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Abstract

Many real world domains, such as meteorological and financial, involve obtaining

predictive models that should be particularly accurate in a specific sub-range of the

domain of the target variable. Frequently, these values are poorly represented in the

available data set. In this case, we face a challenge usually known as the problem of

imbalanced domains.

The existence of few examples that match the user specific preferences creates impor-

tant problems at different levels. One of these levels is related with the unsuitability of

the existing performance assessment metrics. Another level is the need for approaches

that are able to force the algorithms to focus on these rare situations. Both aspects

are studied in this thesis.

Considering adequate metrics for this problem type is essential. We start by reviewing

the existing performance assessment metrics for imbalanced domains and propose a

new formulation specifically for regression tasks, which we then use in the experimen-

tal evaluation of different methods for handling these problems.

We then address the problem of regression tasks under imbalanced data distribution

using re-sampling methods. An extensive survey of the existing approaches both in

classification and regression is presented. Among all the existing types of techniques,

re-sampling methods are the most studied for classification tasks. These methods are

extremely versatile. In effect, re-sampling approaches simply manipulate the given

training set changing the examples distribution. This way, they allow the use of any

standard learning system. Still, no effort has been made in this field for regression

tasks. In this thesis, we propose three new re-sampling methods to address the problem

of imbalanced data distribution for regression tasks.

We have carried out an extensive experimental evaluation of the proposed methods on

18 data sets using a large set of learning systems. Results provide clear evidence of the

advantages of using the proposed re-sampling approaches for this type of problems.
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Resumo

Muitos domı́nios reais, como meteorológicos e financeiros, envolvem a obtenção de

modelos de previsão que devem ser particularmente precisos num sub-intervalo es-

pećıfico do domı́nio da variável objetivo. No entanto, muitas vezes, esses valores estão

pouco representados no conjunto dispońıvel de dados. Neste caso, estamos perante um

desafio que é geralmente conhecido como o problema dos domı́nios desbalanceados.

A existência de poucos exemplos que satisfaçam as preferências espećıficas do uti-

lizador gera problemas importantes a diferentes ńıveis. Um destes ńıveis está rela-

cionado com a desadequação das métricas de avaliação de desempenho existentes.

Noutro patamar encontra-se a necessidade de desenvolver abordagens que sejam ca-

pazes de forçar os algoritmos a concentrarem-se nestas situações raras. Ambos os

aspetos são estudados nesta tese.

Considerar métricas adequadas a este tipo de problema é essencial. Começamos por

rever as métricas de avaliação de desempenho existentes para domı́nios desbalanceados

e propomos uma nova formulação especificamente para tarefas de regressão que de-

pois utilizamos na avaliação experimental de diferentes métodos para lidar com estes

problemas.

De seguida, abordamos o problema de tarefas de regressão sob uma distribuição

desbalanceada dos dados usando métodos de re-amostragem. É apresentado um

levantamento extensivo das abordagens existentes em classificação e regressão. De

entre todos os tipos de técnicas existentes, os métodos de re-amostragem são os mais

estudados para tarefas de classificação. Estes métodos são extremamente versáteis.

Com efeito, as abordagens de re-amostragem simplesmente manipulam o conjunto de

treino dado alterando a distribuição dos exemplos. Desta forma, permitem o uso de

qualquer sistema de aprendizagem standard. Ainda assim, nenhum esforço foi feito

nesse campo para as tarefas de regressão. Nesta tese, propomos três novos métodos

de re-amostragem para resolver o problema da distribuição desbalanceada dos dados
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em tarefas de regressão.

Realizamos uma extensa avaliação experimental dos métodos propostos em 18 con-

juntos de dados utilizando um grande conjunto de sistemas de aprendizagem. Os

resultados fornecem uma evidência clara das vantagens da utilização das abordagens

de re-amostragem propostas neste tipo de problema.
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Chapter 1

Introduction

1.1 Context and Problem Definition

Predictive modelling tasks provide the context for the problem of imbalanced domains.

These tasks have the goal of constructing a model of an unknown function to accurately

forecast the values of a target variable. When the user is interested in a specific sub-

range of the target variable values, and there are few examples for that particular sub-

set, we face a challenge known as the problem of imbalanced domains. These tasks

raise two main problems that must be addressed together: i) the standard evaluation

metrics are no longer adequate, and ii) new approaches are needed to force the learning

algorithms to focus on the more important and least represented cases.

The problem of imbalanced domains was extensively studied for classifications tasks

where the target variable is nominal. Several performance assessment metrics were

provided and many types of approaches were proposed. Re-sampling methods are

among the more popular approaches for coping with the class imbalance problem.

Yet, little attention has been given to regression tasks where the distribution of the

numeric target variable is imbalanced.

In this thesis, we address the problem of imbalanced data distributions for regression

tasks through re-sampling methods.
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CHAPTER 1. INTRODUCTION 2

1.2 Motivation and Main Contributions

The problem of imbalanced data distributions is extremely relevant for several real

world applications, such as finance, ecology, medicine, telecommunications, web, me-

teorology, etc. and, therefore, has been getting more attention in recent years. Existing

work at the modeling level is focused on classification tasks and is already formed by

several categories of approaches. However, no attention has been given to regression

tasks under imbalanced data distributions.

Among the different existing approaches to handle distribution imbalance on the target

variable, re-sampling methods have the key advantage of being independent of the

modelling technique and thus generally applicable. This thesis studies the application

of these strategies to regression tasks.

The main contributions of this work are: i) to highlight the importance of considering

adequate metrics for this problem type; ii) present the state of the art on performance

assessment metrics and approaches for imbalanced data sets; iii) to provide an exten-

sive survey of the existing approaches to tackle the problem of imbalanced domains for

classification and regressiontasks; and iv) propose and perform an experimental analy-

sis of three re-sampling methods for addressing regression problems under imbalanced

data distributions.

1.3 Organization of the Thesis

The thesis is structured in six chapters whose contents are briefly described below.

The present chapter briefly describes the problem addressed in the thesis, and also the

motivation and main contributions. In Chapter 2 the problem of imbalanced domains

is presented along with a discussion on related problems. Chapter 3 describes the state

of the art of performance assessment metrics for both classification and regression tasks

under imbalanced domains. In Chapter 4 we continue with the study of the state of

the art of approaches to deal with this problem. We present a survey on this topic

covering different classes of strategies. Chapter 5 describes our proposal of re-sampling

strategies for regression tasks under imbalanced domains. We present three algorithms

to tackle this problem and evaluate their performance. Finally, Chapter 6 concludes

the thesis and outlines some possible future work.



Chapter 2

The Problem of Imbalanced

Domains

2.1 Problem Definition

The problem of imbalanced domains occurs in the context of predictive tasks. Pre-

dictive modelling tasks are data analysis tasks with the goal of building a model that

provides a good approximation of an unknown function Y = f(X1, X2, · · · , Xp), which

maps the values of a set of p predictor variables into the value of a target variable.

The model is obtained based on a training data set D = {〈xi, yi〉}ni=1. Depending on

the type of variable Y , we face either a classification task (nominal Y ) or a regression

task (numeric Y ). For constructing the model an optimization process is used that

tries to find the ”optimal” model parameters according to some predefined criterion.

The most frequently used criteria are the error rate for classification and the mean

squared error for regression.

For many real world applications there is a specific subset of the range of values of the

target variable Y which is more important, i.e., it is more relevant that the models are

particularly accurate in a given sub-range of the target variable domain. Examples

include diagnostic of rare diseases or forecasting rare extreme returns on financial

markets, among many other.

Moreover, this higher relevance of some subset of the values is often associated with

rarity of these values. In these cases we face what is usually known as a problem

of imbalanced data distributions, or imbalanced data sets. In other words, in these

3



CHAPTER 2. THE PROBLEM OF IMBALANCED DOMAINS 4

problem domains the cases that are more important for the user are rare and poorly

represented in the population and the available training set.

Let the user preference bias be expressed by an importance or relevance function φ()

that maps the values of the target variable into a range of importance, where 1 is

maximal importance and 0 minimum relevance,

φ(Y ) : Y → [0, 1] (2.1)

where Y is the domain of the target variable Y .

Suppose the user defines a relevance threshold tR which sets the boundary above which

the target variable values are relevant for the user. Let DR ∈ D be the subset of the

training samples for which the relevance of the target variable values is above the

defined threshold tR, and DN ∈ D be the subset of the training sample with the

normal, i.e. less important, cases for the user,

DR = {〈xi, yi〉 ∈ D : φ(yi) > tR} (2.2)

DN = {〈xi, yi〉 ∈ D : φ(yi) ≤ tR} = D \DR (2.3)

The problem of imbalanced data sets can be described by the following assertions:

• φ(Y ) is not uniform across the domain of Y

• The cardinality of the set of examples DR is much smaller than the cardinality

of DN

• The used evaluation criteria for both learning the models and evaluating their

performance assumes an uniform φ(Y ), i.e. it is insensitive to φ(Y ).

In this type of tasks we are facing a situation where the obtained models are sub-

optimal with respect to the user-preference biases and, moreover, the metrics used to

evaluate them are not in accordance with these biases and thus may be misleading.

Given the above-described properties of these predictive tasks we face two main

challenges:

• the definition of special purpose evaluation metrics that are biased towards the

performance of the models on the cases in DR, and
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• the development of strategies for getting the learning algorithms to focus on the

cases in DR.

These two challenges must be addressed, otherwise, the built models will tend to be

biased on the most frequent (and less interesting for the user) cases, and the evaluation

results will not capture the competence of the models on the relevant cases. Regarding

proper evaluation, several metrics have been proposed, mainly for classification tasks,

to overcome the difficulties of traditional metrics that are no longer adequate as they

do not take into account the user preferences. At the modelling level, a large number

of solutions that try to make the models focus on the less frequent and more important

cases for the user were proposed for classification tasks.

The large number of contributions made within the classification setting led to the

emergence of a specific vocabulary. These terms, although not suitable for regression

tasks, will be used whenever classification tasks are mentioned. For instance, when

the target variable Y is nominal, the imbalanced domain problem is usually referred

to as the class imbalance problem or the between-class imbalance problem. The last

expression highlights the existing unbalance among the different classes of the domain.

Also, the previously defined DR set containing the rare and more relevant cases for

the user is traditionally called the minority or positive class. The set DN with the

less important cases for the user and the more frequent ones is named the majority or

negative class. The concept of imbalance ratio (or class-imbalance ratio for nominal

Y ) is used to refer to the ratio of DN to DR.

2.2 Related Problems

The imbalanced data distribution is regarded as a major obstacle for predictive mod-

elling in the presence of a user preference bias towards the least represented examples.

Nevertheless, other problems exist that may also degrade the models performance and

frequently coexist with the imbalanced domain problem.

These related problems have been addressed mainly within a classification setting.

Problems such as small disjuncts, class overlap and small sample size, usually coexist

with imbalanced classification domains and are also identified as possible causes of

classifiers performance degradation (Weiss, 2004; He and Garcia, 2009; Sun et al.,

2009). We will briefly describe the major developments in the context of the following

related problems:
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1. class overlapping or class separability,

2. small sample size and lack of density in the training set,

3. high dimensionality of the data set,

4. noisy data,

5. small disjuncts or data fragmentation.

The overlap problem occurs when a given region of the data space contains an identical

number of training cases for each class. In this situation, a learner will have an

increased difficulty in distinguishing between the classes present on the overlapping

region. The problems of imbalanced data sets and overlapping regions were mostly

treated separately. However, in the last decade some attention was given to the

relationship between these two problems in the performance degradation of classifiers

(Prati et al., 2004a; Garćıa et al., 2006b). The combination of imbalanced domains

with overlapping regions causes an important deterioration of the learner performance

and both problems acting together produce much more difficulties than expected when

considering their effects in isolation (Denil and Trappenberg, 2010). Several strategies

for addressing both problems simultaneously have been developed. Recent works

(Alejo Eleuterio et al., 2011; Alejo et al., 2013) present combinations of solutions for

handling, simultaneously, both the class imbalance and the class overlap problem and

apply a blend of techniques for addressing these issues. For instance, the proposal of

Alejo Eleuterio et al. (2011) uses editing techniques and a modification in the mean

square error cost function for a multilayer Perceptron and the approach of Alejo et al.

(2013) applies a Gabriel graphs editing technique to address the overlapping classes

by removing noisy and borderline negative samples, and a modified back-propagation

algorithm to deal with imbalanced classes.

The imbalance problem and the overlapping of regions are considered in Garćıa et al.

(2007) with an additional difficulty: the overall imbalance ratio is different from local

imbalance ratios in overlaping regions. In this case the task of learning becomes a

major challenge. A similar setting is studied in Garćıa et al. (2008c) where artificial

data sets are used to generate overlapping regions with an imbalance ratio inverse to

the overall imbalance ratio of the data set. In these particular conditions, the more

represented class in overlap regions tends to be better classified by methods based

on global learning, while the class less represented in such regions tends to be better

classified by local methods.
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The small training set, or small sample problem, is also naturally related to the imbal-

anced domain problem. In an imbalanced context, having too few examples in the set

DR (the relevant and rare examples, or the minority class) will prevent the learner of

satisfyingly capture their characteristics and will hinder the generalization capability of

the algorithm. The relation between imbalanced domains and small sample problems

was addressed in Japkowicz and Stephen (2002) and Jo and Japkowicz (2004) where

it is highlighted that class imbalance degrades classification performance in small data

sets although this loss of performance tends to gradually reduce as the training set

size increases. As expected, the subconcepts defined by the minority class examples

can be better learned if their number can be increased.

The small sample problem may trigger problems such as rare cases (Weiss, 2005), which

cover only a few training examples, and so bring an additional difficulty to the learning

system. Rare examples are extremely scarce cases which presence is associated with

the problem of lack of data. These examples are difficult to detect and, when they

are detected, it is extremely difficult to make a generalisation from only a few data

samples. The small training set problem may also be accompanied with other problems

as variable training class distribution, i.e., a variable class distribution which may not

match the target distribution. In many real world problems the class distribution of

the training set is often diverse, unknown in advance, and does not match the testing

or target distributions, which may also vary over time. In Forman and Cohen (2004)

it is shown that, for imbalanced domains, obtaining a balanced training set is not

the most favourable setting and classifiers performance can be greatly improved by

non-random sampling that favours the minority class.

For domains as text classification, web categorization and biological/medical data, the

imbalance problem is usually accompanied with high dimensional data sets. In such

setting, the user is interested in a rare and more important class which is present

in a data set with a high number of predictors (Chawla et al., 2004). The main

challenge here is to adequately select features that contain the key information of

the problem. Feature selection is recommended (Wasikowski and Chen, 2010) and is

also pointed as the solution for addressing the class imbalance problem (Mladenic and

Grobelnik, 1999; Zheng et al., 2004; Chen and Wasikowski, 2008; Van Der Putten and

Van Someren, 2004; Forman, 2003). Several proposals exist for handling the imbalance

problem in conjunction with the high dimensionality problem, all using a feature

selection strategy (Zheng et al., 2004; Del Castillo and Serrano, 2004; Forman and

Cohen, 2004; Chu et al., 2010). For instance, in Zheng et al. (2004) it is suggested that

the existing measures used for feature selection are not very appropriate for imbalanced
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domains. Thus, a new feature selection framework is proposed, which selects features

for positive and negative classes separately and then explicitly combines them.

Noise is a known factor that usually affects models performance. In imbalanced do-

mains, noisy data has a greater impact on the least represented examples (Weiss, 2004).

A recent study (Seiffert et al., 2011) on the effect of noise used the software quality

data domain which is intrinsically characterised by the presence of class imbalance

and class noise. It was concluded that, generally, class noise has a more significant

impact on learners than imbalance. The used data sets had the characteristic of as

the level of noise decreased, the imbalanced was increased, and so, it was observed

that the reduction of noise improved the sampling techniques performance although

the imbalanced increased simultaneously. However, at the highest level of imbalance

the performance dropped. It is also noticed that the interaction between the level

of imbalance and the level of noise within a data set is a significant factor, and that

studying these two main effects in isolation may not be sufficient.

Although the between-class imbalance is more widely known, another type of imbal-

ance exists: the within-class imbalance which is the imbalance occurring between the

subclusters of each class in the data set (Japkowicz, 2001a; Jo and Japkowicz, 2004).

This second type of imbalance is not quite as well known or extensively studied as the

between-class imbalance is.

The within-class imbalance problem along with the between-class imbalance problem

are instances of the general problem known as the problem of small disjuncts (Japkow-

icz, 2001a). Systems learning from examples do not usually create a purely conjunctive

definition of each concept. They generate a definition made up of several disjuncts,

where each disjunct is a conjunctive definition of a subconcept of the original concept.

The coverage of a disjunct is defined as the number of training examples it correctly

classifies. A disjunct is called small if it has a low coverage (Holte et al., 1989), i.e., it

classifies few training examples.

Small disjuncts are a problem due to the tendency of classification methods to overfit

and misclassify these examples since the learners are typically biased towards classify-

ing large disjuncts. The following reasons are pointed for considering small disjuncts

a problem:

• many concepts include rare or exceptional cases and it is important for induced

definitions to learn from these cases;

• small disjuncts are a significant portion of an induced definition, i.e., they
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collectively match a significant percentage of the examples in a definition;

• small disjuncts have a much higher error rate than large disjuncts, collectively

contributing to a significant portion of the total errors (Weiss, 2010).

Regarding all the previously mentioned related problems, the relationship between

the problem of class imbalance and the problem of small disjuncts is the most studied

and much attention has been given to the small disjuncts problem. This problem

is often present along with the problem of class imbalance in real world data sets

and the connection existing between the two problems is not yet well understood

(Jo and Japkowicz, 2004). In fact, several works exist which address the problem

of small disjuncts and the class imbalance problem. Works as Japkowicz (2003);

Weiss and Provost (2003); and Jo and Japkowicz (2004) refer to small disjuncts as

the main responsible for performance loss, although recognising that they can be a

consequence of the presence of rare cases, domains with a small training set size and

high complexity settings. On the other hand, in some domains the class imbalance

problem is apparently more relevant than the problem of small disjuncts. This is

suggested, for instance, in Pearson et al. (2003). Even in the experiences conducted in

Jo and Japkowicz (2004), although the majority of the experiences in artificial domains

point to the small disjuncts as the cause of degradation of classifiers performance, a

specific domain exists that points in the opposite direction. So, further research is

necessary to evaluate which conditions make a domain more or less sensitive to class

imbalances than to small disjuncts (Jo and Japkowicz, 2004).

For studying the impact of small disjuncts a new metric called error concentration

was defined in Weiss and Hirsh (2000) for expressing the error concentration towards

the smaller disjuncts. The work in Weiss (2010) analyses the impact of several factors

on small disjuncts and in the error distribution across disjuncts. Among the studied

factors are pruning, training-set size, noise and class imbalance. In this work, pruning

is analysed as a strategy for addressing the problem of small disjuncts, and it is

concluded that it redistributes the errors more uniformly. However, in the context of

imbalanced domains, this is exactly the opposite of the intended behaviour, as it is

more important to classify a reduced set of examples with high precision than finding

the classifier with the best overall accuracy. Thus, pruning is not considered effective

for dealing with small disjuncts in the presence of class imbalance (Prati et al., 2004b;

Weiss, 2010).

Given that previous studies concluded that the disjunct size was part of the reason

for minority class predictions to be more error prone, in Weiss (2010) the existence of
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a link in the opposite direction is studied. One of the conclusions is that, even with

a balanced data set, errors tend to be concentrated towards the smaller disjuncts.

However, when there is class imbalance, the error concentration increases. Those

differences tend to be larger when the data set has greater class imbalance. Thus, class

imbalance is partly responsible for the problem with small disjuncts, and artificially

modifying the class distribution of the training data to be more balanced, causes a

decrease in the error concentration.

With this notion of a possible connection between within-class and between-class

imbalance problems several proposals were made which address simultaneously both

problems (Japkowicz, 2001a; Jo and Japkowicz, 2004; Prati et al., 2004b).

Some recent works as Napiera la et al. (2010) study the impact of borderline and

noisy examples on the classifier performance. The number of minority class borderline

examples is found to strongly affect the classifier performance. Moreover, the authors

relate the performance of existing strategies for addressing the class imbalance problem

with the amount of overlapping area in the data set and the existence of noisy majority

class examples.



Chapter 3

Performance Assessment Metrics

for Imbalanced Domains

3.1 Introduction

Obtaining a model from data can be seen as a search problem guided by an evaluation

criterion that establishes a preference ordering among different alternatives. The main

problem of imbalanced data sets lies on the fact that this is often associated with a

user preference bias towards cases that are poorly represented in the available data

sample. Standard evaluation criteria tend to focus the evaluation of the models on

the most frequent cases, which may be against the user preferences. In fact, the use of

common metrics in imbalanced domains might produce misleading conclusions since

they are insensitiveto skew domains (Ranawana and Palade, 2006; Daskalaki et al.,

2006). As such, selecting proper evaluation metrics plays a key role in the task of

correctly handling data imbalance. Adequate metrics should not only provide means

to compare the models according to the user preferences, but can also be used to drive

the learning of these models by biasing the algorithms for the models that the user

prefers.

