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Abstract

Wind farms are composed by a group of turbines connected to a network of electric energy. In
the last five years the global capacity of wind energy has tripled. In the last year alone the wind
energy industry has increased 12,4 per cent in capacity, globally.

Energy generated by wind is quite consistent in long-term, but has significant variations in
short-term. Meteorologic studies assists the adjustments of wind networks accordingly to pre-
dicted variations. One of the factors that affect the production of energy is the Wake Effect, that
consists of the alterations that the passage through the wind turbines provokes on the air flux.
Those alterations have impact in the turbine production where that air flows next. Thus, besides
the geographic location of the park, the location of the turbines within the park affects its produc-
tion of energy.

The optimization of wind farms may allow its increase of energy production. To do so, tech-
niques that allows to discover the optimal location of the turbines to maximize the produced en-
ergy are used. The goal of this project is to develop a model to optimize the layout of a wind farm
based on the expected impact of the turbines locations in the production. To do this data mining
and machine learning techniques will be used in order to acquire a model that would predict the
production of a turbine based on its location as well as other external variables.
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Resumo

Os parques éolicos são constituídos por um conjuntos de aerogeradores ligados a uma rede de
transmissão de energia eléctrica. Nos últimos cinco anos a capacidade instalada global da ener-
gia eólica triplicou. Só no último ano a indústria da energia eólica adicionou 12,4 por cento de
capacidade, globalmente.

A energia gerada do vento é bastante consistente em períodos longos (por ex., anuais) mas
tem variações significativas em períodos curtos. O estudo da meteorologia auxilia o ajustamento
de redes eólicas de acordo com as variações previstas. Um dos fatores que afeta a produção de
energia é o wake effect, que consiste nas alterações que a passagem pelos aerogeradores provoca
no fluxo de ar. Essas alterações têm naturalmente impacto na produção dos aerogeradores por
onde o ar passa de seguida. Assim, para além da localização geográfica do parque, a localização
dos aerogeradores dentro de um parque afeta a produção de energia de um parque.

A otimização de parques eólicos pode permitir o aumento da produção de energia de um
parque. Para tal são usadas técnicas que permitem descobrir a localização ótima das turbinas de
modo a maximizar a energia produzida.

O objectivo deste projecto é o desenvolvimento de um modelo para optimizar o layout de um
parque eólico baseado no impacto esperado da localização dos aerogeradores na produção. Para
isso são usadas técnicas de data mining e machine learning para obter um modelo que predirá a
produção de um aerogerador baseado na sua localização, bem como outras variaveis externas.
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“If you torture the data long enough it will eventually confess.”

Ronald Harry Coase
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Chapter 1

Introduction

Wind energy is the transformation of the wind power to useful energy, like in windmills for the

production of electrical and mechanical energy, or sails to propel ships. It is a clean energy, it can

be produced in almost every region and it requires less area than most of the energetic options. [17]

Wind energy is in constant expansion and it is one of the main sources of renewable energy.

Its growth motivates the energy industry and creates jobs, having, between 2007 and 2010, created

30 per cent more jobs in the sector [8]. It is estimated that in 2012, in the European Union, wind

energy employs 249 thousand people, and it is expected to employ 520 thousand in 2020. For

example Denmark intends to reach 50 per cent growth in 2025 [10].

A wind farm is a group of wind turbines placed in the same space. Each group can reach a few

hundred turbines. The surrounding area of the farm can be used for agriculture or other purposes.

A wind farm can also be placed off-shore. Comparing wind energy with the traditional ways of

obtaining energy, the environmental impact is relatively smaller. This type of energy does not

release any gas to the atmosphere and the energy spent for construction and manufacturing of the

farm is equal to the energy that the farm produces in just 3 months, despite having a lifetime of

20 to 25 years. It is possible to optimize a wind farm by placing the turbines in places that won’t

interfere with the other turbines [6]. This is done by analysing the wake effect, a effect that alters

the wind, making possible the optimization of the wind farm .

1.1 Motivation and Objectives

Wind behaviour is altered when passing by solid bodies, making nearby turbines less effective.

This problem affects the energy production of a wind farm, making them less profitable. By

placing turbines in adequate places this effect can be reduced making the turbines more efficient.

This could be possible by producing a model that would predict the power generated by a turbine

taking in account its location as well as the location of the surrounding turbines.
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Introduction

The goal of this project is to create a model, using data mining and regression techniques,

that predict the values of power production given some variables, as the position of turbines. If

successful these models can be used as a base to develop a decision support system to optimize

the layout of a wind farm.
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1.2 Dissertation Structure

This dissertation is divided into five chapters. Inside this chapter some of the introductory concepts

are explained as well as the motivation of this project.

