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Resumo

Neste trabalho, é derivada a equação de Layzer-Irvine no contexto de teorias

alternativas da gravitação que envolvem um acoplamento não mı́nimo entre matéria

e geometria. Como aplicação, é analisado o caso do enxame de galáxias Abell 586,

por ser notoriamente esfericamente simétrico e livre de interações, recorrendo a

alguns perfis de densidade.

Este trabalho baseia-se no trabalho desenvolvido na Ref. [1].

Palavras-chave: Relatividade Geral, teorias alternativas da gravitação, cos-

mologia, enxame A586.
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Abstract

In this work, the Layzer-Irvine equation is derived in the context of alternative

gravitational theories with non-minimal coupling between matter and geometry. As

an application, the case of the spherically symmetric cluster Abell 586 is analysed,

assuming some matter density profiles.

This work is based on work developed in Ref. [1].

Keywords: General Relativity, alternative theories of gravity, cosmology, A586

cluster.
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Chapter 1

Introduction

It is well established that General Relativity (GR) describes all known gravitational

phenomena at the solar system with great accuracy, and predicts astrophysical ob-

jects like black holes [2, 3]. Nevertheless, there are several reasons, both theoretical

and observational, to consider that GR might not be the full theory. For instance,

GR is not compatible with Quantum Mechanics and Quantum Field Theory, which

describe with great precision experimental results, in material science and high-

energy Physics. Furthermore, on galactic and cosmological scales, matching obser-

vations requires two unknown components: a non-baryonic form of matter, dark

matter, that explains galactic rotation curves and a dynamical mass on galaxy clus-

ters; and an exotic form of energy to explain the late-time accelerated expansion

of the Universe, namely dark energy. These two dark components constitute about

95% of the energy content of the Universe and their nature is still a mystery.

Consequently, several alternative gravitational theories have been proposed to

account for the observations usually explained by the presence of dark matter and

dark energy, such as, for instance, scalar-tensor theories, brane-world approaches

and Einstein-aether models. There are also some so-called f (R) theories [4–6], in

which the scalar curvature term, in the Einstein-Hilbert action, is replaced by a

generic non-linear function of it.

Recently, an interesting extension of the f (R) theories has been proposed [7], in

which the matter and curvature sectors are non-minimally coupled to each other.

This model has a rich lore of theoretical and observational implications [8–10], and
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Chapter 1. Introduction 2

has bearings on issues such as stellar stability [11], preheating after inflation [12],

mimicking of dark matter in galaxies [13] and clusters [14] and the large scale effect

of dark energy [15].

An important tool to study gravitationally bound systems is the virial theorem.

In the cosmological context, this theorem is associated with the Lazyer-Irvine equa-

tion [16–18], or the generalised cosmic virial theorem as it is often referred to. This

equation can be directly applied to gravitationally collapsed astrophysical objects

at different scales. If the gravitationally bound object is sufficiently relaxed, then

that equation reduces to the usual virial theorem. From the deviation of the mea-

sured quantities such as mass, radius and velocity dispersion relatively to the virial

ratio, we are able to test the existence of extra matter or the effect of modified

gravity. These relations have been used: to study the interaction between the dark

components of the Universe in galaxy clusters such as Abell 586 [19, 20] and Abell

1689 [19–22]; to assess the way dark components lead to structure formation [23,24];

in the context of f(R) gravity [25] and scalar-tensor theories [26]; in modified grav-

itational potentials of the form ϕ (a, |−→r1 −−→r2 |), where the cosmological evolution

appears in terms of the scale factor, a (t) [27].

In this work, we address the problem of adapting the Layzer-Irvine equation to

theories with non-minimal coupling between matter and curvature.

The work is organised as follows. First, we shortly review the non-minimally cou-

pled matter-curvature model [7] and some of its distinctive features. Then, we derive

the Layzer-Irvine equation for these theories following up the procedure outlined in

Refs. [17,23,26]. In Chapter 5, we apply the obtained Layzer-Irvine equation on the

Abell 586, a relaxed spherically symmetric galaxy cluster, that has not undergone

any relevant merging process in the last few Gyrs [28]. Finally, we show how to

estimate the velocity dispersion potential assuming that the cluster is in hydrostatic

and virial equilibrium, for different matter density profiles.



