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Abstract

Anomaly Detection is an important research topic nowadays, in which the intention is to find
patterns in data that do not conform to expected behavior. This concept is applicable in a large
number of different domains and contexts, such as intrusion detection, fraud detection, medical
research and social network analysis.

Techniques that have been addressed within this topic are diverse, based on different assump-
tions about how anomalies manifest themselves within the data and can have different outputs
(i.e. a numeric score or a labeled classification). Because of this heterogeneity, every technique is
specialized in specific characteristics of the data and may only provide a limited insight on what
anomalies exist in a given dataset.

Ensemble Learning is process that tries to incorporate the opinions of different learners in or-
der to make a more pondered decision. This process has been successfully applied in the past to
supervised and unsupervised learning problems and improvements in performance have been em-
pirically observed. Stacked Generalization is one of these methods, in which a learning algorithm
is used to combine the different learners.

Several state of the art Anomaly Detection techniques and datasets used throughout the liter-
ature were used in this work, which was divided in two different research studies. The first study
focused on the performance and diversity of the Anomaly Detection techniques selected, while the
second one focused on the application of Stacked Generalization to the techniques selected.

The first study gathered some evidence that most Anomaly Detection techniques used are
accurate and diverse, therefore allowing the conditions for Stacked Generalization to be applied to
this case. The second study concluded that the Stacked Generalization method guaranteed higher
performance than the best Anomaly Detection technique on more than half of the datasets used.
Replacing the Stacked Generalization method’s meta-classifier with a simpler Majority Voting
method improved the performance on even more datasets.

Possible future work could include gathering datasets with more observations and using a
higher variety of Anomaly Detection techniques. This last point would likely require some im-
plementation work, since most of the techniques referred in the literature are not implemented on
general purpose programming languages.
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Resumo

Deteção de Anomalias é uma área de investigação importante hoje em dia, na qual a intenção é
encontrar padrões em dados que não estejam de acordo com o comportamento esperado. Este
conceito é aplicável a um grande número de diferentes domínios e contextos, como deteção de
intrusões, deteção de fraude, investigação médica e análise de redes sociais.

As técnicas que têm sido utilizadas nesta área são diversas, baseadas em diferentes assunções
sobre como as anomalias se manifestam nos dados e podem ter diferentes resultados (uma pon-
tuação numérica ou uma classificação). Devido a esta heterogeneidade, cada técnica é especial-
izada em características específicas dos dados e pode apenas fornecer uma visão limitada sobre as
anomalias que existem num conjunto de dados específico.

Ensemble Learning é um processo que tenta incorporar as opiniões de diferentes algoritmos
de modo a potenciar uma decisão mais ponderada. Este processo tem sido aplicado com sucesso
em problemas de aprendizagem supervisionada e não-supervisionada e melhorias na performance
foram observadas empiricamente. Stacked Generalization é um destes métodos, no qual um algo-
ritmo de aprendizagem é usado para combinar as opiniões de diferentes algoritmos.

Várias técnicas do estado de arte de Deteção de Anomalias e conjuntos de dados usados na
literatura foram usados neste trabalho, que foi dividido em dois diferentes estudos de investigação.
O primeiro estudo focou-se na performance e diversidade das técnicas de Deteção de Anomalias
selecionadas, enquanto o segundo focou-se na aplicação de Stacked Generalization nas técnicas
selecionadas.

O primeiro estudo revelou algumas evidências de que a maioria das técnicas de Deteção de
Anomalias usadas é exata e diversa, garantindo as condições para que o Stacked Generalization
seja aplicado a este caso. O segundo estudo concluiu que o método Stacked Generalization garan-
tiu uma maior performance que a melhor técnica de Deteção de Anomalias em mais de metade
dos conjuntos de dados usados. Substituindo o meta-classificador do método Stacked Generaliza-
tion por um método Majority Voting simples melhorou a performance em ainda mais conjuntos de
dados.

Possível trabalho futuro inclui reunir conjuntos de dados com mais observações e usar uma
variedade maior de técnicas de Deteção de Anomalias. Este último ponto provavelmente requererá
algum trabalho de implementação, dado que a maior das técnicas referidas na literatura não estão
implementadas nas linguagens de programação comuns.
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Chapter 1

Introduction

Data Mining has become an important field in the modern world, given the large number of possi-

ble applications in many different domains such as marketing, medical research, computer vision,

social network analysis, intrusion detection and fraud detection [Agg15]. This diverse range of

applications is also explained by the increase in the volume of data stored (thanks to trends such as

the Internet of Things [AIM10] and Industry 4.0 [LFKFH14]) and their easy and wide distribution.

Anomaly Detection is a very specific but significant topic in this field, given the high number

of domains in which it can be applied [KCBKK09]. In fact, the problem that motivates this field

is a very common one and can be easily translated into this question: given a certain amount of

data, is it possible to detect observations that deviate from the normal behavior of the data? This

question can arise, e.g. in areas such as credit card fraud detection (where the deviant patterns

can correspond to fraudulent transactions) or machine condition monitoring (in which the abnor-

mal patterns can correspond to different vibration values of certain components belonging to an

industrial machine, that might indicate a certain type of malfunction [LADVMS15]).

1.1 Motivation and Goals

The literature regarding Anomaly Detection techniques is very extensive and diverse, with a wide

range of techniques that can have different outputs (either an anomaly score that indicates how

much of a data instance in a dataset is an anomaly, or a label – anomalous or normal), as well as

different assumptions (e.g. density based techniques have different underlying assumptions than

clustering based techniques). This heterogeneity within Anomaly Detection techniques may cause

different techniques to behave differently on the same dataset, which makes the task of choosing

the right technique(s) for a specific domain very difficult and data-dependent.

The thesis intends to address this issue, by using several Anomaly Detection techniques at the

same time and then combining their outputs into a single one. This is the idea behind Ensemble
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Learning methods, which work by generating a group of models (which is designated by ensem-

ble) and then combining their predictions into one. Ensemble Learning has proven to improve

performance in machine learning applications such as classification, regression, time-series analy-

sis and recommender systems [Agg17]. Ensemble Learning based solutions are also known to win

various data mining competitions (the most well-known being the Netflix Prize challenge for rec-

ommender systems). More specifically this thesis will explore a Stacked Generalization method,

which consists in using an extra model that learns the best way of combining the group of models.

Therefore this thesis intends to answer the following main research question:

• Can a Stacked Generalization method improve the performance of Anomaly Detection tech-

niques, more specifically the performance of the best technique for a given dataset?

1.2 Outline

This document is structured as follows:

• Chapter 2 reports the current state-of-the-art in Anomaly Detection, by presenting a defini-

tion for this field and techniques used;

• Chapter 3 describes the concepts of Ensemble Learning and Stacked Generalization along

with examples of techniques and applications in the context of Anomaly Detection;

• Chapter 4 presents the methodology followed throughout the experimental research of this

dissertation;

• Chapter 5 summarizes the main results and findings of the application of the experimental

methodology proposed in the previous chapter;

• Chapter 6 closes this dissertation by summarizing the results gathered in the context of the

field, the main contributions of this work and possible future work topics.
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Chapter 2

Anomaly Detection

This chapter introduces the concept of Anomaly Detection and includes an overview over the

different types of techniques.

2.1 Definition

The following concept of Anomaly Detection is proposed, based on the one provided by Kandhari

et al. [KCBKK09]:

Definition 2.1.1 (Anomaly Detection) Anomaly Detection (also known as Outlier Detection and

Outlier Analysis) corresponds to the problem of finding patterns in data that do not conform to

expected behavior.

The objective is to find instances do, within a dataset D, that deviate so much from other

instances that raises suspicions of being generated from a different mechanism [Haw80].

It is also important to distinguish this field from other similar ones [KCBKK09]:

• Noise removal and noise accommodation: where the goal is to detect and remove unwanted

anomalies (which are designated by noise) that may affect the process of data analysis.

• Novelty detection: where the goal is to find anomalous patterns that were not observed

before and mark them afterwards as being normal in the future (e.g. detecting emerging

topics in social media).

A taxonomy was proposed by Kandhari et al. [KCBKK09] regarding the following aspects in

this field: type of anomalies, learning mode and type of techniques (categorized according to their

underlying idea and assumptions).
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2.2 Type of Anomalies

Anomalies can be classified based on their nature into one of the following categories:

• Point Anomaly: when an individual data instance of a dataset can be considered anomalous,

by comparing it with the rest of the dataset. This is the focus of the majority of the research

in this field.

• Contextual Anomaly or Conditional Anomaly: When a individual data instance of a dataset

can be considered anomalous when it is present in a certain context. This assumes that the

dataset has attributes that can define a context (e.g. time – in time series or GPS coordinates

– in spatial data). Figure 2.1 illustrates this type of anomaly with a time series dataset regard-

ing the monthly temperature over a year: although t1 and t2 have both the same temperature

value, t2 is considered a contextual anomaly.

Figure 2.1: Example of one contextual anomaly (t2) in a monthly temperature time series dataset.
Source: [KCBKK09].

• Collective Anomaly: When a group of data instances of a dataset may not be anomalies

by themselves, but when they occur together they can be considered a collective anomaly.

Figure 2.2 illustrates this type of anomaly using a human electrocardiogram output time

series: the red values represent a collective anomaly, although that value by itself is not

considered an anomaly (despite appearing several times during the dataset just by itself).

Because of the wide scope of each of these categories, this thesis will only focus on point

anomalies in the following sections and chapters. Information regarding the techniques capable

of detecting contextual and collective anomalies can be found in Kandhari’s survey on the topic

([KCBKK09]).

4
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Figure 2.2: Example of one collective anomaly in a human electrocardiogram output time series
dataset. Source: [KCBKK09].

2.3 Learning Mode

Anomaly Detection techniques can be classified based on the learning mode used:

• Supervised: Techniques using this learning mode assume that the data is fully labeled as

either being normal or anomalous. Therefore, this constitutes a regular supervised learning

classification problem.

• Semi-supervised: Techniques using this learning mode assume that the data only contains

normal examples and try to build a model that can learn the normal behavior and identify

examples that do not fit in this behavior. In the real-world this scenario is very frequent as

in many domains it is difficult or expensive to measure anomalies and only normal data is

available.