As the problem of imbalanced domains has been addressed mainly for classification

tasks, there are far more solutions regarding performance metrics for these tasks than

for regression tasks . We start by addressing the problem of evaluation metrics in

classification problems (Section 3.2) and then move to regression tasks (Section 3.3).

11
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3.2 Metrics for Classification Tasks

Typically, accuracy (cf. Equation 3.1) and its complement error rate (cf. Equation 3.2)

are the most frequently used metrics for estimating the performance of learning sys-

tems in classification problems. For two classes problems, these metrics can be defined

as follows,

accuracy = TP+TN
TP+FN+TN+FP

(3.1)

error rate = 1− accuracy (3.2)

Considering a two-class problem, the confusion matrix (or contingency table) presents

the results of correctly and incorrectly recognised examples of each class (cf. Table 3.1).

This table provides the number of True Positive (TP) and True Negative (TN), i.e.

the instances that were correctly classified for each class, and the number of False

Positive (FP) and False Negative (FN), i.e. the type I and type II errors.

Predicted

Positive Negative

True
Positive TP FN

Negative FP TN

Table 3.1: Confusion matrix for a two-class problem.

Considering a user preference bias towards the minority class examples, accuracy is

not suitable because the impact of the least represented examples is reduced when

compared to that of the majority class. As an example, consider a problem where

the minority class, is represented only by 1% of the training examples. To achieve an

accuracy of 99% it is enough to predict, for every example, the majority class label.

Yet, all the minority examples, the more interesting and relevant for the user, are

misclassified. When the concern is the identification of the rare cases these metrics

are clearly inappropriate.

As mentioned before, in the context of imbalanced domains, the use of common metrics

as accuracy can lead to sub-optimal classification models (He and Garcia, 2009; Weiss,

2004; Kubat and Matwin, 1997). The used metrics must consider the user preferences
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and,thus, should take into account the data distribution. To fulfill this goal it became

necessary to develop and use alternative performance measures. From Table 3.1 the

following measures (cf. Equations 3.3-3.8) can be obtained,

true positive rate (recall or sensitivity) : TPrate = TP
TP+FN

(3.3)

true negative rate (specificity ) : TNrate = TN
TN+FP

(3.4)

false positive rate : FPrate = FP
TN+FP

(3.5)

false negative rate : FNrate = FN
TP+FN

(3.6)

positive predictive value (precision ) : PPvalue = TP
TP+FP

(3.7)

negative predictive value : NPvalue = TN
TN+FN

(3.8)

Using one of these measures (Equation 3.3 to Equation 3.8) alone is still not adequate.

The user would have to monitor the results of multiple metrics separately. Given that

simultaneously monitoring two metrics is impractical, different proposals arose for

combining individual measures as the F-measure (Estabrooks and Japkowicz, 2001),

the geometric mean (Kubat et al., 1998) or the receiver operating characteristic (ROC )

curve (Bradley, 1997).

The F-Measure (Fβ), a combination of both precision and recall, is defined as follows:

Fβ =
(1 + β)2 · recall · precision
β2 · recall + precision

(3.9)

where β is a coefficient to adjust the relative importance of recall with respect to

precision (if β = 1 precision and recall have the same weight).

Precision is a measure of exactness, assessing how many of the examples labelled

as positive are actually correctly labelled. On the other hand, recall is a measure

of completeness, expressing how many examples of the positive class are correctly

labelled. Fβ is commonly used and is more informative about the effectiveness of a
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classifier on predicting correctly the cases that matter to the user. This metric value

is high when both recall and precision are high .

An equally important metric is the geometric mean (G-Mean) which is defined as:

G−Mean =

√
TP

TP + FN
× TN

TN + FP
=

√
sensitivity × specificity (3.10)

G-Mean computes the geometric mean of the accuracies of the two classes, attempting

to maximize them while obtaining good balance.

When dealing with imbalanced data sets, one of the most popular tools is the receiver

operating characteristics (ROC ) curve and the associated use of the area under the

ROC curve (AUC ). This approach plots the true positive rate (cf. Equation 3.3) on

the X axis over the false positive rate (cf. Equation 3.5) on the Y axis. A point in ROC

space corresponds to the performance of a given classifier on a certain distribution. A

ROC curve provides information for all the values of a decision/threshold parameter

for classifying an example as belonging to a given class.

The usefulness of the ROC curve is the visualization of the relative trade-off between

the benefits (TPrate) and costs (FPrate) of classification regarding data distributions.

The ideal model would obtain TPrate = 1 and FPrate = 0, thus a good model should be

as closer as possible to (1, 0) point. On the other hand, a random model should remain

along the main diagonal, connecting the points (0, 0) and (1, 1), which represent that

all predictions are from the negative class and from the positive class respectively (cf.

Figure 3.1). Thus, any classifier that lies on the lower right triangle performs worse

than random guessing.

Comparing several models through ROC curves is not an easy task unless one of the

curves clearly dominates all the others over the entire space (Provost and Fawcett,

1997). Not delivering a single performance measure is a clear disadvantage of ROC

curves. The AUC measure, which is determined by calculating the area under the

ROC graphic (Equation 3.11), provides one single measure allowing the evaluation of

the best model on average. Still, it is not biased towards the minority class.

AUC =
1 + TPrate − FPrate

2
=
TPrate + TNrate

2
(3.11)

When data sets are highly skewed, precision-recall curves (PR curves) may be

preferred over ROC curves as the later may lead to an excessively optimistic view of
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Figure 3.1: ROC curve of three classifiers: A, B and random.

the algorithm performance. On this case, PR curves are recommended for providing

a more informative representation of performance assessment (Davis and Goadrich,

2006). A PR curve plots the recall rate on the X axis over the precision rate on the Y

axis. There is a strong relation between these two curves: a curve dominates in ROC

space if and only if it dominates in PR space (Davis and Goadrich, 2006). However,

it is also shown in Davis and Goadrich (2006) that an algorithm that optimizes the

area under the ROC curve is not guaranteed to also optimize the area under the PR

curve.

AUC and G-Mean have a known drawback: they provide exactly the same result for

many different combinations of True Positive Rate and True Negative Rate. Also,

they are unable to reflect each class contribution to the overall performance and do

not identify which is the prevalent class. To deal with the AUC and G-Mean inability

to explain the contribution of each class to the overall performance, a new metric

called dominance is proposed in Garćıa et al. (2008b) which is defined as:
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dominance = TPrate − TNrate (3.12)

This measure ranges from −1 to +1, where a value of +1 represents a situation of

perfect accuracy on the positive class, but failing on all negative cases, while a value

of −1 corresponds to the opposite situation. Individual rates are perfectly balanced if

dominance = 0.

The index of balanced accuracy (IBA) (Garćıa et al., 2009; Garcia et al., 2010) quan-

tifies a trade-off between an index of how balanced both class accuracies are and a

chosen unbiased measure of overall accuracy. This metric aims to favour classifiers

with better results on the positive class thus being more sensitive to imbalanced data

sets. IBA measure is defined as:

IBAα(M) = (1 + α · dominance)M (3.13)

where (1 + α · dominance) is the weighting factor and M represents any performance

metric. IBA is strongly correlated with AUC and G-Mean. However, unlike these

metrics, IBA is positively correlated with TPrate and negatively correlated with accu-

racy.

Other measures have been proposed, as the optimized precision (Ranawana and Palade,

2006) which is defined as:

optimized precision = accuracy − |TNrate − TPrate|
TNrate + TPrate

(3.14)

High values of optimized precision are obtained with high global accuracy and well

balanced class accuracies. Nevertheless, this measure can be strongly affected by the

bias of the global accuracy.

The adjusted geometric mean (AG-Mean) (Batuwita and Palade, 2009, 2012) was

proposed to overcome some problems identified in Fβ, AUC and G-Mean which are

related with the changes in sensitivity (cf. Equation 3.3) and specificity (cf. Equation

3.4). Under imbalanced domains it is usual to apply a method which produces an

increase in sensitivity by sacrificing some amount of specificity. However, in some

domains, it is important to improve the sensitivity as much as possible while keeping

the reduction in specificity to the minimum. Therefore, AG-Mean was built with the

aim of being more sensitive to changes in specificity than to changes in sensitivity and
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also to incorporate a dependence on the proportion of the majority class examples

in the data set. Thus, the higher the imbalance the higher the sensitiveness of the

measure to the changes in specificity. The AG-Mean is defined as:

AG−Mean =

G−Mean+specificity·Nn

1+Nn
if sensitivity > 0

0 if sensitivity = 0
(3.15)

where Nn is the proportion of majority class examples in the dataset.

To tackle the problem detected in AUC measure of implicitly using different misclassi-

fication cost distributions for different classifiers, the H-measure was developed (Hand,

2009). This measure uses a symmetric Beta distribution to replace the implicit cost

weight distribution in the AUC.

However, in the context of imbalanced domains H-measure is still not adequate as it

equally penalises errors made on the positive and negative class. Thus, this metric

is more suitable for balanced domains. The need for considering different weights for

mistakes made on different classes, lead to the development of a new metric called B42

which was proposed by Thai-Nghe et al. (2011). In fact, under an imbalanced domain,

misclassifying a minority class example is much more serious than misclassifying a

majority class example. The B42 metric also replaces the cost weight distribution

assumed in AUC metric, but adopts an asymmetric Beta distribution for penalising

more the errors made on the minority class. The Beta distribution chosen was

Beta(x, 4, 2) although the authors refer that other asymmetric Beta distributions could

have also been selected for this purpose.

3.3 Metrics for Regression Tasks

Unlike classification problems, very few efforts have been made regarding evaluation

metrics for regression tasks in imbalanced domains. Performance measures commonly

used in regression, such as Mean Squared Error (MSE) and Mean Absolute Devia-

tion (MAD), Equations 3.16 and 3.17, are not adequate to regression problems in

imbalanced domains. In fact, they presume an uniform user preference bias over

the domain and take all the prediction errors equally across the domain of the target

variable, assuming that the magnitude of the committed error is the decisive factor

for the cost assigned to a prediction.
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MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.16)

MAD =
1

n

n∑
i=1

|yi − ŷi| (3.17)

However, although the magnitude of the numeric error is important, it is also impor-

tant where the error has occurred, i.e. the error metric must also be sensitive to the

location of the errors within the target variable range.

Supposing a user preference bias towards the rare extreme values, one possible way

to overcome this problem would be to consider a weighted error measure, such that

higher weights are given to the rare extreme values cases (cf. Equation 3.18).

Errw =

∑n
i=1wi · L(yi, ŷi)∑n

i=1wi
(3.18)

where L(yi, ŷi) is a loss function (e.g. the squared error) and wi is the weight associated

to the case i.

However, this solution would only take into account one part of the problem. In fact,

the metric Errw considers the errors of bad predictions for relevant values, but fails

to consider the reverse, neglecting the errors of predicting a rare value when it is a

normal one (Ribeiro, 2011).

In the context of financial applications (Christoffersen and Diebold, 1996; Crone et al.,

2005), the issue of differentiated prediction costs was addressed and asymmetric linear

loss functions were proposed. The LIN-LIN error metric (cf. Equation 3.19) aims

at distinguishing two type of errors: under-predictions (ŷ < y) and over-predictions

(ŷ > y).

LIN − LIN =


co|y − ŷ| if ŷ > y;

0 if ŷ = y;

cu|y − ŷ| if ŷ < y.

(3.19)

This metric allows to differentiate the errors depending on where they occur: if co and

cu are different, two errors with the same amplitude, occurring in different ”sides”,

will have different penalisation.
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Nevertheless, LIN-LIN metric only distinguishes between these two situations (under-

and over-predictions). Moreover, this measure considers all under- (over-) predictions

as equally serious, taking only into account the error magnitude as in standard error

metrics. Thus, this approach is still not adequate for imbalanced data sets having a

non uniform user preference bias across the target variable domain (Ribeiro, 2011).

Besides the LIN-LIN metric, which is asymmetric linear, many different kinds of

asymmetric loss functions have been explored: QUAD-QUAD (asymmetric quadratic),

LINEX (approximately linear on one side and exponential on the other side), double

LINEX (aims at making LINEX more flexible) and QUAD-EXP (approximately

quadratic on one side and exponential on the other side) (Zellner, 1986; Cain and

Janssen, 1995; Christoffersen and Diebold, 1996, 1997; Crone et al., 2005; Granger,

1999; Lee, 2008). However, they all suffer from the same problem as LIN-LIN metric:

they only distinguish over-predictions from under-predictions. Thus, they are still not

adequate for the problem of imbalanced domains with a user preference bias towards

some specific values.

Following the efforts made within classification, some attempts were made to adapt

the existing notion of ROC curves to regression tasks. One of these attempts is the

ROC space for regression (RROC space) (Hernndez-Orallo, 2013) which is motivated

by the asymmetric loss often present on regression applications where over-estimations

are not equally costly as under-estimations (or vice versa). RROC space is defined by

plotting the total over-estimation on the X axis and the total under-estimation on

the Y axis (cf. Figure 3.2). RROC curves are obtained when the notion of shift is

used, which is a constant that can be added (or subtracted) to example predictions

in order to adjust the model to an asymmetric operating condition. The notion of

dominance can also be assessed by plotting different regression models, similarly to

ROC curves in classification problems.

Other evaluation metrics were explored, such as the area over the RROC curve (AOC)

which was shown to be equivalent to the error variance.

In spite of the importance of this approach, it still only distinguishes over predictions

from under predictions and, as we have mentioned before, this is not enough in the

context of imbalanced domains with a non uniform user preference bias over the target

variable. So, it is also important to consider where the errors occurred over the target

variable range.

Another relevant effort towards the adaptation of the concept of ROC curves to regres-

sion tasks was made by Bi and Bennett (2003) with the proposal of Regression Error
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Figure 3.2: RROC curve of three models: A, B and C.

Characteristic (REC) curves which provide a graphical description of the cumulative

distribution function (cdf) of the error of a model. On these curves, the error tolerance

is plotted on the X axis and on the Y axis is plotted the accuracy of a regression

function which is defined as the percentage of points predicted within a given tolerance

ε:

cdf(ε) =
|(xi, yi) : L(ŷi, yi) ≤ ε, i = 1, . . . ,m|

m
(3.20)

where m is the total number of data points. REC curves illustrate the predictive

performance of a model across the range of possible errors.

As with ROC curves, it is possible to represent several models in the same space being

possible to determine dominance regions (cf. Figure 3.3). A model dominates another

if its REC curve is always above the other models curve. It can also be calculated

the Area Over the Curve (AOC) which is a biased estimate of the expected error of a

model (Bi and Bennett, 2003).
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Figure 3.3: REC curve of three models: A, B and C.

Although having several advantages, REC curves are still not adequate to imbalanced

domains in the presence of a user preference bias towards some specific target values.

In this case, the same error amplitude can have a different importance to the user

depending on the true target variable value. In fact, we could have two different

models with the same REC curves but one being preferred over the other based on

the errors made on target values that are more relevant to the user. So, it is also

essential to inspect the errors over the target variable domain.

To address this problem Regression Error Characteristic Surfaces (RECS) were pro-

posed by Torgo (2005). REC surfaces are an extension of REC curves where the

cumulative distribution of the dependent variable is set as an additional dimension.

RECS show how the errors corresponding to a certain point of the REC curve are

distributed across the range of the target variable. Figures 3.3 and 3.4 show an

example of REC curves and a REC surface. REC surfaces are quite relevant and

useful in the context of imbalanced domains combined with a user preference bias

towards some specific target values. In fact, it is important to study the performance

of the models as a function of the target variable range. This tool allows the study of
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Figure 3.4: An example of the REC surface.

the behaviour of alternative models for certain specific values of the target variable.

For instance, the performance over the values that are more relevant for the user can

be inspected. The user can also establish a certain range of errors, assessing afterwards

in which parts of the target variable range they are more frequent.

Another existing approach is the precision/recall evaluation framework, based on the

concept of utility-based regression (Ribeiro, 2011; Torgo and Ribeiro, 2007). At

the core of utility-based regression is the notion of relevance of the target variable

values and the assumption that this relevance is not uniform across the domain

of this variable. This notion is motivated by the fact that, contrary to standard

regression, in some domains, as imbalanced domains, not all the values are equally

important/relevant. In utility-based regression the usefulness of a prediction is a

function of both the numeric error of the prediction (given by some loss function

L(ŷ, y)) and the relevance (importance) of both the predicted ŷ and true y values.

Relevance is the crucial property that expresses the domain-specific biases concerning

the different importance of the values. As we have mentioned it is defined as a

continuous function φ(Y ) : Y → [0, 1] that maps the target variable domain Y into a
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[0, 1] scale of relevance, where 0 represents the minimum and 1 represents the maximum

relevance.

Being a domain-specific function, it is the user responsibility to specify the relevance

function. However, Ribeiro (2011) describes some specific methods to automatically

obtain these functions when the goal is to be accurate at rare extreme values. The

methods are based on the simple observation that, for these applications, the notion of

relevance is inversely proportional to the target variable probability density function.

Figure 3.5 shows the relevance function φ() automatically generated for the a1 data

set using the mentioned methods.
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Figure 3.5: Relevance function φ() automatically generated for the a1 data set.

For the particular subset of applications associated with rare extreme values, the

utility of a model prediction is related to the question on whether it has led to the

identification of the correct type of extreme (high or low) and if the prediction was

precise enough in numeric terms. Thus, to calculate the utility of a prediction it is

necessary consider two aspects: (i) does it identify the correct type of extreme? (ii)

what is the numeric accuracy of the prediction (i.e. L(ŷ, y))? This latter issue is

important because it allows for coping with different ”degrees” of actions as a result

of the model predictions. For instance, in the context of financial trading, an agent

may use a decision rule that implies buying an asset if the predicted return is above a

certain threshold. However, this same agent may invest different amounts depending

on the predicted return, and thus the need for precise numeric forecasts of the returns
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on top of the correct identification of the type of extreme. This numeric precision,

together with the fact that we may have more than one type of extreme (i.e. more

than one ”positive” class) are the key distinguishing features of this framework when

compared to pure classification approaches.

The concrete utility score of a prediction, in accordance with the original framework

of utility-based learning (e.g. Elkan (2001); Zadrozny (2005)), results from the net

balance between its benefits and costs (i.e. negative benefits). A prediction should

be considered beneficial only if it leads to the identification of the correct type of

extreme. However, the reward should also increase with the numeric accuracy of the

prediction and should be dependent on the relevance of the true value. In this context,

Ribeiro (2011) has defined the notions of benefits and costs of numeric predictions,

and proposed the following definition of the utility of the predictions of a regression

model,

Up
φ(ŷ, y) = Bφ(ŷ, y) − Cp

φ(ŷ, y)

= φ(y) · (1− ΓB(ŷ, y)) − φp(ŷ, y) · ΓC(ŷ, y)
(3.21)

where Bφ(ŷ, y), Cp
φ(ŷ, y), ΓB(ŷ, y) and ΓC(ŷ, y) are functions related to the notions of

costs and benefits of predictions that are defined in Ribeiro (2011). Figure 3.6 shows

the utility isometrics and the utility surface for the a1 data set considering that the

false alarms are not relevant.

Precision and recall are two of the most commonly used metrics to estimate the

performance of models in highly skewed domains (Davis and Goadrich, 2006). The

notions of precision and recall were adapted to regression problems with non-uniform

relevance of the target values by Torgo and Ribeiro (2009) and Ribeiro (2011). These

metrics are usually defined as ratios between the correctly identified events (usually

known as true positives within classification), and either the signalled events (for

precision), or the true events (for recall). Ribeiro (2011) defines the notion of event

using the concept of utility. In this context, the ratios of the two metrics are also

defined as functions of utility, finally leading to the following definitions of precision

and recall for regression,

recall =

∑
i:ẑi=1,zi=1

(1 + ui)∑
i:zi=1

(1 + φ(yi))
(3.22)
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Figure 3.6: Utility surface for the a1 data set obtained with relevance function φ()

shown in Figure 3.5

and

precision =

∑
i:ẑi=1,zi=1

(1 + ui)∑
i:ẑi=1,zi=1

(1 + φ(yi)) +
∑

i:ẑi=1,zi=0

(2 − p (1− φ(yi)))
(3.23)

where p is a weight differentiating the types of errors, while ẑ and z are binary

properties associated with being in the presence of a rare extreme case1.

We propose an alternative definition for precision and recall, which is also based on

the utility-based framework defined by Ribeiro (2011). This formulation also assumes

an user-defined threshold of relevance, tR, which is used for distinguishing cases which

are signalled events (φ(ŷi) > tR) or true events (φ(yi) > tR) from the normal and

irrelevant cases for the user. The key difference of this proposal is the identification

of signalled/true events which is solely dependent on the relevance function (domain

knowledge) and not on the utility of the predictions made by the model.

Therefore, we propose the following alternative definitions of precision and recall for

regression,

1Full details can be obtained in Chapter 4 of Ribeiro (2011).
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recall =

∑
φ(yi) > tR

(1 + ui)∑
φ(yi) > tR

(1 + φ(yi))
(3.24)

and

precision =

∑
φ(ŷi) > tR

(1 + ui)∑
φ(ŷi) > tR

(1 + φ(ŷi))
(3.25)

Having this formulation, and similarly to what is done in classification, the F-measure

(cf. Equation 3.9) can be obtained based on the previous definitions of precision and

recall.