The second chapter describes the methods that were used to develop the project. Techniques

of wind power prediction and data mining are explained, as well as the concept of Wake Effect

and regression methods used to develop different models.

The third chapter approaches the case study and describes the process of retrieving data and

its preparation, as well as the setup of the experimental environment. Chapter 4 will present the

results of the project and its discussion. The results of the various regression techniques used are

presented as well as a more detailed analysis of each technique. The last chapter contains the

conclusions of the project. In this chapter the difficulties felt along the project are described and

the possible future work is explained.
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Chapter 2

State of the art

This chapter contains the latest research made by each of the techniques used in this project. Wind

power prediction models are explained to further understand how to predict wind power. The

concept of wake effect is explained as it is a very important part to consider in the making of

this project. The data mining process is described as it is one of the main steps of the projects

development. Finally the regression techniques used to acquire models that predict the turbines

power production are described to further understand its functioning.

2.1 Wind power prediction

Atmospheric conditions perform an important role in most renewable energies, being this role

more relevant for wind energy. [13] Prediction models can be divided into two groups: Historical

analysis of wind series and Numerical Wind Prediction Model (NWP). The approaches used are

typically characterized in three groups, which will be discussed next:

• Physical model – Physical models try to use physical variables as much as possible to

achieve the best wind speed estimation before using Model Output Statistics (weather fore-

casting statistical technique).

• Statistical model – Statistical models try to find relationship between explanatory variables,

including NWP and measured data, usually employing recursive methods.

• Combined model – The objective is to benefit from the advantages of physical and statisti-

cal models to obtain a globally optimal performance for the examination horizon.

2.1.1 Physical Models

Several physical models based in the use of time data, have been developed to predict the speed and

the power of the wind. Physical models generally use global databases of meteorologic measures

or atmospheric mesoscale, but they require large computational systems to achieve good result. In

the physical approach a detailed description of the low atmosphere is used to estimate the power

output of the wind.
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2.1.2 Statistical Models

Classical statistical forecast projections for few days are not used, as current dynamical NWP

models are more accurate. There are two types of classical statistical are used to improve NWP

models [12]:

• Perfect Prog – It uses predictions of a NWP model for future states of the atmosphere,

assuming that they are perfect.

• Model Output Statistics (MOS) – They can include directly in the regression the influences

of characteristics of different NWP models in different projections in the future. To obtain a

prediction equation it is necessary to develop a set of data with historical records and records

of the predictions of the NWP model.

Both use large regression equations. The advantages of Perfect Prog are the large amount of

samples used as they use historical climate data, the fact that the equations are developed with-

out the information of the NWP, being that changes in the NWP model don’t change regression

equations. With the improvement of the NWP models the predictions of weather will improve and

the same regressions equations might be used in any NWP model. The disadvantages are that the

potential predictive models should be well predicted by the NWP mode. On the other hand the

advantages of the MOS are that systematic errors on the NWP are taken into account and differ-

ent equations require different projection time. On the negative side it requires several years of

prediction register of the NWP model and the models suffer regular changes.

2.2 Wake Effect

A wake is the region of recirculating flow immediately behind a solid object, the surrounding flux

of fluid. The impact of the wake effect in the turbines leads to lower productions. There are several

models that describe wake effect on wind turbines:

• Kinematic Models

• Field Models

• Added turbulence Models

Kinematic Models use only the impetus equation to model the deficit of the air behind a tur-

bine. They also do not cover the change of intensity of the air turbulence behind a turbine, and

sometimes a turbulence model must be used if the values of intensity are desired. Field models

calculate the complete field flux through the wind farm or a part of it, if the park is regular, solving

equations with a turbulence model. There are two types of field models: two dimensional and

three dimensional models. As stated earlier kinematic models are combined with added turbu-

lence models, when used for load calculations [18]. As 2.1 suggest the area immediately behind

the turbine (Core Area) will maintain a costant wind speed with diminished speed. The Peripheral
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Figure 2.1: Wake effect turbulence on wind turbines

Area will have more turbulence as more turbines come with contact with the wind. As this figures

shows the more solid objects that contact the wind, the more turbulence is generated, making the

following turbines less effective.
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2.3 Data Mining

Data Mining is the process of discovering useful knowledge like patterns, associations, changes,

anomalies and significant structures from large amounts of data using artificial intelligence, ma-

chine learning, statistics and database systems techniques. Data mining is actually the core step in

Knowledge Discovery in Databases (KDD) process.