• Unsupervised: This learning mode does not require labeled data and assumes that the num-

ber of normal instances is much higher than the number of anomalous instances. Most of the

Anomaly Detection techniques defined in the literature operate under this learning mode.

2.4 Type of Techniques

The techniques used in Anomaly Detection can be categorized into two groups according to their

output [KCBKK09]:

• Score output: The techniques with this type of output assign a score to each data instance

that represents how much the instance can be considered an anomaly. The list of anomalous

instances can then be retrieved by using manually defined thresholds on the scores or by

marking all the top instances as anomalous.

5
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• Label output: The techniques that output labels resemble regular binary-classifiers in Ma-

chine Learning by either classifying a data instance as being normal or anomalous. These

techniques differentiate from the score ones as they do not require any type of threshold

definition after their application, as the data instance is already labeled as anomalous or

normal.

2.4.1 Classification Based Techniques

Classification based techniques operate similarly to regular supervised learning classifiers: they

train a model based on a set of labeled data and then classify each test data instance as being

normal or anomalous.

One of the disadvantages of this group of techniques is that they require labeled data in the

training phase of the model. Depending on the labels available in the training data, the techniques

in this group can be subdivided into two types [KCBKK09]: multi-class and one-class.

2.4.1.1 Multi-class Techniques

Multi-class techniques assume that the training data contains instances belonging to several

different normal classes and build a classifier that distinguishes each class from the remaining

classes. These techniques classify a data instance as being anomalous if they cannot classify it as

one of the normal classes [KCBKK09].

Examples of these techniques include certain types of Neural Networks (e.g. Multi Layered

Perceptrons, Hopfield Networks), Bayesian Networks, Rule Based techniques, Decision Trees and

other binary and multi-class classifiers [KCBKK09].

2.4.1.2 One-class Techniques

One-class techniques assume that the training data contains instances belonging to only one

class – the normal one. The idea behind these techniques when learning the model is to define

a decision boundary that isolates the normal instances. This decision boundary can therefore be

used to classify new data: data instances that stay inside the decision boundry are are considered

normal and instances that stay outside the boundary are flagged as anomalies [KCBKK09]. These

techniques usually operate under the semi-supervised learning method presented in section 2.3.

Examples of these techniques include Replicator Neural Networks [HHWB], Support Vector

Machines (more specifically One-class SVMs [SPSSW01]) and Rule Based techniques [KCBKK09]).
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2.4.2 Nearest Neighbor Based Techniques

Nearest Neighbor based techniques are based on the assumption that normal data instances are

situated in dense neighborhoods of data instances, while anomalous data instances situate them-

selves far from other data instances. The notion of neighboorhoods and far are employed with

similarity/distance metrics that can evaluate how close (or far away) two data instances are.

These techniques can be subdivided into two different groups [KCBKK09]:

• techniques that use the distance of each data instance to its kth nearest neighbor(s) as an

anomaly score;

• techniques that use the concept of relative density of each data instance to compute an

anomaly score (which will be detailed in this section).

2.4.2.1 Density Techniques

The assumption behind the density techniques is that a data instance that belongs to a neigh-

borhood with low density (i.e. that contains only a few data instances) is anomalous, while the

opposite indicates that the instance is normal.

Figure 2.3: Example of a 2 dimensional dataset containing regions with different density values.
Source: [KCBKK09].

However, it is important to note that this assumption may not hold if the data has regions

with different density values. Figure 2.3 illustrates this example with a 2 dimensional dataset: the

distance of each of the instances in cluster C1 to their nearest neighbor is higher than the distance

of p2 to its nearest neighbor in cluster C2. Because of this the methods that are based on this

assumption would not consider p2 as an anomalous instance although visually it is noticeable that

this instance is anomalous in the given feature space.

7
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In order to overcome this limitation, some techniques within this category compare the den-

sity of the data instances to the density of their neighbors. One of the examples of this type of

techniques is the LOF (Local Outlier Factor) [BKNS00a]. Several techniques based on LOF have

been proposed more recently, either to adapt this algorithm to more complex data types or to im-

prove its efficiency. Some examples include COF (Connectivity-based Outlier Factor) [TCFC02],

ODIN (Outlier Detection using In-degree Number) [HKF04] and LOCI (Local Correlation Inte-

gral) [PGF03].

2.4.3 Clustering Based Techniques

Clustering is a task in Data Mining in which the goal is to aggregate the data into meaningful or

useful groups [TSK05]. Techniques that capture this idea have been applied to Anomaly Detec-

tion, out of which three groups of techniques can be distinguished in the literature based on their

assumptions [KCBKK09]:

• After clustering the data, normal data instances belong to one of the clusters formed, while

anomalous data instances do not belong to any of the clusters: several clustering algorithms

(such as DBSCAN [EKSX96]) do not force all the data instances to belong to one of the

clusters formed. With this particularity of the algorithms and under this assumption, we can

consider these data instances as being anomalous.

• Normal data instances situate themselves close to their closest cluster’s centroid, while

anomalous data instances remain far away from any cluster centroid: these techniques

usually use the distance of a data instance to its nearest cluster’s centroid as an anomaly

score. Examples include the use of Self-Organizing Maps (SOM) [Koh97]. It is important

to note that if the anomalous instances form a cluster by themselves, the techniques under

this assumption will not be able to detect them.

• Normal data instances situate themselves in large and/or dense clusters, while the anoma-

lous ones situate themselves in small and/or sparse clusters: Examples of techniques that

operate under this assumption include the FindCBLOF [HXD03].

2.4.4 Statistical Techniques

Statistical techniques operate under the assumption that normal data instances occur in high prob-

ability regions of a statistical model, while anomalous data instances occur in low probability

regions [KCBKK09]. These techniques consist in building a statistical model of the data, usually

using normal data instances, similarly to the One-class Classification techniques. However, it is

important to note that these techniques have a different assumption from One-class techniques:

Statistical techniques are based on statistical models and data instances are considered anomalous

if they have a low probability of being generated from the learned model. One-class Classification
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techniques, however, are based on classification models and in the definition of a decision bound-

ary between instances. In this case, the decision of whether a data instance is anomalous or not

relies only in the location of the instance within the decision boundary.

The literature distinguishes parametric and non-parametric techniques, which will be detailed

in this section.

2.4.4.1 Parametric Techniques

Parametric techniques are characterized by making assumptions on the distribution of the data

(e.g. assuming it follows a Gaussian distribution or it can be modeled linearly) and build a sta-

tistical model of the data, by learning its parameters with normal data instances. The anomaly

score of a new data instance can then be calculated from the probability density function of the

learned model (if the instance locates itself in a region where the function has a low value it may

be considered anomalous and vice-versa). Along with this approach, some techniques also use

statistical hypothesis testing to assess if a new data instance is anomalous or not.

These parametric techniques can be subdivided into different groups:

• Gaussian Model: techniques that assume the data distribution is Gaussian. These techniques

detect anomalous data instances based mostly on thresholds. One simple example of this

type of techniques is the box plot rule [LJKLMK00].

• Regression Model: techniques that fit a linear model to the data. These techniques consider

that a data instance is anomalous if its residual value is above a threshold. Linear models

such as robust regression [LR87] have been used in these techniques.

• Mixture of Parametric Distributions: techniques that either model normal and anomalous

data instances as belonging to two different distributions, or by modeling the normal data

instances as belonging to a mixture of data distributions.

2.4.4.2 Non-parametric Techniques

Unlike the parametric techniques, the non-parametric approaches do not make any assump-

tions about the statistical distributions of the data.

These techniques, as well as the parametric ones, can be subdivided into different groups:

• Histogram Based: these techniques use histograms to maintain a profile of the data (usually

only containing normal instances). The anomaly score of a new data instance is high if it

falls in a bin of the histogram with low frequency, and vice-versa.

• Kernel Function Based: these techniques use kernel functions to estimate the probability

distribution function, by using normal data instances. The anomaly score of a new data

instance is high if it falls in a area with low probability, and vice versa.

9



Anomaly Detection

2.4.5 Information Theoretic Techniques

Information theoretic techniques analyze the information content of the data with information

theory measures (e.g. Kolomogorov Complexity, Entropy) and are based on the assumption that

anomalous data instances induce irregularities in the information content of the data [KCBKK09].

2.4.6 Spectral Techniques

Spectral techniques are based on the assumption that normal and anomalous data instances can be

distinguished in a lower feature subspace (i.e. in a new dataset with a lower number of features).

These techniques often use Principal Component Analysis (PCA) [Jol02] to project the data into

a lower feature space.
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Chapter 3

Ensemble Learning and Stacked
Generalization

This chapter provides an overview over the concepts of Ensemble Learning and Stacked General-

ization.

The field of Ensemble Learning is presented briefly, with examples of general as well as more

specific approaches used in the field of Anomaly Detection. Finally, the concept of Stacked Gen-

eralization is presented as well as several approaches that are used in this field.

3.1 Ensemble Learning Definition

Based on the definition provided by Mendes-Moreira et al. [MSJS12], Ensemble Learning can be

defined as:

Definition 3.1.1 (Ensemble Learning) Ensemble Learning is a process that uses a set of models

(ensemble), each of them obtained by applying a learning algorithm to a given problem. This set

of models is integrated in some way to obtain the final output.

It is important to note that this definition is independent of the learning mode, which means

that Ensemble Learning can be used for supervised and unsupervised learning [MSJS12]. Al-

though Ensemble Learning is more frequently applied in supervised learning (classification and

regression), it has also been used in clustering [SG03].

However, given the wide scope of these applications, this chapter and the following ones will

only focus on classification applications of Ensemble Learning.

Formally, a classification model (or hypothesis) m = (L,P,D) is an application of a learning

algorithm L, with a set of defined parameters P and trained on a datasetD= {(xi,yi), i= 1, . . . ,N },
where xn represents the feature values of the nth instance and yn the class value of the nth instance.
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Given a data instance xi from a dataset D, m(xi) is the prediction of the class value of xi made by

model m.

Therefore, an ensemble E = {m j, j = 1, . . . ,J} can be defined as a set of J models, where

E(xi) = g(m1, . . . ,mJ) corresponds to the prediction of the class value of xi by the ensemble E.

