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INTRODUCTION
SEIR models are a common way to describe the epidemics

of various infectious diseases. The underlying dynamic system
of multiple ordinary differential equations (ODEs) can be con-
trolled by a vaccination strategy over time T . The resulting opti-
mal control system is

(P)



Minimize l(x(T )) +
∫ T

0

L(x(t), u(t)) dt

subject to
ẋ(t) = f(x(t)) + g(x(t))u(t) a.e. t ∈ [0, T ],
h(x(t)) ≤ 0 ∀ t ∈ [0, T ],
u(t) ∈ U a.e. t ∈ [0, T ],
x(0) = x0,
x(T ) ∈ Rn,

where x ∈ Rn, U ⊂ Rk (the control set), l : RnR, L : Rn×Rk → R,
f : Rn → Rn, g : Rn → Rn × Rk and h : Rn → R. This problem,
equipped with a pure state contraint (on the susceptible com-
partment) can be solved computationally (we use IPOPT and
ICLOCS). The current work provides an analytical solution and
a comparison between the analytic and computational values.

AUXILIARY DEFINITIONS AND RESULTS
A trajectory x (an AC function) and control u (measurable

function) comprise (x, u), an admissable process if it satisfies the
constraints of P (esp, the state constraint h(x(t)) ≤ 0 ∀ t ∈ [0, T ]).
The solution of P is (x∗, u∗).
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⊂ [0, T ] is a boundary interval

if h(x∗(t)) = 0, ∀t ∈
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⊂ [0, T ] is an interior inter-

val if h(x∗(t)) < 0, ∀t ∈
(
ti0, t

i
1

)
. If, for all t ∈ [0, 1], we have

∂h1

∂u (x, u) =
〈
∂h
∂x (x(t)), g(x(t))

〉
6= 0 then the state constraint is

of order one. C([0, T ];R) is the space of continuous functions and
its dual is C∗([0, T ];R). C⊕([0, T ];R) is the space of nonnegative
elements of C∗ taken on nonnegative functions of C. (x∗, u∗) a
strong local minimum of (P ) if ∃ ε > 0 s.t. (x∗, u∗) minimizes the
cost over all admissible (x, u) with |x(t)− x∗(t)| ≤ ε ∀ t ∈ [0, T ].

Let (x̂, û) be a reference process, ε > 0, and the conditions
(H1)-(H4) hold:
H1. the function L(x, ·) is continuous on U for all x ∈ Rn;
H2. the functions f(·), g(·), L(·, u) and h(·) are continuously dif-

ferentiable on x̂(T ) + εBfor all u ∈ U ;
H3. the function l is Lipschitz continuous on x̂(T ) + εB;
H4. the set U is compact.
Then (P ) us guaranteed to have a solution (cf. Clarke ’13).

Let (x∗, u∗) be a local strong minimum. Then (cf. Vinter ’00)
there exists an AC function p, λ ∈ R and a measure µ ∈
C⊕([0, T ]) such that

(i) (p, λ, µ) 6= (0, 0, 0);
(ii) −ṗ(t) = fTx (x∗(t))q(t) + u∗(t)gTx (x

∗(t))q(t) −
λL(x∗(t), u∗(t));

(iii) 〈g(x∗(t))u∗(t), q(t)〉 − λL(x∗(t), u∗(t)) ≥ 〈g(x∗(t))u, q(t)〉 −
λL(x∗(t), u), ∀u ∈ [0, 1];

(iv) −q(T ) = 0;
(v) supp{µ} ⊂ {t : h(x∗(t)) = 0},

where q is a bounded variation function with
q(t) = p(t) +

∫
[0,t)
∇h (x∗(s)) µ(ds),

q(T ) = p(T ) +
∫
[0,T ]
∇h (x∗(s)) µ(ds).

NUMERICAL RESULTS
All numerical results were obtained in [1] using the ICLOCS
software (version 0.1b, cf [2]) which relies on IPOPT (Interior
Point OPTimizer). We choose u(t) ∈ [0, 0.9], the state constraint
S(t) ≤ Smax with Smax = 1100, V1 = 400, a time interval of 20
years (T = 20) and a time grid with 10000 nodes. The accepted
convergence tolerance at each step is εrel = 10−9.

Below is the solution to (PS) with W = 6345 at t = T . It can be
observed that the state contraint is satisfied on approximately the
last third of the whole time period including the end point (i.e.,
S(20) = 1100). At the same time, the control u starts to increase
on the boundary interval to ensure the state constraint.

The optimal trajectories and optimal vaccination rate for (Pstate).

The multiplier ps is not zero at T = 20 as shown below, a be-
haviour that fully corresponds to the visible atom hike of the
measure µ at T = 20 (however, observe that µ is AC w.r.t. the
Lebesgue measure on [0, T [).

The adjoint multipliers for (PS).

Recall the analytic expressions (1) and (2) for the optimal control
u∗(t). The top left subgraph below showing the computed con-
trol satisfies (1) while the top right subgraph matches (2) in te
case of the active state contraint.

The adjoint multipliers for (PS).

The comparison between the multipplier computed by ICLOCS
and the analytical ν is made in the bottom right subgraph below.
We observe a match for all times except t = T as we see in higher
magnification in the bottom right graph of the middle figure.

The picture is completed by the comparison between qs and ps.
The two start to differ on the boundary interval. However, we
must have qs(T ) = 0 due to (iv). It follows that qs has a jump at
T due to the atom of the measure µ.

CONCLUSION
We studied an optimal control problem with state constraints

to obtain optimal vaccination schedules and control strategies for
an SEIR epidemic model of human infectious diseases. First or-
der necessary conditions were applied to extract analytical infor-
mation on the solution and multipliers of such problem that was
then confronted with the computed counterparts.

The analysis allows us to verify the results on the normality
of the Maximum Principle and on the regularity of multipliers
and solution. It means also systematically validating solutions
for an wider class of control problems.

The future questions to be investigated include e.g. calculat-
ing the begin of the boundary interval, the study of stability of
the solution w.r.t. the parameters or the application of second
order sufficient conditions (see Maurer ’95, ’02 and ’13).

THE SEIR MODEL
The SEIR model describes the spreading of an infectious dis-

ease among a population (N ) by dividing it into four differ-
ent compartments: susceptible (S), exposed, not yet infectious
(E), infectious (I), recovered (R) (thus, a compartment model).
N(t) = S(t)+E(t)+ I(t)+R(t). The dynamics of each compart-
ment is modelled by an ODE:

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t), S(0) = S0,

Ė(t) = cS(t)I(t)− (e+ d)E(t), E(0) = E0,

İ(t) = eE(t)− (g + a+ d)I(t), I(0) = I0,

Ṙ(t) = gI(t)− dR(t) + u(t)S(t), R(0) = R0,

Ṅ(t) = (b− d)N(t)− aI(t), N(0) = N0,

Meaning and values of all used parameters are given below. (cf.
[3]).

Parameter Description Value

b natural birth rate 0.525
d natural death rate 0.5
c incidence coefficient 0.001
e exposed to infectious rate 0.5
g recovery rate 0.1
a disease induced death rate 0.2
A weight parameter 0.1
T number of years 20
S0 initial susceptible population 1000
E0 initial exposed population 100
I0 initial infected population 50
R0 initial recovered population 15
N0 initial population 1165
W0 initial vaccinated population 0

The system is controlled by the rate of vaccination u(t)
taking values in [0, 1]. Only susceptible compartment S is
vaccinated (u(t) = 1 means all susceptible population is

vaccinated at an instant t). We also assume: every newborn is
susceptible; every vaccinated individual becomes immune and
proceeds to the recovered compartment R. All relations can be

visualized as

THE SEIR CONTROL PROBLEM
Preliminary observations:
• We retain the cost functional introduced in [3],

J(u) =

∫ T

0

(
AI(t) + u2(t)

)
dt.

• The ODE governing Ṙ(t) is substituted with the one for
Ṅ(t) since R(t) = N(t)− S(t) + E(t) + I(t).
• Addition of an extra variable W with W (t) = u(t)S(t)

counting the number of vaccinations.
• The upper bound on S(t) stems from the idea that an upper

bound on I(t) would imply a state constraint of order > 1

otherwise. Since Ė(t) is determined by cS(t)I(t), it can be
expected that S(t) ≤ Smax does the job.