In this thesis, we will evaluate the proposed models using these definitions of precision

(cf. Equation 3.25) and recall (cf. Equation 3.24) and the F1 measure which assigns

equal importance to both precision and recall.



Chapter 4

Modelling Approaches for

Imbalanced Domains

4.1 Introduction

Imbalanced domains raise significant challenges when building predictive models. The

scarce representation of the most important cases leads to models that tend to be

more focused on the normal examples, neglecting the rare extreme events. As men-

tioned before, the problem of imbalanced distributions was initially addressed within a

classification setting. Therefore, a large number of solutions was proposed specifically

for classification tasks. These approaches aim to make the models focus on the less

frequent and more important cases for the user. For instance, the model will be more

focused in the rare cases if it is given the same number of rare and normal cases.

Another example of a possible strategy is to modify the learning system internally so

that it gives more attention to the rare examples.

All the strategies for handling imbalanced domains are traditionally separated in two

groups named internal and external methods. The internal approaches aim at creating

new algorithms or modify the ones already existing strengthening the learning process

towards the least represented cases (cf. Figure 4.1). On the other hand, external

approaches are usually connected to modifications on the data set previous to the

learning process. These approaches try to manipulate the data, altering the existing

data distribution, to get a more balanced sample and therefore reducing the effect

of the imbalanced domain. We claim that external approaches should also include

strategies which only make modifications on the predictions, i.e., methods that use

27
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the given data set and a standard learning algorithm and act only on the predictions

by altering them to better correspond to the user preference bias. In summary,

we consider that all the data set manipulations made previously to the learning

process, and also the modifications applied after the standard learning algorithm to

the predictions are examples of external approaches (cf. Figure 4.2).

Original 
Data set

Predictions
Modified
Model

Algorithm Modifications

Standard
Model

Figure 4.1: Internal approaches: Algorithm Modifications

In this context, we propose to cluster the existing approaches to learning under

imbalanced data distributions in three different main groups:

External Approaches:

Data Pre-processing - Includes solutions that pre-process the given imbal-

anced data set, changing the data distribution so that the algorithm focus

on the cases that are more relevant for the user ;

Prediction Post-processing - Approaches that use the original data set and

an unchanged standard learning algorithm, only manipulating the models

predictions to better adapt to the imbalanced problem;

Internal Approaches:
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Figure 4.2: External approaches: Data Pre-processing and Prediction Post-processing

Algorithm Modifications - Comprises solutions which change the existing

algorithms to provide a better fit to the imbalanced data .

For classification tasks several solutions exist following one of these alternatives or

combinations of them into hybrid strategies. However, for regression tasks this issue

is still under-explored, with only a few approaches included in the algorithm modifi-

cations and prediction post-processing strategies.

Each group of solutions has advantages and drawbacks which we will briefly describe

next. The first group of data pre-processing methods has the following advantages:

i) it can be applied to any existing learning tool; ii) the chosen models are biased to

the goals of the user (because the data distribution was previously changed to match

these goals), and thus it is expected that the models are more interpretable in terms of

these goals. The main inconvenient of data pre-processing is that it might be difficult

to relate the modifications in the data distribution with the target loss function,

which may lead to worse results and models eventually not that comprehensible.

The task of mapping the given data distribution with an optimal new distribution

according to the user goals is not easy. As for the algorithm modifications group

the following are important advantages: i) the user goals are incorporated directly

into the models, or new models are constructed specially for the user goals; ii) it is

expected that the models obtained this way are more comprehensible to the user.

The main disadvantages of these approaches are: i) the user is restricted in his choice

to the learning algorithms that were modified to be able to optimise his goals, or

has to develop new algorithms for the task; ii) if the target loss function changes
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the model must be relearned, and moreover it may be necessary to introduce further

modifications in the algorithm which may not be straightforward; iii) it requires a

deep knowledge of the learning algorithms implementations. Finally, the last group

of approaches presents the advantages: i) it is not necessary to be aware of the user

preference bias at learning time; ii) the obtained model can in the future be applied

to different deployment scenarios (i.e. different loss functions), without the need of

re-learning the models or even keeping the training data available for this re-learning;

iii) any standard learning tool can be used. However, this type of methods also have

some drawbacks: i) the models do not reflect the user preferences; ii) the models

interpretability is meaningless as they were obtained optimising a loss function that

is not in accordance with the user preference bias.

In this thesis, we propose to address the problem of imbalanced domains for regression

tasks through re-sampling strategies which are included on the data pre-processing

group. These approaches have not yet been tried for regression.

4.2 Data Pre-processing Strategies

Pre-processing methods act on the given data set altering it so that it will be better

adapted to the user preferences. Solutions at this level do not modify neither the

algorithms nor the predictions made. Instead they include a pre-processing step,

which modifies the data set distribution to force the algorithm to focus on the cases

that are more relevant for the user.

As we have mentioned, several advantages justify the choice of these approaches.

They allow the user to choose his preferred learning system without having to make

any changes to it, and are methods usually quite simple and easy to use. A diverse set

of data level approaches exist, each one with its particular advantages and drawbacks.

For dealing with imbalanced domains at a pre-processing level we will consider three

main solution types:

• re-sampling: change the data distribution of the data set forcing the learner

to focus on the least represented examples;

• active learning: actively selects the best (more valuable) examples to learn

leaving the ones with less information to improve the learner performance;

• weighting the data space: modify the training set distribution with regards
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to misclassification costs, such that the changed distribution is biased towards

the costly examples.

4.2.1 Re-sampling

Re-sampling approaches can be regarded as a pre-processing step whose goal is to

modify the given data distribution to force the learner to focus on the least represented

examples. In order to change data distribution, several techniques were proposed. Re-

sampling strategies aim at altering the data distribution usually attempting to obtain

a more balanced one. These strategies exist only for classification, and thus our

descriptions will be focused on these tasks.

It was proved that applying a pre-processing step in order to obtain a more balanced

class distribution is an effective solution to the imbalance problem (e.g. Estabrooks

et al. (2004); Fernández et al. (2008); Batuwita and Palade (2010a); Fernández et al.

(2010)). When compared to an imbalanced data set, a more balanced distribution of

the data improves performance. Moreover, it has been shown that sampling is also

an effective method for dealing with extreme imbalance (Seiffert et al., 2007).

However, changing the data distribution may not be as easy as expected. In fact, it

may not be straightforward to decide what is the optimal distribution as it differs from

one data set to another, which may lead to worse results . For classification tasks,

it was proved that having a perfectly balanced distribution ( |DN | = |DR|) does not

always provides optimal results (e.g. Weiss and Provost (2003)). A study to evaluate

the effect of the class distribution of examples on classification trees performance was

conducted by Weiss and Provost (2003) and a budget-sensitive progressive sampling

algorithm was proposed yielding a good (nearly-optimal) classification performance.

A wrapper framework was also proposed by Chawla et al. (2005, 2008) that aims at

discovering the right amount of re-sampling for a data set based on the optimisation

of some evaluation functions.

For classification problems, changing the class distribution of the training data im-

proves classifiers performance on an imbalanced context because it imposes non-

uniform misclassification costs. This equivalence between the two concepts of altering

the data distribution and the misclassification cost ratio is well-known and was first

clarified by Breiman et al. (1984).
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4.2.1.1 Random Under-sampling and Random Over-sampling

In order to better balance the data distribution, two simple strategies can be used:

under-sampling and over-sampling, both with some variants. Random under-sampling

removes data from the original data set, thus reducing the sample size. A random

sample of the majority class examples is selected and then joined with the minority

class examples to form the final training data set. Random over-sampling acts

inversely by adding data from the minority class. A random sample of examples

belonging to the minority class is selected and added to the training data set. This

procedure increases the size of the training set, and balances the class distribution by

introducing replicas of the minority class examples. Both for under- and over-sampling

the amount applied varies according to the target class distribution and the data set.

Although simple, both under-sampling and over-sampling have known drawbacks

(McCarthy et al., 2005). Under-sampling may discard potentially useful data by

reducing the sample size, which can lead to worse performance. Over-sampling may

increase the likelihood of overfitting, since it will produce ties in the sample, especially

when the over-sampling rate increases (Chawla et al., 2002; Drummond et al., 2003).

The introduction of replicated examples may decrease the classifier performance and

also increase the computational effort due to an augmented sample size. Moreover,

over-sampling does not introduce new data thus leaving the problem of lack of data

(see Section 2.2) unsolved.

4.2.1.2 Distance Based Methods

An approach based on distance for performing under-sampling was presented by Chyi

(2003). This approach computes distances among existing examples to select which

majority class examples will be included in the training set. Four different methods

for selecting samples are proposed: the nearest, the farthest, the average nearest, and

the average farthest representing distances between the majority and minority classes.

The nearest method starts by calculating, for every minority class example, the

distances between all majority class examples and the minority ones. Then selects

the majority class examples having the smallest distances to each minority class

examples. Similarly the farthest approach selects the majority class examples which

have the farthest distances to each minority class examples. In both methods some

of the majority class examples might be duplicated. The average nearest approach

begins by calculating, for every majority class example, the average distance to all
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minority class examples. Then selects the majority class examples having the smallest

average distances. Similarly to the average nearest, the average farthest method selects

the majority class examples which have the farthest average distances with all the

minority class examples. The four approaches have the disadvantage of being very

time consuming and are, therefore, unsuitable for large data sets.

Another method proposed by Mani and Zhang (2003), uses the k nearest neighbour

(k -NN) classifier to achieve under-sampling. For the under-sampling strategy four

different methods are defined: NearMiss-1, NearMiss-2, NearMiss-3, and the most

distant method. On NearMiss-1 method the majority examples selected have the

smallest average distance to the three closest minority class examples. NearMiss-2

selects the majority examples whose average distance to the three farthest minor-

ity class examples is the smallest. NearMiss-3 aims to ensure that every minority

example has in its neighbourhood some majority examples, and to do so, for each

minority example selects a given number of the closest majority examples. Finally,

the most distance method selects the majority class examples whose average distance

to the three closest minority class examples is the largest. The experimental results

showed a similar performance for random under-sampling and NearMiss-2, and a worse

performance for the other proposed methods.

4.2.1.3 Data Cleaning Methods

Several data cleaning methods have been used with success to improve the performance

of classifiers by removing the overlap introduced with sampling techniques. Data

cleaning approaches can be applied as a focused under-sampling strategy only remov-

ing examples from the majority class with certain unwanted properties or withdraw

examples from both classes which have certain defined undesirable characteristics.

One of those methods is based on the Tomek links (Tomek, 1976) notion which

essentially consists of points that are each others closest neighbours, but do not share

the same class label. More formally, a pair (xi, xj) is a Tomek link if xi and xj have

different class labels and @ xk : d(xi, xk) < d(xi, xj)∨ d(xj, xk) < d(xi, xj). According

to this definition, when two instances form a Tomek link one of two things can happen:

one of the instances is noise, or both instances are near the border. Therefore removing

all the Tomek links helps cleaning up unwanted overlapping between classes. Tomek

links offer the possibility of being used as an under-sampling method or as a data

cleaning method. If we only remove Tomek links examples belonging to the majority

class we are applying an under-sampling strategy, if Tomek links examples of both
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classes are eliminated we are performing a data cleaning method (Batista et al., 2004).

The under-sampling strategy presented in Kubat and Matwin (1997) is based on

Condensed Nearest Neighbour Rule (CNN) Hart (1968). The notion of CNN is used

to find a subset of the given training data which is a consistent set of examples. A

subset Ŝ ⊆ S is consistent with S if Ŝ correctly classifies the examples in S using

a 1-nearest neighbour. The algorithm to create Ŝ starts by defining this subset as

one randomly selected majority class example and all minority class examples. Then

a 1-nearest neighbour classifier is trained in Ŝ and tested in S. All the misclassified

examples from S are then integrated in Ŝ. The goal is to keep the majority class

examples that are near the decision border eliminating all the others.

Also in Kubat and Matwin (1997) another under-sampling strategy is proposed called

One-Sided-Selection (OSS) which combines Tomek links and CNN. In this approach,

Tomek links are firstly used as an under-sampling strategy removing only examples

from the majority class, and afterwards CNN is applied also eliminating examples

from the majority class but this time those who are distant from the borderline.

A similar procedure is presented in Batista et al. (2004) also involving CNN and

Tomek links but applied in the reverse order of OSS. This choice is motivated by the

computationally demanding task of finding Tomek links which would be performed on

a smaller data set.

Another approach is proposed by Laurikkala (2001), called Neighbourhood Cleaning

Rule (NCL), which depends on the concept of Wilsons Edited Nearest Neighbor Rule

(ENN) (Wilson, 1972). For each example, ENN removes it if at least two of the

three nearest neighbours have a different class label from its label. NCL is an under-

sampling technique which modifies the ENN to increase the data cleaning. For each

majority class example, if the three nearest neighbours classification contradicts the

example original class, the example is discarded. As for each minority class example,

if the three nearest neighbours misclassified the given example, then the neighbours

are eliminated.

Recently Naganjaneyulu and Kuppa (2013) proposed a strategy called Class Imbal-

ance Learning using Intelligent Under-Sampling (CILIUS). This algorithm acts by

eliminating the weak or noisy examples which are related to specific features identified

according to a well-established filter and intelligent technique named correlation-based

feature subset (CFS) (Hall, 1999). The strong examples from the majority class and

the minority class examples are then merged to form a new data set.
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There are also approaches that integrate data cleaning techniques with other re-

sampling approaches. These methods will be presented in Section 4.2.1.8 since they

involve the combination of different strategies.

4.2.1.4 Cluster Based Methods

Recently Xuan et al. (2013) studied the effect of imbalanced data sets on clustering al-

gorithms and showed that the class imbalance can seriously influence the performance

and efficiency of the clustering algorithm. The higher the imbalance ratio of the data

set, the higher the adverse effects on the clustering performance.

Despite these difficulties, clustering methods provide a great flexibility which makes

them suitable for addressing simultaneously several problems. A good example of this

is the cluster-based oversampling (CBO) algorithm proposed by Jo and Japkowicz

(2004) for dealing with the within-class and the between-class imbalance problem.

CBO consists of clustering the training data of each class separately with the k-means

technique and then performing random over-sampling in each cluster. All the clusters

of the majority class are over-sampled until they reach the same cardinality of the

largest cluster of this class. Let m be the final size of DN and minclust be the

number of clusters of the minority class. Each minority class cluster is random over-

sampled until each one contains m
minclust

examples. After applying CBO both classes

are balanced.

Yen and Lee (2006, 2009) presented a different approach called under-sampling based

on clustering (SBC) which starts by clustering the training data into k clusters. Then,

for each cluster, a number of majority class examples is selected being as larger as

higher is the proportion of majority class examples in the cluster. These majority

class examples are then combined with all the minority class examples to obtain a

new training data set.

Other methods for under-sampling based on clustering and distances are presented

in Yen and Lee (2006, 2009). These methods differ from SBC approach in the way

majority class examples are selected in each cluster. In fact, these methods combine

SBC algorithm with the notion of distance introduced by Mani and Zhang (2003) and

previously explained in Section 4.2.1.2.

Three different cluster based approaches are presented in Cohen et al. (2006). The first

uses clustering to substitute all majority class examples by prototypes generated. The

second approach relies on the agglomerative Hierarchical Clustering (AHC) to over-
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sample the minority class. Finally, the third variant proposed involves the combination

of AHC-based oversampling and K-means based under-sampling.

4.2.1.5 Synthesising New Data

Another approach for dealing with the imbalance problem as a pre-processing step, is

the generation of new synthetic data. Several methods exist for building new minority

class examples and therefore balance the data distribution. Synthesising new data has

the following advantages (Chawla et al., 2002; Menardi and Torelli, 2010): i) reduce

the risk of overfitting which is introduced when replicas of the examples are inserted

in the training set; ii) improve the ability of generalisation which was compromised

by the over-sampling methods.

One of the most famous methods is the Synthetic Minority Oversampling TEchnique

- SMOTE (Chawla et al., 2002). This innovative and powerful method has shown

success in several applications. SMOTE algorithm over-samples the minority class by

generating new synthetic data. This technique is then combined with random under-

sampling of the majority class. Artificial data is created using an interpolation strategy

which introduces a new example along the line segment joining a seed example and one

of its k minority class nearest neighbours. The number of minority class neighbours

(k) is a parameter defined by the user. For each minority class example a certain

number of examples is generated according to a predefined over-sampling percentage

. For each minority (seed) example, a synthetic example is generated as follows:

1. randomly select one of its k nearest neighbours,

2. take the difference between the neighbour and the seed feature vectors,

3. multiply this difference by a random number ranging from 0 to 1,

4. add the result to the seed feature vector.

This results in the selection of a random point along the line segment between two

specific features. The minority class label is assigned to the new example. Classifiers

are then learned on the new data set with the majority class under-sampled and the

minority class ”smoted”.

The Smote strategy was originally designed for data sets with all numeric features.

A variant called Smote -NC was proposed to handle data sets with both numeric
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and nominal predictors. The Smote -NC strategy starts by computing the median

of standard deviations of all numeric features for the minority class. For determining

the nearest neighbours of a minority class example the Euclidean distance is used for

numeric features and the median previously computed is included for penalising the

nominal features with different values. The numeric features of the new synthetic

case are determined with the same interpolation technique. Regarding the nominal

features values of the synthetic example, the value occurring in the majority of the

k-nearest neighbours is given.

SMOTE blindly generates synthetic minority class examples without considering the

majority class and this may cause overgeneralization (Yen and Lee, 2006; Maciejewski

and Stefanowski, 2011; Yen and Lee, 2009). This strategy may be specially problematic

in the case of highly skewed class distributions where the minority class examples are

very sparse thus resulting in a greater chance of class mixture. These issues motivated

the appearance of approaches based on the SMOTE algorithm (Barua et al., 2012;

Han et al., 2005; Bunkhumpornpat et al., 2009; Chawla et al., 2003; He et al., 2008;

Maciejewski and Stefanowski, 2011; Ramentol et al., 2012b; Verbiest et al., 2012).

A different approach for generating synthetic data was proposed by Lee (1999). The

main goal was to avoid overfitting to the training data and improve generalisation

for the test data in skewed binary classification. The key idea was to over-sample the

minority class by producing noisy replicates of the rare cases while keeping the majority

class unchanged. The over-sampling was performed by adding some normal noise to

the trained observations therefore creating new synthetic examples. The algorithm

requires the user to set two parameters: repl and σnoise, the first one representing the

number of noisy-replicates to produce for each minority class example, and the second

one representing the introduction or not of noise. Let D = {〈xi, yi〉}ni=1 be the training

set where xi is a p-dimensional feature vector and yi is the binary response with yi = 1

being the rare class. The new training set is generated in the following way:

1. replicate each example 〈xi, 1〉 repl times adding to the training set D the new

generated examples {〈xi + εik, 1〉}replk=1 with εik ∼ Np(0, σ
2
noise

∑
p) where

∑
p is

the p × p diagonal matrix diag{s21, . . . , s2p} and s2l is the sample variance of the

l -th feature variable over the training data;

2. let examples 〈xi, 0〉 unchanged.

This simple strategy was tested with success, and a new version was developed in Lee

(2000). This new approach generates, for a given data set, multiple versions of training
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sets with added noise. Then, an average of multiple model estimates is obtained. This

method has shown success, improving the performance of several classifiers.

The effect of adding Gaussian Noise had already been addressed by An (1996). In his

approach a new example is built for each existing training example. The synthetic

examples are generated by adding a random vector following a Gaussian distribution

with mean zero and a covariance matrix that takes into consideration the values of

each of the original training examples, and the same class label as the original used

example. This procedure maintains the ratio between the majority and the minority

class and duplicates the training set.

Another framework, named ROSE (Random Over Sampling Examples), for dealing

with the problem of imbalanced classification is presented by Menardi and Torelli

(2010) and is based on a smoothed bootstrap re-sampling technique. ROSE generates

a completely new and approximately balanced training set D∗ = {〈xi, yi〉}mi=1 from

the original training set D = {〈xi, yi〉}ni=1. The size m of the new training set is a

parameter defined by the user. The new D∗ includes only artificial examples which are

built in the following way: one observation is draw from the training set by giving the

same probability to both existing classes; the synthetic example is generated on the

neighbourhood of the selected observation, with width determined by the smoothing

matrix H. This approach combines techniques of over-sampling and under-sampling

generating an increased sample of data from the rare class and a possibly decreased

sample from the majority class. The choice of H is critical once different choices of

the smoothing matrices lead to larger or smaller neighbourhoods of the observations

from which the synthetic examples are generated. The method proposed (Menardi and

Torelli, 2010) considers Gaussian Kernels and minimises the AMISE (asymptotic mean

integrated squared error) under the assumption that the true conditional densities

underlying the data follow a Normal distribution.

ROSE procedure has shown excellent performance, in comparison to other similar

methods, whether in real or simulated data. Simulations have shown that, in most

cases, ROSE outperforms SMOTE and such improvement is mainly evident for ex-

treme levels of imbalance and small sample sizes.

The Sanger Network Based Extended Over-Sampling Method (SNEOM) is a method

proposed by Mart́ınez-Garćıa et al. (2012). This approach is based on Sanger neural

network and is an extended procedure because it allows to over-sample both minority

and majority class. First, a dimensionality reduction is performed based on Sanger

network and then, perturbations, such as Gaussian noise, are added to the data
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obtaining synthetic examples correlated to the original ones. The main advantage of

this method is that over-sampling is performed on the transformed space of the input

data thus being a method capable of dealing with high dimensional data sets.

