn

)
6 Cm

(
Fn
)

∀n ∈ N.

It is known that every Følner sequence has a tempered subsequence and that every amenable
group has a tempered Følner sequence (cf. [25, Proposition 1.4]). Furthermore, if G is an
amenable group acting on a probability space (X,µ) by measure preserving maps and (Fn)n
is a tempered Følner sequence, then for every ϕ ∈ L1(µ) the limit

lim
n→+∞

1

m(Fn)

∫
Fn

ϕ(g(x)) dm(g)

exists for µ-almost every x ∈ X; if, in addition, the G-action is ergodic, the previous limit is
µ-almost everywhere constant and coincides with

∫
ϕdµ (cf. [25, Theorem 1.2]).

Let (X, d) be a compact metric space and G be a group. We say that a Borel probability
measure µ on X is G-invariant (or invariant by the action Γ : G × X → X of G on X)
if µ(g−1(A)) = µ(A) for every measurable set A and every g ∈ G. We denote the space
of G-invariant probability measures by MG(X), whose subset of ergodic elements is EG(X).
A group action of G on X is said to be uniquely ergodic if it admits a unique G-invariant
ergodic probability measure (a property equivalent to the existence of a unique G-invariant
probability measure if G is a countable amenable group, due to the ergodic decomposition;
see [27]). Given µ ∈MG(X), the basin of attraction of µ is defined by

B(µ) =
{
x ∈ X :

1

|Fn|
∑
g ∈Fn

δg(x) → µ (convergence in the weak∗ topology)
}

where δg(x) stands for the Dirac probability measure supported on the point g(x).

Consider ϕ ∈ C(X,R) and the sequence Φ = (ϕn)n∈N of continuous bounded maps defined
by

ϕn(x) =
1

m(Fn)

∫
Fn

ϕ(g(x)) dm(g). (11.1)

Clearly, ‖ϕn‖∞ 6 ‖ϕ‖∞ for every n ∈ N. Moreover, if we assume that there are fully
supported G-invariant ergodic Borel probability measures µ1 6= µ2, then there is ϕ ∈ C(X,R)
such that X is Φ-sensitive, since the basins of attraction of µ1 and µ2 are disjoint and both
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dense in X. Thus, under these assumptions, Theorem 1.2 ensures that, for the map ϕ, the
irregular set {

x ∈ X : lim
n→+∞

1

m(Fn)

∫
Fn

ϕ(g(x)) dm(g) does not exist
}

is a Baire generic subset of X.

In what follows, we will introduce a requirement weaker than the previous one, which is
satisfied by countable amenable group actions with the specification property and also ensures
that the irregular set of some potential is Baire generic. Afterwards, we will check it on an
example (cf. Example 7).

Definition 4. Following [11, 31], we say that a continuous group action Γ : G×X → X has
the specification property if for every ε > 0 there exists a finite set Kε ⊂ G (depending on ε)
such that: for any finite sample of points x0, x1, x2, . . . , xκ in X and any collection of finite
subsets F̂0, F̂1, F̂2, . . . , F̂κ of G satisfying the condition

KεF̂i ∩ F̂j = ∅ for every distinct 0 6 i, j 6 κ (11.2)

there exists a point x ∈ X such that

d(g(x), g(xi)) < ε for every g ∈
⋃

06 j 6κ

F̂j . (11.3)

In rough terms, the previous property asserts that any finite collection of pieces of orbits
can be shadowed by a true orbit provided that there is no overlap of the (translated) group
elements that parameterize the orbits. We note that, if G is generated by a single map g,
then Definition 4 coincides with the classical notion of specification for g (cf. [33]).

It is known that, if X is a compact metric space and T : X → X is a continuous map with
the specification property, then the basin of attraction of any T -invariant ergodic probability
measure is dense in X (see [33, Proof of Theorem 4]). To extend this information to countable
amenable group actions with the specification property (and the counting measure m, which
we denote by | · |), consider the generalized basin of attraction of any G-invariant ergodic
probability measure µ, defined by

C(µ) =
{
x ∈ X : µ ∈ V (x)

}
where V (x) denotes the set of accumulation points, in the weak∗-topology, of the sequence( 1

|Fn|
∑
g ∈Fn

δg(x)

)
n∈N

.

Lemma 11.1. Let G be a countable amenable group, (Fn)n∈N be a tempered Følner sequence,
(X, d) be a compact metric space and Γ: G×X → X be a continuous group action satisfying
the specification property. If µ is a G-invariant ergodic probability measure on X then C(µ)
is a dense subset of X.