2.3.1 Process

KDD is an iterative process that transforms raw data into useful information. The different steps

of Knowledge Discovery in Databases are [20]:

1. Selection

2. Pre-processing

3. Transformation

4. Data mining

5. Evaluation

Selecting data is one of the most important steps. Appropriate data must be selected to per-

form data analysis and get useful knowledge. The data set should have enough quantity of data

to perform good data mining. The pre-processing step removes noise and irrelevant data from the

data set obtaining a cleaner data set. It is a very important step because it trims data and improves

its quality. With the use of transformation methods, the data is prepared and transformed in ap-

propriate form, ready for data mining, which reduce the number of effective variables selecting

only useful features to optimize the goal task. The selection of the appropriate task to perform

data mining is crucial, as well as the choice of the appropriate algorithm for data mining, given the

problem to be solved. With this selection the data mining step is ready to be processed. The last

step is the evaluation of patterns where the user interprets the mined data. If no useful pattern is

found, the process might start in a previous step, making KDD an iterative process . The various

steps that compose the KDD process are shown in figure 2.2.
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Figure 2.2: Steps that compose the KDD process [9]

2.3.2 Common Tasks

There are some common tasks that are addressed in data mining such as [9, 23]:

• Anomaly detection – Refers to the problem of finding patterns in data that do not conform

to expected behavior, like in fault or fraud detection or even system health monitoring.

• Association Rule learning – It is used to discover interesting relations between variables.

Its intent is to identify strong rules discovered in databases, using different measures of

interestingness. A famous story about association rule mining is the "beer and diaper" story

in which a survey of behavior of supermarket shoppers discovered that customers who buy

diapers tend also to buy beer.

• Clustering – Clustering is a division of data into groups of similar objects. Each group,

called a cluster, consists of objects that are similar to one another and dissimilar to objects

of other groups [2]. For example, in the analysis of social networks, clustering may be used

to recognize communities within large groups of people.

• Classification – It is a learning function that assigns a record to a predefined class. Classifi-

cation tasks can be useful for example in predicting tumor cells as benign or malignant.

• Regression – Attempts to find a function which fits the data, according to an expression, into

a model.

• Summarization – Its goal is to provide a more compact representation of the data set, in-

cluding visualization and report generation.
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2.4 Regression

The goal of regression is to model the relationship between variables by fitting a equation to the

observed data. A regression model involves unknown parametersβ , independent variables X and

one dependent variable Y . A regression model relates Y to a function of X and β [21].

Yi ≈ f (Xi,β ) (2.1)

To carry out regression analysis, the form of the function f must be specified. Sometimes the

form of this function is based on knowledge about the relationship between Y and X that does not

rely on the data.

2.4.1 Model evaluation

There are many techniques to find the accuracy of a model. The most common is the Mean Squared

Error (MSE). The MSE is the quadratic difference between the predicted and the real values [7]:

MSE =
1
N

n

∑
i=1

(ŷi− yi)
2 (2.2)

Normalized Mean Squared Error (NMSE) is also used. NMSE is an estimator of the overall

deviations between predicted and measured values and it is defined as:

NMSE =
1
N ∑

i

(Pi−Mi)
2

PM
(2.3)

P =
1
N ∑

i
Pi (2.4)

M =
1
N ∑

i
Mi (2.5)

NMSE can show very well the difference among models. If a model has very low NMSE

than it is performing well, but the opposite does not means that the model is completely wrong.

The values represent the percentage of the overall deviations between the predicted and the real

values [4].

2.4.2 Performance Estimation

Assessing how well data mining models perform against real data is a very important step. It

is crucial to validate the data mining models by understanding their qualities and characteristics

before deploying them. There are several approaches to evaluate a data mining model, such as the

use of multiple statistical measures to determine if there are problems in the data or in the model,

the separation of data in sets of test and training to assess the precision of the predictions or the

revision of the results to determine if the patterns have significance. Evaluating model performance

10
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can’t be done using the data set used for training because it can lead to overoptimistic and overfitted

models ( when a model is more accurate in fitting known data but less accurate in predicting new

data). The use of the test sample is required only if the task to perform is a prediction [11, 15, 19].

2.4.3 Regression Trees

Building a regression tree is similar to building a classification tree, but in regression trees there is

no need of assigning objects to classes. The evaluation used in a regression tree differ from those

used in a classification tree, despite the similarities in the construction of the tree.

