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Caracterização probabilística de adesivos epóxi 

Resumo 

Uma metodologia de caracterização probabilística de ruptura, usando o Generalized Local 

Model (GLM) (Calvente 2017) foi experimentada numa resina epóxi disponível 

comercialmente – EPOLAM 2025. O GLM foi aplicado a valores experimentais obtidos em 

ensaios de tração para provetes em forma de osso e em provetes compact tension, onde a tensão 

de ruptura foi considerada como parâmetro generalizado. Antes, foi realizada uma 

caracterização viscoelástica para analisar as propriedades do material, através de ensaios de 

relaxação a diferentes temperaturas. Foi aplicado o princípio de sobreposição temperatura-

tempo aos ensaios realizados, obteve-se uma curva mestra para o módulo de relaxação e 

aproximou-se a curva com séries de Prony. 

O material foi considerado estável e com um comportamento similar a linear elástico até 30℃, 

esta consideração foi corroborada pela curva tensão-deformação obtida nos ensaios de tração 

em provetes em forma de osso. É observada uma elevada dispersão dos valores da tensão de 

cedência, o que conduziu a uma aproximação a estes valores através de uma função de 

distribuição cumulativa de Weibull, com três paramêtros, que não é ideal. Uma função de 

distribuição cumulativa primária (PFCDF, segundo o GLM) foi obtida como propriedade 

relativa do material para 1𝑚𝑚3 mas a aplicabilidade desta função a outra geometria não foi 

validada com sucesso. Os modelos numéricos foram postos em causa e foram descobertas 

imprecisões mas sem soluções alternativas dentro do tempo estipulado para este projeto. 
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PROBABILISTIC CHARACTERIZATION OF EPOXI ADHESIVES 

Abstract 

A probabilistic characterization of failure, using the Generalized Local Model (GLM) (Calvente 

2017), was attempted in a commercially available epoxy resin – EPOLAM 2025. The GLM 

was applied to experimental data from dogbone and compact tension specimens, considering 

the ultimate tensile strength as a generalized parameter. A prior viscoelastic characterisation 

was performed to analyse the material’s behaviour, through relaxation tests at different 

temperatures. The temperature-time superposition principle was applied to these tests, a master 

curve for the relaxation modulus was obtained and the curve was approached using Prony 

series. 

The material was found stable and with a behaviour close to linear elastic up to 30℃, this 

consideration was reassured by the outcome stress-strain curves of tensile tests in dogbone 

specimens. A high scatter in the ultimate tensile strength values was observed, which led to a 

non-ideal fit of the three-parameter Weibull cumulative distribution function to these values. A 

primary failure cumulative distribution function was obtained as a relative material property for 

1𝑚𝑚3 but the applicability of this function to another geometry was not successfully validated. 

The numerical model was questioned and found imprecise but no alternative solution was found 

within the stipulated time for this project. 
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1 Introduction 

With the growing demand for components made of or incorporating viscoelastic materials, the 

full knowledge of the behaviour and durability of using them in different applications is needed. 

A component that has been built with optimized characteristics will often perform as expected 

and requires the minimum amount of resources to do so. However, to achieve such feature, it 

must be designed adequately and that relies deeply on the knowledge of material’s mechanical 

behaviour. 

In this project, the fracture behaviour of a commercially available epoxy resin – EPOLAM 2025 

– is studied using probabilistic tools. Applying the Generalized Local Model (Calvente 2017), 

the suitability of the model to characterize viscoelastic materials is going to be assessed as well 

its transferability among geometries. 

EPOLAM 2025 is an epoxy resin commonly used for manufacturing heat-resistant tools, 

although it is used in wet lay-up, moulding and vacuum bagging processes as well, even for 

components as large as windmill blades. 

Viscoelastic material properties can alter drastically with temperature increments, especially 

around glass transition temperature. To evaluate EPOLAM 2025 behaviour at ambient 

temperature, a viscoelastic characterization will be performed through relaxation tests at 

different temperatures to which the temperature-time transition superposition principle is going 

to be applied. The resulting master curve for relaxation modulus will be approximated using 

Prony series. 

Tensile tests will also be performed in dogbone specimens and compact tension specimens. 

Three-parameter Weibull cumulative distribution functions will be fitted to experimental data 

collected from these experiments, considering the ultimate tensile strength as a generalized 

parameter and the interchangeability of the generalized local model, applied to this material, 

will be assessed. 

1.1 Context of the project within the IEMES research group 

IEMES research group was created with the objective of characterizing materials mechanically 

and developing probabilistic models to predict the lifetime of structures and structural 

components under fatigue and fracture. 

The group succeed at developing methods of probabilistic characterization (C Przybilla 2014; 

Muñiz-Calvente et al. 2015) and at characterizing materials, such as glass (Lamela et al. 2014). 

There is a gap, however, in characterizing polymeric materials. This thesis is developed as a 

contribution to fill this gap, applying the previously developed methodologies to an epoxy resin 

and concluding about the feasibility of such approaches. 

1.2 Objectives 

The proposed work is developed with the purpose of: 
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1. Assessing an epoxy resin’s viscoelastic behaviour, characterizing its relaxation modulus 

variation with time. This implies performing transient relaxation tests at different 

temperatures and applying the Time-Temperature Superposition (TTS) principle to 

obtain a master curve for the relaxation modulus. 

2. Planning, performing and assessing quasi-static tensile and fracture experiments based 

on the probabilistic models previously developed by IEMES group. This is conducted 

by 

 Choosing a generalized parameter; 

 Obtaining an experimental failure cumulative distribution function – EFCDF – 

that allows the primary failure cumulative distribution function – PFCDF – to 

be obtained by deriving the EFCDF. 

 Assessing the transferability of the PFCDF of the material to another geometry. 

1.3 Methodology 

This thesis is expected to be developed according to a methodology outlined in the following 

steps: 

1. Perform experimental and numerical analysis of viscoelastic material behaviour. Obtain 

the material relaxation modulus using the TTS principle and Prony coefficients. 

2. Perform an experimental programme of tensile and fracture quasi-static tests of an 

epoxy resin – EPOLAN 2025. 

3. Elaborate a finite element model for the experimental tests, assuming material’s 

behaviour as elastoplastic. 

4. Validate the numerical values obtained from the finite element’s model, using 

experimental data. 

5. Perform a numerical analysis of the fracture test using the σ–ε experimental curve 

obtained in the tensile test, under plastic material behaviour. 

6. Obtain the PFCDF as a material relative property. 

1.4 Structure 

This thesis is structured in chapters, according to the following order: 

 Literature review 

This chapter presents a literature review on viscoelastic materials, a review of the 

generalized local model, size effect and Weibull’s probabilistic model theory. An 

overview of the ordinary least squares (OLS) method is done. Digital image correlation 

basic principles are described, according to the needs of this project. 

 Experimental procedure 

In this chapter, the tests that will be performed along the project are described. The 

standards that served as guidelines to the experiments are mentioned, as well as the 

machinery used. Then, a guide on how the experiments will be performed is presented, 

taking into account possible assumptions made, software and hardware interactions and 

respective parameters attributed to each type of test. 

 Results and discussion 

In this chapter, the obtained results are analysed. Possible causes of discrepancies are 

explored and all considerations exposed. 

 Conclusions 
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Comments on the final results and conclusions drawn from the investigation undertaken, 

as well as a presentation of possible future work to be developed on the subject are 

presented.
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2 Literature review 

2.1 Viscoelastic characterization 

2.1.1 Viscoelastic behaviour 

For the majority of cases, material’s behaviour in solid state may be described by Hooke’s law 

of linearity, when subjected to small increments of strain. Hooke’s law describes a linear and 

proportional relationship between the stress σ and the strain ε, as shown in equation 2.1, with E 

representing Young’s modulus. 

𝜎 = 𝜀 ∙ 𝐸 (2.1) 

Equation 2.1 can also be written in terms of a compliance J, as shown in equation 2.2, being J 

the inverse of the Young’s modulus, equation 2.3. 

𝜀 = 𝐽 · 𝜎 (2.2) 

𝐽 =
1

𝐸
(2.3) 

This behaviour is commonly represented by a purely elastic spring, a mechanical component 

with a stiffness of E (Figure 1). 

 

Figure 1 – Spring 

If a material is in liquid state, its behaviour under shear stress can be described by Newton’s 

law – equation 2.4 – where shear stress is proportional to the rate of strain 
𝑑𝜀

𝑑𝑡
 and related to the 

material’s viscosity 𝜂. 

𝜎 = 𝜂 ·
𝑑𝜀

𝑑𝑡
(2.4) 

A mechanical component that represents this behaviour is a purely viscous dashpot (Figure 2) 

in which 𝜂 represents the dashpot’s viscosity coefficient. 
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Figure 2 – Dashpot 

The classical theory of elasticity uses Hooke’s law to relate stress and strain for solids with 

elastic properties, not taking into account the rate of strain. On the other hand, the classical 

theory of hydrodynamics relates the stress to the rate of strain through Newton’s law, 

disregarding the strain itself. These concepts work as a guideline and an idealisation, 

representing material behaviour for infinitesimal variations of strain in solids, and infinitesimal 

changes in the rate of strain in liquids. Considering infinitesimal variations to be the amount up 

to which the material behaves as described by these laws, two types of deviations can be 

considered. 

Firstly, whenever a higher than infinitesimal strain is applied to a solid, it suffers non-Hookean 

deformation – plasticity – and the stress-strain relations are more complex. In a similar way, 

many fluids in steady flow deviate from Newton’s law whenever a higher rate of strain is 

observed. 

Secondly, some materials will share both solid and liquid characteristics. This implies that, 

whenever a constant stress is applied to a materia, it will not respond with a constant 

deformation but will, instead, deform increasingly with time. Alternatively, if a constant 

deformation is applied, it will gradually require a smaller stress to keep the same value. 

Similarly to liquids, if the material is flowing under a constant stress, it retains some of the 

energy, instead of dissipating all of it; it recovers part of its original shape as the applied stress 

is removed. The materials that fall under these two last considerations are known as viscoelastic 

materials. 

Given previous considerations – equations 2.1 and 2.4 – it is possible to define a first approach 

to the equation ruling the behaviour of a viscoelastic material with equation 2.5. 

𝜎 = 𝐸 · 𝜀 + 𝜂 ·
𝜕𝜀

𝜕𝑡
(2.5) 

Considering the case in which a constant stress is applied to a viscoelastic material, a continuous 

deformation will be experienced with its velocity depending on the material’s temperature. This 

phenomenon is known as creep. 