This prediction is made using an aggregation function g which combines the predictions from the

J models of the ensemble, m1(xi),m2(xi), . . . ,mJ(xi). It is important to mention that this definition

is recursive, as an ensemble can also be considered a model in another ensemble. The different

ways in which the set of models can obtained and then integrated to obtain a final output will be

discussed further in this section.

It is also important to refer that approaches with Multiple Models or Multiple Learners pre-

sented sometimes throughout the literature refer to the same concept presented in this section

[MSJS12].

Dietterich [Die90] presents three reasons why Ensemble Learning can lead to better results:

• Applying a learning algorithm to a specific problem can be interpreted as searching for the

best model for this problem (the one that is considered the best according to a predefined

metric) within a space of possible models H. When the dataset provided is too small com-

pared to the space H, several models can be equally considered the best. By building an

ensemble of this set of models, it is possible to obtain a new model that may generalize

better to new data.

• Some learning algorithms generate models for a specific problem by performing an opti-

mization process over an error function, which can get stuck at a local minimum. This is

the case, for example, of neural network algorithms. By building an ensemble of different

models (obtained by starting this optimization at a different starting points), it is possible to

obtain a model that is closer to the global minimum.

• Given a specific problem, a learning algorithm works by instantiating a model the mimics

the underlying process that can explain this problem (we will represent this process by f ).

However, some learning algorithms (e.g. linear algorithms) may not have a model space H
large enough to contain a model that can represent f accurately. By building an ensemble of

different models and combining their outputs, it may be possible to expand the model space

H and have a better approximation of f .

Hansen and Salamon [HS90] however state that there are two necessary (and sufficient) con-

ditions for an ensemble of models to be more accurate than any of individual models that belong

to it:

• Each of the models that compose the ensemble must be accurate, which according to the

author is to be better than random guessing.

• The ensemble of models should be diverse (i.e. the outputs of the models should be uncor-

related to each other).
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3.2 Ensemble Learning Process

Mendes-Moreira et al. [MSJS12] proposes three phases to be considered when using Ensemble

Learning (illustrated in figure 3.1), which will be detailed in this section.

Figure 3.1: Scheme representing the Ensemble Process. Adapted from [MSJS12].

3.2.1 Ensemble Generation

The initial step in the process of Ensemble Learning is to generate an ensemble of models. We are

interested in generating a set of modelsM0 = {m j, j = 1, . . . ,J0}.
Ensembles can be of two different types [MSJS12]:

• Homogeneous: when the set of models are generated by the same learning algorithm (e.g.

tuned with different parameter settings). Most of the research work in Ensemble Learning

is conducted with this type of ensembles [MSJS12].

• Heterogeneous: when the set of models are generated by different learning algorithms. This

type of ensembles may have more diversity between models than the homogeneous type, if

the nature of the learning algorithms is diverse enough [MSJS12].

It is interesting to note that homogeneous ensembles can be used in heterogeneous ensembles,

given the recursive definition of an ensemble.

A possible methodology that can be followed is the overproduce-and-choose approach. In this

methodology a high number of models are generated in the ensemble generation phase (“overpro-

duce”), leaving the task of selecting the best models to the pruning phase (“choose”).

Mendes-Moreira et al. [MSJS12] presents different ways to produce different models in both

homogeneous and heterogeneous ensembles, which will be detailed in this section.

13



Ensemble Learning and Stacked Generalization

3.2.1.1 Data Manipulation Approaches

In the definition of a model m = (L,P,D), these approaches perform changes in the datasetD used

to train the learning algorithm L. The same learning algorithm is trained with different datasets

will result in different models (which may or may not be diverse among themselves, depending on

the sensitivity of the algorithm and its sensibility to the training dataset).

Subsampling from the Training Set

This type of approach generates different models using different subsamples of the same

dataset. One of the most popular approaches is bagging (bootstrap aggregating), which gener-

ates k subsamples of a dataset D. These subsamples are made with replacement (a subsample can

contain a data instance more than once). A model is then trained with each of the k subsamples

generated, generating k different models.

Manipulating the Input Features

This type of approach can be divided in two subtypes:

• Feature Selection: A feature selection process is performed on the dataset, in order to gen-

erate different datasets (each one with a different subset of features). One example of this

approach is the random subspace method [Ho98] (which chooses randomly feature subsets

randomly).

• Feature Transformation: A transformation is conducted on the features’ original values,

in order to generate different datasets with different features. One example is the input

smearing approach [FP06] that adds gaussian noise to each numeric feature.

Rotation forests (proposed by Rodriguez et al. [RKA06]) incorporates both feature selection

and transformation processes. First, this method selects different k disjoint subsamples of features.

Then, for every subsample, PCA is performed to project the feature space into a new one, where

the new features correspond to linear combinations of the original ones.

3.2.1.2 Model Generation Manipulation

This type of approaches manipulates the learning algorithm’s parameters or learning conditions.

Manipulating the Parameter Set

Manipulating the parameter set of a learning algorithm is a possibility to generate different

models, either by iterating by ranges of possible values (Grid Search [H+03]) or using a Random

Search [BB12].
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Manipulating the Induction Process
In order to to obtain a model m from a learning algorithm L on a dataset D it is necessary to

perform induction. This type of approaches try to change the way in which the model is generated,

allowing the generation of models under different induction conditions. One of the most common

approaches is to change the error function in optimization-based learning algorithms (such as

neural networks).

Manipulating the Generated Model
This type of approaches performs adjustments on an already generated model, leading to dif-

ferent models. One known approach is to change a Classification Association Rules (CARs) model

by subsampling the model’s set of rules n times, generating n models with different sets of rules.

3.2.2 Ensemble Pruning

The generation of an ensemble in the previous phase, although might guarantee a wide diversity

of models, it does not guarantee that the smallest ensemble possible with maximum accuracy was

obtained. Several of the models may also have very correlated outputs, which do not add any extra

knowledge to the final prediction. Also, since some of the approaches for generating ensembles

involve randomness, there is no guarantee all the models in the ensemble will contribute positively

to the final prediction.

Therefore the goal of Ensemble Pruning is to improve the predictive accuracy of the ensemble

and reduce the cost of the ensemble (since an ensemble with a higher number of models will be

more computationally costly to use).

Ensemble Pruning consists in selecting a subsetM with J models of the set of models gen-

erated in the previous step. This phase corresponds to the “choose” step of the overproduce-and-

choose methodology presented in section 3.2.1. Therefore:

M⊆M0 (3.1)

Mendes-Moreira et al. [MSJS12] proposes two types of approaches for conducting Ensemble

Pruning, which will be detailed in this section.

3.2.2.1 Partition-Based Approaches

The main idea of partition-based approaches is to cluster the models into several groups. This

could be done, for example, with the clustering algorithm k-means, in order to obtain a set of

clusters of similar models. Afterwards, one or more representative models from each group are

chosen to constitute the pruned ensemble.

3.2.2.2 Search-Based Approaches

Search-based approaches can divided in three different types:
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• Exponential Search Approaches: Exponential Search Approaches search the complete search

space of possible models to be included fromM0. This search space has 2J0 − 1 possible

subsets of models and the search for the optimal subset is an NP-complete problem.

• Randomized Search Approaches: Randomized Search Approaches perform a heuristic search

in the search space (e.g. using evolutionary algorithms). Approaches such as genetic algo-

rithms, tabu search and population-based incremental learning have been used in previous

works [RG01].

• Sequential Search Approaches: Sequential Search Approaches perform a search by itera-

tively adding and/or removing a model from subset to maximize some criteria. This can be

done using using Forward Subset Selection, Backward Subset Selection or a combination of

both. In Forward Subset Selection, the search starts with am empty ensemble and models

are iteratively added. In the case of Backward Subset Selection, the search starts with all the

possible models generated in the ensemble and they are iteratively removed.

3.2.3 Ensemble Integration

The final step in Ensemble Learning is the combination of the predictions from the models in the

ensemble.

In classification, the most popular approaches to combine models can be divided into two

categories: combination-based approaches and model-based approaches.

3.2.3.1 Combination-based Approaches

Combination-based approaches are based on combination rules of the class values outputted by

the models in the ensemble. First it is important to define the decision of the jth model (referred

in section 3.1 as class value) as d j,c ∈ {0,1}, j = 1, . . . ,J and c = 1, . . . ,C, where J is the number

of models in the ensemble (as defined previously in section 3.1) and C is the number of classes. If

the jth model outputs class c, then d j,c = 1 and 0 otherwise.

Majority Voting
Majority Voting has three different subtypes, in which the ensemble output corresponds to

the class predicted by all classifiers (unanimous voting), the class predicted by at least one more

than half the number of classifiers (simple majority) or the class predicted by the majority of the

classifiers, even if it is predicted by less than half of the number of classifiers (plurality voting)

[Pol12].

The Majority Voting approach (unless specified otherwise) usual refers to plurality voting

[Pol12] and the decision of which class value to output can be defined as follows:

argmax
c

J

∑
j=1

d j,c (3.2)
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Weighted Majority Voting
If it is known that some of the models are more likely to make correct predictions than oth-

ers, weighting the decisions of the models can improve the performance of the Majority Voting

approach [Pol12]. In this case, models with higher performance would have a bigger weight as-

signed and models with a worse performance otherwise. We define the weight of a model m j as

w j. These weights usually are normalized so that:

w j ∈ [0,1] ∧
C

∑
c=1

w j = 1, j = 1, . . . ,J (3.3)

In this case, the decision of the class output is defined as follows:

argmax
c

J

∑
j=1

w j ·d j,c (3.4)

A estimation of the weights could be performed by estimating the models’ generalization

performance in a separate validation set.

Borda Count
The Board Count method assumes that each model is capable of ranking its support to each

class c and takes this into consideration [Pol12]. This method can be particularly useful in multi-

class problems where C takes a considerable value.

For each model m j, each class c receives C− r votes being r the position of c in the ranking

belonging to model mi. For example, if C = 4 and the class 1 is ranked 3rd by model m1 (meaning

that model m1 picked class 1 as being the third most probable), then class 1 will receive 4−3 = 1

votes. This procedure is then executed for each model and possible class value, the results are

added up and the class with higher number of votes is chosen.

