Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Using clickstream data to analyze online purchase intentions

Using clickstream data to analyze online purchase intentions

Título
Using clickstream data to analyze online purchase intentions
Tipo
Tese
Ano
2015-07-10
Autores
Ricardo Filipe Fernandes e Costa Magalhães Teixeira
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da computação e da informação
Outras Informações
Resumo (PT): Hoje em dia as técnicas de negócio tradicionais estão ultrapassadas devido à emergência de novos modelos de negócio, nomeadamente no espaço online através da Internet. Este novo espaço de comércio eletrónico difere substancialmente das atividades tradicionais que têm por bases espaços físicos. Assim, torna-se imperativo que as empresas adotem novas estratégias e sejam capazes de compreender as motivações que guiam os compradores online, caso pretendam suceder no competitivo ecossistema virtual. Os logs dos servidores são a principal fonte de informação, sobre os seus utilizadores, que as empresas dispõem. Estes ficheiros contêm detalhes sobre como cada cliente navegou pela loja eletrónica, mais ainda, através destes dados é possível reconstruir a sequência exata das páginas que cada um acedeu. Este tipo de dados, conhecidos como dados de clickstream, são fundamentais para conseguir compreender o comportamento dos utilizadores. Aliás, a análise e exploração desta informação são essenciais para melhorar a relação com os clientes. A análise de dados clickstream permite, acima de tudo, a compreensão de determindas intenções que motivam os utilizadores a realizar determinadas ações. A percentagem de conversão de utilizadores é uma das métricas mais conhecidas e que se relaciona diretamente com as intenções dos mesmos. Durante esta dissertação nós investigamos outro tipo de intenções, nomeadamente, fatores relacionados com os utilizadores que passam a ser compradores e ainda com a probabilidade de compra em tempo real. São utilizados dados concretos, provenientes de uma das maiores empresas europeias na área do retalho alimentar, para alimentar e avaliar diferentes modelos de data mining.
Abstract (EN): Nowadays, traditional business techniques are almost deprecated due to the insurgence of the world of online virtual shopping, the so-called e-commerce. This new, in many ways, uncharted territory poses difficult challenges when it comes to apply marketing techniques especially traditional methods, as these are not effective when dealing with online customers. In this context, it is imperative that companies have a complete in-depth understanding of online behavior in order to succeed within this complex environment in which they compete. The server Web logs of each customer are the main sources of potentially useful information for online stores. These logs contain details on how each customer visited the online store, moreover, it is possible to reconstruct the sequence of accessed pages, the so-called clickstream data. This data is fundamental in depicting each customer’s behavior. Analyzing and exploring this behavior is key to improve customer relationship management. The analysis of clickstream data allows for the understanding of customer intentions. One of the most studied measures regards customer conversion, that is, the percentage of customers that will actually perform a purchase during a specific online session. During this dissertation we investigate other relevant intentions, namely, customer purchasing engagement and real-time purchase likelihood. Actual data from a major European online grocery retail store will be used to support and evaluate different data mining models.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 96
Tipo de Licença: Clique para ver a licença CC BY-NC
Documentos
Nome do Ficheiro Descrição Tamanho
dissertation Using Clickstream Data to Analyze Online Purchase Intentions 1051.57 KB
Recomendar Página Voltar ao Topo
Copyright 1996-2022 © Reitoria da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2022-12-06 às 06:46:54 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias