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Abstract

Nowadays, social networks are everywhere: through online social media, e-mail, text mes-

sages, phone call interactions and even through GPS and Bluetooth sensors which map the

people's location and/or proximity, thus unveiling their social context.

Mining this type of networks has become more challenging as the amount of network data

being generated is huge. Not only we are dealing with large-scale relational data but we are

also dealing with time-evolving data. Therefore, we need tools to e�ciently and accurately

manage the complexity of time-evolving social networks.

In this context, and since time-evolving networks may be regarded as multi-dimensional data

structures, the emerging of new and scalable tensor decomposition algorithms arises as a

promising tool for the analysis of such networks evolution. While there has been research

on matrix decomposition-based approaches, its higher-order (tensor) representation has been

few explored. Based on this, the goal of this thesis is to approach the problem of the analysis

of time-evolving social networks using tensor decomposition.

This thesis starts with a review on literature of both tensor decomposition and social network

analysis approaches. In particular, we present the �rst comprehensive overview of tensor

decomposition methods for the analysis of time-evolving social networks.

Then, we target structural summarisation, which, to the best of our knowledge, has not

been exploited through tensor decomposition before. Our summarisation approach uses the

tensor network representation to generate a new (smaller) graph describing the interactions

occurring at a given time window.

We follow up by proposing a new perspective regarding the application of tensor decompo-

sition to event detection. Our approach allows the discovery of events at both global and

local scales. Besides this, its main novelty arises from combining a sliding window processing

with statistical tools thus making the method more robust to changes in the dynamics of the

networks.

We proceed by introducing a tool which allows the �nding of meaningful network patterns,

extracted from the tensor decomposition result. Moreover, we demonstrate the value of the

patterns found regarding the discovery of communities.
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Finally, we expose a problem which has been neglected in literature: the parameter setting

problem of tensor decomposition-based in link predictors. We not only provide evidence of

the inadequacy of the existing approaches but we also propose a new strategy to tackle the

problem.

We hope that the study carried out in this thesis may trigger further developments on both

social network analysis and tensor decomposition �elds.

Keywords: tensor decomposition, social network analysis, time-evolving networks, link

prediction, anomaly detection, network summarisation.
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Resumo

As redes sociais estão fortemente presentes no mundo atual surgindo não só nos online

social media como também noutro tipo de interações, nomeadamente, o envio de e-mails

e mensagens de texto, a realização de chamadas telefónicas e até mesmo através de sensores

GPS e Bluetooth que mapeiam a localização e/ou proximidade das pessoas, revelando assim

o seu contexto social.

Analisar este tipo de redes é uma tarefa difícil devido à grande quantidade de dados que é

gerada. Além de serem relacionais e de grande escala, estes dados evoluem ao longo do tempo,

o que torna o seu estudo ainda mais desa�ante. Por conseguinte, são necessárias ferramentas

para gerir de forma e�ciente e precisa a complexidade das redes sociais que evoluem ao longo

do tempo.

Neste contexto, e como as redes sociais que evoluem ao longo do tempo podem ser consider-

adas estruturas de dados multidimensionais, o aparecimento de novos algoritmos escaláveis de

decomposição de tensores surge como uma ferramenta promissora para a análise da evolução

de tais redes. Embora as abordagens baseadas na decomposição de matrizes tenham sido

bastante exploradas, o estudo da sua representação de ordem superior (os tensores) é ainda

escasso. Assim, o objetivo desta tese é abordar o problema da análise de redes sociais que

evoluem ao longo do tempo usando decomposição de tensores.

Esta tese começa com uma revisão da literatura incidente nas abordagens de decomposição de

tensores e análise de redes sociais. Em particular, é apresentada a primeira revisão completa

em métodos de decomposição de tensores para a análise de redes sociais que evoluem ao longo

do tempo.

Focando na sumarização estrutural de redes que, tanto quanto sabemos, ainda não foi explo-

rada através de decomposição de tensores, é proposta uma nova abordagem de sumarização.

Essa abordagem usa a representação tensorial da rede para gerar um grafo novo (e mais

pequeno) que descreve as interações que ocorrem numa determinada janela temporal.

Uma nova perspetiva para a aplicação de decomposição de tensores na deteção de eventos

é também proposta. A nova abordagem permite a descoberta de eventos a uma escala

global e local sendo que a sua maior inovação advém da combinação do processamento da
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rede usando uma janela deslizante com ferramentas estatísticas que tornam o método mais

robusto a alterações na dinâmica das redes.

É ainda introduzida uma ferramenta que permite a descoberta de padrões relevantes nas re-

des, extraídos do resultado da decomposição de tensores. Além disso, é também demonstrado

o valor dos padrões encontrados no que diz respeito à descoberta de comunidades.

Esta tese termina expondo um problema que tem sido negligenciado na literatura: o problema

de con�guração dos parâmetros em previsores de conexões/arestas baseados em decomposição

de tensores. Não só é fornecida evidência da inadequação das abordagens existentes como é

também proposta uma nova estratégia para o problema.

Com o estudo realizado nesta tese esperamos contribuir para desencadear desenvolvimentos

futuros nas áreas de análise de redes sociais e de decomposição de tensores.

Palavras-chave: decomposição de tensores, análise de redes sociais, redes que evoluem ao

longo do tempo, previsão de conexões, deteção de anomalias, summarização de redes.
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Chapter 1

Introduction

Nowadays, networks are established as a rich source of information since they may provide

not only attributes on the entities but also the relations between them and their nature.

For example, when modelling the scienti�c research community we may have di�erent types

of nodes (authors, papers, keywords, . . . ) and the relations between the nodes may be of

di�erent types, namely �author a and author b are co-authors�, �author a is author of paper

x�, �paper x cites paper y� and �paper x has keyword α�. While this scenario is complex

enough, it can get even more complex if we consider the time-evolution of the network. Such

additional (time) dimension is relevant because it allows the capturing of dynamics which

would otherwise remain undetectable. For example, in the scienti�c research community an

author a, working on recommender systems, may start to be interested in another �eld so

that its publications become mainly on the new interest topic. Thus, if we model the network

without considering the time evolution, the resulting network will be in some way misleading

as it will seem that author a always worked on both topics.

Among time-evolving networks, we can �nd time-evolving social networks which, as the

name suggests, are characterized by a social behaviour of its participants. Mining this type

of networks de�nes the scope of evolving social network analysis. It involves di�erent tasks

which range from �nding communities to spotting unexpected behaviours and predicting the

connections that will occur in the future.

Accurate but e�cient tools are required to mine evolving social networks. Therefore, the

goal of this thesis is to exploit the potential of tensor decomposition for the analysis of time-

evolving social networks. In this chapter we contextualize the thesis work by providing its

motivation, objectives and contributions.
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1.1 Motivation

As previously exposed, dealing with social networks networks became more challenging as

these networks usually encompass a large number of nodes (which may have attributes) and

whose behaviour may change over time. Therefore, the traditional methods and metrics

designed to deal with static and small-scale social networks are no longer suitable to deal

with these networks.

Currently, one can already �nd works taking into account the time evolution of the networks.

Among those, one of the strategies employed consists of resorting to tensor decomposition

to capture the dynamics of the networks and then applying such knowledge to tasks such as

community detection or link prediction.

Why should we consider tensor decomposition for the analysis of time-evolving

networks? Time-evolving networks may be regarded as multi-dimensional data. In the

simplest scenario, the network at instant t is represented by a two-dimensional data structure

(such as an adjacency matrix) so that the time evolution is represented by a sequence of

adjacency matrices (thus, forming a three-dimensional data structure).

While high-dimensional data structures can be rearranged into lower-dimensional objects in

several ways, for example, a matrix may be re-arranged into a vector, such dimensionality

reduction leads to information loss. Therefore, modelling a time-evolving network using, for

example a matrix resulting from concatenating the adjacency matrices of the network over

all timestamps, does not capture the temporal relation between the adjacency matrices being

concatenated.

In this context, using a data structure with (at least) three dimensions seems to be the

natural way to explicitly capture the relations across the multiple dimensions in time-evolving

networks. Such modelling is achieved by considering tensors, the generalisation of matrices

to higher dimensions.

Similarly to matrices, there are tensor decomposition methods which provide a new repre-

sentation of the tensor data. This representation has been used in a wide range of appli-

cations, namely recommender systems [140], anomaly detection [52] and medical diagnosis

[2]. Recently, one can also �nd works speci�cally targeting social network analysis via tensor

decomposition. In this thesis we focus on such methods. Our aim is to study and explore

new applications of tensor decomposition in this �eld and to introduce improvements over

the existing tensor decomposition approaches.
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1.2 Objectives

From a general point of view, the goal of this thesis is to contribute to the research on the

tensor decomposition applications to time-evolving social networks which, despite the devel-

opments found so far, stills few explored. Therefore, with this work we are interested in (i)

exploiting the application of tensor decomposition to tasks in which it has not been considered

yet and (ii) tackling the issues of the existing tensor decomposition-based approaches.

Based on this, in chapter 2, we provide a complete overview on tensor decomposition and

social network analysis, highlighting the major open challenges. In particular, we start by

providing the theoretical background regarding tensor decomposition and social networks.

Then, we review the works on each of the social network analysis tasks. We recall that, despite

our focus being on time-evolving scenarios, some works that deal with time evolution are

based on previous approaches (designed for static scenarios). Therefore, we �nd it important

to also cover literature on static networks in order to provide a complete overview. Finally,

within each task, we pay special attention to the methods using tensor decomposition and

their limitations.

In the remaining of the work, we tackle some of the issues found in the literature (outlined

in chapter 2). First, we investigate the application of tensor decomposition for structural

summarisation purposes. Then we target event detection. In particular, we are interested in

�nding a method which is able to detect events even if the communication patterns strongly

vary over time. Finally, we study a similar problem in di�erent contexts: when applying

tensor decomposition, there is a parameter, similar to the number of components to use

in principal component analysis [158], whose estimation is not straightforward. While, it

may be argued that the problem of estimating this parameter does not fall within the scope

of the application of tensor decomposition to social network analysis, we demonstrate that

such estimation should take into account the target application and, consequently we study

strategies to tackle this problem in the contexts of exploratory analysis and link prediction.

1.3 Contributions

The main contributions are summarised as follows:

• We present a review of the literature on social network analysis, covering works on both

static and dynamic networks.

• We develop a summarisation method for time-evolving social networks that resorts to

tensor decomposition in order to capture the dynamics in the communication patterns.

• We introduce an event detection method which (i) allows the discovery of events that

3



occur at local and global levels and (ii) is robust to changes in the network dynamics

because it processes the network using a sliding window.

• We expose a problem that has been neglected in literature: the state-of-the-art methods

for estimating the number of components to use in tensor decomposition are not

appropriate in some of the social network analysis tasks. Therefore, we not only provide

evidence that supports such inadequacy but we also propose new strategies to approach

the problem. In this context, we have two related (sub)contributions:

� We propose a strategy to estimate the number of components in time-evolving

networks so that the communication patterns found are relevant and unique.

� We propose a method to drive the search for the best parameter values in tensor

decomposition-based link predictors (including the number of components).

1.4 Publications

The work carried out within the scope of this thesis lead to the following publications and

submissions:

• So�a Fernandes, Hadi Fanaee-T. and João Gama. The Initialization and Parameter

Setting Problem in Tensor Decomposition-Based Link Prediction. In: 2017 IEEE

International Conference on Data Science and Advanced Analytics (DSAA), 2017, pages

99-108.

• Shazia Tabassum, Fabiola S. F. Pereira, So�a Fernandes and João Gama. Social

network analysis: An overview. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2018, 8(5):e1256

• So�a Fernandes, Hadi Fanaee-T. and João Gama. Dynamic graph summarisation: a

tensor decomposition approach. Data Mining and Knowledge Discovery 2018, 32.5:1397-

1420

• So�a Fernandes, Hadi Fanaee-T. and João Gama. Evolving social networks analysis

via tensor decompositions: from global event detection towards local pattern discovery

and speci�cation. In International Conference on Discovery Science (DS), 2019, pages

385-395

• So�a Fernandes, Hadi Fanaee-T. and João Gama. Tensor decomposition for analysing

time-evolving social networks: an overview (under review in an international journal)

• So�a Fernandes, Hadi Fanaee-T. and João Gama. NORMO: a new method for esti-

mating the number of components in CP tensor decomposition (under review in an

international journal)
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Figure 1.1: Thesis organization.

1.5 Thesis Structure

This thesis is organized in seven chapters. The overall organization of this thesis is outlined

in �gure 1.1. An overview on the tasks addressed is presented in table 1.1.

In chapter 2, we cover the theoretical background as well as the literature related with

the topic of this work. In chapter 3, we present tenClustS, our method for the structural

summarisation of time-evolving networks. In chapter 4, we introduce our method for event

detection. In chapter 5, we propose NORMO, a tool to help in �nding the tensor decom-

position output that provides the most meaningful communication patterns. In chapter

6, we propose a new approach to �nd the best tensor representation (along with the best

forecasting parameters) to consider in link prediction tasks. Finally, in chapter 7, we conclude

our thesis. In particular, we summarise the main contributions, we analyse the work from a

holistic perspective and present possible future research directions.
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Table 1.1: Overview on the tasks considered in this thesis.

Chapter SNA task Network type Processing strategy
3 Summarisation undirected unweighted sliding window
4 Event Detection weighted directed sliding window

unweighted undirected
5 Pattern Discovery unweighted undirected -

unweighted directed
weighted directed

6 Link Prediction unweighted directed landmark window

1.6 Experimental Setting Note

All the experiments of this thesis were carried out using MATLAB along with tensor toolboxes

[17, 11] and the sparse computation tools [16] which allowed us the e�cient processing of the

networks. It is noteworthy that there were other software tools available namely the library

rTensor in R and scikit-tensor in Python, however, MATLAB (i) is the standard as most

of the research on the topic used it and (ii) has e�cient and scalable implementations (on

the contrary to R, for example). The machine used had 2.7GHz processor and 12GB RAM.

A brief description of the real-world networks considered in this thesis is presented in 1.2.

Throughout this work, a dataset called �datasetx� is denoted as datasetx. In particular, the

following publicly available datasets were considered:

• e-mail networks (enron and manufactoring) modeling the e-mails exchanged between

people over time so that an edge represents the exchanging of at least an e-mail between

the corresponding people at that instant;

• phone call networks (friends, reality_call and social) modeling the calls made

between a set of people over time;

• co-authorship networks (dblp) modeling co-authorship relations between authors of

scienti�c papers;

• proximity networks (infectious and reality_blue) which model proximity between

people. In particular, there is an edge between two people if they have a similar/close

location;

• citation networks (hepth) in which there is a link from a scienti�c paper to another

paper if the �rst paper cites the second;

• assets correlation networks (stockmarket) modeling the correlations in the stock mar-

ket over time;

6



T
ab
le
1.
2:

D
es
cr
ip
ti
on

of
th
e
re
al
-w
or
ld

ne
tw
or
ks

co
ns
id
er
d
in

th
is
th
es
is
.

N
et
w
or
ks

D
es
cr
ip
ti
on

N
od
es

E
dg
es

T
im

e
sp
an

T
im

e
C
ha
pt
er
s

e
n
r
o
n
[1
23
]

e-
m
ai
ls
ex
ch
an
ge
d
b
et
w
ee
n
em

pl
oy
ee
s

E
m
pl
oy
ee
s

E
-m

ai
ls

2,
5
ye
ar
s

M
ay

19
99

to
3,
4,
5,
6

of
E
nr
on

co
m
pa
ny

D
ec
em

b
er

20
02

f
r
i
e
n
d
s
[5
]

P
ho
ne

ca
lls

b
et
w
ee
n
U
ni
ve
rs
it
y
a�

lia
te
s,

St
ud

en
ts

P
ho
ne

ca
lls

18
m
on
th
s

M
ar
ch

20
10

to
3,
5,
6

fr
ie
nd

s
an
d
fa
m
ily

A
ug
us
t
20
02

d
b
l
p
[4
3]

Sc
ie
nt
i�
c
ar
ti
cl
es

co
-a
ut
ho
rs
hi
p
in

db
lp

A
ut
ho
rs

in
D
B
L
P

C
o-
au
th
or
sh
ip

21
ye
ar
s

19
90

to
20
10

3,
5

i
n
f
e
c
t
i
o
u
s
[7
2]

C
on
ta
ct
s
b
et
w
ee
n
vi
si
to
rs

of
Sc
ie
nc
e

A
rt

ga
lle
ry

vi
si
to
rs

Fa
ce
-t
o-
fa
ce

co
nt
ac
ts

3
m
on
th
s

A
pr
il
20
09

3
G
al
le
ry

in
Ir
el
an
d

to
Ju
ly

20
09

h
e
p
t
h
[9
0]

C
it
at
io
ns

b
et
w
ee
n
hi
gh

en
er
gy

ph
ys
ic
s

Sc
ie
nt
i�
c
ar
ti
cl
es

C
it
at
io
ns

12
4
m
on
th
s

Ja
nu
ar
y
19
93

3
ar
ti
cl
es

in
A
rX

iv
to

A
pr
il
20
03

s
t
o
c
k
m
a
r
k
e
t
[4
0]

St
oc
k
m
ar
ke
t
co
rr
el
at
io
ns

St
oc
ks

C
ro
ss
-c
or
re
la
ti
on

21
ye
ar
s

Ja
nu
ar
y
19
97

to
4

D
ec
em

b
er

20
17

m
a
n
u
f
a
c
t
o
r
i
n
g
[1
04
]

E
-m

ai
ls
ex
ch
an
ge
d
b
et
w
ee
n
em

pl
oy
ee
s

E
m
pl
oy
ee
s

E
-m

ai
ls

9
m
on
th
s

Ja
nu
ar
y
20
10

to
4

of
a
m
an
uf
ac
tu
ri
ng

co
m
pa
ny

in
P
ol
an
d

Se
pt
em

b
er

20
10

r
e
a
l
i
t
y
_
c
a
l
l
[4
8]

P
ho
ne

ca
lls

b
et
w
ee
n
M
IT

M
ed
ia

L
ab

m
em

b
er
s

P
ho
ne

ca
lls

11
m
on
th
s

A
ug
us
t
20
04

5,
6

L
ab
or
at
or
y
m
em

b
er
s

to
Ju
ne

20
05

r
e
a
l
i
t
y
_
b
l
u
e
[4
8]

B
lu
et
ho
ot
h
pr
ox
im

it
y
b
et
w
ee
n
M
IT

L
ab

m
em

b
er
s

P
ro
xi
m
it
y

11
m
on
th
s

A
ug
us
t
20
04

4
M
ed
ia

L
ab
or
at
or
y
m
em

b
er
s

to
Ju
ne

20
06

c
h
a
l
l
e
n
g
e
n
e
t
[1
25
]

C
om

pu
te
r
co
m
m
un

ic
at
io
n
ne
tw
or
k

H
os
ts

H
os
t
to

ho
st

21
7
ho
ur
s

4,
5

in
te
ra
ct
io
ns

s
o
c
i
a
l
[1
00
]

P
ho
ne

ca
lls

b
et
w
ee
n
st
ud

en
ts

in
fr
om

St
ud

en
ts

P
ho
ne

ca
lls

10
m
on
th
s

Se
pt
em

b
er

20
08

6
an

un
iv
er
si
ty

re
si
de
nc
e
ha
ll

to
Ju
ne

20
10

7



• computer interactions network (challengenet) modeling interactions between hosts in

the cyber space.

It is noteworthy that friends, reality_call, reality_blue and social networks were

derived from phone call and bluetooth logs, extracted from data available in the corresponding

study.

All networks were pre-processed according to the target task. The pre-processing involved

setting the time granularity, the directionality of the edges (either directed or undirected)

as well as their weights (either unweighted or weighted) and weight scaling strategies. The

details on the pre-processing stage are provided in the corresponding chapter the networks

are used.

Finally, the source code is being made available at https://github.com/ssfernandes.
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Chapter 2

Literature Review

Since this thesis focus on the application of tensor decomposition to time-evolving networks,

an overview on both topics is covered in this chapter. In particular, we start by introducing

tensors and their decomposition techniques. Then we introduce the concepts related to social

networks and present the tensor decomposition-based approaches for social network analysis.

2.1 Tensor Decomposition

Matrix decomposition is a mathematical tool which is known to have a wide range of appli-

cations: data mining tasks such as clustering [159], image processing (namely in background

removal [73] and face expression recognition [30]) and recommender systems [147]. However,

in some scenarios, data has multiple dimensions as it occurs in spatio-temporal sensor data.

Thus, in such cases, applying tensor decomposition, which generalizes matrix decomposition

techniques to higher dimensions, may provide more insightful results. The goal of this

section is to provide the background needed to understand tensor decomposition methods.

Additional linear algebra background can be found in appendix A.

2.1.1 Basic Concepts

Tensors are multi-dimensional structures which generalize matrices. Formally, a M -order

tensor is an array X ∈ RN1×N2×...×NM where, by following to the notation in [145], Ni is

referred to as the dimensionality of mode i and j ∈ {1, . . . , Ni} as dimension. 1-order and

2-order tensors are, respectively, vectors and matrices. An example of a 3-order tensor is

shown in Figure 2.1.
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Figure 2.1: Example of a 3-order tensor of size 5× 4× 3.

2.1.1.1 Slice

Given a M -order tensor X , a slice of X is a 2-order tensor obtained from the original tensor

by �xing the dimensions in all but two modes. In other words, a slice is a restriction of the

tensor to speci�c dimensions of some modes. Considering the example of Figure 2.1, by �xing

dimension 1 in mode 3, we obtain a slice in R5×4 which corresponds to the frontal rectangle

in the illustration.

2.1.1.2 Matricisation

As the name suggests, matricisation consists of rearranging a tensor into a matrix. Formally,

given a tensor X ∈ RN1×N2×...×NM , the mode-d matricisation of X , with 1 ≤ d ≤ M , is

the matrix whose columns are RNd vectors obtained by �xing the dth mode indexes and

varying the indexes of the other modes. The result, which is in RNd×(
∏

i 6=dNi), is denoted as

X(d) = unfold(X , d). The inverse operation of matricising, in which a tensor is constructed

from the matrix, is referred to as folding: X = fold(X(d)). An example of mode-d matricising

is illustrated in Figure 2.2.

2.1.1.3 Mode-product

Given a matrix U ∈ RR×Nd and a tensor X ∈ RN1×N2×...×NM , the mode-d product of X with

U, which is denoted as X ×d U, is a tensor in
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Figure 2.2: Mode-1 matricisation of tensor in Figure 2.1.