3.2.3.2 Model-based Approaches

Throughout the literature in Ensemble Learning, several more complex methods of prediction

combinations are described [Pol12]. Some of these can be considered model-based, in the sense

that there is a training phase of an algorithm that “learns” how to combine the several models in

the ensemble. We will describe briefly two possible approaches in this section.

Stacked Generalization
Stacked Generalization (also known as Stacking) is an Ensemble Learning method in which

the predictions of the models are combined using another model (also known as a meta-classifier)

[Pol12]. In order to do so, a new dataset is generated using the prediction outputs of the models

belonging to the ensemble. This new dataset is then used to generate another model (the meta-

classifier). This mechanism is illustrated in figure 3.2.

This approach can be seen as an extension of the Weighted Majority Voting. However, unlike

this method, the impact of each model in the final decision is not translated into a single value.
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Figure 3.2: Scheme of the Stacked Generalization approach. Source: [Pol12].

Stacking determines which models are likely to be accurate in different parts of a dataset’s fea-

ture space, since certain models may be more “specialized” in predicting correctly certain data

instances. In this case the predictions of these models for these data instances will have a higher

“weight” and the remaining models a lower one.

Since this approach is the main focus of this dissertation, we will focus on it later in this

chapter.

Mixture of Experts

Figure 3.3: Scheme of the Mixture of Experts approach. Source: [Pol12].

As the name reflects, the Mixture of Experts approach assumes certain individual models

may be experts in predicting the class value for certain data instances but more inaccurate for the

remaining ones in the dataset. This background idea is very similar to the one behind Stacking, in

which weights are assigned to each model of the ensemble reflecting its accuracy in certain parts

of the dataset’s feature set.
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However, these weights are not determined by a new model but by a gating network (as illus-

trated in 3.3). This gating network is trained using the expectation-maximization (EM) algorithm

on the original dataset.

3.3 Ensemble Learning Applications to Anomaly Detection

Ensemble Learning has been previously used with Anomaly Detection techniques [Agg17]. Be-

cause these applications were typically based on unsupervised learning, we will focus on these in

this section. Several applications using Stacking (and therefore supervised learning based) will be

discussed in the next section.

3.3.1 Unsupervised Learning Approaches

Aggarwal [Agg17] classifies unsupervised learning approaches as being either sequential or inde-

pendent.

3.3.1.1 Sequential Approaches

In sequential approaches, several models are applied sequentially either to the entire dataset or por-

tions of it [Agg17]. The underlying assumption of this group of approaches is that the application

of each algorithm allows a more refined execution by either modifying the data or the subsequent

models. Data modifications could include some of the approaches described in section 3.2.1.1,

such as subsampling the dataset, performing feature selection and feature transformation [Agg17].

The final decision can be either the decision of the last applied model or a combination of the

several models applied.

Models in earlier stages of a sequential approach could, for example, remove more obvious

anomalous instances of the data so that latter models perform a more robust anomaly detection

[Agg17]. The latter might then be able to have a better understanding of less-noticeable anomalous

instances the data. This can be used, for example, with clustering based techniques, in which more

robust clusters can be built after the most anomalous instances are removed [BLCLJ03].

3.3.1.2 Independent Approaches

In independent approaches, several models are used without having any effect on one another.

These models can be applied either to the entire dataset or to portions of it [Agg17]. The un-

derlying assumption of these approaches is that several Anomaly Detection techniques can be

specialized on certain instances of the dataset, so therefore an application of these techniques and

consequent combination of predictions might lead to more accurate decision. The methodolo-

gies to generate the models in these approaches include some of the ones already described in

section 3.2.1, such as feature selection and dataset subsampling.

Some approaches within this category use models with the LOF ([BKNS00b]) and LOCI

([PGF03]) learning algorithms.
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3.3.1.3 Ensemble Integration

One of the difficulties with unsupervised learning Anomaly Detection techniques is that they usu-

ally output a numeric score. Different techniques can output scores in different scales as, some

techniques might output a normalized score (e.g. LOF), where others might output a raw distance

score (e.g. k-nearest neighbor) [Agg17]. Different techniques might also have a different order-

ing of the scores, as some techniques output larger scores for anomalous instances, while others

output smaller scores for this type of instances [Agg17]. Therefore, it is important to normalize

the scores of each technique so that they can be meaningfully combined without over-weighting

specific techniques [Agg17].

Normalization of Scores

The first step is to make sure that each model of the ensemble has the same ordering of the

scores. This can be solved by flipping the sign of the scores of the models in which lower score

values correspond to higher probability of being an anomalous data instance. By doing this, in

every technique a higher score will always correspond to a higher probability of a data instance

being anomalous.

The second step is to convert the scores of the different models into comparable values. Ag-

garwal [Agg17] presents two possible methods:

• Range-based scaling: Range-based scale uses the maximum and minimum scores of one

model for a specific dataset to convert the scores. The converted scores will then lie in the

interval [0,1].

Let s j(xi) the score that the model m j outputs for a data instance xi and let max j and min j be

the maximum and minimum value respectively of the scores of model m j for a dataset D.

The converted score of a data instance xi with a model m j takes the following value s′(xi):

s′j(xi) =
s j(xi)−min j

max j−min j
(3.5)

The disadvantage of this method is that the values of the converted scores will depend highly

on the values of max j and min j. For example, in most Anomaly Detection techniques the

value of max j is attributed to the most anomalous data instance. In some datasets this

score might be much larger than the scores of the other data instances. This phenomena

can reduce drastically the discrimination of the remaining scores and reduce the ability of

distinguishing which ones might be anomalous [Agg17].

• Standardization: Standardization converts the scores into standard scores (also known as

Z-values).
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Let µ j and σ j be the mean value and standard deviation respectively of the scores of model

m j for a dataset D. The converted score of a data instance xi with a model m j takes the

following value s′j(xi):

s′j(xi) =
s j(xi)−µ j

σ j
(3.6)

This method however, assumes that the scores of each model mi follow a gaussian distribu-

tion. Although this assumption rarely holds, it is reported that this method usually provides

reasonably robust results [Agg17].

Another method, discussed by Gao and Tan [GT06], is to convert the techniques’ scores into

probabilities using the EM algorithm.

Combination of Scores
After the scores of the different techniques are normalized they can be combined. Note that

the approaches discussed in section 3.2.3 can not be used, since the score is a real number and not

a nominal number.

Aggarwal [Agg17] presents two possible combination methods:

• Averaging: The final score is computed as the mean of the scores of the different models.

Therefore, a data instance xi will have the following score:

∑
J
j=1 s j(xi)

J
(3.7)

• Maximum: The final score is computed as the maximum score across the different models.

Therefore, a data instance xi will have the following score:

max
j

s j(xi) , j = 1, . . . ,J (3.8)

3.4 Stacked Generalization

Stacked Generalization (also known as Stacking) was proposed initially by Wolpert [Wol92]. It

consists of an ensemble method with three steps: 1) models are generated using one or more

learning processes; 2) a new dataset is generated with the predictions of those models, together

with the original target variable; and 3) a new model is obtained using the new dataset containing

the predictions of the previous models [SLS15]. We refer to the models in the ensemble as the

level-0 models, their outputs as metafeatures and the model built with them as the level-1 model

or meta-classifier.

Formally, given a dataset D0, Stacking first generates a set of mutually exclusive partitions

of approximate size D0
1, . . . ,D0

Z . Then, similarly to a Z-fold cross-validation procedure, at each
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iteration z, the method omits the subset D0
z and uses the subset D0−D0

z as a training set to gener-

ate M level-0 models by training several learning algorithms.After the level-0 models have been

generated for each iteration z, they are applied to the dataset Dz to obtain the predictions that will

be used as the level-1 dataset values. We will refer to this dataset as the meta-dataset D1
z . The

process is repeated for all Z datasets and the complete level-1 dataset, D1 is defined as:

Z⋃
z=1

D0
z (3.9)

The dataset D1 has the same number of rows as D0, but M features (whose values are the

predictions of the M level-0 models) plus the class value. The dataset D1 can then be used to train

a learning algorithm, which becomes the level-1 model [SLS15].

To classify a new instance xi, the level-0 models produce a vector of predictions m1(xi), . . . ,mM(xi).

This vector is the input to the level-1 model, which makes a prediction regarding the class value

of xi.

3.4.1 Applications to Anomaly Detection

The application of Stacking for Anomaly Detection is recent and sometimes not very transparent

and easy to track. However, we can emphasize two approaches in the literature:

• Micenková et al. [MMA14] presented a Stacking Generalization methodology for Anomaly

Detection, using outputs from two unsupervised Anomaly Detection techniques (k-NN out-

lier and LOF). Among with these two techniques, the authors used feature bagging which

consists in a feature selection approach to generate different models from the same learning

algorithms. The meta-classifier used in this approach was a model based on the Logistic

Regression learning algorithm with L1 Regularization.

• Cerqueira et al. [CPSS16] proposed an approach similar to Stacking, in which the predic-

tions from several models (LOF and Hierarchical Agglomerative Clustering) were added to

the original dataset. According to our notation, the dataset used in this work has the fea-

tures from D0 and D1. The meta-classifier used in this approach was a model based on the

XGBoost learning algorithm.
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Chapter 4

Experimental Methodology

In order to study the application of Stacking to the problem of Anomaly Detection, first several

techniques were evaluated concerning their predictive performance as well as the diversity among

themselves, since these are the two concepts that need to be present in order to obtain better

performances using Ensemble Learning methods (as described in section 3.1). Afterwards, a study

using the same techniques was conducted using Stacking approaches and their performance was

analyzed.

This chapter will describe the experimental methodology followed throughout this thesis, more

specifically:

• The first experimental study, focused on the performance and diversity of several Anomaly

Detection techniques.

• The second experimental study on the performance of Stacking approaches using some of

the Anomaly Detection techniques used on the first study.

4.1 Objectives

The original idea of this experimental research was to measure the performance and diversity of

each of the techniques available and, based on these results, select the best techniques to group in

an ensemble and evaluate its performance.