Chapter 2

Non-minimal curvature-matter

coupling

In GR, the action functional is expressed as

S =

∫
[κR + Lm]

√
−gd4x (2.1)

where R is the scalar curvature, Lm is the matter Lagrangian density, g is the metric

determinant and κ = c4/16πG, G being the Newton’s gravitational constant.

In the so-called f (R) theories [4–6], the scalar curvature term in the previous

action is replaced by an arbitrary function of it:

S =

∫ [
1

2
f (R) + Lm

]√
−gd4x (2.2)

More generally, one can think in a non-minimal coupling between curvature and

matter [7]:

S =

∫ [
1

2
f1 (R) + (1 + f2 (R))Lm

]√
−gd4x, (2.3)

where f1 (R) and f2 (R) are arbitrary functions of the scalar curvature, R. One

notes that, by setting f1 (R) = 2κR and f2 (R) = 0, General Relativity is recovered.

Varying the action with respect to the metric yields the field equations [7]:

FRµν −
1

2
δµν f1 − (gµσ∇σ∇ν − δµν�)F = (1 + f2)T µν , (2.4)

3



Chapter 2. Non-minimal curvature-matter coupling 4

with Fi ≡ dfi/dR (i = 1, 2), F ≡ F1 + 2F2Lm, and Tµν is the energy-momentum

tensor of matter defined as

Tµν = − 2√
−g

δ (
√
−gLm)

δ (gµν)
(2.5)

The Bianchi identities for the Einstein tensor, ∇µG
µ
ν = 0, and the identity

(2∇ν −∇ν2)Fi = Rµν∇µFi (2.6)

imply for the expression of Eq.(2.4):

∇µT
µ
ν = (Lmδµν − T µν )∇µ ln (1 + f2) . (2.7)

This is one of the fundamental features of the model (2.3) - the non-conservation

of the energy-momentum tensor. This property induces an extra force acting on a

test particle, which is orthogonal to the fluid four-velocity and can be expressed for

a perfect fluid as:

fµ =
1

ρ+ p

[
F2

1 + f2

(Lm + p)∇νR +∇νp

]
hµν , (2.8)

where hµν = gµν + uµuν is the projection operator.



Chapter 3

Perturbed Friedmann-Lemâıtre-

Robertson-Walker

model

We now aim to achieve the prime objective of this work, which is to derive the

Layzer-Irvine equation for the non-minimal coupling model described by the action

Eq. (2.3). To do so, we follow closely the derivation performed in Refs. [17,19,23,26].

First, we shall consider that the Universe is well described by a perfect fluid,

whose energy-momentum tensor reads T µν = (ρ+ p)uµuν + pgµν , where uµ =

(1, ui) is the four-velocity under the condition uµuµ = −1 . We also admit an

homogeneous and isotropic spacetime described by the Robertson-Walker metric,γij,

whose perturbations are given by the line element

ds2 = − (1 + 2Φ) dt2 + a2 (t) (1− 2Ψ) γijdx
idxj. (3.1)

From now on, we consider the choice of the Lagrangian density as Lm = −ρ,

which is the most suitable for describing bound systems as discussed in Ref. [29].

The other possible choice, Lm = p, is not very useful, since we assume a pressureless

Universe.1 Defining the potential velocity in terms of the components of the 4-

1In the context of theories with non-minimal coupling between matter and curvature, one breaks

the degeneracy on the Lagrangian density choice that existed in General Relativity [29]. We can
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Chapter 3. Perturbed Friedmann-Lemâıtre-Robertson-Walker model 6

velocity as ui = −∂iv and computing the first order perturbation in the components