X ∈ RN1×...×Nd−1×R×Nd+1×...×NM where:

[X ×d U] (i1, . . . , id−1, j, id+1, . . . , iM ) =

Nd∑
id=1

X (i1, . . . , id−1, id, id+1, . . . , iM )U(j, id) (2.1)

This operation is performed by �rst matricising the tensor (in mode-d), then multiplying

matrix U by the matricisation and �nally folding the resultant matrix. An illustration of

this process is presented in Figure 2.3. Formally,

X ×d U = fold(U× unfold(X , d)) = fold(UX(d)) . (2.2)

More properties of this operator can be found at appendix B.

Given a sequence of matrices Ui|Mi=1 ∈ RRi×Ni , the mode product de�ned by X ×1 U
1 ×2

. . .×MUM may be rewritten as X
∏M
i=1×iUi in order to simplify the notation. Analogously,

X ×1 U
1 ×2 . . .×d−1 Ud−1 ×d+1 U

d+1 ×d+2 . . .×M UM may be written as X
∏
i 6=d×iUi.

2.1.1.4 Inner Product

Similarly to matricisation, the vectorization of a tensor consists of �attening the tensor, so

that, given a tensor X ∈ RN1×N2×...×NM , the vectorization of X , vec(X ), is a vector in

R
∏M

i=1Ni .

Given tensors X ,Y ∈ RN1×N2×...×NM , the inner product operation is de�ned as:

〈X ,Y〉 = vec(X )Tvec(Y) =

N1∑
i1=1

. . .

NM∑
iM=1

X (i1, . . . , iM )Y(i1, . . . , iM ) .
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Figure 2.3: Mode-1 product computation steps.

In this context, the Frobenius norm of tensor X is given by

||X ||F =
√
〈X ,X〉 =

√√√√ N1∑
i1=1

. . .

NM∑
iM=1

[X (i1, . . . , iM )]2 .

2.1.1.5 Remark

In order to simplify the notation and, since we deal only with three order tensors in this work,

we consider three-order tensors in the rest of this chapter to present tensor decomposition.

Nonetheless, the methods are generalizable to higher order tensors.

2.1.2 Tucker Decomposition

Being one of the �rst decomposition techniques developed [68, 152], Tucker decomposition

consists of decomposing a tensor into a smaller core tensor and three factor matrices (one for

each mode).

12



In more detail, given a tensor X ∈ RN1×N2×N3 and the core tensor sizes {R1, R2, R3}, then the
core tensor Y ∈ RR1×R2×R3 and the factor matrices A ∈ RN1×R1 ,B ∈ RN2×R2 ,C ∈ RN3×R3

are computed such that the reconstruction error (given as follows) is minimized:

||X − Y ×1 A×2 B×3 C|| (2.3)

so that we approximate the tensor as:

X ≈ Y ×1 A×2 B×3 C . (2.4)

The decomposition result is illustrated in �gure 2.4.

Figure 2.4: Illustration of the output of the Tucker decomposition of a three order tensor.

It should be noted that the decomposition result depends on the values of R1, R2, R3. One

of the most popular methods to estimate such values is DIFFerence in Fit (DIFFIT) [149,

82], whose goal is to �nd a trade-o� between model complexity and approximation quality.

In particular, a model is generated for each possible R1, R2, R3 value combination and its

approximation quality is measured based on the �tting rate:

fit% =

(
1− ||X − X̂ ||

||X ||

)
× 100 .

Between the models with the same complexity, which is given by R1 + R2 + R3, we keep

only the model exhibiting the highest �t. Then, given the best model associated to each

complexity, the number of factors is chosen so that an increase in the complexity of the

model does not lead to a considerable increase on the �tting of the model. A similar idea

is exploited in Numerical Convex Hull (NumConvHull) [34], a more robust approach, whose

main di�erence is the complexity measure, given by the number of free parameters: N1R1 +

N2R2 + N3R3 − R2
1 − R2

2 − R2
3 (instead of R1 + R2 + R3). Another approach to tackle

this problem is the Automatic Relevance Determination (ARD) [107] in which the search is

driven by a Bayesian framework (it has the particularity that it starts from the decomposition

result with a large number of components, and then discards the components in excess, thus

requiring less decompositions than in the previous approaches).

13



Given the values of R1, R2, R3, the problem of �nding Tucker decomposition is traditionally

approached by applying one of the following algorithms: Tucker's method I [152], also known

as high-order singular value decomposition (HOSVD) [87] and high-order orthogonal iteration

(HOOI) [88]. As the name suggests in HOSVD, the factor matrices are obtained by applying

SVD to the mode matricisations as shown in algorithm 1. HOOI resorts to HOSVD to

initialize the factor matrices and then iteratively updates the factor matrices until the the

�t of the result stabilizes or the maximum number of iterations is reached (algorithm 2).

Algorithm 1: HOSVD
Input : X and R1, R2, R3

Output: A,B,C and Y
A← top R1 left singular vectors of X(1)

B← top R2 left singular vectors of X(2)

C← top R3 left singular vectors of X(3)

Y ← X ×1 A
T ×2 B

T ×3 C
T

Algorithm 2: HOOI
Input : X and R1, R2, R3

Output: A,B,C and Y
Initialize A,B,C using HOSVD
while not converged nor maximum number of iterations reached do

//Update mode-1 factor matrix A
Y ← X ×2 B

T ×3 C
T

A← top R1 left singular vectors of Y(1)

//Update mode-2 factor matrix B
Y ← X ×1 A

T ×3 C
T

B← top R2 left singular vectors of Y(2)

//Update mode-3 factor matrix C
Y ← X ×1 A

T ×2 B
T

C← top R3 left singular vectors of Y(3)

//Compute the core tensor Y
Y ← X ×1 A

T ×2 B
T ×3 C

T

2.1.3 CANDECOMP/PARAFAC (CP)

This well known decomposition method was simultaneously developed by two groups of

researchers of di�erent �elds and therefore it has been referred to as both CANonical DE-

COMPosition (CANDECOMP) [33] and PARAllel FACtors (PARAFAC) [64]. For simplicity,

we refer to it as CP [81].

Given a tensor X ∈ RN1×N2×N3 , the goal of CP is to �nd factor matrices A ∈ RN1×R,B ∈

14



RN2×R,C ∈ RN3×R, for a given number of components R such that:

||X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)|| (2.5)

is minimized and X is approximated as:

X ≈
R∑
r=1

ar ◦ br ◦ cr , (2.6)

for ar,br and cr denoting respectively the rth columns of A,B and C. In �gure 2.5, the

output of CP decomposition is illustrated.

Figure 2.5: Illustration of the output of the CP decomposition of a three order tensor.

The number of factors in CP can be estimated using the strategies de�ned for Tucker

decomposition by considering a superdiagonal core tensor and the restriction R1 = R2 = R3.

Nonetheless, we can �nd works speci�cally designed for estimating the number of factors

in CP decomposition as it is the case of CORe CONSistency DIAgnostic (CORCONDIA)

[29, 117]. This method is built upon the following assumption: if the CP decomposition

result accurately models the original tensor then it is expected that the core tensor, obtained

by applying Tucker decomposition (with the same number of components) to such tensor, is

close to superdiagonal (that is, the core tensor only has non-zeros in entries of type (i, i, i)).

Thus, the number of components is chosen as the maximum number so that this scenario

holds. Later, Liu et al. [95] introduced generalized N-D MDL, whose goal is to �nd the most

suitable number of components according to the minimum description length (MDL) [129].

15



Algorithm 3: CP-ALS
Input : X and R
Output: A,B and C

Initialize A,B,C
while not converged nor maximum number of iterations reached do

//Update mode-1 factor matrix A
A← X(1)(C�B)(CTC ∗BTB)†

//Update mode-2 factor matrix B
B← X(2)(C�A)(CTC ∗ATA)†

//Update mode-3 factor matrix C
C← X(3)(B�A)(BTB ∗ATA)†

2.1.4 Other Decompositions and Variants

Since their introduction several improvements and variants of the traditional tensor decom-

position algorithms have been proposed. By considering that the focus of this work is time-

evolving networks, we cover the variations that have been developed and appropriately or

e�ciently model such type of data.

In this context, Erdos et al. proposed Boolean CP [50], a logical operator-based decomposi-

tion CP-oriented method in which the data is assumed to be boolean. Moreover, in [37], the

authors proposed CP Alternating Poisson Regression (CP-APR) a non-negative CP variant

designed for sparse count data. Boolean CP is suitable when dealing with unweighted time-

evolving networks while CP-APR is able to capture the connection strengths in weighted

networks. In a more general context, non-negativity constraints have been incorporated in

the traditional model [28, 135, 108]

Additionally, to deal with asymmetric relations between a set of objects, Kiers et al. [79]

proposed DEDICOM. In particular, for a tensor X ∈ RI×I×K , the output of DEDICOM

consists of (i) two matrices A ∈ RI×R and R ∈ RR×R, and (ii) a tensor D ∈ RR×R×K ,
obtained by minimizing:

K∑
k=1

||X (:, :, k)−AD(:, :, k)RD(:, :, k)AT || ,

where D(:, :, k) corresponds to a diagonal matrix, as illustrated in �gure 2.6. This variant is

useful to capture the dynamics in directed networks, in which a connection from node a to

node b has a di�erent meaning from a connection from node b to node a.

To deal with the large-scale property of real-world networks several algorithms have been

proposed [122, 76, 38, 162, 14], they rely mainly on distributed and/or parallel computing.

When additional data is available (either a matrix or another tensor sharing one dimension
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Figure 2.6: Illustration of the output of the DEDICOM decomposition of a three order tensor.

with the original tensor), then the multiple data structures can be jointly decomposed by

taking into account that they share some of their dimensions, this approach is known as

coupled decomposition [3, 25, 74]. A practical example of this scenario occurs when there is

an entities×entities×relations tensor describing the di�erent types of relations between the
entities and a matrix of attributes to describe each entity (the entities dimension is shared).

Finally, incremental algorithms have also been recently proposed [145, 144] to allow the

processing of the network data in real time (this �eld is in its early stage developments).

2.2 Social Networks

According to Leskovec et al. [92], a network, which consists of a set of entities interacting

with each other, is dubbed as social when the interactions exhibit a non random nature. In

other words, a social network is characterized by the existence of patterns in the way entities

interact.

In a social network, the entities may be people and the corresponding interactions may be

emails sent, phone calls, friendship or co-authorship. However, it should be noted that social

networks are not restricted to people; there are other types such as biological networks [121].

Next, we cover the main network concepts as well as the literature on social network analysis.

2.2.1 Network Basics

Mathematically, a (static) network is modelled by a graph G which is characterized by a

set of vertexes (also referred to as nodes), V , and a set of edges, E, G = (V,E), such that

∀e ∈ E,∃v1, v2 ∈ V : e = v1v2, that is, each edge connects two vertexes.

A time-evolving network may be described by a sequence of graphs (see �gure 2.7).

2.2.1.1 Graph Concepts

Let us consider a graph G = (V,E). If e = v1v2 ∈ E then vertexes v1 and v2 are neighbours.

In particular, the set of neighbours of a node v ∈ V is given by NG(v) = {v′ ∈ V : vv′ ∈ E}
and is called neighbourhood of v. The subgraph induced by node v and its neighbours (that
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Figure 2.7: Sequence of graphs with 5 nodes, representing a time-evolving network.

is, the subgraph whose nodes are the node itself and its neighbours and the edges are the

edges between such nodes) is referred, in the context of social network analysis, as egonet of

the node.

A path between two nodes v1, vn ∈ V is a sequence of nodes v1, v2, . . . , vn−1, vn ∈ V such

that each consecutive pair of nodes in the path is linked by an edge, that is ∃ei = vivi+1 ∈
E,∀i ∈ {1, . . . , n − 1}. The length of the path is the number of the edges in the sequence -

in the previous case, n− 1.

The number of vertexes, |V |, and the number of edges, |E|, are referred to as order and

dimension, respectively.

A graph H = (V ′, E′) such that V ′ ⊆ V,E′ ⊆ E and e = v1v2 ∈ E′ =⇒ v1, v2 ∈ V ′

is referred to as subgraph of G. Brie�y, a subgraph is a graph obtained by restricting the

original graph to a subset of nodes, and consequently to the edges between those nodes.

Moreover, a null graph is a graph with no edges between vertexes (E = ∅). A complete graph

is graph such that every pair of vertexes is connected by an edge.

A subgraph G′ = (V ′, E′) for which there is an edge between all pairs of distinct nodes is

called a clique. Formally, in a clique, v1, v2 ∈ V ′ =⇒ ∃e = v1v2 ∈ E′. In this context, a

maximal clique of a graph G is a clique G′ for which there is no other node v ∈ V \ V ′ such
that incorporating it into the subgraph G′ will originate a clique. In other words, if G′ is a

maximal clique then the subgraph obtained by including another node is not a clique [49].

A connected component of a graph is a subgraph for which there is a path connecting every

pair of nodes.

2.2.1.2 Graph Types

Depending on the type of interactions between entities in a network, di�erent types of edges

and vertexes may be needed to better describe the network. The following examples illustrate

such need.

Example 2.1 In a who calls whom network, the interaction is directed: person a calling

person b is not the same interaction as person b calling person a.

18



Example 2.2 Considering the who calls whom network, it may be of interest to model the

number of calls from person a to b.

Unweighted/Weighted The information that two entities interacted may be completed

by considering the number of interactions as it is mentioned in example 2.2. In such case,

weighted graphs should be considered.

In a weighted graph, a numerical weight is associated to each edge. Without the quali�cation

of weighted, the graph is assumed to be unweighted.

Undirected/Directed When the edge e = v1v2 has a di�erent interpretation from the

edge e′ = v2v1, the order of the vertexes de�ning the edge must be taken into account. In

such cases, the edges, which are directed, are referred to as arcs and the graph is dubbed as

directed. Example 2.1 is case of a directed network.

In the absence of quali�cation, it is assumed that the graph is undirected.

Other types There are other types of graph quali�cations such as unlabelled/labelled or

simple/multi but do not fall within the scope of this thesis and therefore are not covered.

2.2.1.3 Graph Measures

Given a graph, there are two types of measures that may be used to describe the graph:

local and global measures. As the designation suggests, local measures refer to properties

of nodes/edges (or substructures) of the graph while global measures capture the general

behaviour of the graph.

Local Measures

Degree: At a node level, the degree of a node v ∈ V , also referred to as valency, corresponds

to the size of its neighborhood:

dG(v) = |NG(v)| .

It should be noted that in a directed graph, the degree has two components: in the context of

social network analysis, the in-degree is referred to as support since it measures the support

of the node and the out-degree is called in�uence since it measures the in�uence of the node

in the other nodes of the graph. In the case of a weighted graph, the measure associated to

the degree of a node is referred to as strength.

Betweenness: The betweenness of a node [55] measures the importance of the node in

establishing a bridge between other nodes. In other words, it measures the level at which

the node works as an intermediate in the interactions between other nodes. Formally, given
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a node v ∈ V , the betweenness of v is given by:

bv =
∑

v1,v2∈V \{v}

σv1,v2(v)

σv1,v2

where σv1,v2(v) is the number of shortest paths between v1 and v2 that traverse node v and

σv1,v2 is the total number of shortest paths between v1 and v2. This measure is also de�ned

for edges so that for edge e ∈ E, its betweenness value is given by:

be =
∑

v1,v2∈V

σv1,v2(e)

σv1,v2

in this case σv1,v2(e) represents the number of shortest paths between v1 and v2 that traverse

edge e. In both cases (vertex and edge betweenness), a high value indicates that the

vertex/edge has an relevant role in connecting weakly inter-connected subgraphs of the graph.

Local Clustering Coe�cient: The transitivity of a node v ∈ V is measured using the

local clustering coe�cient [156]. The clustering coe�cient consists of the rate of existing

edges between nodes of the neighbourhood of v ∈ V and is given by:

cv =
2|{e ∈ E : e = v1v2 ∧ v1, v2 ∈ NG(v)}|

dG(v)(dG(v)− 1)

The value may be seen as the probability that two neighbours of v are connected by an edge.

The higher the value, the higher the transitivity of the node.

Global Measures

Density: The order and dimension of a graph provide an insight of the density level of the

graph. In particular, the measure that quanti�es the density of graph is given by:

ρ =
2|E|

|V |(|V | − 1)
,

In a directed graph, since the order of the vertexes must be taken into account, the density

is given by:

ρ =
|E|

|V |(|V | − 1)
.

In both versions, a low density value (ρ ≈ 0) means that the graph is very sparse (if ρ = 0

then the graph is a null graph). A high density value (ρ ≈ 1) means that the graph is very

dense (if ρ = 1 then the graph is a complete graph).

Diameter: Let us denote the number of edges of the shortest path between vertexes v1, v2 ∈
V as dG(v1, v2), then based on it, the diameter of a graph is given by:

diamG = max{dG(v1, v2) : v1, v2 ∈ V } ,
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which means that the diameter is the maximum shortest distance between a pair of nodes in

the graph.

Global Clustering Coe�cient: The global clustering coe�cient measures the transitivity

of the entire graph. One version of the global clustering coe�cient [99] is given by:

C =
3×Number of triangles

Number of connected triples

and consists of the rate of triples in the graph that are triangles. Alternatively, Watts and

Strogatz [156], suggested to compute the global clustering coe�cient as the average of the

local clustering coe�cients:

C =
1

|V |
∑
v∈V

cv .

2.2.1.4 Real-world Network Patterns

Over the last �fty years, several experiments were driven in order to study the behaviour

of real-world networks. Their �ndings support the idea that social networks exhibit a

non-random behaviour. In particular, researchers found patterns which were common to

di�erent real-world networks, namely the small world e�ect, the skewed degree distribution,

the densi�cation power law and the shrinking diameters.

Small World E�ect

In 1967, Milgram drove an experiment with the goal of estimating the number of people

(acquaintances or friends) that two random people needed to get in touch [105]. The

experiment results showed that, on average, only �ve intermediates are needed to link two

random individuals. This result is known as small-world or six degree separation.

Later, a similar experiment was carried out in Twitter [19], according to which two random

Twitter users are separated by ≈ 4 �intermediates�.

Skewed Degree Distribution

The distribution of the nodes degree in real-world networks was initially studied in 1999 by

Barabasi and Albert [20] and by Faloutsos et al. [51]. In both studies, the authors found

that the degree distribution was right-skewed: there were several nodes with low degree and

few with high degree.

Egonet Patterns In [8], Akoglu et al. found four patterns concerning the egonets of real-

world networks. In particular, the authors showed the relation between: (i) the number of

nodes and the number of edges in a egonet; (ii) the total weight of the egonet and its number

of edges; (iii) the principal eigenvalue λw,i of the weighted adjacency matrix of the egonet

and its total weight; (iv) the weight of the edge and the edge position in the sorted list of
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edge weights in the egonet.

Densi�cation Power Law

In [91], the authors found a relation between the number of edges and the number of vertexes

of a dynamic real network. In particular, they found that the number of edges grows super-

linearly in the number of the nodes over time and, consequently, the average degree grows

over time. This property is referred to as densi�cation power law.

Shrinking Diameters

According to [91], the distance between vertexes decreases over time. In other words, the

number of paths between two nodes increases over time and, as a consequence, the size of

the shortest path between them decreases over time. This phenomenon is called shrinking

diameters.

2.2.2 Time-Evolving Social Networks as Tensors

As previously exposed, networks may be represented by their adjacency matrix (which

corresponds to a two-dimensional tensor). Moreover, given their multi-dimensional nature,

time-evolving networks can be modelled as three dimensional tensors of type nodes×nodes×
time so that the time dimension is explicitly modelled as illustrated in �gure 2.8.

Given the tensor modelling of a time-evolving social network, the decomposition result may

be directly used for the exploratory analysis of the network. For example, in CP, one can

interpret each outer product ar ◦br ◦ cr as a communication pattern/concept. This strategy

has been employed in literature [146, 118, 76, 75, 119] . Assuming entry (i, j, k) of the tensor

represents the number of interactions between entities i and j at time k, then the concepts

given by CP decomposition are de�ned as {ar,br, cr} and re�ect a communication pattern

in the network. In particular, the entries of each vector may be interpreted as activity scores

so that ar and br reveals the most active entities in concept r and cr unveils the temporal

evolution of the communication pattern. In this type of analysis, non-negativity constraints

are usually insightful.

2.2.3 Social Network Analysis

Given a social network, the goal of social network analysis is to study the structure of the

network and unveil hidden patterns of interactions. Depending on the goal of the analysis,

distinct patterns may be found. For example, we may be interested in �nding the groups of

highly interacting entities in order to get the general pattern of the network. On the other

hand, we may just be interested in the entities or sets of entities that exhibit an unexpected

behaviour.
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Figure 2.8: Example of the modelling of a time-evolving network into a tensor: the network
timestamps (left) may be described by their adjacency matrix (middle) forming a sequence
over time, corresponding to a tensor (right).

Next, we overview the literature regarding the main social network analysis tasks, namely

community detection, link prediction, anomaly detection and summarisation. When covering

a given task, we start by introducing the methods for static networks, then we dig through the

approaches for time-evolving networks, giving a particular focus to the tensor decomposition-

based methods.

2.2.3.1 Community Detection

The problem of community detection is traditionally formulated as the problem of �nding

sets of nodes such that the nodes within the same group (community) are densely connected

and nodes from di�erent groups are weakly connected [54], as illustrated in �gure 2.9.

Community Detection in Static Networks

In terms of graph theory terminology, the problem of �nding (non-overlapping) communities

may be seen as the problem of �nding disjoint sets of nodes such that the inner interactions

within each set are denser than the interactions between nodes of di�erent sets. Two

traditional approaches to tackle this issue are graph partitioning and clustering.

In general terms, graph partitioning consists of dividing the graph into components such that
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Figure 2.9: Example of three communities found when carrying out community detection in
the network.

the number (or the overall weight, in the case of weighted graphs) of edges between those

components is minimized. In this context, the term �edge cut� is used to refer to the set of

edges between the components [77, 138].

Graph clustering consists of the application of clustering methods in the context of graphs.

The goal is to obtain partitions of the node set such that the distance between nodes in the

same cluster is minimized and the distance between nodes of di�erent clusters is maximized.