Creep 

For those who had the joy of playing with a chewing gum, stretching it until it breaks apart, 

creep is already an observed phenomenon. Stretching it at a constant stress will imply a high 

strain velocity at an early stage, with the cross-section diminishing rapidly at first, followed by 

a stage where the gum keeps stretching but at a constant velocity, narrowing the cross-section 

in a much lower rate, and eventually the gum breaks in two pieces with a sudden growth of the 

deformation rate. This behaviour describes the three general stages of creep: a primary stage, 

with a decreasing rate of strain; a secondary stage, where a nearly constant rate of strain is 

observed; and a third or tertiary stage, with an increasing rate of strain leading to fracture. 

In Figure 3 strain is represented as a function of time 𝜀(𝑡) during a creep test, with different 

creep regimes represented according to the different stages, by different time derivatives 
𝑑𝜀

𝑑𝑡
. 
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Figure 3 – Three stages of creep (Findley 1978) 

Since the material did not lose its ability to recover partially from an applied stress when 

unloaded, creep strain can be split into two different categories: elastic strain 𝜀𝑒 and creep strain 

𝜀𝑒. The elastic strain is a constant, while creep strain is time dependent, therefore: 

𝜀(𝑡) = 𝜀𝑒 + 𝜀𝑐(𝑡) (2.6) 

𝑑𝜀

𝑑𝑡
=

𝑑𝜀𝑐

𝑑𝑡
(2.7) 

Recovery 

The loose skin between the thumb and the index fingers, after pinched, regain its shape. As we 

age, this feature is not lost but the rate of recovery is often slower because skin loses its elasticity 

(Ryu et al. 2008). A portion of skin goes back to its original shape at a fast rate, while the rest 

slowly crawls back to its place. This happens because there is both elastic strain and creep 

strain, as the elastic strain – like in steel, for instance – recovers its shape almost instantly and 

the creep strain is time-dependent, recovering at a decreasing velocity – Figure 4. 

 

Figure 4 – Creep and recovery for viscoelastic behaviour (Lakes 2009) 

It is important to notice that, although the skin between the fingers recovers its full shape as 

part of the human body, if a viscoelastic material is to be analysed as an isolated system it may 

not recover the initial shape, independently of the recovery time. 

Relaxation 

Considering now that, instead of a constant stress, a constant strain is applied to a viscoelastic 

material, a phenomenon named relaxation occurs and the material will require less stress to 

withstand the same strain. 

Humans are pain sensitive and that is one of the reasons why it may be difficult for some to 

reach their toes while keeping the legs straight. Although, given enough time and practice, it 

becomes easier and feasible. A good starting point would be to stretch as far as possible and 

hold the position for a few seconds. It would be painful at first, as the tendons are stressed but, 
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with time, one would feel less pressured while holding the same position. This happens because 

tendons relax over time, which helps overcome the pain and venture into stretching more, and 

leads to improvements as tendons not fully recover the original length (Bonifasi-Lista et al. 

2005; Herbert et al. 2002). 

Given such behaviour it is possible to conclude that the stress associated with a constant strain 

is time-dependent and decreasing for viscoelastic materials – Figure 5. 

 

Figure 5 – Relaxation (Kinloch and Young 1984) 

Similar to what happens to linear elastic mechanics’ applications whenever the plasticity barrier 

is crossed, the presented considerations are not valid for all viscoelastic materials. Factors 

ranging from stress, strain, time or temperature will affect the material behaviour and cause it 

to be linear or nonlinear, this requires a definition of what is a linear viscoelastic material. 

Nonlinear viscoelastic will be those materials that do not behave as the linear but will not be 

thoroughly explained as it goes beyond the scope of the present work. 

Linear viscoelasticity 

For a material to be considered linear it has to be in accordance with two conditions (Findley 

1978): 

 Stress 𝜎 is proportional to strain 𝜀 at a given time: 

𝜀[𝑐 · 𝜎(𝑡)] = 𝑐 · 𝜀[𝜎(𝑡)] (2.8) 

Taking into consideration that 𝑐 is a constant, the stress is imposed and strain is a 

response to that stress; equation 2.8 states that the strain caused by an input of 𝑐𝜎(𝑡) 

must be equal to the strain output times the scalar 𝑐, caused by a stress input of 𝜎(𝑡). 

 A material’s behaviour must obey Boltzmann superposition principle (Boltzmann 

1876): 

Boltzmann principle states that a compound parameter can be described by the sum of 

the parameters that form it (Lakes 1998). So, for instance, if a tensile test is applied in a 

specimen that was in a stress-free state when 𝑡 = 0, the stress 𝜎(𝑡) to which it is 

subjected is a functional of all the strains 𝜀(𝑡) up to an instant 𝑡. 

The same principle can be applied for the strain resulting from the sum of any two 

different stresses applied at different intervals of time, that is going to be equal to the 

sum of the resulting strain from applying each of the stress by itself (Figure 6). This can 

be described by equation 2.9. 
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Figure 6 – Boltzmann superposition principle (Findley 1978) 

𝜀[𝜎1(𝑡) + 𝜎2(𝑡 − 𝑡1)] = 𝜀[𝜎1(𝑡)] + 𝜀[𝜎2(𝑡 − 𝑡1)] (2.9) 

Built on these considerations and considering a Heaviside unit step function – equation 2.10 – 

the output of a viscoelastic material is a function of not only time 𝑡 but of the moment the input 

𝜏 was applied as well. 

ℋ(𝑡 − 𝜏) = {

0    ,    𝑡 < 𝜏
1

2
    ,    𝑡 = 𝜏

1    ,    𝑡 > 𝜏

(2.10) 

Being the output a stress, the constitutive equation for a viscoelastic medium is represented in 

equation 2.11, where 𝐸(𝑡) is the relaxation modulus of the material. If the output is strain, the 

constitutive equation is represented by equation 2.12, where 𝐽(𝑡) is the creep compliance of the 

material (Lakes 1998). 

𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏) ·
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

(2.11) 

𝜀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑡

0

·
𝑑𝜎(𝜏)

𝑑𝜏
𝑑𝜏 (2.12) 

As shown in Figure 1 and Figure 2, mechanical components are used as references to describe 

physical behaviours. Combined, as in equation 2.5, they can simulate viscoelastic materials. 

One example of such would be a car suspension, where a spring is connected in parallel with a 

dashpot and the system spring+dashpot is connected to a tire, which acts like a spring 

(Gündoǧdu 2007). The whole system makes the journey easier by acting as viscoelastic, with a 

lower strain response when a stress is applied – creep – and a smoother recovery once it is 

unloaded – recovery. 

The car suspension system is one of many possible combinations of mechanical components. 

However, the solution for studying such problems relies on the analysis of the simpler scenarios 

and then using them as a reference for any other configuration. With that in mind, it is most 

common to mention the Maxwell model – referring to the case where a spring and a dashpot are 

in series – or to the Kelvin-Voigt model – where a spring is connected in parallel with a dashpot. 
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Mechanical models 

 

Figure 7 – Mechanical representation of the Maxwell model (Lakes 2009) 

The Maxwell model, in which a spring is in series with a dashpot (Figure 7), relies on the 

principle that under an applied axial force, the stress subjected to the spring 𝜎𝑆 is equal to the 

stress in the dashpot 𝜎𝐷 and ultimately equal to the total stress 𝜎, while the total deformation 𝜀 

is equal to the sum of the deformation of the spring 𝜀𝑆 and the deformation of the dashpot 𝜀𝐷. 

These considerations take into account the assumption that the deformation is quasi-static, 

while inertia is neglected, and they can be mathematically defined as follows: 

𝜎 = 𝜎𝑆 = 𝜎𝐷 (2.13) 

𝜀 = 𝜀𝑆 + 𝜀𝐷 (2.14) 

Deriving equation 2.14 in time, one obtains 

𝑑𝜀

𝑑𝑡
=

𝑑𝜀𝑆

𝑑𝑡
+

𝑑𝜀𝐷

𝑑𝑡
(2.15) 

Which can be further developed by making use of equations 2.1 and 2.4 into 

𝑑𝜀

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝜎

𝐸
) +

𝜎

𝜂
(2.16) 

 

Figure 8 – Mechanical representation of the Kelvin-Voight model (Lakes 2009) 

Given the fact that the spring stiffness E is constant in time, equation 2.16 can be rearranged 

as shown in equation 2.17, defining the differential equation of the Maxwell model. 

𝑑𝜀

𝑑𝑡
∙ 𝐸 =

𝑑𝜎

𝑑𝑡
+

𝐸

𝜂
𝜎 (2.17) 

The Kelvin-Voigt model, usually referred to as either Kelvin or Voigt model, consists of a 

spring and a dashpot connected in parallel (Figure 8). Considering one end of the model to be 

static and assuming an axial force is applied in the opposite end, the resulting stress subjected 

to the model 𝜎 will be the sum of the stress in the spring 𝜎𝑆 and the stress in the dashpot 𝜎𝐷. 

The strain of the model 𝜀 would be equally suffered by the spring 𝜀𝑆 and by the dashpot 𝜀𝐷. 

These relations can be represented as: 

𝜎 = 𝜎𝑆 + 𝜎𝐷 (2.18) 

𝜀 = 𝜀𝑆 = 𝜀𝐷 (2.19) 
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By substituting equations 2.1 and 2.4 into 2.18, equation 2.20 is deduced and it represents the 

differential equation that rules the Kelvin-Voigt model. 

𝜎 = 𝐸 ∙ 𝜀 + 𝜂 ∙
𝑑𝜀

𝑑𝑡
(2.20) 

Both the Maxwell and Kelvin-Voight models have a generalized form, used to obtain better 

approaches and adjustments whenever an experimental result needs to be matched in higher 

detail. These are obtained by superposition of as many Maxwell models as required or by 

superposition of Kelvin-Voigt models (Figure 9). 

 

Figure 9 – (a) Maxwell generalized model; (b) Kelvin generalized model (Bott 2014) 

 Maxwell generalized model 

In Maxwell’s generalized model, the stress to which the whole model is subjected 𝜎𝐺𝑀 is 

equal to the sum of all the stresses applied in each of the models’ n branches. 

𝜎𝐺𝑀 = ∑ 𝜎𝑖

𝑛

𝑖

(2.21) 

 Kelvin-Voigt generalized model 

For the Kelvin-Voigt generalized model, the resulting strain 𝜀𝐺𝐾𝑉 is the sum of each of the 

components’ strain that is in series. 

𝜀𝐺𝐾𝑉 = ∑ 𝜀𝑖

𝑛

𝑖

(2.22) 

To assess the properties of viscoelastic materials, experimental methods must be applied. Ferry 

(1980) separated viscoelastic materials into three categories and defined different types of 

methodologies for each: viscoelastic liquids; soft viscoelastic solids and liquid with high 

viscosity; and hard viscoelastic solids. However, generalized tests can be performed in order to 

establish stress-strain relations and characterize a viscoelastic material by its creep compliance 

and relaxation modulus. 

2.1.2 Experimental assessment 

Creep test 

The creep compliance 𝐽(𝑡) relates the strain output 𝜀(𝑡) with a steady and fix stress 𝜎0 that is 

imposed to a specimen – equation 2.23 (Findley 1978). 

