

DOUTORAMENTO

CIÊNCIAS BIOMÉDICAS

Modulation of inflammatory response associated with intervertebral disc degeneration

Graciosa Patrícia Quelhas Teixeira

Graciosa Patrícia Quelhas Teixeira. Modulation of inflammatory response associated with intervertebral disc degeneration

Modulation of inflammatory response associated with intervertebral disc degeneration

Graciosa Patrícia Quelhas Teixeira

D.ICBAS 2017

INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAR

GRACIOSA PATRÍCIA QUELHAS TEIXEIRA

MODULATION OF INFLAMMATORY RESPONSE ASSOCIATED WITH INTERVERTEBRAL DISC DEGENERATION

Tese de Candidatura ao grau de Doutor em Ciências Biomédicas, submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto.

Orientador - Doutora Raquel Madeira Gonçalves

Categoria - Investigador auxiliar

Afiliação – Instituto de Investigação e Inovação em Saúde/Instituto de Engenharia Biomédica da Universidade do Porto

Coorientador - Doutora Cornelia Neidlinger-Wilke

Categoria - Investigador auxiliar

Afiliação – Institute of Orthopaedic Research and Biomechanics, University of Ulm, Germany

Coorientador - Professor Doutor Mário Adolfo Monteiro da Rocha Barbosa

Categoria – Professor catedrático

Afiliação – Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto; Instituto de Investigação e Inovação em Saúde/Instituto de Engenharia Biomédica da Universidade do Porto

To my parents

My role models.

FUNDING

The work included in this thesis was financially supported by:

- Fundação para a Ciência e a Tecnologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020 Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020 in the framework of the project "INSTITUTE FOR RESEARCH AND INNOVATION IN HEALTH SCIENCES" (POCI-01-0145-FEDER-007274)";
- FCT through the PhD grant (SFRH/BD/88429/2012) (2013-2017) and in the framework of Raquel Gonçalves' Exploratory Project of FCT Investigator, Starting Grant (APPROACHING INTERVERTEBRAL DISC REGENERATION BY MESENCHYMAL STEM CELLS RECRUITMENT (IF/00638/2014) (2015-2020);
- Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), in the framework of the project "BIOENGINEERED THERAPIES FOR INFECTIOUS DISEASES AND TISSUE REGENERATION" (NORTE-01-0145-FEDER-000012) (2016-2018):
- Eurospine Task Research Force, for the pilot grant "STEM CELLS PARACRINE ACTION FOR INTERVERTEBRAL DISC REGENERATION" (2015-2016);
- Conselho de Reitores das Universidades de Portugal (CRUP) and the Deutscher Akademisher Austaucshdienst (DAAD) in the framework of Germany-Portugal Integrated Actions Program 2011/2012 for the project "SIMULATION OF NEW DISC REGENERATION THERAPIES IN AN ORGAN CULTURE" (2011-2013).

Publicações | Publications

Ao abrigo do disposto do nº 2, alínea a) do artigo 31º do Decreto-Lei n.º 115/2013 de 7 de agosto, fazem parte integrante desta tese de doutoramento os seguintes trabalhos já publicados ou submetidos para publicação:

According to the relevant national legislation, there are part of this doctoral thesis the following works already published or submitted for publication:

Book chapter

Teixeira GQ, Gonçalves RM, Barbosa MA, Immunomodulation in degenerated intervertebral disc *in* Gene and Cell Delivery for Intervertebral Disc Degeneration, to be edited in November 2017. Editor: Gonçalves RM and Barbosa MA. Taylor & Francis Group, LLC/CRC Press (Chapter II).

Articles

Teixeira GQ, Boldt A, Nagl I, Pereira CL, Benz K, Wilke HJ, Ignatius A, Barbosa MA, Gonçalves RM*, Neidlinger-Wilke C*, A degenerative/pro-inflammatory intervertebral disc organ culture: an ex vivo model for anti-inflammatory drug and cell therapy. Tissue Eng Part C Methods. 2015;22:8-19. * equal contribution (Chapter IV).

Teixeira GQ, Leite Pereira C, Castro F, Ferreira JR, Gomez-Lazaro M, Aguiar P, Barbosa MA, Neidlinger-Wilke C, Goncalves RM, Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomater. 2016;42:168-79 (Chapter V).

Teixeira GQ, Leite Pereira C, Ferreira JR, Maia AF, Gomez-Lazaro M, Barbosa MA, Neidlinger-Wilke C, Goncalves RM, Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration: insights from a proinflammatory/degenerative ex vivo model. *Submitted* (Chapter VII).

Outras publicações complementares à tese:

Other publications complementary to the thesis:

Antunes JC, Pereira CL, **Teixeira GQ**, Silva RV, Caldeira J, Grad S, Gonçalves RM, Barbosa MA, Poly(γ -glutamic acid) and poly(γ -glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. Mater Sci Mater Med. 2017;28:6.

GQT performed and interpreted the nanocomplexes internalization studies and contributed to the manuscript revision.

Pereira CL, **Teixeira GQ**, Caldeira J, Costa M, Figueiredo F, Fernandes R, Aguiar P, Grad S, Barbosa MA, Gonçalves RM, Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Sci Rep. 2016;6:33836.

GQT contributed to the preparation of organ cultures, acquisition of data and revision of the manuscript.

Cunha C, Almeida CR, Almeida MI, Silva AM, Lamas S, Molinos M, Pereira CL, **Teixeira GQ**, Monteiro AT, Santos SG, Gonçalves RM, Barbosa MA, Systemic delivery of bone marrow MSCs for in situ intervertebral disc regeneration. Stem Cells Transl Med. 2016;5:1-11.

GQT contributed to the acquisition of data and revision of the manuscript.

ACKNOWLEDGEMENTS

In work, as in life, I have been lucky to come across great people that helped me and taught me immensely. This thesis is the milestone of the work we've been through the last four years. And they have been nothing short of amazing!

Foremost, I am deeply thankful to Raquel and her selfless time and care. More than being my supervisor, you have been a mentor and a friend. Thank you for listening to my ideas, for pushing me to do interesting things and for never leaving me unguided through all these years, for showing me how passionate one can be about work, for being an inspiration and a role model as a scientist and a woman.

My heartfelt thanks to Conny, for receiving me in Germany with such warm and welcoming, for sharing with me your knowledge and for always being motivational and enthusiastic. I have felt at home while doing research with you. You gave me the opportunity to work in a completely different environment than I have in Portugal, from which I learned a lot and to which I hope I could contribute. In Ulm, I have grown a lot scientifically and personally.

I must also express my admiration and gratitude to Professor Mário, for the great chance to work in the Microenvironments for New Therapies team, for the hard questions, constructive meetings, and insightful comments and ideas throughout this PhD road.

To Professor Wilke and Professor Ignatius, for the encouragement and support over the work collaborations.

To Catarina, Daniela, Filipa and David, for your help, friendship, patience, kindness and humor throughout the hours we've spent together. You make it worth going to work!

To Flávia, Zé, Ritinha, Andreia, Maria, Daniel, Aninhas, Rui, Tiago, Vasco, Estrela, Catarina, Luísa and Sara, for your support and for making work fun.

To Joana, Ines and Anne. I couldn't have asked for nicer students and friends to share the lab work with and I wish you all the best success in the future.

To Inês Almeida, Paulo Aguiar, André Maia, María Lázaro, Carla Cunha and Susana Santos for your ideas, contributions and support.

To Katja, Verena, René, David, Nicky and Luigi, for your friendship and all the fun we have, for keeping in touch, and for having never forgotten to call me for lunch. Also, to Andy, for taking me in the Stella group since the first day I arrived in Ulm.

To Angelika Reindl, for finding me a place to leave in Ulm and kindly sharing her desk with me for a while, and to Dr. Ludwika Kreja, for helping me getting installed and taking me to the hospital on my first day in the lab, when I unsuccessfully tried to dissect a bovine tail.

To all the technicians at i3S, ICBAS and IORB that provided me an excellent technical assistance.

To Mr. Juca from Carnes Landeiro and SERI for their contributions to this work.

To my best friends, Mariana, Teresa, Raquel and Susana, for keeping my mind away from work when I most needed, but also for coming many times to the lab with me, for listening, understanding and being with me through the emotional road of this thesis.

To my grandmother Adelaide, my uncle António and my aunt Laurentina, for constantly showing interest in what I do and in my happiness. To the non-presents, my grandparents Lucília, António and Domingos, and my uncles Manuel and Rafael. I hope you're proud of me, no matter where you are.

To Romy, Joachim, Marianne, Hedwig, Rebecca and Axel, for welcoming me with so much affection in your family, and for tenderly extending your warmth and care to me and my family. Thank you for all the great times to repeat!

My dearest acknowledgments go always to my parents, Júlia and Armindo, and to Holger, for your unconditional love, support and encouragement, for inspiring me in every way possible, for listening to my dramas in the days when experiments went tragic and for being proud of me when they succeeded, for continuously pushing my boundaries and keeping my mind open for the better to come, for showing me every day how wonderful life and happiness can be, for letting me love you and for loving me back.

To you all, my deepest acknowledgments. This work would not have been possible without you.

ABSTRACT

Intervertebral disc (IVD) degeneration and associated inflammation often lead to low back pain, one of the major causes of disability worldwide. Although available clinical treatments decrease symptoms' progression, they fail to restore native IVD properties. Clinical trials using cell therapies are increasing, but the hostile pro-inflammatory environment of IVD may challenge their success, since may impair cell survival and matrix formation. Due to the high impact on population health and the lack of adequate solutions, novel therapies that modulate the inflammatory response can be a new hope to treat IVD degeneration.

This works opens new perspectives on alternative therapeutic approaches to modulate inflammation, while stimulating IVD regeneration, and on how the inflammatory environment of IVD can challenge the regenerative process.

Though a high number of animal models have been developed to mimic IVD degeneration, when this investigation commenced there was no model that simulated the inflammatory process of human progressive disc degeneration, while allowing its standardized control. Therefore, a standardized degenerative/pro-inflammatory *ex vivo* IVD model was first established and validated, using bovine caudal disc cultures, under static loading, stimulated by needle-puncture and IL-1β. From several conditions tested, these were shown to mimic more closely the human IVD degeneration and associated inflammatory response. Moreover, this model showed great potential for testing bioactive molecules and cell therapy approaches.

A nanotechnology-based therapy, based on chitosan (Ch) and poly(γ-glutamic acid) (γ-PGA) nanoparticles/nanocomplexes (NCs) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously developed in the group. The anti-inflammatory NCs were injected into the established IVD *ex vivo* model and were shown to effectively down-regulate pro-inflammatory markers production, while promoting matrix remodelling by native cells. Df-NCs were then injected in degenerated discs *in vivo*, in a rat model of tail punctured IVD, already established in the lab. The preliminary results obtained indicate that 2 weeks' post-injury the intradiscal administration of Df-NCs did not seem to promote proteoglycan production in the IVD, contrasting with the promising *ex vivo* results previously obtained. Moreover, Df-NCs did not promote hernia regression. Nevertheless, in the group of animals receiving intradiscal Df injection, the hernia volume was reduced. Ongoing work is being performed to comprehend the results discrepancy.

Finally, due to the promisor but controversial results obtained with cell therapies, namely with mesenchymal stem/stromal cells (MSCs) for low back pain, the effect of pro-

inflammatory/degenerative environment of IVD on MSCs evaluated using the ex vivo model previously established. MSC revealed to have an immunomodulatory, but not proregenerative, role on degenerated IVD, decreasing the inflammatory response of IVD cells. The results obtained suggest that MSCs act through a feedback loop mechanism, producing other inflammatory factors, but how this impacts on low back pain has not been addressed so far.

In summary, this thesis contributed to advance knowledge on how the modulation of inflammation can affect IVD regeneration. The work developed in this thesis also opened new perspectives in the use intradiscal injection of anti-inflammatory drugs in IVD degeneration and how the degenerated IVD can influence the success of cell therapies for low back pain.

RESUMO

A degeneração do disco intervertebral (IVD) e a inflamação associada contribuem frequentemente para a dor lombar, uma das principais causas mundiais de incapacidade. Embora os tratamentos clínicos disponíveis diminuam a progressão dos sintomas, não têm capacidade de restaurar as propriedades nativas do IVD. Os ensaios clínicos que utilizam terapias celulares estão a aumentar, mas o ambiente pró-inflamatório hostil do IVD pode desafiar o seu sucesso, pois pode impedir a sobrevivência celular e a formação da matriz.

Devido ao elevado impacto sobre a saúde da população e à falta de soluções adequadas, novas terapias que modelem a resposta inflamatória podem ser uma nova esperança para o tratamento da degeneração do IVD.

Este trabalho apresenta novas perspetivas sobre abordagens terapêuticas alternativas para modular a inflamação, e ao mesmo tempo estimular a regeneração do IVD, e sobre como o ambiente inflamatório do IVD pode desafiar o processo regenerativo.

Embora haja um elevado número de modelos animais desenvolvidos para mimetizar a degeneração do IVD, quando esta investigação começou, não existia um modelo que simulasse o processo inflamatório da degeneração progressiva do disco humano, permitindo um controlo padronizado. Por conseguinte, um modelo *ex vivo* degenerativo/pró-inflamatório de IVD padronizado foi primeiro estabelecido e validado, utilizando culturas de disco da cauda de bovino, sob carga estática, estimuladas por punção com agulha e IL-1β. Das várias condições testadas, estas foram mostradas as mais próximas em mimetizar a degeneração do IVD humano e a resposta inflamatória associada. Além disso, este modelo mostrou grande potencial para testar abordagens que incluam moléculas bioativas e terapia celular.

Uma terapia nanotecnológica baseada em nanopartículas/nanocomplexos (NCs) de quitosano (Ch) e ácido poli(γ-glutâmico) com um fármaco anti-inflamatório não esteróide, diclofenac (Df), foi anteriormente desenvolvido no grupo. Estes NCs anti-inflamatórios foram injetadas no modelo *ex vivo* de IVD estabelecido e demonstraram efetivamente diminuir a produção de marcadores pró-inflamatórios, enquanto promoveram a remodelação da matriz por células nativas. Os Df-NCs foram então injetados *in vivo*, em discos degenerados, num modelo de IVD da cauda de rato puncionado, já estabelecido no laboratório. Os resultados preliminares obtidos indicam que, 2 semanas após a lesão, a administração intradiscal de Df-NCs não pareceu promover a produção de proteoglicanos no IVD, contrastando com os resultados promissores *ex vivo* anteriormente obtidos. Além disso, os Df-NCs não promoveram a regressão da hérnia. No entanto, no grupo de animais que receberam injeção

intradiscal de Df, o volume da hérnia foi reduzido. Está em curso a continuação deste trabalho no sentido de compreender a discrepância dos resultados.

Por fim, devido aos resultados promissores, mas controversos, obtidos com as terapias celulares, nomeadamente com células estaminais/estromais mesenquimais (MSCs) para a dor lombar, o efeito do ambiente pró-inflamatório/degenerativo do IVD nas MSCs foi avaliado, utilizando o modelo *ex vivo* anteriormente estabelecido. As MSCs revelaram ter um papel imunomodulador, mas não pró-regenerativo, sobre o IVD degenerado, diminuindo a resposta inflamatória das células do IVD. Os resultados obtidos sugerem que as MSCs atuam através de um mecanismo de autorregulação, produzindo outros fatores inflamatórios, mas como isto afeta a dor lombar não tem sido abordado até agora.

Em suma, esta tese contribuiu para o avanço do conhecimento em como a modulação da inflamação pode afetar a regeneração IVD. O trabalho desenvolvido nesta tese também abriu novas perspetivas no uso de injeção intradiscal de drogas anti-inflamatórias na degeneração do IVD, e como o IVD degenerado pode influenciar o sucesso de terapias celulares para a dor lombar.