What characterizes graph clustering techniques are the metrics used. Those metrics may be

based, for example, on the size of the shortest path between nodes. The most well-know

clustering-based method is the Girvan Method [59], a hierarchical approach in which the

edges are sequentially removed based on their betweenness. Each removal originates a new

partition and therefore requires the re-computation of the betweenness for the remaining

edges. The same authors introduced the concept of modularity [112] to assess the quality

of the communities identi�ed. By denoting the fraction of edges connecting vertexes from

community i to vertexes of community j by eij , then the modularity of a graph partition

into k communities is given by:

Q =
k∑
i=1

(
eii − a2i

)
where ai =

∑k
j=1 eij is the fraction of edges that connect to a vertex in community i. If

Q ≈ 0, the community structure of the partitions is weak (similar to a random graph); if

Q ≈ 1, the partitions exhibit strong community structure. This concept was later adapted

to weighted graphs [111].

Since its introduction, the modularity measure has been used to drive the search in com-

munity detection algorithms, namely in the Louvain method [26]. The approach considered

in Louvain is opposite to the one considered in Girvan-Newnman as it starts with singleton

communities and then aggregates the communities which lead to a higher modularity gain.

By considering explicitly the adjacency matrix representation of a network, Chakrabarti et

al. [36, 35] proposed the application of the minimum description length (MDL)[129] to drive
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the search for dense blocks in the adjacency matrix, which are expected to correspond to

communities.

While these methods may unveil the main community structure in the network, they fail in

contexts in which a node may belong to several communities. For example, in a friendship

network, it may occur that two people are simultaneously work colleagues and went to the

school together.

The main approach considered to address this problem is to search for cliques in the network

[115, 137]. In this context, communities are de�ned as cliques (de�ned in Section 2.2.1.1).

The idea exploited in the Clique Percolation Method [115] consists of �nding the nodes shared

by more than one clique. In [137] only maximal cliques are considered and the communities

are sequentially updated using hierarchical clustering based on modularity.

Community Detection and Tracking in Time-evolving Networks

With the introduction of the time dimension on the analysis, new challenges arise concerning

the community extraction. Speci�cally, when considering time-evolving networks, researchers

are interested not only in detecting communities but also in monitoring their evolution.

Thus, given a dynamic network, the goals of community detection and tracking also include

detecting merges, splits, births and deaths of communities. Existing community detection

and tracking algorithms are covered in the works of Fortunato [54] and Bedi and Sharma

[23].

In [148], the authors address the problem through optimization techniques by considering

the following assumptions: (i) communities do not overlap; (ii) nodes tend to belong to the

same community most of the time (that is, they do not change constantly of community);

and (iii) a given node interacts more with nodes from its community. The idea is to assign

costs to community changes by taking into account such assumptions and then approximately

optimize such costs.

In [94], the authors proposed FacetNet, a framework in which the community detection is

modeled as a multi-objective optimization problem aiming at simultaneously (i) capturing

the community structure at the current time instant and (ii) minimizing the di�erences

between the communities found at the current time instant and the previous one. The level

of impact of those two factors must be pre-de�ned and it is a critical parameter, as shown

by Folino and Pizzeti [53]. With this limitation in mind, Folino and Pizzeti introduced an

approach, DYNMOGA, which automatically �nds the best trade-o� and exhibits improved

accuracy.

Alternatively, GraphScope [143] is a method which uses the MDL principle in order to �t

the latest network timestamp within the communities previously observed. A similar idea is

considered in [65], nonetheless the matching is carried out di�erently. In particular, given

the new timestamp and the community structure of the previous timestamp, a new network
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is built based on that information and the Louvain algorithm is applied on the obtained

network.

Regarding overlapping communities, in [114] the authors extended the Clique Percolation

Method (CPM) [115], originally designed for static networks, to a dynamic scenario. The

idea consists of merging network states at instants t − 1 and t so that there exists an edge

in the resulting network if it existed at time t − 1 or t. Given the new graph, the authors

apply CPM. Finally, the community matching between instants t− 1 and t is carried out by

taking into account that a community from either instant t− 1 or t is contained in just one

community found by CPM in the joint graph.

Tensor Decomposition-Based Approaches

Recently, tensor decomposition has been applied to discover and track the community struc-

ture of networks. The idea exploited is that each of the concepts found by tensor decomposi-

tion represents a communication pattern and its evolution over time (as illustrated in �gure

2.10).

 

Mike 

McConnell 

Jeffrey 

Shankman 

December 2000 to 

December 2001 

Figure 2.10: Illustration of one concept in the employee×employee×month version of enron
dataset. This concept refers to the emails exchanged between Mike McConell (employee 129)
and Je�rey Shankman (employee 67).

In Com2 [12], given the tensor modelling the time-evolving network, CP tensor decomposition

is applied using a single component to extract a community candidate (similarly to the

approach described in Section 2.2.2). Given the community candidate, MDL is applied to

drive the search for the most representative structure (and its evolution) of the community,

which corresponds to the one that minimizes the MDL. This approach may be repeated

sequentially to discover multiple communities by removing the communities found before

repeating the procedure. It has the advantage that the number of communities does not

need to be pre-de�ned, and communites can be extracted until reaching an empty or very

sparse tensor.
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Sheikholeslami and Giannakis [136] considered a di�erent representation of the network:

instead of considering the adjacency matrix of all the network, each network state is rep-

resented as a nodes × nodes × nodes tensor whose slices are the adjacency matrices of the

ego-networks of each node. Then the time-evolving network is a four order tensor of type

nodes × nodes × nodes × time. Given such a tensor, non-negative CP is applied with the

constraint that the rows of the factor matrix associated with the third mode have unit norm.

By considering these constraints, the ith row of the third factor matrix can be interpreted as

a community membership vector for node i. The aim of this strategy is to detect overlapping

communities.

In [10], the authors proposed a framework for clustering in weighted undirected dynamic

networks, by resorting to Tucker tensor decomposition. The network is modelled as a nodes×
nodes × time tensor corresponding to the sequence of adjacency matrices over time. Since

the network is undirected, an equality constraint is imposed on the decomposition output

regarding the factor matrices associated with nodes dimensions. In other words, it is imposed

that A = B in (2.4). The decomposition result is used to track the community structure. In

particular, the authors proposed a metric to quantify the level of change in the community

structure. Given the change points, the number of clusters is estimated accordingly [154]

and the communities are estimated by applying k-means to the nodes factor matrix. Their

methodology can be carried out using a sliding time window or a landmark time window

(with forgetting factor).

Recently, a framework for Learning Activity-Regularized Overlapping Communities using

Tensor Factorization (LARC-TF) [60] was proposed. In this work, the network is assumed

to be weighted and undirected and is modelled as a 3-way tensor (nodes × nodes × time).
The goal is to �nd two matrices: a �community matrix� describing the level of association

of each node to the communities and a �activation matrix� describing the activity of each

community over time. These matrices are found by resorting to regularized constrained CP

tensor decomposition. The constraints include non-negativity (for interpretability purposes)

and shared factor matrices across the two nodes modes (A = B in (2.6)). The authors also

considered a smoothness regularization term in order to appropriately model the activity

and inactivity intervals in the activation matrix. The nodes factor matrix and the temporal

factor matrix are interpreted as the community and the activation matrices, respectively.

Additionally, in order to appropriately estimate the number of communities, the authors

introduced an adaptation of CORCONDIA.

Issues Community detection is one of the social network analysis tasks which have been

more extensively studied from both a general and a tensor-decomposition perspective. One

of the limitations of most of the existing tensor decomposition-based approaches is that they

require a prior knowledge on the number of communities. While this limitation has been

recently tackled in some works [60], it is still an issue, specially when the goal is to discover
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communities from the concepts found by exploratory analysis [146, 118, 76, 75, 119]. This

arises the problem of appropriately set the number of components so that the meaningful

communities are captured.

It is also noteworthy that most of these methods, were designed to work in an o�ine mode.

2.2.3.2 Link Prediction

The problem of link prediction has di�erent meanings, depending on whether the network

is static or dynamic. In case the network is static, the problem of link prediction is also

called missing link prediction because the goal is to infer the links which are more likely to

be missing in the network (as illustrated in �gure 2.11(a)). When dealing with time-evolving

graphs, the goal of link prediction is to predict which links are likely to occur in the future

time periods, given the network states previously observed (as illustrated in �gure 2.11(b)).
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(b) Evolving scenario.

Figure 2.11: llustration of the link prediction problem in a: (a) static context, in which the
goal is to infer which links are missing and (b) dynamic context, in which the goal is to infer
which links will occur in the future.

Missing Link Inference in Static Networks

The problem of �nding missing links has been extensively addressed in literature [93, 58, 98].

The approaches to tackle this problem are mainly similarity, classi�cation or probabilistic

based.

The most common approach is to consider node similarity-based methods in which the goal is

to assign a score to each unconnected pair of nodes in the network based on their similarity:
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higher scores represent higher similarity. The similarity measures may account for both

topological and meta-data properties. The meta-data properties are context dependent. The

topological measures are context-independent and assign a similarity score according to the

number and length of the paths connecting the nodes. This category may be split into

neighbourhood-based (in which only paths of length 1 are considered) and path-based (in

which all paths connecting the nodes are considered).

As the name suggests, in neighbourhood-based measures, given a network G = (V,E) and

two unconnected nodes v1, v2 ∈ V , their similarity is measured based on the neighbours

both nodes share. The most straightforward measure of this type is the common neighbours

itself [110], which accounts for the number of common neighbors; more complex extensions

of common neighbors include Adamic/Adar [4] (which is de�ned on the assumption that

common neighbours with a small number of neighbours have a greater importance on the

connection strength) and Preferential Attachment [21] (which is de�ned on the assumption

that the probability of existing a missing link between two nodes is proportional to their

number of neighbours).

Regarding path-based measures, one of the most well-known path-based measures is the Katz

Score (KS) [78] which accounts for the paths connecting the nodes, while weighting the paths

according to their length: paths with shorter length have a greater impact than the longer

ones. Variations of this metric include the Local Path Index [97] which accounts for paths of

length 2 and 3.

A di�erent similarity-based approach has been proposed in [69]. First, the authors resort to

statistical tools to estimate a spatial representation of the nodes in the network such that

the distance between two nodes re�ects their similarity. Then they use such representation

to infer the missing links: given two unconnected nodes, the closer the nodes representation,

the more likely to be a missing link between them.

In probabilistic based approaches, the idea consists of �nding a suitable probabilistic model

to describe the structure/topology of the network. Such model is then used to infer which

are the links which are more likely to be missing. In this context, Clauset et al. [39] explored

the hierarchical organization of social networks to build a link prediction model. Given

the network, the authors obtain a dendrogram which represents the hierarchical structure

of the network: the tree leaves are the nodes of the network and the internal tree nodes

are connected subsets of network nodes which are similar. Thus, in each tree level, the

internal tree nodes represent disjoint communities and a higher level community contains

lower level communities. The missing links are inferred based on the community context of

the corresponding nodes. Another approach consists of �nding a stochastic block model to

describe the network [61]. This method is built on the following assumption: nodes that

share most of their neighbours have a similar connectivity pattern and therefore provide the

same information. Consequently, these nodes can be grouped into a single �supernode� so
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that the edge between supernode i and supernode j re�ects the interaction level between

the nodes in supernode i and the nodes in supernode j. The �supergrah� obtained provides

a general picture of the network and assigns a linking probability to all the pairs of nodes

(which corresponds to the weight of the �superedge�). A major limitation of probabilistic

approaches in general is their time ine�ciency for large networks [127].

Additionally, the problem of link prediction may be interpreted as a classi�cation problem

in which the goal is to assign to every pair of unconnected nodes either a �there is a link

missing� or a �there is no link missing� label. The idea is to construct a feature vector to

describe each pair of unconnected nodes and then subject it to a classi�cation model [42, 132].

The features considered generally include node similarity features such as Adamic Adar, Katz

and/or Preferential Attachment. Classi�cation models such as SVMs [42], decision trees [157],

random forests [132] are some of the classi�cation models that have been considered. When

dealing with social networks, it is important to take into account that the class distribution

is highly skewed as the networks are sparse and the amount of non-existing links is much

larger than the number of missing links [161].

Missing links inference has also been modelled as a matrix completion problem in which the

adjacency matrix is given and the missing values are recovered via matrix decomposition

[103].

Predicting Future Links in Time-evolving Networks

Brie�y, in temporal link prediction, several snapshots of the network at di�erent times are

available and the goal is to predict future (new or re-occurring) links.

One of the �rst approaches for link prediction on time-evolving networks was carried out

by O'Madadhain et al. [113]. In their work, authors used the past network snapshots

to extract features (including both structural and attribute-based features) and considered

such features to train a logistic regression classi�er in which the classes are �there will be

an edge� or �there will not be an edge� (for a given pair of nodes). In spite of considering

temporal information, it should be noted that, as pointed out by Huang and Lin [71], the

temporal information is not explicitly exploited in this method. Likewise, in [155], Wang et

al. considered an event log in which the interactions between nodes are registered and used it

to construct a (static) network in such way that two nodes were connected in the network if

they interacted at some instant. Based on the event log, the authors obtained co-occurrence

probabilities of nodes. Thus, besides the semantic and topological (structural) properties of

the network generated, the authors also considered the event log and used these three sources

of information to extract features to train a logistic regression model. This method was later

extended by Tylenda et al. [153] by introducing forgetting techniques so that older events

have less impact on the prediction of future links.

Supposing that the time snapshots of a time-evolving network are taken periodically, then
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they may be used to extract features over time and construct time-series to model the

evolution of such features. This idea was exploited in [71, 62]. These approaches di�er

in the features considered to construct the time-series and/or the forecasting techniques.

The features include the adjacency matrix [71] and similarity scores [62]. These approaches

require the forecasting of a time-series for each unconnected pairs of nodes, which in the case

of (large) social networks may be demanding given their sparse nature.

Tensor Decomposition-Based Approaches

Tensor decomposition methods have also been considered for temporal link prediction. The

�rst two methods [46, 142] emerged approximately at the same time and explore an identical

idea (illustrated in �gure 2.12). Both approaches consider CP (2.6) to approximate the

network tensor and take into account that (i) the network state at time t is approximated as∑R
r (ar◦br)×cr(t) and (ii) each column of the temporal factor matrix, C, may be interpreted

as a time-series. Therefore, if we observed network states until time T then network state at

time T + 1 can be estimated as
∑R

r (ar ◦br)× ĉr(T + 1) where ĉr(T + 1) is the estimation of

the future temporal trend (which corresponds to the expected (T + 1)th row of the temporal

factor matrix).

Figure 2.12: Schematic illustration of the link prediction process based on tensor decompo-
sition.

Improvements over these methods have been later introduced. In [102] the authors consider

multiple time granularity levels. The idea consists of decomposing the tensors associated
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with distinct time granularities by taking into account that they share the nodes dimensions

and consequently the nodes factor matrices should be the same for all the tensors, regardless

of the time granularity. In [13], the authors incorporated available additional information

about the nodes to improve the accuracy of the approach. This is achieved by resorting to

coupled tensor decomposition.

Issues When applying tensor decomposition-based link predictors, the impact of the choice

of the number of components in tensor decomposition-based link predictors in the perfor-

mance of the predictor is not clear: are the predictors robust to the number of components?

Are the existing model order estimators suitable for this task? We believe that a deeper

knowledge of the in�uence of this parameter in these link predictors may lead to accuracy

improvements.

2.2.3.3 Anomaly Detection

In general terms, Akolgu et al. [9] de�ned anomalies in graphs as vertexes, edges or subgraphs

that exhibit a �strange� behaviour in the sense that it deviates from the general patterns

observed in the graph. Depending on whether the graph is static or evolving, di�erent types

of anomalies may occur.

Anomaly Detection in Static Networks

In static networks, the goal of anomaly detection is to �nd nodes, edges or subgraphs that

exhibit an irregular behaviour. The irregular behaviour may correspond to a structural

property of node/edge/subgraph or to the community context of a node.

Regarding structural anomalies, in 2010, Akoglu et al. [8] introduced OddBall, an algorithm

for detecting anomalous nodes in weighted graphs. Based on four patterns observed in egonets

(see Section 2.2.1.4), the authors classify nodes as anomalous when they deviate from such

patterns. This veri�cation is carried out by extracting egonet features such as the number

of neighbours, the number of edges and the total weight.

With respect to community context anomalies, in [44], the authors showed that low local

clustering coe�ecient and high betweenness centrality is usually associated with anomalies,

that is, with a communication that does not respect community structure. Moreover, in

AUTOPART [35], the communities are found by reorganizing the rows and columns of the

graph adjacency matrix so that the result is a block matrix. The search is driven by the MDL

principle and the blocks may be dense (in which case they represent a community) or sparse

(when associated with nodes of di�erent communities). An anomaly is de�ned as a node that

is not assigned to any community or that has a strong connection to multiple communities.

In [160], the authors considered a similar idea, however they proposed a di�erent grouping

approach. In more detail, Xu et al. proposed a structural clustering method in which two

nodes are clustered in the same group based on the neighbours shared by both. The anomalies
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found are of the same type of the ones found by AUTOPART.

By considering the adjacency matrix of the graph (similarly to AUTOPART), Tong and Lin

[150] proposed a non-negative residual matrix factorization (NNrMF). While non-negative

constraints have been introduced in matrix decomposition to improve interpretability when

detecting communities [70], few attention had been paid to the residuals/error matrix.

Therefore, in NNrMF the goal is to make the residuals matrix more interpretable by imposing

non-negativity constraints. Substantially large entries in the residuals matrix are expected

to be modelling the anomalies.

Event and Change Detection in Time-Evolving Networks

According to Ranshous et al. [124], instants of time in which the behaviour of the network

deviates from the remaining are also considered anomalies; depending on whether the de-

viation is temporary or not, the anomaly type is dubbed as event or change, respectively.

Speci�cally, the di�erence between change and event is that an event represents a single

instant deviation while a change represents a permanent deviation: after occurring an event,

the network returns to its previous state; when a change occurs, the network follows a new

behaviour.

Both the works of Akoglu et al. [9] and Ranshous et al. [124] cover the approaches devel-

oped to tackle the problem of anomaly detection in dynamic networks, including similarity,

community context, windowing or matrix/tensor decomposition based approaches.

Similarity-based approaches consist of measuring the similarity (or dissimilarity) between

consecutive network states. In these approaches, when a considerable similarity decrease is

observed, such instant is �agged as anomalous. The anomaly score for each timestamp is

computed based on the similarity between the current time network state and the previous.

The timestamps are then ranked based on their anomaly scores (top ranks are expected

to be associated with anomalies). What di�erentiates these methodologies is either the

network representation considered or the (dis)similarity measure being considered. The

metrics include the graph edit distance and its variations [141], statistics on node and egonet

features [7], and other approaches [116, 86]. This type of approach allows us to detect global

anomalies (both events and changes) by spotting the time in which a global anomaly was

observed, however, generally, they do not provide information on the nodes involved on the

anomaly.

With respect to community context-based methods, GraphScope may be regarded as the

extension of AUTOPART to a dynamic scenario, since its aim is to �nd dense blocks

corresponding to communities of densely connected nodes and it also resorts to MDL. A

similar idea was exploited in [12].

In windowing approaches, the network is processed using a time window and the behaviour

of the network in the current window is compared with the previously observed windows,
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which are expected to model the normal behaviour. The idea is to track statistics over the

time windows. These statistics may be the density of the k-length neighbourhood of a node

[123] or other node features such as degree and number of triangles [7]. A large di�erence

between the values observed in the current window and the previous suggests the occurrence

of an anomaly.

Tensor Decomposition-Based Approaches

The most straightforward tensor decomposition-based approach to event and change detec-

tion consists of tracking the approximation error of the decomposition in each timestamp (if

a large reconstruction error is obtained at timestamp t then it means that decomposition

method failed at modelling such timestamp and consequently it deviates from the remaining;

in other words, it suggests that some unexpected event occurred [84, 146, 85]). This approach

is usually not appropriate for a real-time analysis since most of the tensor decomposition

algorithms work in an o�ine manner. Moreover, by considering all the network states, it

may occur that more local deviations are not captured in the tensor decomposition (as it is

demonstrated in chapter 4).

STenSr [139] was speci�cally designed to work in a time-evolving scenario in which data

sequentially arrives. In STenSr the decomposition of the tensor modelling the network is

incrementally updated. Given the decomposition result, each row of the temporal factor

matrix is interpreted as a vectorial representation of the network state at the corresponding

time and the representations associated with the incoming data are compared with the

remaining ones. The incoming instants are �agged as anomalous if they substantially di�er

from the remaining (previously observed) ones. A limitation of this work is that it assumes

that the instants observed so far map a normal behaviour, which may not always occur, as

networks are continuously changing.

More recently, Pasricha et al. [120] proposed a method to track the tensor decomposition

over time so that, when a new tensor is available, it is decomposed and its decomposition is

compared with the one of the tensor observed so far. This comparison allows the discovery

of which concepts are new, missing or common in the incoming network data. The success

of this approach highly depends on the appropriate model order estimation, which stills a

major issue as it is demonstrated in this thesis.

Issues Regarding event detection, the traditional methods based on tensor decomposition

reconstruction error are not appropriate for real-time nor automatic detection as they work in

batch mode and require the analysis of an expert. One can �nd recent works proposing real-

time detectors, but those exhibit other limitations such as assuming regular communication

patterns.

The application of tensor decomposition to change detection tasks, on the other hand, has

not been much exploited.
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2.2.3.4 Summarisation

As the name suggests, graph summarisation consists of �nding a compact representation of

a graph, describing its properties [96]. It encompasses a wide range of approaches, such as

node grouping, simpli�cation and compression, which depend on the type of the graph and

the application purpose.

Summarising Static Graphs

Node grouping strategies are one of the most common approaches for the summarisation of

static graphs. Brie�y, the idea consists of generating a new (smaller) graph that concisely

represents the original one so that its nodes represent groups of nodes in the original graph and

the edges weights re�ect the level of interaction between the nodes of the given groups. The

main di�erence between the existing approaches is the grouping strategy. In this context,

community detection algorithms such as the Louvain may also be regarded as grouping

summarisation strategies in which the community structure is preserved (more details can

be found at Section 2.2.3.1). Another approach is structural-pattern summarisation in

which nodes are grouped based on their shared neighborhood (nodes sharing a large portion

of neighbors exhibit an identical communication pattern and therefore should be grouped

together). This idea is exploited in blockmodeling [45] and other similar approaches [89, 128].

Additionally, in [56] the nodes that are connected by a (short length) path are grouped into

the same �supernode� (the goal is to preserve the graph global structure). In [31] the authors

propose the replacement of the frequent patterns by a single structure.

A related topic is role analysis, which aims at unveiling the nodes/edges having a similar

role in the network (for example, central or bridge nodes) [66, 131]. In this type of analysis,

nodes may be assigned to the same role even if they are distant.

In simpli�cation approaches the idea consist of discarding nodes and/or edges that do not

provide relevant information according to some criteria. For example, in a directed network

one may be interested in mining the di�usion patterns [101].

While in the previous strategies, the summary result is a graph, in compression-based meth-

ods, interpretability is not the target application goal and consequently, the summarisation

result is not a graph. Instead it can be matricial approximations such as SVD and its scalable

versions [22].

Summarising Time-evolving Graphs

Summarising time-evolving networks is still a few explored area with a small number of works

in it. The naive approach to tackle this problem consists of collapsing all the network instants

into a single timestamp so that there is an edge in the resulting graph if such edge was present

in at least one of the timestamps [67, 134]. The edges may then be weighted based on the

time and number of occurrences in the time line. The resulting graph is summarised as in
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a static scenario. Since the temporal information is not explicitly modeled, there is loss of

information. Such an issue has been recently addressed [133, 151]. In [133], the authors

proposed TIMECRUNCH, a compression-oriented approach based on MDL to discover the

relevant patterns in data, corresponding to dense blocks in the tensor formed by the sequence

of adjacency matrices over time. In [151] the authors applied clustering techniques to the

sequential concatenation of the adjacency matrices in the time period considered and use the

clustering result to de�ne the supernodes of the summary supergraph.

Tensor Decomposition-Based Approaches

Tensor decomposition has not been explicitly exploited for summarisation tasks. Nonetheless,

the tensor decomposition output may be regarded as a summary itself since it since it is a

�compressed� version of the original network data. Moreover, in [15] the authors resort to

DEDICOM to �nd and interpret the groups of nodes with similar interaction patterns but

do not speci�cally target summarisation.

Issues The summarisation capacities of the tensor decomposition output were not studied so

far. In particular, tensor decomposition has been applied to generate interpretable summaries

of network data, but its ability to preserve the structural properties of the original graph have

not been investigated: can one bene�t from considering tensor modeling of a time-evolving

network over lower dimensional summarisation methods?

2.3 Summary

In this chapter we covered the main literature on the topics of this thesis, namely, tensor

decomposition and social networks, with a special focus on the tensor decomposition methods

for evolving social network analysis. These approaches are time-aware and scalable on the

contrary to most classi�cation and probabilistic methods. However, we veri�ed that that are

still issues and research directions which remain few explored. In particular:

• most of the methods work in a batch mode, assuming all the data is available, which

makes the methods ine�cient for an evolving scenario;

• despite the existing approaches to estimate the tensor decomposition model order,

there is still no consensus on which scenario each method should be applied, thus

compromising the application of the method;

• most of the methods for event detection fail at being automatic;

• the capabilities of tensor decomposition have not been yet explored for tasks such as

change detection and summarisation.

Some of these are addressed in the next chapters.
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Chapter 3

Structural Summarisation

In its early days, social network analysis was carried out at a small scale. However, with the

development of new technologies and the growth of internet, social networks encompass a

much wider range of possibilities (from online social networks, to emails exchange or proximity

contacts measured by mobile phone sensors or other monitoring systems). Dealing with such

large scale networks requires appropriate tools. A possible solution to this problem consists

of summarising the networks into new (more compact) representations. In this chapter

we present a new strategy to summarise time-evolving networks which resorts to tensor

decomposition to capture the interactions between the entities in the network.

3.1 Introduction

Analysing a large network can be challenging. On one hand, its visualization, which in small

scale networks would possibly be insightful, is no longer suitable or practicable. On the other

hand, dealing with large networks requires e�cient and scalable tools. In such a scenario, it

would be preferable to deal with a compact representation of the network.

Finding a compact representation of a graph de�nes the scope of graph summarisation [96].

Depending on the target task (compression, community detection, in�uence propagation,

. . . ), the summary may preserve di�erent properties of the graph.

In this work, we target a speci�c type of summarisation in which the goal is to generate a

smaller graph summarising the way nodes are linked. In other words, the problem addressed

consists of �nding groups of nodes which have similar connection patterns, then each group

is interpreted as a supernode in the small graph and the level of interaction between nodes

of the groups are re�ected into the superedges weights. On the contrary to most of the

existing approaches to tackle this problem, our method is designed for time-evolving networks.

Therefore, instead of generating a summary for a given timestamp, we generate a summary
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for a given time window.

Brie�y, our goal is to address the following question: given a large time-evolving network,

how can we represent it in a more concise way so that the structural properties are captured?

In more detail, we propose tenClustS, a method which resorts to tensor decomposition to

explicitly exploit the multi-way structure of evolving networks.

The contributions of this chapter are the following:

• We propose tenClustS, a method for (near) real-time structural pattern summarisation

of time-evolving networks which is based on tensor decomposition.

Our empirical evaluation provides evidence that tenClustS is able to generate sum-

maries in considerably less time than its competitors (especially in large networks)

while preserving the quality of the summaries.

• We study the impact of the clustering distance metric on the summarisation results

and provide evidence that this parameter is critical, having a high (structural) impact

on the summarisation results.

In particular, we observed that when considering the cosine clustering, the summary

captured the global behaviour of the network. On the other hand, when considering

the the euclidean clustering, the summary captured local patterns.

This chapter is organized as follows: in section 3.2 we explain the problem addressed; in

section 3.3 we introduce the proposed method; in section 1.6 we carry out the experiments

to validate our approach and we conclude in section 3.5.

3.2 Problem Addressed

The problem addressed in this work may be regarded as an extension of the problem addressed

in [89], a work which tackles structural graph summarisation for static networks. Therefore,

in order to facilitate the understanding the problem addressed, we start by explaining it in

the context of static networks.

The idea exploited in [89] consists of grouping nodes into supernodes according to their

connectivity patterns so that nodes sharing neighbors are more likely to be grouped into the

same supernode. This summary graph is called supergraph and the superedges weights are

computed as follows:

AG′(Si, Sj) =


∑

l∈Si,m∈Sj
AG(l,m)

|Si||Sj | , if Si 6= Sj∑
l∈Si,m∈Sj

AG(l,m)

|Si|(|Sj |−1) if Si = Sj

, (3.1)
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where AG and AG′ are the adjacency matrices of the original graph and the supergraph,

respectively.

The supergraph is implicitly de�ned by the nodes grouping into supernodes. In this context,

di�erent groupings lead to di�erent summaries and the aim in this type of summarisation is

to minimize the reconstruction error, de�ned as:

RE =

∑N
i=1

∑N
j=1 |AG(i, j)− ĀG(i, j))|

N2
(3.2)

where N is the number of nodes in the original graph, s : V → V ′ is the function which

assigns a node to its supernode and ĀG is the adjacency matrix of the reconstructed graph,

de�ned so that:

ĀG(i, j) =

AG′(s(i), s(j)), if i 6= j

0, if i = j .
(3.3)

Let us consider the static network in �gure 3.1, then a possible nodes grouping into supern-

odes, S = {S1, S2, S3}, can be

• S1 = 1, 5 (in blue);

• S2 = 2, 3, 4 (in yellow);

• S3 = 6, 7, 8 (in green).

It is noteworthy that nodes 2,3 and 4 in S2 have the same neighbourhood and, consequently,

the same connection patterns. The summary associated to such grouping is illustrated

in �gure 3.1(b) while the reconstructed adjacency matrix is exhibited in �gure 3.2. The

reconstruction error associated with this summary is ≈ 0, 05.

To the best of our knowledge, this type of summarisation has only been extended to time-

evolving scenarios in [151]. In that work, the consistency of the connection patterns over time

is taken into account. In other words, nodes are grouped into supernodes if they connect to a

similar subset of common neighbors over the time period considered. In their approach, kC,

the nodes grouping is obtained by applying k-means (with cosine distance) on the sequential

concatenation of the adjacency matrices in the time window considered.

Given the sequence of adjacency matrices over time, {AtG}Lt=1, with t ∈ {1, . . . , l}, then the

superedges weights computation formula (3.1) was adapted to:

AG′(Si, Sj) =


∑L

t=1

∑
l∈Si,m∈Sj

At
G(l,m)

L|Si||Sj | if Si 6= Sj

2

∑L
t=1

∑
l∈Si,m∈Sj

At
G(l,m)

L|Si|(|Sj |−1) , if Si = Sj

, (3.4)

where AG′ represents the adjacency matrix of the summary.
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(a) Original network

(b) Summary

Figure 3.1: Illustrative example of structural summarization in a static network.

Likewise, (3.2) was adapted to the dynamic setting:

RE =

∑L
t=1

∑N
i=1

∑N
j=1 |AtG(i, j)− ĀG(i, j)|
LN2

. (3.5)

with ĀG being the adjacency matrix of the reconstructed window graph (satisfying ĀG(i, j) =

AG′(s(i), s(j))).

An illustration of this type of summarisation in evolving environments is shown in �gure 3.3.

Similarly to [151], the goal of this work is to address the problem of structural summarisation

in time-evolving graphs. This problem is formally described as follows:
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AG =



0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0


ĀG =



0 1 1 1 0 1/6 1/6 1/6
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 1 1 0 1/6 1/6 1/6

1/6 0 0 0 1/6 0 1 1
1/6 0 0 0 1/6 1 0 1
1/6 0 0 0 1/6 1 1 0


Figure 3.2: Adjacency matrices of the original graph (left) and the reconstructed graph
(right).
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Figure 3.3: Illustrative example of structural summarisation in a time-evolving network.
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Given an undirected, unweighted time-evolving graph, G, characterized by the

sequence of its adjacency matrices over time, {AtG}Lt=1, �nd a static weighted

summary supergraph, G′, characterized by the adjacency matrix, AG′ , that

succinctly describes the original graph, in such a way that:

• the supernodes ofG′ are homogeneous groups of nodes of the original graph

in the sense that nodes in the same supernode exhibit similar connection

patterns;

• the superedges weights re�ect the level of interaction in the original graph

between the nodes in the corresponding supernodes.

3.3 Proposed Method

In the proposed method, we generate a summary for each sequence of L consecutive adjacency

matrices so that the time-evolving network is summarised in (near) real-time. The proposed

method, tenClustS, is summarised in algorithm 4 and works as follows.

Idea: Since tensor decomposition captures the multi-way structure of time-evolving graphs

then it is expected that the tensor decomposition result unveils the relevant connection

patterns in the network.

Data type and modelling: The current time window, W, of the dynamic graph is

modelled as a 3-order tensor formed by the sequence of adjacency matrices over that time

period so that:

W(i, j, t) = AtG(i, j) ,

for i, j ∈ {1, . . . , N} and t ∈ {1, . . . , L}.

Method: Given the current time window of the dynamic graph,W, tenClustS, summarised

in algorithm 4, consists of:

1. Generating Nodes Representation: apply CP to the current tensor window, W,

using R number of components:

W ≈
R∑
r=1

ar ◦ br ◦ cr ,

where ar and br are associated with node dimensions and cr is associated with the
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time dimension. Based on this, set the nodes representation as one of the nodes factor

matrices, for example, A = [a1|a2| . . . |aR]. Since A ∈ RN×R, then node i is described

by a R-dimension vector corresponding to the ith row of matrix A. It is noteworthy

that, since the networks are assumed to be undirected (and therefore, the corresponding

adjacency matrices are symmetric), either factor matrix A or B can be considered.

2. Grouping Nodes into Supernodes: generate the supernodes assignment, S, by
applying k-means, with euclidean distance, on the rows of A.

3. Building Supergraph Adjacency Matrix: generate supergraph adjacency matrix

by taking into account the supernode assignment and the network time window. In par-

ticular, we de�ne method build_supergraph(S,W) which constructs the supergraph

adjacenc matrix AG′ , according to

AG′(Si, Sj) =


∑L

t=1

∑
l∈Si,m∈Sj

At
G(l,m)

L|Si||Sj | , if Si 6= Sj∑L
t=1

∑
l∈Si,m∈Sj

At
G(l,m)

L|Si|(|Sj |−1) if Si = Sj

. (3.6)

We note that this assignment di�ers from (3.4) only in the self-loop weight computation

(Si = Sj): we do not multiply the sum by two, because since the adjacency matrix is

symmetric, each edge is already accounted twice.

Algorithm 4: tenClustS

Input : network window W ∈ RN×N×L, number of decomposition components R,
number of supernodes k and clustering metric metric

Output: summary supergraph G′

// Generate nodes representation
{A,B,C} ← cp(W, R);
// Group nodes into supernodes nodes representation
S ← kmeans(A, k,metric);
// Build supergraph
G′ ← build_supergraph(S,W)

3.4 Experiments

3.4.1 Datasets

In these experiments we considered �ve real-world time-evolving networks from the ones listed

in table 1.2. They were pre-processed so that the edges weights and the self-loops edges were

discarded. Moreover, di�erent time granularity was considered. In enron, friends and
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hepth, a timestamp represents a month. In dblp a timestamp corresponds to a period of

windows of 5 years with overlap of 3 years between consecutive timestamps. In infectious

a timestamp corresponds to a day. Finally, we considered only timestamps in which the

networks are considerable active. In particular, we considered timestamps 21�40 in enron;

timestamps 9�16 in friends; the �rst 20 timestamps in infectious, and timestamps 53�72

in hepth. The resulting networks are summarised in Table 3.1. The size of each network is

represented in nodes× nodes× timestamps format.

Table 3.1: Datasets summary.

Network Content Size Density
enron Email exchange 130× 130× 21 1,44E-2
friends Phone calls 129× 129× 8 1,78E-2
dblp Co-authorship 2723× 2723× 9 1,64E-3
infectious Contacts 10970× 10972× 20 7,73E-6
hepth Citations 22906× 22906× 20 1,05E-5

3.4.2 Design of Experiments

All the networks were processed using a sliding window, W, of length L, with an overlap of

L − 1 timestamps between consecutive time windows. A summary was generated for each

time window W.

3.4.3 Evaluation Metrics

Reconstruction Error (RE): The reconstruction error (in (3.5)) is the standard quality

measure in structural pattern summarisation and therefore it is a good indicator of how the

structure of the network is preserved. In this context, low reconstruction error is preferable.

Compression Cost (CC): Summaries are expected to be compact. Based on this, we

quantify the �complexity� and size of the summary using the compression cost. In particular,

we computed the compression cost as the number of bits needed to store the summary

[106]. Thus, given the number of supernodes of the summary, |Vsummary|, and corresponding

number of edges, |Esummary|, the compression cost is computed by:

CC = 2× dlog2(|Vsummary|)e × |Esummary| .

Running Time: We measured the average running time required to generate the sum-

maries across the di�erent time windows. A limit of 10 minutes per time window was set for

generating the supernodes assignment.
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3.4.4 Baselines

Proposed Baselines: kMeuc and kMcos The proposed baselines are variants of the

kC method. Instead of applying k-means to the concatenation of the sequence of adjacency

matrices (as in kC); the clustering is applied to the sum of the sequence of adjacency matrices:

Ā(i, j) =
L∑
t=1

AtG(i, j) , (3.7)

where AtG denotes the adjacency matrix of graph G at time t and L is the number of

timestamps in the time window.

In other words, in these approaches, the nodes are grouped into supernodes by applying

k-means to the rows of Ā. Finally, the supergraph adjacency matrix is constructed according

to (3.6).

The two variants di�er on the clustering distance considered in k-means: kMeuc and kMcos
employ, respectively, the euclidean and cosine distances.

kC: We considered the �rst method developed for structural-pattern oriented summarisa-

tion in dynamic networks: kC [151]. The method has been described in section 3.2.

WSBM: Given that stochastic block modeling share similar properties with structural-

pattern summarisation, we also considered this approach. In particular, we considered the

stochastic block model for weighted networks (WSBM) [6].

In order to apply this method to our (dynamic) setting, we collapsed each network time

window using (3.7) and the method was ran on such nodes representation. The blocks

detected corresponded to the supernodes and the superedges were computed according to

(3.6).

3.4.5 Parameter Setting

Window Length (WL): We considered four distinct window lengths: 3, 6, 9 and 12 time

stamps.

Number of Tensor Decomposition Components Selection Criteria: The number

of components to use in CP was estimated based on AUTOTEN [117]. In particular, the

number of components was chosen as the average of the AUTOTEN estimates for all the

time windows in each dataset. The results are depicted in table 3.2.
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Table 3.2: Average of the estimated CP number of components over the windows using
AUTOTEN.

Dataset WL Ncomps
enron 3 4,11 ± 2,56

6 3,40 ± 0,95
9 4,67±0,78
12 4,67±1,00

friends 3 2,00 ± 0,00
6 2,67 ± 0,47

dblp 3 8,29 ± 4,23
6 7,00 ± 5,87

hepth 3 13,83 ± 0,37
6 10,08 ± 8,75
9 11,58±8,58
12 8,11±5,40

infectiouspatterns 3 13,59 ± 1,78
6 9,31 ± 1,20
9 10,92± 4,66
12 9,22± 1,30

Number of Supernodes Selection Criteria: In the clustering based methods (kC,

kMeuc, kMcos and tenClustS), we resorted to the Elbow method [83] to estimate the number

of supernodes. This method accounts for the compactness of the clusters as a measure of

clustering quality. The estimate associated with this method is generally a trade-o� between

clusters size and compactness. Despite being clustering-based, the representations in which

each of the previous methods work are di�erent and, therefore we applied the Elbow method

for each of such representations. The results are depicted in table 3.3. Only the �rst data

window was used for estimating the number of clusters (supernodes), this number was used

for all the remaining windows.

In the case of WSBM, which is not explicitly a clustering-based approach, we estimated the

the number of supernodes for this method as the rounded mean of the values estimated in the

other approaches in order to guarantee that all the methods generated summaries of similar

complexity.

3.4.6 Illustrative Examples of Summaries

In order to have a more complete understanding of the di�erences between the summaries

generated by each method, we illustrate one example of the summarisation results.

To facilitate the visualization of the summarisation results, we considered one of the smaller

networks under study, enron. In particular, we considered the �rst time window of this

network. It is noteworthy that the behaviour here illustrated was also observed when
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Table 3.3: Number of supernodes estimated.

Dataset WL WSBM kC kMeuc kMcos tenClustS
enron 3 15 17 17 16 9

6 13 15 16 13 7
9 12 13 15 12 9
12 12 13 12 13 10

friends 3 10 12 9 10 8
6 9 10 9 10 8

dblp 3 15 14 16 17 11
6 15 15 17 17 11

hepth 3 17 19 14 17 16
6 15 17 14 19 11
9 13 16 11 11 15
12 14 16 12 15 11

infectiouspatterns 3 14 13 15 13 16
6 15 17 14 17 12
9 17 20 16 21 12
12 17 16 19 21 11

considering other time windows and datasets and, therefore, it is a good representative of

the di�erences between the summarisation methods.

With the goal of facilitating the visualization of the network window, we collapsed the network

timestamps into a single static network, which we refer to as view. The view was obtained

as follows:

• the nodes in the view are all the nodes that had at least a link in the time window;

• two nodes are linked by an edge in the view if they were linked in at least one timestamp

of the window.

The views generated using each of the �ve methods are shown in �gure 3.4, along with the

corresponding summaries. The supernode assignment is illustrated in the view using the

colors so that two nodes have the same color if they were grouped in the same supernode by

the corresponding method.

When observing �gure 3.4, we observe two distinct behaviours. Regarding kC, we observed

that it captured some community structure, as it was the case of the supernodes associated

with colors orange (nodes 46, 49, 84, 104, 105 and 119) and dark green (nodes 47, 88, 94

and 100). This result may be justi�ed by the fact that, within communities, the nodes are

expected to share more neighbours. A similar result was observed when considering kMcos.

kMeuc and tenClustS exhibited quite di�erent results from the previous two approaches.

In particular, we veri�ed that in these two approaches, the supernodes grouping took into

account the activity level of the nodes. For example, the nodes of the supernode associated
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(a) kC nodes grouping

(b) kC summary

(c) kM nodes grouping

(d) kM summary

Figure 3.4: Enron �rst window views with nodes coloured according to their supernode
grouping (left) and corresponding summary (right) generated with the �ve methods under
study.
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(e) kM nodes grouping

(f) kM summary

(g) tenClustS nodes grouping

(h) tenClustS summary

Figure 3.4: Enron �rst window views with nodes colored according to their supernode
grouping (left) and corresponding summary (right) generated with the �ve methods under
study.
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(i) WSBM nodes grouping

(j) WSBM summary

Figure 3.4: Enron �rst window views with nodes colored according to their supernode
grouping (left) and corresponding summary (right) generated with the �ve methods under
study.

with the grey color were usually nodes of small degree. On the other hand, the most active

nodes, 21 and 64, which were associated with superior roles in the company, were de�ned as

singleton supernodes.

As consequence of the previously exposed, we also veri�ed that the supernodes size in kC

and kMcos summaries, was balanced while in kMeuc and tenClustS, we obtained a large

supernode containing the less active nodes and the remaining supernodes size was small.

Finally, with respect to WSBM, its behaviour was similar to kC and kMcos, in the sense

that in these three approaches the size of the supernodes was balanced. Nonetheless, the

community-like grouping observed in kC and kMcos was not modeled by WSBM.

With the goal of studying in more detail the di�erences between the summaries generated,

we also analysed the distribution of the non-zero weights of the superedges (whose details are

depicted in �gure 3.5). We veri�ed that the non-zero weights associated to the kC and kMcos
summaries ranged in ]0; 0, 6[, while, in kMeuc and tenClustS, the values ranged in ]0, 1]. This

may be explained by the grouping obtained in each method: in kMeuc and tenClustS the size

of most supernodes was smaller than in the other two approaches, thus, allowing to capture
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locally stronger connection patterns. In the WSBM summary, we observed that the interval

of values assumed by the superedges weights was the most compact (with all the values being

less than 0.2).
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Figure 3.5: Boxplot of the non-zero weights in the summaries adjacency matrices obtained
by the methods under study.

As previously exposed, this analysis was also carried out for the remaining time windows and

datasets. The patterns observed were similar and were as follows:

• the size of supernodes generated by WSBM, kC and kMcos was balanced, while in

kMeuc and tenClustS, we obtained a large supernode and the remaining were small;

• the non-zero superedges weights assumed a wider range of values in kMeuc and ten-

ClustS.