There are three components regarding the construction of a regression tree:

• A set of logical questions with binary response (yes or no).

• The choice of the split criteria to choose the best split on a variable.

• Terminal nodes with the summary statistics.

The last component is only used by the regression tree as it outputs numeric results of the

dependent variable, unlike the classification tree, that outputs a class.

The main goal of the regression tree is to build a tree with the predictor or prediction rule.

There are two purposes to the predictor, which are the accurate prediction of the dependent variable

in the future with new independent values and find the relationship between variables.

To construct the tree the variance in terms of the dependent variable is detected in the data set,

which is then purified. This is done by recursively partitioning the data until reaching the terminal

nodes, where the data is more homogeneous. The terminal node has the value of the dependent

variable which is then used as the prediction result [24]. In 2.3 is possible to see an example of a

regression tree.
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Figure 2.3: Example of a regression tree

2.4.4 Support Vector Machines

Support Vector Machines (SVM) are supervised learning models with associated learning algo-

rithms that analyze data and recognize patterns, used for classification and regression analysis.

The training data has a set of input vectors, with each one having component features, and they are

paired with a label. It is important to evaluate the goodness of the model before actually using it as

this technique allows tuning of parameters. The SVM finds a hyperplane or a set of hyperplanes

that maximizes the distance between classes, being that the bigger the distance the better. SVM

can also perform non linear classification using what is called kernel trick, mapping their inputs in

high-dimensional spaces [5].

It is possible to use SVM for regression maintaining all its features, but instead of trying to

separate the objects, in regression, the SVM attempts to fit all the objects inside a defined number

for error. This method can ignore error in a certain range making it having the called soft-margin.

The goal is to minimize the minimum error to make the SVM more accurate [16].

In 2.4 it possible to see a transformation from a non-linear to a linear separation, being φ the

kernel function that allows the process.

2.4.5 Multiple Linear modeling

Multiple linear regression attempts to model the relationship between two or more explanatory

variables and a dependent variable by fitting a linear equation to observed data. Every value of the

12
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Figure 2.4

independent variable X is associated with a value of the dependent variable Y . The regression line

for p explanatory variables X1...Xp is defined to be [1]:

UY = β0 +β1X1 + ...+βp +Xp (2.6)

This line describes how the mean response U changes with explanatory variables.The fitted

values b0,b1, ...,bp estimate the parameters β0,β1, ...,βp of the regression line. Since the observed

values for y vary about their means UY , the multiple regression model includes a term for this

variation, the residuals. It represents the deviations of the observed values Y from their means UY .

The notation for the model deviations is ε:

Yi = β0 +β1Xi1+ ...+βi pXi p+ εi for i = 1,2, ...,n

2.4.6 Random Forests

The random forest is an ensemble approach for classification and regression. Ensembles are ap-

proaches that combine the decisions of multiple models into a single decision. The random forest

starts with a standard machine learning technique called a decision tree which, in ensemble terms,

corresponds to our weak learner. A weak learner is defined to be a classifier which is only slightly

correlated with the true classification. In a decision tree, an input is entered at the top and as it tra-

verses down the tree the data gets bucketed into smaller and smaller sets. The process of training

a Random Forest system is:

1. Obtain a subset with N cases at random. It should be about 66% of the total set.

2. At each node:

(a) For number m predictor variables are selected at random from all the predictor vari-

ables

13
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(b) The predictor variable that provides the best split, according to some objective func-

tion, is used to do a binary split on that node.

(c) At the next node, choose another m variables at random from all predictor variables

and do the same.

Depending upon the value of m, there are three slightly different systems:

1. Random splitter when m = 1

2. Breiman’s bagger where m = total number of predictor variables

3. Random forest when m << number of predictor variables

While running, when a new input is entered into the system, it is run down all of the trees. The

result may either be an average or a weighted average of all of the terminal nodes that are reached.

Random forest runtimes are quite fast, and they are able to deal with unbalanced and missing

data. Random Forest weaknesses are that when used for regression they cannot predict beyond the

range in the training data, and that they may overfit data sets that are particularly noisy [3].
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Chapter 3

Case Study

In this chapter the process of data collection is explained. The sources and the modeling of data

are explained as well as the selection of data and the reasons of the selection. The data preparation

step is explained in detail as this is a crucial step in the making of the project. To finish the

experimental setup is described. This approaches the variables used as well as the steps in the

preparation of the running of he experiments.

3.1 Data collection

In any data analysis the most important thing is the data. Thus data collection is a very important

step. The data set must be carefully selected to achieve good results.

