
Proceedings of GOW 2012, pp. 133 – 136.

Biased random-key genetic algorithm for

bound-constrained global optimization

R. M. A. Silva1, M. G. C. Resende2, P. M. Pardalos3, J. F. Gonçalves4

1Centro de Informática (CIn), Universidade Federal de Pernambuco, Recife, PE, Brazil, rmas@cin.ufpe.br

2AT&T Labs Research, Florham Park, NJ, USA, mgcr@research.att.com

3Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA, pardalos@ufl.edu

5LIAAD, Faculdade de Economia do Porto, Universidade do Porto, Porto, Portugal, fgoncal@fep.up.pt

Abstract Global optimization seeks a minimum or maximum of a multimodal function over a discrete or
continuous domain. In this paper, we propose a biased random-key genetic algorithm for finding
approximate solutions for continuous global optimization problems subject to box constraints. Ex-
perimental results illustrate its effectiveness on the robot kinematics problem, a challenging problem
according to [7].

Keywords: random-key genetic algorithms, global optimization, metaheuristics.

1. Introduction

Global minimization optimization seeks a solution x∗ ∈ S ⊆ Rn such that f(x∗) ≤ f(x), ∀ x ∈
S, where S is some region of Rn and the objective function f is defined by f : S → R. In this
paper, we present the BRKGA heuristic for solving continuous global optimization problems
subject to box constraints. Without loss of generality, we take the domain S as the hyper-
rectangle S = {x = (x1, . . . , xn) ∈ Rn : ℓ ≤ x ≤ u}, where ℓ ∈ Rn and u ∈ Rn such that
ui ≥ li, for i = 1, . . . , n. Therefore, the minimization problem considered in this paper consists
in finding x∗ = argmin{f(x) | ℓ ≤ x ≤ u}, where f : Rn → R, and ℓ, x, u ∈ Rn.

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were first
introduced by [1] for solving combinatorial optimization problems involving sequencing. In
a RKGA, chromosomes are represented as vectors of randomly generated real numbers in the
interval [0, 1]. A deterministic algorithm, called a decoder, takes as input a solution vector and
associates with it a solution of the combinatorial optimization problem for which an objective
value or fitness can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations, called
generations. The initial population is made up of p vectors of random-keys. Each component
of the solution vector is generated independently at random in the real interval [0, 1]. After
the fitness of each individual is computed by the decoder in generation k, the population is
partitioned into two groups of individuals: a small group of pe elite individuals, i.e. those
with the best fitness values, and the remaining set of p − pe non-elite individuals. To evolve
the population, a new generation of individuals must be produced. All elite individual of the
population of generation k are copied without modification to the population of generation
k + 1. RKGAs implement mutation by introducing mutants into the population. A mutant
is simply a vector of random keys generated in the same way that an element of the initial
population is generated. At each generation, a small number pm of mutants is introduced into
the population. With the pe elite individuals and the pm mutants accounted for in population
k + 1, p − pe − pm additional individuals need to be produced to complete the p individuals



134 R. M. A. Silva, M. G. C. Resende, P. M. Pardalos, J. F. Gonçalves

that make up the new population. This is done by producing p − pe − pm offspring through
the process of mating or crossover.

A biased random-key genetic algorithm, or BRKGA [4], differs from a RKGA in the way par-
ents are selected for mating. While in a RKGA, [1] selects two parents at random from the
entire population; in a BRKGA, each element is generated combining one element selected at
random from the elite individuals set in the current population and one from the non-elite
individuals set. In some cases, the second parent is selected from the entire population. Rep-
etition in the selection of a mate is allowed and therefore an individual can produce more
than one offspring. Since we require that pe < p − pe, the probability that an elite individual
is selected for mating is greater than that of a non-elite individual and therefore the elite in-
dividual has a higher likelihood to pass on its characteristics to future generations. Another
factor contributing to this end is parameterized uniform crossover [5], the mechanism used to
implement mating in BRKGAs. Let ρe > 0.5 be the probability that an offspring inherits the
vector component of its elite parent. Let n denote the number of components in the solution
vector of an individual. For i = 1, . . . , n, the i-th component c(i) of the offspring c takes on
the value of the i-th component e(i) of the elite parent e with probability ρe and the value of
the i-th component ē(i) of the non-elite parent ē with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness values are
computed for all of the newly created random-key vectors and the population is partitioned
into elite and non-elite individuals to start a new generation.

To describe a BRKGA for continuous global optimization problems subject to box con-
straints, one needs only to show how solutions are encoded as vectors of random keys and
how these vectors are decoded to feasible solutions of the problem:

Encoding a solution to a vector of random keys. A solution is encoded as a vector χ =
(χ1, ..., χn) of size n, where χi is a random number in the interval [0, 1], for i = 1, . . . , n.
The i-th component of χ corresponds to the i-th dimension of hyper-rectangle S.

Decoding a solution from a vector of random keys. A decoder takes as input the vector of
random keys χ and returns a solution x ∈ S with xi = li + χi · (ui − li), for i = 1, . . . , n.
During all decoder process, the solutions fitness are calculated by the objective function
f : S → R of global optimization problem.

2. Experimental results

All experiments with BRKGA were done on a quad core Intel Core i7 processor (1.60 GHz)
with Turbo Boost up to (2.80 GHz) and 16 Gb of memory, running Ubuntu 10.04 LTS released
in April 2010. BRKGA heuristic was implemented in C++ and compiled with gcc version 4.4.3.
The algorithm used for random-number generation is an implementation of the Mersenne
Twister algorithm introduced by [6].

In this paper, we consider a problem from robot kinematics ([7–9]). We are given a 6-
revolute manipulator (rigid-bodies, or links, connected together by joints, with each link con-
nected to no more than two others), with the first link designated the base, and the last link
designated the hand of the robot. The problem is to determine the possible positions of the
hand, given that the joints are movable. In [9], this problem is reduced to solving a system of
eight nonlinear equations f1(x), . . . , f8(x) in eight unknowns x = {x1, . . . , x8} ∈ [−1, 1]8:

f1(x) = 4.731 · 10−3x1x3 − 0.3578x2x3 − 0.1238x1 + x7 − 1.637 · 10−3x2 − 0.9338x4 − 0.3571 = 0

f2(x) = 0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − x7 − 0.07745x2 − 0.6734x4 − 0.6022 = 0

f3(x) = x6x8 + 0.3578x1 + 4.731 · 10−3x2 = 0

f4(x) = −0.7623x1 + 0.2238x2 + 0.3461 = 0

f5(x) = x2

1 + x2

2 − 1 = 0

f6(x) = x2

3 + x2

4 − 1 = 0

f7(x) = x2

5 + x2

6 − 1 = 0



BRKGA for bound-constrained global optimization 135

Table 1. Roots of system in [−1, 1]8 found by running BRKGA with seed=270001. For each root, the time in sec-
onds and the value of objetive function F (·) are shown in the first collumn, as so as the components (in parenthesis)
of known roots described in [7, 8].

time(sec.) x1 x2 x3 x4 x5 x6 x7 x8

F (x)(10−5)

4.95 0.1658 −0.9851 0.7153 −0.6950 −0.9975 0.0638 −0.5251 −0.8557
9.79321 (0.1644) (−0.9864) (0.7185) (−0.6956) (−0.9980) (0.0638) (−0.5278) (−0.8494)
7.5 0.1619 −0.9851 0.7182 −0.6946 −0.9979 −0.0616 −0.5232 0.8503
7.19678 (0.1644) (−0.9864) (0.7185) (−0.6956) (−0.9980) (−0.0638) (−0.5278) (0.8494)
13.19 0.1731 −0.9827 0.7181 −0.6946 0.9973 −0.0686 −0.5195 0.8544
9.54526 (0.1644) (−0.9864) (0.7185) (−0.6956) (0.9980) (−0.0638) (−0.5278) (0.8494)
5.95 0.6729 0.7394 −0.6480 −0.7641 −0.9623 −0.2706 −0.4333 0.9027
9.76283 (0.6716) (0.7410) (−0.6516) (−0.7586) (−0.9625) (−0.2711) (−0.4376) (0.8992)
6.86 0.6736 0.7383 −0.6505 −0.7553 0.9634 0.2696 −0.4333 −0.9010
6.49664 (0.6716) (0.7410) (−0.6516) (−0.7586) (0.9625) (0.2711) (−0.4376) (−0.8992)
6.53 0.6792 0.7328 −0.6555 −0.7553 0.9612 −0.27613 −0.4343 0.9027
9.23596 (0.6716) (0.7410) (−0.6516) (−0.7586) (0.9625) (−0.2711) (−0.4376) (0.8992)
11.05 0.6768 0.7358 0.9502 −0.3132 −0.9623 0.2708 0.4002 −0.9162
9.68334 (0.6716) (0.7410) (0.9519) (−0.3064) (−0.9638) (0.2666) (0.4046) (−0.9145)
15.24 0.6674 0.7427 0.9508 −0.3132 0.9661 −0.2620 0.4002 0.9156
9.81702 (0.6716) (0.7410) (0.9519) (−0.3064) (0.9638) (−0.2666) (0.4046) (0.9145)
9.16 0.6792 0.7362 −0.6564 −0.7553 −0.9617 0.2745 −0.4343 −0.9008
9.1171 (0.6716) (0.7410) (−0.6516) (−0.7586) (−0.9625) (0.2711) (−0.4376) (−0.8992)
98.98 0.6707 0.7462 0.9530 −0.3041 0.9644 0.2631 0.4079 −0.9107
8.55693 (0.6716) (0.7410) (0.9519) (−0.3064) (0.9638) (0.2666) (0.4046) (−0.9145)
135.02 0.6646 0.7490 0.9551 −0.3015 −0.9652 −0.2625 0.4101 0.9114
9.82556 (0.6716) (0.7410) (0.9519) (−0.3064) (−0.9638) (−0.2666) (0.4046) (0.9145)
354.76 0.1604 −0.9891 −0.9505 −0.3167 −0.9979 −0.0581 0.4111 0.9090
9.32723 (0.1644) (−0.9864) (−0.9471) (−0.3210) (−0.9982) (−0.0594) (0.4110) (0.9116)
360.76 0.1680 −0.9844 −0.9514 −0.3167 0.9998 −0.0602 0.4098 0.9124
9.70348 (0.1644) (−0.9864) (−0.9471) (−0.3210) (0.9982) (−0.0594) (0.4110) (0.9116)
409.27 0.1606 −0.9855 −0.9481 −0.3183 −0.9976 0.0554 0.4138 −0.9076
7.28536 (0.1644) (−0.9864) (−0.9471) (−0.3210) (−0.9982) (0.0594) (0.4110) (−0.9116)
1204.24 0.1712 −0.9850 −0.9427 −0.3275 0.9976 0.0621 0.4052 −0.9143
8.21721 (0.1644) (−0.9864) (−0.9471) (−0.3210) (0.9982) (0.0594) (0.4110) (−0.9116)
1369.81 0.1718 −0.9837 0.7178 −0.6947 0.9943 0.0687 −0.5246 −0.8519
8.63659 (0.1644) (−0.9864) (0.7185) (−0.6956) (0.9980) (0.0638) (−0.5278) (−0.8494)

f8(x) = x2

7 + x2

8 − 1 = 0

With this system, we form the optimization problem

Find x∗ = argmin{F (x) =
∑

8

i=1
f2

i (x) | x ∈ [−1, 1]8}. (1)

Since F (x) ≥ 0 for all x ∈ [−1, 1]8, it is easy to see that F (x) = 0 ⇐⇒ fi(x) = 0 for all
i ∈ {1, . . . , 8}. Hence, we have the following: ∃ x∗ ∈ [−1, 1]8 ∋ F (x∗) = 0 =⇒ x∗ is a
global minimizer of problem (1) and x∗ is a root of the system of equations f1(x), . . . , f8(x).
From [7, 8], in the given domain, there are 16 known roots to this system. However, solving
problem (1) 16 times using BRKGA (or any heuristic) with different starting solutions gives no
guarantee of finding all 16 roots. It is entirely possible that some of the roots would be found
multiple times, while others would not be found at all.

To avoid this, we modified the objective function F (x), such as proposed by [3]. Suppose
that heuristic has just found the k-th root (roots are denoted x1, . . . , xk). Then BRKGA will
restart, with the modified objective function given by

F (x) =
8∑

i=1

f2

i (x) + β

k∑

j=1

e−‖x−xj‖χρ(‖x− xj‖), (2)

where
χρ(δ) = 1, ifδ ≤ ρ; 0, otherwise,



136 R. M. A. Silva, M. G. C. Resende, P. M. Pardalos, J. F. Gonçalves

β is a large constant, and ρ is a small constant. This has the effect of creating an area of
repulsion near solutions that have already been found by the heuristic.

For this problem, we ran BRKGA five times (a different starting random number seed for
each run from 270001 to 270005) with n = 8, p = 10, pe = 0.2p, pm = 0.1p, ρe = 0.7, ρ = 1,
and β = 1010. At any time during a run, we define the optimality gap by GAP = |F (x) −
F (x∗)|, where x is the current best solution found by the heuristic and x∗ is the known global
minimum solution. We then say that the heuristic has solved the problem if GAP ≤ ǫ with ǫ =
0.0001. In each case, the heuristic was able to find all 16 known roots. The average CPU time
needed to find the 16 roots was 3623.27 seconds. The Table 1 illustrates one of these solutions:
the 16 roots found in 4013.27 seconds by running BRKGA heuristic with seed=270001.

3. Concluding remarks

In this paper, we present the BRKGA heuristic for finding approximate solutions for continu-
ous global optimization problems subject to box constraints. We illustrate the approach using
a challenging problem with real-world applications, the robot kinematics, which nonlinear
system was solved through a corresponding adaptively modified global optimization prob-
lem multiple times, each time using BRKGA with areas of repulsion around roots that have
already been found. The promising results shown here illustrate the potential of BRKGA for
global optimization problems.

References

[1] J.C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA J. on Computing, 6:
154–160, 1994.

[2] C. A. Floudas and P. M. Pardalos. A collection of test problems for constrained global optimization algorithms.
In G. Goods and J. Hartmanis, editors, Lecture Notes in Computer Science, volume 455. Springer Verlag, Berlin,
1990.

[3] M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende. Global optimization by continuous GRASP.
In Optimization Letters, vol. 1, pages 201–212, 2007.

[4] J.F. Gonçalves and M.G.C. Resende. An evolutionary algorithm for manufacturing cell formation. In Comput-
ers and Industrial Engineering, 47:247–273, 2004.

[5] W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 230–236, 1991.

[6] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-
Random Number Generator. In ACM Transactions on Modeling and Computer Simulation, pages 3–30, 1998.

[7] C. A. Floudas, P. M. Pardalos, C. Adjiman, W. Esposito, Z. Gumus, S. Harding, J. Klepeis, C. Meyer and C.
Schweiger. Handbook of Test Problems in Local and Global Optimization. In Kluwer Academic Publishers,
Dordrecht, 1999.

[8] R. B. Kearfott. Some Tests of Generalized Bisection. In ACM Transactions on Mathematical Software, 13(3):
197–220, 1987.

[9] L. W. Tsai and A. P. Morgan. Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom
Manipulators by Continuation Methods. In Journal of Mechanisms, Transmissions, and Automation in Design,
107:189–200, 1985.