This observations suggest that the distance metric considered in k-means has a strong impact

on the structure of the summary: on the one hand, the summaries generated using cosine

distance (kC and kMcos) captured the global connection patterns; while on the other hand,

the summaries generated using euclidean distance (kMeuc and tenClustS) allowed to capture

local patterns.

Thus, the summaries generated using the cosine distance approximated all the network

�evenly�. However, when considering the euclidean distance, we observed that there were

small sub-regions which were considerably more well approximated than the remaining, which
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were neglected. In this sense the summarisation results obtained by each metric may be seen

as complementary.

3.4.7 Performance Results

A quality summarisation method is expected to generate summaries with low reconstruction

error and compression cost in few time. With this in mind we evaluated the methods

regarding each of the evaluation metrics previously described.

Reconstruction Error The performance results in terms of reconstruction error are shown

in table 3.4. In this context, we observed that the method exhibiting the best performance

(lowest reconstruction error) was generally kMeuc, followed by our method tenClustS. We

also observed that kMcos was the clustering-based method generating the summaries with

the highest errors. This results were, in some way expected, due to the behaviour observed

in Section 3.4.6: when considering the euclidean metric, the strong patterns were captured

in the summary thus decreasing the reconstruction error; nonetheless, few information was

preserved regarding the less active nodes. As consequence, the summarisation results associ-

ated with the cosine metric had higher error as both weak and strong patterns were �equally�

approximated. It is noteworthy that the impact of not preserving the strong connectivity

patterns in terms of approximation quality is higher than when not preserving the information

of the less active nodes.

Table 3.4: Average reconstruction error (RE) results (with best performance marked in bold).

Dataset WL WSBM kC kMeuc kMcos tenClustS
enron 3 2,83±0,61(E-2) 2,36±0,50(E-2) 1,97±0,44(E-2) 2,41±0,50(E-2) 2,24±0,49(E-2)

6 2,93±0,41(E-2) 2,57±0,38(E-2) 2,21±0,39(E-2) 2,63±0,37(E-2) 2,48±0,40(E-2)
9 2,80±0,45(E-2) 2,65±0,36(E-2) 2,34±0,37(E-2) 2,70±0,35(E-2) 2,49±0,40(E-2)
12 2,72±0,32(E-2) 2,70±0,29(E-2) 2,47±0,31(E-2) 2,74±0,24(E-2) 2,54±0,32(E-2)

friends 3 3,58±0,18(E-2) 3,62±0,18(E-2) 2,63±0,08(E-2) 3,69±0,18(E-2) 2,93±0,16(E-2)
6 3,70±0,07(E-2) 3,72±0,11(E-2) 2,75±0,05(E-2) 3,73±0,14(E-2) 2,94±0,08(E-2)

dblp 3 3,16±1,48(E-3) 3,22±1,52(E-3) 3,02±1,43(E-3) 3,21±1,52(E-3) 3,07±1,45(E-3)
6 3,19±0,85(E-3) 3,22±0,86(E-3) 3,10±0,83(E-3) 3,22±0,86(E-3) 3,14±0,84(E-3)

hepth 3 3,89±1,05(E-5) 3,78±1,09(E-5) 3,59±1,04(E-5) 3,84±1,14(E-5) 3,50±1,01(E-5)
6 4,15±1,05(E-5) 4,18±1,08(E-5) 4,02±1,03(E-5) 4,16±1,07(E-5) 4,05±1,05(E-5)
9 4,19±0,84(E-5) 4,20±0,84(E-5) 4,11±0,82(E-5) 4,22±0,85(E-5) 4,09±0,82(E-5)
12 4,22±0,48(E-5) 4,23±0,48(E-5) 4,15±0,47(E-5) 4,24±0,48(E-5) 4,17±0,48(E-5)

infectious 3 2,52±0,81(E-5) 2,53±0,82(E-5) 2,45±0,81(E-5) 2,53±0,82(E-5) 2,44±0,81(E-5)
patterns 6 2,69±0,39(E-5) 2,68±0,39(E-5) 2,66±0,40(E-5) 2,68±0,39(E-5) 2,66±0,39(E-5)

9 2,61±0,18(E-5) 2,60±0,18(E-5) 2,58±0,18(E-5) 2,60±0,18(E-5) 2,59±0,18(E-5)
12 2,62±0,19(E-5) 2,62±0,19(E-5) 2,60±0,19(E-5) 2,62±0,19(E-5) 2,61±0,19(E-5)

Compression Cost The performance of the methods in terms summary compression cost

are shown in table 3.5. we observed that tenClustS generated the summaries with the lowest
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compression costs in almost all settings. Nonetheless, when we took a deeper look at the

results, we veri�ed that the lowest compression costs were associated with the method in

which fewer supernodes were considered (recall table 3.3), as it would be expected.

Table 3.5: Average compression cost (CC) results (with best performance marked in bold).

Dataset WL WSBM kC kMeuc kMcos tenClustS

enron 3 1384±157 1016±162 1331±197 754±102 510±60
6 1202±82 883±95 1190±129 728±68 278±9
9 903±227 843±96 1180±122 713±51 595±45
12 789±159 940±58 827±62 876±69 713±51

friends 3 407±26 599±55 453±31 452±50 284±16
6 355±26 552±29 456±0 520±24 324±21

dblp 3 1437±301 1545±34 1597±170 2761±173 895±54
6 1632±111 1796±8 2323±60 2870±16 960±9

hepth 3 1702±476 1483±333 1057±163 1139±263 1408±218
6 1443±168 1877±228 1329±141 1850±329 895±49
9 1221±67 1745±152 943±24 720±127 1729±47
12 1460±64 1758±175 1111±53 1185±186 952±21

infectiouspatterns 3 470±64 356±51 600±87 356±51 700±122
6 575±43 567±45 453±38 567±45 419±45
9 729±67 683±50 489±38 740±76 347±16
12 1152±61 521±56 732±34 746±73 305±30

Running Time As it can be observed in table 3.6, tenClustS was the method exhibiting

the lowest running times in the majority of the settings. In particular, we observed that, in

the larger datasets (dblp, hepth and infectiouspatterns), the running time of tenClustS

was considerable smaller than WSBM and kMeuc. In this context we also observed that

WSBM generally reached the maximum time allowed in these datasets.

Table 3.6: Average running time results (with best performance marked in bold).

Data WL WSBM kC kMeuc kMcos tenClustS

enron 3 3,16±2,62(E+0) 4,27±0,32(E-1) 1,30±0,15(E+0) 2,71±0,20(E-1) 2,12±1,00(E-1)
6 3,15±1,35(E+0) 3,21±0,25(E-1) 8,93±0,82(E-1) 2,16±0,11(E-1) 1,51±0,69(E-1)
9 1,63±1,13(E+1) 3,60±0,54(E-1) 8,98±0,86(E-1) 2,03±0,09(E-1) 3,32±0,55(E-1)
12 3,05±1,60(E+1) 4,08±0,17(E-1) 7,02±0,52(E-1) 2,35±0,09(E-1) 3,58±0,66(E-1)

friends 3 1,00±0,26(E+1) 4,19±1,17(E-1) 5,15±0,91(E-1) 1,59±0,07(E-1) 1,12±0,05(E-1)
6 1,19±0,10(E+1) 2,27±0,10(E-1) 4,61±0,29(E-1) 1,68±0,03(E-1) 1,32±0,07(E-1)

dblp 3 6,17±0,07(E+2) 1,49±0,52(E+1) 3,38±2,02(E+2) 6,39±1,92(E+0) 5,13±2,35(E-1)
6 6,20±0,07(E+2) 3,19±0,37(E+1) 4,84±0,81(E+2) 7,74±1,00(E+0) 7,93±1,95(E-1)

hepth 3 2,53±1,27(E+2) 1,01±0,26(E+0) 1,22±0,44(E+1) 6,78±1,49(E-1) 9,86±4,17(E-1)
6 4,99±1,00(E+2) 3,62±0,86(E+0) 4,40±2,35(E+1) 1,62±0,35(E+0) 1,14±0,59(E+0)
9 5,49±0,52(E+2) 8,60±1,63(E+0) 7,68±2,52(E+1) 2,26±0,73(E+0) 2,03±1,26(E+0)
12 6,17±0,14(E+2) 1,78±0,23(E+1) 2,49±1,14(E+2) 5,17±0,68(E+0) 2,35±1,02(E+0)

infectious 3 3,78±1,27(E+2) 6,06±1,30(E-1) 8,70±3,73(E+0) 3,82±0,57(E-1) 3,78±0,35(E-1)
patterns 6 6,01±0,21(E+2) 1,88±0,30(E+0) 3,45±1,01(E+1) 1,05±0,15(E+0) 2,71±0,24(E-1)

9 6,12±0,04(E+2) 5,15±0,88(E+0) 9,79±2,75(E+1) 2,20±0,26(E+0) 3,27±0,35(E-1)
12 6,21±0,07(E+2) 1,13±0,22(E+1) 2,35±0,44(E+2) 3,97±0,69(E+0) 3,10±0,20(E-1)
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General Observations According to our empirical evaluation, we observed that:

• kMeuc generated the summaries with the lowest reconstruction error, however, it

required considerable more time than kMcos and tenClustS, specially in the largest

datasets.

• tenClustS required the lowest running times while generating summaries with low

compression cost, without compromising the quality of the summary in terms of recon-

struction error.

3.5 Summary

In this chapter, we proposed tenClustS, which is, to the best of our knowledge, the �rst tensor

decomposition-based method for structural pattern summarisation in dynamic unweighted

and undirected graphs. The proposed approach resorts to tensor decomposition in order to

capture the dynamics of the networks, while reducing the dimensionality and complexity of

the networks representation.

Based on our experiments, we veri�ed that tenClustS exhibits a trade-o� performance be-

tween summary reconstruction error and running time. In particular, tenClustS was generally

the fastest method while generating quality summaries in terms of both compression cost and

reconstruction error.

Finally, the comparison of the summaries generated by the methods under study unveiled

the importance of the metric being used in the clustering-based methods. In particular, we

veri�ed that it is a critical parameter: summaries generated with the cosine metric capture

the global structure of the network, while the summaries generated with the euclidean metric

capture more local but stronger patterns. Because of this, the output associated with each

metric can me regarded as complementary.
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Chapter 4

Event Detection

In dynamic social networks, the nodes behaviour is expected to evolve over time. Nonetheless,

such evolution is not random. In this context, an abrupt interaction peak that strongly

deviates from the previously observed interactions is considered as an (anomalous) event.

Events are dubbed as global if they involve the majority of the nodes in the network or as

local if they involve just a small subset of nodes. Since global events usually a�ect the overall

structure of the network, they are more easily detected.

While tensor decomposition has been successful in spotting global events, its ability to spot

local events has not been studied. To address this limitation, in this chapter we present WIN-

dowed TENsor Decomposition Event Detector (WINTENDED), a tensor decomposition-

based approach which allows the discovery and speci�cation of anomalous events at both

global and local levels.

4.1 Introduction

Most of the existing event detection methods for time-evolving networks assume that the

anomalous events occur at a global level (a�ecting the overall structure of the network).

In this context, the detection of events is usually driven by tracking global properties of the

network over time. Then, an event is detected at time t if these properties values substantially

deviate from the ones observed in the remaining instants. For example, in a monthly network

of emails exchanged between employees of company �X�, the announcement via email that

the company will close is expected to generate a lot of discussion between all the employees

thus leading to the substantial increase of the number of emails exchanged in that month.

This type of phenomena may be regarded as a global event.

Nonetheless, it is important to take into account that, if the anomaly occurs at a (more) local

level then it may not a�ect the global properties of the network thus remaining undetectable
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to these type of detectors. In the previous email network example, the scheduling of an im-

portant meeting of employees in department �A� will lead to the increase of emails exchanged

between the employees of such department but is not expected to a�ect the communications

between employees of other departments (and therefore, can be regarded as a local event).

Currently the detection of local anomalies is still an issue as most of the detectors are designed

to detect global structural modi�cations. In order to tackle this issue, we propose WINdowed

TENsor Decomposition Event Detector (WINTENDED), a new method which combines

tensor decomposition with statistical tools to spot simultaneously local and global events.

Additionally, our method allows the identi�cation of the anomaly source nodes, a feature not

usually incorporated in event detectors.

The contributions of this chapter are as follows:

• We propose WINTENDED, an event detection method able to spot both local and

global events and to specify the anomaly sources.

• We provide empirical evidence of the potential of the proposed method.

This chapter is organized so that in Section 4.2 we explain the problem addressed and in

Section 4.3 we describe the proposed event detector. The experiments are presented in

Section 4.4. In Section 4.5 we present the concluding remarks.

4.2 Problem Adressed

As previously mentioned, an event is an abrupt interaction peak thus, being associated with

either the densi�cation or sparsi�cation of a (sub)network. In this chapter, we focus on the

densi�cation events as usually they are more meaningful. For example, in a internet tra�c

�ow data, abrupt densi�cation may be due to malicious activity. Nonetheless, we highlight

that our approach can be adapted to handle also sparsi�cation events.

Based on this, the problem addressed is formally de�ned as follows.

Given a time-evolving network G, characterized by the sequence of adjacency

matrices over time instants 1 to L, {AtG}Lt=1, �nd the instants of time τ , with

1 ≤ τ ≤ L, for which there is a substantial density increase of a subnetwork G′.

In other words, we aim at �nding subgraphs G′, formed by a subset of interacting entities in

the network, such that:

sτG′ − stG′ > δ, ∀t 6= τ , (4.1)

for δ > 0 and stG′ denoting the density of subgraph G′ at time t.
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Figure 4.1: Illustration of two densi�cation events in a time-evolving social network: a global
event, which involves all the nodes (in (a)) and a local event, involving just 5 nodes (in (b)).
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Figure 4.2: Schema of the proposed method steps.

The event is dubbed as global if it involves the majority of the nodes and as local, otherwise.

For illustration purposes, in �gure 4.1 we show a global and a local event in the same network.
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4.3 Proposed Method

Idea: Since tensor decomposition has been successfully applied to �nd communication

patterns in evolving networks, the idea exploited in our approach is to search for abrupt

interaction peaks in such communication patterns.

Data type and modeling: The network is processed using a sliding window so that each

time window,W, is modeled as a 3-order tensor formed by the sequence of adjacency matrices

over a time period of L timestamps.

Method: Given a network time window W, WINTENDED encompasses the following

stages, summarised in algorithm 5 and illustrated in �gure 4.2.

1. Decomposing the tensor window: In the �rst stage of our method we extract

the communication patterns by resorting to tensor decomposition. In particular, we

decompose W with R components using CP-APR (recall Section 2.1.4) so that we

obtain:

W =

R∑
r=1

ar ◦ br ◦ tr

with ar,br, tr ≥ 0. Then, each concept r, given by {ar,br, tr} , represents a communi-

cation pattern which induces a subgraph G′r whose nodes belong to one of the following

sets: {
nodesar = {i : ar(i) > 0}

nodesbr = {i : br(i) > 0}
. (4.2)

This process is illustrated in �gure 4.3.
Pattern Finding 
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nodes 

nodes 

time 

pattern 1 pattern R 

Figure 4.3: Illustration of the pattern �nding in WINTENDED within the time window.
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2. Identifying the anomaly candidates: In concept r, vector tr may be interpreted

as a time-series of the activity of subgraph G′r. Therefore, a densi�cation of type (4.1)

in G′r, corresponds to an extreme high outlier in tr.

Based on this, for each concept r, we search for an instant of time τ , such that tr(τ) >

Q3+3IQR, where Q1 and Q3 are the �rst and third quartile, respectively, and IQR =

Q3 − Q1 [41]. If such a τ is found, then concept r is �agged as anomaly candidate.

This process is illustrated in 4.4 and is applied through ispeak in algorithm 5.

x 𝜏 

𝜏 

concept 1 

concept R 

 

…
 

candidate 

not a candidate 
…
 

 

 

W 

Figure 4.4: Illustrative example of the anomaly candidate identi�cation in a given time
window W: candidates are the concepts for which the time factor vector has an isolated
extreme outlier.

3. Characterizing and verifying the anomaly candidates: Since the communication

patterns found by tensor decomposition may be capturing noise, the aim of this stage

is to discard the anomaly candidates that do not represent an event.

Let Ĝ′r = (V ′r , E
′
r) be the subgraph associated with the anomaly candidate, where:

(a) the nodes set is given by V ′r = nodesar ∪ nodesbr ;

(b) the adjacency matrix is given by AĜ(nodesar , nodesbr) so that AĜ = ar ◦br ◦tr(τ)

(with τ being the anomalous instant).

Then, we carry out a �cleaning procedure� by discarding from the subgraph Ĝ′r the nodes

which are less active in the original networks as they do not substantially contribute

to the densi�cation event.

Finally, we quantify the anomaly level of the candidate Ĝ′r based on three statistics:

• the density of the subgraph induced by V ′r in the original network;

• the average weighted node degree of the graph induced by V ′r in the original

network;
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Table 4.1: Illustrative example on how to rank the events detected by the ensemble based on
the number of models detecting them and the number of nodes in the anomalous subgraph
(activity score). Higher ranks are associated with more abnormality.

τ1 τ2 τ3 τ4
number of models detecting the event 4 2 3 2
event activity score 0.5 0.53 0.33 0.67
abnormality rank 1 4 2 3

• the rate of edges in the anomaly candidate subgraph Ĝ′r that are also present in

the original graph,

measured in each timestamp of the time span.

If for all those three vectors, the anomalous timestamp τ is an isolated extreme outlier,

then the candidate is �agged as event. Otherwise, it means that the candidate does

not substantially deviate from the behavior observed in the remaining time window.

This process is carried out when executing isanomaloussubgraph in algorithm 5.

For each component �agged as event, we store (i) the anomalous instant τ ; (ii) an

activity score which accounts for the size of the corresponding subgraph, computed as

the |nodesar∪nodesbr |N , where N is the total number of nodes in the network; and (iii) the

event pattern corresponding to the concept r: {ar,br, tr}.

Ensemble In order to deal with the choice of the window length L and the number of

components R, we propose the usage of an ensemble. One of the aims of this ensemble is

to make the method more robust to seasonality e�ects arising from using a single window

length. Likewise, by varying the number of components we are able to understand the

�strength�/relevance of the pattern.

Let {Ri}Mi=1 and {Li}Ki=1 be the set of numbers of components and the set of window lengths

to be considered, respectively. Then, we generate a model Mij using Ri components and a

window length of Lj for each possible combination. Finally, the results of the several models

are combined. The events are ranked according to the number of models detecting them and

their number of participants (that is, their activity score). In more detail, the anomaly score

is as high as the number of models detecting it. Moreover, if two events are detected by the

same number of models, then the event involving more nodes (having a higher activity score)

is considered to be more anomalous.

As illustrative example, let us consider an ensemble of 6 models that detected the events

in table 4.1. Then τ1 is considered the most anomalous event, followed by τ3. Since both

τ2 and τ4 were detected by the same number of models, we have to check their activity score

so that the event associated with a larger subgraph is considered more anomalous. Therefore,

τ4 is considered more anomalous than τ2.
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Figure 4.5: Event detected by WINTENDED in enron network.

Speci�cation For each event detected, WINTENDED provides a set of vectors as the one

shown in �gure 4.5 which allows the identi�cation of the nodes participating in the event and

the event instant (in this case the anomaly is caused by node 83 at instant 104).

4.4 Experiments

4.4.1 Datasets

In this chapter we used one synthetic network (synth) and �ve real-world time-evolving

networks (stockmarket [40], challengenet [125], enron [123], manufactoring [104] and

reality_blue). The �rst three datasets were used to validate our method while the remain-

ing were used as case studies. A summary of these networks is presented in table 3.1, with

the time granularity considered depicted in the timestamp column. It should be noted that

in the case of reality_blue, we discarded the weekends as the network activity in such

periods was extremely low.

With respect to the validation networks, synth was generated so that it simulated a network.

To achieve our aim, we decomposed dblp [43] (used in the previous chapter) using CP with 3

components. From the factor matrices obtained, we kept only the factor matrices associated

with nodes. Then we generated an arti�cial temporal factor matrix (modelling a periodical

cosine, a linear trend and a white noise vector with 60 elements each). Finally, we combined

the two node factor matrices extracted from dblp with the arti�cial temporal factor matrix

using (2.6) (with R = 3). Given the resulting synthetic time-evolving network, three local
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Algorithm 5: Window processing of WINTENDED

Input : network window W ∈ RN×N×L, number of decomposition components R
Output: event instants (event_log), event scores (event_activity) and event patterns

(event_patterns)

//Initialize event register
event_log ← {};
event_activity ← {};
event_patterns← {};
//Decompose tensor window
{A,B,T} ← nnCP (W, R);

//Identify event candidates
candidates← {};
instants← [];
for r = 1 : R do

[iscandidate, τ ]← ispeak(T(:, r));
if iscandidate then

candidates← candidates ∪ {r};
instants(r)← τ ;

//Verify candidates
for c ∈ candidates do

//Extract the nodes associated with the anomalous subgraph G′ of candidate c
nodes1 ← {i : A(i, c) > 0} (according to (4.2));
nodes2 ← {i : B(i, c) > 0} (according to (4.2));
τ ← instants(c);
//Check if the density of the anomalous subgraph G′ is substantially higher at the
anomalous instant
isevent← isanomaloussubgraph(nodes1, nodes2, τ);
if isevent then

event_log ← event_log ∪ {τ};
event_activity ← event_activity ∪ { |nodes1∪nodes2|N };
event_patterns← event_patterns ∪ {[A(:, c),B(:, c),C(:, c)]};
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anomalies were injected into the network by replacing three subgraphs with less than 10

nodes with a dense subgraph extracted from a di�erent network (infectious [72]).

Given the synthetic network and the real-world networks, we applied a logarithmic scale to

the edge weights of the weighted networks (all but stockmarket), similarly to [24].

In stockmarket, there are two known events, at instants (semesters) 24 and 30, according

to Costa [40].

In challengenet, a timestamp represents a 10 minute period and there are three known

events, at timestamps 376, 377 and 1126, caused by an abrupt node degree increase. We

further simulated three other events. We increased the degree of a node by at least a factor

of 10× at instants 500 and 612 and introduced a clique subgraph at instant 1053.

It is important to take into account that the local events injected into the networks were

of three di�erent types, described in table 4.3. In synth the events consisted of nodes

interacting with a subset of nodes with which they did not interact in the remaining instants.