Table of Contents

Ab	stract		xiii
Re	sumo		ΧV
Lis	t of Al	obreviations	xxiii
Cŀ	IAPTE	ER I – General introduction	1
1.	Socia	al impact of low back pain	3
2.	Low	back pain generators	3
3.	The	healthy intervertebral disc	4
	3.1.	Cartilaginous endplate	5
	3.2.	Annulus fibrosus	6
	3.3.	Nucleus pulposus	7
4.	Pher	notypic markers of the different IVD cell populations	8
5.	Agin	g and degeneration	12
	5.1.	The again/degeneration mechanism	12
6.	Stud	y models of IVD degeneration and inflammation	14
	6.1.	Ex vivo	15
	6.2.	In vivo	19
CI	HAPT	ER II – Immunomodulation in degenerated intervertebral disc	25
1.	Imm	unogenic phenotype of IVD cell populations and induced immune cell response	27
	1.1.	Key pro-inflammatory molecules in IVD degeneration and associated	
		inflammation	28
		1.1.1. TNF-α	28
		1.1.2. IL-1β	33
		1.1.3. IL-6	34
	1.2.	TLRs	35
	1.3.	microRNAs	36
	1.4.	Immune cell activation	37
		1.4.1. T cells	39
		1.4.2. Macrophages	40
	1.5.	Other factors involved in enervation, vascularization and pain	41
2.	Strat	egies for immunomodulation of degenerated intervertebral disc	42
	2.1.	Molecular therapy: clinical trials	42

	2.2.	Molecular therapy: in vivo and ex vivo studies	47
	2.3.	Gene therapy	48
	2.4.	Cell-based therapies	48
		2.4.1. Endogenous therapies	49
		2.4.2. Exogenous stem cell delivery: clinical trials	50
		2.4.3. Exogenous stem cell delivery: in vivo and in vitro studies	50
Cŀ	IAPTE	ER III – Aim of the thesis	5
CH	IAPTE	ER IV – A degenerative/pro-inflammatory intervertebral disc organ	
		an ex vivo model for anti-inflammatory drug and cell therapy	5
Ab	stract		6
1.		duction	6
2.	Mate	rials and Methods	6
	2.1.	Establishment of a bovine organ culture model	6
	2.2.	Simulation of pro-inflammatory environment	6
	2.3.	Evaluation of diclofenac injection in the pro-inflammatory IVD organ culture	6
	2.4.	Culture of human MSCs	6
	2.5.	MSCs injection in the pro-inflammatory IVD organ culture	6
	2.6.	Sample preparation for quantitative real-time reverse transcription	
		polymerase chain reaction	6
	2.7.	Quantitative real-time reverse transcription-polymerase chain reaction	6
	2.8.	Statistical analysis	7
3.	Resu	ılt	7
	3.1.	Cell viability and metabolic activity in a bovine IVD organ culture model in	
		pro-inflammatory conditions	7
	3.2.	Analysis of pro-inflammatory markers, MMPs and ECM proteins of the pro-	
		inflammatory IVD organ culture model	7
	3.3.	Evaluation of an anti-inflammatory (diclofenac) injection in the pro-	
		inflammatory IVD organ culture	7
	3.4.	Evaluation of MSCs injection in the pro-inflammatory IVD organ culture	7
4.		ussion	7
Re		Des	7
		nentary Data	8
		-	

Cŀ	IAPTE	ER V – Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles	
		inflammation while remodeling extracellular matrix in degenerated	
int	erver	tebral disc	
Ab	stract		
1.	Intro	duction	
2.	Mate	rials and Methods	1
	2.1.	Pro-inflammatory IVD organ culture model and intradiscal anti-inflammatory	
		treatment	1
	2.2.	Mitochondrial metabolic activity of IVD cells in the organ culture model	1
	2.3.	DNA quantification	1
	2.4.	Ch/γ-PGA nanocomplexes preparation and incorporation of diclofenac	1
	2.5.	Characterization of Ch/Df/γ-PGA nanocomplexes	1
	2.6.	Preparation of fluorescent Ch and fluorescent Ch/ γ -PGA nanocomplexes with	
		and without Df	1
	2.7.	Analysis of internalization of ftCh/Df/ γ -PGA nanocomplexes by IVD cells	
		using confocal microscopy	1
	2.8.	Quantification of ftCh/Df/ γ -PGA nanocomplexes internalization by IVD cells	
		in the organ culture model	1
	2.9.	Quantitative real-time reverse transcription polymerase chain reaction	1
	2.10.	Prostaglandin E ₂ quantification in culture supernatants	1
	2.11.	Sulphated glycosaminoglycans quantification	1
	2.12.	Detection of proteoglycans by safranin O/light green staining	1
	2.13.	Detection of collagen type II and aggrecan in the IVD	1
	2.14.	Statistical Analysis	1
3.	Resu	ılts	1
	3.1.	Viability of IVD organ culture model upon Ch/Df/ γ -PGA nanocomplexes	
		injection	1
	3.2.	Evaluation of Ch/Df/ γ -PGA NCs internalization in IVD organ culture	1
	3.3.	Anti-inflammatory potential of $Ch/Df/\gamma$ -PGA nanocomplexes injection in pro-	
		inflammatory/degenerative IVD organ culture model and evaluation of ECM	
		remodeling	1
	3.4.	Evaluation at protein level of ECM remodeling in longer-term pro-	
		inflammatory IVD organ culture upon treatment with Ch/Df/ γ -PGA NCs	1
4.	Disc	ussion	1
5.	Conc	clusions	1
Re	eferenc	ces	1

		mplexes <i>in vivo</i> : insights from a rat caudal degenerated/herniated tebral disc model
		tebrar disc moder
		duction
		rials and Methods
	2.1.	Nanoparticles preparation, incorporation of diclofenac and characterization
	2.2.	Animal experimentation
	2.3.	·
	2.4.	-
		polymerase chain reaction
	2.5.	IVD collection and histological analysis
		2.5.1. Alcian Blue/Picrosirius Red staining
		2.5.2. Safranin-O/Fast Green staining
	2.6.	Detection of CD68 ⁺ cells
	2.7.	Statistical analysis
3.	Resu	ılts
	3.1.	Characterization of the nanocomplexes used for intradiscal injection
	3.2.	Disc height index and local profile of pro-inflammatory markers after injury
		and intradiscal treatment
	3.3.	IVD ECM composition analysis
	3.4.	Hernia size and immune cell infiltration
4.	Disc	ussion
Re	feren	ces
Su	pplen	nentary Data
		ER VII – Immunomodulation of human mesenchymal stem/stromal cells
		rvertebral disc degeneration: insights from a pro-inflammatory/
	•	ative ex vivo model
		duction
2.		rials and Methods
		Culture of human MSCs
	ソラ	Pro-inflammatory IVD organ culture model

	2.3.	MSCs co-culture with IVD	164
	2.4.	Human MSCs migration assessment, samples preparation, image	
		acquisition and analysis	165
	2.5.	Mitochondrial metabolic activity of IVD cells in the organ culture model	166
	2.6.	MSCs identification and LIVE/DEAD assay	166
	2.7.	DNA quantification	167
	2.8.	Quantitative real-time reverse transcription polymerase chain reaction	167
	2.9.	Detection of relative protein expression	168
	2.10.	Protein quantification in culture supernatants	168
	2.11.	Sulphated glycosaminoglycans quantification	168
	2.12.	Detection of type II collagen and aggrecan in the IVD	168
	2.13.	Statistical analysis	169
3.	Resu	lts	169
	3.1.	Metabolic activity, viability and apoptosis of MSCs and IVD in healthy vs	
		pro-inflammatory/degenerated IVD environment	169
	3.2.	Screening of inflammatory factors produced by MSCs under pro-	
		inflammatory/degenerative culture conditions	172
	3.3.	Influence of MSCs in the profile of MMPs and ECM components	173
	3.4.	Evaluation of ECM remodeling in longer-term pro-inflammatory MSCs/IVD	
		co-culture	175
	3.5.	Inflammatory gene expression in cells isolated from the organ culture, 2	
		days after culture in pro-inflammatory conditions	175
4.	Discu	ıssion	177
Re	ferenc	es	180
Su	pplem	entary Data	186
CH	IAPTE	R VIII – General discussion and future perspectives	189
RE	FERE	NCES	199
۸ D	DENIC	NY – Imaga licanses	2/1

LIST OF ABBREVIATIONS

 γ -PGA Poly- γ -glutamic acid

ACAN Aggrecan

ACs Articular chondrocytes

ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs

AF Annulus fibrosus

Akt Serine/threonine-protein kinase

ANG Angiopoietin
AnxV Annexin V

AP Activating protein

AQP Aquaporin

ASCs Adipose-derived stem cells ASIC3 Acid-sensing ion channel 3

BASP1 Brain abundant membrane attached signal protein 1

BCA Bicinchoninic acid

BDNF Brain-derived neurotrophic factor bFGF Basic fibroblast growth factor

BM Basal medium

BMP Bone morphogenetic protein

BSA Bovine serum albumin
CA Carbonic anhydrase
CCL CC chemokine ligand
CCR CC chemokine receptor

CDH2 Cadherin 2

CDMP Cartilage-derived morphogenetic protein

cDNA Complementary DNA CEP Cartilaginous endplate

Ch Chitosan

C-KIT Mast/stem cell growth factor receptor Kit
CLSM Confocal laser scanning microscopy

COL Collagen

COMP Cartilage oligomeric matrix protein

COX Cyclo-oxygenase

CRDs Cysteine-rich domains

CTB CellTracker Blue

CTGF Connective tissue growth factor

CXCL CXC chemokine ligand CXCR CXC chemokine receptor

CYTL Cytokine like

DA Degree of acetylation

Df Diclofenac
DLL Delta-like

DMEM Dulbecco's modified Eagle's medium

DMMB 1,9-dimethyl-methylene blue

DR Death receptor

DRG Dorsal root ganglion

DSC Desmocollin

dsDNA Double standard DNA ECM Extracellular matrix

ELISA Enzyme-linked immunosorbent assay

EthD-1 Ethidium homodimer-1

FADD Fas-associated protein with death domain

FasL Fas ligand
FasR Fas receptor

FBLN Fibulin

FBS Fetal bovine serum

FGFR Fibroblast growth factor receptor

FITC Fuorescein isothiocyanate

FOX Forkhead box

ftCh Fuorescein isothiocyanate labeled chitosan

FTIR Fourier transform infrared spectroscopy

GAG Glycosaminoglycan

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

GAS1 Growth arrest specific gene/protein 1
G-CSF Granulocyte colony-stimulating factor

GD Ganglioside

GDF Growth differentiation factor

GGT γ -glutamyltransferase GLUT Glucose transporter

GM-CSF Granulocyte-macrophage colony-stimulating factor

gp130 Glycoprotein 130

GPC3 Glypican 3

HIF Hypoxia inducible factor
HLA Human leukocyte antigen

HO Hemeoxygenase HOXD10 Homeobox D10

HPAN Hydrolyzed polyacrylonitrile

HSA-HA Human serum albumin-hyaluronan

IBSP Integrin binding sialoproteinICAM Intracellular adhesion moleculeIDO Indoleamine-2,3-dioxygenase

IF Immunofluorescence

IFN Interferon

IGF Insulin-like growth factor

IgG Immunoglobulin G

IHC Immunohistochemistry

IL Interleukin

IL-1R1 Interleukin-1 receptor, type 1

IL-1Ra Interleukin-1 receptor antagonist

IL-1RAcP Interleukin-1 receptor accessory protein

IL-6 sR Interleukin-6 soluble receptor

IL-6Rα Interleukin 6 receptor, subunit alpha

iNOS Inducible nitric oxide synthase

IP-10 Interferon-gamma-induced protein 10

IQR Interquartile range

IRAK Interleukin-1 receptor-activated protein kinase

IVD Intervertebral disc

IkB Inhibitor of kappa B

JAK Janus kinase

JNK c-Jun N-terminal kinase

KRT Keratin

LBP Low back pain

LFA Lymphocyte function-associated antigen

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase MCP Monocyte chemotactic protein

M-CSF Macrophage colony-stimulating factor
MIG Monokine induced by interferon-gamma

mIL-1 Membrane-bound interleukin-1

mIL-6R Membrane-bound interleukin-6 receptor

MIP Macrophage inflammatory protein

miRNA microRNA

MKP Mitogen-activated protein kinase phosphatase

MMPs Metalloproteinases mRNA Messenger RNA

MSCs Mesenchymal stem/stromal cells

mTNF Membrane-bound tumor necrosis factor

MYD88 Myeloid differentiation primary response gene 88

NCAM Neural cell adhesion molecule NCs Nanoparticles/nanocomplexes

NF1 Nuclear factor 1

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells

NGF Nerve growth factor

NO Nitric oxide

NOTCH Neurogenic locus notch homolog protein

NP Nucleus pulposus

NSAIDs Non-steroidal anti-inflammatory drugs

O₂-O₃ Oxygen-ozone

OCT Octamer-binding transcription factor

OD Optical density
PAX Paired box

PDGF-BB Platelet-derived growth factor-BB

PdI Polydispersion index PFA Paraformaldehyde

PG Prostaglandin
PGE2 Prostaglandin E2
PI Propidium iodide

PI3K Phosphoinositide-3 kinase

PIK3CD Phosphoinositide-3 kinases catalytic subunit delta

PLA₂ Phospholipase A₂
pri-miRNA Primary microRNA
PRP Platelet-rich plasma

PTEN Phosphatase and tensin homolog

PTN Pleiotrophin

qRT-PCR Quantitative real-time reverse transcription-polymerase chain reaction

RANTES Regulated on activation, normal T-cell expressed, and secreted

RhoC Ras homolog gene family, member C

RIP1 Receptor-interacting protein 1 sGAG Sulphated glycosaminoglycan

Shh Sonic hedgehog

sIL-6R Soluble interleukin-6 receptor

SMAD3 SMAD family member 3

SNAP Synaptosomal-associated protein SOCS Suppressor of cytokine signaling SOSTDC Sclerostin domain containing

Sox-9 Transcription factor Sox-9

STAT Signal transducers and activators of transcription

sTNF Soluble tumor necrosis factor

sTNFR Soluble tumor necrosis factor receptor

STRO Stromal precursor antigen

TACE Tumor necrosis factor-alpha-converting enzyme

T_C cells Cytotoxic T cells

TGF Transforming growth factor

T_H cells T helper cells

THD Tumor necrosis factor homology domain

TIE2 Transmembrane tyrosine-protein kinase receptor 2

TIMP Tissue inhibitor of metalloproteinase

TLBN Translamellar bridging network

TLRs Toll-like receptors

TNF Tumor necrosis factor

TNFAIP Tumor necrosis factor-alpha induced protein

TNFR Tumor necrosis factor receptor

TNMD Tenomodulin

TRADD Tumor necrosis factor receptor type 1-associated death domain protein

TRAF2 Tumor necrosis factor-receptor-associated factor 2

TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

Trpv1 Transient receptor potential cation channel, subfamily V, member 1

TSG Tumor necrosis factor-alpha stimulated gene/protein

VCAN Versican

VEGF Vascular endothelial growth factor

VEP Vertebral endplate

YLDs Years lived with disability

CHAPTER I

General introduction

1. Social impact of low back pain

Low back pain (LBP) has been described to affect approximately two thirds of the word population at some point in their life (Andersson 1999, Deyo and Weinstein 2001) and it is considered the number one disease regarding global years lived with disability (YLDs) (Vos et al. 2012). Recent findings showed that both in 1990 and 2010, LBP was contributing to about 10.7% of total YLDs (Vos et al. 2012). Over the past two decades, this musculoskeletal condition has been common cause of activity limitations in people younger than 45 years, absence from work, seeking for primary care, admission to hospital, and surgical procedures (Andersson 1999). Nonetheless, there is also a possibility that psychosocial factors may influence the prevalence of the disease, namely stress, anxiety, and depression (Andersson 1999). The population awareness of the symptoms and their reporting may also contribute to the high LBP prevalence observed (Croft 2000, Weiner 2008).

Although it is estimated that about 90% of the patients recover from LBP within a few months after receiving primary care (Shekelle et al. 1995), the remaining patients may develop chronic LBP (described as pain lasting for 12 weeks or longer) or suffer from recurrent pain episodes (corresponding to around 20% to 44% within one year after the initial episode and may reach up to 85% along life) (Andersson 1999, van Tulder et al. 2002). Reports estimate that the total costs associated with back problems corresponded to about \$85.9 billion per year, in the USA (Martin, Deyo et al. 2008) and £12.3 billion in the UK (Maniadakis and Gray 2000, Hong et al. 2013).

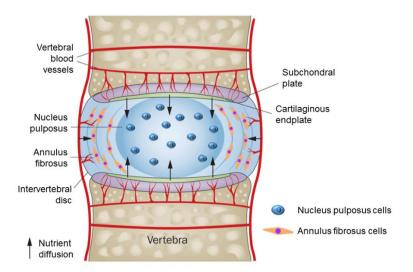
2. Low back pain generators

Acute LBP (defined as lasting less than 4 weeks) is most commonly caused by muscle strains, ligaments sprains, and tendonitis (Cooper 2015). It may also be caused by traumatic injury, intervertebral disc (IVD) degeneration, disc herniation or rupture, radiculopathy (compression, inflammation and/or injury to a spinal nerve root), skeletal irregularities (e.g. scoliosis and lordosis), spinal stenosis (spine narrowing, which pressures the spinal cord and nerves) or spondylolisthesis (displacement of the vertebra and pinching of the nerves) (Cooper 2015). Although rarer, LBP may also be related to underlying conditions such as compression fracture, cancer, cauda equine syndrome or spinal infection (Chou et al. 2007).

Degeneration of the IVD has been perceived as the major cause of functional alterations and spinal instability (latridis et al. 2009, Galbusera et al. 2014). In young individuals, it has been described that discogenic LBP (with absence of disc herniation and nerve root compression) accounts for about 40% of chronic LBP (Cheung et al. 2009, Verrills et al. 2015). Sciatica cases (with disc herniation and nerve root compression) represent about 20 to 30% (Koes et al. 2007), and zygapophysial joint pain is estimated to account between 5% to 15% of the chronic

LBP cases (van Kleef et al. 2010, Cooper 2015).

The neurological symptoms of LBP are treated depending on whether the pain is acute or chronic. Frequently, the doctors struggle about the most effective option. Commonly, surgery is only recommended when diagnostics indicate worsening nerve damage or spinal structural changes that can be corrected with surgery. Conventionally, treatments with non-surgical methods consist on alleviating pain through resting, physical therapy and/or pain medication, including administration of analgesics, corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), opioids and antidepressants (Shen et al. 2006). If these treatments fail, surgical interventions such as discectomy, spinal arthroplasty, and arthrodesis may be considered (Leahy et al. 2008, Wei et al. 2013a). However, these treatments are transient in time, and may cause neurological alterations, affecting patients' mobility, and potentially altering spine biomechanics, leading to degeneration of adjacent discs (Lund and Oxland 2011, Natarajan and Andersson 2017).


Several proposals converging into regenerative medicine, as cell-based therapies, growth factor injection, gene therapy and tissue engineering, have been focusing on IVD's mechanobiology and function reestablishment (Hughes et al. 2012, Molinos et al. 2015a). These alternatives look for less invasive, long-term effective and safe treatment options which could bring greater consensus among the medical community. Furthermore, by integrating these strategies, it would be possible to target different discogenic disease features such as to modulate inflammation and decrease pain, as well as to promote native tissue regeneration.

3. The healthy intervertebral disc

The IVD's complex structure has a major biomechanical role, despite the differences among humans and other species in the disc size, mechanics, biochemistry and nutrition (Alini et al. 2008). In humans, IVD enables stability, absorption and dispersion of loads, while allowing spine's multiaxial motions, such as flexion-extension, rotation, and lateral bending (Stokes and latridis 2004). The IVD is the main spinal joint (occupying about one third of its length), and the largest avascular and aneural tissue in the body of a healthy adult (Urban and Roberts 2003, Raj 2008, Huang et al. 2014). The biomechanical role of the disc is conditioned by the synthesis of macromolecules by a small population of resident cells (Huang et al. 2014). It is known since the 70's that the IVD is mainly composed by water, proteoglycans, and collagen (Adams and Muir 1976, Eyre 1979), with their relative proportions varying between its different constitutive regions. The IVD comprises a highly hydrated central structure, the nucleus pulposus (NP), surrounded by a concentric annular lamellar structure, the annulus fibrosus (AF), delimited above and below by cartilaginous endplate (CEP) that connect an IVD to the adjacent vertebrae (Raj 2008). A schematic representation of the IVD is depicted in Figure 1.

In Table 1, it is summarized the differences in extracellular matrix (ECM) composition within the different areas of the IVD.