Given a dataset D divided in three mutually exclusive partitions of approximate size D1, D2,

D3, we could separate this experimental research into three phases (as illustrated in figure 3.1):

1. Ensemble Generation: Select a diverse group of Anomaly Detection techniques to obtain

models from.
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2. Ensemble Pruning: Evaluate these potential models on the partition D1 using a cross-

validation methodology (successively train a model on a set of partitions and test on a differ-

ent partition) and select the top models with better performance to integrate in a ensemble

M.

3. Ensemble Integration: Select several possible Stacking approaches (i.e. usings a few mod-

els from M, different meta-classifiers, . . . ) and evaluate each of these approaches on the

partition D2 using a cross-validation methodology. After this evaluation is performed, the

best Anomaly Detection algorithm on D1 and the best Stacking approach on D2 would then

be evaluated on partitionD3 in order to conclude if the use of Stacking could lead to a better

performance.

However, given the fact that the datasets used for evaluation of this thesis do not have a large

number of instances (see section 4.2.2), this division would reduce the number of instances for

each of the partitions D1, D2, D3.

Thus, the main premises of this work is that among the models we have available there are

some that are accurate and some that are diverse. This is however a relaxation from the conditions

described in section 3.1. Therefore, the methodology followed was:

1. Experimental study on Anomaly Detection techniques: Choose a set of Anomaly Detection

techniques and examine their performance and diversity using the entire datasetD. The goal

of this study would be to evaluate if we are in the presence of at least some accurate and/or

diverse models.

2. Experimental study on Stacking approaches: Choose a set of Stacking approaches (using

different level-0 models and different level-1 models) and evaluate their performance on

D. Finally, conclude if the Stacking approaches perform better than the individual model

performances.

4.2 Study on Anomaly Detection Techniques

This first study conducted during this experimental research had the following objectives:

• Study the performance and diversity of different types of Anomaly Detection techniques on

several well-known datasets;

• Assess if this experimental setup contains accurate and diverse models.

4.2.1 Anomaly Detection Techniques

Techniques from several of the groups presented in chapter 2 were used in this study, more specif-

ically Classification based techniques, Nearest Neighbor based and Clustering based. These al-

gorithms are listed in table 4.1 and will be specified in this section according to their learning
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mode (i.e. supervised, semi-supervised and unsupervised). Statistical, Information Theoretic, and

Spectral based techniques were not used in this study due the lack of implementations of tech-

niques in these groups for multivariate data. A technique that predicts randomly if a data instance

is anomalous or not was used in order to define the baseline of performance in each dataset.

Table 4.1: Anomaly Detection techniques used in this study for each nomenclature group and
learning mode.

Supervised Semi-Sup. Unsupervised

Classification CART, SVM, NB,
RF, MLP

One-class SVM -

Nearest Neighbors - - LOF
Clustering - - DBSCAN,

k-means
Statistical - - -
Information Theoretic - - -
Spectral - - -

It is also important to point out that these techniques can have different types of outputs:

• Binary: A binary value indicating if a data instance is anomalous or not.

• Probabilistic: A numeric value that is always contained in the interval [0,1] and can be

interpreted as the probability of a data instance being anomalous.

• Other Numerical: A numerical value that is not in the interval [0,1] and does not represent

a probability.

The classification of the techniques according to its output is presented in table 4.2.

Table 4.2: Anomaly Detection techniques used in this study regarding the type of output.

Binary Probabilistic Other Numerical

One-class SVM CART, SVM, NB, RF, MLP k-means, DBSCAN, LOF

All the techniques’s parameters were kept to the implementation’s default, except for the ones

in which there were no defaults. In this case, several possible values were tried for such param-

eters. This was the case of the techniques SVM, One-class SVM, DBSCAN, k-means and LOF.

These possible values were kept as different instantions of the technique for the following reasons:

• More data would be needed in order to validate which would be the best value for each

parameter of each technique;

• Some instantiations with different parameter values may be able to find anomalous instances

other instantiations did not.

For all the algorithms an R implementation available was used.
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4.2.1.1 Supervised

Five different supervised learning techniques were used in this study, more specifically:

• Classification and Regression Trees (CART): a classification algorithm based on the tree

building algorithm proposed by Breiman et al. [BFSO84];

• Support Vector Machine (SVM): a classification algorithm that uses kernel functions [HDOPS98];

• Naive Bayes (NB): A probabilistic classification algorithm that is based on the Bayes’ theo-

rem and assumes independence between the features [M+98];

• Random Forest (RF): An ensemble learning method that trains multiple decision trees with

samples of the dataset and a subgroups of the features [L+02].

• Multilayer Perceptron (MLP): A feedforward artificial neural network algorithm that can

have one or multiple hidden layers [R+88].

The R package and parameters used for each technique are detailed in table 4.3. Regarding the

Random Forest technique, the default number of trees was 500 but this parameter configuration

led to a very long training time in order to obtain the model. Rumelhart et al. [R+88] researched

about the tuning of this parameter in 29 datasets in the context of medical data when optimizing

the ROC AUC metric. The authors concluded that “from 128 trees there is no more significant

difference between the forests using 256, 512, 1024, 2048 and 4096 trees”. Also, “the mean and

the median AUC values do not present major changes from 64 trees”. Therefore, we do not believe

the reduction on the number of trees in the Random Forest technique will have any significant

changes in the technique’s performance.

Table 4.3: Parameter values for supervised Anomaly Detection techniques.

Technique Parameters R package

CART cp = 0.01 rpart
SVM C = 1

gamma = 1
number o f f eatures

kernel = {linear, polynomial (degree 3), radial, sigmoid}

e1071

NB - e1071
RF ntree = 200 randomForest
MLP size = 5 RSNNS

The application of these techniques was automated using the R package caret.

4.2.1.2 Semi-Supervised

One semi-supervised learning technique was used in this study:

• One-Class SVM: Similar to the SVM technique, although this one is only trained with nor-

mal instances [KCBKK09].
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The R package and parameters used for this technique are detailed in table 4.4.

Table 4.4: Parameter values for semi-supervised Anomaly Detection techniques.

Technique Parameters R package

One-class SVM C = 1
gamma = 1

number o f f eatures
kernel = {linear, polynomial (degree 3), radial, sigmoid}

e1071

4.2.1.3 Unsupervised

Three different unsupervised learning algorithms were used in this study, more specifically:

• k-means: An approach based on the clustering algorithm k-means [R+88], in which the

euclidean distance of each data instance to its closest cluster is used as an anomaly score.

• DBSCAN: A density-based clustering technique that has the particularity of not forcing an

assignment of every data instance to a cluster [EKSX96]. Thus, instances that are assigned

to a cluster may be regarded as normal, while the remaining ones as anomalous.

• LOF: An algorithm that detects anomalies by comparing the density of the data instances

to the density of their k neighbors, where k is a parameter of the algorithm [BKNS00a].

This algorithm outputs an anomaly score for each data instance: higher scores correspond

to more anomalous data instances.

Table 4.5: Parameter values for unsupervised Anomaly Detection techniques.

Technique Parameters R package

k-means k = {3, 5, 8, 14, 19, 25, 30} stats
DBSCAN eps = {0.3, 0.5, 0.7, 0.9, 1.1}

minPts = number o f f eatures + 1
dbscan

LOF k = {3, 5, 8, 14, 19, 25, 30} dbscan

4.2.2 Evaluation Datasets

The datasets were gathered from an empirical study developed by Campos et al. [CZSCMSAH16],

in which datasets suited for Anomaly Detection benchmarking were collected and pre-processed.

Campos et al. [CZSCMSAH16] discriminates two types of datasets used throughout the liter-

ature to benchmark Anomaly Detection techniques:

• Datasets that contain semantic information that suggests that some of the classes are suffi-

ciently different from the remaining ones in order to be considered anomalous within the

dataset;
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• Datasets in which the anomalous instances are obtained by selecting a small portion of

instances from a small number of classes.

The datasets are described below, including a brief description of their context as well as

the mechanism that differentiates anomalous instances from normal ones. In some cases this

information can not be retrieved from the literature, as each author uses different pre-processing

mechanisms or different versions of a dataset and sometimes no references describing the dataset

can be found.

• ALOI: The dataset consists in a color image collection of one-thousand small objects, recorded

for scientific purposes. Several viewing angles, illumination angles and illumination colors

were used for each object. Information about how anomalous instances were categorized

was not found [CZSCMSAH16];

• Ionosphere: Dataset with radar data from the ionosphere. The anomalous instances are

radar returns that show evidence of some type of structure in the ionosphere [SWHB89;

CZSCMSAH16];

• KDDCup99: Dataset regarding Intrusion Detection events. The anomalous instances are the

ones marked as U2R attacks [CZSCMSAH16];

• PenDigits: Dataset with pen-base handwritten digits. The anomalous instances are the ones

classified as being the digit 4 [AA96];

• Shuttle: No further information regarding the context of this dataset was found. The anoma-

lous instances are the ones with the class value 2 [CZSCMSAH16];

• Waveform: No further information regarding the context of this dataset was found. The

anomalous instances are the ones with the class value 0 [CZSCMSAH16];

• WBC: Dataset composed of features extracted from digitized images of masses, in the con-

text of breast cancer. The anomalous instances are the ones marked as malignant [CZSCM-

SAH16];

• WDBC: Dataset with similar description to WBC;

• WPBC: Dataset with similar description to WBC;

• Annthyroid: Dataset in the context of the Thyroid disease. The anomalous instances are the

ones marked as Hypothyroidism [CZSCMSAH16];

• Arrhythmia: Dataset in the context of Arrhythmia with information regarding each patient.