In challengenet, we arti�cially increased the degree of a given node, not necessarily very

active, and we injected a clique subgraph within a subset of interacting nodes.

Table 4.2: Datasets Summary.

Dataset Type Timestamp Size
synth Synthetic network - 500× 500× 60
stockmarket Stock market network 6 months 30× 30× 42
challengenet Computer communication network 10 minutes 125× 125× 1304
enron E-mail exchange network week 184× 184× 155
manufacturing E-mail exchange network day 167× 167× 272
reality_blue Proximity network day 94× 94× 175

Table 4.3: Types of local events injected in the networks.

Dataset Injected local events Number of events
synth Instant substantial interaction between nodes 3

which do not interact often
challengenet Instant substantial node increase 2

Instant substantial subnetwork densi�cation 1

4.4.2 Design of Experiments

The networks were processed using a sliding window with no overlap. The window length was

de�ned according to the time granularity of the network: we used 5, 10 and 15 timestamps

for synth and reality_blue; 8, 10 and 12 timestamps for stockmarket; 9,18 and 36

timestamps for challengenet; 8, 12 and 16 weeks for enron; and 7, 14 and 21 timestamps for

manufactoring. The number of components used was 15, 25, 35, 50 and 75 for all networks.
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4.4.3 Baselines

Since our aim is not only improve over the existing tensor decomposition-based approaches

but also over the state-of-the-art detectors, we considered two baselines: the tensor decom-

position reconstruction error (TDRE) [85] and the recent ensemble approach proposed by

Rayana et al. (SELECTV) [126].

In TDRE, we also considered an ensemble of models with varying number of components.

Timestamps were ranked based on the reconstruction error and the rankings were averaged

across the multiple models.

Regarding SELECTV, we generated three models by varying the node feature being consid-

ered. In particular, we considered the time-series of the weighted degree (w), the unweighted

degree (uw) and the number of triangles in the node egonet (t). We refer to SELECTVf to

denote the model resulting from applying SELECTV using feature f , for f ∈ {w, uw, t}.

4.4.4 Evaluation Metrics

Since WINTENDED does not provide an anomaly score to all the timestamps, we evaluated

the methods under study using top-k precision. This metric is computed as the rate of true

events within the top-k anomaly scores, where k is the number of true events.

4.4.5 Results

In order to provide a clear picture of the accuracy results, we start by providing an analysis

of the results in each of the networks separately and then present the general observations.

Table 4.4: Top-k precision in the validation networks.

synth stockmarket challengenet

TDRE 0,33 0,00 0,17
SELECTVw 0,00 1,00 0,67
SELECTVuw 0,00 1,00 0,83
SELECTVt 0,00 1,00 0,83
WINTENDED 1,00 1,00 1,00

Synth WINTENDED exhibited the best performance by detecting all the injected local

events. TDRE detected one of the events and SELECTV variants did not spot any of the

known events (see table 4.4). We further analysed the (false) events detected by the baseline

approaches and observed that two of such events were associated with global interaction

peaks, which resulted from the usage of a white noise factor. It is noteworthy that WIN-

TENDED also �agged those instants as events, nonetheless, their anomaly score was lower.
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Stock Market The events were successfully spotted by both SELECTV variants and

WINTENDED. Since these events involved the majority of the notes, they may be regarded as

global. Nevertheless, TDRE failed at detecting them. This poor performance may be justi�ed

by the constant change of the network, which was not captured by tensor decomposition of all

network timestamps. In other words, when applying tensor decomposition to the structure

containing all the timestamps, tensor decomposition captures the predominant behaviour

and neglects the others. Therefore, local dynamics such are not captured.

Challenge Network Once more, WINTENDED exhibited the best performance, while

TDRE exhibited the poorest performance. SELECTV variants failed mainly at detecting the

event at time 500. We recall that this event was originated by substantially increasing the

degree of a few active node. Therefore, while the degree of the anomalous node at instant 500

was substantially larger than in the remaining timestamps, still it was not substantially larger

than the degree of the other nodes. This means that SELECTV variants were able to spot

the global events but were not so successful in detecting the local events as WINTENDED.

Case Studies As case studies, we considered three social networks with no available ground

truth on the events.

Since the number of events found in these networks was large (suggesting that isolated

communications between a small number of individuals are common and should not be

regarded as anomalies), we discarded the events associated with smaller subgraphs (lower

activity scores). In particular, for each dataset, we discarded the events associated with an

activity score lower than the median score, as they are expected to model a regular but very

local pattern.

The analysis of the top-12 events for each network is as follows.

Case Study 1: Enron The top-12 events �agged by WINTENDED were weeks 39, 84,

90, 104, 107, 120, 125, 126, 127, 129, 144 and 145. In order to validate the abnormality of

the events �agged, we analysed each of the anomalous subgraphs:

• week 39 corresponded to the interaction peak between Liz Taylor and the other 14

employees �agged in the event. In particular, we veri�ed that Taylor did not interacted

often with them (except in week 39), however the topic of the conversation was not

available on the e-mails log [1].

• by checking the network topology, we veri�ed that week 84 corresponded to the inter-

action peak within the subgraph formed by Richard Shapiro (Vice President), James

Ste�es (Vice President), Je� Dasovich (Government Executive) and Steven Kean (Vice

President) - the individuals �agged in the anomaly. In particular, by checking the email
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log, we veri�ed that these employees were involved in preparing a document on the Gas

issues and, because of this, exchanged an abnormal quantity of emails on the topic.

• we veri�ed that Monique Sanchez only interacted with Darron Giron, Jason Wolfe,

Kam Keiser and Phillip Love (the individuals �agged in the anomaly) at weeks 90 and

127, with week 90 being the interaction peak.

• in week 104, we veri�ed that Jonh Lavorato (CEO) sent an email to almost all employ-

ees scheduling a meeting. Likewise, in week 107, Lavorato makes an announcement

regarding the American Electric Power.

• in week 120, Kenneth Lay emails almost all employees on two distinct topics: Associate

/Analyst Program Woldwide and the announcement on managing directors meeting.

• we observed that week 125 corresponded to the interaction peak between Louise Kitchen

and the other individuals �agged in the anomaly: John Lavorato (CEO), Mike Swerzbin

(Trader) and Kevin Presto (Vice President). No information on the contents of the

emails exchanged was available.

• according to WINTENDED, an anomaly in week 126 is caused by Sally Beck, and we

veri�ed that the time of the anomaly corresponded to the highest active week of Beck,

with considerable di�erence from the remaining.

• week 127 corresponds to the interaction peak between Monique Sanchez and the remain-

ing individuals �agged in the anomaly: Matthew Lenhart, Mike Grigsby (Manager) and

Scott Neal (Vice President). In this week, the discussion topic was on the EOL liquidity,

whose goal was to increase it.

• in week 129, Mike Grigsby attains his interaction peak. In particular some of those

emails concern the Portland Fundamental Analysis Strategy meeting.

• week 144 corresponds to the interaction peak of Liz Taylor.

• in week 145, we detected an anomaly associated with Kam Keiser. We veri�ed that

this week corresponded to this employee peak of interaction in terms of both distinct

email destinations and number of emails sent.

Additionally, we analysed the structure of the subgraph induced by the nodes �agged as

anomalous in each event r (that is, the subgraph with nodes in V ′r ). In particular, we

measured the density of these subgraphs over time and veri�ed that their number of edges

at the time of the event was at least 7× larger than the average number of edges in all

timestamps.

Therefore, all of the instants spotted by WINTENDED were associated with a structural

abnormality (in this case, abrupt subgraph densi�cation). Some of the anomalies occurred
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at a global scale, involving the majority of the employees, while others involved less than 5

employees.

From the events detected by WINTENDED, 2 of them were also �agged by TDRE and 7

by SELECTV variants (all of them corresponding to global events). We investigated the

other instants �agged by the baselines but we were not able to associate them with strong

communication peaks.

Case Study 2: Manufacturing On the contrary to enron, there is no information on

the content of the e-mails exchanged nor the employees roles in the manufacturing company.

Therefore, we validated our results based only on the topological (structural) properties of

the subgraphs associated with the top events.

We observed that the instants �agged by WINTENDED were associated with the interaction

peak between a given employee and the remaining. Moreover, we measured the number of

edges in the subgraphs formed by such employees and we veri�ed that their number of edges

at the time of the event was 20× larger than the average number of edges in all instants.

The top 12 events �agged by SELECTV were in general coincident with the ones �agged by

our approach, with a few exceptions. We further analyzed these exceptions and veri�ed that

either they corresponded to a node interaction peak or no anomaly evidence was found.

Finally, there was a substantial di�erence between the top-12 events �agged by TDRE and

the ones �agged by WINTENDED and SELECTV. In this context, we believe that TDRE

was compromised, once more, by the dynamics of the network.

Case Study 3: Reality Mining We veri�ed that the top-12 instants found by WIN-

TENDED corresponded to an interaction peak between the individuals �agged. In particular,

the number of edges in the anomalous subgraph at the instant �agged was at least 4× the

average number of edges across all the instants. It is noteworthy that two of the �agged

events were not detectable by tracking network nor node-level features as they corresponded

to the interaction peak of a subgraph (not the network nor a node interaction peak).

We also applied the baseline methods to this network and veri�ed that TDRE did not �ag

any instants in common with the ones �agged by WINTENDED nor SELECTV variants.

On the other hand, SELECTV variants �agged 6 instants in common with WINTENDED.

We analysed the remaining events detected by SELECTV variants and observed that they

corresponded mainly to local interaction peaks. Additionally, SELECTV also �agged (i)

instants for which we were not able to �nd evidence of abnormality and (ii) day 21 of

October 2004 (not �agged by our method), which corresponded to a substantial interaction

peak of a subgraph. With respect to the events �agged by TDRE, we observed that they

corresponded to instants in which the network activity was extremely low, and consequently
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were not appropriately modelled, leading to a high reconstruction error.

General Observations According to our empirical study, we observed that:

• TDRE performance was generally poor, which we believe is due to high dynamics of

the networks. In other words, if the networks under study exhibited a regular/constant

behavior over time then it is expected that TDRE is able to spot global events.

Nonetheless, in such scenario most of the existing methods would also be able to spot

the global events.

• SELECTV variants exhibited competitive performance regarding the detection of global

events, but their ability to detect more local events was limited. In particular, we

observed that it was not able to detect the local events in synth. We believe that its

inability to detect such type of events arises from the fact that this type of events may

not a�ect the node features that the method considers. In other words, a subset of

nodes interacting with a �completely� di�erent set of nodes may not a�ect node features

such as the degree thus remaining undetectable.

• WINTENDED was able to detect not only global events (exhibiting as good or better

performance than the baselines in stockmarket), but also local events, which are more

di�cult to spot (exhibiting the best performance in synth).

4.5 Summary

In this chapter, we proposed a new perspective regarding the application of tensor decom-

position to event detection in time-evolving social networks. In more detail, our method,

WINTENDED, consists of processing the network using a sliding window thus allowing to

capture more local dynamics of the networks. Moreover, we resort to statistical tools in order

to automatically �nd the communication patterns associated with events.

While most of existing approaches for event detection focus on events which a�ect the overall

global structure of the network, the main novelty of our method is its ability to discover

anomalies at both global and local levels. Additionally, our method also �nds the nodes

causing the anomaly.

We applied our method to one synthetic and �ve real-world networks and provided evidence

of the its capacity to unveil the unexpected communication peaks, even if they occurred

between a small subset of nodes.
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Chapter 5

Pattern Discovery

While tensor decomposition has been shown its potential in mining time-evolving networks,

it is important to take into account that the quality of the patterns found highly depends

on the number of components chosen. For example, using a larger number of components

leads to a tensor that better approximates the network, however, does it mean that all of

such components represent a unique and relevant pattern? The aim of this chapter is to

address this question. In particular, we (i) provide evidence of the inadequacy of the state-

of-the-art methods for estimating the number of components when the goal is to carry out

pattern discovery and (ii) also propose a new method for estimating this parameter to use in

time-evolving network tensor data, which allows the discovery of the relevant communication

patterns.

5.1 Introduction

When applied to time-evolving networks, CANDECOMP/PARAFAC (CP) decomposition

generates a set of components (also referred to as factors or concepts) that capture the

communication patterns in the data. The number of concepts to be found must be provided

and its choice is not straightforward. Currently, one can �nd works addressing the problem

of �nding a suitable number of components in CP, however their focus is not on tensors

modelling time-evolving social networks thus compromising the quality of the estimation, as

it is demonstrated in this chapter. Therefore, in order to �nd the number of components

that leads to the discovery of the most relevant patterns in the time-evolving networks, we

exploit the redundancy of the components found. We note that a relevant feature of CP is

that it allows the discovery of �overlapping� concepts, which means that the same node may

participate in di�erent patterns/concepts (which usually map communities). Nonetheless,

since no constraints are imposed, we may end up with redundant concepts, that is, with

concepts that model the same pattern (as we show in �gure 5.1). Such redundant components
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Figure 5.1: Two similar components obtained when decomposing enron with 12 components.

may have value in terms of approximation quality, however, with respect to the exploratory

analysis of the tensor data, they do not provide useful information. Based on this and on

the assumption that when the number of components is suitable, then few redundancy is

observed in the decomposition result, we propose NOn-Redundant Model Order estimator

(NORMO), a method to estimate the number of factors in CP so that no redundancy is

observed in the decomposition result. Moreover, we study how the absence of redundancy in

the concepts is related with the true CP model order.

Thus, the main contributions of this chapter are the following:

• We propose a new method, NORMO, which aims at estimating the number of com-

ponents in CP decomposition so that no redundancy is observed in the result and one

can capture the relevant patterns in network data;

• We carry out an extensive comparative study of the several state-of-the-art estimators,

(along with our method) in wide variety of datasets, ranging from synthetic data to

real-world networks;

• We provide evidence that our method estimates are accurate regardless of the type

of data under study and that the state-of-the-art estimators are not appropriate for

time-evolving networks, while our approach is.

The rest of the chapter is organized as follows: in Section 5.2 we formulate the problem

addressed; in Section 5.3 we present our solution to the problem depicted in the precedent

Section; in Section 5.4 we carry out the experiments to validate our approach and �nally in

Section 5.5 we present a summary of the chapter.
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5.2 Problem Addressed

We formulate the problem addressed as follows.

Given a tensor modelling a time-evolving social network, �nd the number of

components to use in CP tensor decomposition so that the most relevant patterns

are unveiled and there is no pair of components modelling the same pattern.

It is important to note that the problem of estimating the number of components has

been approached as an application-independent problem. In other words, the proposed

methods are assumed to work regardless of the purpose/processing of the decomposition

result. Nonetheless, in this chapter we propose a strategy which is speci�cally designed for

exploratory analysis.

5.3 Proposed Method

As illustrated in �gure 5.1, since tensor decomposition is driven by the minimization of the

reconstruction error, we may obtain two concepts that model the same pattern and whose

combination leads to an improvement of the approximation quality. Therefore, when carrying

out exploratory analysis, there is no gain in considering both such components.

Idea: We propose a method to estimate the number of components so that each component

models a distinct pattern, thus avoiding redundancy. In particular, we consider that two

concepts model the same pattern if the factor vectors are (mode-wise) similar. As similarity

measure, we consider correlation because it captures the similarity in the shape of the vectors,

and does not account for their magnitude.

Method: For the sake of simplicity, let us consider a three-order tensor X ∈ RN1×N2×N3 ,

whose CP decomposition with R components is given by the set of concepts {ar,br, cr}R1 .
Then, for each pair of components r1, r2 de�ned as {ar1 ,br1 , cr1} and {ar2 ,br2 , cr2}, re-
spectively, we compute the mode-wise correlations as follows: c1(r1, r2) = |corr(ar1 ,ar2)|;
c2(r1, r2) = |corr(br1 ,br2)| and c3(r1, r2) = |corr(cr1 , cr2)|, with corr(u,v) denoting the

correlation between vectors u and v. Then, we compute the overall similarity between

components r1 and r2 as the average correlation across the modes, that is, as:

cA(r1, r2) =
c1(r1, r2) + c2(r1, r2) + c3(r1, r2)

3
. (5.1)

Components r1 and r2 are �agged as redundant if cA(r1, r2) > δ, for some 0 < δ < 1.
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Algorithm 6: NORMO
Data: tensor X ; maximum number of components Rmax; correlation threshold δ
Result: estimated model order R̂; number of redundant components nredundantcomps
R̂ = 1;
for R=2:Rmax do

[A,B,C] = CP (X , R);
for r1=1:R do

for r2=r1+1:R do
c1(r1, r2) = |corr(ar1 ,ar2)|;
c2(r1, r2) = |corr(br1 ,br2)|;
c3(r1, r2) = |corr(cr1 , cr2)|;
compute cA(r1, r2) according to (5.1);

nredundantcomps(R) =
∑R

r1=1(
∑R

r2=r1+1(cA(r1, r2) > δ) ≥ 1);

if (nredundantcomponents(R) > 0) and (R̂==1) then

R̂ = R− 1;

In algorithm 6 we present the steps carried out in NORMO.

Besides the tensor for which we aim at estimating the order, X , our method requires

the setting of a maximum number of components to be tested, Rmax, and a threshold δ

which controls the level of redundancy allowed. Given these data, our method consists of

sequentially decomposing tensor X with an increasing number of components, from 2 to

Rmax. When decomposing the tensor with R components (2 ≤ R ≤ Rmax), the average

correlation between each pair of components found is computed using (5.1) and the number

of redundant pairs of components is computed as the number of component pairs exhibiting

an average correlation higher than δ. In case we �nd at least a pair of redundant components

(that is, nredundantcomponents(R) > 0), then it means we are considering components in

excess (for pattern discovery). Based on this, the CP model order, R̂, is estimated as the

maximum value such that no redundant components are detected when decomposing with R̂

(or less) factors but at least one redundant component pair is found when decomposing with

R̂+ 1 factors. In the end, the method returns the estimation on the number of components

(R̂) and a vector whose entry i is the number of redundant pairs of components found when

decomposing with i factors.

5.3.1 Notes on the Search Method

In algorithm 6 we are considering an exhaustive search, that is, we search through the whole

search space, de�ned as S = {2, 3, . . . , Rmax}. In which case, we require the decomposition

of the tensor Rmax − 1 times.

Nonetheless, since the number of pairs of redundant components is greater than zero when
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using an excessive number of components, one can drive the search more e�ciently by

considering binary search [32]. In binary search, the search space is sequentially reduced

to half. In more detail, given the search space S, we set R̂ = (Rmax+2)
2 and count the pairs of

redundant components found when decomposing with R̂ components. If no redundant pair

of components is found when decomposing with R̂ components, it means that the suitable

number of components is at least R̂ and we update the search space to {R̂, . . . , Rmax}.
Otherwise, it means that we are using too many components and we update the search

space to {2, . . . , R̂ − 1}. This procedure is repeated until the search space is composed by

only two values and R̂ is estimated as the maximum of those values for which no redundant

components are found. It is noteworthy that, despite leading to similar estimates, the binary

search variant only requires log(Rmax) decompositions, in the worst case.

For simplicity, in this chapter we consider only the exhaustive search, since it also provides

the number of redundant pairs when decomposing the data with up to Rmax components

and, as it is demonstrated in Section 5.4.4, such information unveils details on the hierarchical

structure of the data.

5.4 Experiments

5.4.1 Datasets

While our method was designed to target time-evolving networks tensor data, the rationale

guiding it is general and, consequently, it can be applied to other types of tensor data.

Based on this and taking into account that the true CP model order of real-world time-

evolving networks is usually not known, we considered (i) a set of synthetic tensor datasets,

(ii) a set of real-world data with known model order and (iii) a set of time-evolving networks.

Datasets in (i) and (ii) were used to validate our approach and also to provide a deeper

understanding of the limitations of the existing approaches. The networks in (iii) were used

as case studies.

Synthetic datasets with known model order: To generate synthetic tensor data we

used the create_problem tool of the MATLAB Tensor Toolbox [18], as it has been exposed

in [117]: given R factor vectors for each mode, we combine them using (2.6) to obtain the

tensor. In this way, the resulting tensor has a model order of R.

Additionally, we considered multiple tensor sizes, model orders and sparsity levels. In this

context, synth<R>_<N>_<type> denotes a synthetic dataset of size N ×N ×N , with a true

model order of R, either dense (<type> = 1) or sparse (<type> = 2).
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Table 5.1: Summary of the real-world datasets.

Dataset Model Order Size Density (%) Missing Values
amino 4 5× 201× 61 99,96 7

dorrit 4 27× 121× 24 94,92 3

wbnmr 4 25× 24× 1600 100,00 7

sugar 4 268× 571× 7 100,00 7

tongue 3 13× 10× 5 100,00 7

enron unknown 184× 184× 44 0,70 7

friends unknown 129× 129× 18 0,95 7

dblp unknown 2723× 2723× 9 0,16 7

challengenet unknown 125× 125× 1304 0,86 7

reality_calls unknown 68× 68× 11 1,27 7

Real-world datasets with known model order: We considered the following datasets:

amino [80], dorrit [130], wbnmr [47], sugar [27] and tongue [63], for which the true CP model

order has been discovered by experts.

Real-world networks with unknown model order: The real-world networks we consid-

ered were the (monthly) email network enron [123], the internet tra�c network challengenet

[125], the co-authorship network dblp [43] (identical to the one considered in chapter 3) and

the (monthly) phone call networks friends [5] and reality_calls [48].

The real-world datasets are summarised in table 5.1.

5.4.2 Baselines

We compared the results of our method with the ones obtained from state-of-the-art CP

model order estimators such as DIFFIT [149], CORCONDIA [29], ARD [107], ConvexHull

[34] and generalized N-D MDL [95].

5.4.3 Experimental Setting

In NORMO, we set δ = 0.7 (which was the most appropriate value according to our

preliminary experiments) and we ran the method 5 times in each dataset, reporting the

mode of the estimates.

With respect to CORCONDIA, we used a threshold of 0.5 as suggested in [29]. Moreover, in

Tucker model-oriented approaches, ARD and ConvexHull, [Rmax, Rmax, Rmax] was respec-

tively, the initial candidate and the maximum number of components. It is noteworthy that

these methods provide a number of components to consider in each mode. However, such

estimation can to insightful on the true CP model order.
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Rmax was set to 25 components for all methods, except when dealing with the synthetic

datasets of larger model order, in which case Rmax was set to 35.

5.4.4 Results

In this Section we present the estimation results and analyse them. We start by analysing the

results for each type of tensor data separately and then we point out the general observations.