In this case, to analyse the impact of the wake effect on the production of wind energy, an

ordered time series of data related to wind turbines was required. The data sets used in this case

were retrieved from the Western Wind Resources Data set developed by United States National

Renewable Energy Laboratory(NREL), which gives access to more than 30,000 sites. The data

sets are displayed in a map representing the United States and each turbine icon represents a part

of a site consisting of ten turbines. The data is modeled by 3TIER, a renewable energy assessment

and forecasting enterprise, using the Weather Research and Forecasting model to downscale the

data, allowing one turbine to represent ten. The groups of turbines are two to five kilometers apart

and the wake effect only fades from twenty kilometers and beyond [14]. From now on the group

of ten turbines will be designated as turbine. It is possible to see a short area of the map in figure

3.1

To fully analyse the impact of Wake effect , a small set of turbines was selected. All the chosen

data sets refer to the year 2006, and the records are 10 minutes apart, making the total number of

52560 records. Eight turbines were selected from the South Park, National Park and their relative

placement to each other was taken into account for the analysis. The display of the turbines can be

seen in figure 3.2. This allows the two central turbines to be analysed using both their own data

set and data sets of from neighbour turbines.
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Figure 3.1: Western Wind Resources Dataset

Figure 3.2: Layout of the selected turbines

In order to perform this analysis, weather records are needed. Variables like the wind direc-

tion and the wind speed are crucial to understand how relevant is the wake effect in wind power

production. This data is also obtained using NREL, which offers the average wind speed and the

average wind direction with a five minutes interval. The meteorologic data and the data retrieved

from the turbines are not enough to perform the required analysis as the display of the turbines

plays an important role in the regression tasks because its position is directly related to the wake

effect. Depending on the winds direction the values of the production should differ, making this

display allied with the direction of the wind one of the main focus of the project.
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3.2 Data Preparation

After data is retrieved it needs to be treated in order to be correctly processed, to obtain a good

model for prediction of energy production to better understand how wake effect interferes with

it it. The interval between meteorologic data and the power output data set was different so, to

correct that, the interval of the meteorologic data was extended to 10 minutes, erasing even rows

of the initial data set. The data sets were retrieved as CSV files (Comma Separated Values), and

using R, were stored in three tables in a Postgresql relational database:

• Values – Table with the power output of each turbine.

• Meteodata – Table containing the South Park average wind direction and average wind

speed values.

• Neighbours – Contains the ID of the neighbour turbines as well as the latitude and longitude

of the respective turbine.

There are several options for data base creation like MySQL, SQLite, etc but in this dissertation

Postgresql is chosen due to past experience and its ease in creating and managing databases. The

use of R is suggested by the supervisors as it is a powerful tool in data mining and the use of several

packages that would facilitate the data analysis. The neighbour turbines are considered to be the

turbines that are North, South, East and West from the target turbine. Even though all the variables

were stored, because they might be useful, in the Values table only the SCORE-lite from each

turbine and neighbour turbines were used. The SCORE process uses observed deviations from a

mean value to create probability density functions of deviation from some central point. SCORE is

run for each individual turbine and produces a time series of data for each turbine. The individual

turbine time series are then aggregated to represent sub-project groupings or are summed up to

model the entire project output. However, to model the output for more than 30,000 individual

turbines is extremely time consuming. To solve this problem SCORE-lite was developed. SCORE-

lite uses the “rated” power output, calculated by converting wind speed to power output through a

simple rating curve, and modify it such that the overall characteristics are more approximate those

observed in reality.

The relative position of the neighbour turbines must be considered as is an important variable

when creating the regression model. This variable combined with the average wind direction

would represent the wake effect impact on the production as if one turbine presents lower values

in production, it might be associated with the position of the surrounding turbines.
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The average wind direction of the park is given in degrees from North, so each neighbour

average wind direction is calculated according to it’s relative position:

• North Neighbour – The north neighbour wind direction will be the same as the parks since

it’s average wind direction is given from north.

• South Neighbour – For the south average wind direction 190 degrees are added to the

park’s direction.

• West Neighbour – 90 degrees were added to the west neighbour to the wind direction wind

values.

• East Neighbour – 270 degrees were added to this turbine values’.

All values were submitted to the modulus operation with 360, to obtain values within the 360

interval. To find the relative position of the neighbour the angle between the vector ~w = (1,0)

and the vector between the central turbine and the neighbour in question ~v. To do so ~v must be

calculated. This vector will be retrieved subtracting the longitude and the latitude of the central

turbine and the neighbour in question so~v = ((longituden− longitudec),(latituden− latitudec)).