𝐽(𝑡) =
𝜀(𝑡)

𝜎0

(2.23) 

To establish this relation, a static transient test is performed in which a steady force is applied 

and the strain output recorded. The strain is expected to have a threshold value when the force 

is applied and then increase in time. 
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Stress relaxation test 

The relaxation modulus 𝐸(𝑡) is obtained by relating a steady fix strain 𝜀0 that is applied to the 

material, with the variation of stress 𝜎(𝑡) – equation 2.24 (Findley 1978). 

𝐸(𝑡) =
𝜎(𝑡)

𝜀0

(2.24) 

This relation is attained from a static transient test and the output stress is expected to reach its 

peak when the strain is applied and then decrease with time. 

The creep compliance relates to the relaxation modulus according to equation 2.25 and 2.26 

with equations 2.27, 2.28 and 2.29 being also valid, as described by Findley (1978) and Ferry 

(1980). 

∫ 𝐽(𝑡 − 𝜏) · 𝐸(𝜏) 𝑑𝜏 = 𝑡
𝑡

0

(2.25) 

∫ 𝐸(𝑡 − 𝜏) · 𝐽(𝜏) 𝑑𝜏 = 𝑡
𝑡

0

(2.26) 

𝐸(𝑡) · 𝐽(𝑡) ≤ 1 (2.27) 

𝐸(0) · 𝐽(0) = 1 (2.28) 

𝐸(∞) · 𝐽(∞) = 1 (2.29) 

Equations 2.28 and 2.29 are of particular importance as they describe constant values for initial 

and final moments in a material’s behaviour (considering final to be a long time value). These 

do not depend on time and define glassy and rubbery states, respectively. 

It was previously mentioned that viscoelastic behaviour does not only depend on time, it is also 

temperature related. The relation between the material’s parameters and the temperature is of 

major importance for accurately projecting a component. 

Time-temperature superposition principle 

Supposing that relaxation moduli 𝐸(𝑇, 𝑡) were obtained at several different temperatures and 

taking 𝑇0 as a reference temperature, it is possible to overlap the curves correspondent to each 

of the temperatures. A reference temperature tests keeps its original time scale, while other tests 

are adjusted along the horizontal axis, if plotted in logarithmic scales. This methodology is 

known as time-temperature superposition principle (Leaderman 1941) and if the superposition 

is in fact possible, the material is called thermorheologically simple (Schwarzl and Staverman 

1952). 

The time 𝑡 that is originally associated with each of the adjusted temperatures is shaped into a 

reduced time 𝜁 that relates to 𝑡 through a temperature shift factor 𝑎𝑇 – equation 2.30. The 

temperature shift factor is related to the temperature 𝑇 that is being adjusted, the reference 

temperature 𝑇0 and an apparent activation enthalpy Δ𝐻. 

𝜁 =
𝑡

𝑎𝑇(𝑇)
(2.30) 

For glassy states, the Arrhenius equation – equation 2.31 – gives a good approximation of the 

material’s behaviour (Drozdov 1998), while for rubbery states the WLF equation (Williams, 
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Landel, and Ferry 1955) gives a more appropriate description of the material’s response – 

equation 2.32. 

log 𝑎𝑇(𝑇) =
Δ𝐻

𝑅
(

1

𝑇
−

1

𝑇0
) (2.31) 

log 𝑎𝑇(𝑇) = −
𝐶1 · (𝑇 − 𝑇0)

𝐶2 + 𝑇 − 𝑇0

(2.32) 

with 

𝐶1 =
Δ𝐻

𝑅 · 𝑓(𝑇0)
                    𝐶2 =

𝑓(𝑇0)

𝛼
 

Where 𝑅 is the Boltzmann’s constant, 𝑓 represents the free volume fraction (Doolittle 1951) 

and 𝛼 is the material’s coefficient of thermal expansion. 

The curve resulting from the superposition is named master curve. It is important to note that 

the relaxation modulus obtained in the master curve is now dependent on the reference 

temperature as well as reduced time, 𝐸(𝑇0; 𝜁(𝑡, 𝑇)). 

The relaxation function represented by the master curve can be modelled accurately using Prony 

series as shown by Tzikang (2000). Using equations such as equation 2.33 is often easier than 

solving convolution integrals such as those represented in equations 2.25 and 2.26, in order to 

obtain other viscoelastic properties (Fernández 2011). In equation 2.33 𝑒𝑖 is a Prony constant 

and 𝜏𝑖 represent the Prony retardation time constant (𝑖 = 1,2, … , 𝑚). 

𝐸(𝑡) = 𝐸0 [1 − ∑ 𝑒𝑖 ·  (1 − 𝑒𝑥𝑝 (−
𝑡

𝜏𝑖
 ))

𝑚

𝑖=1

] (2.33) 

2.2 Probabilistic characterization of failure 

Material’s specimens with a given geometry tend to fail around a certain value in similar 

loading conditions, with more or less deviation depending both on dimensional similarity and 

construction quality. Ideally, equal specimens would fail under the exact same conditions. 

Given this consideration, probability models can be used to describe the likelihood of a material 

to fail, defining a range of values where it may occur and the probability of happening. When 

compared with traditional methods, like deterministic models based on finite element analysis, 

probabilistic models can be more reasonable as they consider scatter from experiments and 

associate it with a failure probability. In other words, when projecting a component it is useful 

to define a confidence interval associated with its failure and, therefore, adjust the safety aiming 

at minimizing material waste and production costs. 

A positive point of this type of probabilistic analysis is their general character, allowing their 

application to any type of parameter, such as fatigue, ultimate monotonic strength, creep or 

corrosion stress, as well as their suitability of being applied to different types of materials, 

including glass (Lamela-Rey et al. 2007), steel (Correia, De Jesus, and Fernández-Canteli 2013; 

Blasón et al. 2017; De Jesus et al. 2010) or polymers (Salazar, Frontini, and Rodríguez 2014; 

Cocco, Frontini, and Perez Ipiña 2007). 

The chosen parameter will show scatter, most of the times related to either a maximum or a 

minimum value distribution, such events falling under the extreme value theory (Castillo 1988). 
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2.2.1 Extreme value theory 

As extreme values are considered, a limit condition mentioned by Castillo et al. (1985) has to 

be considered and it implies the use of stable asymptotic families of probability distributions, 

which are Weibull, Fréchet and Gumbel. Each of these families can express a maximum or a 

minimum value and are often used to model unusual events such as natural disasters. 

A starting point to assess a material’s failure condition is considering that it does not fail until 

a threshold value of the selected parameter. Knowing so, Fréchet’s distribution function for 

minima can be disregarded as its lower tail continues up to minus infinity. Also, it is fair to 

assume that above a certain value the material will inevitably fail – as it would happen if crack 

propagation was the considered parameter. As Fréchet’s distribution function for maxima 

presents a limitless upper tail, it will also be disregarded. As mentioned by Calvente (2017), 

and considering only minima distribution functions, when the shape factor reaches relatively 

high values, Gumbel’s distribution function can be taken as a limiting case of Weibull’s 

distribution function for minima. As such, a three-parameter Weibull cumulative distribution 

function (cdf) for minima is considered – Figure 10. 

2.2.2 The Weibull distribution function 

 

Figure 10 – Weibull cumulative distribution function for minima (Przybilla 2014) 

Presented by Weibull (1939) and labelled as a statistical distribution function of wide 

applicability (Weibull 1951), Weibull’s distribution function – equation 2.34 – represents an 

accumulated probability 𝑃𝑓 as a function of a failure parameter 𝑥, which is related to three 

Weibull parameters: a location parameter 𝜆; a shape factor 𝛽; and a scale factor 𝛿. 

𝑃𝑓(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥−𝜆

𝛿
)

𝛽

] (2.34)

where 

𝑥 ≥ 𝜆    ;    −∞ < 𝜆 < +∞    ;     𝛿 > 0    ;     𝛽 > 0 

The location parameter 𝜆 represents a minimum threshold, under which failure does not occur, 

meaning a zero failure probability for the 𝑥 values which are under 𝜆. Some authors consider 

this value to be equal to zero (Loidl et al. 2007; Wang and Xia 1998), which does simplify the 

model but is laid on the conservative principle that close to zero values have a probability of 

failure. If, for instance, we consider a brand-new chair as an object of study, the user’s weight 

is not expected to break it. Although, given sufficient use, aging, corrosion and any other factor 

that can affect the materials, the likelihood of failing with its user’s weight increases and may 

reach a point where it collapses on its own, with a close to zero value. However, the application 

of the Weibull cdf takes in consideration a single failure parameter and that could be any of the 

mentioned in the chair example. For such reason, 𝜆 is considered is this work. 

The shape factor 𝛽 is inversely proportional to the data scatter and relates to the distribution’s 

slope; this means that higher scatter are associated with low shape factors and vice-versa. This 
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parameter can be used to assess the material’s quality, as a high value will mean lower scatter 

and a more reliable material, with less flaw density (Weil and Daniel 1964). 

The scale factor 𝛿 relates to the analysed specimen’s geometry, i.e. the specimen size 𝑆 at 

failure. This is of particular importance because, as long as there is a uniform distribution of 𝑥 

along any geometry, it can be described by a Weibull cdf and, moreover, related to any other 

specimen size Δ𝑆 through a new scale factor 𝛿𝑛𝑒𝑤 – equation 2.35 (Calvente 2017). 

𝛿𝑛𝑒𝑤 = 𝛿 ∙ (
𝑆

Δ𝑆
)

1
𝛽⁄

(2.35) 

Substituting equation 2.35 into equation 2.34, it is possible to obtain a relation between a failure 

parameter of a given geometry with any other size – equation 2.36. 

𝑃𝑓,Δ𝑆(𝑥) = 1 − [−
Δ𝑆

𝑆
(

𝑥 − 𝜆

𝛿
)

𝛽

] (2.36) 

As represented in Figure 10, the probability of failure resulting from the sum of the location 

with the scale factor, equals a constant – equation 2.37. Taking into consideration that the 

location parameter does not alter when scale effect is used (regarding the use of equation 2.36 

(C Przybilla 2014)), it is verified that a larger size would present smaller scatter values, close 

to the location parameter, and a smaller size would account for wider scatter. 

𝑃𝑓(𝜆 + 𝛿) = 0.6321 (2.37) 

Weakest link principle 

Presented in Weibull's work (1951), the weakest link principle states that the probability of a 

mesh survival 𝑃𝑠,𝑔𝑙𝑜𝑏𝑎𝑙 is equal to the probability of none of its 𝑛 elements failing 𝑃𝑠,𝑖 – equation 

2.38. Weibull explains this principle with a chain: assuming that a chain with 𝑛 links fails 

whenever one of its links fails, so as long as each of its links remains intact the chain does not 

fail. 