The disc size varies along the spinal region and the cellular content also varies between the regions. Of notice, in the human lumbar disc the NP cellular content is only about 4x10⁶ cells/cm³, while the AF has around 9x10⁶ cells/cm³, corresponding to approximately 1% of the IVD volume (Roughley 2004, Anderson et al. 2005). The specific cells within each region of the IVD are affected by a variety of physical and biochemical cues from the microenvironment. The cells are crucial for producing IVD ECM components and maintain its homeostasis (Hwang et al. 2014). Overall, the low cell concentration is described as an adaptive response to the IVD microenvironment, which has a limited nutrient supply to support cell proliferation (Anderson et al. 2005).

Figure 1. Schematic representation of healthy intervertebral disc. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology (Huang et al. 2014), copyright (2014).

3.1. Cartilaginous endplate

In adults, the CEP consists of relatively thin layers of hyaline cartilage (of about 0.5 - 1 mm) adjacent on one side to the vertebral endplate (VEP), the region from the subchondral bone to a depth of 2 mm, and are continuous with the AF and NP on the other side (Donisch and Trapp 1971, Rodriguez et al. 2012). The CEP ECM consists largely of proteoglycans and collagen fibers, namely collagen type II (COL2), with a water content lower than that of the NP and AF (Roberts et al. 1989). Cells resemble chondrocytes, but present a slightly different gene expression signature than the IVD cells (Minogue et al. 2010a). CEP and vertebrae are derived from the sclerotome (Risbud and Shapiro 2011). In babies (younger than approximately 12 months old), blood vessel capillaries and nerves arising from multiple superior and inferior dorsal root ganglia are still present in the endplate and IVD (Raj 2008).

Table 1. IVD anatomy and physiology.

IVD tissue	Composition (% to wet weight)			Biomechanical characteristics	References
	water	proteoglycans	collagen		
CEP	55%	8%	25% ↑ COL2	dispersion of loads	(Raj 2008, Ochia et al. 2003)
AF	60-70%	5%	15%		(Raj 2008,
	(no change with	(decrease with	(little change with		Smith and
	age)	age)	age)	_ ↑ elasticity _ ↑ tensile loading capacity	Fazzalari 2009,
Outer AF			↑ COL1		Shapiro and
Inner AF			COL1 to COL2 transition		Risbud 2014, Le Maitre et al. 2007a)
NP	90% at birth 80% at age 20 70% at older age	15% (decrease with age)	4% ↑ COL2 (little change with age)	↑ hydrostatic pressure ↑ absorption and dispersion of compressive loads	(Raj 2008, Stokes and latridis 2004, Shapiro and Risbud 2014, Le Maitre et al. 2007a)

[↑] higher

During spine development, the IVD becomes practically avascular, the vertebrae ossify and the CEPs undergo changes of shape, circumference, thickness and maturation (Donisch and Trapp 1971). The CEP has been considered the main diffusional route for oxygen, nutrients and residues, which occurs predominantly through passive diffusion (Holm et al. 1981, Ogata and Whiteside 1981, Huang et al. 2014). Therefore, the concentration gradients are determined by the balance in cells consumption and nutrients supply (Urban et al. 1982, Huang et al. 2014). Nonetheless, due to the scarcity of blood vessels, a hypoxic and limited nutrition environment is generated. While the cells present in the outer AF can eliminate their metabolites and have access to nutrients through the capillaries present in the surrounding soft tissues, the remaining cells within the IVD only have access to a scarcity of capillaries that enter the subchondral plate and terminate adjacent to the CEP, feature which may impair IVD's regenerative capacity (Raj 2008, Huang et al. 2014).

3.2. Annulus fibrosus

The AF is derived from the sclerotome and formed by a concentric lamellar structure, with around 70% of water, and rich in COL1 fibers, lying parallel within each lamella (Raj 2008, Risbud and Shapiro 2011, Huang et al. 2014). The concentric lamellae of regularly arranged collagen fibers, which are interconnected by a network of elastin and fibrillin, form the translamellar bridging network (TLBN) (Yu et al. 2007, Schollum et al. 2009, Yu et al. 2015). The presence of elastin fibers, crossing radially the collagen ones, contribute to tissue mechanical support and elasticity (Raj 2008). The AF provides lateral NP confinement and resistance to tensile and compressive stresses during physiological loading, with changes in the loading environment from more tension in the outer AF, to more compression towards the

NP (Eyre 1979). The outer AF fibers are directly inserted into the cortical bone of the vertebrae, whereas the inner tissue connects to the endplate, this probably to support the higher tensile loads present in the outer AF (Eyre 1979). A transitional region from COL2 to COL1, poorly organized and interspersed with aggregated proteoglycans (corresponding to approximately 5% wet weight) and elastin fibers, characterizes the inner part of the AF (Raj 2008, Rodrigues-Pinto et al. 2014). The AF cells are elongated and fibroblastic in appearance, and are orientated in the same axis as the collagen fibrils (Raj 2008).

3.3. Nucleus pulposus

The NP is rich in aggrecan (ACAN), the major proteoglycan of the IVD, and interspersed with COL2 fibers, randomly arranged, and with elastin fibers radially distributed (Raj 2008, Huang et al. 2014, Rodrigues-Pinto et al. 2014). Of notice, ACAN is responsible for mediating the osmotic pressure within the NP, and the resistance to compressive loads. ACAN forms large aggregates by binding to hyaluronan, and this mesh limits ACAN diffusion within the matrix. ACAN osmotic properties and water binding capacity are due to its substitution by other glycosaminoglycan (GAG) chains of chondroitin sulfate and keratan sulfate (Urban et al. 1979, Lotz and Hsieh 2014). Water content represents about 80% of the wet weight of the NP, having a mechanical behavior characteristic of a viscoelastic material (latridis et al. 1997, Raj 2008). In the mature NP, it is possible to identify mostly NP cells, which are small (approximately 10 µm diameter) and resembling chondrocytes in morphology (Sive et al. 2002). Nonetheless, it is recognized a morphological heterogeneity of cells within the NP. The NP derives from the notochord, and notochordal cells can still be found in the NP in immature and young IVDs in humans (Risbud and Shapiro 2011, Risbud et al. 2015, Sakai and Andersson 2015). Notochordal cells have a distinct morphology from NP cells. They are larger (around 25 - 85 µm diameter), commonly appear in clusters, and contain intracellular vacuoles that occupy at least 25% of the cell area (Trout et al. 1982, Hunter et al. 2003, Risbud et al. 2015, Sakai and Andersson 2015). After birth, the number of notochordal cells decreases very rapidly. Nonetheless, it has been described that the human and bovine NP tissue still retains some notochordal cells throughout life, even if in low number (Gilson et al. 2010). In other species, such as mouse, rat, cat, mink, dog, pig and rabbit, the number of notochordal cells found in adults is higher (Alini et al. 2008, Weiler et al. 2010, Sakai and Andersson 2015). Henriksson and colleagues' studies in rabbit raised the possibility of stem/progenitor cell niches within the IVD, namely present in the epiphyseal plate and inner parts of the IVD (Henriksson et al. 2009, Henriksson et al. 2012). Notochordal cells have been shown to shift into NP cells, under standard in vitro culture (Kim et al. 2009a) or dynamic loading (Purmessur et al. 2013a), as well as after injury stimulus in vivo (Yang et al. 2009). Notochordal cells, as well as a progenitor cell population, which can differentiate along the mesengenic pathway, present higher expression of NP-phonotypic markers, among other markers, as discussed below and summarized in Table 2 (Minogue et al. 2010a, Risbud et al. 2010, Risbud and Shapiro 2011, Sakai et al. 2012). Furthermore, while previous studies from Kim and colleagues suggested chondrocyte migration from the CEP and the inner AF into the NP as source of NP cells in mature IVDs of rat and rabbit (Kim et al. 2003, Kim et al. 2005a), Henriksson et al. (2009) proposed the existence of stem/progenitor cell niches within the IVD.

4. Phenotypic markers of the different IVD cell populations

Gene expression and phenotypical differences between notochordal, NP, AF, CEP cells and articular chondrocytes (ACs) have been pursued to trace a distinctive phenotypic profile for these cells. In the adult IVD, cells share typical markers with articular chondrocytes (ACs), namely regarding the production of ECM components such as COL2, ACAN and versican (VCAN) (Sive et al. 2002). Recently, Molinos et al. (2015b) identified three phenotypically distinct cell subpopulations in the young bovine NP, corroborating the heterogeneity previously observed. Yet, the distinctive function of the tissues is determined by the exact amount and composition of the proteins synthesized (Sive et al. 2002, Minogue et al. 2010a, Minogue et al. 2010b).

Finding distinct markers of IVD cells may play an important role in the development of regenerative strategies for IVD degeneration, in addition to providing further knowledge of its biology (Minogue et al. 2010a). Studies struggle with identifying markers that are both cell- and species-specific. Up to date, it has not been identified an exclusive NP marker. Henriksson and Brisby (2013) reviewed the differences in marker profiles between NP cells and ACs. However, studies have been focusing on differentiating AF cells, NP cells and ACs mostly by comparing the fold-change in expression of IVD markers. Taking this into account, it was defined in 2014 a series of recommendations by the Spine Research Interest Group at the Annual ORS Meeting, to characterize the healthy NP phenotypic markers. A ratio of ACAN/COL2 > 20 seen in healthy human juvenile and young adult NP, and the expression of hypoxia inducible factor (HIF)-1 α , glucose transporter (GLUT)-1, sonic hedgehog (Shh), Brachyury (7), keratin (KRT)18 and KRT19, carbonic anhydrase (CA)12, and CD24 were the proposed primary markers (Risbud et al. 2015). However, other secondary markers are also presented in Table 3.

HIF-1 α is responsible for the up-regulation of many pro-survival genes in NP, namely GLUT-1 and -3, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ACAN, β -1,3-glucuronyltransferase, galectin-3 and vascular endothelial growth factor (VEGF)-A (Risbud et al. 2015). GLUT-1 is expressed in hypoxic tissues and CA12 promotes acid-base balance

(Richardson et al. 2008a). Moreover, genes expressed during notochord development, such as Shh, a ligand of the hedgehog family (Dahia et al. 2009, Dahia et al. 2012, Winkler et al. 2014), and Brachyury (Minogue et al. 2010b, Risbud and Shapiro 2011, Smolders et al. 2012, Maier et al. 2013) have been reported to remain active in the postnatal and mature human, bovine, canine and murine NP cells, being crucial for the growth, differentiation and function of NP cells (Risbud et al. 2015). KRT18 and KRT19, also identified in human notochordal cells during development, are important for cell integrity, and are possibly involved in signaling pathways, although not yet fully elucidated (Risbud et al. 2015). CD24 is a cell adhesion molecule, yet its relevance to NP physiology is still unknown (Fujita et al. 2005, Rutges et al. 2010, Risbud et al. 2015). Also of notice is the presence of CD68+ cells in human nonherniated disc (which are not invading monocytes or macrophages), indicating phagocytic activity of NP cells (Nerlich et al. 2002).

Nonetheless, it is noteworthy that, when comparing humans to other animals, there are differences in the markers expressed, as well as in their amount. It is hypothesized that this may be due to differences in age, size, native cell composition, and environment in the IVD among species (Minogue et al. 2010a). For example, the expression of glypican 3 (GPC3) and KRT19 from murine (Lee et al. 2007), or KRT18 and cadherin 2 (CDH2) from bovine studies did not translate directly into similar expression levels by human IVD cells (Minogue et al. 2010b). Also, HIF-1α (Risbud et al. 2006), GLUT-1 (Richardson et al. 2008a) and VEGF-A (Rajpurohit et al. 2002, Fujita et al. 2008) characterized in human did not appear to change significantly in bovine NP cells, when compared with ACs (Minogue et al. 2010a). Moreover, CD24 was identified as a specific cell surface marker for NP cells in the rat (Fujita et al. 2005), and neural cell adhesion molecule CD56 was found to be expressed in canine NP cells (Sakai et al. 2009), but gene expression analysis of human disc cells revealed that CD24 was not specific for NP cells, whereas CD56 was expressed only at low levels (Rutges et al. 2010). Regarding progeny, compared with NP cells, notochordal cells were shown to display significantly higher expression of KRT8, KRT18, KRT19, CDH2, sclerostin domain containing 1 (SOSTDC1) (Gilson et al. 2010, Minoque et al. 2010a), integrin subunits α3, α6 and β1 (Chen et al. 2006), as well as Brachyury (Minoque et al. 2010b, Risbud and Shapiro 2011). Several works have shown that, when culturing cells derived from CEP, AF or NP in vitro,

Several works have shown that, when culturing cells derived from CEP, AF or NP *in vitro*, these also express mesenchymal stem/stromal cells (MSCs) markers, namely CD73, CD90, CD105 and stromal precursor antigen (STRO)-1, being negative for the pan-macrophage marker CD11b, the pan-monocytic antigen CD14, the pan-B-cell markers CD19, CD79, the hematopoietic stem cell marker CD34, the pan-hematopoietic marker CD45 and the class II human leukocyte antigen (HLA) antigen HLA-DR (Risbud et al. 2007, Liu et al. 2011, Brisby et al. 2013, Sakai and Andersson 2015, Chen et al. 2016). It was also observed that both NP and

Table 2. Characterization of the phenotypic markers of the IVD cell types in different species. The table's information was partially adapted from Risbud et al. (2015) and Sakai and Anderson (2015).

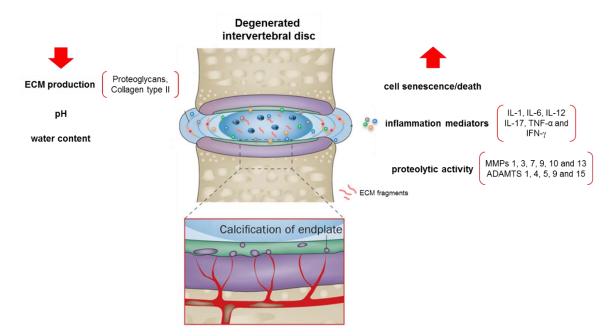
IVD cell type		References			
TVD Cell type	human	bovine	canine	murine	References
AF cells	CDH2	AQP1			(Minogue et al. 2010b, Rutges et al.
	COL1	COL1			2010)
	COMP	FOXF1			
	FOXF1	FOXF2			
	GPC3	IBSP			
	KRT8	PTN			
	KRT18	TNFAIP6			
	SNAP25	TNMD			
	TNMD				
	VCAN	FBLN1-			
NP cells	ACAN/COL2 ratio > 20	BASP1	Brachyury	Annexin A3	(Lyons et al. 1991, Buckwalter 1995,
	Brachyury	Brachyury	CD56	BASP1	Nerlich et al. 2002, Rajpurohit et al.
	CA12	CDH2	DSC-2	Brachyury	2002, Sive et al. 2002, Mwale et al.
	CD24	FOXF1	KRT18	CA3	2004, Nettles et al. 2004, Fujita et al.
	CD68	KRT8	α2-macroglobulin	CA12	2005, Risbud et al. 2006, Agrawal et
	CDH2	KRT18	· ·	CD24	al. 2007, Lee et al. 2007, Le Maitre
	FOXF1	KRT19		CD56	et al. 2007b, Risbud et al. 2007,
	GLUT-1	SNAP25		CD155	Agrawal et al. 2008, Fujita et al.
	Hemoglobin β-chain	SOSTDC1		CD221	2008, Richardson et al. 2008a,
	HIF-1α			GLUT-1	Shine et al. 2009, Chen et al. 2009,
	Integrin α3, α6, β4	FBLN1 ⁻		GPC3	Dahia et al. 2009, Sakai et al. 2009,
	KTR8	IBSP-		HIF-1α	Gilson et al. 2010, Minogue et al.
	KTR18			KRT19	2010a, Minogue et al. 2010b,
	KTR19			Neurochondrin	Rutges et al. 2010, Power et al.
	Lubricin			Neuropilin-1	2011, Risbud and Shapiro 2011,
	NCAM-1			PTN .	Dahia et al. 2012, Smolders et al.
	Ovostatin			Shh	2012, Önnerfjord et al. 2012, Sakai
	PAX1				et al. 2012, Tang et al. 2012, Maier
	Shh				et al. 2013, van den Akker et al.
	SNAP25				2014, Winkler et al. 2014)
	VCAN				,
	VEGF-A				
	α2-macroglobulin				
	CYTL1-				
	FBLN1 ⁻				
	GDF-10 ⁻				
	IBSP-				

Notochordal cells	Brachyury CD24 Galectin-3 Integrin α3, α6, β1 KRT8 KRT18 KRT19	Brachyury CDH2 KRT8 KRT18 KRT19 SOSTDC1	CA3	(Lyons et al. 1991, Chen et al. 2006, Minogue et al. 2010b, Weiler et al. 2010, Risbud and Shapiro 2011, Smolders et al. 2012)
Stem/progenitor cells	CD73 CD90 CD105 C-KIT DLL4 GD2 Jagged-1 Ki-67 NOTCH1 OCT3/4 STRO-1 TIE2		C-KIT GD2 Jagged-1 Ki-67 NOTCH1 STRO-1 TIE2	(Risbud et al. 2007, Henriksson et al. 2009, Blanco et al. 2010, Feng et al. 2010, Liu et al. 2011, Sakai et al. 2012, Brisby et al. 2013, Chen et al. 2016)
	CD11b ⁻ CD14 ⁻ CD19 ⁻ CD34 ⁻ CD45 ⁻ CD79 ⁻ HLA-DR ⁻			

AF cells of rabbit, rat, minipig and human degenerated IVD tissue expressed progenitor markers such as the multipotency marker octamer-binding transcription factor (OCT)3/4, delta-like (DLL)4, neurogenic locus notch homolog protein (NOTCH)1, Jagged-1, mast/stem cell growth factor receptor Kit (C-KIT) and Ki-67 (Henriksson et al. 2009, Brisby et al. 2013). Sakai and colleagues observed, in mouse and human NP, progenitor cell populations expressing transmembrane tyrosine protein kinase receptor TIE2 (also named angiopoietin-1 receptor) and ganglioside GD2 (Sakai et al. 2012). These cells were more proliferative, could form spheroids with multipotent differentiation capacity, and were capable of differentiating towards the chondrogenic lineage, expressing COL2 and ACAN (Sakai et al. 2012, Sakai and Andersson 2015).