δT i0 of the stress tensor for a matter dominated epoch, ρ ≈ ρm, we get [30]:

v̇ + Φ̇cv = Φ + δΦc, (3.3)

where Φc = ln (1 + f2). This expression can be rewritten in terms of the four-velocity

as

u̇i = −∇r(Φ + δΦc − vΦ̇c). (3.4)

We shall make the assumption that the flow velocity associated to the expansion

rate of the Universe is much smaller than the typical peculiar velocities of cosmic

structures. Then ui ≈ aẋi ≡ vm i . Under this condition, Eq. (3.4) can be expressed

in a more convenient form

∂

∂t
(avm) = −a∇r

(
Φ + δΦc − Φ̇cv

)
. (3.5)

The evolution of matter density perturbations is given in the Fourier space by [30]

˙δρm + 3Hδρm = 3Ψ̇ρm −
(
k2

a2

v

a

)
ρm, (3.6)

where H = ȧ/a is the expansion rate. In the configuration space, using the notation

σm ≡ δρm, only considering peculiar velocities and in the subhorizon approximation

(k/a > H) we can write

σ̇m + 3Hσm = −1

a
∇x · (ρm−→vm) . (3.7)

easily see that the non-conservation of the energy-momentum tensor, Eq. (2.7), strongly depends

on the Lagrangian density. For instance, for a pressureless Universe, p ' 0, such that ∇νp ' 0,

the extra force, Eq. (2.8], vanishes for Lm = p, whilst for the other possible, Lm = −ρ, gives

fµ = −∇ν (1 + f2 (R))hµν , (3.2)

which is, in general, different from zero.
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Finally, from the time component of the non-conservation of the energy-momentum

tensor, for a pressureless (w = 0) Universe with Lagrangian density L = −ρm, then2

ρ̇m + 3Hρm = 0. (3.9)

2The generalisation of the previous result is as follows [31]

ρ̇m + 3H (1 + w) ρm =
F2

1 + f2
(α− 1) ρmṘ, (3.8)

where α =

1 , L = −ρm

−w, L = p

so that the Lagrangian density has the form L = −αρm (see Ref. [29]

for a thorough discussion) and w = p/ρm is the equation of state parameter.



Chapter 4

The Layzer-Irvine equation

We are now able to derive the Layzer-Irvine equation. We start by contracting Eq.

(3.5) with a−→v mρmd
3r, for r = ax, and then integrating over the volume, we get:

∫
ρma
−→v m

∂

∂t
(a−→vm) d3r = −

∫
a2−→vmρm∇r

(
Φ + δΦc − Φ̇cv

)
d3r. (4.1)

Using Eq. (3.9), the left hand side of Eq. (4.1) can be expressed as ∂
∂t

(a2K),

where K ≡ 1/2
∫
ρmv

2
md

3r is the kinetic energy associated with the peculiar velocity.

In its turn, the right hand side can be evaluated performing an integration by

parts:

−
∫
a2−→vmρm∇r

(
Φ + δΦc − Φ̇cv

)
d3r =

= −
∫
∇r

(
a2−→vmρm

(
Φ + δΦc − Φ̇cv

)
d3r
)

+

∫ (
Φ + δΦc − Φ̇cv

)
∇r ·

(
a2−→vmρm

)
d3r

= −
∫ (

Φ + δΦc − Φ̇cv
)
a2 (σ̇m + 3Hσm) d3r.

(4.2)

In the last equality, the first integral corresponds to a total derivative, which

therefore vanishes. Moreover, we have resorted to Eq. (3.7).

Collecting the results, we get

∂K

∂t
+ 2HK = −

∫
(Φ + δΦc − Φ̇cv)

∂

∂t

(
σmd

3r
)
. (4.3)

We will require that each potential satisfies Poisson’s equation. We shall define

the autocorrelation function f (−→r ) of the matter density perturbation field, σm, as

8
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in Ref. [17] as

〈
σm(−→r , t)σm(

−→
r′ , t)

〉
=
〈
σ2
m

〉
f
(
|−→r −

−→
r′ |
)
. (4.4)

From which we can define some astrophysical and cosmological scales. We should

also note that 〈σm (−→r , t)〉 = 0. Additionally, we use that

∂

∂t

1

|r − r′|
= − H

|r − r′|
. (4.5)

Since we require that the potentials satisfy the Poisson’s equation, then any of

them can be expressed in terms of the matter density perturbation as

ϕ = −G
∫
σm(r′, t)

|r − r′|
d3r′. (4.6)

Bearing this in mind, the right hand side of Eq. (4.3) can be expressed as

−
∫
ϕ
∂

∂t
(σmd

3r) = G

∫
∂

∂t
(σmd

3r)

∫
σ′m
|r − r′|

d3r′

= G

∫
∂

∂t
(σ′md

3r′)

∫
σm
|r − r′|

d3r,

(4.7)

where σm ≡ σm(−→r , t) and σ′m ≡ σm(
−→
r′ , t). Now, recalling the result (4.5), the

expression (4.7) can be written as

G

∫
∂

∂t
(σ′md

3r′)

∫
σm
|r − r′|

d3r = −(U̇ϕ +HUϕ), (4.8)

where

Uϕ ≡ −
G

2

∫ ∫
σmσ

′
m

|r − r′|
d3rd3r′ =

1

2

∫
ϕ σmd

3r. (4.9)

Note that the non-minimal coupling effects on the gravitational coupling in the

case of clusters are negligible, so that the effective gravitational constant, as defined

in Ref. [30], obeys Geff ≈ G. Now we can write the Layzer-Irvine equation in the

form

∂

∂t
(K + UΦ + UδΦc−Φ̇cv

) +H(2K + UΦ + UδΦc−Φ̇cv
) = 0, (4.10)

which can be rearranged into a more convenient form:
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∂

∂t
(K + U + UNMC) +H(2K + U + UNMC) = 0, (4.11)

with U ≡ UΦ and

UNMC ≡ UδΦc−Φ̇cv
=

1

2

∫ (
δΦc − Φ̇cv

)
σmd

3r. (4.12)

We see that the non-minimal coupling between matter and geometry induces an

extra term in the standard generalised cosmic virial theorem, which can account

for the ”dark components” effects on several systems. For a relaxed astrophysical

system which no longer evolves in time, we get a generalised version of the virial

theorem for these gravitational theories:

2K + U + UNMC = 0. (4.13)

From this equation we can proceed to analyse clusters of galaxies and impose

some constraints on the non-minimal model. Clearly, any deviation from the usual

virial ratio K/U = −1/2 can be expressed in terms of the quotient:

UNMC

U
= −2

K

U
− 1. (4.14)



Chapter 5

The Abell 586 cluster

We consider now the well known relaxed cluster Abell 586, following up the proce-

dure developed in Refs. [19, 22]. We assume the obvious cases of the top-hat and

isothermal spheres density profiles. In order to test the sensitivity of the results,

we adopt tentatively the Navarro-Frenk-White (NFW) density profile [32], even

though this is known to be a profile obtained from N-body simulations for galax-

ies within the Cosmological Standard Model, ΛCDM (which assumes that dark

energy is parametrised by a cosmological constant, Λ, dark matter is taken to be

non-relativistic). The NFW model is, therefore, somewhat inacurate for clusters.

As we shall see, results for UNMC are dependent on the density profile choice, even

though not strongly so. It is relevant to bear in mind that the considered density is

exclusively baryonic.

5.1 Top-hat density profile

In this case, one assumes that the kinetic and potential energy densities are well

described by [19]

ρK '
9

8π

M

R3
σ2
v , (5.1)

ρW ' −
3

8π

GM2

〈R〉R3
, (5.2)

11



5.2. Navarro-Frenk-White density profile 12

where M e R are the total baryonic mass and radius of Abell 586, which include

galaxies and intra-cluster gas, σv is the velocity dispersion and 〈R〉 is the mean

intergalactic radius. Since the case we are studying has spherical symmetry, the

total volume is simply V = 4πR3/3, and the ratio between total peculiar kinetic

and potential energies is the same as the ratio of the energy densities, thus:

K

U
≡ ρK
ρW

= −3
σ2
v 〈R〉
GM

. (5.3)

5.2 Navarro-Frenk-White density profile

The Navarro-Frenk-White model is very useful in realistic N-body simulations within

the ΛCDM paradigm. It is characterised by the energy density [32]:

ρ(r) =
ρ0

r
r0

(
1 + r

r0

)2 , (5.4)

where r is the distance from the centre, ρ0 and r0 are the density and shape param-

eters, respectively. As described in Ref. [22], the total mass and mean radius can be

calculated by integrating Eq. (5.4) over the volume:

M = 4π

∫ R

0

ρ(r)r2dr = 4πr3
0ρ0

[
ln

(
1 +

R

r0

)
− R

R + r0

]
, (5.5)

〈R〉 = r0

[
R
r0
− 2 ln

(
1 + R

r0

)
+ R

R+r0

]
[
ln
(

1 + R
r0

)
− R

R+r0

] . (5.6)

We point out that r0 can be numerically calculated from the mean radius, 〈R〉.

Thus, the density parameter, ρ0, is immediatly solved numerically. From these

quantities we can now estimate the kinetic and potential energy densities assuming

a constant average velocity, σv [22] :

ρK =
9

8π

M

R3
σ2
v , (5.7)
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ρW = − 3GM2

4πR3r0

[(
1 + R

r0

) [
1
2

(
1 + R

r0

)
− ln

(
1 + R

r0

)]
− 1

2

]
[(

1 + R
r0

)
ln
(

1 + R
r0

)
− R

r0

]2 . (5.8)

Thus, we can compute the virial ratio as:

K

U
≡ ρK
ρW

= −3

2

σ2
vr0

GM

[(
1 + R

r0

)
ln
(

1 + R
r0

)
− R

r0

]2[(
1 + R

r0

) [
1
2

(
1 + R

r0

)
− ln

(
1 + R

r0

)]
− 1

2

] . (5.9)

5.3 Isothermal spheres density profile

Another useful density profile is the isothermal spheres density profile, given by

ρ (r) =
ρ0(
r
r0

)2 . (5.10)

Since there is no characteristic scale in this case, we set the fiducial parameters,

r0 and M0 = 4πρ0r
3
0/3, as the total mass and radius of the halo. Therefore, the

mass and the mean radius are [22]:

M = 4π

∫ R

0

ρ0r
2(

r
r0

)2dr = M0
R

r0

, (5.11)

〈R〉 =
R

2
. (5.12)

With these quantities, we can now get the expressions for the peculiar kinetic

and potential energy densities, assuming constant average velocity dispersion [22]

ρK =
9

8π

M

R3
σ2
v , (5.13)

ρW = −3GM2

4πR4
. (5.14)

The virial ratio can be then straightforwardly obtained

K

U
≡ ρK
ρW

= −3

2

σ2
vR

GM
. (5.15)
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Method σv(km/s)

X-ray Luminosity 1015± 500

X-ray Temperature 1174± 130

Weak Lensing 1243± 58

Velocity distribution 1161± 196

Table 5.1: Velocity dispersion data from different observational methods of Abell

586 as given by Ref. [28].

5.4 Analysis

For the analysis of Abell 586 we use data from Ref. [28], namely:

• total baryonic mass is given by Mbar = Mgas (1 + 0.16 h0.5
70 ), where Mgas =

0.48 × 1014 M� is the intracluster gas mass, and h70 = H0/70 is the reduced

Hubble parameter at present time;

• radius, R = 422 kpc;

• velocity dispersion obtained from different methods as shown in Table 5.1.

From the 31 galaxies of A586, we can compute the averaged distance from a

galaxy i with equatorial coordinates (αi, δi) to the centre of the cluster (αc, δc)

throughout the formula [22]

r2
i = 2d2[1− cos(αi − αc)cos(δc)cos(δi)− sin(δc)sin(δi)]. (5.16)

where d is the radial distance from the centre of the cluster to Earth.

