Introducing State constraints in Optimal Control feup faciliad in ineenaria for Health Problems

Igor Kornienko, L.T. Paiva, M.d.R. Pinho

The SEIR Control Problem

Preliminary observations

- We retain the cost functional introduced in [3],

$J(u)=\int_{0}^{T}\left(A I(t)+u^{2}(t)\right) d t$

- The ODE governing $\dot{R}(t)$ is substituted with the one for $\dot{N}(t)$ since $R(t)=N(t)-S(t)+E(t)+I(t)$.
Addition of an extra variable W with $W(t)=u(t) S(t)$ counting the number of vaccinations.
- The upper bound on $S(t)$ stems from the idea that an upper bound on $I(t)$ would imply a state constraint of order $>$ otherwise. Since $\dot{E}(t)$ is determined by $c S(t) I(t)$, it can be expected that $S(t) \leq S_{\text {max }}$ does the job.
The resulting SEIR control problem is

$$
\left.P_{S}\right) \begin{cases}\text { Minimize } & \int_{0}^{T}\left(A I(t)+u^{2}(t)\right) d t \\ \text { subject to } & \\ \dot{S}(t) & =b N(t)-d S(t)-c S(t) I(t)-u(t) S(t), \\ \dot{E}(t) & =c S(t) I(t)-(e+d) E(t), \\ \dot{I}(t) & =e E(t)-(g+a+d) I(t), \\ \dot{N}(t) & =(b-d) N(t)-a I(t), \\ \dot{W}(t) & =u(t) S(t), \\ S(t) & \leq S_{\max }, \\ u(t) & \in[0,1] \text { for a.e. } t \in[0, T], \\ S(0)=S_{0}, E(0)=E_{0}, I(0)=I_{0}, N(0)=N_{0}, \\ W(0)=W_{0} .\end{cases}
$$

The problem $\left(P_{S}\right)$ corresponds exactly to (P) via the following definitions:
$x(t):=(S(t), E(t), I(t), N(t)), \quad \tilde{A}:=(0,0, A, 0), \quad C:=(1,0,0,0)$,
$A_{1}:=\left[\begin{array}{cccc}-d & 0 & 0 & b \\ 0 & -(e+d) & 0 & 0 \\ 0 & e & -(g+a+d) & 0 \\ 0 & 0 & -a & b-d\end{array}\right], B:=\left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
and $l\left(x_{0}, x_{1}\right)=0, L(x, u)=\langle\tilde{A}, x\rangle+u^{2}, f(x, u)=f_{1}(x)+g(x) u$ where $f_{1}(x)=A_{1} x+c(-S I, S I, 0,0)^{T}, g(x)=B x$ and $h(x)=\langle C, x\rangle-S_{\max }=S-S_{\max }$ for some fixed $S_{\max }>S(0)$.

Remarkably, $\left(P_{S}\right)$ has free end states, a quadratic cost with re spect to u and the differential equation
$\dot{x}(t)=f_{1}(x(t))+g(x(t)) u(t)$ is affine in the control and nonlinear in the state x due to the term f_{1}

NECESSARY CONDITIONS FOR $\left(P_{S}\right)$

With the stated parameter values it can be verified that for all $t \in[0, T]$

$$
\begin{array}{ll}
0<L_{S} \leq S(t) \leq U_{S}, & 0<L_{N} \leq N(t) \leq U_{N}, \\
0 \leq I(t) \leq U_{I}, & 0 \leq E(t) \leq U_{E}
\end{array}
$$

with some constants $U_{S}, L_{S}, U_{N}, L_{N}, U_{E}, U_{I}$. This allows to as sert conditions $(i)-(v)$ in Auxiliary Results section with $\lambda=$ 1 , thus the normality of the optimal solution. Consider $q=$ $\left(q_{s}, q_{e}, q_{i}, q_{n}\right)$ and $p=\left(p_{s}, p_{e}, p_{i}, p_{n}\right)$
An analysis of the Weierstrass Contition (iii) yields by looking at $u^{*}(t)=0,1$ or in $] 0,1[$, respectively,

$$
u^{*}(t)=\max \left\{0, \min \left\{1,-\frac{q_{s}(t) S^{*}(t)}{2}\right\}\right\}
$$

For all t in a boundary interval $\left[t_{0}^{b}, t_{1}^{b}\right]\left(S^{*}(t)=S_{\max }\right)$ it holds

$$
\dot{S}^{*}(t)=b N^{*}(t)-d S^{*}(t)-c S^{*}(t) I^{*}\left((t)-u^{*}(t) S^{*}(t)=0\right.
$$

and therefore
$E(0)=E_{0}$
$I(0)=I_{0}$, $R(0)=R_{0}$, $N(0)=N_{0}$,
$R(t)=g I(t)-(g+a+d) I(t)$,

Meaning and values of all used parameters are given below. (cf. [3]).

Parameter	Description	Value
b	natural birth rate	0.525
d	natural death rate	0.5
c	incidence coefficient	0.001
e	exposed to infectious rate	0.5
g	recovery rate	0.1
a	disease induced death rate	0.2
A	weight parameter	0.1
T	number of years	20
S_{0}	initial susceptible population	1000
E_{0}	initial exposed population	100
I_{0}	initial infected population	50
R_{0}	initial recovered population	15
N_{0}	initial population	1165
W_{0}	initial vaccinated population	0

The system is controlled by the rate of vaccination $u(t)$ taking values in $[0,1]$. Only susceptible compartment S is vaccinated $(u(t)=1$ means all susceptible population is vaccinated at an instant t). We also assume: every newborn is susceptible; every vaccinated individual becomes immune and proceeds to the recovered compartment R. All relations can be

$$
\square
$$