These findings show great potential for the development of therapies that may stimulate degenerated IVD native stem cells differentiation into functional NP and AF cells to reestablish the balance between anabolic and catabolic events and promote tissue regeneration. For such, it is important the understand of the morphological and biochemical changes that occur during aging and in premature degenerative diseases.

5. Aging and degeneration


Disc degeneration is linked with aging (Roberts et al. 2006), as recently reviewed by Vo et al. (2016). Nonetheless, it has been also observed in young children (11 to 16 years old) (Boos et al. 2002). IVD's well-defined microstructural organization and biochemical composition is affected by aging molecular mechanisms, and can ultimately lead to a cell-mediated structural failure (latridis et al. 2009, Vo et al. 2016). With age, variations in abundance and structure of IVD's ECM macromolecules may be a consequence of catabolism and anabolism imbalance (Roughley 2004), but in cases of early degeneration, abnormal age-related changes also occur (latridis et al. 2009).

Degenerated IVD pathogenesis might be affected by multiple factors such as gene polymorphisms, as recently reviewed by Martirosyan et al. (2016), which include genes that mediate apoptosis, contribute to structural proteins, and encode molecules involved in inflammatory pathways (Martirosyan et al. 2016).

5.1. The aging/degeneration mechanism

The aging/degenerative process of IVD is characterized by an initial increase in cell proliferation and formation of cell clusters, as well as alterations in cell cycle and an increase in cell senescence and apoptosis, with increased production of pro-apoptotic (Fas ligand [FasL], caspase-3) proteins, and death (Roberts et al. 2006, Richardson et al. 2007, Gruber et al. 2009, Bertolo et al. 2011).

The NP changes from gelatinous to a more fibrous structure, cracks and fissures often occur, namely in the AF, and there is a decrease in IVD water content. This is commonly due to a turnover of ECM components (shift from COL2 to COL1 production by NP cells, and a decrease in ACAN synthesis), schematically depicted in Figure 2 (Richardson et al. 2007, Bertolo et al. 2011). An up-regulation of specific metalloproteinases (MMPs), such as MMP-1, -2, -3, -7, -8, -10, and -13, a disintegrin and MMP with thrombospondin motifs (ADAMTS)-1, -4, -5, -9 and -15, and tissue inhibitors of MMPs (TIMPs)-1 and -2 were observed (Doita et al. 2001, Le Maitre et al. 2007b, Bachmeier et al. 2009, Pockert et al. 2009, Vo et al. 2013). During degeneration, several changes may occur in the capillaries arising from the vertebral bodies, namely atherosclerosis, reduced capillary density, occlusion of the marrow spaces and CEP obstruction due to calcification/increased mineralization (Huang et al. 2014, Grant et al. 2016a). It has been hypothesized that an increase in free calcium ions (Ca²⁺) may impair CEP homeostasis, compromising nutrient diffusion and availability to the cells, consequently leading to alterations in cell metabolism and viability (Huang et al. 2014, Grant et al. 2016a). It has also been reported that ECM components degradation may promote obstruction of the CEP, contributing to the drastic decrease of oxygen and nutrients diffusion into the disc (Ogata and Whiteside 1981, Huang et al. 2014). Particularly the NP, it is subjected to high mechanical and osmotic pressures, severe hypoxia and limited nutrients supply (Mehrkens et al. 2012). Additionally, blood vessels begin to grow into the disc from the outer areas of the AF (Roberts et al. 2006).

Figure 2. Schematic representation of intervertebral disc degeneration. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology (Huang et al. 2014), copyright (2014).

Moreover, a wide number of inflammatory mediators, including prostaglandins, namely PGE₂, interleukins (IL-1, -6, -8, -12 and -17), tumor necrosis factor (TNF)- α and interferon (IFN)- γ have been described as crucial players in the catabolic processes in human NP and AF, nerve ingrowth and pain (Le Maitre et al. 2007a, Cuellar et al. 2010, Shamji et al. 2010, Purmessur et al. 2013b, Risbud and Shapiro 2014). Furthermore, increased amounts of nitric oxide (NO) have also been detected (Saal et al. 1990, Kang et al. 1996, O'Donnell and O'Donnell 1996). As the latest reviews point out, inflammation is an important contributor to the pathogenesis of IVD degeneration (Wuertz and Haglund 2013, Risbud and Shapiro 2014, Gorth et al. 2015). A balance between inflammatory response and tissue resorption may be achieved by controlling the levels of pro-inflammatory cytokines known to be involved in enzymatic degrading activity (Le Maitre et al. 2007c).

6. Study models of IVD degeneration and inflammation

Several ex vivo and in vivo models have focused on mechanical injury to simulate IVD degeneration (Anderson et al. 2002, Sobajima et al. 2005a, Sobajima et al. 2005b, latridis et al. 2009). Mechanical injury often comprises stab or needle puncture, and may include partial mechanical or chemical tissue removal with collagenase (Stern and Coulson 1976), papain (Roberts et al. 2008, Chan et al. 2013, Malonzo et al. 2015), trypsin (Jim et al. 2011, AlGarni et al. 2016) or chondroitinase ABC (Yamada et al. 2001, Ghosh et al. 2012, Krupkova et al. 2016). Several works showed, depending on needle gauge size, that needle puncture may induce AF disruption, while causing depressurization of the NP (Masuda et al. 2005, latridis et al. 2009). Needle calibers varying between 16 to 22G often lead to significant pressure failure, decreased cell viability, expression of pro-inflammatory and degenerative factors and alterations in ECM composition in IVDs from both large animals, such as bovine (Illien-Junger et al. 2012, Pattappa et al. 2014), and small animals, namely rabbit (Yang et al. 2015) and rat (Masuda et al. 2005). Of notice, as reviewed by Elliott and colleagues (2008), in animal models in which degeneration was stimulated with needle puncture or sham injection, with needle diameter/disc height ratios up to 25%, no significant disc changes were observed. For ratios between 25-40%, effects were variable with some minor nonsignificant changes (Elliott et al. 2008). However, when needle diameter/disc height ratios were over 40%, degenerative changes were observed in all animal modes reviewed (rat, rabbit, dog, minipig, and sheep) (Elliott et al. 2008). Disc height, area and NP ratio (normalized to human IVD) are summarized for different animals in Table 3.

Due to the defects induced by needle puncture injury, AF and NP mechanical integrity can be compromised and lead to degeneration, allowing the recreation of an injury scenario to be studied (Korecki et al. 2008). Overall, for needles with caliber higher that 29G, no apparent

degenerative changes were induced in small animals as rabbit (Henderson et al. 1991) or rat (Crevensten et al. 2004). In mouse, 33 and 35G needles did not lead to significant degenerative changes between punctured and non-punctured groups (Ohnishi et al. 2016).

Table 3. IVD size and cell content in different species. Adapted from O'Connell et al. (2007).

Species	IVD height (mm)	IVD area (mm²)	NP area (mm²)	NP/IVD ratio	NP/IVD fold change (Human)
Human (lumbar)	11.30±0.30	1727±550	479±110	0.28	-
Bovine (tail)	6.90±0.35	622±71	176±22	0.28	1.02
Baboon (lumbar)	4.45±1.39	749±82	242±50	0.32	1.16
Sheep (lumbar)	3.93±0.07	676±122	267±79	0.39	1.42
Rabbit (lumbar)	1.42±0.39	73.4±6.1	18.0±1.6	0.25	0.88
Rat (lumbar)	0.93±0.24	20.4±2.1	5.00±2.06	0.25	0.88
Rat (tail)	0.94±0.09	8.86±3.54	3.30±1.55	0.37	1.34
Mouse (lumbar)	0.31±0.03	1.81±0.14	0.33±0.07	0.18	0.66
Mouse (tail)	0.24±0.06	1.19±0.51	0.35±0.09	0.29	1.06

6.1. *Ex vivo*

Several authors have pointed out the importance of developing *in vivo*-mimicking *ex vivo* organ cultures to translate the degenerative events that occur in humans (Korecki et al. 2007, Teixeira et al. 2015, Krupkova et al. 2016). IVD organ cultures are one step further in complexity than *in vitro* studies, allowing the introduction of more variables in a mechanically and biochemically controlled environment, maintaining several microenvironment cues and the tissue structure (Korecki et al. 2007, Korecki et al. 2008). However, most existing organ culture systems induce severe tissue degradation with only limited representation of the *in vivo* processes (Krupkova et al. 2016), low oxygenation and nutrition (Rinkler et al. 2010, Neidlinger-Wilke et al. 2012), or pro-inflammatory cues (Teixeira et al. 2015).

Ex vivo studies use a variety of tissue sources, including human, bovine, sheep, rabbit, rat and mouse (as briefed in Table 4), among others. Commonly safe and easy to manipulate, organ cultures can be used to screen several experimental conditions, while reducing the number of animals in further *in vivo* trials (Teixeira et al. 2015). They allow detailed analysis of ECM composition, cellular mechanisms, metabolism and related pathways in health and disease (Korecki et al. 2007, Korecki et al. 2008). These models have also the advantage of being combined with loading systems (0.1 MPa to 0.6 MPa) simulating physiological forces applied on the spine (Korecki et al. 2007, Illien-Junger et al. 2010, Illien-Junger et al. 2012, Pirvu et al. 2015).

Ex vivo models are promising alternatives to examine the effect of different treatments (Alini et al. 2008). An IVD organ culture system, namely of animal origin, offers a simpler and inexpensive alternative, when compared to humans, due to the difficulty of obtaining human material, particularly "normal" human tissue (Alini et al. 2008), and facilitates the design of

Table 4. Ex vivo models for studying intervertebral disc degeneration and inflammation. Adapted from Gantenbein et al. (2015) (Gantenbein, Illien-Junger et al. 2015).

Model	Species			Degenerative stimu			References
	<u> </u>	Spontaneous	Mechanical	Chemical	Biochemical	Genetic	
IVD explant (NP and AF)	Human	Degenerative disc disease, trauma					(Bertolo et al. 2011)
(ivi alia Ai)		Herniation					(Burke et al. 2002a)
		(protrusion,					(Darno ot all 2002a)
		extrusion,					
		sequestration),					
		scoliosis					
		Degenerative disc					(Le Maitre et al. 2004)
	Bovine	disease	Needle puncture	Chondroitinase			(Krupkova et al. 2016)
	Dovine		(27 G)	ABC (1-20 U/mL)			(Krupkova et al. 2016)
					IL-1β (100 ng/mL)		(Krupkova et al. 2016)
					plus TNF-α		
					(100 ng/mL)		
			Static loading,	LPS	Low glucose,		(Teixeira et al. 2015)
			needle puncture	(10 μg/mL)	hypoxia		
			(21G)				
			Static loading,		Low glucose,		(Teixeira et al. 2015,
			needle puncture		hypoxia,		Teixeira et al. 2016)
			(21G)		IL-1β (10-		
					100 ng/mL)		(=
	Rabbit		Annular stab				(Feng et al. 2009)
IVD without	Bovine		Complex loading				(Walter et al. 2011)
endplate			Static loading		TNF-α (200 ng/mL)		(Purmessur et al. 2013b
IVD with endplate	Human	Degenerative disc disease					(Krock et al. 2014)
			Endplate trauma				(Alkhatib et al. 2014)
	Bovine		Needle puncture (14, 25 G)				(Korecki et al. 2008)
			Free swelling,				(Pirvu et al. 2015)
			static loading				,
			Static loading,				(Korecki et al. 2007)
			diurnal loading				,
			High-frequency				(Illien-Junger et al. 2012
			loading, needle				Pattappa et al. 2014)
			puncture (22 G)				
			Partial nucleotomy				(Pereira et al. 2014)
			Needle puncture	Papain			
			(25 G)	(30-150 U/mL)			(Chan et al. 2013)

	Needle puncture (22, 25 G)	Papain (60 U/mL)			(Malonzo et al. 2015, Bucher et al. 2013)
		Papain (360 U/mL), Trypsin (12,400- 248,000 U/mL)			(Roberts et al. 2008)
	Needle puncture (28 G)	Trypsin (0.05 μg/μL) (1.3 μg/μL)			(Jim et al. 2011) (Mwale et al. 2014, AlGarni et al. 2016)
		(0.2, 2 μg/μL)	HTRA1, MMP3, ADAMTS-4 (10 µg/mL each)		(Gawri et al. 2014a) (Furtwangler et al. 2013
	Partial nucleotomy		IFN-α ₂ β (100 U/mL)		(Kazezian et al. 2016)
	Dynamic loading		TNF-α (100 ng/mL)		(Walter et al. 2015, Walter et al. 2016)
Sheep	Dynamic loading High frequency loading		Low glucose		(Gantenbein et al. 2006 (Jünger et al. 2009, Illien-Junger et al. 2010
Rabbit	Burst fracture				(Haschtmann et al. 2008, Dudli et al. 2012, Dudli et al. 2014, Dudli et al. 2015)
	Needle puncture (18 G)				(Dudli et al. 2014)
Rat	CEP fracture Needle puncture (21, 25, 30 G)				(Kim et al. 2005a) (Michalek et al. 2010)
	() = 1 = = 1	LPS (10 µg/mL)			(Li et al. 2015a, Li et al. 2016a, Li et al. 2016b)
		Chondroitinase ABC (25 U/mL)			(Yerramalli et al. 2007)
			IL-1β (10 ng/mL) plus TNF-α (100 ng/mL)		(Ponnappan et al. 2011, Markova et al. 2013)
Mouse	Static loading Stab		<u>g</u> , <u>-</u> ,	NF-κβ-luciferase	(Ariga et al. 2003) (Abraham et al. 2016)
			IL-1β (10 ng/mL)	NF1 ^{fl/fl}	(Pelle et al. 2014)

experiments with more replicates. Nonetheless, due to the IVD's great swelling potential and inhomogeneity (Urban et al. 1979), it is a complex task to establish an adequate model. Degenerated discs often present a low proteoglycan to collagen ratio, as well as low hydration (Urban et al. 1979). By maintaining the IVD endplates (Gantenbein et al. 2006, Haschtmann et al. 2008, Parolin et al. 2010, Alkhatib et al. 2014, Krock et al. 2014, Pereira et al. 2014, Grant et al. 2016b), or by culturing NP (Teixeira et al. 2015) and IVD tissue (Walter et al. 2011, Purmessur et al. 2013b) under constrained conditions, the swelling may be limited (latridis et al. 2009). To avoid swelling, but also obstructed transport of nutrients and residues and a decrease in cell viability, bovine IVD cultures are commonly done with CEP (Parolin et al. 2010, Pereira et al. 2014, Grant et al. 2016b). Nonetheless, for instance, Gantenbein et al. (2006) developed an IVD model maintaining the VEPs, which requires a systemically anticoagulant administration before killing the animals.

Another relevant limitation is that human and animal explants can only be kept in culture for a limited time to ensure cell viability (Korecki et al. 2008, Bertolo et al. 2011, Pereira et al. 2016), commonly up to 28 days (Dudli et al. 2014). Bioreactors were proposed as alternatives to culture IVD explants from large animals and human cadavers, providing a defined nutritional and mechanical environment, essential for maintaining cell viability and matrix biology (Gantenbein et al. 2015). However, the culture periods reported are also only up to 21-22 days (Paul et al. 2012, Castro et al. 2014).

Several ex vivo models using bovine caudal IVDs have been developed to study degeneration mechanisms and biology, which allow the outlining of ex vivo trials (Table 4). Bovine coccygeal discs are described as the most suitable alternative candidates for ex vivo studies (Roberts et al. 2008), due to the commonly easy availability of bovine tails, and given their large size (area and volume around 622 mm² and 4291 mm³, respectively), and similar NP aspect ratio (1.02), diffusion distance and resting pressure (0.2-0.3 MPa) to human lumbar IVDs (Oshima et al. 1993, O'Connell et al. 2007). Besides, cellular and ECM composition similarities with human lumbar discs are also high, namely the fast decrease of notochordal cells after birth, the rate of proteoglycan synthesis and the composition profile: collagen content lower in the NP and higher in the outer AF, with higher hydration and proteoglycan content in the NP (Oshima et al. 1993, Demers et al. 2004, Alini et al. 2008, Roberts et al. 2008). However, it was described by Demers et al. (2004) some noticeable differences with age. For instance, they observed that water content does not drop as abruptly in bovine IVDs as in humans, and that the denaturated COL2 content may vary with age and location in both bovine and human IVDs (Demers et al. 2004). For bovine, as for other models, caution must always be present when interpreting the results.

If the low degree of complexity can be an advantage, it is also a limitation of organ cultures, which may lack vascularization, innervation and the multiple interactions with adjacent tissues

and infiltrating immune cells, characteristic of several degraded and pro-inflammatory environments (Molinos et al. 2015a, Sakai and Andersson 2015). The establishment of models using human IVD tissue (Burke et al. 2002a, Le Maitre et al. 2004, Bertolo et al. 2011) or whole IVD, initially developed by Parolin et al. (2010) with healthy discs, being later analyzed explants from donners suffering from degenerative disc disease (Alkhatib et al. 2014, Krock et al. 2014) is growing, facilitating IVD co-culture with different allograft cell types, namely MSCs and lymphocytes (Bertolo et al. 2011).

Nevertheless, although the most common degeneration models are established with mechanical injury (Anderson et al. 2002, Sobajima et al. 2005a, Sobajima et al. 2005b, latridis et al. 2009), few studies defined standardized parameters and outcome measurements of inflammation (as shown in Table 4). For simulation of the pro-inflammatory environment associated with disc degeneration, stimulation of organ cultures with chemical factors such as lipopolysaccharide (LPS) (Burke et al. 2003, Rajan et al. 2013), IL-1β (Ponnappan et al. 2011, Kepler et al. 2013) and/or TNF-α (Ponnappan et al. 2011, Purmessur et al. 2013b) can be used to up-regulate inflammatory factors and matrix degrading enzymes, and therefore impair matrix production (Aota et al. 2006, Gorth et al. 2012, Kim et al. 2013a, Rajan et al. 2013). LPS, although not physiological, was previously used as pro-inflammatory stimulus (Burke et al. 2003, Li et al. 2015a, Li et al. 2016a). TNF-α was shown by Purmessur et al. (2013b) to have an important role in the pathologic processes of IVD degeneration. Nonetheless, studies performed by Le Maitre and colleagues showed that IL-1, namely IL-1β, might have a more prominent role than TNF-α, being expressed at higher levels and in a larger proportion of samples (Le Maitre et al. 2005, Le Maitre et al. 2007a, Hoyland et al. 2008). Additionally, we have shown that IL-1β stimulation induces a degenerative and pro-inflammatory response, with expression of several factors identified in humans (Teixeira et al. 2015).