Proof. As X is compact, the space C(X,R) is separable. Given a dense sequence (ϕ`)`∈N in
C(X,R) and ` ∈ N, by the Ergodic theorem for countable amenable group actions [25] there
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is a full µ-measure subset X` ⊂ X such that, for every x ∈ X`,

lim
n→+∞

1

|Fn|
∑
g ∈Fn

ϕ`(g(x)) =

∫
ϕ` dµ.

Therefore, ⋂
`∈N

X` ⊆ B(µ) ⊆ C(µ)

and so

µ(B(µ)) = 1 = µ(C(µ)).

Moreover, given z ∈
⋂
`∈NX`, a continuous map ϕ ∈ C(X,R) and a compact set F ⊂ G, as

limn→+∞ |Fn| = +∞ one also has

lim
n→+∞

1

|Fn \ F |
∑

g ∈Fn\F

ϕ(g(z)) =

∫
ϕdµ.

We are left to show that C(µ) is dense in X. The following argument is inspired by [33,
Theorem 4].

We start by noticing that, given ε > 0, let Kε ⊂ G be given by the specification property.
Then, for every k ∈ N, one can choose a positive integer nk such that, as k goes to +∞ one
obtains

Kδ/2k

|Fnk |
→ 0 and

|Fnk−1
|

|Fnk |
→ 0.

Recall that, by the compactness of X, given a continuous map ϕ ∈ C(X,R), its modulus
of uniform continuity, defined by

ζε(ϕ) = sup
{
|ϕ(u)− ϕ(v)| : v ∈ B(u, ε), u ∈ X

}
where B(u, ε) stands for the ball in X centered at u with radius ε, converges to zero as ε goes
to 0+.

Fix x ∈ X and δ > 0. We claim that C(µ) intersects the closed ball B(x, δ) of radius δ
around x. The idea to prove this assertion is to shadow pieces of orbits of increasing size in
C(µ) which start at the ball B(x, δ). More precisely, take z ∈

⋂
`∈NX` and consider x0 = x,

x1 = z and the finite sets (which satisfy (11.2))

F̂0 = {id}
F̂1 =

(
K−1
δ/2 [Fn1 \ F̂0]

)
\Kδ/2

where K−1
α = {g−1 : g ∈ Kα} for every α > 0. By the specification property there is y1 ∈

B(x, δ/2) such that d(g(y1), g(z)) < ε for every g ∈ F̂1. In particular, given a continuous map
ϕ ∈ C(X,R) one has ∣∣∣ 1

|F̂1|

∑
g ∈ F̂1

ϕ(g(y1))− 1

|F̂1|

∑
g ∈ F̂1

ϕ(g(z))
∣∣∣ < ζ δ

2
(ϕ).

Consider now x2 = y1 and x3 = z and the finite sets (which satisfy (11.2))

F̂2 = F̂0 ∪ F̂1

F̂3 = (K−1
δ/22 [Fn2 \ F̂2]) \ (Kδ/22F̂2)
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Hence, setting F̂4 = F̂2 ∪ F̂3 and using the specification property once more, one obtains
a point y2 ∈ B(y1, δ/2

2) such that d(g(y2), g(z)) < ε for every g ∈ F̂3, from which it is
immediate that for every continuous map ϕ ∈ C(X,R) one has∣∣∣ 1

|F̂3|

∑
g ∈ F̂3

ϕ(g(y1))− 1

|F̂3|

∑
g ∈ F̂3

ϕ(g(z))
∣∣∣ < ζ δ

22
(ϕ).

Proceeding recursively, given yj ∈ B(yj−1, δ/2
j) and the finite set F̂j ⊂ G containing {id},

we take

F̂j+1 = (K−1
δ/2j

[Fnj+1 \ F̂j ]) \ (Kδ/2j F̂j) (11.4)

and, by the specification property, we find yj+1 ∈ B(yj , δ/2
j+1) satisfying

d(g(yj+1), g(yj)) < ε for every g ∈ F̂j

d(g(yj+1), g(z)) < ε for every g ∈ F̂j+1

and, for every continuous map ϕ ∈ C(X,R),∣∣∣ 1

|F̂j+1|

∑
g ∈ F̂j+1

ϕ(g(yj+1))− 1

|F̂j+1|

∑
g ∈ F̂j+1

ϕ(g(z))
∣∣∣ < ζ δ

2j
(ϕ).

Thus, by construction, (yk)k∈N is a Cauchy sequence in B(x, δ), hence convergent to some

point y∞ ∈ B(x, δ). Moreover, the choice of the sets F̂k ensures that

lim
k→+∞

|F̂k ∆Fnk |
|Fnk |

= 0.