The anomalous instances are the ones marked as suffering from Arrhythmia [CZSCM-

SAH16];
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• Cardiotocography: Dataset with features extracted from fetal cardiotocograms. The anoma-

lous instances are the ones marked as the fetal state being suspect or pathologic [CZSCM-

SAH16];

• HeartDisease: Dataset in the context of heart disease with information regarding each

patient. The anomalous instances are the ones marked having heart problems [CZSCM-

SAH16];

• Hepatitis: Dataset in the context of Hepatitis with information regarding each patient. The

anomalous instances are the ones that survived [CZSCMSAH16];

• InternetAds: Dataset representing a set of possible advertisements on Internet pages. The

features include geometry of the ad’s image, phrases occurring in the URL, the image’s

URL, the anchor’s text, and words occuring near the anchor’s text [AA96]. The anomalous

instances are the ones marked as being an ad [CZSCMSAH16];

• PageBlocks: Dataset representing features extracted from page layout blocks of a document

[MES96]. The anomalous instances are the ones marked as not containing text [CZSCM-

SAH16];

• Parkinson: Dataset with features extracted from biomedical voice measurements made by

patients. The anomalous instances are the ones marked as healthy [CZSCMSAH16];

• Pima: Dataset in the context of Diabetes with information regarding each patient. The

anomalous instances are the ones that have Diabetes [CZSCMSAH16];

• SpamBase: Dataset with an e-mail corpus. The anomalous instances are the ones marked as

not SPAM [CZSCMSAH16];

• Stamps: Dataset with color and printing properties of stamps. The anomalous instances are

the forged stamps [CZSCMSAH16];

• Wilt: Dataset with image segments of land cover. The anomalous instances are image seg-

ments of deceased trees [CZSCMSAH16].

A characterization of the datasets used is presented in table 4.6.
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Table 4.6: Number and ratio of anomalous and normal data instances in the datasets used through-
out the experimental evaluation. The datasets are ordered in decreasing order by the number of
outliers.

Dataset # Features # Outliers Outlier ratio # Inliers Inlier ratio

ALOI 27 1508 3.04% 48026 96.96%
SpamBase 57 632 20.00% 2528 80.00%
Annthyroid 21 534 7.49% 6595 92.51%
PageBlocks 10 510 9.46% 4883 90.54%
Cardiotocography 21 412 20.00% 1648 80.00%
InternetAds 1555 368 18.72% 1598 81.28%
Wilt 5 257 5.33% 4562 94.67%
KDDCup99 40 200 0.42% 47913 99.58%
Ionosphere 32 126 35.90% 225 64.10%
Pima 8 125 20.00% 500 80.00%
Waveform 21 100 2.90% 3343 97.10%
WPBC 33 47 23.74% 151 76.26%
HeartDisease 13 37 19.79% 150 80.21%
Stamps 9 31 9.12% 309 90.88%
Arrhythmia 259 27 9.96% 244 90.04%
PenDigits 16 20 0.20% 9848 99.80%
Shuttle 9 13 1.28% 1000 98.72%
Hepatitis 19 13 16.25% 67 83.75%
Parkinson 22 12 20.00% 48 80.00%
WBC 9 10 4.48% 213 95.52%
WDBC 30 10 2.72% 357 97.28%

4.2.2.1 Data Preprocessing

All the duplicate instances (instances with the same exact values for every feature) were removed,

as its existence might be problematic for some of the algorithms (e.g. LOF) [CZSCMSAH16].

Categorical features are also not universally accepted by learning algorithms. Campos et al.

[CZSCMSAH16] transformed the categorical features into numeric features with the following

rule: a value v (e.g. tall) of a categorical feature c f (e.g. height) was replaced by:

IDF(v,c f ) = ln
(

N
f reqv,c f

)
(4.1)

where N is the total number of instances in the dataset and f reqv,c f is the number of occur-

rences of the value v within the categorical feature c f (e.g. number of tall people).

Numeric features were standardized using the formula in 3.6 (except in this case we are stan-

dardizing feature values and not scores outputted from a model).
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4.2.3 Evaluation Methodology

4.2.3.1 Performance

In order to evaluate the performance of the techniques the F-measure [Pow11] was used. This

metric was used instead of the ROC AUC [Pow11], since ROC AUC is usually used with numerical

outputs and we have a technique with a binary output.

In order to use this metric, all the outputs were transformed into binary ones. In order to do

this, for each technique the instances with a higher score value were marked as anomalous and the

remaining ones as normal. The threshold for this decision was the ratio of anomalous instances in

each dataset (e.g. if the dataset has 5% of its instances as anomalous, then the top 5% instances

with higher score in each algorithm were predicted as anomalous).

The F-measure is defined as follows:

Fβ = (1+β
2) · precision · recall

(β 2 · precision)+ recall
(4.2)

When β = 1, this metric is the same as the harmonic mean between precision and recall. When

β = 2 or β = 0.5 this metric puts a higher weight on recall or precision respectively.

Table 4.7: Confusion matrix in the context of Anomaly Detection.

True
Anomalous (Positive) Normal (Negative)

Predicted
Anomalous (Positive) True positive (TP) False positive (FP)

Normal (Negative) False negative (FN) True negative (TN)

Considering the definitions in table 4.7, where the positive label is anomalous and the negative

one is normal, precision and recall can be defined as follows:

precision =
T P

T P+FP
(4.3)

recall =
T P

T P+FN
(4.4)

In the context of Anomaly Detection, precision can provide an insight on how many of the

instances we are classifying as anomalous are truly anomalous, while recall on how many of all

the anomalous instances we are classifying correctly.

The performance evaluation for the supervised and semi-supervised techniques was conducted

using 10-fold stratified cross-validation. In this methodology, the dataset is divided into ten folds

with equal representation of each class, where nine are used to train the model and one is used

to test/evaluate the trained model. All the possible combinations of training/testing folds are used

and the evaluation metric is calculated as the mean of the ones calculated for each test fold.
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In the case of the unsupervised techniques there is not a training process so the technique as

applied directly to the entire dataset and the evaluation was conducted on the entire dataset at once.

It is worth mentioning that sometimes the F1 metric could not be calculated: for example,

when the model classifies all instances as being normal. In this case, the precision metric can not

be calculated, which makes the calculation of the F1 metric impossible. In these circumstances a

value of 0 was assigned to the F1 metric. This assumption penalizes this behavior heavily, which

is desirable since a model that predicts all instances as normal is as accurate as a random guess or

less.

4.2.3.2 Diversity

In order to evaluate the diversity of the outputs of the different techniques, the Jaccard metric

[SST10] was used. The Jaccard metric is a similarity metric that is able to compare two binary

vectors (in this case the outputs from two different techniques). The outputs of each technique

were transformed into binary ones by using the method described in the previous section for the

application of the F-measure.

Table 4.8: Representation of the similarity cases between two Anomaly Detection techniques A
and B, where each letter a,b,c,d represents the number of occurrences for each case.

B
Anomalous Normal

A
Anomalous a b

Normal c d

Considering the definitions in table 4.8, the Jaccard metric is defined as follows:

SJaccard =
a

a+b+ c
(4.5)

In the case of diversity evaluation, it would not make sense to use a cross-validation method-

ology. In this case the diversity metric was used on the output of each technique used to produce

the level-1 dataset (as previously explained in section 3.4).

4.3 Study on Stacking Approaches

This second study conducted during this experimental research had the following objectives:

• Determine if combining several Anomaly Detection techniques with a model improves the

performance of each of the Anomaly Detection techniques used in this study;

• If so, determine how much the performance is improved.
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4.3.1 Stacking Approaches

The different Stacking approaches that were analyzed differ in two aspects: the Anomaly De-

tection techniques that were included in the ensemble and meta-classifiers used to combine the

techniques in the ensemble.

4.3.1.1 Techniques Combined (Level-0)

All the techniques used in the first study were included in this study (with the values for each

parameter). Additionally, the inclusion of several subgroups of techniques in the ensemble was

also tried, namely:

• All of the techniques;

• Only supervised learning techniques (CART, SVM, NB, RF, MLP);

• Only semi-supervised learning techniques (One-class SVM);

• Only unsupervised learning techniques (k-means, DBSCAN, LOF);

• Only semi-supervised and unsupervised learning techniques;

• Only tree-based techniques (CART, RF);

• Only SVM-based techniques (SVM, One-class SVM);

• Only the SVM technique;

• Only clustering-based techniques (k-means, DBSCAN);

• Only the k-means technique;

• Only the DBSCAN technique;

• Only the LOF technique.

It is worth mentioning some of the techniques originated multiple models since different values

were tried for some parameters. As seen previously, this is the case of the techniques SVM, One-

class SVM, k-means, DBSCAN and LOF.

For each of the datasets used, the techniques with zero variance (same output for each of the

instances in the dataset) were not included in the ensemble. This was done with the function

nearZeroVar from the caret package, with the parameters freqCut = 0 and uniqueCut = 0.

Each of the techniques’ outputs for each dataset were also standardized using the formula in

equation 3.6.
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4.3.1.2 Meta-classifiers (Level-1)

Several possible meta-classifiers were tried, which includes the following techniques also used at

level-0: CART, MLP and RF. Additionally, the Logistic Regression (LR) technique was also used

since this technique has been previously used in Stacking approaches [SLS15]. The R packages

and parameters used for each technique are detailed in table 4.9.

Table 4.9: Parameter values for the meta-classifiers.

Technique Parameters R package

LR maxit = 100 stats
CART cp = 0.01 rpart
RF ntree = 200 randomForest
MLP size = 5 RSNNS

A Majority Voting meta-classifier was also used, to work as a baseline for the other approaches

(see equation 3.2). In this case, all the outputs from the level-0 techniques were transformed into

binary ones so they can be combined. This transformation is the same as the one described in

section 4.2.3.1 for the application of the F-measure.

The application of these meta-classifiers was automatized using the R package caret.

4.3.2 Evaluation Methodology

The evaluation methodology was the same as the one used for the performance evaluation of the

Anomaly Detection techniques (see section 4.2.3.1).

4.3.3 Evaluation Data

The evaluation data used for this study was the one described in section 4.2.2. It is worth mention-

ing that for the the datasets Waveform, WDBC, WPBC, Cardiotocography, HeartDisease, Hepati-

tis, InternetAds and Parkinson the RF technique was not used as a meta-classifier due to very long

training times.
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Discussion of Results

This chapter will discuss the results obtained in the first and second studies, proposed in the pre-

vious chapter.

5.1 Study on Anomaly Detection Techniques

5.1.1 Performance

Table 5.1 indicates the best techniques for each dataset according to the F1 metric, along with

precision and recall metrics. Different techniques (or the same technique with different parameter

values) having the same F1 value for the same dataset are also listed. On 11 (52%) of the datasets

the Random Forest technique was among the ones with higher F1, followed by the SVM (on 5

datasets). However, in the case of the SVM, there was not a consensus on the best value for

the kernel parameter, which may become a disadvantage when using this technique for Anomaly

Detection when compared to the Random Forest one. It is also noticeable that all the techniques in

Table 5.1 are supervised learning techniques, which supports the idea that this type of techniques

have superior performance compared to the semi-supervised and unsupervised ones.