6.2. In vivo

The suitability of different animal models to study IVD degeneration has been extensively reviewed (Lotz 2004, Singh et al. 2005, Alini et al. 2008, Daly et al. 2016) and is briefed in Table 5.

Animal models are one step ahead organ cultures, being widely used to study IVD degeneration and to evaluate disc treatment methods, given their high biomechanical complicity, the feasibility of *in vivo* experiments and the possibility to include significant number of subjects to follow over time, when compared to human trials (Alini et al. 2008, Shapiro and Risbud 2014). Nonetheless, namely due to differences in IVD size, one important issue is the scaling up of specific parameters for the interpretation of the experimental findings from animal models (Alini et al. 2008).

Table 5. Animal models for studying intervertebral disc degeneration and inflammation. Adapted from Alini et al. (2008) and Daly et al. (2016).

0		Defenses				
Species	Spontaneous	Mechanical	Chemical	Biochemical	Genetic	References
Baboon	Natural aging					(Lauerman et al. 1992,
						Platenberg et al. 2001)
Rhesus monkey		Nucleotomy	Collagenase			(Stern and Coulson 1976)
			(5 mg/mL)			
			Bleomycin (1.5			(Wei et al. 2014)
			mg/mL)			
			Pingyangmycin (1.5			(Wei et al. 2015)
			mg/mL)			(5. 1. 1. 1. 2.212)
Non-chondrodystro-	_Aging	NI I d				(Bergknut et al. 2012)
phic dog		Nucleotomy				(Hohaus et al. 2008)
Chondrodystrophic	Accelerated aging					(Gillett et al. 1988,
dog						Bergknut et al. 2012)
	Hyperactivity					(Puustjarvi et al. 1993,
	(running)					Saamanen et al. 1993,
						Puustjarvi et al. 1994)
		Nucleotomy				(Hiyama et al. 2008,
						Serigano et al. 2010)
			Krill proteases (5.4			(Melrose et al. 1995)
			mg/mL)			
			Chymopapain (2-8			(Melrose et al. 1996)
			mU/disc)			
			Chondroitinase ABC			(Yamada, Tanabe et al.
			(250 U/mL)			2001)
Sheep		Annular lesion				(Osti et al. 1990, Melrose e
						al. 1997a, Melrose et al.
						1997b, Fazzalari et al.
						2001, Melrose et al. 2002a,
						Melrose et al. 2002b,
						Thompson et al. 2004)
		Needle puncture	Chondroitinase ABC			(Ghosh et al. 2012)
		(29G)	(1.0 IU)			,
Goat		Stab/drill injury,	· · · · · ·			(Zhang et al. 2011a)
		annulotomy				,
			Chondroitinase ABC			(Hoogendoorn et al. 2007)
			(0.25 U/mL)			,
Minipig		Annular stab	·			(Bendtsen et al. 2011)
-		Needle puncture	<u> </u>			(Wang et al. 2007a)
		(18G)				-

		Nucleotomy			(Acosta et al. 2011, Omlor et al. 2012)
Rabbit		Annular stab			(Anderson et al. 2002, Sobajima et al. 2005b)
		Needle puncture			(Masuda et al. 2005, Moss
		(16, 18, 21G)			et al. 2013, Yang et al. 2015)
		Nucleotomy			(Sakai et al. 2003, Kim et al. 2005b)
		Needle puncture (23G)	Camptothecin (1 mmol/L)		(Kim et al. 2005b)
			Chondroitinase ABC		(Kiester et al. 1994, Ando et al. 1995)
		Needle puncture (32G)	Fibronectin fragments (1 µmol/L)		(Greg Anderson et al. 2003)
Sand Rat	Accelerated ageing, obesity				(Silberberg et al. 1979, Moskowitz et al. 1990, Gruber et al. 2002, Gruber et al. 2007, Gruber et al. 2008, Gruber et al. 2014a)
Rat	Natural aging				(Laing et al. 2011)
		Needle puncture (33G)	LPS (1 µg/mL)		(Rajan et al. 2013)
				HLA-B27 and human β₂m transgenic	(Hammer et al. 1990, Taurog et al. 1999)
Rat (caudal spine)		Annular stab		<u> </u>	(Ulrich et al. 2007, Jeong et al. 2009)
		Needle puncture (18, 20, 21G)			(Han et al. 2008, Zhang et al. 2009a, Zhang et al. 2011b, Cunha et al. 2015)
		Drill injury			(Kim et al. 2011a)
		Tail static bending			(Court et al. 2007)
		Loading, NP compression			(Ching et al. 2003, Chubinskaya et al. 2007)
		Needle puncture (24 G) plus compression			(Miyagi et al. 2011, Miyagi et al. 2012)
		Application of NP to DRG			(Olmarker et al. 2003, Ito et al. 2007, Sasaki et al. 2007, Kim et al. 2011b, Li

						et al. 2015b, Miao et al. 2015, Wang et al. 2015a, Song et al. 2016)
			Chondroitinase ABC (0.25 U/mL)			(Norcross et al. 2003)
Mouse	Natural aging					(Holguin et al. 2014)
		Needle puncture (26, 29, 31, 33, 35)				(Yang et al. 2009, Martin et al. 2013, Ohnishi et al. 2016)
		Tail static bending				(Court et al. 2001)
		Bipedal mice				(Higuchi et al. 1983)
		·		proteoglycan-induced spondylitis	IL-4 ^{-/-}	(Haynes et al. 2012, Tseng et al. 2016)
					Bmal1 deficiency	(Kondratov et al. 2006, Dudek et al. 2016)
					Ercc1 deficiency	(Vo et al. 2010, Nasto et al. 2012)
					Dystrophin-utrophin double knockout	(Isaac et al. 2013)
					CTGF knockout	(Bedore et al. 2013)
					Biglycan deficiency	(Furukawa et al. 2009)
					Cartilage matrix deficiency	(Watanabe et al. 1997, Watanabe and Yamada 2002)
					Myostatin knockout	(Hamrick et al. 2003)
					COL2 mutation	(Sahlman et al. 2001)
					COL9 mutation	(Kimura et al. 1996)
					Sickle tail mutation	(Semba et al. 2006)
					Ankylosis mutation	(Sweet and Green 1981)
					HLA-B27	(Weinreich et al. 1995)
					transgenic	

As for ex vivo models, there is not fully recognized consensus regarding an ideal in vivo model that mimics human disc degeneration (Drazin et al. 2012, Sun et al. 2013a). When considering the use of an animal model, several features should be taken into account, namely the development, anatomy (size and geometry of the discs), biochemistry and the mechanical forces that act on the spine. There are changes not only between different species, but also with age and spinal level (Alini et al. 2008, Daly et al. 2016). As previously mentioned, there are differences regarding, for instance, IVD's notochordal cell content. Species including mouse, rat, cat, dog, pig and rabbit retain them throughout their adult life, while in humans, cows and sheep they rapidly decrease after birth (Alini et al. 2008). When designing an in vivo model, and the experimental hypothesis, it should be considered that notochordal cells might be potential NP progenitor cells (Smolders et al. 2012), and that they can be involved in the regulation, for instance, of ECM components synthesis (Aguiar et al. 1999). Nonetheless, some authors argue that the apoptotic processes caused by induced degeneration play a role in notochordal cells loss, as in aged and degenerated human discs (Roberts et al. 2006, Gruber et al. 2009, Yurube et al. 2014), and therefore, the results obtained with these models have relevance after notochordal cells loss (Daly et al. 2016).

Spontaneous disc degeneration models are considered useful for studying the natural evolution of degeneration (Singh et al. 2005, Alini et al. 2008, Daly et al. 2016). Baboons, although quadruped, have been used for spontaneous disc degeneration models (Lauerman et al. 1992, Platenberg et al. 2001). They can spend much time in semi-erect and erect positions, conducting forces through the spine similarly to humans (Lauerman et al. 1992), are relatively large (adult males 20-26 kg, adult females 12-17 kg), have a long-life expectancy (30-45 years) and are closely related to humans (Lauerman et al. 1992, Platenberg et al. 2001). Nonetheless, these animals need space and time to develop a condition that cannot be fully controlled. Other animal models, such as the chondrodystrophic dog (Gillett et al. 1988, Bergknut et al. 2012) and sand rat (Silberberg et al. 1979, Moskowitz et al. 1990, Gruber et al. 2002, Gruber et al. 2007, Gruber et al. 2008, Gruber et al. 2014a) are also used, since they often develop disc related pathologies. Nevertheless, Singh et al. (2005) considered that naturally occurring animal models present several drawbacks, namely the lack of knowledge regarding the high rate of disc degeneration and impossibility to control the progressive structural failure. For instance, in chondrodystrophic canine models, the NP matrix contains higher collagen content, decreased proteoglycan and water content, and calcifications, in contrast with human discs (Singh et al. 2005).

Experimentally induced animal models have been extensively described in the literature, and when established in a control environment, can preset high reproducibility (Singh et al. 2005, Alini et al. 2008). Large animal models have been developed in rhesus monkey, dog, sheep, goat or minipig (Table 5). Sheep and goat present several advantages. Both species, in

comparison to humans, suffer a loss of notochordal cells in early adulthood, present similar lumbar disc size and are exposed to similar mechanical loadings, although being quadruped (Alini et al. 2008, Daly et al. 2016). Moreover, they are animals that commonly tolerate surgical interventions well (Daly et al. 2016).

Small animal models such as rabbit, rat and mouse are relatively simple to manipulate and present cost-effectiveness as a model, when compared to large animals (Daly et al. 2016). They are commonly used for developing models of mechanical injury and tissue enzymatic degradation, as shown in Table 5. Also, very important are the genetic knockout (Bedore et al. 2013, Isaac et al. 2013) and mutation (Sweet and Green 1981, Kimura et al. 1996, Sahlman et al. 2001, Semba et al. 2006) mice models, which allow to investigate the role that certain genes may play in disc degeneration (Singh et al. 2005, Daly et al. 2016). Nevertheless, small animal models have limitations regarding the injection of relevant volumes of therapeutics or implantation of engineered tissue constructs (Zhang et al. 2011a).

This chapter covered numerous works on the healthy and degenerated IVD anatomy and physiology, microenvironment, cell content, molecular key players and the pathomechanisms associated with degeneration. Nonetheless, to study degeneration, inflammation and how this correlates with pain, it is important not to look only to the IVD itself. Analysis at systemic level are also important to further understand questions such as, for instance, the interplay with the immune system. Several models might be chosen for IVD degeneration studies; however, the choice of a model should be clarified regarding the scientific question proposed and the outcomes to be analyzed. In general, animal models are highly focused in assessing outcomes at the IVD level, while often disregarding the neurological morphology and functions that may simulate the clinical symptoms (Alini et al. 2008).

1. Immunogenic phenotype of IVD cell populations and induced immune cell response

An association between disc degeneration, herniation and inflammation has been established over time (Johnson et al. 2015, Molinos et al. 2015a). IVD cells can secrete pro-inflammatory cytokines to induce and enhance inflammation (Le Maitre et al. 2007a) and an inflammatory response occurs not only in the IVD, but also in the surrounding tissues (Risbud and Shapiro 2014). Therefore, an in-depth characterization of the synergic interplay between degeneration, inflammation and pain could promote the development of more advanced and targeted therapies for IVD degeneration and LBP (Teixeira et al. 2015, Molinos et al. 2015a, Teixeira et al. 2016). In this section, we discuss the contributions of different factors to cellular and tissue level changes seen during disc degeneration (schematically summarized in Figure 1).

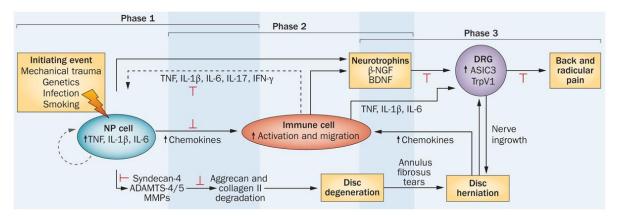


Figure 1. Role of the cytokines involved in different phases of intervertebral disc degeneration and herniation, leading to back and radicular pain. In the first phase of degeneration, IVD cells express several catabolic molecules in the inflammatory environment, promoting ACAN and COL2 degradation, which leads to mechanical instability and ECM breakdown. In many cases, AF tearing and herniation occur. Secondly, the release of cytokines and chemokines by the IVD cells enhances activation and infiltration of immune cells, which also produce proinflammatory factors by themselves, further amplifying the inflammatory response. Of notice, together with the infiltration of immune cells, there is also microvascularization and innervation by nociceptive nerve fibers arising from the dorsal root ganglion (DRG). In the third phase, neurogenic factors, particularly nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), produced by the herniated disc and immune cells, induce the expression of the pain associated cation channels like acid-sensing ion channel 3 (ASIC3) and transient receptor potential cation channel, subfamily V, member 1 (Trpv1) in the DRGs, promoting discogenic pain and enhancing the cytokine mediated disc degeneration. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology (Risbud and Shapiro, 2013), copyright (2013).

IVD cells express several inflammatory factors already during homeostasis (Molinos et al. 2015a). However, an initial insult, related with aging and degeneration, leads to an upregulation of inflammation mediators such as key pro-inflammatory cytokines, namely IL-1 β and TNF- α , but also IL-6, IL-17, IFN- γ and chemokines, among others (Takahashi et al. 1996, Kang et al. 1997, Burke et al. 2002b, Park et al. 2002, Specchia et al. 2002, Le Maitre et al. 2005, Weiler et al. 2005, Le Maitre et al. 2007a, Huang et al. 2008, Kokubo et al. 2008, Shamji

et al. 2010, Risbud and Shapiro 2014). These are initiating events of the IVD degenerative cascade (Risbud and Shapiro 2014, Walter et al. 2015). They contribute to the increase of cell senescence, unbalanced anabolism and catabolism in ECM synthesis (Le Maitre et al. 2005, Seguin et al. 2005, Shamji et al. 2010, Cuellar et al. 2013, Purmessur et al. 2013b). Herniated discs are known to induce a specific autoimmune response (Sun et al. 2013b). Macrophages, leucocytes, neutrophils and T cells were found in extruded tissues (Kokubo et al. 2008, Shamji et al. 2010, Risbud and Shapiro 2014), surrounded by granulation tissue, neovascularization and innervation (Burke et al. 2002a, Freemont et al. 2002a). Vascular and nerve ingrowth into the avascular IVD occurs from the outer layers of the AF into the NP (Sakai and Andersson 2015).

The factors produced by both IVD and immune cells, as well as their effect in degeneration, inflammatory state and associated pain will be discussed ahead. As Molinos et al. (2015a) highlighted, there are numerous inflammatory mediators found in the human IVD, which may be produced by NP, AF and/or infiltrating inflammatory cells, as summarized in Table 1.

1.1. Key pro-inflammatory molecules in IVD degeneration and associated inflammation

Both IVD cells and leucocytes secrete IL-1 β and TNF- α (Le Maitre et al. 2005, Le Maitre et al. 2007a). IL-1 and TNF- α have been identified in painful hernia samples, being associated with the mechanism of sensory nerves ingrowth into the NP (Hayashi et al. 2008), damage of the dorsal root ganglion (DRG) and neuropathic pain (Olmarker and Larsson 1998, Igarashi et al. 2000, Murata et al. 2006, Leung and Cahill 2010). Expression of TNF- α and IL-1 β was shown to increase with age and severity of degeneration, as observed by analysis of human hernia samples from donors with different ages, being these cytokines by themselves degeneration precursors (Le Maitre et al. 2005, Bachmeier et al. 2007, Le Maitre et al. 2007a, Wang et al. 2014, Johnson et al. 2015).

1.1.1. TNF-α

TNF- α was shown to be one of the first cytokines highly produced by human IVD cells in both IVD degeneration and herniation scenarios (Weiler et al. 2005, Le Maitre et al. 2007a, Ulrich et al. 2007, Dudli et al. 2012). It was shown that by exposing bovine organ cultures to TNF- α , as it may occur from injured surrounding tissues, it can penetrate in healthy intact IVDs, induce expression of additional pro-inflammatory cytokines and alter the tissue mechanical behavior (Millward-Sadler et al. 2009, Walter et al. 2015). NP cells stimulated with TNF- α and IL-1 β showed a strong induction of ECM degrading enzymes expression, namely ADAMTS-4 and 5, MMPs 1, 2, 3 and 13, (Shen et al. 2003, Jimbo, Park et al. 2005, Le Maitre et al. 2005, Seguin et al. 2005, Wang et al. 2011a, Wang et al. 2014, Krupkova et al. 2016), and other pro-

Table 1. Inflammation mediators expressed with degeneration by IVD cells and infiltrating cells in painful human intervertebral discs. Table adapted from Wuertz and Haglund (2013) and Molinos et al. (2015a).