The resulting SEIR control problem is

(PS)



Minimize
∫ T

0

(
AI(t) + u2(t)

)
dt

subject to
Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t),
Ė(t) = cS(t)I(t)− (e+ d)E(t),

İ(t) = eE(t)− (g + a+ d)I(t),

Ṅ(t) = (b− d)N(t)− aI(t),
Ẇ (t) = u(t)S(t),
S(t) ≤ Smax,
u(t) ∈ [0, 1] for a.e. t ∈ [0, T ],
S(0) = S0, E(0) = E0, I(0) = I0, N(0) = N0,
W (0) =W0.

The problem (PS) corresponds exactly to (P ) via the following
definitions:

x(t) := (S(t), E(t), I(t), N(t)), Ã := (0, 0, A, 0), C := (1, 0, 0, 0),

A1 :=


−d 0 0 b
0 −(e+ d) 0 0
0 e −(g + a+ d) 0
0 0 −a b− d

, B :=


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,
and l(x0, x1) = 0, L(x, u) = 〈Ã, x〉 + u2, f(x, u) = f1(x) + g(x)u
where f1(x) = A1x+ c(−SI, SI, 0, 0)T , g(x) = Bx and
h(x) = 〈C, x〉 − Smax = S − Smax for some fixed Smax > S(0).

Remarkably, (PS) has free end states, a quadratic cost with re-
spect to u and the differential equation
ẋ(t) = f1(x(t))+g(x(t))u(t) is affine in the control and nonlinear
in the state x due to the term f1.

NECESSARY CONDITIONS FOR (PS)
With the stated parameter values it can be verified that for all
t ∈ [0, T ]

0 < LS ≤ S(t) ≤ US , 0 < LN ≤ N(t) ≤ UN ,
0 ≤ I(t) ≤ UI , 0 ≤ E(t) ≤ UE

with some constants US , LS , UN , LN , UE , UI . This allows to as-
sert conditions (i) − (v) in Auxiliary Results section with λ =
1, thus the normality of the optimal solution. Consider q =
(qs, qe, qi, qn) and p = (ps, pe, pi, pn).
An analysis of the Weierstrass Contition (iii) yields by looking
at u∗(t) = 0, 1 or in ]0, 1[, respectively,

u∗(t) = max

{
0,min

{
1,−qs(t)S

∗(t)

2

}}
. (1)

For all t in a boundary interval
[
tb0, t

b
1

]
(S∗(t) = Smax) it holds

Ṡ∗(t) = bN∗(t)− dS∗(t)− cS∗(t)I∗((t)− u∗(t)S∗(t) = 0

and therefore
u∗(t) = b

N∗(t)

S∗(t)
− d− cI∗(t). (2)

We have q(t) = p(t) +
∫
[0,t)
∇h(x∗(t))µ(ds), ∇h(x∗(t)) =

(1, 0, 0, 0) and∫
[0,t)

(1, 0, 0, 0)µ(ds) =

(∫
[0,t)

µ(ds), 0, 0, 0

)
.

It follows
qS(t) = pS(t) +

∫
[0,t)

µ(ds).

Of main interest are the regularity properties of the multipliers. Re-
sults of Shvartsman & Vinter ’06 allow to conclude that µ is ab-
solutely continuous w.r.t. Lebesgue measure. This means that
there exists a function ν ∈ L1 such that

∫ t

0
ν(s) ds =

∫
[0,t)

µ(ds).

Consequently, q is absolutely continuous on [0, T [ and q̇s(t) =
ṗs(t) + ν(t). It can be shown that

q̇s(t) = (d+ cI∗(t) + u∗(t))qs(t)− ν(t) + cI∗(t)qe(t)

This allows to derive (with (1) and (2))

ν(t) = −(d+cI∗(t)+u∗(t))qs(t)−cI∗(t)qe(t)+2c
İ∗(t)

Smax
− 2bṄ∗(t)

S2
max

.

We call ν the analytical multiplier. The function ν is defined on
[0, T ] but it is ν(t) = 0 on any interior interval.

The results so far motivate the following numerical analysis,
more precisely: to compare ν with the multiplier computed by
ICLOCS, to see that qs may have a jump when t = T and that

pe(t) = qe(t),
pi(t) = qi(t),
pn(t) = qn(t)

and pn(T ) = pn(T ) = pn(T ) = 0.
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