In addition, from the initial selection of z and the previous estimates we conclude that, for
every continuous map ϕ ∈ C(X,R), the subsequence of averages given by( 1

|F̂n|

∑
g ∈ F̂n

ϕ(g(y∞))
)
n∈N

converges to
∫
ϕdµ. Thus y∞ belongs to C(µ). �

The following dichotomy is a direct consequence of Lemma 11.1 and Theorem 1.2.

Corollary 11.2. Let G be a countable amenable group, (Fn)n∈N be a tempered Følner se-
quence, X be a compact metric space and Γ: G × X → X be a continuous group action
satisfying the specification property. Then, for every ϕ ∈ C(X,R), either∫

ϕdµ1 =

∫
ϕdµ2 ∀µ1, µ2 ∈MG(X)

or {
x ∈ X : lim

n→+∞

1

|Fn|
∑
g ∈Fn

ϕ(g(x)) does not exist
}

is a Baire generic subset of X.
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Proof. Fix ϕ ∈ C(X,R) and suppose that there are two probability measures µ1, µ2 ∈
MG(X), which we may assume to be ergodic (using the ergodic decomposition [27]), such
that ∫

ϕdµ1 6=
∫
ϕdµ2.

Their generalized basins of attraction C(µ1) and C(µ2) are both dense in X by Lemma 11.1.
Define ε = 1

2 |
∫
ϕdµ1−

∫
ϕdµ2| > 0. Using the sets A = C(µ1), B = C(µ2) and ε we confirm

that X is Φ-sensitive, where Φ =
(
ϕn
)
n∈N and

ϕn(x) =
1

|Fn|
∑
g ∈Fn

ϕ(g(x)).

Consequently, by Theorem 1.2, the irregular set{
x ∈ X : lim

n→+∞

1

|Fn|
∑
g ∈Fn

ϕ(g(x)) does not exist
}

is a Baire generic in X. �

We observe that Corollary 11.2 has an immediate consequence regarding the empirical
measures distributed along elements of a tempered Følner sequence: under the assumptions
of this corollary, one has that either the amenable group action is uniquely ergodic or the set{

x ∈ X :
( 1

|Fn|
∑
g ∈Fn

δg(x)

)
n∈N

does not converge in the weak∗ topology
}

is Baire generic in X. This extends Furstenberg’s theorem (see [27, Theorem 3.2.7]), according
to which an amenable group action by homeomorphisms on a compact metric space is uniquely
ergodic if and only if there is a constant c such that the sequence of averages (11.1) of every
continuous function converges to c.

Example 7. Consider the 2-torus T2, with a Riemannian metric d, and the linear Anosov

diffeomorphisms g1 and g2 of T2 induced by the matrices A1 =

(
2 1
1 1

)
and A2 =

(
1 1
1 0

)
.

As A1 = A2
2, the maps g1 and g2 commute and induce a Z2-action on the 2-torus given by

Γ: Z2 × T2 → T2(
(m,n), x

)
7→

(
gm1 ◦ gn2

)
(x).

Moreover, this action has the specification property. Let us see why.

Given ε > 0, let kε ∈ N be provided by the specification property for the Anosov diffeo-
morphism g2 and Kε = [−kε, kε]2 ⊂ Z2. For any finite collection of points x0, x1, x2, . . . , xκ
in T2 and any choice of finite subsets F̂0, F̂1, F̂2, . . . , F̂κ of Z2 satisfying the condition

KεF̂i ∩ F̂j = ∅ for every distinct 0 6 i, j 6 κ (11.5)

we claim that there exists a point x ∈ T2 such that

d(Γ(m,n)(x),Γ(m,n)(xi)) < ε for every (m,n) ∈
⋃

06 j 6κ

F̂j .
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Indeed, consider the map Θ : Z2 → Z given by Θ((m,n)) = 2m+ n and notice that

Γ((m,n), ·) = g
Θ((m,n))
2 (·) ∀m,n ∈ Z. (11.6)

The choice of the sets Kε together with assumption (11.5) imply that Θ(KεF̂i) ∩ Θ(F̂j) = ∅
for every i 6= j. Consequently,

inf
{
|u− v| : u ∈ Θ(F̂i), v ∈ Θ(F̂j)

}
> kε.

To find x ∈ T2 as claimed, we are left to apply the specification property of g2 (valid since g2

is an Anosov diffeomorphism) and the equality (11.6).

Consider now a tempered Følner sequence (Fn)n∈N on Z2; for instance, the one defined by
Fn = [−n, n]2 ⊂ Z2. If P is the common fixed point by both g1 and g2, then the probability
measure µ1 = δP belongs to MG(X), and the same happens with the Lebesgue measure
(say µ2) on T2. Thus, given ϕ ∈ C(T2,R) \ {0} such that ϕ > 0 and ϕ(P ) = 0, then∫
ϕdµ1 = 0 6=

∫
ϕdµ2, and therefore Corollary 11.2 asserts that{

x ∈ T2 : lim
n→+∞

1

|Fn|
∑
g ∈Fn

ϕ(g(x)) does not exist
}

is a Baire generic subset of T2.

Application 3. Let G be a free semigroup, finitely generated by a finite set of self-maps
G1 = {Id, g1, · · · , gp} of a probability measure space (X,B, µ). Assume that µ is invariant
by gi : X → X for every 1 6 i 6 p. The choice of G1 endows G with a norm | · | defined as
follows: given g ∈ G, then |g| stands for the length of the shortest word over the alphabet G1

representing g. Denote by Gk the set {g ∈ G : |g| = k}.
Now take ϕ ∈ L∞(X,µ) and consider the sequence of its spherical averages

k ∈ N 7→ sk(ϕ) =
1

#Gk

∑
g ∈Gk

ϕ ◦ g

where # stands for the cardinal of a finite set (if Gk = ∅, we set sk(ϕ) = 0). Next consider
the Cesàro averages of the previous spherical averages, that is,

n ∈ N 7→ Φn =
1

n

n−1∑
k= 0

sk(ϕ). (11.7)

The main results of [7, 8] establish the pointwise convergence of the sequence
(
Φn

)
n∈N at

µ-almost every point x ∈ X.

As a consequence of Theorem 1.2, if there exists a dense set of points x ∈ X such that
WΦ(x) is not a singleton, then the set of Φ-irregular points is Baire generic in X. Let us
check this information through an example.

Example 8. Consider the unit circle S1 = {z ∈ C : |z| = 1} and the self-maps of S1 given
by g1(z) = z4 and g2(z) = z7. These transformations commute and have two fixed points in
common, whose pre-orbits by g1 and g2 are dense in S1. Take the free semigroup G generated
by G1 = {Id, g1, g2}, and let ϕ be in C(S1,R).
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Regarding the averages (11.7) of ϕ, in this case they are given by

Φn =
1

n

n−1∑
k= 0

1

2k

k∑
j= 0

(
k

j

)
(ϕ ◦ gj1 ◦ g

k−j
2 ).

Let z0 ∈ S1 be a common fixed point for g1 and g2. The sequence
(
Φn(z0)

)
n∈N converges

to ϕ(z0) as n goes to +∞. We claim that, for every x in the pre-orbit O−(z0) of z0 by the
semigroup action (made up by the pre-images of z0 by all the elements of the semigroup G),
the sequence

(
Φn(x)

)
n∈N converges to ϕ(z0) as well. Let us show this claim.

Given x ∈ O−(z0), there exists g = gin ◦ · · · ◦ gi2 ◦ gi1 ∈ G, where ij ∈ {1, 2}, such that

g(x) = z0. Yet, as g1 and g2 commute, one can simply write g = ga1 ◦gb2 for some non-negative
integers a and b. Assume that a, b > 1 (the remaining cases are identical). If k > a + b, the
sum

1

2k

k∑
j= 0

(
k

j

)
(ϕ ◦ gj1 ◦ g

k−j
2 )(x) (11.8)

may be rewritten as

1

2k

a−1∑
j= 0

(
k

j

)
(ϕ ◦ gj1 ◦ g

k−j
2 )(x) +

k−b∑
j= a

(
k

j

)
(ϕ ◦ gj1 ◦ g

k−j
2 )(x) +

k∑
j= k−b+1

(
k

j

)
(ϕ ◦ gj1 ◦ g

k−j
2 )(x)

 .
The absolute values of the first and third terms in the previous sum are bounded above by

a ‖ϕ‖∞ max
{(k

0

)
, · · · ,

(
k

a

)}
2−k

and

b ‖ϕ‖∞ max
{( k

k − b+ 1

)
, · · · ,

(
k

k

)}
2−k

respectively, and both estimates converge to zero as k goes to +∞. Thus, their Cesàro
averages also converge to 0. Regarding the middle term, as g1 and g2 commute and z0 is fixed
by every element of G, one has

1

2k

k−b∑
j= a

(
k

j

)
(ϕ ◦ gj1 ◦ g

k−j
2 )(x) =

1

2k

k−b∑
j= a

(
k

j

)(
ϕ ◦ gj−a1 ◦ gk−j−b2

)
(ga1 ◦ gb2)(x)

=
1

2k

k−b∑
j= a

(
k

j

)
(ϕ ◦ gj−a1 ◦ gk−j−b2 )(z0) =

[ 1

2k

k−b∑
j= a

(
k

j

)]
· ϕ(z0)

whose limit as k goes to +∞ is precisely ϕ(z0). This proves that the sequence (11.8) converges
to ϕ(z0), hence the same happens with its Cesàro averages.