Mediators	Tissue	Tissue collection	Disorder	References
TNF-α	AF	Autopsy, biopsy	Degeneration	(Dongfeng et al. 2011)
	AF + NP	Autopsy, biopsy	Degeneration, herniation (protrusion, extrusion,	(Weiler et al. 2005, Le
			sequestration)	Maitre et al. 2007a,
				Bachmeier et al. 2007)
	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Weiler et al. 2005, Le
				Maitre et al. 2007a)
	AF + NP + CEP	Biopsy	Herniation, spondylosis	(Kokubo et al. 2008)
	NP	Autopsy, biopsy	Degeneration	(Richardson et al. 2009)
	NP	Biopsy	Herniation	(Park et al. 2011)
	NP	Biopsy	Herniation (protrusion, extrusion, sequestration)	(Chen et al. 2017)
	IVD	Autopsy, biopsy	Degeneration, herniation	(Akyol et al. 2010)
	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
	IVD	Biopsy	Herniation (protrusion, extrusion, sequestration)	(Takahashi et al. 1996)
	IVD	Biopsy	Herniation (extrusion, sequestration)	(Miyamoto et al. 2000)
	IVD	Biopsy	Herniation (subligamentous extensions, transligamentous	(Ahn et al. 2002)
		. ,	extensions including sequestration)	,
TNFR1	AF + NP	Autopsy, biopsy	Degeneration, herniation (protrusion, extrusion,	(Le Maitre et al. 2007a,
			sequestration)	Bachmeier et al. 2007)
TNFR2, TACE	AF + NP	Autopsy, biopsy	Degeneration, herniation (protrusion, extrusion,	(Bachmeier et al. 2007)
			sequestration)	,
IL-1α	AF + NP	Autopsy, biopsy	Degeneration	(Le Maitre et al. 2005)
	IVD	Biopsy	Herniation (protrusion, extrusion, sequestration)	(Takahashi et al. 1996)
	IVD	Biopsy	Herniation (subligamentous extensions, transligamentous	(Ahn et al. 2002)
			extensions including sequestration)	
IL-1β	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Le Maitre et al. 2007a)
	AF + NP	Autopsy, biopsy	Degeneration	(Le Maitre et al. 2005)
	NP	Autopsy, biopsy	Degeneration	(Richardson et al. 2009)
	NP	Autopsy, biopsy	Herniation	(Gronblad et al. 1994)
	NP	Biopsy	Herniation	(Park et al. 2011)
	IVD	Autopsy, biopsy	Degeneration, herniation	(Akyol et al. 2010)
	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
	IVD	Biopsy	Herniation (protrusion, extrusion, sequestration)	(Takahashi et al. 1996)
	IVD	Biopsy	Herniation (extrusion, sequestration)	(Miyamoto et al. 2000)
IL-1Ra	AF + NP	Autopsy, biopsy	Degeneration	(Le Maitre et al. 2005)
IL-1R1	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Le Maitre et al. 2007a)
	AF + NP	Autopsy, biopsy	Degeneration	(Le Maitre et al. 2005)
IL-2	IVD	Autopsy, biopsy	Degeneration, herniation	(Akyol et al. 2010)
	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Shamji et al. 2010)

	NP	Biopsy	Herniation (subligamentous extrusion and protrusion, sequestration and transligamentous extrusion)	(Park et al. 2002)
	IVD	Autopsy, biopsy	Degeneration, herniation	(Akyol et al. 2010)
L-6	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Shamji et al. 2010)
	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
	IVD	Biopsy	Degeneration, herniation (protrusion, extrusion, sequestration)	(Burke et al. 2002b)
	IVD	Biopsy	Herniation	(Kang et al. 1996)
	IVD	Biopsy	Herniation (extrusion, sequestration, protrusion)	(Takahashi et al. 1996)
	Lavage fluid from disc space	Biopsy	Herniation	(Gajendran et al. 2011)
L-8	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
	IVD	Biopsy	Degeneration, herniation (protrusion, extrusion, sequestration)	(Burke et al. 2002b)
	IVD	Biopsy	Herniation (subligamentous extensions, transligamentous extensions including sequestration)	(Ahn et al. 2002)
	IVD	Biopsy	Herniation (protrusion, extrusion, sequestration), scoliosis	(Burke et al. 2002a)
L-10	IVD	Autopsy, biopsy	Degeneration, herniation	(Akyol et al. 2010)
	IVD	Biopsy	Herniation (subligamentous extensions, transligamentous extensions including sequestration)	(Ahn et al. 2002)
L-12	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Shamji et al. 2010)
	NP	Biopsy	Herniation (subligamentous extrusion and protrusion, sequestration and transligamentous extrusion)	(Park et al. 2002)
	IVD	Autopsy, biopsy	Degeneration, herniation	(Akyol et al. 2010)
	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
L-16	NP	Autopsy, biopsy	Degeneration, prolapse, herniation (protrusion, extrusion, sequestration)	(Phillips et al. 2013, Phillips et al. 2015)
L-17	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Shamji et al. 2010)
	AF + NP	Biopsy	Degeneration, herniation	(Gruber et al. 2013)
L-20 (and its eceptor subunits)	IVD	Biopsy	Herniation (extrusion, sequestration)	(Huang et al. 2008)
L-21	NP	Biopsy	Herniation (protrusion, extrusion, sequestration)	(Chen et al. 2017)
CCL2, CCL7, CXCL8	NP	Autopsy, biopsy	Degeneration, prolapse, herniation (protrusion, extrusion, sequestration)	(Phillips et al. 2013)
CCR1, CXCR1, CXCR2	NP	Autopsy, biopsy	Degeneration, prolapse, herniation (protrusion, extrusion, sequestration)	(Phillips et al. 2015)
FN-γ	AF + NP	Autopsy, biopsy	Degeneration, herniation	(Shamji et al. 2010)
•	NP	Biopsy	Herniation (subligamentous extrusion and protrusion, sequestration and transligamentous extrusion)	(Park et al. 2002)
	Lavage fluid from disc space	Biopsy	Herniation	(Gajendran et al. 2011)

	Lavage fluid from disc space	Biopsy	Degeneration, scoliosis	(Cuellar et al. 2010)
RANTES	AF + NP	Biopsy	Degeneration, herniation	(Gruber et al. 2014b)
	IVD	Biopsy	Herniation (subligamentous extensions, transligamentous extensions including sequestration)	(Ahn et al. 2002)
TGF-β	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
TGF-β1	IVD	Biopsy	Herniation (subligamentous extensions, transligamentous extensions including sequestration)	(Ahn et al. 2002)
Substance P	AF + NP + CEP	Biopsy	Herniation, spondylosis	(Kokubo et al. 2008)
	NP	Autopsy, biopsy	Degeneration	(Richardson et al. 2009)
MCP-1	IVD	Biopsy	Herniation (protrusion, extrusion, sequestration), scoliosis	(Burke et al. 2002a)
	Lavage fluid from disc space	Biopsy	Herniation	(Gajendran et al. 2011)
MIP-1β	Lavage fluid from disc space	Biopsy	Herniation	(Gajendran et al. 2011)
NGF	AF + NP + CEP	Biopsy	Herniation, spondylosis	(Kokubo et al. 2008)
	NP	Autopsy, biopsy	Degeneration	(Richardson et al. 2009)
	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
bFGF	AF + NP + CEP	Biopsy	Herniation, spondylosis	(Kokubo et al. 2008)
VEGF	AF + NP + CEP	Biopsy	Herniation, spondylosis	(Kokubo et al. 2008)
	IVD	Biopsy	Degeneration, herniation	(Lee et al. 2009a)
GDF-5	AF	Biopsy	Degeneration, herniation	(Gruber et al. 2014c)
GM-CSF	IVD	Biopsy	Herniation: extrusion, sequestration, protrusion	(Takahashi et al. 1996)
MMPs	AF + NP	Biopsy	Degeneration, herniation (protrusion, extrusion, sequestration)	(Bachmeier et al. 2009)
	AF + NP + CEP	Biopsy	Herniation, spondylosis	(Kokubo et al. 2008)
	NP	Autopsy, biopsy	Degeneration	(Richardson et al. 2009)
	NP	Biopsy	Herniation (protrusion, subligamentous extrusion, transligamentous extrusion, sequestration)	(Matsui et al. 1998)
	IVD	Biopsy	Herniation	(Kang et al. 1996)
FasL	NP	Biopsy	Herniation (subligamentous extrusion and protrusion, sequestration and transligamentous extrusion)	(Park et al. 2001a)
FasR	NP	Biopsy	Herniation (subligamentous extrusion and protrusion, sequestration and transligamentous extrusion)	(Park et al. 2001b)
CDMP	AF + NP	Autopsy, biopsy	Degeneration	(Le Maitre et al. 2009)
COX-2	IVD	Biopsy	Herniation (extrusion, sequestration)	(Miyamoto et al. 2000)
PGE ₂	NP	Biopsy	Herniation (protrusion, extrusion, sequestration)	(O'Donnell and O'Donnell 1996)
	IVD	Biopsy	Degeneration, herniation (protrusion, extrusion, sequestration)	(Burke et al. 2002b)
	IVD	Biopsy	Herniation	(Kang et al. 1996)
	100	Бюрзу	Tierniation	(Italig Ct al. 1000)

NO	IVD	Biopsy	Herniation	(Kang et al. 1996)
ADAMTS-1, -4, -5, -	AF + NP	Autopsy, biopsy	Degeneration	(Pockert et al. 2009)
9, -15			·	,
ADAMTS-7	NP	Biopsy	Herniation (protrusion, extrusion, sequestration)	(Chen et al. 2017)
TIMP-1, TIMP-2	AF + NP	Biopsy	Degeneration, herniation (protrusion, extrusion,	(Bachmeier et al. 2009)
·			sequestration)	,
TIMP-3	AF + NP	Autopsy, biopsy	Degeneration	(Pockert et al. 2009)
PLA ₂	AF + NP	Autopsy, biopsy	Herniation, spondylosis, spondylolisthesis (among others)	(Miyahara et al. 1996)

inflammatory factors, as IL-6 or COX-2 (Jimbo et al. 2005, Fujita et al. 2012), previously identified in human IVD degenerated samples (Bachmeier et al. 2009, Pockert et al. 2009).

TNF- α belongs to a superfamily of ligand/receptor proteins designated TNF/TNFR superfamily proteins. Human TNF is synthesized as a type II transmembrane protein (membrane-bound TNF, mTNF), forming stable homotrimers. mTNF is processed by TNF- α -converting enzyme (TACE) into soluble TNF (sTNF) (Black et al. 1997, Risbud and Shapiro 2014, Johnson et al. 2015). Both sTNF- α and mTNF- α can bind through the TNF homology domain (THD) to the cysteine-rich domains (CRDs) of its receptors (TNFRs), TNFR1 or TNFR2, which act as TNF antagonists (Leung and Cahill 2010). TACE, TNFR1 and TNFR2 are expressed in human NP tissue (Johnson et al. 2015). Binding promotes the recruitment of several factors such as TNFR1-assoicated death domain protein (TRADD), receptor-interacting protein 1 (RIP1), TNF-receptor-associated factor 2 (TRAF2) and baculoviral IAP repeat containing 1 and 2, resulting in formation of Complex I signaling (Johnson et al. 2015). Downstream signaling is mediated by nuclear factor κ -light-chain-enhancer of activated B cells (NF- κ B) and mitogen-activated protein kinases (MAPK) pathways (Silke 2011, Risbud and Shapiro 2014).

NF-κB controls the expression of several inflammatory and catabolic genes, playing an important role in the regulation of inflammatory response (Risbud and Shapiro 2014). NF-κB is one of the most important regulators of the synthesis of cytokines, such as TNF-α, IL-1β, IL-6, and IL-8, as of the expression of COX-2 (Tak and Firestein 2001). It is a direct modulator of HIF-1α expression, which is an important transcription factor in cells under hypoxia and vital to chondrocyte survival (Dudli et al. 2012). NF-κB activation may also be involved in cell apoptosis (Tak and Firestein 2001). Regarding the MAPK pathways, they not only control inflammation, but have several other functions as cell growth and differentiation, among others (Li et al. 2015a).

Moreover, it was shown that TNF- α can activate the Wnt/ β -catenin signaling pathway in NP cells, increasing the expression of MMP13 (Ye et al. 2011), and that the Wnt/ β -catenin signaling can also induce TNF- α expression in NP cells (Hiyama et al. 2013). It is hypothesized that this may lead to a pro-degenerative feed-forward loop between the two signaling pathways (Hiyama et al. 2013).

1.1.2. IL-1β

Regarding IL-1 family, among 9 other cytokines are IL-1 α and IL-1 β . Although TNF- α seems to be the first cytokines produced in a degeneration scenario by human IVD cells, IL-1 appears to be the predominant cytokine (Le Maitre et al. 2005, Weiler et al. 2005, Le Maitre et al. 2007a, Dudli et al. 2012). Both proteins are encoded by two separate genes and synthesized as propeptide precursors (pro-IL-1 α and pro-IL-1 β), and then activated through intracellular

proteolytic cleavage (IL-1 α is cleaved by calpain and IL-1 β by caspase-1), forming membrane-bound mIL-1 α and mIL-1 β (Gabay et al. 2010, Risbud and Shapiro 2014, Johnson et al. 2015). Although pro-IL-1 β requires extracellular activation by neutrophil proteases, membrane associated pro-IL-1 α is biologically active and can exert both intracellular and extracellular effects (Gabay et al. 2010). Pro-IL-1 α can signal adjacent cells through the IL-1 receptor, type 1 (IL-1R1), which was identified by Le Maitre et al. (2005) in non-degenerate and degenerate human IVDs. Moreover, pro-IL-1 α retains a nuclear localization sequence, working as transcriptional modulator (Risbud and Shapiro 2014, Johnson et al. 2015). Pro-IL-1 α , mIL-1 α and mIL-1 α can bind to IL-1R1, recruit the IL-1 receptor accessory protein (IL-1RAcP) and create a complex, which then recruits two adaptor proteins, the myeloid differentiation primary response gene 88 (MYD88) and the IL-1 receptor-activated protein kinase (IRAK) (Risbud and Shapiro 2014, Johnson et al. 2015). This leads to downstream activation of numerous signaling proteins, such as c-Jun N-terminal kinase (JNK), p38 and MAPK, and transcription factors, like NF-κB and activating protein (AP)-1, controlling the expression of several inflammatory and catabolic genes (Risbud and Shapiro 2014, Johnson et al. 2015).

In organ culture models, stimulation with TNF- α and IL-1 β down-regulated the expression of ECM components, increased the expression of ECM degrading enzymes, pro-inflammatory cytokines and PGE₂, and pain-associated molecule nerve growth factor (NGF) (Abe et al. 2007, Ponnappan et al. 2011, Markova et al. 2013, Purmessur et al. 2013b, Teixeira et al. 2015, Walter et al. 2015, Krupkova et al. 2016, Walter et al. 2016), and compromised disc biomechanics (Walter et al. 2015). *In vitro*, human disc cells, upon stimulation with IL-1 β and TNF- α , produced high levels of regulated upon activation, normal T-cell expressed, and secreted (RANTES, also named CC chemokine ligand [CCL]5), which was also observed in lumbar disc AF tissue with higher degree of degeneration (Gruber et al. 2014b). Additionally, TNF- α and IL-1 β treatment of NP cells also seems to mediate IVD cell proliferation, affecting the NOTCH signaling pathway (Wang et al. 2013).

1.1.3. IL-6

IL-6 is also a cytokine with impact in promoting IL-1 and TNF- α mediated catabolism in IVD cells (Risbud and Shapiro 2014). Similarly to the effect of TNF- α (Murata et al. 2008), IL-6 was also shown to induce DRG neurons apoptosis (Murata et al. 2011), and to contribute to neuropathic pain (Wei et al. 2013b). Secreted by T cells, macrophages and IVD cells (Rand et al. 1997), IL-6 has been characterized as a pro-inflammatory cytokine in the context of IVD degeneration, but it is also involved in regenerative or anti-inflammatory events (Scheller et al. 2011). IL-6 forms monomers and dimers and it can signal through a type I cytokine receptor complex, which includes the ligand-binding IL-6R α chain and the membrane glycoprotein

gp130, a receptor and signal-transducing subunit, leading to the activation of intracellular signaling cascades via gp130 (Rose-John et al. 2007, Scheller et al. 2011). This pathway is limited to cells that express IL-6R on their surface (Rose-John et al. 2007). It signals through Janus kinase/signal transducers and activators of transcription (JAK/STAT), MAPK and phosphoinositide-3 kinase (PI3K) signal transduction pathways (Scheller et al. 2011), promoting functions include B- and T- cells growth and differentiation, as well as acute-phase protein induction, among others (Risbud and Shapiro 2014). On the other hand, soluble IL-6R (sIL-6R) can be formed by proteolytic cleavage of the mIL-6R protein or translation from alternatively spliced mRNA (Rose-John et al. 2007). sIL-6R amplifies IL-6-mediated signaling by the activation of cell that express the signal transducer protein gp130 but lack transmembrane IL-6R, working as paracrine factor (Scheller et al. 2011, Risbud and Shapiro 2014).

1.2. TLRs

Toll-like receptors (TLRs) are plasma- and endolysosomal-bound pattern recognition receptors implicated in innate immunity and inflammation (Klawitter et al. 2014, De Nardo 2015). TLRs are usually expressed by immune cells, namely dendritic cells, macrophages, neutrophils, monocytes, T and B cells but can also be expressed by other cell types as synovial fibroblasts, chondrocytes and IVD cells (Klawitter et al. 2014, De Nardo 2015). Klawitter et al. (2014) detected also the expression of TLRs 1, 3, 5, 6, 9 and 10 in human cells isolated from degenerated discs, and observed that TLRs 1, 2, 4 and 6 expression was dependent on the IVD's degree of degeneration. While TLRs 1, 2, 4, 5 and 6 are located on the cell surface, TLRs 3, 7, 8 and 9 are in the endosomal/lysosomal compartment (Klawitter et al. 2014). Namely TLRs 2 and 4 have been described to be expressed by human (Ellman et al. 2012, Klawitter et al. 2012a, Klawitter et al. 2012b, Gawri et al. 2014b, Klawitter et al. 2014) and bovine IVD cells (Rajan et al. 2013). TLR2 and TLR4 are known to mediate the innate immunity, being highly specific in their pathogen recognition. They activate NF-kB, JNK, and p38 signaling pathways, leading to increased expression of TNF-α, IL-1α, IL-1β, IL-6, IL-8, COX-2, IκBα (an inhibitor of NF-κB transcription factor), MMP1, MMP13, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-2 and mitogenactivated protein kinase phosphatase (MKP)-1 (Schaefer et al. 2005, Gabay et al. 2010, Quero et al. 2013). JNK, p38 and MAPK, as well as NF-kB (Risbud and Shapiro 2014).

Furthermore, as Johnson et al. (2015) discussed, several studies have shown that ECM degradation products may act as signaling molecules, as TLRs endogenous ligands, playing a relevant role in the enhancement of the inflammatory state. For instance, proteolytically-cleaved biglycan activated pro-inflammatory cascades through binding to TLR2 and TLR4 in macrophages (Schaefer et al. 2005), hyaluronic acid fragments activated the TLR2 signaling

pathway in resident IVD cells (Quero et al. 2013), fibronectin fragments worked as endogenous ligands for TLR4 (Okamura et al. 2001), and VCAN aggregates activated TLR2 in carcinoma (Kim et al. 2009b). Moreover, it was observed that excessive mechanical loading of IVD cells may upregulate TLR2 and TLR4 expression (Gawri et al. 2014b). Also, it was seen a significant increase in TLR2 mRNA expression and production by stimulating human disc cells with IL-1β or TNF-α, which was linked to the NF-κB pathway activation (Klawitter et al. 2014).