Table 5.2 indicates the best semi-supervised techniques for each dataset. The values of the F1

metric for this type of techniques are considerably lower, when compared to the ones on table 5.1.

However, choosing of the value of the kernel parameter for the One-class SVM technique appears

to be easier than for the regular SVM, as on 86% of the datasets the best value was radial.

The results of the previous analysis for the unsupervised learning techniques are presented in

table 5.3. The F1 values of this type of techniques are comparable to the ones from the semi-

supervised techniques and therefore, lower that the ones on table 5.1. On 11 (52%) of the datasets,

the k-means technique had the best F1 value, followed by the LOF technique (7 datasets).

In some Anomaly Detection contexts, the precision might be more important than recall and

vice-versa. Therefore, an analysis on the best techniques according to the F0.5 and F2 metrics was

also conducted. Table 5.4 lists the best techniques according to the F0.5 metric, in which precision
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Table 5.1: Measurements of the metrics F1, Precision and Recall for the algorithms with highest
F1 in each dataset.

Dataset Technique Variant F1 Precision Recall

ALOI RF - 0.590 0.600 0.580
Ionosphere SVM kernel = radial 0.933 0.929 0.937
KDDCup99 RF - 0.852 0.854 0.850
PenDigits MLP - 1.000 1.000 1.000
Shuttle CART - 0.900 0.900 0.900
Waveform SVM kernel = radial 0.600 0.600 0.600
WBC RF - 0.900 0.900 0.900
WDBC NB - 0.900 0.900 0.900

MLP - 0.900 0.900 0.900
SVM kernel = linear 0.900 0.900 0.900
SVM kernel = polynomial 0.900 0.900 0.900

WPBC SVM kernel = linear 0.536 0.520 0.555
Annthyroid RF - 0.974 0.969 0.979
Arrhythmia RF - 0.587 0.567 0.617
Cardiotocography RF - 0.899 0.900 0.898
HeartDisease NB - 0.650 0.625 0.683
Hepatitis RF - 0.683 0.600 0.850
InternetAds RF - 0.880 0.880 0.881
PageBlocks RF - 0.885 0.886 0.884
Parkinson SVM kernel = linear 0.917 0.950 0.900

SVM kernel = polynomial 0.917 0.950 0.900
Pima RF - 0.541 0.531 0.552
SpamBase RF - 0.873 0.873 0.872
Stamps MLP - 0.886 0.800 1.000
Wilt MLP - 0.901 0.896 0.906

is favored. In this case, the Random Forest technique is still considered the best one on most of

the datasets (11). Table 5.5 lists the best techniques according to the F2.0 metric, in which recall

is favored. Once again, the Random Forest technique is still considered the best one on most of

the datasets (11). However, in this situation na unsupervised technique (DBSCAN) is the one with

better performance on two datasets (WPBC and Pima).

Regarding the comparison between the Anomaly Detection techniques and the random tech-

nique (that predicted every data instance randomly as anomalous or not, taking into account class

distribution), table 5.6 lists the number of techniques (and its variants, considering the possible

parameter values tested) that had a better F1 value than the random technique. The mean ratio of

techniques with superior performance to the random technique among the datasets is 0.83, while

the minimum is 0.53. In our experimental setup this indicates that in the worst case, only 53%

of the techniques were accurate. However, given the fact that the mean among the datasets is

considerably higher (83%), we can conclude that we have a set of techniques in which the vast

majority perform better than a random guess on most of the cases. Table 5.7 reinforces this con-

36



Discussion of Results

Table 5.2: Measurements of the metrics F1, Precision and Recall for the semi-supervised algo-
rithms with highest F1 in each dataset.

Dataset Technique Variant F1 Precision Recall

ALOI One-class SVM kernel = radial 0.066 0.035 0.578
Ionosphere One-class SVM kernel = radial 0.675 0.518 0.977
KDDCup99 One-class SVM kernel = radial 0.016 0.008 1.000
PenDigits One-class SVM kernel = polynomial 0.008 0.004 1.000
Shuttle One-class SVM kernel = radial 0.049 0.025 1.000
Waveform One-class SVM kernel = radial 0.087 0.046 0.810
WBC One-class SVM kernel = radial 0.169 0.093 1.000
WDBC One-class SVM kernel = radial 0.100 0.053 1.000
WPBC One-class SVM kernel = polynomial 0.359 0.235 0.775
Annthyroid One-class SVM kernel = radial 0.203 0.116 0.809
Arrhythmia One-class SVM kernel = radial 0.273 0.163 0.883
Cardiotocography One-class SVM kernel = radial 0.464 0.312 0.910
HeartDisease One-class SVM kernel = radial 0.472 0.322 0.925
Hepatitis One-class SVM kernel = radial 0.380 0.238 1.000
InternetAds One-class SVM kernel = radial 0.398 0.261 0.843
PageBlocks One-class SVM kernel = radial 0.294 0.172 0.996
Parkinson One-class SVM kernel = radial 0.488 0.355 0.950
Pima One-class SVM kernel = radial 0.397 0.270 0.753
SpamBase One-class SVM kernel = radial 0.456 0.307 0.888
Stamps One-class SVM kernel = radial 0.282 0.165 1.000
Wilt One-class SVM kernel = linear 0.174 0.107 0.777

clusion, by listing the number of datasets for each technique in which the technique (or one of

its variants) outperformed the random one. Both the Random Forest and Multilayer Perceptron

techniques outperformed the random technique in every dataset, while the One-class SVM only

did so in 71% of the datasets.
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Table 5.3: Measurements of the metrics F1, Precision and Recall for the unsupervised algorithms
with highest F1 in each dataset.

Dataset Technique Variant F1 Precision Recall

ALOI LOF k = 3 0.207 0.207 0.207
Ionosphere k-means k = 25 0.849 0.849 0.849
KDDCup99 k-means k = 8 0.560 0.560 0.560
PenDigits LOF k = 3 0.050 0.050 0.050

LOF k = 5 0.050 0.050 0.050
LOF k = 8 0.050 0.050 0.050
LOF k = 14 0.050 0.050 0.050
LOF k = 19 0.050 0.050 0.050

Shuttle DBSCAN eps = 1.1 0.491 0.325 1.000
Waveform k-means k = 30 0.210 0.210 0.210
WBC k-means k = 19 0.600 0.600 0.600
WDBC k-means k = 30 0.700 0.700 0.700

LOF k = 19 0.700 0.700 0.700
WPBC DBSCAN eps = 0.3 0.384 0.237 1.000

DBSCAN eps = 0.5 0.384 0.237 1.000
DBSCAN eps = 0.7 0.384 0.237 1.000
DBSCAN eps = 0.9 0.384 0.237 1.000
DBSCAN eps = 1.1 0.384 0.237 1.000

Annthyroid DBSCAN eps = 1.1 0.190 0.122 0.438
Arrhythmia k-means k = 3 0.333 0.333 0.333

LOF k = 19 0.333 0.333 0.333
LOF k = 25 0.333 0.333 0.333
LOF k = 30 0.333 0.333 0.333

Cardiotocography k-means k = 3 0.364 0.364 0.364
HeartDisease k-means k = 14 0.351 0.351 0.351

k-means k = 30 0.351 0.351 0.351
Hepatitis k-means k = 25 0.308 0.308 0.308

LOF k = 25 0.308 0.308 0.308
LOF k = 30 0.308 0.308 0.308

InternetAds LOF k = 30 0.364 0.364 0.364
PageBlocks k-means k = 3 0.643 0.643 0.643
Parkinson k-means k = 8 0.667 0.667 0.667

k-means k = 14 0.667 0.667 0.667
Pima DBSCAN eps = 1.1 0.408 0.263 0.904
SpamBase DBSCAN eps = 1.1 0.339 0.204 0.991
Stamps DBSCAN eps = 1.1 0.310 0.183 1.000
Wilt LOF k = 5 0.152 0.152 0.152
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Table 5.4: Measurements of the metrics F0.5, Precision and Recall for the semi-supervised algo-
rithms with highest F1 in each dataset.

Dataset Technique Variant F0.5

ALOI RF - 0.596
Ionosphere SVM kernel = radial 0.931
KDDCup99 RF - 0.854
PenDigits MLP - 1.000
Shuttle CART - 0.900
Waveform SVM kernel = radial 0.600
WBC RF - 0.900
WDBC NB - 0.900

MLP - 0.900
SVM kernel = linear 0.900
SVM kernel = polynomial 0.900

WPBC SVM kernel = linear 0.526
Annthyroid RF - 0.971
Arrhythmia RF - 0.574
Cardiotocography RF - 0.900
HeartDisease NB - 0.634
Hepatitis RF - 0.628
InternetAds RF - 0.880
PageBlocks RF - 0.886
Parkinson SVM kernel = linear 0.933

SVM kernel = polynomial 0.933
Pima RF - 0.535
SpamBase RF - 0.873
Stamps MLP - 0.832
Wilt MLP - 0.898
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Table 5.5: Measurements of the metrics F2, Precision and Recall for the semi-supervised algo-
rithms with highest F1 in each dataset.

Dataset Technique Variant F2

ALOI RF - 0.584
Ionosphere SVM kernel = radial 0.936
KDDCup99 RF - 0.851
PenDigits MLP - 1.000
Shuttle CART - 0.900

RF - 0.900
SVM kernel = radial 0.900

Waveform SVM kernel = radial 0.600
WBC RF - 0.900
WDBC NB - 0.900

MLP - 0.900
SVM kernel = linear 0.900
SVM kernel = polynomial 0.900

WPBC DBSCAN eps = 0.3 0.609
DBSCAN eps = 0.5 0.609
DBSCAN eps = 0.7 0.609
DBSCAN eps = 0.9 0.609
DBSCAN eps = 1.1 0.609

Annthyroid RF - 0.977
Arrhythmia RF - 0.603
Cardiotocography RF - 0.898
HeartDisease NB - 0.669
Hepatitis RF - 0.767
InternetAds RF - 0.880
PageBlocks RF - 0.885
Parkinson SVM SVM_linear 0.906

SVM SVM_polynomial 0.906
Pima DBSCAN eps = 1.1 0.608
SpamBase RF - 0.872
Stamps MLP - 0.950
Wilt MLP - 0.904
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Table 5.6: Number of techniques (and each of its variants) that had a superior value on F1 metric
to the random technique in each dataset. The total number of techniques/variants tested was 31.