It is now possible to find the angle between the two vectors with:

cosθ =
v ·w
‖v‖‖w‖

(3.1)

With this, it is now possible to assign the resulting angle to a neighbour fitting them in an

interval of angles:

• North – Between 315 degrees and 45 degrees.

• South – Between 135 degrees and 225 degrees

• East – Between 225 degrees and 315 degrees.

• West – Between 45 degrees and 135 degrees.

With this it is possible to identify the location of the neighbour. To perform the regression and

obtain a model that predicts the power output correctly, the variables must contain values which

are known at the time the prediction is generated.The data was prepared such that each observation

contains the values of the independent variables for the data of the central turbine and their neigh-

bours’ at time t, but the value of the dependent variable, ie the production of tbe central turbine at

time t +n being n the prediction horizon. This will train the model to predict the power outputted

correctly for t. The final data set used for the regression comprises the following variables:

• SCORE-lite of the central turbine as well as from its neighbours.

• The average wind direction of each turbine.

• The park’s wind speed.

• The park’s wind direction.
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3.3 Experimental Setup

To learn and evaluate the regression models, using the data set that was obtained in the data prepa-

ration step, R was also used. This statistical programming language provides multiple algorithms

to analyse the performance of a model as well as constructing the model referring to the regression

method.

The evaluation of the models performance was made using the R package performanceEstimation

[22]. This package provides flexible tools for performance estimation and experimental compar-

ison of predictive models. It enables the comparison of the performance of multiple regression

algorithms and the selection of the best one. To do so, a function that has the same name as the

package that was used. The performanceEstimation function has three arguments: Predic-

tive Task, WorkFlow and Estimation Methodology.

Predictive Task

This step will determine the variables that are used and the regression formula used in each work

flow. To observe the energy production, that is represented by SCORE-lite, a formula to evaluate

the model is needed. In this case that formula is score~., being that using the dot is the command

to choose all the other variables as independent variables.

WorkFlow

The goal is to estimate the predictive performance of a proposed work fow to solve the task, by

using different samples to increase our confidence on the estimates. This workflow consists on the

process of obtaining a model from a given training sample and then use it to obtain predictions

for the given test set. Because the data set consists of a ordered time series of records the chosen

workflow was timeseriesWF. This workflow function implements two different approaches to the

problem of training a model with a set of time-dependent data and then use it to obtain predictions

for a test set in the future. A time series workflow needs a time window in order to train and test

data. There are two possible choices:

• Sliding Window – Uses data occuring in the last L time steps.

• Growing Window – Keeps increasing the original training window with the newly available

data points. The models are obtained with increasingly larger training samples.

In this case the sliding window was chosen due to its lower time and computation costs. To

execute the workflow an algorithm must be chosen. This function is called with a formula in the

first argument and the training set in the second. The selected algorithms are referent to the chosen

methods to perform and evaluate the regression models.

Evaluation of models are done using a evaluator. There are several evaluators, but in this

case the Normalised Mean Square Error (NMSE) was used as it gives a overall overview of the

difference between the predicted and the real values.
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Estimation Methodology

There are different ways of providing reliable estimates of the predictive performance of a model.

The performanceEstimation package implements some of the most common estimation

methods. In this case Monte Carlo experiments were used because the original order of the ob-

servations is respected and train and test splits are obtained such that the testing samples appear

"after" the training samples, thus being the methodology of choice when comparing time series

forecasting models. Additionally, multiple samples are used to obtain a more reliable estimate of

the performance. Monte Carlo experiments operate as follows:

1. Given a data set spanning from time t1 till time tN .

2. Given a training set time interval size L and a test set time interval size F , such that T +F <

N

3. Monte Carlos experiments sample R randomly time points from the interval [t1+T , tN−F ]

4. For each of these R time points they generate a training set with data in the interval [tR−T+1, tR],

and a test set with interval of [tR+1, tR+F ]

Figure 3.3: Monte Carlo process diagram in performanceEstimation provided by Luís Torgo

Using this process R train+test cycles are carried out using the user-supplied workflow func-

tion, and the experiment estimates result from the average of the R scores as usual. Monte

Carlo Experiments are used by including as third argument McSettings(), in which the argu-

ments nReps, szTrain and szTest were used. All the other arguments are given by default.
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The nReps argument represents the number of repetitions of the Monte Carlo experiment while

szTrain and szTest represent the percentage of cases used in the training samples and the

percentage used in test samples respectively. It is possible to understand this better by looking at

3.3). The values used in this case study are ten for nReps, 50 per cent for training size and 25 per

cent for testing. The obtained values are then observed and conclusions are taken from them.