1.3. microRNAs

The role of microRNAs (miRNAs) and their potential as biomarkers for early diagnosis of IVD degeneration has lately drawn great attention (Li et al. 2015c, Zhou et al. 2017). To date, the precise role of miRNAs in the pathogenesis of degeneration is not yet elucidated (Liu et al. 2014, Zhou et al. 2017).

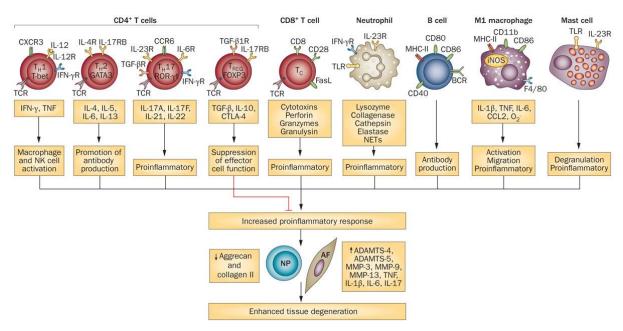
miRNAs are small non-coding RNA molecules with about 18 to 22 nucleotides (Li et al. 2015c), transcribed from their respective gene loci as primary miRNAs (pri-miRNAs) (Papagiannakopoulos and Kosik 2008), followed by a series of maturation steps (Sato et al. 2011). pri-miRNAs can be transcribed from specific miRNA-encoding regions of the genome or derive from mRNA intronic sequences (Li et al. 2015c). miRNAs work by selectively binding to the 3'-untranslated region of their target mRNAs through complementary base pairing, leading to mRNA degradation or suppression of protein translation (Wang et al. 2011b, Ying et al. 2013).

As components of several gene regulatory networks, miRNAs are involved in cell proliferation, differentiation and apoptosis (Luo et al. 2013, Mathieu and Ruohola-Baker 2013, Cao et al. 2014), tissue development (Joglekar et al. 2009, Bae et al. 2012, Khoshgoo et al. 2013, Ying et al. 2013), homeostasis, metabolism and tumorigenesis (Majid et al. 2012, Xie et al. 2013). Defective expression or alterations in miRNAs combination with their target genes can contribute, for instance, to different cancers, including gastrointestinal (Bandres et al. 2009), osteosarcoma (Duan et al. 2011) and hepatocellular carcinoma (Furuta et al. 2010), autoimmune diseases, such as rheumatoid arthritis and osteoarthritis (Buckland 2010), and IVD degeneration (Wang et al. 2011c, Tsirimonaki et al. 2013, Zhao et al. 2014). Bioinformatics analysis are commonly used to investigate miRNA target genes and predict possible signaling pathways (Zhou et al. 2017). Several authors identified miRNAs which were differentially expressed by human NP cells in degenerative samples, compared to controls (Wang et al. 2011c, Zhao et al. 2014, Ji et al. 2016, Li et al. 2016c, Xu et al. 2016). miRNAs involved in the mechanisms associated with disc degeneration have been recently revised by Li et al. (2015c) and Zhou et al. (2017), and are summarized in Table 2.

Table 2. miRNAs reported to be involved in human degenerative NP. Adapted from Li et al. (2015c) and Zhou et al. (2017).

miRNA	Expression	Target	Function	References		
Apoptosis mediators						
miR-27a	↑	PIK3CD	Regulates the PI3K/Akt signaling pathway	(Liu et al. 2013a)		
miR-155	\downarrow	FADD, caspase-	Involved in the FasL-Fas signaling pathway	(Wang et al. 2011c)		
miR-494	↑	JunD	Mediates TNF-α-induced cell apoptosis	(Wang et al. 2015b)		
Cell proliferation mediators						
miR-10b	↑	HOXD10	Targets the RhoC-Akt signaling pathway	(Yu et al. 2013)		
miR-15a	↑	МАРЗК9	Inhibits NP cells proliferation and induced cells apoptosis by targeting MAP3K9. Involved in MAPKs signal pathway.	(Cai et al. 2017)		
miR-21	↑	PTEN	Targets the PTEN/Akt signaling pathway	(Liu et al. 2014)		
miR-27b	\downarrow	MMP13	Induces type II collagen loss by directly targeting MMP13	(Li et al. 2016c)		
miR-184	↑	GAS1	Negatively regulates the GAS1/Akt signaling pathway	(Li et al. 2017a)		
Degeneration	and inflammati	on mediators				
miR-7	↑	GDF-5	Mediates IL-1β-induced ECM degradation	(Liu et al. 2016a)		
miR-15b	↑	SMAD3	Mediates IL-1β-induced ECM degradation	(Kang et al. 2017)		
miR-34a	↑	GDF-5	Mediates IL-1β-induced ECM degradation	(Liu et al. 2016b)		
miR-93	\	MMP3	Positively regulates COL2 loss by directly targeting MMP3	(Jing and Jiang 2015)		
miR-98	\downarrow	STAT3	Promotes ECM degradation by targeting IL-6/STAT3 signaling pathway	(Ji et al. 2016a)		
miR-100	↑	FGFR1, FGFR3	Activates MMP13 through suppression of FGFR3 via imbalance of FGFR1 and FGFR3 levels	(Yan et al. 2015)		
miR-133a	\	MMP9	Mediates COL2 loss by directly targeting MMP9	(Xu et al. 2016)		
miR-146a	\	FADD, IL-1β, IL- 6, TNF, MMP16	Involved in IL-1 induced IVD degeneration and inflammation	(Gu et al. 2015)		
miR-193a-3p	\	MMP14	Positively regulates COL2 expression by directly targeting MMP14	(Ji et al. 2016b)		
miR-377	\	ADAMTS5	Negatively regulates ACAN degradation by ADAMTS5	(Tsirimonaki et al. 2013)		

[↓] Down-regulated. ↑ Up-regulated.


1.4. Immune cell activation

The IVD has been defined as an immune-privileged organ (Wang et al. 2007b, Sun et al. 2013b). A study by Sheikh et al. (2009) did not observed immune response to a xenograft of mouse cells in an immunocompetent rabbit model, which suggests the hypothesis of existence of immune-privileged sites within the IVD. The immunological privilege was shown to be maintained by FasL (predominantly expressed in activated T lymphocytes and stromal cells of immune-privileged sites) and the physiological barrier together in rat (Takada et al. 2002) and rabbit (Wang et al. 2007b, Wang et al. 2011c) models (Kaneyama et al. 2008). In human

samples, FasL expression was observed to decrease with degeneration (Kaneyama et al. 2008). FasL belongs to the TNF family and when binding to its receptor Fas, Fas-FasL pathway activation induces cell apoptosis of T lymphocytes (Bellgrau et al. 1995, Griffith et al. 1995, Greil et al. 1998) and of IVD cells (Park et al. 2001a, Park et al. 2001b, Wang et al. 2011d), and contributes to pro-inflammatory cytokines production (Yamamoto et al. 2013).

AF tear and NP leakage is recognizable to the immune system as a foreign body (Sun et al. 2013b). This may induce antigen capture, activation of B cells with the production of auto-antibodies and CD8+ cytotoxic T (Tc) cells (Sun et al. 2013b). Antibodies/immunoglobulins have been detected in human herniated IVD tissue (Marshall et al. 1977, Pennington et al. 1988, Takahashi et al. 1996, Szymczak-Workman et al. 2009, Shamji et al. 2010). The immune system downstream cascades promote migration and infiltration, in the region, of specific and nonspecific immune cells, which together with the cytokines they and IVD cells secret, intensify the inflammatory response and cause pain (Risbud and Shapiro 2014). Takahashi and colleagues (1996) identified that most of the cytokine-producing cells, in protrusions, are IVD cells, but also histiocytes, fibroblasts, or endothelial cells, in extruded and sequestrated tissues.

Risbud and Shapiro (2014) reviewed the role of different immune cells infiltrating into the IVD, commonly in herniation and back and radicular pain scenarios, which is schematically presented in Figure 2 and described in the following sections.

Figure 2. Role of the different classes of immune cells in amplifying the inflammatory response by disc cells during IVD degeneration. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology (Risbud and Shapiro, 2013), copyright (2013).

1.4.1. T cells

The presence of inflammatory cells, predominantly macrophages, but also mast cells, subtypes of CD4⁺T helper (T_H) cells, and neutrophils was observed in painful herniated lumbar discs (Gronblad et al. 1994, Doita et al. 1996, Habtemariam et al. 1998, Matsui et al. 1998, Burke et al. 2002b, Peng et al. 2006, Shamji et al. 2010, Risbud and Shapiro 2014), with significant vascular invasion in non-contained/extruded tissues (Kokubo et al. 2008).

IL-12 and IFN- γ were shown to be highly expressed in herniated disc fragments, compared with bulging discs, which may suggest activation of T_H1 CD4+ lymphocytes upon NP exposure to systemic circulation (Park et al. 2002, Cuellar et al. 2010, Shamji et al. 2010). IL-12, known to be produced mainly by macrophages, leads T_H1 cells to produce high amounts of IFN- γ , as well as TNF (Trinchieri 1994, Risbud and Shapiro 2014). Of notice, IFN- γ was found to be most commonly elevated in LBP symptomatic patients, but absent in asymptomatic controls (Cuellar et al. 2010).

On the other hand, increased levels of IL-4 were found in herniated IVD tissue (Shamji et al. 2010), which suggest the involvement of T_H2 CD4⁺ cells (Risbud and Shapiro 2014). Moreover, higher levels of IL-4 had already been detected in contained discs, when compared to noncontained ones (Park et al. 2002).

The presence of IL-17 was also implicated in IVD degeneration, being identified CD4*IL-17A* and CD4⁺CCR6⁺ IL-17-producing cells and high levels of IL-17 in degenerated and herniated tissues, in contrast with low level observed in control tissues obtained from autopsies (Shamji et al. 2010, Zhang et al. 2013a, Liu et al. 2016c). IL-17 is secreted by T_H17 cells, neutrophils, mast cells (Gaffen 2011, Gruber et al. 2013, Kenna and Brown 2013), was well as by IVD resident cells (Liu et al. 2016c). IL-17 is known to induce the activation and mobilization of neutrophils, triggering the production of chemokines and pro-inflammatory cytokines (Gaffen 2011, Gruber et al. 2013, Kenna and Brown 2013). IL-17 supplementation promoted the production of inflammatory mediators, such as NO, PEG₂ and IL-6, and the expression of Intercellular adhesion molecule (ICAM)-1 by IVD cells (Gabr et al. 2011). Moreover, costimulation with IL-12 and IFN-γ or TNF-α showed a synergistic increase of the inflammatory mediators and ICAM-1, suggesting an impact of IL-17 at different levels and an important role of T_H17 lymphocytes in the pathology of IVD disease (Gabr et al. 2011). Moreover, IVD cells might recruit additional lymphocytes and immune cells to the IVD (Gabr et al. 2011). IL-17 receptors may signal through JAK/STAT1, MAPK or NF-κB pathways, correlated with IFN-γ and TNF-α signaling pathways (Albanesi et al. 1999, Miljkovic and Trajkovic 2004, Weaver et al. 2007).

IL-21, also known to be a cytokine secreted by T_H17 cells (Wei et al. 2007, Liu et al. 2012), was recently found in human degenerated IVD (Chen et al. 2017). IL-21 production was shown

to contribute to the enhancement of IVD degeneration by stimulation of TNF- α through the JAK/STAT signaling pathway (Chen et al. 2017). It has also been previously shown that IL-21 produced by T_H17 cells leads to IL-17 production in a STAT3-dependent manner to promote/sustain T_H17 lineage commitment (Wei et al. 2007).

1.4.2. Macrophages

In herniated tissues, it was shown that aside degenerated IVD cells, also invading monocytes or macrophages (CD68+ cells) may secrete cytokines in the IVD tissue (Peng et al. 2006, Kokubo et al. 2008, Shamji et al. 2010, Wuertz and Haglund 2013). Co-culture studies showed that the interaction between IVD cells and macrophages may lead to the production of IL-6, IL-8, inducible nitric oxide synthase (iNOS), and PGE₂ (Takada et al. 2004, Kim et al. 2008, Kim et al. 2009, Hamamoto et al. 2012, Kim et al. 2012, Takada et al. 2012, Yamamoto et al. 2013). After tissue injury or infection, monocytes can be recruited to the site as effectors and differentiate into macrophages and dendritic cells (Shi and Pamer 2011). Macrophages are important innate immunity participants, with heterogeneous functions dependent on the microenvironmental cues. Inflammatory macrophages (M1) are described as the "classically activated" subset (Mantovani et al. 2004, Ogle et al. 2016). M1-activated macrophages are part of polarized T_H1 response (i.e. stimulation with IFN- γ , LPS and/or inflammatory cytokines, such as TNF-α), producing numerous inflammatory cytokines (IL-1β, TNF-α, IL-6), reactive oxygen species, and growth factors, such as VEGF (Mills et al. 2000, Gordon 2003, Mantovani et al. 2004, Spiller et al. 2014). On the other hand, macrophages can also be polarized towards an anti-inflammatory phenotype (M2), which can further be subdivided into M2a, M2b and M2c, based on activation signals, cell surface receptors, and functional diversity (Mantovani et al. 2004). Naïve macrophages can be polarized, in vitro, by stimulation with IL-4 and/or IL-13 to M2a, with TLR or IL-1R ligands to M2b, or with IL-10 to an M2c phenotype (Mantovani et al. 2004). While M2a macrophages contribute to wound healing, M2b and M2c promote the resolution of inflammation through secretion of IL-10 (Mosser and Edwards 2008). Nonetheless, since macrophages polarization may depend, among other cues, on the amounts of factors present in the area where they migrate to (Mantovani et al. 2009), findings from Shamji et al. (2010) from herniated human disc fragments point out to immune lymphocyte activation of the T_H1 lineage, hence macrophages that migrate to herniated IVD tissues will most probably polarize towards an M1 phenotype.

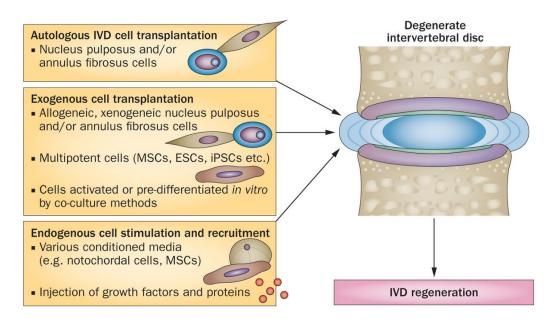
Moreover, infiltrating macrophages, fibroblasts, and endothelial cells, together with native IVD cells, were shown to spontaneously produce MCP-1, MIP-1α, which together with IL-8 work as chemotactic molecules for macrophages and other immune cells (Gronblad et al. 1994, Burke et al. 2002a). Several studies hypothesize that the mechanism of spontaneous disc herniation

regression may include tissue retraction and dehydration, inflammatory response, and the recruitment, infiltration and activity of phagocytic cells, among which are neutrophils, monocytes, macrophages and mast cells (Ikeda et al. 1996, Ito et al. 1996, Haro et al. 1997, Burke et al. 2002a, Kim et al. 2013b). Peng and colleagues (2006) detected high numbers of macrophages and mast cells in painful IVDs. Macrophages and mast cells were similarly distributed around blood vessels and among collagenous fibers of scar/granulation tissue, while being absent in non-degenerated controls or aging discs (Peng et al. 2006). Mast cells are highly specialized mononuclear cells, which contribute to disc tissue inflammation, neovascularization, fibrosis, degradation and secretion of NGF, with a possible causative role in chronic LBP (Freemont et al. 2002b, Peng et al. 2006). Nonetheless, for instance, Nerlich et al. (2002) also observed that non-herniated NP tissue collected during surgery also presented high number of resident CD68+ cells. Moreover, Jones et al. (2008) identified, *in vitro*, that IVD cells can undergo phagocytosis, by ingesting latex beads, indicating that endogenous inflammatory-like cells are comprised in the IVD.

Additionally, alterations at systemic level have also been reported, namely a significant increase in CD3+, CD4+, CD4+/CD8+ lymphocytes in the peripheral blood of patients with lumbar disc herniation, and with (Ma et al. 2010) or without (Tian et al. 2009) AF rupture. A positive correlation between the percentage of CD4+ T lymphocytes or the ratio CD4+/CD8+ and pain was also observed (Tian et al. 2009, Ma et al. 2010).

1.5. Other factors involved in innervation, vascularization and pain

In human extruded or sequestrated discs, other factors have been identified, namely anti-IL-1, lymphocyte function-associated antigen (LFA)-1, granulocyte-macrophage colony-stimulating factor (GM-CSF), basic fibroblast growth factor (bFGF) and VEGF, which suggests an active role of those factors in angiogenesis and neovascularization associated with IVD degeneration (Tolonen et al. 1995, Doita et al. 1996). Peng et al. (2006) reported strong expressions of bFGF, transforming growth factor (TGF)- β 1 and their receptors, as well as cell proliferation, in granulation tissue from painful lumbar IVDs.


Furthermore, substance P and neurotrophins such as NGF and brain-derived neurotrophic factor (BDNF) have been implicated in the mechanisms associated with an enhancement of innervation and neuropathic pain in some cases of IVD degeneration (Freemont et al. 2002a, Freemont et al. 2002b, Purmessur et al. 2008, Ponnappan et al. 2011, Purmessur et al. 2013b). A study by Freemont and colleagues observed production of NGF in painful IVDs with ingrowth of blood vessels and nociceptive nerve fibers. Of notice, NGF expression was not identified in non-painful or control IVDs (Freemont et al. 2002a).

The production of neurotrophins induces DRGs pain associated cation channels depolarization

(Risbud and Shapiro 2014). The increased expression of transient receptor potential cation channel, subfamily V, member 1 (Trpv1) and the acid-sensing ion channel 3 (ASIC3) induce discogenic pain and further cytokine mediated disc degeneration (Zhang et al. 2005, Ohtori et al. 2006, Risbud and Shapiro 2014).