Since the methods execution was not always successful, we de�ne the notation presented in

table 5.2.

Table 5.2: Results tables notation.

Symbol Meaning
† the method estimated the maximum number allowed
\ the method ran out of memory
? the method did not �nish within 7 hours
� the method did not �nd a better solution than the initial candidate
− the method did not �nish due to other reasons (not listed)

Synthetic datasets with known model order By analysing the results (table 5.3), we

observed that the majority of the methods provided an estimate for the datasets with sizes

50× 50× 50 and 100× 100× 100. In particular, CORCONDIA, ConvexHull, N-D MDL and

NORMO provided accurate estimates.

In the larger datasets most methods failed either due to time limitations (as it occurred

with DIFFIT) or memory limitations (as it occurred with CORCONDIA and ConvexHull).

Additionally, ARD approaches were not able to �nd a better estimate than the initial

candidate.

Since N-D MDL and our approach, NORMO, were the only methods that successfully

provided an estimate for all the synthetic datasets, we carried out a deeper analysis on

their results. To meet our purpose, we measured the estimation absolute error, computed as

|true_model_order− estimated_model_order|, and we analysed its distribution across all

these datasets. The corresponding histograms are shown in �gure 5.2.

Since a right-skewed distribution is associated with lower errors it represents more accurate

estimates. Therefore, NORMO was generally more accurate than N-D MDL, exhibiting

equally accurate estimates in ≈ 63% of the datasets and more accurate estimates on ≈ 27%

of the datasets.

Finally, we would like to note that in the larger datasets, in which CORCONDIA failed to

provide an estimate, we applied its AUTOTEN adaptation but obtained poor estimates, with

an absolute error ranging from 4 to 20 components.
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Table 5.3: Estimation results in the synthetic datasets with known model order (correct
estimates in bold).

True Model DIF CORC ARD ARD Convex N-D NOR

Order FIT ONDIA ridge sparse Hull MDL MO

synth10_50_1 10 ? 10 � � [8 8 8] 8 10

synth10_50_2 10 ? 13 [25 14 9] � [10 10 10] 10 10

synth11_50_1 11 ? 10 � � [6 6 6] 8 10

synth11_50_2 11 ? 11 � � [9 9 9] 9 11

synth12_50_1 12 ? 13 [8 5 5] � [11 11 11] 11 11

synth12_50_2 12 ? 14 [12 12 12] [11 11 11] [12 12 12] 12 12

synth13_50_1 13 ? 12 � � [12 12 12] 12 12

synth13_50_2 13 ? 12 [12 12 12] � [12 12 12] 12 12

synth14_50_1 14 ? 13 [9 5 5] � [11 11 11] 11 11

synth14_50_2 14 ? 15 [11 11 11] [11 11 11] [10 10 10] 13 14

synth15_50_1 15 ? 14 [9 5 4] � [7 7 7] 11 12

synth15_50_2 15 ? 15 [15 15 15] [14 14 14] [15 15 15] 15 15

synth10_100_1 10 ? 10 � � [10 10 10] 10 10

synth10_100_2 10 ? 10 � � [10 10 10] 10 10

synth11_100_1 11 ? 13 [24 14 9] � [8 8 8] 10 11

synth11_100_2 11 ? 13 [25 25 24] [8 9 9] [10 10 10] 10 12

synth12_100_1 12 ? 13 [24 14 9] � [12 12 12] 11 11

synth12_100_2 12 ? 12 � � [12 12 12] 12 12

synth13_100_1 13 ? 11 [23 10 10] � [11 11 11] 11 11

synth13_100_2 13 ? 13 � [13 13 13] [13 13 13] 13 13

synth14_100_1 14 ? 14 [25 25 16] � [13 13 13] 13 13

synth14_100_2 14 ? 14 � � [14 14 14] 14 14

synth15_100_1 15 ? 15 [25 23 11] � [13 13 13] 13 15

synth15_100_2 15 ? 15 � [14 14 14] [15 15 15] 15 15

synth20_200_1 20 ? / � � / 18 18

synth20_200_2 20 ? / � � / 20 19

synth21_200_1 21 ? / � � / 18 19

synth21_200_2 21 ? / � � / 20 20

synth22_200_1 22 ? / � � / 19 20

synth22_200_2 22 ? / � � / 22 22

synth23_200_1 23 ? / � � / 21 21

synth23_200_2 23 ? / � � / 23 23

synth24_200_1 24 ? / � � / 21 22

synth24_200_2 24 ? / � � / 24 24

synth25_200_1 25 ? / � � / 22 22
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synth25_200_2 25 ? / � � / 25 25

synth20_300_1 20 ? / � � / 19 20

synth20_300_2 20 ? / � � / 20 20

synth21_300_1 21 ? / � � / 19 18

synth21_300_2 21 ? / � � / 20 21

synth22_300_1 22 ? / � � / 22 21

synth22_300_2 22 ? / � � / 22 21

synth23_300_1 23 ? / � � / 21 22

synth23_300_2 23 ? / � � / 23 23

synth24_300_1 24 ? / � � / 23 22

synth24_300_2 24 ? / � � / 23 23

synth25_300_1 25 ? / � � / 23 23

synth25_300_2 25 ? / � � / 25 25
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Figure 5.2: Histograms of the number of datasets with a given absolute error in the synthetic
datasets.

Real-world datasets with known model order The results of applying the several

methods under study to the real-world tensor datasets are shown in table 5.4. We observed

that CORCONDIA, generally exhibited accurate estimates, nonetheless it is noteworthy that

the datasets were of small scale (similarly to what was observed in the synthetic datasets, its

performance would possibly be a�ected if larger datasets were considered). DIFFIT estimates

were also accurate in 3 of the datasets, while in the other 2 it failed due to running time

limitations. ConvexHull and generalized N-D MDL failed in dorrit due to the existence

of missing entries. Once more, ARD variants were not able to �nd a better estimate than

the initial candidate, possibly due to their assumptions on the factors distribution. Finally,

NORMO provided accurate estimates in all but the tongue dataset.
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Table 5.4: Estimation results in the real-world datasets with known model order (correct
estimates in bold).

True Model DIF CORC ARD ARD Convex N-D NOR
Order FIT ONDIA ridge sparse Hull MDL MO

amino 4 3 4 � � [3 3 3] 11 4
dorrit 4 ? 4 [13 6 13] [10 5 12] - - 4
wbnmr 4 ? 3 � � [24 25 25] - 4
sugar 4 6 4 � � [1 4 4] 550 5
tongue 3 3 3 � � [2 2 1] 6 1

We further analysed the number of pairs of redundant components detected by our method

(see �gure 5.3), paying particular attention to the datasets whose NORMO estimates were

not correct, sugar and tongue.

With respect to sugar, the additional component detected by our method is also referred

in literature [27]. Moreover, we observed that no redundant components were detected

when decomposing the dataset with 9 and 11 components. We veri�ed that there were

true components (obtained when decomposing the tensor with 4 components) which were

split into �subcomponents� when decomposing with 9 and 11 components. In other words,

there were complex patterns modelled by the true components which were �decomposed� into

the subpatterns de�ning it. In �gure 5.4 we illustrate the relation between one of the true

components and its 3 subcomponents (obtained when decomposing with 9 components). We

can observe that the true component (�gure 5.4(a)) is a complex pattern which is described by

3 subpatterns, found when decomposing with 9 components (�gure 5.4(b)). The similarity

between the true component and its subcomponents is clear when observing the sum of

the subcomponents (�gure 5.4(c)). This behavior suggests the existence of a hierarchical

structure in the data. In particular, the patterns discovered became more re�ned as we

increased the number of components to 9 and 11, and more local patterns were discovered.

Thus, we obtained di�erent levels of granularity in the patterns. To the best of our knowledge

this kind of analysis has not been exploited in the literature and allows us to understand the

patterns in the data.

In tongue, redundant components were found in all the decompositions obtained because

of the small size of the dataset (13 × 10 × 5), which biased the computation of the factors

correlation.

Real-world time-evolving networks While the previous datasets were used to validate

the rationale guiding our approach, we now target our interest type of datasets: time-evolving

social networks.

The estimation results are shown in table 5.5. Once more, DIFFIT and ARD generally

failed at providing an estimate. On the other hand, Convex Hull and N-D MDL estimates,
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Figure 5.3: Number of pairs of redundant components detected according to NORMO (with
true CP model order in red).
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Figure 5.4: Illustration of the hierarchy found in the patterns discovered: (a) factors
of the true component; (b) three subcomponents of the true component, detected when
decomposing with 9 components (each color represents a di�erent subcomponent); (c) sum
of the subcomponents factors in (b).
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Table 5.5: Estimation results in the real-world datasets with unknown model order.

DIF CORC ARD ARD Convex N-D NOR
FIT ONDIA ridge sparse Hull MDL MO

enron ? 12 � � [2 2 2] 183 11
dblp ? \ � � [25 25 7] 2722 †
challengenet ? 7 � � \ 123 5
friends ? † [25 25 17] [25 25 12] [25 25 16] 128 †
reality_calls ? 11 � � [2,2,2] 92 11

which were accurate on the synthetic datasets, were not enlightening for these networks.

In particular, the estimates of N-D MDL were approximately the number of nodes in the

network, which seems excessive as it means that we would have almost a pattern to describe

the evolution of each node in the network, which contradicts the social nature of these

networks. CORCONDIA provided estimates which were close to the ones obtained with

NORMO, with the exception of dblp in which CORCONDIA exhibited memory issues. We

applied AUTOTEN to dblp and obtained an estimate of 4 components, which seems too

small, given the complexity of the network.

Additionally, it is important to note that the estimate of NORMO for enron is consistent

with the analysis in [117]. Furthermore, all of the patterns found when decomposing with 11

components were distinct, but there were two similar concepts when decomposing with 12

components (as demonstrated in �gure 5.1. In the case of friends and reality_calls, our

method suggests the existence of more than 25 relevant components.

Pattern Discovery in time-evolving Social Networks Last but not the least, we are interested

in understanding how relevant are the patterns found by NORMO in time-evolving networks.

To achieve this goal we took into account that, as previously exposed in Section 2.2.2, the

concepts found by tensor decomposition may be interpreted as communities. In particular,

we decomposed each network using the number of components estimated by NORMO and for

each component r we extracted the community mapped by it and its time activity. Then, we

generated a network by aggregating all the timestamps in which community r is active (there

is a link between two nodes in the aggregated network if the nodes were connected in at least

one of the active instants of community r). Given the network representing the interactions

occurred when community r was active, we applied the Louvain community detection to

it and searched for a match between the communities found and the community derived

from concept r. Regardless of the network and concept considered, we were able to �nd

either an exact or approximate match between the communities extracted from the tensor

decomposition components and the Louvain communities. We also analysed the weighted

degree of the nodes in the communities found by tensor decomposition and veri�ed that they

were the ones associated with the stronger communication patterns.

From our analysis we also found particular behaviours which are worth mentioning in the
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chalengenet and reality_calls networks. Regarding chalengenet, we observed that the

two connected components of the network were well separated in the decomposition result.

In other words, there were two groups of nodes in the network between which there were

no links and each of the concepts found by tensor decomposition was associated with only

one of those groups: there was no concept whose active nodes belonged to both connected

network components. This behaviour supports the suitability of the number of components

estimated (if a smaller number of components was used, such split may not be captured).

Additionally, in reality_calls, we observed that no redundant components were found when

decomposing with 16 and 17 components (according to NORMO). We further investigated

the patterns found when decomposing with such a number of components and observed that

they corresponded to communication patterns either with a lower number of participants

or with weaker strengths (lower edges weights), when comparing with the patterns found

when using 11 components. Thus, the concepts discovered when decomposing with 16/17

components were also meaningful but represented more local patterns. This result suggests

that an exhaustive search approach can lead us to the discovery of more local patterns.

General Observations From a general point of view, our study allowed the understanding

of the limitations of the existing approaches and their inability to provide valuable estimates

for time-evolving network tensor data. In more detail, we observed the following:

• DIFFIT and ConvexHull exhibited e�ciency issues which may have been caused by the

need of running Tucker tensor decomposition approximately R3
max times. We recall,

that since our method was speci�cally designed for CP models, the search space is more

reduced and it requires at most Rmax CP decompositions.

• CORCONDIA generally provided accurate estimates in the smaller datasets but ex-

hibited scalability issues when applied to the larger synthetic datasets (of sizes 200 ×
200 × 200 and 300 × 300 × 300) and dblp. The estimates provided by AUTOTEN in

the larger datasets were not accurate.

• ARD did not �nd the true model order in most of the datasets. Possibly, deviations

on the assumptions of the factors distribution may a�ect the estimation power of the

method. In other words, ARD is not appropriate for the types of data considered in

this study.

• generalized N-D MDL, which provided accurate estimates in the synthetic datasets,

substantially overestimated the model order in real-world datasets such as sugar,

enron, dblp, challengenet, friends and reality_calls. These results suggest the

unsuitability of generalized N-D MDL for time-evolving networks.

• NORMO provided the most accurate estimates in the synthetic datasets, while also

exhibiting competing accuracy in the real-world datasets with know model order.
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Moreover, the estimates for the time-evolving networks seemed appropriate according

to information available in the literature.

5.5 Summary

In this chapter we proposed a new approach, NORMO, for estimating the number of factors

to use in CP tensor decomposition. While our method was speci�cally designed for pattern

discover in time-evolving networks, we provide evidence of its suitability for other types

of data as well. The main novelty of our approach comes from taking into account the

redundancy of the factors as a measure of quality of the decomposition result.

We carried out an empirical evaluation of NORMO, along with other estimators, and veri�ed

that our method provided accurate estimates in both synthetic and real-world tensor data,

while the other methods exhibited limitations such as poor estimation accuracy and e�ciency

issues.

Our analysis supports the suitability of NORMO regarding its ability to set the number of

components so that the relevant patterns are kept and no redundant concepts are found.

Moreover, we show how our method can be used to discover hierarchies within the patterns

found. In other words, it allows the �decomposition� of complex patterns into the simpler

patterns forming it. Such a property has not been incorporated in remaining CP model order

estimators.
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Chapter 6

Parameter Tuning in Link Prediction

As previously exposed, selecting the number of components in tensor decomposition models is

a key aspect which may determine its success or failure at a given task. While in the previous

chapter we presented evidence of this issue when targeting pattern discovery, the aim of this

chapter is to address the problem of selecting the parameters of tensor decomposition-based

link predictors, which include (but are not restricted to) the number of components and

the forecasting parameters. In particular, we show the inadequacy of the existing methods

for estimating the number of components when applied to this task. On the contrary to

the existing approaches (which consider the estimation of the tensor decomposition model

parameters independent from the estimation of forecasting parameters), we propose a strat-

egy which jointly estimates the parameters of the tensor decomposition model and posterior

forecasting. Our approach is validation-driven and resorts to optimization techniques to drive

the search.

6.1 Introduction

In temporal link prediction the goal is to take advantage of the network links history to

predict the future state of the network. It is expected that by incorporating information of

more than one timestamp, one can improve the prediction results.

With this assumption in mind, tensor decomposition appears as one of the approaches

considered for this task. As described in 2.2.3.2, the idea exploited in these type of predictors

consists of applying forecasting techniques to the temporal factor matrix (obtained via tensor

decomposition, speci�cally CP) and then combining the forecast with the remaining factor

matrices to estimate the future state. Despite the existing research on the topic, it is not clear

how one should set the parameters of this type of models: are the existing approaches for

estimating the number of components adequate when applied for link prediction purposes?

How can we make a more appropriate choice based on the available data?
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Moreover, it is also important to understand: are the tensor decomposition-based predictors

sensitive to the initialization? Does the initialization impact the performance of these

predictors?

In this chapter, we aim at addressing these questions. In particular, we carry out a study on

the performance of tensor decomposition-based predictors and propose a parameter setting

method to improve its prediction performance. In more detail, the contributions are as

follows:

• We provide an evidence that the initialization is a critical aspect regarding the perfor-

mance of tensor decomposition-based link predictors;

• We empirically show that the state-of-the-art estimators for the number of components

in tensor decomposition models are not appropriate for link prediction oriented tasks;

• We propose a general parameter tuning framework for tensor decomposition-based link

prediction.

The rest of the chapter is organized as follows. The problem addressed is explained in Section

6.2. The proposed solution is introduced in Section 6.3 and the experiments details, namely

the results and corresponding analysis, are discussed in Section 6.4. A summary of the work

is presented in Section 6.5.

6.2 Problem Addressed

Link prediction tensor decomposition-based methods exploit the entities × entities × time
structure of the network to predict future links through CP decomposition [46, 142, 102, 13]

(as illustrated in 2.12). Therefore, we refer to these methods as CP-based link predictors.

As referred in Section 2.2.3.2, what di�erentiates these approaches is mainly the forecasting

algorithm considered and the usage of additional (coupled) information.

Despite the introduction of the �rst methods in the early 2010's, few further research has

been carried out on the topic. A property of these predictors, which makes their usage

discouraging, is the need of parameter tuning to jointly estimate the number of components in

CP and the forecasting parameters to obtain a good predictor. To the best of our knowledge,

this problem has not received enough attention in literature. In particular, it is assumed

that the existing strategies designed for estimating the number of CP components, including

CORCONDIA [29] and its adaptation AUTOTEN [117], lead to quality predictors.

Besides this assumption, it is also noteworthy that the impact of the tensor decomposition

initialization has not been studied in this type of link predictors and, consequently, it is not

clear how it impacts their performance.
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Based on this, our aim is to address the following questions:

Given a CP-based link predictor,

• Does the initialization has a strong impact on the performance of the

predictor?

• Are the existing methodologies for estimating the number of components

in CP suitable for these predictors?

• How can we set the model parameters in order to obtain a competitive

performance?

6.3 Proposed Method

We propose a parameter setting approach for tensor decomposition-based link predictors

that jointly estimates the number of components (as well as other CP parameters) and the

forecasting parameters. We refer to our method as CPLP-tuner and to the corresponding

tuned model as tuned CP-based link predictor (tCPLP). The method details are presented

in algortihm 7, illustrated in �gure 6.1 and described below.

Idea: The estimation of the parameters to use in tensor decomposition and the estimation

of the forecasting parameters in these predictors have been treated as �separated� processes.

In other words, the selection of CP parameters, namely the number of components, does

not take into account the target application of the decomposition result. This gap arises the

question one whether we can bene�t from taking a holistic perspective of the CP-based link

predictors when estimating their parameters. Our method explores such idea.

Data modelling: The network is modelled as a 3-order tensor X formed by the sequence

of adjacency matrices over a time period of T timestamps.

Method: In order to address the problem of parameter setting and initialization in CP-

based link predictors we propose a two stage procedure in which the CP parameters are

primarily estimated through validation and then the forecasting parameters are estimated

based on the CP model obtained using the parameters estimated in the �rst stage.

Brie�y, the idea exploited in the �rst stage consists of taking a supervised approach via

validation to drive the search for the CP parameters. In order words, the search is driven to

maximize the predictor performance on the validation set.
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In the second stage, we use the output of the decomposition, namely the temporal factor

matrix (which can be interpreted as multivariate time-series), to drive the search for the best

forecasting parameter values.

The goal of considering two stages, instead of optimizing all the involved parameters simul-

taneously, is to carry out an application-driven approach. On one hand, it is important

to note that, without validation instants, it would not be possible to drive a performance

maximization search. On the other hand, since the forecasting parameters depend on the

temporal factor matrix of the decomposition result, it is expected that we bene�t from

considering the �nal model matrix instead of the training one.

Based on this, let α denote the set of parameters to estimate in CP (including the number

of components) and β the set of parameters in the forecasting algorithm. Then the method,

encompasses the following two steps:

1. CP Parameters Estimation In a landmark window setting, as the one considered,

it is expected that the number of factors that appropriately captures the network

dynamics in instants 1 to T − 1, does not deviate considerably from the one suitable

for the network at instants 1 to T (for a large T ). Based on this, we split the available

timestamps into training and validation periods.

Then, for each initialization we are interested in, we search for the CP parameters

values that maximize the predictor performance on the validation period. Since the

performance of the predictor is not a di�erentiable function, we consider the Nelder-

Mead optimization method (whose details are provided in appendix C). It searches

for the parameter values such that the model constructed on the training instants

maximizes the performance on the validation instant. In order to avoid over�tting

associated with the usage of �xed forecasting parameters, the search also includes such

parameters. This procedure is carried out when running apply_neldermead(Xtrain,
Xval, {U,V,W}) in algorithm 7.

Given the distinct models and their performance on the validation set, the CP pa-

rameters and initialization are chosen as the ones modelling the best predictor in the

validation set. The estimated forecasting parameters are discarded.

2. Forecasting Parameters Estimation At this stage, we set the training period as the

set of all timestamps available (including the ones previously considered for validation).

Then, we decompose the training network data using the parameters estimated in the

previous stage, namely, the number of CP components and initialization.

Given the temporal factor matrix, we apply the existing approaches to estimate the

forecasting parameters (through forecast_tunning(Ĉ) in algorithm 7). We recall that

this step depends on the forecasting method considered.
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For the sake of simplicity, we consider only a forecasting technique. In particular, we consider

exponential smoothing forecasting (since it was already used in this context [142]). Because

of this, the forecasting parameter to be estimated is the smoothing factor δ. In more detail,

each column i of the temporal factor matrix is a time series xi and, since we are considering

exponential smoothing, then{
si(t1) = xi(t0)

si(t+ 1) = δxi(t) + (1− δ)si(t)
,

the goal is to �nd α such that si(t) ≈ xi(t). To achieve this, we employ generalization of the

traditional method to estimate the smoothing factor in univariate time-series [57]. Thus, for

a multivariate time-series {xi}R1 and a smoothing factor of δ, we compute the approximation

error of the exponential smoothing model of each time-series xi, for i ∈ {1, . . . , R}, as
ei = 1

T−t0+1

∑T
t=t0

(si(t) − xi(t))2. The overall error across the the time-series is computed

as 1
R

∑R
i=1 ei.