Liu et al. (2007) proposed a method called Generative Oversampling for creating new

data points by learning from available training data. Generative Oversampling is a

method for generating synthetic examples based on an assumed probability distribu-

tion of the data whose parameters are learned from the training data.

4.2.1.6 Adaptive Synthetic Sampling

The generation of synthetic examples has several advantages, although some draw-

backs have also been identified. Adaptive synthetic sampling methods have been

proposed to overcome the potential problem of over generalisation mainly associated

with SMOTE. This limitation is attributed to the way synthetic examples are gener-

ated: each original minority class example gives rise to the same number of synthetic

examples and the neighbourhood of the minority class examples is not considered,

thus increasing the occurrence of overlapping between classes (Stefanowski and Wilk,

2007; Bunkhumpornpat et al., 2009).

To cope with this problem several adaptations of SMOTE were proposed. These

new approaches include: i) using standard SMOTE algorithm in the beginning and

afterwards eliminating some of the synthetic examples generated by some chosen

method; ii) using SMOTE for generating examples only in some specific locations

or for generating different numbers of new cases for each minority class example; and

iii) using clustering techniques or rough set theory in combination with SMOTE; and

many other.

Borderline-SMOTE algorithm (Han et al., 2005) is one of the proposed SMOTE vari-

ants. Han et al. (2005) presents two new minority over-sampling methods (borderline-

SMOTE1 and borderline-SMOTE2) in which only the minority class examples near the

borderline are over-sampled. This is the key difference between Borderline-SMOTE

and SMOTE: while SMOTE generates synthetic examples for each minority class

example, Borderline-SMOTE (version 1 and 2) only generates synthetic instances

for those minority examples ”closer” to the border. Both approaches have as main

motivation the tendency to misclassify examples near the borderline . The minority

instances are clustered into three different regions: noise, borderline, and safe. The

definition of those regions is based on the number of majority instances n present on
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the example k nearest neighbours. The region is safe if 0 ≤ n < k
2
, is considered

borderline if k
2
≤ n < k and is labelled as noise if n = k. The strategy Borderline-

SMOTE1 starts by calculating the k nearest neighbours for each rare class example and

then the borderline examples are determined.The borderline examples are then over-

sampled in a SMOTE-like fashion computing the m minority class nearest neighbours.

Borderline-SMOTE2 strategy not only generates new synthetic examples from each

example in the borderline using its positive nearest neighbours, but also does that from

its negative nearest neighbours. On the latter version, the new synthetic examples

generated are guaranteed to be closer to the borderline example than the negative

neighbour considered. For the considered data sets, experiments showed that both

Borderline methods used with C4.5 trees improved True Positive Rate and F-measure

for the minority class over the original SMOTE and simple random over-sampling.

A different approach, Safe-Level-SMOTE, presented by Bunkhumpornpat et al. (2009),

seeks for a careful over-sampling by only generating synthetic instances on a safe po-

sition. Safe-Level-SMOTE takes into account the presence of majority class instances

before generating synthetic examples. A coefficient called safe level is calculated for

each minority class example and that coefficient will determine whether the example

is considered noise or is in a safe area. The safe level of a minority class example is

the number of other minority class examples among its k nearest neighbours. A safe

level equal or close to 0 means that the given example is interpreted as noise, if the

safe level is closer to k, then the example is located in a safe region of the minority

class. A seed example p belonging to the minority class is selected for over-sampling.

Then, an example n is selected as being one of the k minority class nearest neighbours

of p. For n and p the k nearest examples are found in the full training set and the

respective safe levels, sl(p) and sl(n), are calculated. The safe level ratio, defined as

slr = sl(p)
sl(n)

is calculated and one of five different cases can happen:

1. if sl(p) = 0 and sl(n) = 0, no example is generated because both p and n are

considered noisy examples;

2. if sl(p) > 0 and sl(n) = 0, example n is considered as noise and an example is

generated by simply duplicating p once the algorithm wants to avoid the noise

instance n;

3. if slr = 1, both examples have a similar neighbourhood and the new synthetic

example will be generated along the line joining them, in the same way as in the

original SMOTE;
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4. if slr > 1, example p is considered safer than n thus the synthetic example is

generated closer to p;

5. if slr < 1, example n is considered safer and the synthetic example is generated

closer to n.

Experiments showed that Safe-Level-SMOTE performance evaluated by precision and

F-measure is better than that of SMOTE and Borderline-SMOTE for the considered

data sets.

The previous approaches, Borderline-SMOTE and Safe-Level-SMOTE generate syn-

thetic examples in different regions of the imbalanced data set. As we have mentioned,

Borderline-SMOTE operates on the border of the minority class, while Safe-Level-

SMOTE acts inside the minority class far from the border. Recently Bunkhumpornpat

and Subpaiboonkit (2013) proposed a tool called Safe Level Graph whose goal is to

guide the choice of the best technique to apply among the two just pointed. Safe Level

Graph uses the frequency percentage of safe level values from all the positive examples

to determine which method to apply. The safe level graph distribution is classified

as skewed to the right or left and this determines the selection of one from the two

methods.

ADASYN algorithm (He et al., 2008) uses a different method to adaptively create

different amounts of synthetic data. This approach generates more synthetic examples

for minority class instances that are harder to learn. The algorithm works in the

following steps:

1. calculate the total number of synthetic examples, T , to be generated in order

to obtain the desired balanced ratio between the two classes;

2. for each minority class example xi, find the knearest neighbours according to the

euclidean distance and calculate Γi = Ni/K
Z

, where Ni is the number of majority

class examples on xi k nearest neighbours, and Z is a normalization constant;

3. Γi will then be used to calculate the number gi of synthetic examples to be

generated for each minority instance xi: gi = Γi × T ;

4. generate synthetic examples accordingly to SMOTE algorithm.

The core idea of ADASYN is to automatically decide the number of synthetic ex-

amples that need to be generated for each minority instance by adaptively changing
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the weights of different minority examples to compensate for the imbalanced data

distribution.

Another alternative approach is Modified Synthetic Minority Oversampling Technique

(MSMOTE) proposed by Hu et al. (2009) which clusters the minority class examples

into three groups, safe, border and latent noise based on the distance among all

examples. MSMOTE selection of nearest neighbours depends on the group previously

assigned to the instance. Thus, for safe instances, the algorithm randomly selects a

data point from the k-nearest neighbours just like SMOTE; for border instances, it

only selects the nearest neighbour; and for latent noise instances, it makes no selection.

Barua et al. (2012) presented MWMOTE which starts by identifying the hard-to-

learn informative minority class examples and assigns them weights according to their

Euclidean distance from the nearest majority class examples . It then generates

the synthetic examples from the weighted informative minority class examples, by

interpolation, using a clustering approach. This is done in such a way that all the

generated examples lie inside some minority class cluster.

Batista et al. (2004) describe SMOTE+Tomek and SMOTE+ENN strategies, two new

SMOTE based techniques. With the goal of creating better-defined class clusters, the

first method applies Tomek links to the over-sampled training set as a data cleaning

method. This strategy starts by over-sampling the data set applying SMOTE, then

Tomek links are identified and removed producing well defined class clusters. In

this case examples from both classes are removed. The second proposed method,

SMOTE+ENN, is similar to SMOTE+Tomek links and also removes examples from

both classes. ENN acts by removing examples that are misclassified by its three nearest

neighbours and tends to withdraw more examples than Tomek links thus providing a

more in depth data cleaning.

An improvement of SMOTE algorithm is proposed by Ramentol et al. (2012b), where

the quality of the generated synthetic instances is monitored using fuzzy rough set

theory. This approach called SMOTE-FRST, starts by applying SMOTE and then,

iteratively, removes synthetic minority instances, as well as original majority instances,

that have a small membership degree to the fuzzy positive region. Eliminated instances

are regarded as noise and are filtered out from the training data. The process stops

when the data set is balanced. A proposal also involving rough set theory, SMOTE-

RSB, is presented by Ramentol et al. (2012a). SMOTE-RSB starts by generating

synthetic examples with SMOTE algorithm and then applies a cleaning method based

on rough set theory to include the original examples and the synthetic minority
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examples that belong to the lower approximation of their class in the final training

set.

A prototype selection technique, Fuzzy Rough Imbalanced Prototype Selection (FRIPS),

is presented by Verbiest et al. (2012). This approach aims to identify and clean noisy

data before applying SMOTE, so that SMOTE can generate high quality artificial

data. FRIPS deletes examples whose noise level (measured using fuzzy rough set

theory) exceeds a certain threshold. This noise level threshold is determined using a

wrapper approach that evaluates the training AUC of candidate subsets.

Another approach, FSMOTE, inspired on the theory of fractal interpolation was

proposed by Zhang et al. (2011). Considering that all the minority examples obey the

distribution of self-similarity and dilation symmetry in space, then the interpolated

examples must also obey it. FSMOTE strategy generates examples which obey the

spatial distribution of the original minority class examples with a deeper degree.

LN-SMOTE algorithm (Maciejewski and Stefanowski, 2011) focus on the local neigh-

bourhood of the seed minority example, determining the k nearest neighbours in the

training set also including the majority class ones. The idea is to avoid looking for

minority class examples that are too distant. New synthetic examples are generated

closer or further apart from the seed example depending on the local neighbourhood

characteristics. More recently, Garćıa et al. (2012) presented three SMOTE based

approaches for generating artificial minority instances that explore an alternative

neighbourhood formulation named surrounding neighbourhood. These methods take

into account both the proximity and the spatial distribution of the examples showing

some practical advantages over the conventional neighbourhood that is simply based

on the minimum distance.

Other approaches exist such as DBSMOTE algorithm (Bunkhumpornpat et al., 2012)

which is based on DBSCAN clustering and SMOTE and LLE-SMOTE method (Wang

et al., 2006) which uses a combination of the locally linear embedding algorithm (LLE)

and SMOTE. Recently, LVQ-SMOTE (Nakamura et al., 2013) was proposed to tackle

the difficulty of estimating proper borderlines between classes due to a huge feature

space that is frequent in biomedical data. This method tries to generate synthetic

examples to occupy more feature space than the existing SMOTE algorithms, and

performs over-sampling using codebooks obtained by LVQ (Learning Vector Quanti-

zation).
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4.2.1.7 Evolutionary Sampling

Evolutionary Algorithms (EA) are stochastic search methods that use mechanisms

inspired by biological evolution named probabilistic operators such as mutation, se-

lection and recombination. They rely on the concept of population of individuals

representing candidate solutions to the optimization problem where the defined fitness

function determines the quality of the solutions.

The EA have been used in several tasks with good results (Dehuri et al., 2008). For

instance, these algorithms were applied in feature and instance selection with success

(Whitley et al., 1997; Garćıa et al., 2008a). Only recently these methods were applied

in imbalanced domains for classification tasks. In the context of imbalanced data sets,

under-sampling can be regarded as a Prototype Selection (PS) procedure with the

purpose of balancing the domain to achieve a better performance. This has motivated

the use of EA as an under-sampling strategy for imbalanced domains.

Garćıa et al. (2006a) proposed a new evolutionary method for balancing the training

set. The presented method uses a new fitness function designed for performing a pro-

totype selection process with the goal of balancing data, improving the generalisation

capability and reducing the training data. Some proposals have also emerged in the

area of heuristics and metrics for improving several genetic programming classifiers

performance in imbalanced domains (Doucette and Heywood, 2008).

Evolutionary Under-Sampling (EUS) is an approach proposed by Garćıa and Her-

rera (2009) which uses EA for under-sampling imbalanced domains. In order to do

so, several data subsets are randomly under-sampled, being then evolved until the

currently best under-sampled data set cannot be further improved (in terms of the

fitness function). Eight different EUS methods are presented and categorised into a

taxonomy depending on their objective, scheme of selection and metrics of performance

employed.

Regarding the objective, methods that aim for an optimal data balancing are named

Evolutionary Balancing Under-Sampling (EBUS) while those aiming for an optimal

power of classification without taking into account data balancing are called Evolution-

ary Under-Sampling guided by Classification Measures (EUSCM). Another distinction

is made regarding the instance selection procedure which can be a Global Selection

(removals from the minority class are allowed) or a Majority Selection (minority class

instances removal is not allowed). Finally, methods are distinguished based on the

metric used in the fitness function.
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A solution named Evolutionary Sampling is proposed by Drown et al. (2009) and

applied to the specific context of improving software quality modelling for high-

assurance systems. The proposed approach uses Genetic Algorithms (GA) for under-

sampling the majority class and a fitness function that optimises two commonly used

performance metrics: AUC and G-Mean.

However, EA have been used for more than under-sampling. In fact, in the work

of Maheshwari et al. (2011) a combined strategy of GA and clustering techniques is

presented. Different GA operators are used for over-sampling to enlarge the ratio of

positive examples and then clustering is performed on the over-sampled training set as

a data cleaning method for both classes, removing the redundant or noisy examples.

Following a reverse path, in the proposal of Yong (2012), the K-means algorithm is

first applied on the minority class examples and then a genetic algorithm is used.

Also, the study of Derrac et al. (2012) presents EGIS-CHC, an evolutionary model to

improve imbalanced classification based on nested generalized example that accom-

plishes learning by storing objects in Euclidean n-space. New examples are classified by

computing their distance to the nearest generalized exemplar. The proposed strategy

performs an optimized selection of the most suitable generalized exemplars based on

evolutionary algorithms and is also combined with SMOTE pre-processing yielding to

simpler models.

4.2.1.8 Combining Re-sampling Strategies and Other Strategies

Sometimes, different types of the previously presented strategies are combined and/or

altered to improve the performance of learning systems under imbalanced domains.

Those associations and modifications will be explored on this section.

The SPIDER algorithm (Selective Preprocessing of Imbalanced Data) proposed by

Stefanowski and Wilk (2008) combines local over-sampling of the minority class with

filtering difficult examples from the majority class. The first step is to identify which

instances are flagged as noisy and which are considered safe. Examples that are

correctly classified by its k nearest neighbours are safe, and the others are noisy. The

second step depends on a parameter which can be set as: weak, relabel, or strong . If

weak is chosen, the minority class instances that were misclassified are over-sampled

by introducing copies of those instances. For the relabel option, an extension of

the previous option is done adding a modification to the majority class instances .

Finally, for the strong option, the minority class instances are strongly amplified.
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After carrying out these operations, the remaining noisy examples from the majority

class are removed from the data set. Classification performance of SPIDER approach

is slightly better or comparable to SMOTE thus being a possible alternative to this

one.

SPIDER algorithm first identifies the nature of the examples and then simultaneously

processes the majority and minority class. Nevertheless this processing can result in

too extensive modifications in some regions of the majority class and may deteriorate

specificity. This drawback was addressed by Napiera la et al. (2010) with SPIDER2

method. This algorithm consists of two phases for pre-processing examples of the

majority class and minority class respectively.

Another technique called MUTE is presented in Bunkhumpornpat et al. (2011) for

addressing the problem of an enlarged data set originated by over-sampling strategies.

When over-sampling is used to adjust the class distribution, the computation of

generating a classifier is highly affected due to an increased data set size. MUTE

is a new simple and effective under-sampling strategy with the purpose of discarding

the noise majority instances which overlap with minority instances. The removal of

the majority instances is based on their safe levels which in turn relies on the Safe-

Level-SMOTE concept. MUTE withdraws from the original data set all the majority

instances that are considered noise, returning a reduced data set. MUTE has the

advantage of reducing the time spent constructing a classifier due to a reduction of

the data set size. Results also show that MUTE improves the Fβ comparing to

SMOTE, Borderline-SMOTE and Safe-Level-SMOTE.

In Songwattanasiri and Sinapiromsaran (2010)a new technique called Synthetic Mi-

nority Over-Sampling and Under-sampling Technique (SMOUTE) is presented which

combines SMOTE over-sampling with under-sampling by reduction around centroids.

The main idea of SMOUTE algorithm, is to avoid synthesize a large number of

minority class instances while balancing both classes.

Vasu and Ravi (2011) propose an approach for performing informed under-sampling

which tries to eliminate the noisy and redundant examples from the majority class.

The method first applies k -reverse nearest neighbour (k -RNN) for detecting and

removing noise from the majority class and then uses the K-means clustering algorithm

for redundancy removing. This method was tested with success on fraud detection

and credit churn modelling problems. Yang and Gao (2012) presents an active under-

sampling approach. This method, instead of discarding the majority class examples

randomly, actively selects the examples of the majority class which are near the
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decision boundary, maintaining at the same time the original density distribution.

The idea is to put apart the abundant majority class examples based on the density

data distribution.

An hybrid method is proposed in Li et al. (2008) for dealing in particular with

the improvement of SVMs performance in an imbalanced context. This approach is

motivated by the need to overcome some detected flaw of the traditional re-sampling

methods and some data confusion. A variable self-organizing map (SOM) clustering is

used for re-sampling the data set. Then the training set is pruned by means of k -NN

rule to solve the problem of data confusion. The two steps improve the generalization

ability of SVM under imbalanced domains.

4.2.2 Active Learning

Active learning is a semi-supervised learning strategy in which the learning algorithm

is able to interactively obtain information. This strategy actively selects the best,

i.e. the most informative, examples to learn. The more valuable examples are

selected and those with less information are abandoned, with the goal of improving

the learner performance. Active learning techniques are traditionally used to solve

problems related to unlabelled training data.

Nonetheless, recently, several approaches for imbalanced data sets based on active

learning have been proposed (Ertekin et al., 2007b,a; Zhu and Hovy, 2007; Ertekin,

2013).

Ertekin et al. (2007b,a) proposed an active learning method based on SVMs. This

approach avoids searching the entire training data space, and can effectively select

informative instances from a random set of training populations. This way, when

dealing with large data sets, the computational cost is significantly reduced. The

selection strategy, named SVM based active learning, is based on the fact that, for

SVMs, the most informative instance is believed to be the closest instance to the

hyperplane.

Active learning was also used in the context of class imbalance problems in word sense

disambiguation applications (Zhu and Hovy, 2007). Strategies as max-confidence and

min-error were investigated as the stopping criteria for the proposed active learning

methods.

An active learning method for imbalance data using the Localized Generalization Error
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Model (L-GEM) of radial basis function neural network (RBFNN) was presented by

Hu (2012).

More recent developments try to combine active learning with other techniques (Ertekin,

2013; Mi, 2013) to further improve learners performance. Ertekin (2013) presents a

novel adaptive over-sampling algorithm, VIRTUAL, that combines the benefits of over-

sampling and active learning. VIRTUAL generates synthetic examples for the minority

class during the training process. Therefore, the need for an extra pre-processing

stage is discarded. In the context of learning with SVMs, VIRTUAL outperforms

competitive over-sampling techniques both in terms of generalisation performance and

computational complexity.

In the work of Mi (2013) a new method is developed by introducing SVM into the

learning framework of SMOTE for class imbalance learning. The proposed method

uses active learning SMOTE to classify the imbalanced data. In this study, the

SMOTE method is adapted for advancing the classification of imbalanced data.

4.2.3 Weighting the Data Space

The strategy of weighting the data space is a way of implementing cost-sensitive

learning. In fact, misclassification costs are applied to the given data set with the goal

of selecting the best training distribution. Essentially, this method is based on the

fact that changing the original data distribution to another, multiplying each example

by a factor that is proportional to the importance (relative cost), makes any standard

learner accomplish expected cost minimisation on the original distribution. Although

it is a simple technique and easy to apply some drawbacks exist. There is a risk of

model overfitting and is also possible that the real cost values are unavailable which

can introduce an extra learning cost for the need of exploring effective cost setups.

This approach has a strong theoretical foundation, building on the Translation The-

orem derived in Zadrozny et al. (2003). So, to obtain a modified distribution biased

towards the costly classes, the training set distribution is modified with regards to

misclassification costs. Let us consider a normal space without the cost item with

domain X×Y , and a cost space with domain X×Y ×C, where X is the input space,

Y is the output space and C being the cost associated with mislabelling an example.

If we draw examples from a distribution D in the cost space, then we can have another

distribution D̂ in the normal space such that
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D̂(X, Y ) ≡ C

EX,Y,C∼D[C]
D(X, Y,C) (4.1)

where EX,Y,C∼D[C] is the expectation of cost values.

According to the Translation Theorem, those optimal error rate classifiers for D̂ will be

optimal cost minimizers for D. Thus, when we update sample weights integrating the

cost items, choosing a hypothesis to minimize the rate of errors under D̂ is equivalent

to choosing the hypothesis to minimize the expected cost under D.

Zadrozny et al. (2003) presents two different ways of accomplishing this conversion:

in a transparent box manner by feeding the weights to the classification algorithm

or in a black box manner by carefully sub-sampling accordingly to the same weights.

However, the first approach cannot be applied to an arbitrary learner, and the second

one results in severe overfitting if re-sampling with replacement is used. Thus, to

overcome the drawbacks of the later approach Zadrozny et al. (2003) presented a

method called cost-proportionate rejection sampling which accepts each example in

the input sample with probability proportional to its associated weight.