From these distances, we get

〈R〉 = 223.6 kpc. (5.17)

Furthermore, the errors are computed through the propagation uncertainties

formula for f (xi) =
∏

i x
ni
i ,

∆f = |f |

√√√√∑
i

(
ni∆xi
xi

)2

, (5.18)
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UNMC / U Top-hat NFW Isothermal

X-ray Luminosity 4.8± 5.7 5.3± 6.2 4.5± 5.4

X-ray Temperature 6.7± 1.8 7.4± 2.0 6.3± 1.7

Weak Lensing 7.7± 1.1 8.5± 1.2 7.2± 1.0

Velocity distribution 6.6± 2.6 7.3± 2.9 6.1± 2.5

Table 5.2: NMC constraints for different density profiles in terms of various obser-

vational methods.

where the ∆ symbol denotes the standard deviation for each measurable quantity.

With the density profiles described above, we can now compute the ratio UNMC/U

and detect the deviations from the standard virial ratio K/U = −1/2. In Table 5.2

we exhibit several values for the mentioned ratio according to different density pro-

files and observational sources. As in Ref. [22], the non-minimal ratio, and the

ensued virial ratio, yields higher values for weak lensing velocity dispersion. This

observational method is not the most reliable one since it introduces correlation

between estimated of mass and velocity, as pointed out in Ref. [22]. In our case, we

want to identify deviations from the baryonic virial ratio and interpret them as an

effect from the non-minimal coupling between curvature and matter.

Keeping in mind Eqs. (4.9) and (4.11), we can express the non-minimal potential

in terms of the function f2(R) of Eq. (2.3) as

UNMC =
1

2

∫
d3rσm

(
F2

1 + f2

)[
δR c2 − Ṙv

]
. (5.19)

The scalar curvature can be computed by performing the trace of Eq. (2.4),

assuming a general power law coupling function f2 (R) = (R/Rn)n, yielding [33,34]:

R =
1

2κ

[
1 + (1− 2n)

(
R

Rn

)n]
ρ− 3n

κ
�

[(
R

Rn

)n
ρ

R

]
. (5.20)

Considering the weak coupling regime, (R/Rn)n � 1, the above expression sim-

plifies to

R ≈ ρ

2κ
, (5.21)
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v0 (kpc2s−1) Top-hat NFW Isothermal

X-ray Luminosity −2.377× 1016 −1.581× 1016 −1.095× 1015

X-ray Temperature −3.347× 1016 −2.216× 1016 −1.548× 1015

Weak Lensing −3.812× 1016 −2.520× 1016 −1.765× 1015

Velocity distribution −3.263× 1016 −2.160× 1016 −1.509× 1015

Table 5.3: NMC constraints on the parameter v0 for different density profiles in

terms of the various observational methods.

which is consistent with the assumption of the subhorizon approximation, where

R ∼ H2. The Ricci scalar fluctuation is then δR ≈ δρ/2κ, whilst the time derivative,

Ṙ, can be calculated using Eq. (3.9), yielding Ṙ ≈ ρ̇/2κ ≈ −3Hρ/2κ.

Hence, under these conditions, the non-minimal coupling can be expressed as

UNMC =
1

2

∫
d3rσm

n

ρ

(
ρ

2κRn

)n [
σm c

2 + 3Hρv
]
. (5.22)

For each different density profile, we have an estimate for the value of the non-

minimal coupling potential energy. Additionally, from Ref. [14] the best fit value

of the index n for Abell 586 is n = 0.43. Thus, it results that R0.43 ≡ 1/
√
r0.43 ≈

5.69 × 10−8 m−1/2, since the characteristic lenght for A586 is r0.43 ∼ 0.01 pc [14].

From here, we are able to estimate the velocity potential of the cluster.