Dataset Variants better than random Ratio

ALOI 30 0.94
Ionosphere 29 0.91
KDDCup99 30 0.94
PenDigits 20 0.63
Shuttle 31 0.97
Waveform 31 0.97
WBC 18 0.56
WDBC 21 0.66
WPBC 17 0.53
Annthyroid 31 0.97
Arrhythmia 30 0.94
Cardiotocography 29 0.91
HeartDisease 27 0.84
Hepatitis 24 0.75
InternetAds 24 0.75
PageBlocks 30 0.94
Parkinson 29 0.91
Pima 31 0.97
SpamBase 29 0.91
Stamps 31 0.97
Wilt 18 0.56

Table 5.7: Number of datasets for which each technique had at least one variant with a better F1
value than the one from the random technique.

Technique Number of datasets Ratio

CART 19 0.90
SVM 18 0.86
NB 17 0.81
RF 21 1.00
MLP 21 1.00
One-class SVM 15 0.71
k-means 19 0.90
DBSCAN 20 0.95
LOF 20 0.95

41



Discussion of Results

5.1.2 Diversity

Regarding the diversity of the techniques studied, figure 5.1 displays visually the mean value of

the Jaccard metric, across all the 21 datasets tested and figure 5.2 the standard deviation value.

Figure 5.1 reveals visual clusters of similarity between several techniques:

• Supervised techniques are somewhat similar to each other but not similar to the semi-

supervised and unsupervised ones;

• Semi-supervised techniques (One-class SVM) are more similar to each other and the DB-

SCAN technique, but display a very low degree of similarity to other techniques;

• The LOF technique’s variants are very similar to each other (this similarity is higher if the

variation of the parameter k is lower) and somewhat similar to the k-means technique, but

have a very low degree of similarity to other techniques;

• The DBSCAN technique’s variants are very similar to each other (this similarity is higher

if the variation of the parameter eps is lower) and somewhat similar to the One-class SVM

variants;

• The k-means technique’s variants show a medium similarity to each other and to some

variants of the LOF technique.

Figure 5.2 show a more distinct variation on the similarity between the supervised learning

techniques, between the DBSCAN technique’s variations and between the DBSCAN’s variations

and one of the variations of the One-class SVM technique.
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Figure 5.1: Mean value across all datasets of the Jaccard metric between each par of techniques.
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Figure 5.2: Standard deviation value across all datasets of the Jaccard metric between each par of
techniques.
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5.2 Study on Stacking Approaches

Table 5.8 lists the best Stacking approaches that outperformed the best single technique for each

dataset. In 12 of the 21 datasets there was an improvement in the F1’s value over the best technique.

The mean improvement in these 12 datasets was 0.025.

Regarding the techniques used in the ensemble, the best ensemble in 6 of the 12 datasets con-

tained techniques from several learning modes: this is the case of the datasets ALOI, KDDCup99,

WPBC, InternetAds, PageBlocks and Stamps. In 5 of these 6 datasets, the best ensemble was the

one that included all the techniques. Given these results, there is not a clear conclusion on whether

including techniques from different learning modes results in an ensemble with higher accuracy.

Regarding the best meta-classifier, there was not one that outperformed consistently all the

others on the datasets used.

Table 5.8: Measurements of the metric F1 for the Stacking approaches that outperform the best
algorithm for each dataset.

Dataset Ensemble Techniques Meta-classifier Best Technique F1 Best Ensemble F1 Improvement

ALOI All RF 0.933 0.947 +0.014
KDDCup99 All RF 0.852 0.879 +0.027
Shuttle One-class SVM + SVM LR 0.900 1.000 +0.100

One-class SVM + SVM MLP 0.900 1.000 +0.100
SVM LR 0.900 1.000 +0.100
SVM MLP 0.900 1.000 +0.100

Waveform SVM CART 0.600 0.640 +0.040
WPBC One-class SVM + SVM MLP 0.536 0.569 +0.033
Annthyroid All Supervised CART 0.974 0.976 +0.002
Cardiotocography All Supervised CART 0.899 0.905 +0.006
HeartDisease CART + RF MLP 0.650 0.672 +0.022
InternetAds All LR 0.880 0.898 +0.018
PageBlocks All RF 0.885 0.890 +0.005
SpamBase All Supervised RF 0.873 0.882 +0.009
Stamps All CART 0.886 0.906 +0.020

Table 5.9 lists the best Stacking approaches that outperformed the best single technique for

each dataset, but this time considering additionally Majority Voting as an alternative to a meta-

classifier. Majority Voting is not a meta-classifier, so therefore a solution with it cannot be con-

sidered an application of the Stacking method. However, the inclusion of Majority Voting can

provide insight on whether how well the meta-classifiers are performing, by serving as a baseline.

In this case, in 15 of the 21 datasets there was an improvement of the F1’s value over the best

technique: more 3 datasets than without considering Majority Voting. The mean value of this

improvement was 0.056, also higher than the one from the previous experiment. The techniques

included in most of the successful ensembles are the RF and CART algorithms, with Majority

Voting being a better alternative to a meta-classifier in all datasets except Waveform and Stamps.
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Table 5.9: Measurements of the metric F1 for the Stacking approaches that outperform the best
algorithm for each dataset, when considering Majority Voting as an alternative to a meta-classifier.

Dataset Ensemble Techniques Meta-classifier Best Technique F1 Best Ensemble F1 Improvement

ALOI CART + RF Majority Voting 0.590 0.742 +0.152
Ionosphere DBSCAN Majority Voting 0.933 1.000 +0.067
KDDCup99 CART + RF Majority Voting 0.852 0.892 +0.040
Shuttle All Supervised Majority Voting 0.900 1.000 +0.100

One-class SVM + SVM LR 0.900 1.000 +0.100
One-class SVM + SVM MLP 0.900 1.000 +0.100
SVM Majority Voting 0.900 1.000 +0.100
SVM LR 0.900 1.000 +0.100
SVM MLP 0.900 1.000 +0.100

Waveform SVM CART 0.600 0.640 +0.040
WPBC CART + RF Majority Voting 0.536 0.625 +0.089
Annthyroid CART + RF Majority Voting 0.974 0.979 +0.005
Arrhythmia CART + RF Majority Voting 0.587 0.653 +0.066
Cardiotocography CART + RF Majority Voting 0.899 0.928 +0.029
HeartDisease CART + RF Majority Voting 0.650 0.676 +0.026
InternetAds All Supervised Majority Voting 0.880 0.913 +0.032
PageBlocks CART + RF Majority Voting 0.885 0.919 +0.034
Pima CART + RF Majority Voting 0.541 0.647 +0.106
SpamBase CART + RF Majority Voting 0.873 0.908 +0.036
Stamps All CART 0.886 0.906 +0.020
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Chapter 6

Conclusions and Future Work

This chapter presents the main conclusions of this research work in the context of Anomaly De-

tection and Ensemble Learning and possible future work topics.

6.1 Main Overview and Conclusions

On this dissertation, we first discussed the concepts of Anomaly Detection and Ensemble Learn-

ing. A taxonomy and applications for both of the fields was also presented, among with a definition

of the Stacked Generalization method and its applications in the Anomaly Detection context.

We then proposed an experimental methodology, separated in two experimental studies, to

tackle the application the Stacked Generalization method in the context of Anomaly Detection.

Several Anomaly Detection techniques from different taxonomic groups were studied separately

and combined with different meta-classifiers. These studies were supported by datasets used

throughout the literature of Anomaly Detection. The main results and findings of this experi-

mental methodology were also exposed.

We can briefly summarize the main conclusions of this dissertation as follows:

• Most of the Anomaly Detection techniques used in this study are accurate and diverse in

the datasets used, therefore having the necessary conditions for the Stacking method over-

performing the best technique in each dataset.

• The application of the Stacking method guaranteed higher F1 values than the best Anomaly

Detection technique on more than half of the datasets used.

• There is no clear indication whether including Anomaly Detection techniques from different

learning modes guarantees higher F1 values. In the datasets where this was true, the best

combination was including techniques from all the learning modes available.

• There is not a meta-classifier that clearly outperformed the others in terms of F1 on the

datasets, so choosing the appropriate one seems to be very dependent on the dataset.
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• Replacing the meta-classifier with the Majority Voting method improved the F1 value on

even more datasets, with also a higher mean improvement on the F1. In this case, ensembles

with tree-based Anomaly Detection techniques only (CART and Random Forest) were the

ones with higher F1 values on most datasets.

6.2 Main Contributions

The main contribution of this dissertation is the the development of a research study on Stacking

approaches applied to Anomaly Detection with a broader variety of techniques, meta-classifiers

and datasets. Also a study on the performance and diversity of these techniques across datasets

used throughout the Anomaly Detection literature was also provided as a secondary contribution.

6.3 Future Work

Several ideas can be followed as future work to the research work developed in this dissertation:

• Bigger datasets: One of the limitations of the experimental methodology proposed was the

size of the datasets used. Although from our point of view it is important to perform a study

on datasets that were used previously in the literature in order to enable further compar-

isons, these datasets are in general very small. More complex methodologies with processes

like parameter optimization would need bigger datasets in order to perform validation in a

greater number of data instances.

• Higher variety of Anomaly Detection techniques: Although this dissertation performed an

empirical evaluation on Stacking with a greater variety of Anomaly Detection techniques

than previous studies (at least, to the best of our knowledge), more techniques could be

incorporated and tested. In particular, there were taxonomic groups of Anomaly Detection

techniques that were not explored, mostly because the application of these techniques is not

as popular, and therefore there is a lack of implementations in general purpose languages.

Therefore, the exploration of this future work idea most probably implicate some imple-

mentation work.
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