Algorithm 7: CPLP-tuner

Input : network X ∈ RN×N×T and initial factor matrices {Ui,Vi,Wi}P1
Output: decomposition model {Â, B̂, Ĉ} and forecasting parameters α̂

//Split the network instants into training and validation sets
Xtrain ← X (:, :, 1 : T − 1);
Xval ← X (:, :, T );

//Apply Nelder-Mead with each factor matrices initialization to �nd for each
initialization the set of parameters that maximize the performance in the validation set.
accuracy ← 0;
for i ∈ {1, 2, . . . , P} do

[α̂i, β̂i, accuracyi]← apply_neldermeads(Xtrain,Xval, {Ui,Vi,Wi});
if accuracyi > accuracy then

α̂← α̂i;
β̂ ← β̂i;
accuracy ← accuracyi;
{Û, V̂,Ŵ} ← {Ui,Vi,Wi};

//Generate the decomposition model with the estimated CP parameter values α̂ and
initial factor matrices {Û, V̂,Ŵ} on the full network
{Â, B̂, Ĉ} ← cp(X , α̂, {Û, V̂,Ŵ});
α̂← forecast_tunning(Ĉ);
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6.4 Experiments

6.4.1 Datasets

In this set of experiments we considered 4 unweighted directed time-evolving networks. The

networks are in a people×people× time tensor format so that each temporal slice represents

the adjacency matrix of the network at that time. In a pre-processing stage, the edges

weights of the networks were discarded and, in the phone call networks, missing calls and

calls involving individuals not under study at the time the data was collected we ignored.

Additionally, we considered 3 di�erent time granularities for each network: days, weeks and

months. Therefore, in the tensor the dimension time may refer to one of these three levels.

The properties of the networks are summarised in table 6.1.

Table 6.1: Datasets summary.

Network Content Periodicity Size
friends Phone calls Daily 129× 127× 505

Weekly 129× 127× 73
Monthly 129× 127× 18

enron Email exchange Daily 184× 184× 1317
Weekly 184× 184× 189
Monthly 184× 184× 44

reality_calls Phone calls Daily 67× 68× 318
Weekly 67× 68× 46
Monthly 67× 68× 11

social Phone calls Daily 80× 78× 297
Weekly 80× 78× 44
Monthly 80× 78× 10

6.4.2 Design of Experiments

Unless speci�ed the contrary, for each dataset and time granularity, we processed the networks

using a landmark window. In particular, for time instant t, the model was tuned using the

previous t− 1 available timestamps and evaluated on timestamp t.

6.4.3 Evaluation Metrics

The problem of link prediction in networks has traditionally been addressed as a classi�cation

problem in which the classes are �there is a link between the nodes� and �there is no link

between the nodes�.

Because of this, the evaluation metrics used include classi�cation evaluation metrics such
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as the area under receiver operator characteristic curve (AUCROC) and the area under

precision-recall curve (AUCPR).

In the speci�c case of link prediction in sparse networks, the nonexistence of a link is much

more likely than its existence. Therefore predictions of type �there is no link the nodes� are,

in some cases, less valuable. With this issue in mind, Yang et al. [161] suggested the usage

of AUCPR, which we considered in this chapter.

6.4.4 Baselines

Our contribution is twofold: we propose an optimization-driven parameter tuning for CP-

based link predictors and we are interested not only in comparing the performance of our

(tuned) model with the performance of a CP-based link predictor whose number of compo-

nents is estimated using a state-of-the-art approach, but also its general prediction quality.

In this context, for the �rst contribution part, we compared the tuning approach suitability

with the state-of-the-art method AUTOTEN [117] for selecting the number of components

considered.

Regarding the second part of the contribution, we compared its performance with a link

prediction method called Katz scores [78, 93], originally designed for static networks and

later adapted to time-evolving scenarios [46].

Katz scores quantify the similarity between two nodes based on the paths linking them. In

particular for two nodes v1 and v2 in a static network, the Katz score of the pair is computed

as:

sKS(v1, v2) =

∞∑
l=1

βl|paths<l>v1,v2 |

with β ∈ (0, 1) and |paths<l>v1,v2 | being the number of length-l paths between v1 and v2. In

this approach, shorter paths have more importance than the longer ones.

Since nowadays networks are usually large, computing all the paths linking two nodes is

computational demanding. Therefore, in such cases, only paths of length less or equal than

a given values (L) should be considered. In our work, we set β = 0.0005 and L = 4, which

are according to [93, 155].

The idea exploited when employing this strategy to time-evolving networks consists of weightly

collapse the network adjacency matrices into a single matrix which is then used to compute

the Katz scores [46]. Most recent timestamps are associated with larger weights.
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6.4.5 Results

In�uence of the Initialization With the goal of studying the impact of the initialization

of the CP-based link predictors, we �xed all model parameters and varied only the initial-

ization. In this setting, for each dataset, we considered a number of components such that

the CP decomposition had ≈ 30% of �tting and a smoothing factor of 0.5.

Since our aim is to provide evidence of the in�uence of the initialization, for simplicity, we

show the results for only a test set for each dataset. This test set was chosen as a period

with high activity.

According to Table 6.2, we observed some performance variability in the majority of the

settings. In some settings such as in friends dataset with weekly and monthly granularities,

such variability was almost negligible. However, there were oscilations of ≈ 0.1 in AUCPR be-

tween the best and worst models, as it was the case of daily enron and weekly reality_calls.

These results indicate that the CP initialization should be taken into account as a possible

source of variability in this type of link predictors.

Table 6.2: AUCPR of the CPES models over 10 di�erent random CP initializations.

Datasets Periodicity mean min max max−min
friends Daily 0,100 0,083 0,124 0,040

Weekly 0,647 0,636 0,663 0,027
Monthly 0,653 0,636 0,662 0,027

enron Daily 0,188 0,134 0,233 0,099
Weekly 0,398 0,379 0,430 0,051
Monthly 0,378 0,361 0,393 0,032

reality_calls Daily 0,098 0,064 0,132 0,067
Weekly 0,622 0,552 0,658 0,106
Monthly 0,385 0,359 0,403 0,044

social Daily 0,662 0,632 0,683 0,051
Weekly 0,439 0,399 0,469 0,069
Monthly 0,360 0,314 0,398 0,085

Comparison Study on the Parameter Setting Approaches At this stage, we are

interested in comparing the performance of a CP-based link predictor obtained using our

tuning approach to select the number of components with one in which AUTOTEN is used

to estimate such number.

In order to make a fair comparison, we �xed the exponential smoothing factor to 0.5. The

results for the four datasets are shown in �gures 6.2-6.5. It is noteworthy that, we ran the

experiment with other exponential smoothing factor values, nevertheless, the results were

identical and for simplicity were omitted.

For each dataset and time granularity we show two plots: the left plot shows the performance
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of the predictor while the corresponding right plot shows the number of components estimated

for each training set by the two methods in study (the proposed approach and AUTOTEN).

In general, we observed that the CP-based link predictors tuned with our approach outper-

formed the ones in which we used AUTOTEN. A closer look between the performance and

the number of components plots, allows us to observed the following patterns:

• tCPLP outperformed the CP-based link predictor tuned with AUTOTEN in the ma-

jority of the test sets in all settings;

• the number of components estimated by the proposed tuning approach was usually

larger than the ones estimated with AUTOTEN;

• the model tuned with AUTOTEN mostly outperformed tCPLP when the number of

components estimated by such method was larger than in tCPLP (as it can be observed

in reality_calls dataset - �gure 6.4).

These results suggest that the number of components assumes a key role regarding the

suitability of the model. Moreover, it also suggests that the state-of-the-art AUTOTEN is

not appropriate to estimate the number of components when the decomposition result is used

for link prediction purposes. Finally, we also observed that a larger number of components

is usually required for this task. In other words, models with larger number of components

usually exhibited better performance.

With respect to the proposed method, these plots put in evidence some limitations such as:

(i) its high dependence on the validation set, which is associated with a large variability in

the number of components; (ii) when the validation timestamp has few links the proposed

method failed at �nding a better candidate than the initial - this behavior was observed

in the daily and weekly versions of enron. A possibility to tackle these issues, that needs

further investigation, is the usage of more than one timestamps in the validation set.

Competitiveness of the Tuned Model In this set of experiments, our goal is to study

the performance of models tuned with our approach with other types of link predictors.

In this context, we compared the performance of the tCPLP with Katz. The results are

shown in �gures 6.6-6.7.

From a general point of view, tCPLP exhibited a competitive performance by being close

to the performance of Katz and, in some cases, outperforming it. In more detail, we

observed that the rate (%) of test periods in which tCPLP outperformed Katz decreased

as we aggregated the timestamps. In other words, we veri�ed that the tCPLP was generally

more competitive in the daily versions of the datasets, while exhibiting poorer performance

(compared with Katz) as we considered weekly and monthly timestamps.
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General Observations According to our experiments, we veri�ed that:

• Both the number of CP factors and initialization have a strong impact on the perfor-

mance of the CP-based link predictors;

• Traditional approaches are not appropriate to estimate the number of components in

CP-based link predictors as they provide an underestimation;

• The proposed CPLP-tuner (i) was able to estimate the appropriate number of CP

factors more accurately then AUTOTEN and (ii) exhibited competitive performance

with respect to Katz.

6.5 Summary

In this chapter we addressed the problem of initialization and parameter setting in tensor

decomposition-based link prediction by proposing a method, CPLP-tuner, for estimating the

most suitable initialization and parameters in CP-based link predictors. Our framework is

general and can be applied regardless of the CP decomposition algorithm considered and it

is easily parallelizable.

The incorporation of the initialization choice in our framework is justi�ed with a study

that provides evidence that it is a critical parameter, an issue which has been neglected in

literature. Moreover, we provide empirical evidence that not only our approach leads to more

accurate predictors than when using other tuning approaches but also that the model tuned

with CPLP-tuner is competitive, when compared with the Katz baseline.
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Figure 6.2: Performance and number of components when considering (i) our parameter
setting approach or (ii) AUTOTEN for the 3 time granularities in friends.
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Figure 6.3: Performance and number of components when considering (i) our parameter
setting approach or (ii) AUTOTEN for the 3 time granularities in enron.
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Figure 6.4: Performance and number of components when considering (i) our parameter
setting approach or (ii) AUTOTEN for the 3 time granularities in reality_calls.
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Figure 6.5: Performance and number of components when considering (i) our parameter
setting approach or (ii) AUTOTEN for the 3 time granularities in social.
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Figure 6.6: Performance of tCPLP and Katz for the 3 time granularities in friends (left)
and enron (rigth).
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Figure 6.7: Performance of tCPLP and Katz for the 3 time granularities in reality_calls

and social.
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Chapter 7

Conclusions

Tensor decomposition multi-dimensional modelling and scalability stood as two key properties

that had attracted the attention of researchers in the �eld of time-evolving social networks.

In this context, tensor decomposition has been showing promising results in tasks such as

community detection and link prediction. Nonetheless, despite the advances attained, there

were issues that remained unaddressed and applications that stood few explored. Thus, the

main goal of this thesis was not only to address some of those (known) issues but also to

report (and solve) some issues that have been neglected in literature. In this chapter, we

summarise the main contributions of this thesis and also point out possible future directions.

7.1 Contributions

In this thesis we addressed issues associated with the analysis of time-evolving networks via

tensor decomposition. In particular, our contributions are as follows:

• Literature review on the analysis of social networks, with a focus on time-

evolving networks. In chapter 2 we covered the literature on social network analysis.

In particular, we reviewed the literature on the main social network analysis tasks,

providing special attention to the works on time-evolving social networks, and from

those the ones that considered tensor decomposition.

Our overview allowed us to understand the main gaps in the �eld of tensor-based

evolving social network analysis, namely (i) the lack of methods which are automatic

and/or able to e�ciently deal with scenarios in which new network data is constantly

arriving and (ii) the missing literature on tensor decomposition-based approaches for

change detection and summarisation.

• Tensor decomposition-based method for structural summarisation. In chap-
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ter 3 we proposed the usage of a tensor decomposition representation to generate

structural summaries of time-evolving social networks.

According to our empirical evaluation, not only the summarisation power of our ap-

proach is competitive, but it is also time e�cient when compared with traditional

approaches.

Moreover, our results also unveiled how the clustering distance impacts the summaries,

suggesting that euclidean clustering leads to summaries capturing strong local patterns

while cosine clustering generates summaries capturing the global communication pat-

terns. While this may be expected, it has not been taken into account - cosine is usually

considered in higher dimensional data due to its time e�ciency, but the impact of such

choice is not studied.

• Tensor decomposition-based method for event detection. In chapter 4 we

proposed a new tensor decomposition approach for event detection. The main novelty

of our method comes from two aspects. First, it considers the processing of the network

in a sliding window, thus allowing tensor decomposition to capture local dynamics.

Moreover, it resorts to statistical tools to automatically detect the patterns that are

associated with events, thus avoiding the extra e�ort of analysing all the patterns found

by tensor decomposition.

Our approach has the ability of �nding irregular behaviours at both global and local

scale, on the contrary to most existing approaches which focus on global scale events.

Its accuracy is competitive regarding state-of-the-art non-tensor based approaches and

substantially higher than the standard tensor-based approach.

• New strategy for estimating the number of components for pattern discovery

via tensor decomposition. In chapter 5 we exposed the problem of redundancy in

tensor decomposition result, when applied to pattern discovery in time-evolving social

networks. To address this issue we introduced a new approach, called NORMO.

We carried out a comparative study of the existing approaches to select the number of

components CP, along with NORMO, in di�erent types of tensor data.

This study exposes the unsuitability of the existing methods when applied to time-

evolving networks, which fail either due to e�ciency issues or unenlightening estima-

tions.

Our approach was able to provide accurate estimates in the validation datasets and,

according to our analysis, the estimates in time-evolving networks were meaningful,

allowing the discovery of communities.

• New strategy for estimating the parameters in tensor decomposition-based

methods for link prediction. In chapter 6 we reported the inadequacy of the existing
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approaches to estimate the number of components when considering the tensor decom-

position result to link prediction purposes. Furthermore, we introduced a new approach

to estimate not only the number of components but also its initial factors and other

additional parameters, as well as the forecasting parameters in tensor decomposition-

based link predictors.

Our results suggest that: (i) the initialization of tensor decomposition has a strong

impact on the predictor performance; (ii) the number of components used in tensor

decomposition must be larger than the one provided by the state-of-the-art estimator

in order to achieve competitive performance.

7.2 Conclusions: tying it all together

Through this thesis, we addressed some of the issues arising from considering tensor de-

composition to analyse time-evolving social networks. Providing contributes in the context

of summarisation, event detection, pattern discovery (which can be further applied for

community detection) and link prediction. In some tasks, we introduced the usage of tensor

decomposition (not exploited before on that particular task - chapter 3) while in others

we introduced improvements over the existing tensor decomposition-based methodologies

(chapters 4, 5 and 6).

While each task was generally associated with a di�erent challenge, this thesis provides an

evidence that the choice of the number of components to consider in tensor decomposition

should be driven according to the task we aim at solving. For example, in chapters 3 and 4,

the existing approaches to estimate such a parameter lead to good results, however the same

did not hold when the goal was pattern discovery or link prediction. From this perspective,

our work de�es the literature, according to which the number of components should be made

based uniquely on the tensor data, instead of considering also its application purpose. We

hope that this evidence brings a new topic into discussion in the tensor decomposition related

research as the problem of �nding the number of components to consider has been addressed

as �context-independent�.

7.3 Future Work

Despite �lling some of the research gaps regarding evolving social network analysis through

tensor decomposition, our work also originated potential future research directions, namely:

• Regarding summarisation, it would be interesting to incorporate incremental techniques

so that we could use the summary from the previous time window to more e�ciently
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obtain the summary for the next time window, specially if there is an overlap between

consecutive time windows.

It would also be interesting to study the application of graph summarisation to event

detection. Would we be able to spot events by tracking the network summaries

generated through time?

Finally, it also seems important to understand how could we generalize our method to

deal with coupled tensor decomposition and therefore handle additional information on

the nodes and edges.

• As previously exposed, change detection via tensor decomposition has not been much

exploited. Therefore, the main question arising from the event detection work is: could

we apply a similar strategy in order to also spot changes in the network?

A possibility to consider is to apply time-series segmentation techniques in order to

detect changes in the temporal factors derived from tensor decomposition.

• With respect to link prediction, our results suggest that a higher number of components

is preferable. Nonetheless, setting an extremely large number may not bring substantial

bene�ts. Can we develop a method for estimating the number of components that takes

these two aspects into account?

The idea that comes to mind after this work is to sequentially increase the number

of components and measure the performance of the link predictor in the validation

instants for each decomposition result. Would the performance improve as we increase

the number of components? In such case, we could increase the number of components

until no considerable performance improvement is achieved by incorporating a new

component. However, it is also important to understand the impact of other CP

parameters, when available.

Finally, improving the robustness of the method by, for example, including more than

one timestamp in the validation set should be further investigated.
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Appendix A

Vector and Matrix Operators

Vector Outer Product

Given 2 vectors, a ∈ Rn1 and b ∈ Rn2 , their outer product is de�ned by:

a◦b ≡ [a(1),a(2), . . . ,a(n)]◦[b(1),b(2), . . . ,b(n)] =


a(1)b(1) a(1)b(2) . . . a(1)b(n)

a(2)b(1) a(2)b(2) . . . a(2)b(n)
...

...
. . .

...

a(n)b(1) a(n)b(2) . . . a(n)b(n)

 ,

and the result is a matrix in Rn1×n2 whose entry (i, j) is given by a(i)b(j).

Matrix Hadamard Product

Given 2 matrices, A,B ∈ Rn1×n2 , their Hadamard product is de�ned by:

A ∗B =


A(1, 1)B(1, 1) A(1, 2)B(1, 2) . . . A(1, n2)B(1, n2)

A(2, 1)B(2, 1) A(2, 2)B(2, 2) . . . A(2, n2)B(2, n2)
...

...
. . .

...

A(n1, 1)B(n1, 1) A(n1, 2)B(n1, 2) . . . A(n1, n2)B(n1, n2)

 ,

it should be noted that this product consists of the element-wise matrix product and,

consequently, it is only de�ned between matrices of the same dimensions.

Matrix Kronecker Product

Given 2 matrices, A ∈ Rn1×n2 and B ∈ Rm1×m2 , their Kronecker product is de�ned by:

A⊗B =


A(1, 1)B A(1, 2)B . . . A(1, n2)B

A(2, 1)B A(2, 2)B . . . A(2, n2)B
...

...
. . .

...

A(n1, 1)B A(n1, 2)B . . . A(n1, n2)B
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where

A(i, j)B =


A(i, j)B(1, 1) A(i, j)B(1, 2) . . . A(i, j)B(1,m2)

A(i, j)B(2, 1) A(i, j)B(2, 2) . . . A(i, j)B(2,m2)
...

...
. . .

...

A(i, j)B(m1, 1) A(i, j)B(m1, 2) . . . A(i, j)B(m1,m2)

 .

Thus, the result is a matrix in Rn1m1×n2m2 which is obtained by replicating matrix B in each

matrix A entry and scaling it by the value of the corresponding A entry.

This operation is also de�ned for vectors. In particular, given 2 vectors, a ∈ Rn1 and b ∈ Rn2 ,

the result of a⊗ b is a vector in Rn1n2 .

Matrix Khatri-Rao Product

Given 2 matrices with the same number of columns, A ∈ Rn1×n2 and B ∈ Rm1×n2 , their

Khatri-Rao product is de�ned by:

A�B =
[
A(:, 1)⊗B(:, 1) A(:, 2)⊗B(:, 2) . . . A(:, n2)⊗B(:, n2)

]
.
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Appendix B

Mode-Product Properties

Given a matrix U ∈ RR×Nd and a tensor X ∈ RN1×N2×...×NM , the mode-d product of X with

U, is given by (2.2).

Therefore,

unfold(X ×d U, d) = unfold
(
fold(UX(d)), d

)
= UX(d) .

This property may be rewritten as:

Y = X ×d U⇒ Y(d) = UX(d) . (B.1)

Thus, in the case that U is semi-orthonormal with full column rank, Y(d) = UX(d) ⇒
UTY(d) = X(d) and

Y = X ×i U⇒ X = Y ×i UT .

Moreover, based on expression (2.1), it is easy to verify that, given

X ∈ RN1×N2×...×NM , A ∈ RRi×Ni and B ∈ RRj×Nj (i 6= j), the following property holds:

X ×i A×j B = X ×j B×i A .
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Appendix C

The Nelder-Mead Method

The Nelder-Meads algorithm [109] is an optimization algorithm whose objective function f

does not need to be di�erentiable.

Given the search space Rn, this method consists of searching for the minimum of an objective

function f : Rn → R by considering its value in a simplex (that is, in a set of vertexes

{P0, P1, . . . , Pn} such that P0 − Pi, with i ∈ {1, . . . , n}, are linear independent - such set

is also known as a�nelly independent). The idea consists of applying a set of operations

(re�ection, expansion and contraction) on the vertex associated with the highest cost so that

a new point with lower cost is found, and the simplex can be sequentially updated.

For simplicity, let us denote fi ≡ f(Pi), then the method consists of the following steps

(sequentially repeated until some stopping criteria such as convergence or number of iterations

is met):

1. Compute the simplex vertexes associated with the lowest (l) and the highest (h) cost

function values, respectively: {
fl = min{fi}n0
Pl = argmin{fi}n0

and {
fh = max{fi}n0
Ph = argmax{fi}n0

2. Given all but the vertex with the highest cost (Ph), a centroid is computed:

P̄ =
1

n

∑
i 6=h

Pi .
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3. The re�ection point over the vertexes is de�ned as:

Pr = (1 + α)P̄ − αPh ,

where α > 0. Given the re�ection point, its cost value is denoted as fr ≡ f(Pr). Then,

the simplex is updated depending on the value of fr:

(a) if fr < fl, which indicates that Pr is associated with the lowest cost observed so

far, then a new point is computed, which corresponds to the expansion point:

Pe = (1− β)P̄ + βPr ,

where β > 1. Similarly to the re�ection case, fe ≡ f(Pe).

If fe < fl, Ph is replaced by Pe, otherwise, the extension did not lead to improve-

ment and Ph is replaced by Pr.

(b) if ∃i 6= h : fr < fi, Ph is replaced by Pr.

(c) else (fr ≤ fh), then Ph is replaced by the vertex associated with the smallest cost,

and a contraction vertex is computed as:

Pc = γPh + (1− γ)P̄ ,

where 0 < γ < 1.

If fc ≡ f(Pc) ≤ fh, then Ph is replaced by Pc. Otherwise, none of the previous

operations originated a point with a lower cost function value than fh, and

consequently, all the vertexes of the simplex (except Pl) are updated as follows:

Pi = (1− δ)Pl + δPi ,

for i 6= l and 0 < δ < 1.

After updating the simplex, the whole process is repeated.
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