4.3 Modifications on the Algorithms

The approaches at this level consist of solutions for modifying the existing algorithms

to provide a better fit to the imbalanced data. The task of developing a solution based

on algorithm modifications is not an easy one. It requires a deep knowledge of both

the learning algorithm and the target domain. To perform a modification on a selected

algorithm it is essential to understand why it fails when the distribution is skewed.

Also, some of the adaptations assume that a cost-matrix is known for different error

types, which is frequently not the case. On the other hand, these methods have the

advantage of being very effective in the context for which they were though for.

For dealing with imbalanced domains at the algorithm level we will consider three

main solution types:

• recognition-based methods: a model is obtained with only examples of the

target class in the absence of the counter examples. This approach does not

try to partition the hypothesis space with boundaries that separate positive

and negative examples, but it attempts to make boundaries which surround the

target concept;
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• cost-sensitive algorithms: costs are incorporated directly in the algorithm,

adapting the standard learning method and making it cost-sensitive.

• development of new algorithms: new algorithms are developed to specifi-

cally deal with this problem.

4.3.1 Recognition-based Methods

Recognition-based methods as one-class learning have also been applied in imbalanced

domains with promising results (Chawla et al., 2004). In this type of approach, and

contrary to discrimination-based inductive learning, the model is obtained using only

examples of the target class, and no counter examples are included. This lack of

examples from the other class(es) is the key distinguishing feature between recognition-

based and discrimination-based learning. The use of these methods was motivated by

many real world situations where it is only possible to have data from one class (the

target class) being data from other classes (the outlier classes) very difficult or even

impossible to obtain (Bellinger et al., 2012).

One-class learning does not try to partition the hypothesis space with boundaries that

separate positive and negative examples. The effort is directed towards setting up

boundaries which surround the target concept. Essentially, the goal of this method

is to measure the amount of similarity between an object and the target class, and

classification is accomplished by imposing a threshold on the similarity measure. The

major drawback of one-class learning methods is the need for tuning the similarity

threshold. Choosing a narrow threshold means that positive data will be discarded,

while a wide threshold will include a considerable number of negative examples.

Therefore, establishing an efficient threshold is vital with this method. Also, some

learners actually need examples from more than one class and are unable to adapt to

this method. Despite all these possible disadvantages, recognition-basedlearning algo-

rithms have been proved to provide good prediction performances in most domains.

Developments made in one-class learning include one-class SVMs (e.g. Schölkopf et al.

(2001); Manevitz and Yousef (2002); Raskutti and Kowalczyk (2004); Zhuang and Dai

(2006); Lee and Cho (2006)) and the use of an autoencoder (or autoassociator) (e.g.

Japkowicz et al. (1995, 2000); Japkowicz (2001b); Manevitz and Yousef (2007)).

The one-class SVM was first proposed by Schölkopf et al. (2001) to estimate the

probability density function where the data set is drawn from. This method assumes
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that the origin in the kernel space is the second class, and, subsequently, learns a

boundary that separates the target class from the origin. In Manevitz and Yousef

(2002) an extension of this approach is proposed. This new version called ”outlier”

methodology assumes not only that the origin is in the negative class but also includes

the points which are ”close enough” to the origin. This method uses a threshold which

is empirically determined. However, in addiction to the difficulty in determining the

threshold, we should also consider the issue of choosing the SVM parameters and the

SVM kernel as reported by Manevitz and Yousef (2002). Apart from the difficulties,

one-class SVM has showed very good performance particularly for small or extremely

imbalanced data sets (Manevitz and Yousef, 2002; Raskutti and Kowalczyk, 2004).

Another recognition-based method is the autoencoder (Hinton, 1989) which can be

thought of as a compression neural network, where the goal is to try to recreate the

input at the output, i.e., is a neural network which maps the inputs to output nodes,

through a narrow hidden layer, attempting to reconstruct the input. The narrow

hidden layer forces the compression of redundancies in the input while retaining and

differentiating non-redundant information. The network is trained to learn the identity

function on a training set consisting of positive examples only. The autoencoder

should then be able to adequately reconstruct subsequent positive instances, but

should perform poorly on the task of reconstructing subsequent negative instances.

Therefore, positive and negative instances are identified by assessing how well such

instances are reconstructed by the autoencoder. Under certain conditions such as

multimodal domains, the one-class learning may be superior to the discrimination-

based approaches (Japkowicz, 2001b) , being an useful method for extremely imbal-

anced data sets composed of a high dimensional noisy feature space (Raskutti and

Kowalczyk, 2004).

A novelty detection approach based on an autoencoder was studied in Japkowicz

et al. (1995). It is suggested that novelty detection methods are more useful for

extremely imbalanced data sets, while for moderate imbalanced data sets the regular

discrimination-based classifiers bring more benefits (Lee and Cho, 2006) .

A more recent study Bellinger et al. (2012) investigated the performance variations of

binary and one-class classifiers for different levels of imbalance. The results on both

artificial and real world data sets showed that as the level of imbalance increased,

the performance of binary classifiers decreased, whereas the performance of one-class

classifiers stayed relatively stable. This study confirms the conclusions of previous

ones, pointing that when the level of imbalance is extreme, recognition-based methods

may provide a better performance.
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4.3.2 Cost-sensitive Algorithms

Some algorithms can directly incorporate costs as a way for improving the performance

in imbalanced domains. A standard learner can be adapted to be cost-sensitive so

that it take into consideration costs. In this case, the goal of the prediction task is to

minimize the total cost, knowing that misclassified examples may have different costs.

A fundamental concept in cost-sensitive learning is the notion of a cost-matrix which

expresses the numeric penalty for different types of errors. For classification tasks, let

C(i, j) be the cost of predicting an example from class i as a class j. Then, for binary

classification C(min,maj) is the cost of misclassifying a minority class example as

a majority instance, and C(maj,min) is the cost of the contrary. In an imbalanced

context, the cost of misclassifying a minority class example is superior than the cost of

misclassifying a majority class example, i.e. C(min,maj) > C(maj,min) and usually

there is no cost associated with making a correct prediction, i.e. C(min,min) =

C(maj,maj) = 0.

Making decision trees cost-sensitive can be accomplished in three different ways:

the decision threshold can be integrated with costs; the splitting criterion at each

node can consider costs; and, finally, the tree pruning schemes can incorporate costs.

Maloof (2003) uses the ROC evaluation procedure for determining the optimal decision

threshold which is then used in the decision tree. Works as Ling et al. (2004);

Elkan (2001); Drummond and Holte (2000) address the introduction of cost sensitivity

in the split criterion of decision trees. Although pruning is beneficial for decision

trees by allowing to improve generalization, when applied on imbalanced data sets

this procedure has an undesirable behaviour tending to remove leaves describing the

minority concept. Also, leaving the decision trees unpruned does not improve the

performance in such domains. Thus, works such as the Laplace smoothing method

of the probability estimate and the Laplace pruning technique (Elkan, 2001) try to

improve the class probability estimate in each node so that pruning can be applied

with a positive effect.

The Iterative Bayes method that modifies Naive Bayes to accommodate asymmetric

cost structures was proposed by Gama (2003).

Some research has also been conducted on support vector machines in order to make

them cost-sensitive. The most straightforward technique for integrating costs into

SVM modelling, implemented in LIBSVM (Chang and Lin, 2011), is to assign a larger

penalty value to false negatives than false positives (Veropoulos et al., 1999; Akbani

et al., 2004). Still, several other proposals were made for making SVMs cost-sensitive.
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For instance, in Tang et al. (2009) SVM-WEIGHT is presented, the work of Yuanhong

et al. (2009) proposes a cost-sensitive SVM approach based on weighted attribute, and

in Hwang et al. (2011) the approach of SVMs with asymmetric costs was reported to

be efficient. In Fumera and Roli (2002) is proposed an extension of SVMs that directly

embeds reject option. Weiguo et al. (2012) proposes a new method based on SVM-

KM algorithm (Barros de Almeida et al., 2000). SVM-KM model can speed SVM

training by eliminating non support vectors using the k-means clustering algorithm.

The improved SVM-KM model presented, assigns different error costs to different

classes, so that the learner can better deal with the imbalance problem.

Regarding neural networks, the possibility of making them cost-sensitive has also

been considered (Zhou and Liu, 2006; Alejo et al., 2007; Oh, 2011). A Cost-Sensitive

Multilayer Perceptron (CSMLP) algorithm is proposed in Castro and de Pádua Braga

(2013) for asymmetrical learning of MLPs via a modified (backpropagation) weight

update rule. In Cao et al. (2013) a framework based on Particle Swarm Optimization

(PSO) for improving the performance of cost-sensitive neural networks is presented.

PSO is used for simultaneously optimize misclassification cost, feature subset and

intrinsic structure parameters. Alejo et al. (2007) proposes two strategies for dealing

with imbalanced domains using RBF neural networks. The first method includes

a cost function in the training phase to compensate the imbalance in the training

set. However, adding a cost function to the training phase causes changes in data

probability distribution. This has motivated a second strategy to reduce the impact

of the cost function in the data probability distribution. Thus, the second method

gradually modifies the cost function until it does not have any influence.

Ensembles have also been considered in the cost-sensitive framework. Several ensemble

methods have been successfully adapted to include costs during the learning phase.

However, boosting was the most extensively explored.

AdaBoost is the most representative algorithm of boosting family. When the class

distribution is imbalanced AdaBoost biases the learning (through the weights) towards

the majority class, since it contributes more to the overall accuracy. This has lead

to several proposals which modify AdaBoost weight update process by incorporating

cost items so that examples from different classes are treated unequally. Important

proposals in this context are: AdaCost (Fan et al., 1999), CSB1 and CSB2 (Ting,

2000), RareBoost (Joshi et al., 2001), AdaC1, AdaC2 and AdaC3 (Sun et al., 2007),

and BABoost (Song et al., 2009). All of them modify the AdaBoost algorithm by

introducing costs in the weights update formula used. These proposals differ in how

they modify the weight update rule.
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Random Forests have also been adapted to better cope with unbalanced data sets

undergoing a cost-sensitive transformation. In Chen et al. (2004) is proposed a

method called Weighted Random Forest (WRF) for dealing with highly-skewed class

distributions based on the Random Forest algorithm. WRF strategy uses the idea of

cost-sensitive learning. By assigning a higher misclassification cost to the minority

class, WRF improves classification performance of the minority class and also reduces

the total cost. For a more complete review on ensembles for the class imbalance

problem see Galar et al. (2012).

Incorporating costs on the algorithms has been applied successfully for several clas-

sifiers. However, some disadvantages exist and should be mentioned such as: an

often unavailable cost-matrix, a need of a deep knowledge of the selected learner to

accomplish a good incorporation of costs and the poor portability of the method which

contrast with pre-processing approaches.

4.3.3 Development of New Algorithms

In this section we describe some of the existing work regarding the development of

new algorithms. The main goal is to adapt existing learners to better focus on the

rare examples. Modifications on several learners were proposed and also combinations

of algorithms producing a new strategy have been presented. As in other approaches,

this type of strategies was mainly applied to classification tasks.

Regarding Support Vector Machines (SVM), some proposals try to bias the algorithm

so that the hyper-plane is further away from the positive class as the skew associated

with imbalanced data sets pushes the hyper-plane closer to the positive class. Wu

and Chang (2003) have accomplished this biasing with an algorithm that changes the

kernel function.

Another approach also related with the introduction of modifications into SVM learn-

ers is called z-SVM (Imam et al., 2006) and aims at obtaining a good margin between

the decision boundary and each of the classes, correcting the skew of the learned SVM

model automatically, irrespectively of the choice of learning parameters and without

multiple SVM training.

Tang and Zhang (2006) proposed the Granular Support Vector Machines - Repetitive

Undersampling algorithm (GSVM-RU). This algorithm integrates SVM learning with

undersampling techniques and is based on the notion of Granular Support Vector
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Machines (GSVMs). GSVMs present the advantages of: improving the computational

efficiency of SVMs through the use of parallel computing, and analysing the inherent

data distribution by observing the trade-offs between the local significance of a subset

of data and its global correlation. The GSVM-RU approach builds on an iterative

learning procedure which uses the SVMs for under-sampling.

Fuzzy Support Vector Machines for Class Imbalance Learning (FSVM-CIL)was a

method proposed by Batuwita and Palade (2010b). This algorithm is based on an

SVM variant for handling the problem of outliers and noise called FSVM and improves

it for also dealing with imbalanced data sets.

Potential Support Vector Machine (P-SVM) differs from standard SVM learners by

defining a new objective function and constraints. Although offering many advantages,

this method poses difficulties when learning from imbalanced domains since it uses the

same penalty for positive and negative slack variables. In this context, an improved

P-SVM algorithm (Li et al., 2009) was proposed to better cope with imbalanced data

sets. This new approach introduces flexibility in the adjustment of penalty parameters

of the positive and negative slack variables.

Also k -NN learners were adapted to better deal with the imbalance problem. Baran-

dela et al. (2003) presents a weighted distance function to be used in the classification

phase of k -NN without changing the class distribution. This method assigns different

weights to the respective classes and not to the individual prototypes. Since more

weight is given to the majority class, the distance to minority class examples becomes

much lower than the distance to examples from the majority class. This biases the

learner to find their nearest neighbour among examples of the minority class.

In Huang et al. (2004) is presented a new approach named Biased Minimax Probability

Machine (BMPM) to address the imbalance problem which is based on extending the

Minimax Probability Machine (MPM) algorithm (Lanckriet et al., 2003). The pro-

posed BMPM method uses the reliable mean and covariance matrices of the majority

and minority classes to derive the decision hyper-plane.

A new decision tree algorithm, Class Confidence Proportion Decision Tree (CCPDT)

is proposed in Liu et al. (2010). CCPDT is robust and insensitive to class distri-

bution and generates rules which are statistically significant. The algorithm adopts

a new proposed measure, called Class Confidence Proportion, which forms the basis

of CCPDT and defines a new approach to prune branches of the tree which are not

statistically significant.
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Hellinger distance was introduced as a decision tree splitting criterion to build Hellinger

Distance Decision Trees (HDDT) (Cieslak and Chawla, 2008). This proposal was

shown to be insensitive towards class distribution skewness. More recently Cieslak

et al. (2012) recommended the use of bagged HDDTs as the preferred method for

dealing with imbalanced data sets when using decision trees. The proposal of using

Hellinger trees with bagging is mentioned to be sufficient under imbalanced domains

and the authors stress that no sampling methods are needed.

Other strategies were proposed which involve the combination of algorithms. An

example is the proposal of Phua et al. (2004) were stacking and boosting are used

together. Stacking is a technique similar to boosting involving the training of a model

by combining the predictions of several other learners. Instead of using weights, as

boosting does, a new learner is trained with the outputs of the models already trained.

In Phua et al. (2004) this approach is combined with bagging to identify the best

mix of classifiers. For an insurance fraud detection domain, this approach achieved

the best cost-savings.

Rodriguez et al. (2012) propose the combination of Disturbing Neighbours ensemble

with bagging using three types of trees as base classifiers: conventional decision trees

(C4.5), Hellinger Distance Decision Trees (HDDT) and model trees (M5P).

In Wu and Chang (2005) the Kernel Boundary Alignment algorithm (KBA) is pro-

posed. This method adjusts the boundary towards the majority class by modifying

the kernel matrix generated by a kernel function according to the imbalanced data

distribution.

An ensemble method for learning over multi-class imbalanced data sets, named ensem-

ble Knowledge for Imbalance Sample Sets (eKISS), was proposed in Tan et al. (2003).

This proposal was specifically designed to increase classifiers sensitivity without losing

the corresponding specificity and was applied for multi-class protein fold domain. The

eKISS algorithm combines the rules of the base classifiers to generate new classifiers for

final decision making. In this study, the PART rule-based machine learning technique

was used to generate the base classifiers for the ensemble learning system. This method

was also successfully extended for being able to learn over multiple data sources.

Recently, more sophisticated approaches were proposed as the Dynamic Classifier

Ensemble method for Imbalanced Data (DCEID) presented by Xiao et al. (2012).

DCEID combines ensemble learning with cost-sensitive learning and is able, for each

test instance, to adaptively select the more appropriate from the two kinds of dynamic

ensemble approach: Dynamic Classifier Selection (DCS) and Dynamic Ensemble Se-



CHAPTER 4. MODELLING APPROACHES FOR IMBALANCED DOMAINS 57

lection (DES). DCS and DES are two commonly used strategies for dynamic classifier

ensemble. The first selects a single best classifier for each test sample while the second

one selects an optimal classifier ensemble for each test sample. The DCEID proposal

fuses DCS and DES strategies and constructs a new cost-sensitive selection criteria

respectively for DCS and DES to specifically address the imbalanced data problem.

For regression tasks only one approach exists that addresses the problem of imbal-

anced domains through the development of new algorithms. This approach is called

utility-based Rules (ubaRules) and was proposed by Ribeiro (2011). ubaRules is

an utility-based regression rule ensemble system designed for obtaining models biased

according to a specific utility-based metric. The system main goal is to obtain accurate

and interpretable predictions in the context of regression problems with non-uniform

utility. It consists in two main steps: generation of different regression trees, which

are converted to rule ensembles, and selection of the best rules to include in the final

ensemble. The utility function is used as criterion at several stages of the algorithm.

4.4 Post-processing the Predictions

For dealing with imbalanced domains at the post-processing level we will consider two

main solution types:

• threshold method: each prediction is associated with a score that represents

the degree to which an example is a member of a class; such score can be

transformed in a ranking that can be used to produce several models, by varying

the threshold of an example pertaining to a class;

• cost-sensitive post-processing: associates costs to prediction errors and min-

imizes the expected cost.

4.4.1 Threshold Method

Some classifiers are named soft classifiers because they yield a score that represents

the degree to which an example is a member of a class. This score can, in fact, be

used as a threshold to generate other classifiers. This task can be accomplished by

varying the threshold of an example belonging to a class (Weiss, 2004). A study of this

method (Maloof, 2003) concluded that the operations of moving the decision threshold,
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applying a sampling strategy, and adjusting the cost matrix produce classifiers with

the same performance.

4.4.2 Cost-sensitive Post-processing

Several methods exist, although mainly for classification tasks, which use a standard

learning algorithm and change only the predictions in order to make the model cost-

sensitive. Even though these methods have not been applied in imbalanced domains

specifically, we consider them as a viable option for this problem.

Domingos (1999) presented Metacost, a method for making an arbitrary classifier

cost-sensitive by wrapping a cost-minimizing procedure around it. Metacost treats

the classifier as a black box and the user is not required to have any knowledge

of classifiers functioning neither it is necessary to change them. Metacost relabels

training examples with their estimated minimal-cost classes, and applies the learner

to the new training set. Essentially, Metacost procedure takes the chosen classifier

and begins by learning an internal cost-insensitive model. Then, it uses a variant of

bagging for estimating each class probability for each example and training examples

are relabelled with the estimated optimal class. Finally the classifier is reapplied to

the modified training set.

For regression problems, introducing costs at a post-processing level, has only recently

been proposed. It is an issue still under-explored with few limited solutions. In Bansal

et al. (2008) was proposed an algorithm which tunes the outputs of a trained regression

model reducing its average misprediction cost (a new metric also proposed in this

work). This post-processing method is able to deal with any convex cost functions

without modifying the underlying regression algorithm. However, this method is

rather restrictive since it only adjusts the predictions of a regular regression model

by a certain constant amount. As a consequence of this disadvantage, the method

proposed by Bansal et al. (2008) was extended in the work of Zhao et al. (2011). The

latter, although following the same guidelines allows for the regular regression model

to be adjusted with a polynomial function.

A proposal for addressing regression tasks named reframing (Hernández-Orallo, 2012)

was recently presented. This approach tackles cost-sensitive problems in regression by

the reuse (and not re-training) of general regression models acting as a post-processing

technique. Reframing can be defined as the process of applying a previously built

model to a new operating context by the proper transformation of inputs, outputs
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and patterns.

Although reframing was not developed specifically for imbalanced domains, it can be

regarded as a method for incorporating costs at a prediction level, being a possible

alternative for dealing with regression tasks under imbalanced domains. The reframing

method essentially consists of two steps:

• the conversion of any traditional one-parameter crisp regression model into a two-

parameter soft regression model, seen as a normal conditional density estimator

(NCDE), by the use of enrichment methods;

• the reframing of an enriched soft regression model to new contexts by an instance-

dependent optimisation of the expected loss derived from the conditional normal

distribution.

Several enrichment methods are proposed to perform the conversion of a crisp regres-

sion model into a soft regression model by just comparing the output value y with the

estimated output value ŷ.

4.5 Hybrid Approaches

In recent years an increasingly diverse range of approaches has been explored for

classification problems. Important contributions to deal with the problem of imbal-

anced domains were made from all the types of strategies. In this context, a question

that naturally arises is related to the combination of strategies of different kinds of

approaches, i.e., hybrid methods. Regarding this issue several attempts were made

and are addressed over the next sections. These methods essentially try to capture

the best of two selected strategies of different types combining them into one. Hybrid

methods can be cluster into: combining algorithms predictions, re-sampling integrated

with algorithm modifications, and other hybrid strategies.