𝑃𝑠,𝑔𝑙𝑜𝑏𝑎𝑙 = ∏ 𝑃𝑠,𝑖

𝑛

𝑖=1

= (𝑃𝑠,𝑖)
𝑛

(2.38) 

Knowing that the probability of survival is equal to the difference between the overall 

probability and the failure probability, 𝑃𝑠,𝑖 can be described by equation 2.39 from equation 

2.34. Substituting equation 2.39 into 2.38, a general equation for the global probability of 

survival is obtained – equation 2.40 – bearing in mind that the global size 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 is equal to an 

element size 𝑆𝑒𝑙𝑒𝑚𝑒𝑛𝑡 times the number of elements 𝑛, i.e. 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑛 ∙ 𝑆𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (C Przybilla 

2014). 

𝑃𝑠,𝑖 = 1 − 𝑃𝑓,𝑖 = 𝑒𝑥𝑝 [− (
𝑥 − 𝜆

𝛿
)

𝛽

] (2.39) 

𝑃𝑠,𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑒𝑥𝑝 [−
𝑆𝑔𝑙𝑜𝑏𝑎𝑙

𝑆𝑒𝑙𝑒𝑚𝑒𝑛𝑡
∙ (

𝑥−𝜆

𝛿
)

𝛽

] (2.40)

Equation 2.40 gives, in a generalized way, an appropriate mathematical fitting for the size effect 

on a solid’s failure (considering equal sizes among elements). 

The size effect 

Let’s consider the stress definition where stress is equal to a force divided by the area where 

the force is being applied. This can be represented through a deterministic relation by 

considering a force 𝐹1 divided by an area 𝐴1 that is equal to a greater (or smaller) force 𝐹2 
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divided by a greater (or smaller) area 𝐴2 and ultimately equal to a stress 𝜎, as long as the force 

and the area increase (or decrease) in the same proportion, equation 2.41. 

𝐹1

𝐴1
=

𝐹2

𝐴2
= 𝜎 (2.41) 

However, the failure probability of a larger specimen is not the same of a smaller specimen, 

under the same stress condition. This is due to the higher probability of a larger specimen having 

a defect that could cause it to fail. Going back to Weibull’s example, the probability of a chain 

having a defect that leads to its collapse is higher than the probability of each individual link 

having a defect that could make it collapse, for the same applied stress. So, whenever a Weibull 

cdf is obtained to describe a material’s behaviour according to experimental tests under uniaxial 

loading and uniformly distributed stress, it seems unpractical to apply it to another geometry 

where there are stress variations along the elements without further considerations. 

Weil and Daniel (1964) developed a method to calculate Weibull’s parameters applicable to 4-

point bending structures with both surface and volumetric flaws, where a non-uniform loading 

occurs, making use of minimization of least squares method for a resin. 

Beremin et al. (1983) proposed the local failure model where an equivalent stress approach is 

made and a two-parameter Weibull cdf is used. Xia and Shih (1996) considered Beremin’s 

model with a third parameter 𝜎𝑡ℎ while characterizing cleavage fracture in steel. 

García Prieto (2001) introduced a methodology to obtain what is referred to as equivalent 

reference area, an estimation that takes in consideration both size effect and the weakest link 

principle for a variable failure parameter along the specimen. These considerations were applied 

to 4-point bending tests with glass. Przybilla (2011, 2013) built on García’s work further 

developed this concept, applying it to 3-point and 4-point bending specimens and characterizing 

glass and ceramics. Calvente (2017) took on Przybilla’s work and included the probabilistic 

characterization of ductile materials, creating a model that considers ultimate tensile strength 

constant all over the elements, in place of the variable stress state, and then derives an equivalent 

size of the specimen – this is referred to as generalized local model (Calvente et al. 2015). 

2.2.3 Generalized Local Model 

The Generalized Local Model aims at defining a primary failure cumulative distribution 

function (PFCDF) as a material property, related to a specific element size – reference size – 

and a generalized parameter (GP). Knowing the material’s PFCDF enables the probability 

characterization of failure in any type of elements, considering their shape, size or loading 

condition. This model is particularly ambitious as it can be used to related finite element method 

(FEM) results with a failure probability in each of the elements. The PFCDF is derived from an 

experimental failure cumulative distribution function (EFCDF) that is originated by iteratively 

fitting a three-parametric Weibull distribution to experimental data. 

Generalized parameter 

The generalized parameter is what has so far been described as a failure parameter. It can 

represent the critical value associated with failure, whether it is stress, strain, crack length or 

any other parameter used to design components. The generalized parameter has to be carefully 

chosen, as it should be a parameter suitable for being reproduced in all types of desired tests. 

Equivalent size 

Considering a non-uniformly loaded specimen and subjecting its maximum value 𝐺𝑃𝑚𝑎𝑥 to 

another, imaginary, specimen but considering their failure probabilities to be the same, the 

dimensions of this imaginary specimen would be an equivalent size 𝑆𝑒𝑞. It is determined using 
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equation 2.44. This consideration is to be applied to the full extent of the specimen, disregarding 

its elements. 

Experimental failure cumulative distribution function 

Having chosen an adequate generalized parameter, Bernard and Bosi-Levenbach (1953) 

formula – equation 2.42 – is to be applied to GP in ascending order of magnitude, which assigns 

a probability of failure to each of the GPs. 𝐾𝑗 stands for the test number in the ascending order 

and 𝑛 for the total number of tests. 

𝑃𝑓𝑗
=

𝐾𝑗 − 0.3

𝑛 + 0.4
(2.42) 

Rewriting equation 2.36 for a user-defined reference size 𝑆𝑟𝑒𝑓 and considering the weakest link 

principle it is possible to determine the global probability of failure for each test 𝑗 regarding 

each element 𝑖, with its respective 𝐺𝑃𝑖,𝑗 – equation 2.43. 

𝑃𝑓,𝑔𝑙𝑜𝑏𝑎𝑙𝑖
= 1 − ∏ (𝑒𝑥𝑝 [−

𝑆𝑒𝑞𝑗

𝑆𝑟𝑒𝑓
(

𝐺𝑃𝑖,𝑗 − 𝜆

𝛿
)

𝛽

])

𝑛

𝑖=1

(2.43) 

In case the element’s equivalent size 𝑆𝑒𝑞𝑗
 is not known a priori (it could be if considering a 

constant GP along a dogbone specimen’s middle section with a known geometry, for instance) 

it should be estimated by assigning to it a value close to 80% of the specimen original size and 

the global probability of failure 𝑃𝑓,𝑔𝑙𝑜𝑏𝑎𝑙𝑖
 should be taken as equal to the test probability of 

failure 𝑃𝑓𝑗
 for a first iteration. Successive iterations should be done by substituting those values 

in equations 2.43 and 2.44 until it converges, as described by Calvente (2017). 

𝑆𝑒𝑞𝑗
= − log (1 − 𝑃𝑓,𝑔𝑙𝑜𝑏𝑎𝑙𝑗

) ∙ 𝑆𝑟𝑒𝑓 ∙ (
𝛿

𝐺𝑃𝑚𝑎𝑥𝑗
− 𝜆

)

𝛽

(2.44) 

Once these values are estimated for all failure results, the Weibull parameters can be 

approximated by using a linear regression of type 𝑦 = 𝐴𝑥 + 𝐵, where 

𝑥 = log(𝐺𝑃𝑚𝑎𝑥𝑖
− 𝜆) (2.45) 

𝑦 = log (− log (1 − 𝑃𝑓𝑗
) ∙

𝑆𝑟𝑒𝑓

𝑆𝑒𝑞𝑗

) (2.46) 

𝐴 = 𝛽 (2.47) 

𝐵 = −𝛽 · log(𝛿) (2.48) 

The optimal location parameter 𝜆 is reached by maximizing the adjustment of the linear 

regression using the least square method (Przybilla 2011) and the other parameters by making 

the required mathematical adjustments to equations 2.47 and 2.48. Replacing the parameters 

into 2.43 will return the EFCDF. This process is represented through the flowchart in Figure 

11. 

Primary failure cumulative distribution function 

To derive a primary failure cumulative distribution function from the EFCDF, a reference size 

𝑆𝑟𝑒𝑓 must be chosen, with unitary values often used for simplification purposes. Then, 

Weibull’s parameters for the PFCDF can be calculated in the same way as presented for the 

EFCDF. Substituting the parameters into equation 2.49 will return the PFCDF. Bearing in mind 

that the only changing parameter from the EFCDF must be the shape parameter because, as 

mentioned before, scatter is size dependant. 
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𝑃𝑓𝑖
= 1 − 𝑒𝑥𝑝 [−

𝑆𝑒𝑞𝑗

𝑆𝑟𝑒𝑓
∙ (

𝐺𝑃𝑚𝑎𝑥𝑖
− 𝜆

𝛿
)]

𝛽

(2.49) 

 

Figure 11 – Flowchart of the Generalized Local Model (Calvente 2017) 

2.3 The ordinary least squares method 

The ordinary least squares (OLS) method is mentioned throughout this thesis as it is a powerful 

statistical tool to assess the fit of linear regressions to data. 

Let’s start by considering random scattered data, as the one plotted in Figure 12, for 𝑛 points in 

a coordinate plane. If a line defined by the equation 𝑦̂ = 𝑚 ∙ 𝑥 + 𝑏 is drawn between those 

points and the 𝑥 values are considered as correct, in the sense that they match both the line and 

the random data, it is possible to determine the variation 𝑒𝑖 associated with the vertical distance 

that goes from the data to the line by simply subtracting the calculated values of 𝑦̂𝑖 along the 

line to the data 𝑦𝑖 – equation 2.50. 

𝑒𝑖(𝑥𝑖) = 𝑦𝑖 − 𝑦̂𝑖     ,     𝑖 = 1 … 𝑛 (2.50) 

In order to assess the variation of all points, a sum of the variations corresponding to each data 

point is done. However, using equation 2.50, it would return both positive and negative values, 

depending on the data, that would nullify each other and give a distorted view of the total error. 

To avoid this issue, the squared error is calculated instead, as the square parabola presents a 

unique minimum value and it is easier to operate than higher exponents. As such, the squared 

variation 𝑒2 would appear as the sum of the squared variations – equation 2.51. 

𝑒2 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

(2.51) 
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Figure 12 – Random scattered data, fitted through a regression line of type 𝑦 = 𝑚𝑥 + 𝑏 

Knowing that 𝑦̂𝑖 = 𝑚 ∙ 𝑥𝑖 + 𝑏 and 𝑖 = 1 … 𝑛, is it possible to develop equation 2.51 in terms of 

𝑒2, 𝑚 and 𝑏 – equation 2.52 – and consequently, it is possible to partially derive the resulting 

equation to obtain a minimum value of both 𝑚 and 𝑏 by making the partial derivative equal to 

zero in both cases – equation 2.53 and 2.54. 