3.4 Additional Results

After this experiment a second set of experiments was made. In these experiments the data set

was divided into 19 data sets, each data set representing a day, and for each data set the chosen

regression methods were applied. As opposed to the first experiment where only four data sets

were analysed, in this experiment the four regression methods are applied to 19 data sets. This is

useful for comparing the overall results with short-term results as methods might perform better

with less data, or even to observe discrepancies in the results.
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Chapter 4

Results and Discussion

In this chapter, we will present and discuss the results from the methods used for regression. The

analysis of each method is done and the results explained.

First Experiment Results

4.1 Random Forest

After performing an analysis of the performance of the Random Forest model with the given data

set the following results were given:

MSE NMSE
average 140.017 0.918
standard 9.992 0.074
min 118.741 0.781
max 154.674 1.015
invalid 0.000 0.000

Table 4.1: Random Forest results

The average NMSE is almost 92 per cent meaning that a the predictions were very distant from

the actual values. The importance of the variables when splitting in the tree node can be seen in the

node purity. It is possible to observe a table with the variable importance at 4.2, as the variables

represents the power output, the average wind speed of a certain neighbour, which is determined

by the number, as the park variables.

This is the total decrease in node impurity from splitting on the variable. The Node Impurity,

the more important is the variable. In 4.1 we can see that the average wind speed of the park

is the most important independent variable. This is a logical association because we can easily

understand that the wind speed will have a great impact in the production of wind energy. The

second most important is power2, which is energy production of the northern turbine. This means
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Variable Name Node Impurity
power1 42,751.85
avgwinddirection1 34,735.23
power2 51,039.00
avgwinddirection2 36,100.88
power3 37,006.78
avgwinddirection3 37,571.30
power4 42,551.40
avgwinddirection4 34,104.70
avgwindspeed 70,664.59
avgwinddirection 34,372.41

Table 4.2: Variable Importance

Figure 4.1: Variable importance

that when the production of the north neighbour is affected the production of the central will be,

relatively to the other turbines, more significative.

4.2 Linear Regression

In R a linear regression is obtained using lm to fit the values. Executing performanceEstimator

the following results in 4.3

The output of the regression models is the following are represented in 4.2

Analyzing the residuals can lead to some interesting things about the model. The residuals

are the difference between the actual values of the target variable and the predicted values y− ŷ.

Ideally, for most regressions, the residuals should like a normal distribution when plotted. If our

residuals are normally distributed, this indicates the mean of the difference between our predictions
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MSE NMSE
average 151.933 0.995
standard 8.196 0.038
min. 141.945 0.934
max. 167.313 1.072
invalid 0.000 0.000

Table 4.3: Linear modeling Results

Figure 4.2: Results of the simple linear regression model

and the actual values is close to 0 (good) and that when the model misses, it misses both short and

long of the actual value, and the likelihood of a miss being far from the actual value gets smaller as

the distance from the actual value gets larger. The lower the residual standard error the best, given

that the goal is to minimize error to obtain a better model, taking care not to overfit the model.

Pr gives the probability that the variable is not relevant. The smaller the value of Pr the more

important the variable is. In this model is possible to see that the avgwindspeed is the most

important, followed by power2 that represents the power production of the southern turbine. This

can also be checked when looking at the asterisks in the last column. The amount of asterisks

represents the importance of that variable.

In 4.3 (a) it is possible to see the Residuals vs Fitted plot. The points should be randomly

scattered around the center line as having all points on one side would violate linearity. With

this we can infer that the model is better at fitting bigger values, because the red line is, at first,

deviating from the center line, stabilizing on bigger values. The Normal Q-Q plot 4.3 (b) helps

to analyze whether the distribution of residual error is normal. The points should be along the the

diagonal line or else it means that the residual error is not uniformly distributed. In this case the

points are not along the line meaning that the model does not have a uniform distribution of the

residuals.
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4.3 Support Vector Machines

In R the use of a common Support Vector Machines technique is done using the svm function.