4.5.1 Combination of Algorithms Predictions

One of the first works for combining algorithms with the goal of improving performance

in imbalanced domains was presented by Chan and Stolfo (1998). The proposed

method starts with preliminary experiments to identify a good class distribution.
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Afterwards, multiple training sets are generated with the previously determined target

class distribution. It is ensured that no data is wasted by forcing each majority class

example to be included in at least one of the training sets. The learning algorithm

is applied to each training set and meta-learning is used to form a composite learner

from the resulting classifiers.

A similar proposal is presented by Molinara et al. (2007). The proposed method builds

a multiple classifier system where each constituting classifier is trained on a different

subset of the majority class and on the whole minority class. The final classification

system is obtained by combining all the single trained classifiers. This approach tries

to avoid known drawbacks as overfitting of the minority class or incompleteness of the

majority class.

As we have mentioned, it is difficult to determine the optimal amount of under- and/or

over-sampling to apply and which of the techniques is more effective, i.e, the best way

to tune the re-sampling paradigm is not an easy task. This problem was addressed by

Estabrooks and Japkowicz (2001) and Estabrooks et al. (2004) and it was concluded

that: a perfectly balanced data set is not necessarily optimal; and the best re-sampling

rate varies. The conclusions of these works motivated the proposal of a mixture-of-

experts framework (Estabrooks et al., 2004) as an effective solution to the tuning

problem. This framework combines different expressions of the re-sampling approach

on three levels: output level, expert level and classifier level. The output level combines

the results of the over-sampling and under-sampling experts located at the expert level,

which themselves each combine the results of 10 classifiers located at the classifier level

and that resulted from learners trained on data sets sampled at different rates. The

mixture-of-experts performs generally better than any re-sampling method that re-

samples blindly to full balance. The proposed method was also found to perform

better than both a single learner and a good-performing combination method such as

Adaboost, on class imbalanced problems.

This idea of combining learners was also proposed in the work of Kotsiantis and

Pintelas (2003). The authors use three agents (the first learns using Naive Bayes,

the second using C4.5 and the third using 5NN) on a filtered version of training data

and combine their predictions according to a voting scheme. A Facilitator agent is

responsible for filtering the features of the data set and passing a copy of the instances

into the three learning agents. Then, each learning agent re-samples data sets and

returns prediction for each instance back to the Facilitator. The Facilitator makes the

final prediction according to majority voting.
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Del Castillo and Serrano (2004) present a complete and more sophisticated framework

for addressing the problem of imbalanced data sets for the digital text categorization

task. This framework incorporates feature selection and genetic algorithms in an

architecture which is a combination of a variable number of learners. Learners may be

added or removed depending on the specific text categorizationtask. This makes the

system adaptable to any particular setting. A multi-strategy classifier system is used

to construct multiple learners, each doing its own feature selection based on genetic

algorithm. The predictions of each learner are combined using genetic algorithms.

4.5.2 Re-sampling and Algorithm Modifications

Re-sampling strategies were frequently integrated with algorithm modifications, spe-

cially with ensembles. We will briefly describe this widely explored area for classifica-

tion tasks which involves the use of at least one pre-processing step and an adaptation

of an algorithm.

SMOTE algorithm is combined with Complementary Neural Networks (CMTNN)

in the work of Jeatrakul et al. (2010). CMTNN is a technique using a pair of

complementary feedforward backpropagation neural networks called Truth Neural

Network (TNN) and Falsity Neural Network (FNN). The TNN is trained to predict

the degree of the truth memberships while the FNN is trained to predict the degree

of false memberships. The strategy proposed by Jeatrakul et al. (2010) uses CMTNN

to under-sample the training set and SMOTE to perform over-sample.

Random Forests are a well known ensemble type. Chen et al. (2004) proposes a

method for dealing with highly-skewed class distributions based on the Random Forest

algorithm. Balanced Random Forest (BRF) uses under-sampling of the majority class

to create a training set with a more equal distribution between the two classes.

Some attention has also been given to SVMs, leading to proposals such as the one

of Kang and Cho (2006) where an ensemble of under-sampled SVMs is presented.

Multiple different training sets are built by sampling patterns from the majority class

and combining them with the minority class patterns. Each training set is used for

training an individual SVM classifier. The ensemble is produced by aggregating the

outputs of all individual classifiers. Another similar approach is the EnSVM (Liu et al.,

2006) which adopts a rebalance strategy combining SMOTE algorithm and under-

sampling with an ensemble of SVMs. In a more recent work, Wang and Japkowicz

(2010) proposes an ensemble of SVMs with asymmetric misclassification costs. The
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proposed system works by modifying the base classifier (SVM) using costs and uses

boosting as the combination scheme.

A diverse set of approaches exist for embedding data pre-processing methods into

boosting algorithms. In each iteration these algorithms change the weight distribution

used to train the next learner towards the minority class. Examples within this type

of approaches are: SMOTEBoost (Chawla et al., 2003), DataBoost-IM (Guo and

Viktor, 2004b), JOUS-Boost (Mease et al., 2007), MSMOTEBoost (Hu et al., 2009),

RamoBoost (Chen et al., 2010), RUSBoost (Seiffert et al., 2010) and EUSBoost (Galar

et al., 2013). SMOTEBoost and MSMOTEBoost methods integrate respectively

SMOTE and MSMOTE with Adaboost.M2 algorithm. To prevent boosting from

overfitting, these algorithms do not update the weights associated with each example.

Instead, they change the distributions by adding at each boosting iteration new

synthetic examples of the minority class using the SMOTE and MSMOTE algorithm

respectively. RUSBoost algorithm acts by removing instances from the majority

class by random under-sampling the data set in each iteration. A new strategy was

recently presented in Hulse et al. (2012) which modifies the RUSBoost algorithm

improving its ability for also dealing with noise. This approach incorporates in

RUSBoost the noise-handling capability of ORBoost algorithm Karmaker and Kwek

(2006) to improve its performance with noisy data. DataBoost-IM uses the techniques

described in Guo and Viktor (2004a) to generate new data examples integrating them

with Adaboost.M1 algorithm. The major difference between this method and other

boosting approaches with data generation is that it first identifies hard to learn

examples and then carries out a rebalance process for both classes. The method

called over/under-sampling with jittering (JOUS-Boost), uses random over-sampling

and then introduces small perturbations into this data. Thus, at each boosting

iteration, the algorithm uses synthetic data generated by the introduction of noise

into the minority class examples obtained from random over-sampling. RamoBoost is

a Ranked Minority Over-sampling technique based on the idea of adaptive synthetic

data generation in a boosting learning system. The key idea is to adaptively rank

minority class instances at each learning iteration according to a sampling probability

distribution which is based on the underlying data distribution, and then adaptively

shift the decision boundary towards the difficult instances. EUSBoost algorithm

(Galar et al., 2013) is a recent contribution to this problem involving an evolutionary

under-sampling guided boosting approach.

Also the integration of bagging and data pre-processing techniques can be considered.

This is an usually simpler task than that of boosting. In fact, with a bagging learning
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system it is not required to compute new weights neither it is necessary to adapt any

weight update formula. The most important task is to determine how each bootstrap

replica is obtained. Several solutions exist for bagging learners embedding a diversity

of sampling techniques. Regarding the integration of over-sampling techniques with

bagging learning system it is straightforward to apply an over-sampling procedure

in each bag before training the classifier. OverBagging (Wang and Yao, 2009) and

SmoteBagging (Wang and Yao, 2009) are examples of this approach. Under-sampling

methods has also been considered in this context existing a large diversity of ap-

proaches including under-sampling and bagging learning. Examples of this type of

approaches are: QuasiBagging Chang et al. (2003), Asymmetric Bagging Tao et al.

(2006), Roughly Balanced Bagging Hido et al. (2009), Partitioning Yan et al. (2003),

UBagging Liang and Cohn (2013) and Bagging Ensemble Variation Li (2007). All

these proposals maintain the same functional structure of incorporating an under-

sampling technique for building each bag and using a bagging strategy. Some im-

portant differences among these approaches concern the construction of balanced or

unbalanced bags for each iteration or the use of bags of varying size. The integration

of bagging learning and a combination of both over-sampling and under-sampling

strategies was also considered, being UnderOverBagging Wang and Yao (2009) a

representative example. The Imbalanced IVotes (IIVotes) B laszczyński et al. (2010)

proposal combines the SPIDER data pre-processing method with IVotes.

Some more complex approaches combine pre-processing techniques with bagging and

boosting, simultaneously, composing an ensemble of ensembles. EasyEnsemble and

BalanceCascade algorithms (Liu, 2009) are examples of this approach type. Both

algorithms use bagging as the main ensemble method and use Adaboost for train-

ing each bag. As for the pre-processing technique, both construct balanced bags

by randomly under-sampling examples from the majority class. In EasyEnsemble

algorithm all Adaboost iterations can be performed simultaneously once no operation

is required after them. On the other hand, in BalanceCascade algorithm, after the

Adaboost learning, the majority examples correctly classified with higher confidence

are discarded from further iterations. For a more complete review on ensembles for

the class imbalance problem see Galar et al. (2012).

4.5.3 Other Hybrid Strategies

A clustering method based on class purity maximization is proposed by Yoon and

Kwek (2005). This method generates clusters of pure majority class examples and
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non-pure clusters based on the improvement of the clusters class purity. When the

clusters are formed, all minority class examples are added to the non-pure clusters and

a decision tree is built for each cluster. An unlabelled example is clustered according

to the same algorithm. If it falls on a non-pure cluster, the decision tree committee

votes the prediction, but if it fall on a pure majority class cluster the final prediction

is produced (majority). If the committee votes for a majority class prediction, then

that will be the final prediction, on the other hand if it is a minority class prediction,

then the example will be submitted to a final classifier which is constructed using a

neural network.

A strategy called SMOTE with different costs (SDC) was proposed by Akbani et al.

(2004). It combines Smote with SVMs integrated with costs. The SVM is biased in a

way that pushes the boundary away from the positive instances. To do that different

error costs are used for the positive and negative classes. Using different error costs

for different classes to push the boundary away from the positive instances. SMOTE

is used to make the positive instances more densely distributed in order to make the

boundary more well defined.

In Tahir et al. (2012) a novel inverse random under-sampling (IRUS) method is

presented. The main idea is to repeatedly severely under-sample the majority class

for creating a large number of distinct training sets.For each training set a decision

boundary is found which separates the minority class from the majority class. By

combining the multiple designs through fusion, a composite boundary between the

majority class and the minority class is constructed. In Zhang et al. (2013) IRUS

algorithm is combined with Random Tree. IRUS algorithm is used for generating

multiple distinct training sets.Then, with each training set, a random tree is trained

to separate the minority class from the majority class. By combining these random

trees through fusion, a composite classifier is constructed.

Recently, Sumadhi and Hemalatha (2013) proposed a new technique called IFSMOTE

which involves the combination of FSMOTE algorithm (presented in Section 4.2.1.6)

for data generation and Adaboost algorithm. IFSMOTE new synthesised examples

agree to the concept of fractal interpolation theory and the gentle Adaboost algorithm

is used to improve the performance.
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Strategy type Section Main References

Re-sampling

Random Under/Over-sampling 4.2.1.1 Chawla et al. (2002); Drummond et al. (2003); Estabrooks et al. (2004)

Distance Based 4.2.1.2 Chyi (2003); Mani and Zhang (2003)

Data Cleaning Based 4.2.1.3
Kubat and Matwin (1997); Laurikkala (2001); Batista et al. (2004);

Naganjaneyulu and Kuppa (2013)

Cluster Based 4.2.1.4 Jo and Japkowicz (2004), Yen and Lee (2006, 2009), Cohen et al. (2006)

Synthesising New Data 4.2.1.5
Lee (1999, 2000); Chawla et al. (2002); Liu et al. (2007);

Menardi and Torelli (2010); Mart́ınez-Garćıa et al. (2012)

Adaptive Synthetic Sampling 4.2.1.6

Batista et al. (2004); Han et al. (2005); He et al. (2008); Bunkhumpornpat et al. (2009);

Hu et al. (2009); Zhang et al. (2011); Maciejewski and Stefanowski (2011);

Barua et al. (2012); Ramentol et al. (2012b,a); Verbiest et al. (2012);

Bunkhumpornpat et al. (2012); Nakamura et al. (2013)

Evolutionary Sampling 4.2.1.7
Garćıa et al. (2006a); Doucette and Heywood (2008); Garćıa and Herrera (2009);

Drown et al. (2009); Maheshwari et al. (2011); Yong (2012); Derrac et al. (2012)

Re-sampling combinations 4.2.1.8

Stefanowski and Wilk (2008); Napiera la et al. (2010); Bunkhumpornpat et al. (2011);

Songwattanasiri and Sinapiromsaran (2010); Vasu and Ravi (2011); Yang and Gao (2012);

Li et al. (2008)

Active Learning 4.2.2 Ertekin et al. (2007b,a); Zhu and Hovy (2007); Ertekin (2013); Mi (2013)

Weighting the Data Space 4.2.3 Zadrozny et al. (2003)

Table 4.1: Pre-processing strategy types, corresponding sections and main biblio-

graphic references

Strategy type Section Main References

Recognition-based 4.3.1

Chawla et al. (2004); Schölkopf et al. (2001); Manevitz and Yousef (2002); Raskutti and Kowalczyk (2004);

Zhuang and Dai (2006); Lee and Cho (2006); Japkowicz et al. (1995, 2000); Japkowicz (2001b);

Manevitz and Yousef (2007); Bellinger et al. (2012)

Cost-sensitive algorithms 4.3.2

Maloof (2003); Ling et al. (2004); Elkan (2001); Drummond and Holte (2000); Gama (2003);

Veropoulos et al. (1999); Akbani et al. (2004); Tang et al. (2009); Yuanhong et al. (2009);

Hwang et al. (2011); Weiguo et al. (2012); Zhou and Liu (2006); Alejo et al. (2007); Oh (2011);

Castro and de Pádua Braga (2013); Cao et al. (2013); Fan et al. (1999); Ting (2000); Joshi et al. (2001);

Sun et al. (2007); Song et al. (2009); Chen et al. (2004)

New algorithms 4.3.3

Wu and Chang (2003); Imam et al. (2006); Tang and Zhang (2006); Batuwita and Palade (2010b);

Li et al. (2009); Barandela et al. (2003); Huang et al. (2004); Liu et al. (2010)

Cieslak and Chawla (2008); Cieslak et al. (2012); Phua et al. (2004); Rodriguez et al. (2012);

Wu and Chang (2005); Tan et al. (2003); Xiao et al. (2012); Ribeiro (2011)

Table 4.2: Strategies of algorithms modifications, corresponding sections and main

bibliographic references

4.6 Summary

In this section we provide a global and systematic overview of the strategy types

previously discussed. In Tables 4.1, 4.2, 4.3 and 4.4 we have a summary of the

categorised strategies, the corresponding section and the main bibliographic references.
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Strategy type Section Main References

Threshold method 4.4.1 Maloof (2003); Weiss (2004)

Cost-sensitive post-processing 4.4.1
Karagiannopoulos et al. (2007); Domingos (1999); Zadrozny and Elkan (2002); Sinha and May (2004);

Bansal et al. (2008); Zhao et al. (2011); Hernández-Orallo (2012)

Table 4.3: Post-processing strategy types, corresponding sections and main biblio-

graphic references

Strategy type Section Main References

Combinations of algorithms predictions 4.5.1
Chan and Stolfo (1998); Molinara et al. (2007); Estabrooks et al. (2004); Kotsiantis and Pintelas (2003);

Del Castillo and Serrano (2004)

Re-sampling and algorithm modifications 4.5.2

Jeatrakul et al. (2010); Chen et al. (2004); Kang and Cho (2006); Liu et al. (2006);

Chawla et al. (2003); Guo and Viktor (2004b); Mease et al. (2007); Hu et al. (2009); Chen et al. (2010);

Seiffert et al. (2010); Galar et al. (2013); Wang and Yao (2009); Chang et al. (2003); Tao et al. (2006);

Hido et al. (2009); Yan et al. (2003); Liang and Cohn (2013); Li (2007);

B laszczyński et al. (2010); Liu (2009); Wang and Japkowicz (2010)

Other 4.5.3
Yoon and Kwek (2005); Akbani et al. (2004); Tahir et al. (2012); Zhang et al. (2013);

Sumadhi and Hemalatha (2013)

Table 4.4: Hybrid strategies, corresponding sections and main bibliographic references



Chapter 5

Re-sampling for Regression

5.1 Introduction

Among the different types of existing approaches to handle imbalanced distributions

the re-sampling methods are the most simple and versatile. These methods change

the data distribution and, therefore, allow the use of any standard learning algorithm.

Still, only for classification tasks these approaches have been extensively studied, and

no work exists within the regression setting.

We describe three different re-sampling methods for regression tasks under imbalanced

domains. We start by the simplest of all, which is random under-sampling. Then,

we introduce an adaptation of the well-known and successful Smote algorithm to

regression tasks, which we named SmoteR . Finally, we propose the adaptive sampling

algorithm, which is a method less dependent on the user and thus, a more flexible

approach. All these methods address the problem of predicting rare extreme values

of a continuous variable and depend on a user-defined relevance function (φ()) which

expresses the user preference bias.

5.2 Random Under-sampling

The first strategy we propose is random under-sampling.The basic idea of under-

sampling (e.g. Kubat and Matwin (1997)) is to decrease the number of observations

with the most common target variable values with the goal of better balancing the

ratio between these observations and the ones with the interesting target values, which

67



CHAPTER 5. RE-SAMPLING FOR REGRESSION 68

are less frequent. Within classification this consists on obtaining a random sample

from the training cases with the frequent (and less interesting) class values. This

sample is then joined with the observations with the rare target class value to form

the final training set that is used by the selected learning algorithm. This means

that the training sample resulting from this approach will be smaller than the original

(imbalanced) data set.

In regression we have a continuous target variable. As mentioned in Section 2.1, the

notion of relevance can be used to specify the values of a continuous target variable

that are more important for the user. We can also use the relevance function values

to determine which are the observations with the common and uninteresting values

that should be under-sampled. Namely, we propose to randomly under-sampling

observations whose target value has a relevance less than a user-defined threshold

tR. Under-sampling will be carried out on the set DN = {〈xi, yi〉 ∈ D : φ(yi) ≤ tR}
which contains the more frequent and uninteresting observations for the user. The

selected observations are then joined with the set DR = D \ DN .

Regarding the amount of under-sampling that is to be carried out the strategy is

the following. For each of the relevant observations in DR we will randomly select

nu cases from the ”normal” observations in DN . The value of nu is another user-

defined parameter that will establish the desired ratio between ”normal” and relevant

observations. Too large values of nu will result in a new training data set that is still

too unbalanced, but too small values may result in a training set that is too small,

particularly if there are too few relevant observations.

As an example of the possible consequences of this strategy to a domain, suppose a

given data set has 100 observations and |DR| = 20 for a certain threshold tR considered

by the user. On this setting, if the parameter nu is 2, this means that, for each example

in DR, two examples will be randomly selected from the set DN , producing a new data

set with a total of 60 examples (20 rare cases and 40 normal cases). We will have a

new data set with twice as much examples from the DN set than from DR. On the

other hand, if nu is set to 0.5 the normal cases will be 50% of the rare cases, i.e., for

the same data set with 100 observations, and 20 rare cases, only 10 examples will be

selected from the normal ones, producing a new data set with only 30 examples and

an unbalance favouring the DR cases.
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5.3 The SmoteR Algorithm

Smote (Chawla et al., 2002) is a sampling method to address classification problems

with imbalanced class distribution. As we have mentioned in Section 4.2.1.5 the key

feature of this method is the combination of under-sampling of the majority class

with an innovative over-sampling strategy which involves the generation of synthetic

examples for the minority class. We propose a variant of Smote for addressing

regression tasks where the key goal is to accurately predict rare extreme values, which

we will name SmoteR .

The original Smote algorithm uses an over-sampling strategy that consists on gen-

erating ”synthetic” cases with a rare target value. Chawla et al. (2002) propose an

interpolation strategy to create these artificial examples. For each case from the set

of observations with rare values (DR), the strategy is to randomly select one of its

k-nearest neighbours from this same set. With these two observations a new example

is created whose attribute values are an interpolation of the values of the two original

cases. Regards the target variable, as Smote is applied to classification problems

with a single class of interest, all cases in DR belong to this class and the same will

happen to the synthetic cases. For handling data sets with both numeric and nominal

features the Smote -NC algorithm is proposed (Chawla et al., 2002). In this case, for

determining the k-nearest neighbours of an example a penalisation is also introduced

for the nominal features. The nominal feature values of the new synthetic example are

decided according to the value occurring in the majority of the k-nearest neighbours.

There are three key components of the Smote algorithm that we need to address

in order to adapt it for our target regression tasks: i) how to define which are the

relevant observations and the ”normal” cases; ii) how to create the attribute values

of the new synthetic examples (i.e. over-sampling); and iii) how to decide the target

variable value of these new synthetic examples. Regarding the first issue, the original

algorithm is based on the information provided by the user concerning which class

value is the target/rare class (usually known as the minority or positive class). In our

problems we face a potentially infinite number of values of the target variable. Our

proposal is based on the existence of a relevance function (φ(y)) and on a user-specified

threshold on the relevance values (tR), that leads to the definition of the set DR . Our

algorithm will over-sample the observations in DR and randomly under-sample the

cases in DN , thus leading to a new training set with a redefined distribution of the

target values.
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Regarding the second key component, the generation of the attributes of the new

cases, we use the same interpolation approach as in the original algorithm for numeric

features. For handling nominal attributes we have introduced some small modifica-

tions. We simplified the way Smote -NC strategy handles nominal attributes. For

creating a nominal feature value of a new case we randomly select one of the feature

values of the two examples used for generating the new one.