𝑒2 = 𝑛 ∙ 𝑦2̅̅ ̅ − 2𝑚𝑛 ∙ 𝑥𝑦̅̅ ̅ − 2𝑏𝑛 ∙ 𝑦̅ + 𝑚2𝑛 ∙ 𝑥2̅̅ ̅ + 2𝑚𝑏𝑛 ∙ 𝑥̅ + 𝑛𝑏2 (2.52) 

𝜕(𝑒2)

𝜕𝑚
= −2𝑛 ∙ 𝑥𝑦̅̅ ̅ + 2𝑚𝑛 ∙ 𝑥2̅̅ ̅ + 2𝑏𝑛 ∙ 𝑥̅ = 0 (2.53) 

𝜕(𝑒2)

𝜕𝑏
= −2𝑛 ∙ 𝑦̅ + 2𝑚𝑛 ∙ 𝑥̅ + 2𝑏𝑛 = 0 (2.54) 

Performing algebraic manipulations, it is possible to reach equations 2.55 and 2.56 from 

equations 2.53 and 2.54, respectively. Equation 2.55 can be further develop into equation 2.57 

and then equation 2.57 substituted into 2.56, originating equation 2.58, to represent an optimal 

slope 𝑚 and horizontal axis intersection 𝑏 and equation 2.56 implies that the average value of 

the data lies on the line that best fits the data. 

𝑥𝑦̅̅ ̅ = 𝑚 ∙ 𝑥2̅̅ ̅ + 𝑏 ∙ 𝑥̅ (2.55) 

𝑦̅ = 𝑚 ∙ 𝑥̅ + 𝑏 (2.56) 

𝑚 =
𝑥̅ ∙ 𝑦̅ − 𝑥𝑦̅̅ ̅

(𝑥̅)2 − 𝑥2̅̅ ̅
(2.57) 

𝑏 = 𝑦̅ −
𝑥̅ ∙ 𝑦̅ − 𝑥𝑦̅̅ ̅

(𝑥̅)2 − 𝑥2̅̅ ̅
∙ 𝑥̅ (2.58) 

Now, assuming the line 𝑦̂ = 𝑚 ∙ 𝑥 + 𝑏 is drawn to fit the random scattered data previously 

mentioned, to assess how much this line deviates from what would be an optimal line, the 

coefficient of determination 𝑅2 is used. The coefficient of determination represents the amount 

of total variation in 𝑦 that is described by the variation along 𝑥, being the total variation 

calculated between the data points and their arithmetic mean – equation 2.59. Dividing the 

variation along the line by the total variation, the amount of variation that is not described by 

the linear regression is determined. To calculate the amount of variation that is described, one 

simply has to subtract the obtained value from the unitary value – equation 2.60. 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

(2.59) 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

(2.60) 

2.4 Digital image correlation 

Digital image correlation (DIC) is a non-contact measurement methodology that relies on high-

resolution cameras to measure displacements in an object surface. Its basic principle relies in 

correlating the pixels of two digital images of the same object, taken at different instants. For 

the comparison, an image of the object is selected and assigned as the reference image – usually 

the image taken at the beginning of an experiment – and all the other images are named as 

deformed images – taken throughout the experiment – and making it possible to analyse the 

displacement field at established time intervals. 

The image correlation is done by finding equivalent pixels in both the reference image and the 

deformed image taken after. To facilitate this task, a pattern is assigned to the surface (made 

out of dots, lines, grids or random arrays) and the pattern variations arranged into sub regions. 

The pixels’ correlation relies on two main assumptions. Firstly, the displacement registered 

between two pixels of the image pattern is assumed to correspond directly to the displacement 

suffered between two equivalent points on the object. Secondly, the considered sub regions are 

assumed to have an amount of contrast between them that allows an accurate mapping of their 

pixels’ displacement. 

A pinhole camera model is used and the pinhole taken as the referential for the coordinate 

system – Figure 13. This allows a mapping of the pixels, attributing them coordinates whenever 

a correlation is performed. If the displacement between two pixels is not null, it can be related 

to the displacement that occurred on the object’s surface, by relating the image resolution with 

the actual length of the object. To ensure a correct measurement, the image plane must be 

parallel to the object plane (Sutton 2008). 

 

Figure 13 – Scheme of the coordinate system, considering a pinhole camera model (Sutton 2008)  

To obtain a random pattern, ensuring a good contrast, it is common to coat the surface with 

white spray ink and then spray black ink, ensuring patterns up to 50𝜇𝑚 (Sutton 2008). Other 

processes used rely on applying the same layer of white spray ink but then covering the surface 

with black toner powder, a patterned vinyl sheet or manually imprinting a pattern with an 

indelible marker, for instance, or simply polishing, etching or degreasing the object surface. 

These patterns create unique surroundings for the pixels that are being correlated, making them 

easier to track precisely based on the pixels that are located around them, as the probability of 

two pixels in the same image having the same surroundings is lower than comparing pixels 

based on their brightness (Pan et al. 2009). 
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The displacements of a planar surface can be obtained through a two-dimensional (2-D) DIC 

for planar surfaces using one camera only (Sutton 2008) as long as the surface stays planar and, 

therefore, parallel to the retina plane. When a planar surface deforms its position relative to the 

sensor plane could change significantly from perpendicularity, requiring an additional camera 

to take in account the alterations suffered in the direction orthogonal to the surface plane – 

three-dimensional (3-D) DIC. This 3-D DIC can also be used for analysis of initial curved 

surfaces.
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3 Experimental procedure 

All the specimens that were used in the experiments performed along this chapter were supplied 

by the same companies. The resin and hardener were supplied by AXSON Technologies Spain 

(Barcelona, Spain), the mixing and curing process was carried by the Instituto Nacional de 

Técnica Aeroespacial (Madrid, Spain) and the machining of the specimens was performed by 

Prodintec (Gijón, Spain). 

The material is sold under the commercial name EPOLAM 2025 (APPENDIX A) and usually 

delivered for machining in sheets of material with the desired thickness. These sheets are 

obtained by pouring the mixture of resin+hardener into a container, where it settles for a fixed 

amount of time – curing. The curing method leaves a texture on the specimens’ surface that is 

smooth on the surface that is in contact with the container where it is poured. However, the 

opposite surface is slightly rougher and has a coarse texture. They were named as smooth and 

free surface, respectively. Three types of specimens were cut from the plates, which are 

described in the following points: 

 3-point bending specimens 

Beam-shaped specimens are used with 50 x 12 x 3𝑚𝑚 dimensions, the geometry is based on 

specimens recommended by ASTM D5023 (2001) – Figure 14. These specimens are cut from 

a sheet with the same thickness as the beam, all from the same sheet, and then numbered in 

sequence as they are used for tests, on the free surface. 

 

Figure 14 – Geometry and dimensions of the three-point bending specimens 

 Dogbone specimens 

The dogbone specimens have a type IV geometry as described by ASTM D638 (2004) with a 

overall width 𝑊𝑂 of 22𝑚𝑚, within the stipulated tolerance – Figure 15. These were cut out of 

three different sheets of resin with the thickness of the specimens, marked per sheet (EXX, 

being XX the sheet number and E standing for EPOLAM) and then numbered twice – one in 

each end on the specimen – without any specific order or side. 
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Figure 15 – Geometry and dimensions of the dogbone specimens 

 CT specimens 

The compact tension (CT) specimens have a geometry based on ISO 13586:2000, with the 

width 𝑤 equal to 40 mm, a thickness 𝐵 of 10 mm and a notched tip, with a 0.24 mm radius. 

These specimens are cut from a sheet with same thickness of the specimen, all from the same 

sheet, and numbered in the three edges that do not contain the crack, in sequence as they are 

used – Figure 16. 

 

Figure 16 – CT specimen geometry, dimensions and adopted numbering system 

All the specimens are stored in airtight containers at ambient temperature, only removed for 

either testing or analysis. 

3.1 Viscoelastic test 

To assess the material’s viscoelastic properties, relaxation tests are performed. A 3-point 

bending analysis (3-PTB) is chosen and a rheometric scientific analyser – RSA-III – (Figure 

17) was used to perform the tests. 
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Figure 17 – Rheometric Scientific Analyser – RSA-III 

The RSA-III consists of four main pieces of hardware: an oven, used to control the temperature 

in an insulated chamber with either nitrogen or air; a servo linear actuator with a 3-PTB 

apparatus installed (Figure 18), used to impose a strain on the material; a thermally insulated 

chamber, with a thermocouple to measure of the temperature and two resistances that heat the 

flow of gas originated in the oven; a computer, that runs the software – TA Orchestrator – 

capable of tracking the force values applied by the actuator and the temperature inside the sealed 

camera. 

 

Figure 18 – Three-point bending test 

TA Orchestrator allows the user to interact directly with the machine’s parameters, being able 

to define oven’s temperature, type of test and offsets. To ensure a minimal error, a force offset 

was performed after placing the three-point bending apparatus and in-between each test. 

Air was used to either cool or heat the sample, provided by a compressor located in a machine’s 

house outside the laboratory. There was no measure of its composition, purity or rate of flow. 

The 3-PTB support span has a length of 40𝑚𝑚, which gives a span-to-depth ratio of 13.3(3) – 

equation 3.1. 

𝑠𝑝𝑎𝑛

𝑑𝑒𝑝𝑡ℎ
=

40

3
≅ 13.3(3) (3.1) 
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A 0.1% strain is used as a maximum parameter for steady transient compression, a contacting 

force of around 0.05N (5g) is applied (this increases for around 0.07N (7g) whenever the oven 

chamber is used) and two fundamentally different types of tests are performed: 

 Ambient temperature test 

A first analysis is made without the use of the oven, in short periods of time, with a zone time 

of four intervals as 1-10-50-100, for a total of 161 seconds while collecting data at a rate of 50 

points per zone time. 

This test is used to have a glance at the material relaxation modulus and is performed by 

applying a load through a load indenter that is in contact with the free surface and in another 

test with the smooth surface (the surface that was in contact with the mould). The tests are 

performed in both surfaces to assess the beam curvature of the specimen. Each test is repeated 

three times on each surface, spaced by a 5-minute break to allow the material to regain its shape 

(relaxation). 

 Fixed temperature test 

For these experiments, the oven is turned on and the chamber used, a temperature is set as 

desired and the specimen is allowed to either cool or warm for around ten minutes, to avoid a 

temperature gradient. The contacting force is then applied and a zone time of 1-10-100-1000 is 

set, for a total time of 1111 seconds, while collecting 100 points per zone. The tests are 

performed from 20℃ up to 100℃ using increments of 10℃. 

The same software allows the user to shift the data collected for each temperature into a TTS 

Overlay Curve. This implies the selection of a reference temperature – which is considered 

60℃ in this work, for no other reason than being an average temperature of the testing range. 