MSE NMSE
average 194.136 1.272
standard 11.622 0.093
min 171.509 1.128
max 216.027 1.449
invalid 0.000 0.000

Table 4.4: Support Vector Machine results

These results were given with a SVM with a radial kernel and 2646 support vectors were

generated. Moreover, it must be pointed out that differences on peaks have a higher weight on

NMSE than differences on other values. Parameter tuning is very important for SVM and we had

no time to do it. This possibly explains the low quality of the results obtained

4.4 Recursive Partitioning Tree

Using the rpart function in R will result in a regression model using a simple Recursive Parti-

tioning Tree. The results for this technique are presented in Table 4.5:

MSE NMSE
average 161.004 1.055
standard 9.859 0.061
min 144.638 0.951
max 179.413 1.154
invalid 0.000 0.000

Table 4.5: Regression Tree results

The average predicted values greatly differ from the actual values, rendering high NMSE val-

ues. The regression tree referring to this model, 4.4, displays the classification, the probability of

the class conditioned on the node and the percentage of observations used at that node. With the

analysis of this tree is possible to understand that when the power generated by the southern tur-

bine is 3.1 MW or more (representing 71 per cent of the cases) we have two situations: when the

average wind speed is less than 11, obtaining lower values for energy production; This represents

62 per cent of the cases. Otherwise the generated power takes higher values. This is logical as

wind speed is related with the production of energy.

If the power production in the southern turbine is less than 3.1 MW higher values for pro-

duction. The eastern turbine production will be related to the production of the central turbine as

further analysis of the data revealed that the wind as in its direction.

Figure 4.5 supports the regression model as the most important variables are the ones that are

used in the regression tree.
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Figure 4.3: Plots for linear modeling analysis
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Figure 4.4: Regression Tree of the obtained model

Figure 4.5: Variable Importance in the Regression Tree
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Second Experiment Results

With this experiment interesting results were obtained. Despite the Linear Modeling and the Re-

gression Tree method presenting similar results to the overall set, it is possible to see on figure 4.6

that the Random Forests method is not the best at predicting daily productions. It is easy to see

that the method with the best results is the SVM. This might have to do with the fact that the SVM

didn’t suffered any tuning and could produce better results with it.

4.5 Discussion of Results

First Experiment

The results obtained by all the algorithms are, on average not good. The NMSE values are large,

meaning that a large amount of data is predicted incorrectly making the regression model not

reliable. We can see in 4.7 that the model with the lowest NMSE is Random Forests. This means

that Random Forests produced, on average, more accurate results than the other techniques.

Second Experiment

To further analyse all methods the data set was divided in days and the values for daily NMSEs

was calculated. With this is possible to analyse more closely the variance of the NMSE throughout

the nineteen days. In 4.6 is possible to see that SVM is the method with the lowest values for

daily NMSEs. Comparing to overall results, where the SVM is the method with the worst results,

it is possible to conclude that SVM is better for short-term predictions (less records) . Relatively

to the other methods, Random Forest continues to be the one with the least NMSE and the chosen

method to model the data set. It is possible to observe high peaks on 4.6 in all methods. This can

be related to a abrupt variance in the meteorologic enviornment of the park, rendering incorrect

predictions.
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Figure 4.6: Daily NMSE of the methods used
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Figure 4.7: Results of the analysed models
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Chapter 5

Final remarks and Future Work

Wind energy is one of the most prominent renewable energies in the current days. Understanding

how the Wake Effect affects the efficiency of a wind farm may lead to a more profitable parks. This

project builds a model that relates the production of wind energy in a turbine to some independent

variables, with which is it would be possible to predict the production of a turbine based on its

location. The final results were not sufficiently good to employ the models in practice.

5.1 Difficulties

It was not possible to collect data concerning the production of individual turbines. The output of

the regression results could be better if data of a single turbine instead of a data retrieved from a

model. A off-shore data set would be ideal, because uncontrolled variables like irregular terrain

would be greatly reduced. This kind of data sets were not available for free.

The construction of the data set was a step that took an unexpected amount of time, because

its format was not indicated for the data mining task. Data preparation was also complex. For

instance obtaining the location of the turbine was a challenge because obtaining it from a group of

turbines didn’t supplied correct information about the location of each turbine in the group.

5.2 Future Work

With a model that correctly produces accurate predictions of the energy production of a wind

turbine, it possible to improve the efficiency of a wind farm. With the use of new variables like

the individual production of a turbine instead of modeled values or windspeed of a offshore park it

would be possible to obtain better results. Tuning parameters in some methos is crucial to obtain a

model that would predict better values, making the model more reliable. With the use of artificial

intelligence techniques it is possible to obtain a layout for the wind farm that minimizes the effect

that the turbulence caused by the wake effect. This would lead to the creation of a decision support

system that would help constructors to optimize the location of turbines in order to achieve more

profitable results.
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