Finally, the third key issue is to decide the target variable value of the generated

observations. In the original algorithm this is a trivial question, because as all rare

cases have the same class (the target minority class), the same will happen to the

examples generated from this set. In our case the answer is not so trivial. The cases

that are to be over-sampled do not have the same target variable value, although they

do have a high relevance score (φ(y)). This means that when a pair of examples is

used to generate a new synthetic case, they might not have the same target variable

value. Our proposal is to use a weighted average of the target variable values of the

two seed examples. The weights are calculated as an inverse function of the distance

of the generated case to each of the two seed examples.

Algorithm 5.1 The main SmoteR algorithm.
function SmoteR(D, tR, o, u, k)

// D - A data set

// tR - The threshold for relevance of the target variable values

// %o,%u - Percentages of over- and under-sampling

// k - The number of neighbours used in case generation

rareL← {〈x, y〉 ∈ D : φ(y) > tR ∧ y < ỹ} // ỹ is the median of the target Y

newCasesL← genSynthCases(rareL,%o, k) // generate synthetic cases for rareL

rareH ← {〈x, y〉 ∈ D : φ(y) > tR ∧ y > ỹ}
newCasesH ← genSynthCases(rareH,%o, k) // generate synthetic cases for rareH

newCases← newCasesL
⋃

newCasesH

nrNorm←%u of |newCases
⋃
rareL

⋃
rareH|

normCases←sample of nrNorm cases ∈ D \ {rareL
⋃

rareH} // under-sampling

return newCases
⋃

normCases

end function

Algorithm 5.1 describes our proposed SmoteR sampling method. The algorithm uses

a user-defined threshold (tR) of relevance to define the sets DR and DN of relevant

and normal respectively. Notice that, in our target applications, we may have two

rather different sets of rare cases: the extreme high and low values. This is another



CHAPTER 5. RE-SAMPLING FOR REGRESSION 71

Algorithm 5.2 Generating synthetic cases.
function genSynthCases(D, o, k)

newCases← {}
ng ←%o/100 // nr. of new cases to generate for each existing case

for all case ∈ D do

nns← kNN(k, case,Dr \ {case}) // k-Nearest Neighbours of case

for i← 1 to ng do

x← randomly choose one of the nns

for all a ∈ attributes do // Generate attribute values

if isNumeric(a) then

diff ← case[a]− x[a]
new[a]← case[a] + random(0, 1)× diff

else

new[a]← randomly select among case[a] and x[a]

end if

end for

d1 ← dist(new, case) // Decide the target value

d2 ← dist(new, x)

new[Target]← d2×case[Target]+d1×x[Target]
d1+d2

newCases← newCases
⋃
{new}

end for

end for

return newCases

end function
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difference to the original algorithm. The consequence of this is that the generation of

the synthetic examples is also done separately for these two sets. The reason is that

although both sets include rare and interesting cases, they are of different type and

thus with very different target variable values (extremely high and low values). The

other parameters of the algorithm are the percentages of over- and under-sampling,

and the number of neighbours to use in the cases generation. The key aspect of this

algorithm is the generation of the synthetic cases. This process is described in detail

on Algorithm 5.2. The main differences to the original Smote algorithm are: the

way nominal variables are handled; and the way the target value for the new cases is

generated. Regards the former issue we simply perform a random selection between

the values of the two seed cases. A possible alternative could be to use some biased

sampling that considers the frequency of occurrence of each of the values within the

rare cases. Regarding the target value we have used a weighted average between the

values of the two seed cases. The weights are decided based on the distance between

the new case and these two seed cases. The larger the distance, the smaller the weight.

This strategy changes the distribution of rare and normal cases in a, sometimes,

drastic way. For instance, consider an hypothetical domain with 100 observations and

|DR| = 20 for a given relevance threshold tR. In this setting, if the SmoteR algorithm

is applied with 200% for over-sampling and 50% for under-sampling, the new data set

will have a total of 90 examples now distributed as follows: 60 rare cases (20 original

rare + 40 synthetic rare cases) and 30 normal cases (50% of the 60 rare examples). A

more extreme example of the effects of this strategy can be seen when we consider the

same setting now with 700% for over-sampling and 200% for under-sampling. This

will result in a new data set with a total of 480 examples: 160 (20 + 7 × 20 = 160)

rare cases and 320 (160× 2 = 320) normal cases.

5.4 The Adaptive Sampling Algorithm

The adaptive samplingmethod is a sampling strategy for addressing the problem of

predicting rare extreme values of a continuous variable. As the previous method,

this approach is also based on a user-defined relevance function (φ(y)) which is used

to determine: where to perform over-/under-sampling, and the amount of cases to

be generated/eliminated. The main goal of adaptive sampling is to ensure that

the training sample provided to the learning algorithm will reflect the preference

biases of the user expressed with the relevance function. Adaptive sampling has



CHAPTER 5. RE-SAMPLING FOR REGRESSION 73

the advantage of minimising the user intervention while maintaining the capability

of using any standard regression learner. To apply this method the user does not

need to select neither the relevance threshold tR nor the over- and under-sampling

percentages. The general idea of the proposed method is to use the relevance function

to discretize the target variable values into bins. For each constructed bin, a target

frequency is calculated from the relevance function. This target frequency aims to

obtain a distribution of examples towardsthe user preferences, increasing the number of

examples in the more important bins and decreasing that number in the less interesting

bins. A strategy for over-/under-sampling is applied as needed inside each bin. This

way it is possible to apply different strategies over the target variable range, adjusting

the distribution of the training set to the user preferences.

Algorithm 5.3 The main Adaptive Sampling algorithm.
function AdaptiveSampling(D, N, d)

// D - A data set {x, yi}ni=1

// N - Number of intervals into which the relevance values will be discretized

// d - Disturbance applied when generating examples with Gaussian noise

Bs← binsConstructor(D[Target], φ,N) // examples indexes and the mean relevance in each bin

k ← |Bs| // number of bins generated

newCases← {}
totφ←

∑
b∈Bs

b.φ

for b ∈ Bs do

p(b)← |b.exs|
w(b)← b.φ

totφ

p̂(b)← w(b)× |D|
if p̂(b) > p(b) then // Apply the oversampling strategy

synth← genPerturb(b.exs, p̂(b),D, d)
newCases← newCases

⋃
D[ b.exs ]

⋃
synth

else

if p̂(b) < p(b) then // Apply random under-sampling

newCases← newCases
⋃

sample(D[ b.exs ], p̂(b) )
else // Just add the examples in the bin

newCases← newCases
⋃
D[ b.exs ]

end if

end if

end for

return newCases

end function

Algorithm 5.3 describes our proposed adaptive sampling method. This strategy con-

sists of three steps: i) construct bins over the target variable domain; ii) calculate
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Algorithm 5.4 Algorithm for constructing the data set bins.
function BinsConstructor(Tgt, φ,N)

// Tgt - The data set target values

// φ - The relevance function

// N - number of intervals into which the relevance values will be discretized

OrdTgt← ORDER(Tgt)

RelTgt← {φ(x) : x ∈ OrdTgt}
δ ← 1

N // Relevance variation in each interval

for i← 1 to N do

MeanRelev[i]← δ
2 + (i− 1)× δ // Mean relevance in each interval

end for

cutsTgt← cut(RelTgt,N) // Match each relevance value with the corresponding interval

Bs← {}
b.exs← {}
currCT ← cutsTgt[1]

for i ∈ OrdTgt do
if cutsTgt[i] = currCT then

b.exs← b.exs
⋃
{i}

else

b.φ←MeanRelev[currCT ]

Bs← Bs
⋃
{ (b.exs, b.φ) }

b.exs← {i}
currCT ← cutsTgt[i]

end if

end for

Bs← Bs
⋃
{ (b.exs,MeanRelev[currCT ]) }

return Bs

end function



CHAPTER 5. RE-SAMPLING FOR REGRESSION 75

Algorithm 5.5 Algorithm for generating synthetic examples with Gaussian Noise.
function genPerturb(ind, obj,D, d)

// ind - The indexes of the examples in a given bin

// obj - The number of examples to obtain in the bin

// D - The data set

// d - Disturbance applied when generating examples with Gaussian noise

freq ← frequency of nominal attributes in D
sd← standard deviation of numeric attributes in D
nr.att← max(

√
attrs, attrs× 10%) // Number of attributes to perturb

ng ← nr of synthetic examples to generate for each existing example

new ← {}
for all case ∈ D[ind] do

for i← 1 to ng do

sel.att← sample(attrs, nr.att) // Randomly select nr.att attributes to perturb

for all a ∈ attributes do // Generate attribute values for the new case

if isNumeric(a) and a ∈ sel.att then
new[a]← case[a] + rnorm(0, d× sd[a])

else

if isNominal(a) and a ∈ sel.att then
new[a]← sample(nom.att, 1, probs = freq[a])

else

new[a]← case[a]

end if

end if

end for

new[Tgt]← case[a] + rnorm(0, d× sd[Tgt]) // Generate target value

end for

end for

return new

end function
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the target frequency of each bin; iii) adapt the data set frequencies by applying an

over-sampling or under-sampling strategy as required by the target frequencies.

On a first phase, the bins are adaptively built based on the user-defined relevance

function φ, and a parameter N that controls the number of intervals into which the

relevance values will be discretized. The process of generating the data set bins is

described on Algorithm 5.4. This algorithm starts by sorting the target variable values

(yi) and assigning to each φ(yi) a number ranging from 1 to N which corresponds to the

interval the example is in. This is done using the function cut(). Having each interval

assigned, the algorithm goes through all sorted yi and stores the examples indexes of

each constructed bin and the corresponding bin mean relevance. We highlight that the

number N of intervals considered may not match the number of bins generated which

we represent by k. In effect, if the data set has two extreme types (low and high) it is

possible to generate at most a total of 2×N − 1 different bins. This relation between

the number of intervals and the number of bins generated is exemplified in Figure 5.1

for the fuelCons data set, where the assigned bins are represented by coloured lines

at the bottom.
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Generated bins for the target variable values
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Figure 5.1: Split of data set fuelCons with 4 intervals according to φ() value and the

generated bins after applying the Algorithm 5.4.

Regarding the second step, for each bin the observed frequency is calculated, and a

new target frequency is estimated, approximately maintaining the total number of

examples of the data set (|D|) . To do so, each bin bi is assigned a relative importance
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w(bi) defined as:

w(bi) =
φ(bi)∑k
j=1 φ(bj)

(5.1)

Using this relative importance the target frequency p̂(bi) of each bin is estimate as,

p̂(bi) = w(bi)× |D| (5.2)

An example of this procedure can be seen in Figure 5.2
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Figure 5.2: Split of data set a1 with 4 intervals according to φ() value, and the

examples frequency of each built bin before and after applying the adaptive sampling

algorithm.

Finally, for the third step, having the observed frequency and the target frequency of

each bin, a re-sampling strategy is used as appropriate: if the target frequency is larger

than the observed frequency over-sampling is applied, otherwise an under-sampling

strategy is used. We decided to use random under-sampling due to its simplicity.

Regarding the over-sampling strategy a new method for generating synthetic examples
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based on the introduction of Gaussian noise was chosen. This algorithm creates

synthetic examples using the original examples provided in the bin and a parameter

d which controls the radius of the neighbourhood where the synthetic cases will be

generated.

Each example is generated by the introduction of a small perturbation on a small

number of randomly selected attributes. The algorithm is able to deal with both types

of attributes: for the nominal attributes a value is chosen accordingly to the observed

frequency on the data set; the numeric attributes are perturbed by the introduction of

Gaussian noise based on the attribute standard deviation and weight d. The target

variable value is also perturbed in a similar way as numeric attributes, although in

this case the neighbourhood of the perturbation allowed is narrower, and the target

variable values are guaranteed to be within the considered bin range. This method is

described in detail on Algorithm 5.5.

Although adaptive sampling is meant to address the problem of predicting rare extreme

values, it can actually be used within a broader scenario. The relevance function

defined by the user is the key aspect for determining the more important values which

may not be extremes and also do not need to be less frequent. This approach can be

applied to situations of cost based applications where some values, though important,

are already frequent on the given training data. Obviously, this would mean that

the impact of this method would not be so significant. Still, we could make some

adjustments to the examples frequency by applying this method to better adjust the

training data to the user preference biases.

5.5 Experimental Analysis

5.5.1 Experimental Setup

The goal of our experiments is to test the effectiveness of our proposed sampling

approaches at predicting rare extreme values of a continuous target variable. For

this purpose, we have selected 18 regression data sets. Most of these data sets

come from Torgo’s repository of regression problems1, where further details can be

obtained on these tasks. The 7 algae tasks (a1 · · · a7) are from an international

data analysis competition2 and the data as well as a description can be obtained

1http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
2http://www.erudit.de/erudit/

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.erudit.de/erudit/
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Data Set N p Ext
threshold=0.75 threshold=0.9 threshold=0.95

nRare %Rare nRare %Rare nRare %Rare

a1 198 12 H 31 0.157 22 0.111 20 0.101

a2 198 12 H 24 0.121 15 0.076 15 0.076

a3 198 12 H 34 0.172 30 0.152 26 0.131

a4 198 12 H 34 0.172 27 0.136 21 0.106

a5 198 12 H 22 0.111 18 0.091 16 0.081

a6 198 12 H 33 0.167 28 0.141 28 0.141

a7 198 12 H 27 0.136 27 0.136 26 0.131

Abalone 4177 9 H/L 679 0.163 564 0.135 438 0.105

Accel 1732 15 H 102 0.059 61 0.035 52 0.03

dAiler 7129 6 H/L 450 0.063 267 0.037 230 0.032

availPwr 1802 16 H 169 0.094 141 0.078 131 0.073

bank8FM 4499 9 H 339 0.075 198 0.044 144 0.032

cpuSm 8192 13 L 755 0.092 616 0.075 541 0.066

dElev 9517 7 H/L 1109 0.117 478 0.05 310 0.033

fuelCons 1764 38 H/L 200 0.113 105 0.06 89 0.05

heat 7400 13 H 729 0.099 525 0.071 453 0.061

boston 506 14 H 69 0.136 53 0.105 51 0.101

maxTorque 1802 33 H 158 0.088 92 0.051 87 0.048

Table 5.1: Used data sets and characteristics (N : nr. of cases; p: nr. of predictors;

Ext: extreme type H (high)/ L (Low); nRare: nr. cases with φ(Y ) > threshold; %Rare:

nRare/N).

in Torgo (2010). Finally, the availPwr, fuelCons, maxTorque and Heat data sets are

from the automotive industry, but no further information can be disclosed given their

commercial nature. Table 5.1 shows the main characteristics of these data sets.

For each data set it is necessary to define which values are the extreme and more

important ones. This would require the intervention of an expert on each of the

domains for defining the corresponding relevance function. To solve this problem we

have obtained a relevance function using the automatic method proposed by Ribeiro

(2011). This method assigns higher relevance for values above (below) the adjacent

values of the target variable distribution. These are calculated as a function of the

quartiles and the inter-quartile range that are well-known thresholds for considering

a value as an outlier. The result of this method are relevance functions that assign

higher relevance to high and low rare extreme values, which constitute our goal.

Based on these relevance functions, we have decided to test different thresholds on the

values of φ(Y ) as the condition for a value to be taken as a rare extreme. We have

considered the three following values for threshold: 0.75, 0.9 and 0.95. This will allows
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Learner Parameter Variants R package

MARS nk = {10, 17}, degree = {1, 2}, thresh = {0.01, 0.001} earth Milborrow (2012)

SVM cost = {10, 150, 300}, gamma = {0.01, 0.001} e1071 Dimitriadou et al. (2011)

Random Forest mtry = {5, 7}, ntree = {500, 750, 1500} randomForest Liaw and Wiener (2002)

Table 5.2: Regression algorithms and parameter variants, and the respective R

packages.

us to evaluate the performance of our proposed methods for domains with different

percentages of rare cases. As it can be seen from the information in Table 5.1, the

higher the threshold considered, the fewer rare cases exist in each domain. For the 18

data sets used in our experiments, this results in an average percentage of the available

cases having a rare extreme value of: 11.9% for threshold 0.75; 8.8% for threshold 0.9

and 7.8% for threshold 0.95. Considering several relevance thresholds will enable us

to compare the impact of the proposed sampling strategies in domains with different

rare cases percentages.

In order to avoid any algorithm-dependent bias distorting our results, we have carried

out our comparisons using a diverse set of standard regression algorithms. More-

over, for each algorithm we have considered several parameter variants. Table 5.2

summarises the learning algorithms that were used and also the respective parameter

variants. The combination of all the parameter values reported in Table 5.2 results in 8

variants of the Multivariate Adaptive Regression Spline (MARS) regression algorithm

(Friedman, 1991), 6 variants of the Support Vector Machine (SVM) algorithm (Cortes

and Vapnik, 1995) and 6 variants of the Random Forest algorithm (Breiman, 2001).

To ensure easy replication of our work we have used the implementations of these

algorithms available in the free open source R environment (R Core Team, 2013),

which is also the infrastructure used to implement our proposed re-sampling methods.

Each of the 20 learning approaches (8 MARS variants + 6 SVM variants + 6 Random

Forest variants), were applied to each of the 18 regression problems using 29 different

sampling approaches. Sampling comprises the following approaches: i) carrying out

no sampling at all (i.e. use the data set with the original imbalance); ii) 12 vari-

ants of SmoteR method; iii) 4 variants of under-sampling; and iv) 12 variants of

adaptive sampling method. The 12 SmoteR variants used 5 nearest neighbours for

case generation and all combinations of {25, 50, 100, 200}% and {200, 500, 700}% for

percentages of under- and over-sampling, respectively. The 4 under-sampling variants

used {25, 50, 100, 200}% for percentage of under-sampling. The 12 adaptive sampling

variants used all combinations of {2, 4, 6, 8} and {0.02, 0.05, 0.1} for the number of
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Figure 5.3: Distribution of the target variable before and after re-sampling for data

sets Accel and availPwr with relevance threshold set to 0.75.

splits performed in the relevance interval and the allowed radius of the neighbourhood

where the synthetic examples are generated respectively.

To have a better idea on the impact of these re-sampling strategies on the training

set that is finally given to the regression tools, Figure 5.3 shows the distribution of

the target variable3 on the original data and on the data sets resulting from applying

three of the most successful variants of our re-sampling strategies, for two specific

data sets. The graphs in this figure clearly illustrate the change in the target variable

distribution that is carried out by these re-sampling strategies with the goal of biasing

this distribution towards the areas where the relevance function has higher values.

Moreover, as previously mentioned, with the exception of the adaptive sampling, the

methods also change the total number of cases used for training, which will obviously

have an impact on the computation time taken to obtain the models. More specifically,

for the data sets in Figure 5.3 and the relevance threshold of 0.75, the original

Acceleration (Accel) data set contains 1732 observations and the S.o7.u2 configuration

of SmoteR leads to a training set of 2448, the U2 under-sampling variant uses only

306 cases and finally the A.N6.d0.02 variant of Adaptive Sampling results in a data

set with 1732 examples. With respect to the Available Power (availPwr) data set

the original size is 1802 and the same three re-sampling variants use 4056, 507 and

1801,respectively.

3Approximated through a kernel density estimator.
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Our goal is to compare the 28 sampling strategies (12 SmoteR + 4 under-sampling

+ 12 adaptive sampling) against the default of using the given data, using 20 learning

approaches and 18 data sets for each relevance threshold considered (0.75, 0.9 and

0.95). . All alternatives we have described were evaluated according to F1, the F-

measure with β = 1 (cf. Equation 3.9), which means that the same importance was

given to both precision and recall scores that were calculated using the set-up described

in Section 3.3. The values of the F-measure were estimated by means of 3 repetitions

of a 10-fold cross validation process and the statistical significance of the observed

paired differences was measured using the non-parametric Wilcoxon signed rank test.

5.5.2 Results and Discussion

Figure 5.4 shows the distribution of the F-measure scores obtained in 2 of our 18 data

sets for the relevance threshold of 0.75. The full results for all data sets and thresholds

can be found in Appendix A. For each combination of data set and regression algorithm

the graphs provide 29 box-plots, one for each of the 28 mentioned sampling approaches

plus the alternative of using the original data (tagged as none in the graphs). The

box plots show the distribution of the F1 scores of all variants of each learner on each

data set. This distribution is obtained using the results from the 30 repetitions of

the 3× 10−fold cross validation process. These two particular data sets were chosen

because they represent two different patterns of results occurring similarly through

the relevance threshold range. Results on data set a2 are among the best from the

re-sampling approaches perspective. The acceleration data set can be regarded as an

example of a domain where the advantage of re-sampling approaches is not so marked.