Since the cluster is already virialised, we shall assume that each constituent

galaxy has the same peculiar velocity, 〈vm〉 = vm. And from the previous definition

and the isotropy and spherical symmetry of the cluster, it follows that

vm = −∂rv =⇒ v = −σvr + v0, (5.23)

where v0 is the velocity potential at r = 0. From this expression, and for each

value of velocity dispersion given by the various observational methods and for each

density profile we obtain a well defined value for v0. The results are shown in Table

5.3. Clearly, the value v0 depends on the choice of the density profile. We note that

this quantity is merely an integration constant, which has no particular physical

meaning.
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Another interesting issue to analyse is the f2 (R) behaviour for A586 cluster in

terms of the distance r from the cluster’s centre. This coupling function can be

written as:

f2 (R) = f2 (r) =

(
ρ (r)

2κR0.43

)0.43

, (5.24)

where ρ (r) is the density profile. In Fig. 5.1, we show the plot of the function f2 in

terms of r.

Figure 5.1: Function f2 (r) for the cluster A586, in terms of the discussed density

profiles.

We notice that the isothermal spheres and the Navarro-Frenk-White density

profiles are singular at the cluster’s centre, r = 0, which results in a much stronger

coupling in this region, whilst the top-hat profile exhibits a constant effect of the

matter-curvature coupling all over the cluster’s size.
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Conclusions

In this work, the Layzer-Irvine equation has been derived in the context of alterna-

tive gravitational theories with non-minimal coupling between curvature and matter.

These theories have some distinctive signatures, namely the non-conservation of the

energy-momentum tensor and the deviation from the geodesic motion due to an

extra force term.

The Layzer-Irvine equation allow us to study bound systems and can be derived

from General Relativity. Nevertheless, in order to match the observations, one must

admit the existence of dark matter. Thus, the goal of this work was to match the

observations with only baryonic matter and a coupling between the matter and

curvature.

To do so, it was considered a pressureless matter dominated Universe and the

power-law function, f2 (R) = (R/Rn)n, with n = 0.43 [14], in the sub-horizon ap-

proximation k2 � a2H2. Since the NMC theories break the Lagrangian density

degeneracy, it was adopted the choice L = −ρ [29].

It was found that in these theories, as far as the generalised cosmic virial theorem

is concerned, an extra potential energy term appears as a result of the non-minimal

coupling.

Applying that equation to the spherically symmetric and relaxed cluster A586,

the virial ratio was computed for the observed baryonic matter, finding that the extra

potential energy arising from the non-minimal coupling is crucial. Indeed, using the

velocity dispersion values obtained from various observational methods and three

18
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different density profiles (top-hat, Navarro-Frenk-White, and isothermal spheres),

the ratio between the non-minimal coupling potential energy and the baryonic energy

potential, UNMC/U , is of the order of ∼ 7. One can also conclude from the values

in Table 5.2 that the velocity dispersion value from X-ray luminosity is not very

reliable, as discussed before in Ref. [22].

Since the new potential energy term can be expressed in terms of the non-minimal

coupling and the velocity potential, the latter was estimated assuming that it is a lin-

ear function of the distance from the cluster’s centre. This assumption is consistent

with the fact that the A586 cluster has already virialised and reached hydrostatic

equilibrium, since it has not undergone any merging process within the last Gyrs.

Finally, it was also analysed the f2 (R) function over the distance from the clus-

ter’s centre for the different density profiles used in this work. From the summarised

plot, one concludes that for singular density profiles at r = 0, as the NFW and the

isothermal spheres profiles, the coupling function is naturally stronger. Whilst for

the top-hat, one find a constant function over the distance.
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[7] O. Bertolami, C. G. Böhmer, T. Harko and F. S. N. Lobo, Phys. Rev. D 75,

104016 (2007).

[8] L. Amendola and D. Tocchini-Valentini, Phys. Rev. D 64, 043509 (2001).

[9] G. Allemandi, A. Borowiec, M. Francaviglia and S. D. Odintsov, Phys. Rev.

D 72, 063505 (2005).
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sano, Astrophys. J. 630 38-49 (2005).

[29] O. Bertolami, F. S. N. Lobo and J. Páramos, Phys. Rev. D 78, 064036 (2008).
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[33] O. Bertolami and J. Páramos, J. Phys. Conf. Ser. 222, 012010 (2010).
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