Therefore, if z0 ∈ S1 and z1 ∈ S1 are the two common fixed points by g1 and g2, and we
take x ∈ S1 in the pre-orbit by the semigroup action of z0 (which is dense, since the pre-orbit
of z0 by g1 is dense) and y ∈ S1 belongs to the (also dense) pre-orbit by the semigroup action
of z1, then the sequence

(
Φn(x)

)
n

converges to ϕ(z0) and the sequence
(
Φn(y)

)
n

converges

to ϕ(z1). So, if we choose ϕ ∈ C(S1,R) such that ϕ(z0) 6= ϕ(z1) then, by Theorem 1.2, we
conclude that the irregular set I(Φ) is Baire generic in S1.
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Remark 11.3. As the generators of the semigroup action described in Example 8 commute,
one could consider, alternatively, the sequence (Ψn)n where

Ψn(·) =
1

n2

n−1∑
k, `= 0

(ϕ ◦ gk1 ◦ g`2)(·).

If z0 ∈ S1 is a common fixed point for G and x ∈ O−(z0), then this sequence can be rewritten
as

1

n2

 ∑
(k, `)∈ [a,n−1]×[b,n−1]

(ϕ ◦ g`1 ◦ gk−`2 )(x) +
∑

(k, `) /∈ [a,n−1]×[b,n−1]

(ϕ ◦ g`1 ◦ gk−`2 )(x)


where the sum is taken over pairs of integers (k, `). The first term is equal to

1

n2

∑
(k, `)∈ [a,n−1]×[b,n−1]

(ϕ ◦ g`−a1 ◦ gk−b−`2 )(z0) =
(n− a)(n− b)

n2
ϕ(z0)

and converges to ϕ(z0) as n goes to +∞. The second term has absolute value bounded above
by a+b

n ‖ϕ‖∞, which goes to zero as n tends to +∞. Thus, if z0 ∈ S1 and z1 ∈ S1 are two
common fixed points and ϕ(z0) 6= ϕ(z1) then, by Theorem 1.2, one concludes that I(Ψ) is
Baire generic in S1.
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[2] V. Araújo and V. Pinheiro. Abundance of wild historic behavior. Bull. Braz. Math. Soc. (N.S.) 52:1
(2021), 41–76. 1.1

[3] L. Barreira, J. Li and C. Valls. Irregular points are Baire generic. Tohoku Math. J. 66 (2014), 471–489.
1.1

[4] L. Barreira and J. Schmeling. Sets of “non-typical” points have full topological entropy and full Hausdorff
dimension. Israel J. Math. 116 (2000), 29–70. 1.1

[5] P. Barrientos, S. Kiriki, Y. Nakano, A. Raibekas and T. Soma. Historic behavior in nonhyperbolic homo-
clinic classes. Proc. Amer. Math. Soc. 148 (2020), 1195–1206. 1.1

[6] C. Bonatti, L.J. Dı́az and M. Viana. Dynamics beyond Uniform Hyperbolicity. Encyclopaedia Math. Sci.,
vol. 102, Springer-Verlag, 2005. 5

[7] A. Bufetov. Convergence of spherical averages for actions of free groups. Ann. of Math. 155 (2002), 929–
944. 11

[8] A. Bufetov, M. Khristoforov and A. Klimenko. Birkhoff convergence of spherical averages for measure-
preserving actions of Markov semigroups and groups. Int. Math. Res. Not. IMRN 21 (2012), 4797–4829.
11

[9] M. Carvalho and P. Varandas. Genericity of historic behavior for maps and flows. Nonlinearity 34 (2021),
7030–7044. 1.1, 1.1, 3



28 M. CARVALHO, V. COELHO, L. SALGADO, AND P. VARANDAS

[10] J. Chen, F. Wang and H.-K. Zhang. Markov partition and thermodynamic formalism for hyperbolic
systems with singularities. Preprint ArXiv:1709.00527. 10

[11] N. Chung and H. Li. Homoclinic groups, IE groups and expansive algebraic actions. Invent. Math 199:3
(2015), 805–858. 4

[12] Y. Coudène and B. Schapira. Generic measures for hyperbolic flows on non compact spaces. Israel J.
Math. 179 (2010), 157–172. 6

[13] Y. Coudène and B. Schapira. Generic measures for geodesic flows on nonpositively curved manifolds. J.
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