A high accuracy/slow convergence was chosen with cubic spline interpolation and residual 

minimization, while the shift method was limited to horizontal only – these parameters defined 

the TTS defaults (Press et al. 1987). The best fit of the 𝑎𝑇 values to Arrhenius’ curve is 

performed, taking in consideration the least squares method. 

When a satisfactory fit is obtained, a data reduction can be done as well as a window smoothing, 

to minimize residues, resulting in the master curve. 

The master curve is approximated by a Prony series with thirteen terms, through a MATLAB® 

function. Thirteen terms are used as it is the maximum number of values that can be used to 

define a viscoelastic material using FEM analysis’s software ABAQUS™. 

3.2 Tensile test 

Tensile tests with dogbone specimens were performed according to ASTM D638 (2004). 

Type IV specimens are used in a range of temperatures that fluctuate from 14 to 17℃, in a total 

of twenty-five specimens. The specimens are to be tested at 5 𝑚𝑚/𝑚𝑖𝑛 and the displacement 

measured with an MTS 634.31F-24 extensometer – of initial distance 𝐿0 equal to 20 mm, 

mounted directly to the specimen – Figure 19. The values corresponding to ultimate tensile 

strength, elongation at break and modulus of elasticity were computed. 
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Figure 19 – Extensometer mounted on a dogbone specimen 

The Poisson’s ratio of the material is obtained using ARAMIS 5M 3-D from GOM – Figure 20. 

The transversal and longitudinal displacements were obtained according to the specifications 

shown in APPENDIX B. 

 

Figure 20 – ARAMIS 5M setup 

The surface of the material is coated with white spray ink and then sprayed with black ink – 

Figure 21 – and then a digital photograph is taken at the instant the test starts (reference image), 

followed by a succession of photographs (deformed images) taken at a frequency of 1𝐻𝑧. 

 

Figure 21 – ARAMIS specimen with random, sprayed, pattern 

By using ARAMIS software, the DIC method allows the comparison of the sub regions of the 

initial image with the equivalent sub regions of the following images and is able to keep track 

of displacement that occur on pixels of these sub regions by analysing the patterns created by 

the colour contrast. Knowing the resulting displacement, one can easily calculate the 

deformation allocated to these points, 𝜀, by dividing the displacement between the points Δ𝑙 by 

their original distance 𝑙 – equation 3.2. 

𝜀 =
Δ𝑙

𝑙
(3.2) 
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Poisson’s ratio 𝜈 describes the ratio of transversal strain 𝜀𝑇 by longitudinal strain 𝜀𝐿 along a 

surface – equation 3.3 – and can be assessed by this method, as any other strain in any desired 

orientation. 

𝜈 =
𝜀𝑇

𝜀𝐿

(3.3) 

A numerical simulation was performed in ABAQUS™ (version 6.12, ) to assess the validity of 

fitting a numerical model to the experimental data. The experimental values of specimen E28-

2 are going to be used, as it has a higher value for the ultimate tensile strength. The engineering 

stress 𝜎, recorded directly throughout the test, is converted to true stress 𝜎𝑇 with equation 3.2. 

True strain 𝜀𝑇 is calculated upon equation 3.3 and then plastic strain 𝜀𝑃 by equation 3.4. The 

material is assumed to behave as linear elastic behaviour up to the last negative or first zero 

value of plastic strain and then it enters into plasticity, the plasticity parameters (stress-strain 

data points) are presented in APPENDIX D. A model is created and meshed appropriately and 

a numerical simulation performed. 

𝜎𝑇 = 𝜎 × (1 + 𝜀) (3.2) 

𝜀𝑇 = ln(1 + 𝜀) (3.3) 

𝜀𝑃 = 𝜀𝑇 −
𝜎𝑇

𝐸
(3.4) 

Applying equation 2.42 to the experimental data and considering the ultimate tensile strength 

to be the generalized parameter, it is possible to obtain a probability of failure associated with 

each experimental test. Performing the linear regression presented in section 2.2.2, the 

Weibull’s parameters can be obtained and the EFCDF associated with them. Then, a PFCDF 

for a reference size of 1mm3 is derived from the EFCDF. 

3.3 Compact test 

To validate the GLM model, another geometry is tested and the global probability of failure 

derived from the PFCDF parameters, applied to the reference size of the new geometry and 

compared to the experimental data. 

Three notched specimens are loaded axially under similar conditions of those presented in 

section 3.2, with displacement rate of 5𝑚𝑚/𝑚𝑖𝑛. The outcome of these tests are force and time. 

A numerical model was generated for this specimen in ABAQUS™, to calculate the ultimate 

tensile strength they are subjected to whenever the max load recorded in the experimental test 

is applied, to characterize the material the same data from the dogbone specimen was used – 

Young modulus, Poisson’s ratio and plastic behaviour characterization. The model is meshed, 

the resulting input file is loaded into Abaqus2matlab (Papazafeiropoulos et al. 2017) and the 

element volumes and stresses in the main directions imported to MATLAB® through 

Abaqus2matlab. 

When in MATLAB®, a constant distribution of the generalized parameter is assumed in each of 

the mesh’s elements and the global probability of failure of the specimen is calculated using 

equation 2.43 and plotted versus the experimental data points.
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4 Results and discussion 

4.1 Viscoelastic results 

Six initial tests were performed in RSA-III, analysing both surfaces of three specimens. The 

test consisted in applying a steady deformation that requires a smaller stress to be applied in 

time as the material relaxes – Figure 22 and Figure 23. 

 

Figure 22 – Steady strain imposed in ambient temperature viscoelastic relaxation tests 

The samples were tested alternately, so that they can regain their original shape between tests. 

A notorious difference of strain is observed in the free surface of sample 02, such a deviance is 

replicated in the amount of force needed to cause that strain. If a higher force is required to 

cause a smaller strain, the relaxation modulus is expected to present a higher value. 

The values obtained for the relaxation modulus are presented in Figure 24. 
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Figure 23 – Input values of force for ambient temperature viscoelastic relaxation test 

Sample 02 presents a relaxation modulus in the free surface that is significantly higher than 

samples 01 or 03 – 2.95 GPa from sample 02 compared to 2.43 GPa of sample 01 and 2.42 GPa 

of sample 03 – and notoriously lower in the smooth surface – 2.19 GPa as opposed to 2.43 GPa 

of sample 01 and 2.31 GPa of sample 03 - Figure 24. This phenomenon can be explained by a 

slight curvature in the beam and accounts for their variation between surfaces but affects sample 

02 more than the others. The cause of such curvature can be originated while the resin is settling, 

after the pouring process, due to a gradient of temperature along the sheet that may lead to 

residual stresses and, in that sense, the location from where the beams are cut from seems to 

affect the final result. 

 

Figure 24 – Comparison of relaxation modulus obtained for different samples at ambient temperature 
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These relatively short tests allow a better selection of the sample to test at different 

temperatures, based on similarities between the curves despite the tested surface. Both samples 

01 and 03 show a good correlation between values, thus sample 01 was chosen. 

Compressed air is used to control the temperature. This limited the lowest temperatures at which 

it was possible to perform tests to the temperature of the machine’s house where the compressor 

that provides the air is located. 

According to the EPOLAM 2025 data sheet (APPENDIX A), the glass transition temperature 

is at 135℃. However, for safety reasons the maximum value up to which the resin is tested is 

100℃ and the results are as shown in Figure 25, Figure 26 and Figure 27. 

 

Figure 25 – Imposed strain in controlled temperature viscoelastic relaxation tests  

 

Figure 26 – Input values of force for controlled temperature viscoelastic relaxation test 
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Figure 27 – Relaxation tests performed at different temperatures 

It is possible to observe how little the relaxation modulus changes between 20 and 30℃, 

implying a stable behaviour up to these temperatures. This validates the possibility of using 

linear elastic considerations for such temperatures, as the variations suffered by the modulus 

can be disregarded without greater influence in the outcome results. 

The curves are fit to be overlapped as they all share common values with the previous and 

following curve. The master curve that results from applying the TTS is plotted in Figure 28. It 

is represented by the considered Arrhenius fit – equation 2.31, where 𝐸𝑎 represents the apparent 

activation enthalpy and 𝑟2 the coefficient of determination of the fitting. A smoother version of 

this curve is presented in Figure 29. The curves were approached by a Prony series with the 

terms presented in Table 1. 

 

Figure 28 – TTS principle with overlapped temperature curves and respective Arrhenius fit 
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Figure 29 – Relaxation modulus’ master curve and respective Prony series fit 

Table 1 - Terms of the Prony series that fits the TTS master curve 

𝜏𝑖 [𝑠] 𝑒𝑖 

𝜏1 = 7.037 × 10−7 𝑒1 = 2.2 × 10−2 

𝜏2 = 1.106 × 10−5 𝑒2 = 1.28 × 10−2 

𝜏3 = 1.737 × 10−4 𝑒3 = 3.61 × 10−2 

𝜏4 = 2.73 × 10−3 𝑒4 = 1.31 × 10−2 

𝜏5 = 4.29 × 10−2 𝑒5 = 3.72 × 10−2 

𝜏6 = 6.74 × 10−1 𝑒6 = 5.39 × 10−2 

𝜏7 = 10.59 𝑒7 = 4.9 × 10−2 

𝜏8 = 166.4 𝑒8 = 7.11 × 10−2 

𝜏9 = 2615 𝑒9 = 4.64 × 10−2 

𝜏10 = 4.109 × 104 𝑒10 = 7.63 × 10−2 

𝜏11 = 6.456 × 105 𝑒11 = 6.06 × 10−2 

𝜏12 = 1.014 × 107 𝑒12 = 8.54 × 10−2 

𝜏13 = 1.594 × 108 𝑒13 = 1.76 × 10−1 

𝐸0 = 2.397 × 109 𝑃𝑎 

𝑅2 = 0.99957 
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A considerable difference is noticed between 𝐸0 and the Young’s modulus calculated in Table 

1. This happens as a result of several influences of the specimen geometry, material fabrication 

process, type of loading, mathematical considerations and even measuring equipment. For the 

tensile test, the linear fitting of the elastic behaviour may not be the most precise (a higher 𝑅2 

parameter can be chosen), the load cell or the extensometer may not be properly calibrated; for 

the relaxation test, since it is done for flexure, a very detailed measure of the thickness 𝑡 must 

be done because that parameter highly affects the inertial moment in the test direction, equation 

4.1. The fabrication process may also alter the uniformity of the material’s properties, as it is 

poured in a container and no information is known about the drying process, but residual 

stresses may arise from temperature gradients and affect the final results. The machining 

process may affect more the 3-PTB specimen than the dogbone, as it is smaller. 