Although in some cases, as previously mentioned, the behaviour of the re-sampling

approaches is similar for all the considered thresholds, in some domains there are con-

siderable differences for the several threshold values. Two examples of this behaviour

occur in data sets such as a3 and dAiler. Figure 5.5 shows the results for the a3

data set for each relevance threshold and each learning system. In this case, we can

observe similar results for the SVM learner across all the thresholds and a remarkable

improvement in the performance of the re-sampling strategies for the higher relevance

thresholds in Random Forests and MARS. In Figure 5.6 we can examine the results

for the dAiler data set. For this case, the results show substantial difference among

the relevance thresholds and the learning systems. In fact, for MARS there is an

improvement in the re-sampling strategies performance for the higher thresholds, the

inverse is observed for the Random Forest learner, and the results for the SVM are
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Figure 5.4: Behaviour of the re-sampling strategies on the a2 and acceleration data

sets with a relevance threshold of 0.75 (S - SmoteR ; U - under-sampling; A - adaptive

sampling; ox - x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of

intervals; dx - amount of disturbance).
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more stable across the relevance thresholds.

When taking into consideration all 18 data sets, in most cases we have an advantage

of the re-sampling approaches for all the relevance thresholds considered. This can be

confirmed when looking at the overall results in terms of the statistical significance of

the paired differences between each sampling approach and the alternative of using the

original data (the baseline). Table 5.3 summarises the results of the paired comparison

of each of the 28 sampling variants against the baseline of using the given imbalanced

data set for a relevance threshold of 0.75. Table 5.4 and Table 5.5 show the same

results for 0.9 and 0.95 thresholds, respectively. Each sampling strategy was compared

against the baseline 360 times (20 learning variants times 18 data sets). For each paired

comparison we check the statistical significance of the difference in the medianF1 score

obtained with the respective sampling approach and with the baseline. These averages

were estimated using a 3× 10-fold CV process. We counted the number of significant

wins and losses of each of the 31 sampling variants on these 360 paired comparisons

using two significance levels (99% and 95%).

The results for the 0.75 relevance threshold of Table 5.3 provide clear evidence of the

advantage of using re-sampling approaches when the task is to predict rare extreme

values of a continuous target variable for domains with an average of 11.9% of rare

cases.

In effect, we can observe an overwhelming advantage in terms of number of statistically

significant wins over the alternative of using the data set as given (i.e. no re-sampling).

For instance, the particular configuration of using under-sampling with 200% (U2 ) was

significantly better than the alternative of using the given data set on 49.2% of the 360

considered situations, while only on 17.8% of the cases under-sampling actually lead

to a significantly worse model. The remarkable performance of this very simple re-

sampling strategy is even re-enforced by the fact that it uses a much smaller training

set than the other alternatives, which means lower computation costs. The SmoteR

variant with 700% over-sampling and 200% under-sampling (S.o7.u2 ) also achieved

very good results (59.7% significant wins and 8.3% significant losses). The adaptive

sampling variant with 6 bins and disturbance set to 0.02 (A.N6.d0.02 ) achieved results

similar to SmoteR with 59.4% significant wins and 9.4% significant losses.

For a relevance threshold of 0.9 the results of Table 5.4 show even further advantages

when compared to the results of threshold 0.75. In this case, we have a lower

percentage of rare cases and yet we achieve more significant wins and less significant

losses for all the sampling strategies. For instance, the under-sampling variant with
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Figure 5.5: Behaviour of the re-sampling strategies on the a3 data set across the

relevance thresholds considered (S - SmoteR ; U - under-sampling; A - adaptive

sampling; ox - x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of

intervals; dx - amount of disturbance).
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Figure 5.6: Behaviour of the re-sampling strategies on the Delta Ailerons (dAiler) data

set across the relevance thresholds considered (S - SmoteR ; U - under-sampling; A -

adaptive sampling; ox - x× 100% over-sampling; ux - x× 100% under-sampling; Nx

- nr. of intervals; dx - amount of disturbance).
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Sampling Strat. Win> 99% Win > 95% Loss> 99% Loss> 95% Insignif. Diff.

U0.25 99 120 115 129 111

U0.5 122 145 86 94 121

U1 161 176 69 81 103

U2 159 177 54 64 119

S.o2.u0.25 102 119 106 120 121

S.o5.u0.25 106 127 86 102 131

S.o7.u0.25 109 126 85 98 136

S.o2.u0.5 126 162 71 81 117

S.o5.u0.5 139 162 43 53 145

S.o7.u0.5 142 181 43 51 128

S.o2.u1 168 192 40 45 123

S.o5.u1 176 200 29 38 122

S.o7.u1 178 199 26 38 123

S.o2.u2 175 203 23 37 120

S.o5.u2 179 203 17 23 134

S.o7.u2 188 215 23 30 115

A.N2.d0.02 179 203 15 22 135

A.N4.d0.02 176 206 15 21 133

A.N6.d0.02 178 214 25 34 112

A.N8.d0.02 171 210 29 37 113

A.N2.d0.05 182 201 14 24 135

A.N4.d0.05 178 212 17 22 126

A.N6.d0.05 181 210 26 35 115

A.N8.d0.05 169 209 29 38 113

A.N2.d0.1 182 203 15 24 133

A.N4.d0.1 177 206 17 23 131

A.N6.d0.1 179 212 27 33 115

A.N8.d0.1 171 210 31 39 111

Table 5.3: Summary of the paired comparisons to the no sampling baseline with

relevance threshold set to 0.75 (S - SmoteR ; U - under-sampling; A - adaptive

sampling; ox - x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of

intervals; dx - amount of disturbance).
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Sampling Strat. Win> 99% Win> 95% Loss> 99% Loss> 95% Insignif. Diff.

U0.25 145 171 112 114 75

U0.5 166 196 85 94 70

U1 182 209 67 72 79

U2 189 214 49 59 87

S.o2.u0.25 150 176 85 98 86

S.o5.u0.25 150 184 69 81 95

S.o7.u0.25 153 183 68 74 103

S.o2.u0.5 169 203 59 65 92

S.o5.u0.5 178 207 49 61 92

S.o7.u0.5 188 214 35 50 96

S.o2.u1 195 220 44 52 88

S.o5.u1 208 224 15 28 108

S.o7.u1 212 230 17 27 103

S.o2.u2 208 238 13 20 102

S.o5.u2 229 256 13 17 87

S.o7.u2 222 254 16 21 85

A.N2.d0.02 224 259 8 12 89

A.N4.d0.02 219 253 9 18 89

A.N6.d0.02 218 255 13 17 88

A.N8.d0.02 209 256 19 21 83

A.N2.d0.05 226 257 8 14 89

A.N4.d0.05 222 252 10 18 90

A.N6.d0.05 220 254 13 17 89

A.N8.d0.05 212 250 19 20 90

A.N2.d0.1 223 262 8 13 85

A.N4.d0.1 222 246 10 15 99

A.N6.d0.1 222 252 13 17 91

A.N8.d0.1 209 249 18 21 90

Table 5.4: Summary of the paired comparisons to the no sampling baseline with

relevance threshold set to 0.9 (S - SmoteR ; U - under-sampling; A - adaptive

sampling; ox - x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr.

of intervals; dx - amount of disturbance).
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Sampling Strat. Win> 99% Win> 95% Loss> 99% Loss> 95% Insignif. Diff.

U0.25 160 182 110 113 65

U0.5 179 198 83 86 76

U1 191 210 53 64 86

U2 197 225 45 53 82

S.o2.u0.25 159 181 81 92 87

S.o5.u0.25 171 192 69 75 93

S.o7.u0.25 170 194 66 71 95

S.o2.u0.5 186 209 58 65 86

S.o5.u0.5 185 209 39 51 100

S.o7.u0.5 200 227 33 51 82

S.o2.u1 204 230 34 43 87

S.o5.u1 212 242 13 22 96

S.o7.u1 219 244 19 31 85

S.o2.u2 228 271 12 16 73

S.o5.u2 247 266 13 18 76

S.o7.u2 254 271 17 28 61

A.N2.d0.02 233 264 14 15 81

A.N4.d0.02 230 266 11 16 78

A.N6.d0.02 232 263 11 16 81

A.N8.d0.02 233 266 17 20 74

A.N2.d0.05 236 262 10 13 85

A.N4.d0.05 231 258 11 19 83

A.N6.d0.05 230 265 11 14 81

A.N8.d0.05 228 263 20 22 75

A.N2.d0.1 237 261 8 11 88

A.N4.d0.1 230 263 12 18 79

A.N6.d0.1 238 263 12 17 80

A.N8.d0.1 227 264 19 23 73

Table 5.5: Summary of the paired comparisons to the no sampling baseline with

relevance threshold set to 0.95 (S - SmoteR ; U - under-sampling; A - adaptive

sampling; ox - x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of

intervals; dx - amount of disturbance).
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200% (U2 ) had 59.4% significant wins and 16.4% losses when compared to using the

original data set. The SmoteR approach lead to 71.1% wins and 4.7% losses for

the variant using 500% and 200% of over-sampling and under-sampling percentages

respectively (S.o5.u2 ). As for the adaptive sampling strategy, the combination of 2

bins and 0.01 for parameter d (A.N2.d0.01 ) resulted in 72.8% of significant wins and

3.6% of significant losses.

Finally, the results for the 0.95 threshold are also remarkable. For a significance level

of 95% all the sampling strategies improve the percentage of wins over the alternative

of not applying re-sampling. The under-sampling variant using 200% (U2 ) has 62.5%

wins and 14.7% losses; the SmoteR variant with 200% of over-sampling and 200%

of under-sampling (S.o2.u2 ) presents 75.3% wins and 4.4% losses; and, finally, the

Adaptive Sampling variant with 4 bins and d set to 0.02 (A.N4.d0.02 ) leads to 73.9%

wins and 4.4% losses.

Table 5.6 also confirms the advantage of applying a re-sampling strategy across the 18

data sets. Similar tables for the 0.9 and 0.95 thresholds can be found in Appendix A.

These results show that, for each data set, there is always a sampling strategy which

allows to improve the F1 score.

For a better understanding of the differences among the several strategies we have

also conducted paired comparisons between all proposed alternatives for the different

relevance thresholds considered. Figure 5.7 presents the results for the 0.75 threshold

of these pairwise comparisons using the Wilcoxon signed rank test with Bonferroni

correction for multiple testing. To provide a better interpretability, the test p-values

were transformed into symbols according to following key: ’+’ and ’++’ signs represent

win with 95% and 99% confidence respectively, ’-’ and ’–’ signs represent a loss with

95% and 99% confidence respectively, and a blank space represents that no significant

difference was found in the test. The symbols should be read regarding the strategy

present in the table line. For instance, a ’++’ symbol in a cell means that the strategy

in the row achieves a significantly better result than the strategy on the column with

99% confidence.

In Figures 5.8 and 5.9 we present the results for the pairwise comparisons using

Wilcoxon signed rank test with Bonferroni correction for the 0.9 and 0.95 relevance

thresholds, respectively.

These results confirm that, for all the relevance thresholds, using the data set as given,

i.e. applying no re-sampling strategy, always represents a loss with 99% confidence

with the exception for the 0.75 threshold of the S.o2.u0.25 strategy and the U0.25
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Data set none Under-sampling SmoteR Adaptive Sampling

a1 0.4634805 0.7027627 0.712006 0.7004192

a2 0.3197353 0.5731104 0.5812283 0.5733544

a3 0.3522209 0.482336 0.5024598 0.4711112

a4 0.4296375 0.577266 0.5921964 0.5952717

a5 0.1585692 0.4793509 0.5024495 0.4983746

a6 0.3802069 0.5042783 0.5038622 0.4885777

a7 0.2333013 0.3585283 0.3739525 0.3631748

Abalone 0.7161421 0.7325742 0.733171 0.7342574

Accel 0.9044244 0.9063044 0.9142926 0.9174297

dAiler 0.7365465 0.7606014 0.7601443 0.750816

dElev 0.7300003 0.7493701 0.7485255 0.7501716

availPwr 0.9295915 0.9283252 0.9330286 0.9222684

bank8FM 0.9455891 0.946326 0.9466964 0.9514199

boston 0.898961 0.8941507 0.901301 0.89677

cpuSm 0.2597305 0.2800133 0.2913918 0.3056211

fuelCons 0.8967333 0.8958695 0.9047295 0.8980186

maximalTorque 0.9649971 0.9711579 0.9702372 0.9834484

heat 0.9356263 0.9421861 0.9462077 0.9631721

Table 5.6: Best mean F1 score of each sampling approach for all learning systems with

a relevance threshold set to 0.75

approach. We highlight the poor performance of under-sampling at {25, 50}% for all

the relevance thresholds. In effect, these strategies almost always loose against the

other strategies. There is also a similar behaviour of the SmoteR strategies with

the same under-sampling percentages. The adaptive sampling strategy with 8 bins

shows a poor performance across all thresholds only presenting advantages (wins) when

compared with under-sampling or SmoteR both with under-sampling percentages of

at {25, 50}% . We must emphasise as well the lack of statistical significance among the

differences of the Adaptive Sampling strategies with 2 and 4 bins for all thresholds. For

the two higher values of the relevance threshold, for nearly all the SmoteR strategies

with under-sampling at {100, 200}% and the Adaptive Sampling strategies with 4 and

6 bins the existing differences are not statistically significant.

In summary, the results of our experimental comparisons provide clear evidence on

the validity of the re-sampling approaches we have proposed. The overall best results

are obtained with under-sampling with {100, 200}%, SmoteR with the same under-

sampling percentages, and adaptive sampling with the number of bins ranging from 2

to 6. We should stress that adaptive sampling is easier to use from the point of view

of the user as it requires settings a smaller number of parameters.We highlight that
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Figure 5.7: Pairwise comparisons with Wilcoxon signed rank test of all strategies

against each other with Bonferroni correction for a relevance threshold of 0.75 (S -

SmoteR ; U - under-sampling; A - adaptive sampling; ox - x× 100% over-sampling;

ux - x× 100% under-sampling; Nx - nr. of intervals; dx - amount of disturbance).

random under-sampling uses a much smaller training set than the other alternative

approaches which means lower computational costs. This does not happen with

SmoteR which is a more complex algorithm, with a possibly very large training

set and internally requiring the evaluation of distances for determining the k nearest

neighbours. Adaptive sampling is a more stable method since it keeps the training set

size relatively unchanged. Also, the good performance of this approach is re-enforced

by the reduced computational costs when compared with SmoteR strategy and the

user friendly aspect associated with the setting of less parameters.
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Figure 5.8: Pairwise comparisons with Wilcoxon signed rank test of all strategies

against each other with Bonferroni correction for a relevance threshold of 0.9 (S -

SmoteR ; U - under-sampling; A - adaptive sampling; ox - x× 100% over-sampling;

ux - x× 100% under-sampling; Nx - nr. of intervals; dx - amount of disturbance).
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Figure 5.9: Pairwise comparisons with Wilcoxon signed rank test of all strategies

against each other with Bonferroni correction for a relevance threshold of 0.95 (S -

SmoteR ; U - under-sampling; A - adaptive sampling; ox - x× 100% over-sampling;

ux - x× 100% under-sampling; Nx - nr. of intervals; dx - amount of disturbance).



Chapter 6

Conclusion

6.1 Summary

The problem of forecasting rare values of a nominal target variable, usually known

as the problem of class imbalance, has been extensively studied. For regression tasks,

when the target variable is continuous, and despite of the existence of several important

real world applications, few works exist on forecasting rare and extreme values.

In this thesis we have addressed the problem of imbalanced domains for regression

tasks. We have provided an extensive survey on the existing performance assessment

metrics and strategies for this problem and have presented three new re-sampling

approaches to tackle such tasks. The main goals of our study were to: i) highlight the

importance of considering adequate metrics for this problem type; ii) present the state

of the art on performance assessment metrics and approaches for imbalanced data

sets; iii) provide as extensive survey of the existing methods to tackle the problem

of imbalanced domains for classification and regression tasks; and iv) propose and

perform an experimental analysis of three new re-sampling approaches for regression

tasks under imbalanced domains.

Through an extensive set of experiments carried out on a diverse set of problems and

using rather different learning algorithms, we have shown the competitiveness of our

proposals. The key advantages of these re-sampling methods are their simplicity and

versatility. These strategies are data pre-processing methods which simply manipulate

the distribution of the available training data thus allowing the use of any standard

regression tool on these particular prediction tasks.
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In most cases, the re-sampling approaches proposed present an advantage for all the

relevance thresholds considered. Moreover, the higher the relevance threshold used the

higher the impact of the re-sampling strategies. Regarding the random under-sampling

method the good predictive performance is accompanied by lower computation costs

due to the reduced size of the training set. The innovative aspects of SmoteR are

confirmed by the good performance of this approach. Finally, the adaptive sampling

algorithm combines a competitive performance with reduced computational costs when

compared to SmoteR and an user friendly aspect because it requires setting a small

number of parameters.

6.2 Future Research Directions

The prediction of rare and extreme values for continuous target variables is a scarcely

studied problem. Very few attention has been given to this particular issue and,

therefore, much remains to explore. Being a poorly investigated subject, a wide space

for improvements exists.

In particular, other pre-processing methods already existing for classification tasks

could also be adapted to these regression tasks. In effect, many existing techniques for

the class imbalance problem were developed for improving former existing strategies.

This could also be explored for regression.

Besides pre-processing methods, further categories of approaches could also be inves-

tigated, as the algorithms modifications, the predictions post-processing, or combina-

tions of strategies.

The proposals we presented were only tested for a special case of the problem which

associates rarity to extreme target variable values. Although this is frequent in real

world applications, it would be interesting to extend our proposals into a more general

framework were rarity could occur anywhere in the target variable domain.

Another interesting direction would be to investigate relations between the data set

characteristics and the re-sampling strategies in order to build a meta-learner which

could recommend a specific set of strategies and parameters for a given domain.



Appendix A

Experimental Results

In this annex we present the detailed experimental results on the 18 data sets.
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Figure A.1: Behaviour of the re-sampling strategies on 18 data sets with a relevance

threshold of 0.75 (S - SmoteR ; U - under-sampling; A - Adaptive Sampling; ox -

x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of intervals; dx -

amount of disturbance).
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Figure A.2: Behaviour of the re-sampling strategies on 18 data sets with a relevance

threshold of 0.9 (S - SmoteR ; U - under-sampling; A - Adaptive Sampling; ox -

x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of intervals; dx -

amount of disturbance).
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Figure A.3: Behaviour of the re-sampling strategies on 18 data sets with a relevance

threshold of 0.95 (S - SmoteR ; U - under-sampling; A - Adaptive Sampling; ox -

x × 100% over-sampling; ux - x × 100% under-sampling; Nx - nr. of intervals; dx -

amount of disturbance).
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Data set none Under-sampling SmoteR Adaptive

a1 0.1874861 0.6623308 0.6537593 0.6404921

a2 0.131762 0.4707454 0.4946997 0.468004

a3 0.2566088 0.4589897 0.4850106 0.4575761

a4 0.3327811 0.5390838 0.5602863 0.5536516

a5 0.06200563 0.4573975 0.4833102 0.4767628

a6 0.2764081 0.4524592 0.4625432 0.4556321

a7 0.206242 0.3391856 0.3615381 0.346755

Abalone 0.6884877 0.7208114 0.7210465 0.7268933

Accel 0.8717274 0.8906104 0.9113046 0.9206469

dAiler 0.7036236 0.7330744 0.734134 0.7317991

dElev 0.6780333 0.7130781 0.7120496 0.7062695

availPwr 0.9282321 0.9285287 0.9345717 0.9275294

bank8FM 0.9434285 0.9461111 0.9475145 0.9504968

boston 0.8818092 0.8866217 0.896766 0.8822371

cpuSm 0.2618313 0.2901348 0.3131996 0.3183838

fuelCons 0.875271 0.8722404 0.8921911 0.8844499

maximalTorque 0.9604649 0.9610309 0.9638248 0.9790385

heat 0.9215252 0.9407887 0.9436688 0.962168

Table A.1: Best mean F1 score of each sampling approach for all learning systems

with a relevance threshold set to 0.9
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Data set none Under-sampling SmoteR Adaptive

a1 0.1182979 0.6489449 0.6421397 0.608243

a2 0.08458176 0.4678831 0.4889491 0.4398707

a3 0.1670689 0.3997017 0.4213191 0.3880046

a4 0.2432986 0.4448187 0.4649349 0.4526847

a5 0.05080295 0.4580971 0.4666689 0.4634314

a6 0.2463805 0.4502021 0.4588278 0.4540215

a7 0.1992734 0.331152 0.3560618 0.3418788

Abalone 0.6785448 0.7113216 0.713412 0.7174341

Accel 0.831319 0.8937601 0.9099074 0.9146342

dAiler 0.6780727 0.734987 0.7352013 0.7315092

dElev 0.5980799 0.6933591 0.692538 0.6870655

availPwr 0.9284757 0.9293882 0.9373288 0.9305915

bank8FM 0.941489 0.9457626 0.9487812 0.9493337

boston 0.8634719 0.8822592 0.8941955 0.8782996

cpuSm 0.2711127 0.3047852 0.321876 0.3353316

fuelCons 0.8728995 0.861138 0.8915357 0.8820248

maximalTorque 0.9594628 0.95959 0.9665527 0.9787481

heat 0.9145503 0.9403284 0.9434054 0.9618441

Table A.2: Best mean F1 score of each sampling approach for all learning systems

with a relevance threshold set to 0.95
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