𝐼 =
1

12
𝑏 ∙ 𝑡3 (4.1) 

4.2 Tensile test results 

The tensile tests give important information about failure parameters, suitable to be used as 

generalized parameters in the generalized local model. Out of the possibilities (stress, strain, 

energy released, displacement or force), the ultimate tensile strength along the loaded axis is 

one important parameter that is chosen as GP for the probabilistic analysis to be performed in 

this section. In particular, the PFCDF associated with the ultimate tensile strength will be 

evaluated. The tensile strength is used as a reference and its suitability can be easily assessed 

in the probabilistic model. Different choices of GP, which can ultimately be done with the data 

provided in this work can also be proposed. Although, as it goes beyond the scope of the project, 

it is only mentioned as future work. 

The tensile tests were performed in twenty five specimens and retrieved each material force vs. 

displacement plot – Figure 30. The corresponding maximum stresses and strains are represented 

in Table 2. 

 

Figure 30 – Force vs displacement curves of all tensile tests 
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The two first tests are disregarded – Table 2 – as the first does not fulfil the stipulated 

displacement rate and the second was performed without the extensometer attached; the stress 

values could still be used as generalized parameters as neither of the events directly affects the 

outcome. However, to be able to compare specimens under the closest conditions as possible, 

they are not considered. 

Table 2 - Tensile test results 

Specimen 
Ultimate Tensile 

Strength [MPa] 

Maximum Strain 

(%) 

Young's Modulus 

[GPa] 

E22-8 65.2 3.5 Disregarded 

E22-2 61.5 - Disregarded 

E22-12 69.3 2.9 3.7 

E18-1 74.1 3.2 3.8 

E18-11 71.5 3.1 3.2 

E18-4 45.4 1.6 Disregarded 

E18-9 49.4 1.7 3.3 

E18-7 69.9 2.9 3.2 

E22-6 71.0 2.9 3.3 

E28-8 67.8 3.0 3.3 

E22-11 70.7 3.0 3.4 

E28-10 87.6 5.7 3.2 

E28-11 70.8 3.0 3.4 

E22-9 57.8 2.1 3.2 

E28-7 85.5 4.8 3.2 

E22-7 86.0 5.1 3.2 

E22-1 73.2 3.1 3.2 

E28-1 68.0 2.7 3.2 

E28-4 83.4 4.5 3.2 

E22-4 39.9 1.4 Disregarded 

E28-6 66.9 2.6 3.2 

E28-2 87.8 5.6 3.1 

E28-5 81.1 3.7 3.3 

E28-9 62.9 2.3 3.1 

E28-12 77.7 3.2 3.3 

Mean values 73.0 3.3 3.2 

Std Dev 9.9 1.1 0.07 

 

The specimens presented a brittle behaviour, with no notorious plastic deformation in the 

section where they fail – Figure 31. 
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Figure 31 – Specimens after tensile test 

The first step to evaluate the remaining data from the tensile tests was to analyse the specimens 

which break with lower load values and are wide apart from the average. That is the case of 

E18-4, E18-9 and E22-4, which have the lowest registered ultimate tensile strengths. In 

specimen E18-4 a surface notch caused by an air bubble is noticeable – Figure 32 – and assumed 

as the main reason for the rapid failure, specimen E22-4 presented a similar notch and both are 

disregarded. In specimen E18-9 there is no notorious reason for such a low stress so it is 

considered a valid experimental test.  

 

Figure 32 – Aspect of the E18-4 specimen rupture, presenting a notch 

The influence of the sheets from where the samples are taken is questioned. However, as the 

populations are rather small – three for the E18 and five for the E22 – the mean values per sheet 

are not considered representative of differences in behaviour. Taking the E18 sheet, for 

instance, such a small population is going to be largely affected by a single value like it happens 

when considering the E18-9, a representation of this effect is shown in Table 3. 

 

x 

Table 3 - Influence of a single parameter considering data from single sheets, the case of E18 sheet 

 

E18 sheet 

Considering E18-9 specimen 
Disregarding E18-9 

specimen 

Average 66.2 MPa 71.9 MPa 

Std Dev 11.3 MPa 2.1 MPa 
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Specimen E22-7 was analysed using DIC to determine the Poisson’s coefficient of the material. 

The DIC analysis allowed to obtain both longitudinal and transversal deformation – 

APPENDIX C – from which the values corresponding to the linear behaviour region were 

chosen. The selection process consisted on determining the coefficient of determination 

between the axial stress and the longitudinal deformation and assuming the material behaves 

linearly as long as the coefficient is within a defined range of 0.998 ≤ 𝑅2 ≤ 1. Selecting the 

deformations associated with the values that falls under the selected range, applying equation 

3.3 and calculating their arithmetic mean, it is possible to calculate Poisson’s coefficient that 

returned the value of 0.36. 

A numerical simulation is performed to validate a numerical model – Figure 33 – using 

specimen E28-2, which showed the highest ultimate tensile strength. The material is defined as 

elastoplastic. Its behaviour at ambient temperatures is proven to exhibit low viscous effect 

(section 4.1). The Young’s modulus 𝐸 and Poisson’s ratio 𝜈 of 3.238 GPa and 0.36, were 

respectively adopted. The parameters for the plastic characterization are shown in APPENDIX 

D in the form of a stress-plastic strain table. 

 

Figure 33 – Dogbone specimen numerical simulation mesh 

The model is submitted to a very high displacement and tested until the limit of its 

elastoplasticity. This tries to recreate the moment prior to failure and allows an evaluation and 

comparison of the model up to that point with the experimental stress-strain curve. 

A constant axial stress is obtained along the gauge section – Figure 34. The stress-strain curve 

is obtained directly in ABAQUS™ by selecting the values in a random element of the neck 

section, as they all present the same values. The stress-strain curve – Figure 35 – is plotted 

versus the true stress-strain curve of the experimental results and compared to it. The results 

from numerical simulation show a good coherence and differences small enough not to be taken 

into account – all the errors are under 2.5%. This implies that the model is correctly defined in 

terms of the material parameters and the same definitions are suitable of being used to 

characterize other type of geometries from the same material. 

 

Figure 34 – Axial stress output of dogbone specimen 
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Figure 35 – Stress-strain curves for E28-2, with true and engineering data, and for numerical simulation 

4.3 Compact tension test results 

Compact tension specimens are tested without a crack, using only the machined notch. The 

decision of not inserting a crack has to do with the high brittleness of the material, as it makes 

it hard to use traditional cracking methodologies without disabling the specimen, making it 

inappropriate for further testing. As the method in study (GLM) does not rely on the geometry 

(in the sense that it can be applied to any geometry), this issue should not affect the outcome 

results of the probabilistic study developed afterwards. 

 

Figure 36 – CT specimens after failure 

Three specimens were loaded axially until failure – Figure 36 – and the force applied values 

were recorded – Table 4. There was no record of the crack opening displacement (COD) or any 

other displacement criteria while performing the tests as it was impractical to use extensometers 

and DIC apparatus was not available at the time the tests were performed. This may affect the 

outcome, as there is no experimental data besides the force to be considered and tested 

numerically and the stress field is too complex to be obtained directly, around the notch tip. 
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Table 4 - CT specimen experimental results 

Specimen Max Load [N] 

E11 – 1 1131 

E11 – 2 1037 

E11 – 3 1299 

Mean values 1156 

Std Dev 133 

A numerical model was elaborated for the CT specimen – Figure 37 – using the same material 

properties as previously defined in section 4.2 for the tensile test and considering plane stress 

for a thickness of 10 mm. This consideration assumes a constant stress along the thickness. 

Despite material’s brittleness and a close to linear failure on the specimens after being tested – 

Figure 36 – this consideration must be used with some reservations as some specimens present 

visible internal defects – Figure 38 – that may alter the stress distribution along the thickness 

of the specimen. 

 

Figure 37 – CT specimen numerical simulation mesh 

 

Figure 38 – CT specimen showing internal defects 

A numerical simulation was performed for 1,500N, as it is a value higher than any of the 

presented and should ensure that the resulting stresses calculated are in the edge of the 

elastoplastic behaviour of the CT specimen. The direct stress along the loading direction 

obtained using this numerical model is shown in Figure 39. 
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Figure 39 – Distribution of the direct stress along the loading direction, across the CT specimen 

4.4 Probabilistic assessment of results 

Considering the tensile tests experimental data and applying Bernard’s formula – equation 2.42 

– to the chosen GP of ultimate tensile strength as shown in Table 2, it is possible to obtain an 

expected probability of failure 𝑃𝑓 associated with each of the GP values – Table 5.  

Table 5 – Probability of failure corresponding to generalized parameters of ultimate tensile strength 

GP – Max Stress[MPa] 𝑷𝒇 (%) 
49.428 0.03271 

57.783 0.079439 

62.937 0.126168 

66.935 0.172897 

67.821 0.219626 

68.007 0.266355 

69.317 0.313084 

69.907 0.359813 

70.693 0.406542 

70.821 0.453271 

70.983 0.5 

71.513 0.546729 

73.175 0.593458 

74.136 0.640187 

77.658 0.686916 

81.106 0.733645 

83.404 0.780374 

85.472 0.827103 

86.018 0.873832 

87.602 0.920561 

87.774 0.96729 
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A MATLAB® script is used to perform linear regressions considering location parameters 𝜆 

from the range shown in equation 5.1. The coefficient of determination 𝑅2 is used to assess 

which linear regression better fits the data and then returns the 𝜆 corresponding as well as the 

estimation value – Figure 40. 

0.5 ∙ 𝐺𝑃𝑚𝑖𝑛 ≤ 𝜆 ≤ 0.9999 ∙ 𝐺𝑃𝑚𝑖𝑛 (5.1) 

 

Figure 40 – Linear regression associated with the best fit for a location parameter 𝜆 

Applying equations 2.45 to 2.48 to this linear regression, it is possible to calculate all three of 

the Weibull’s cdf parameters that generate the EFCDF. Having the parameters calculated, the 

EFCDF is plotted for an equivalent size of 792𝑚𝑚3 – Figure 41. This size is taken from the 

rectangular cross-section of the dogbone (33x6x4 𝑚𝑚) assuming a constant generalized 

parameter along this gauge section. The consideration of uniform GP is proved by the stress 

distribution in the numerical simulation – Figure 34. 

 

Figure 41 – Experimental failure cumulative distribution function, its Weibull parameter and coefficient of 

determination for the tensile test 
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The distribution of the GP using Bernard’s formula has a Weibull’s cdf fitting that is not 

optimal. There is a high concentration of values around the right-side tail that shift the cdf. 

Despite this fact, 𝑅2 is still high enough to say that the location parameter is valid and that the 

EFCDF is a good approach to the experimental data. More tests should be performed, out of 

the same sheet and from several sheets to assess their influence. 

The Weibull parameters to fit a reference size 𝑆𝑟𝑒𝑓 = 1𝑚𝑚3 can now be easily calculated 

through a MATLAB® function. Substituting them into equation 2.49, derives the material’s 

PFCDF, which is represented in Figure 42. The weakest link principle is verified as with a 

decrease of the considered volume, there is a lower probability of existence of a defect leading 

to failure and, therefore, a lower probability of failure which, in the end, translates into higher 

resistance. 

  

Figure 42 – Primary failure cumulative distribution function, for a reference size of 1𝑚𝑚3 

Having a valid and verified numerical model is a great complement to the Generalized Local 

Model because it is possible to obtain the volumes of the elements used in the mesh of the FEM 

analysis. Using refined meshes, it is possible to assume a constant distribution of the generalized 

parameter in an element without introducing a considerable error. This makes the GLM 

applicable to any type of geometry, regardless of its complexity. 

To test this functionality, the reverse process is going to be performed. This is done by deriving 

the EFCDF of the tensile specimen from the obtained PFCDF, applied to the tensile test 

numerical model and considering its elements of volume. Then, the same is performed for the 

CT specimens. 

For this type of numerical simulation, ten equally spaced load steps are considered and the 

probability of failure is to be computed for each of the increases. The probability of failure is 

calculated for every element of the model’s mesh with an equivalent size equal to the original, 

non-deformed, element. 

The ABAQUS™ input file, containing the field output of stresses and elements’ volumes, is 

loaded into Abaqus2matlab and those values exported to MATLAB® through it. 

A global probability of failure is calculated using Weibull’s parameters for the reference size 

of 1𝑚𝑚3, using each elements volume as equivalent size 𝑆𝑒𝑞. Applying the weakest link 

PFCDF 

Experimental data 
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principle to each of these probabilities, returns the global probability of failure of the tensile 

test specimen – Figure 43. The same process was performed for the compact test – Figure 44 – 

which was compared with stress values calculated by applying the resulting force from the test 

(as shown in Table 5) to the numerical model. 

 

Figure 43 – Global probability of failure for a tensile test numerical model, derived from the PFCDF, and 

compared with experimental data 

 

Figure 44 – Global probability of failure for a compact tension test numerical model, derived from PFCDF, and 

compared with computed data 

The curve associated with the global probability of failure, derived from the PFCDF – Figure 

43 – presents obvious similarities with the obtained EFCDF – Figure 42 – and a similar 

correlation with the experimental data. It is possible to assume that, given a higher number of 

load steps, the curves would overlap. 

For the compact tension model, however, the global probability of failure associated did not 

even displayed up to a value of nearly 1. To determine what might have caused such error, some 

alterations of the MATLAB® script were made, adjustments to the ABAQUS™ numerical model 

and queries about its elements. 
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As the best location parameter determined is equal to the minimum value considered (0.5 times 

the minimum GP) - Figure 42, it is possible that the imposed limit is stopping a better parameter 

to be achieve and, as so, a new range of values was considered with zero contained – 0 ≤ 𝜆 ≤
0.99 ∙ 𝐺𝑃𝑚𝑖𝑛. This returns a slightly better approach to the location parameter value and 

different Weibull’s parameters. The EFCDF was calculated, as well as the PFCDF – 

APPENDIX E. However, when the fit to the CT specimens’ data is applied there are not 

significant improvements. 

The numerical simulation’s mesh was redefined and the number of elements increased – Figure 

45 – to assess its influence on the final results but there were no notorious differences. Also, 

additional frames and calculation steps were considered but with the same, non-effective, 

outcome – Figure 46. 

 

Figure 45 – Redefined mesh for the CT numerical model with an additional number of elements 

As the stress only slightly changes with each increment of force, a high increment taking into 

account the experimental data, it is deductible that the cross-section area is lengthening almost 

proportionally to the force increase. Such is normal due to the high plastic deformation suffered 

in the notch. Opting for a generalized parameter of maximum axial load, it is possible to better 

assess its influence on the solution – Figure 47 – and it calls into question if the use of stress as 

an appropriate generalized parameter for this specific case. 

 

Figure 46 – Output curve of the GLM applied to CT geometry, with a maximum load of 2,000N (25 load steps) 

and a refined mesh 
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Figure 47 – Output curve of the GLM applied to CT geometry, with a maximum load of 2,000N (25 load steps) 

and a refined mesh, considering force as GP 
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5 Conclusions 

 

The main objective of this dissertation was to assess the suitability of applying the Generalized 

Local Model to a commercial epoxy resin – EPOLAM 2025, in particular to characterize its 

mechanical strength. 

A viscoelastic characterization was performed to inquire the material’s mechanical behaviour, 

under the influence of time and temperature. The material was found stable at ambient 

temperatures, up to 30℃, without major changes in its relaxation modulus. The linear elastic 

similarities in behaviour are verified in tensile tests performed after, within the considered 

temperatures. 

The tensile tests were performed according to ASTM D638 (2004) and an elastoplastic 

behaviour with high degree of brittleness was observed. The results show high scatter of the 

considered generalized parameter, the ultimate tensile strength – ranging from 49 MPa to 87 

MPa, with an average value of 73 MPa. The material Poisson’s ratio was evaluated using digital 

image correlation and was found equal to 0.36. 

A numerical finite element model based on the experimental data gathered from the tensile tests 

was elaborated and showed a good correlation between numerical and experimental stress-

strain curves. 

The generalized local model was used for the tensile tests data and an experimental failure 

cumulative distribution function (EFCDF) was obtained. The material’s primary failure 

cumulative distribution function was derived from the experimental failure cumulative 

distribution function (PFCDF) for a reference size of 1𝑚𝑚3. 

The model validation trial was made by using compact tension (CT) tests’ experimental data. 

The stresses were calculated using a FE numerical model, with a material model calibrated with 

the tensile specimen. The outcome EFCDF does not fit the cumulative distribution function 

derived from the PFCDF applied to the reference size of a CT specimen. As such, the 

applicability of the generalized local method was unsuccessful. 

5.1 Future works 

ARAMIS CDI should be used in the CT tests to compute the crack tip opening displacement. 

That same displacement ought to be applied in the numerical analysis and the force output 

compared with the one obtained in the experimental test, or applying a force and comparing the 

displacement, in order to assess the numerical model. 

Also, as only three CT specimens were tested, it is possible that the calculations are correct but, 

by chance, the failure happened in situations of low probability. A higher population should be 

considered, as well as different geometries. 

Different generalized parameters should be tested and the results compared with the ones 

obtained in this work, such as the strain based parameters. 
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APPENDIX A: EPOLAM 2025 – DATA SHEET 
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APPENDIX B: ARAMIS’ specifications 
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APPENDIX C: ARAMIS data for specimen E22-7 

Longitudinal strain [%] Transversal strain [%] Load [N] Stress [Mpa] 

0 0 3 0.1 

0 0.02 2 0.1 

0 0.01 3 0.1 

0.05 0.01 36 1.4 

0.12 -0.04 109 4.4 

0.20 -0.07 170 6.8 

0.28 -0.09 233 9.3 

0.36 -0.12 304 12.1 

0.47 -0.17 377 15.1 

0.57 -0.22 456 18.2 

0.67 -0.25 530 21.2 

0.77 -0.29 605 24.2 

0.87 -0.31 675 27.0 

0.97 -0.36 744 29.8 

1.08 -0.39 810 32.4 

1.18 -0.43 876 35.0 

1.28 -0.47 938 37.5 

1.39 -0.52 999 40.0 

1.48 -0.56 1056 42.2 

1.58 -0.58 1111 44.4 

1.67 -0.62 1166 46.6 

1.77 -0.66 1218 48.7 

1.86 -0.70 1268 50.7 

1.97 -0.72 1319 52.8 

2.07 -0.77 1366 54.6 

2.17 -0.80 1416 56.6 

2.29 -0.85 1463 58.5 

2.42 -0.89 1516 60.7 

2.54 -0.93 1568 62.7 

2.68 -1.00 1621 64.8 

2.80 -1.06 1665 66.6 

2.94 -1.10 1711 68.5 

3.08 -1.15 1755 70.2 

3.22 -1.21 1797 71.9 

3.36 -1.26 1833 73.3 

3.50 -1.31 1869 74.8 

3.65 -1.38 1901 76.0 

3.79 -1.42 1929 77.2 

3.96 -1.49 1961 78.4 

4.11 -1.54 1993 79.7 

4.27 -1.62 2016 80.6 

4.44 -1.67 2042 81.7 

4.60 -1.73 2066 82.6 

4.78 -1.81 2083 83.3 

4.95 -1.89 2103 84.1 

5.12 -1.95 2122 84.9 
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APPENDIX D: Plastic data considered for the numerical model 

Maximum stres Plastic strain 

30.03 0 

31.57 2.55E-06 

33.10 8.10E-06 

34.60 6.86E-05 

36.13 1.22E-04 

37.59 1.94E-04 

39.14 2.40E-04 

40.60 3.15E-04 

42.09 4.28E-04 

43.54 5.02E-04 

44.95 5.92E-04 

46.38 7.25E-04 

47.75 8.25E-04 

49.09 9.85E-04 

50.44 1.09E-03 

51.73 1.27E-03 

53.00 1.40E-03 

54.27 1.58E-03 

55.49 1.73E-03 

56.71 1.92E-03 

57.88 2.13E-03 

59.04 2.35E-03 

60.17 2.57E-03 

61.29 2.75E-03 

62.39 2.99E-03 

63.43 3.24E-03 

64.43 3.50E-03 

65.43 3.77E-03 

66.37 4.05E-03 

67.30 4.28E-03 

68.18 4.59E-03 

69.01 4.85E-03 

69.81 5.13E-03 

70.52 5.44E-03 

71.19 5.71E-03 

71.76 6.02E-03 

72.22 6.25E-03 

72.70 6.49E-03 

73.24 6.80E-03 

73.90 7.07E-03 

74.62 7.42E-03 

75.35 7.77E-03 

76.08 8.12E-03 

76.78 8.47E-03 

77.48 8.83E-03 

78.14 9.24E-03 

78.79 9.62E-03 

79.42 1.00E-02 

80.01 1.04E-02 

80.59 1.09E-02 

81.18 1.13E-02 

81.73 1.17E-02 

82.31 1.21E-02 

82.84 1.26E-02 

83.42 1.31E-02 

83.97 1.36E-02 

84.56 1.41E-02 

85.20 1.46E-02 

85.85 1.51E-02 

86.50 1.57E-02 

87.11 1.64E-02 

87.71 1.70E-02 

88.29 1.76E-02 

88.82 1.82E-02 

89.37 1.89E-02 

89.88 1.97E-02 

90.39 2.04E-02 

90.89 2.11E-02 

91.36 2.19E-02 

91.82 2.27E-02 

92.25 2.34E-02 

92.65 2.42E-02 
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APPENDIX E: EFCDF, PFCDF and linear regression assuming 𝝀 ≥ 𝟎 
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