2. Strategies for immunomodulation of degenerated intervertebral disc

Some regenerative medicine- and tissue engineering-based strategies for degenerated IVD have considered the interplay between IVD degeneration, immune cell response and inflammation, when focused in promoting the production of healthy ECM by native IVD cells, while reducing discogenic pain (Molinos et al. 2015a). Well-balanced approaches targeting not only regeneration, but also the modulation of inflammation mediators have been presented as the most promising therapies in reducing IVD-associated pain (Molinos et al. 2015a). These include biological approaches (using different molecules such as growth factors), gene therapy, and cell therapies, ranging from autologous/exogenous cell transplantation to endogenous cell stimulation and recruitment (Figure 3), that are under different development levels (clinical trials, *in vivo* trials, *ex vivo* and *in vitro* studies) and have been reviewed over time (Hughes et al. 2012, Molinos et al. 2015a, Sakai and Andersson 2015, Richardson et al. 2016).

Figure 3. Cell sources for intervertebral disc regeneration. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology (Sakai and Andersson, 2015), copyright (2015).

2.1. Molecular therapy: clinical trials

The modulation and balance of anabolic and anti-catabolic responses of IVD cells addressing the aberrant cytokine-rich/pro-inflammatory degenerative IVD environment are the main target

of the molecular therapies proposed so far (Vadala et al. 2015). An overview of these therapies is summarized in Table 3. Cocktails or single drug administrations of steroids, corticosteroids and anesthetics through epidural delivery or nerve root infiltration, as well as oxygen-ozone (O₂-O₃) gas infiltrations are routine treatments of discogenic diseases (Bonetti et al. 2005, Burgher et al. 2011). Recently, epidural injection of clonidine, an alpha-2 adrenergic receptor agonist, has also shown potential in patients' pain improvement (Burgher et al. 2011). Clonidine has been previously shown to have anti-inflammatory effects in preclinical studies of nerve injury and may also indirectly influence pain (Romero-Sandoval et al. 2005).

Nonetheless, several clinical trials have been evaluating the safety and efficacy of single-dose injections into the NP: for chronic LBP and degenerative disc disease, clinical trials are currently focusing on intradiscal injection of jellified ethanol (NCT02343484), hydrolyzed polyacrylonitrile (HPAN)-based hydrogels (NCT02763956), autologous platelet-rich plasma (PRP), combined with NSAID oral medication (NCT02983747), or recombinant human GDF-5 (NCT00813813, NCT01124006, NCT01158924), a member of the TGF- β superfamily and the bone morphogenetic protein (BMP) subfamily, which is known to influence the growth and differentiation of various tissues, including the intervertebral disc (Feng et al. 2015). Furthermore, in patients with inflammatory discopathy, intradiscal injection of steroids (NCT00804531) or corticoids (NCT01694134) have been compared. Drugs with TGF- β antagonist active ingredients (NCT02320019) have also been tested.

In patients suffering from IVD herniation, intradiscal injection of condoliase, a GAG-decomposing enzyme do degrade the herniated tissue, with high substrate specificity for chondroitin sulfate, dermatan sulfate and hyaluronic acid (NCT01282606), a recombinant human MMP (NCT01978912), or a fibrin sealant (Yin et al. 2014) have been proposed as potential alternatives. While the MMP and the condoliase studies are currently still in phases II and III of clinical trial, respectively, their selective activity on the hernia, leading to its degradation and regression without risk of side effects are expected to be low (NCT01978912, NCT01282606). On the other hand, the fibrin sealant was considered to improve pain and function in selected patients with discogenic pain, although neurological assessments, X-ray, and MRI showed no significant changes (Yin et al. 2014).

O₂-O₃, although promoting tissue stabilization through nucleolysis, is being considered by some clinicians a successful pain relief approach in some herniated disc patients who failed to respond to conservative therapy (Paoloni et al. 2009, Melchionda et al. 2012, Zhang et al. 2013b), although this is not consensual since many specialists point the absence of functional results in the patients.

TNF- α inhibition and antagonism of TNF- α receptors was early shown to reduce pain-related symptoms in a chronic constriction injury of rat nerve (Sommer et al. 1998). In human trials, a short course of TNF- α inhibitors, such as infliximab, adalimumab and etanercept, have shown

Table 3. Bioactive molecules to target IVD degeneration, inflammation and discogenic pain. Adapted from Molinos et al. (2015a).

Therapy	Administration route	Condition / Model	Post- treatment follow-up	Outcomes	References
Clinical trials					
Clonidine, triamcinolone	Transforaminal epidural injection	Acute lumbosacral radiculopathy related to disk herniation	Up to 1 month	Radicular pain improved rapidly with clonidine or triamcinolone, compared to a corticosteroid; corticosteroid injections led to greater functional improvement, without differences in analgesia.	(Burgher et al. 2011)
Corticosteroid	Peri-radicular infiltration	Radicular pain	Up to 1 year	No additional benefit, when compared to local anesthetic injection alone; corticosteroids did not avoid subsequent interventions such as additional root blocks or surgery.	(Tafazal et al. 2009)
	Intradiscal injection	Discogenic LBP	Up to 6 months	Potential as short-term alternative for LBP patients unwilling to accept surgery when conservative treatments failed.	(Cao et al. 2011)
Local anesthetic	Transforaminal epidural injection	Disc herniation and radiculitis	Up to 2 years	Significant improvement in all participants who received local anesthetic alone and who received local anesthetic and steroid.	(Manchikanti et al. 2014)
Oxygen-ozone (O ₂ -O ₃)	Paravertebral injections	LBP due to lumbar disc herniation	Up to 6 months	Minimally invasive; seemed to be safe and effective in reducing root inflammation with a corresponding reduction of pain; reduced disability and intake of analgesic drugs.	(Paoloni et al. 2009, Melchionda et al. 2012)
	Intradiscal and intraforaminal injection	LBP pain and radicular pain	Up to 1 year	O ₂ -O ₃ nucleolysis provided pain relief in most patients who failed to respond to conservative therapy; no significant differences between O ₂ -O ₃ injection only or combined with steroid.	(Zhang et al. 2013b)
Pamidronate	Intravenous infusion	Erosive degenerative disc disease; patients fail to respond to NSAIDs	Up to 1 year	Significant improvements in pain and in mean disability scores. The pain no longer showed an inflammatory pattern in 9 of 10 patients.	(Poujol et al. 2007)
Steroid and O ₂ -O ₃	Intraforaminal and intradiscal injections	Radicular pain related to acute lumbar disk herniation	Up to 6 months	Intraforaminal and intradiscal injections of steroid and O ₂ -O ₃ were more effective than injections of a steroid alone.	(Gallucci et al. 2007)
Steroid	Oral administration	Acute sciatica due to herniated disc	Up to 13 months	Modest improvement in function and no improvement in pain after a short course of oral steroids administration, compared with placebo.	(Goldberg et al. 2015)
	Epidural injection	Sciatica caused by lumbosacral disc prolapse	Up to 3 months	Short-term management of painful sciatica, but no additional long-term improvement over placebo.	(Nandi and Chowdhery 2017)
TNF-α blocker - adalimumab	Subcutaneous injection	lumbar disc herniation, sciatica	Up to 6 months, 3 years	Small decrease in leg pain; significantly fewer surgical procedures.	(Genevay et al. 2010, Genevay et al. 2012)

TNF-α blocker - etanercept	Perispinal administration	Degenerative disc disease, disc herniation, sciatica	Up to 1 month, 230 days	Significant clinical improvement in selected patients with chronic, treatment-resistant disc-related pain.	(Tobinick and Britschgi- Davoodifar 2003, Tobinick and Davoodifar 2004)
	Subcutaneous injection	Sciatica	Up to 6 weeks	Patients with severe sciatica had sustained improvement after a short treatment with etanercept, compared with standard care plus a short course of methylprednisolone.	(Genevay et al. 2004)
	Transforaminal epidural injection	Persistent lumbosacral radicular pain secondary to lumbar disc herniation	Up to 26 weeks	Clinically significant reductions in mean daily worst leg pain and worst back pain compared to placebo.	(Freeman et al. 2013)
	Single intradiscal injection	Discogenic LBP	Up to 2 months	Discogenic LBP alleviation.	(Sainoh et al. 2016)
TNF-α blocker - infliximab	Intravenous infusion	Sciatica, disc herniation	Up to 6 months	Infliximab was superior in terms of leg pain and back-related disability decrease compared to control; but, did not appear to interfere with disc herniation resorption.	(Karppinen et al. 2003) (Autio et al. 2006)
	Intravenous infusion	Acute/subacute sciatica secondary to herniated disc	Up to 1 year	Short-term pain reduction; but, long-term results did not show differences between infliximab and placebo.	(Korhonen et al. 2006)
In vivo studies				·	
BMP-7	Intradiscal injection	Rabbit, <i>in vivo</i> disc degeneration	Up to 2 months	Increased disc height up to the 8-week timepoint, and increased NP proteoglycan content at 2 weeks.	(An et al. 2005)
	Intradiscal injection	Rabbit, <i>in vivo</i> disc degeneration	Up to 4 months	A single BMP-7 injection dramatically reversed the decrease in disc height induced by chondroitinase ABC chemonucleolysis.	(Imai et al. 2007)
BMP-13	Intradiscal injection	Sheep, <i>in vivo</i> disc degeneration	Up to 4 months	BMP-13 injected at the time of injury reversed or arrested loss of matrix proteins.	(Wei et al. 2009)
Corticosteroid	Corticosteroid- loaded ceramic capsule placed adjacent to the punctured disc	Rat, <i>in vivo</i> disc degeneration	4 weeks	Continuous sustained release of corticosterone tricalcium phosphate from ceramic capsules could slow the process of degeneration within the traumatized disc in the rat model.	(Ragab et al. 2009)
COX-2 inhibitor	Epidural injection	Rat, <i>in vivo</i> disc degeneration	Up to 1 week	Decrease in mechanical hyperalgesia 1 hour, 3 and 7 days after the epidural injection of COX-2 inhibitor.	(Kawakami et al. 2002)
Epoxyeicosatrienoic acids	Intradiscal injection	Rat, <i>in vivo</i> disc degeneration	1 month	Enhanced the survival of NP cells and inhibited IVD degeneration.	(Li et al. 2017b)
GDF-5, TGF-β1	Intradiscal injection	Mouse, <i>in vivo</i> disc degeneration	Up to 4 weeks	Early intervention avoided or slowed the degenerative process.	(Walsh et al. 2004)

IκB kinase-β inhibitor	Intradiscal injection	Rat, <i>in vivo</i> disc degeneration	Up to 2 weeks	Injury-induced up-regulation of inflammatory cytokines within IVD, and increased levels of neuropeptides within DRG neurons could be suppressed by inhibiting IκB kinase-β.	(Kobori et al. 2014)
p38 MAP kinase inhibitor	Intradiscal injection	Rat, <i>in vivo</i> disc degeneration	Up to 2 weeks	A direct single application of p38 inhibitor did not suppress calcitonin gene-related peptide expression in DRGs innervating punctured discs.	(Hayashi et al. 2009)
Phosphodiesterase- 2A inhibitor	Intrathecal administration	Rat, <i>in vivo</i> non- compressive lumbar disc herniation	Up to 1 week	Alleviates radicular inflammation and mechanical allodynia.	(Wang et al. 2017)
Platelet-rich plasma (PRP)	Intradiscal injection	Rabbit, <i>in vivo</i> disc degeneration	8 weeks	Suppression of degeneration progress.	(Nagae et al. 2007)
` ,	Injection into and around the IVD	Rat, <i>in vivo</i> disc degeneration	Up to 6 weeks	PRP-treated groups retained more normal morphologic features, contained fewer inflammatory cells, and showed higher hydration on MRI.	(Gullung et al. 2011)
Resveratrol	Local application	Rodent, <i>in vivo</i> disc degeneration	Up to 2 weeks	Significant pain behavior reduction (it was also seen in vitro, in human NP tissue, that resveratrol exhibited an anti-inflammatory and anti-catabolic effect).	(Wuertz et al. 2011)
Simvastatin	Intradiscal injection	Rat, <i>in vivo</i> disc degeneration	Up to 4 weeks	A single injection of simvastatin loaded in a gel had the potential to retard or regenerate the degenerative disc.	(Zhang et al. 2009b)
Thalidomide	Injection in the epineurium (distal to the NP)	Rat, <i>in vivo</i> disc degeneration	Up to 28 days	Significantly inhibited radiculopathic pain <i>in vivo</i> (and the expression of pro-inflammatory mediators and MMPs <i>in vitro</i>)	(Song et al. 2016)
Ex vivo studies	,			,	
Crocin	Culture medium supplementation	Rat, <i>ex vivo</i> disc degeneration	1 week	Effectively suppressed the degeneration-related inflammation and catabolism in rat IVDs, suggesting a potential use as a therapeutic strategy in the treatment of LBP.	(Li et al. 2015d)
Diclofenac	Intradiscal injection	Bovine, <i>ex vivo</i> disc degeneration	Up to 8 days	Df decreased the expression of pro-inflammatory factors; Df-loaded nanoparticles promoted an upregulation of extracellular matrix proteins, namely COL2 and ACAN.	(Teixeira et al. 2015, Teixeira et al. 2016)
Epigallocatechin 3- gallate	Culture medium supplementation	Bovine, ex vivo disc degeneration	Up to 21 days	The anti-inflammatory and anti-catabolic compound epigallocatechin 3-gallate down-regulated the expression of inflammatory and catabolic genes in the NP.	(Krupkova et al. 2016

clinical improvement in reducing initial pain in patients with acute or severe sciatica (Karppinen et al. 2003, Tobinick and Davoodifar 2004, Goupille et al. 2007, Genevay et al. 2010, Genevay et al. 2012), and the number of patients undergoing surgical procedures. Adalimumab subcutaneous injection, although showing after 3 years only a small decrease in leg pain, significantly reduced the need for back surgery (Genevay et al. 2012). In the case of sciatica, it was shown that intravenous or subcutaneous injection of anti-TNF therapy is short lived and, although lower, might have an associated risk of infection (Goupille et al. 2007). Nonetheless, a single etanercept intradiscal injection was recently shown to alleviate discogenic pain up to 2 months (Sainoh et al. 2016).

2.2. Molecular therapy: in vivo and ex vivo studies

Growth factors have been showing overall to enhance ECM production and to stimulate IVD cells proliferation (Masuda 2008). PRP injections into IVD injury models, in rat (Gullung et al. 2011) and rabbit (Nagae et al. 2007), pointed out a maintenance of tissue features, with fewer inflammatory cells, higher fluid content correlated with a more intense signal on MRI (Gullung et al. 2011), and therefore, a delay in the progression of degeneration (Nagae et al. 2007). BMP-7 (An et al. 2005, Masuda et al. 2006, Imai et al. 2007), BMP-13 (Wei et al. 2009), TGF-β1 (Walsh et al. 2004, Matta et al. 2017) and GDF-5 (Walsh et al. 2004, Chujo et al. 2006) have been shown to promote matrix synthesis *in vivo*. While very important, these studies are frequently limited in understanding the effect of the factors injected in native tissue production, disregarding inflammation and pain outputs. Exogenous growth factors were shown to promote matrix synthesis; however, have the disadvantage of a short biological half-life, ranging from hours to days, and a high cost (Winn et al. 1999, Richardson et al. 2016). Moreover, other works also raise questions about supra-physiologic doses administration for effectiveness and undesired blood vessel ingrowth into the IVD (Zhang et al. 2009b).

In vitro tests have also shown great potential of other factors. IL-1Ra released from poly(lactic-co-glycolic acid) microspheres attenuated IL-1β-mediated NP degradation up to 20 days in bovine NP cultures (Gorth et al. 2012). Fullerol nanoparticles were shown to suppress the catabolic activity and adipogenesis of vertebral bone marrow stromal cells under inflammatory stimulus (Liu et al. 2013b). Cobalt protoporphyrin IX treatment of human NP cells from patients with IVD degeneration induced hemeoxygenase (HO)-1 expression, which seemed to reverse the effect of IL-1β on expression of catabolic markers and matrix MMPs (Hu et al. 2016). Natural compounds such as curcumin (Klawitter et al. 2012a) and triptolide (Klawitter et al. 2012b) also exhibited anti-inflammatory, anti-catabolic and anti-oxidant activity in disc cells. Other molecules have been successfully tested *ex vivo*: crocin, a bioactive component of saffron (Li et al. 2015d), diclofenac, a NSAID (Teixeira et al. 2015, Teixeira et al. 2016), and

epigallocatechin 3-gallate (Krupkova et al. 2016). All these molecules have shown potential to suppress the degeneration-related inflammation and catabolism in degenerated IVD tissue, suggesting they can be potentially used as therapeutic drugs in the treatment of LBP.

2.3. Gene therapy

The degenerative disc disease is a chronic condition. Therefore, high and long-lasting local levels of different molecules are necessary for a continuous effect of the regenerative therapies (Vadala et al. 2015). Gene therapy has gained significant attention since it promises more prolonged effects in the treatment of IVD degeneration and mediation of inflammation, and provides the possibility to locally modulate the expression of a specific gene and the consequent production of its protein (Vadala et al. 2007, Vadala et al. 2015).

IL-1Ra transfected cells have been suggested as a therapy to inhibit IVD matrix degradation (Muller-Ladner et al. 1997, Le Maitre et al. 2006, Le Maitre et al. 2007c). TGF-β1 transfection of IVD cells through an adenoviral vector was shown to enhance cell activity and proteoglycan synthesis in a rabbit model *in vivo* (Nishida et al. 1999), and in human NP and AF cells *in vitro* (Tan et al. 2003). Also, the transfection of BMP-2, insulin-like growth factor (IGF)-1 (Li et al. 2004) and their combination with TGF-β1 also promoted an increase in proteoglycan synthesis, namely the combined therapy showed a more promising effect in comparison with the individual transfection treatment (Moon et al. 2008). Moreover, rabbit intradiscal injection of adeno-associated virus serotype 2 vector carrying genes for BMP-2 and TIMP-1 demonstrated an IVD degeneration delay by 12 weeks (Leckie et al. 2012).

Though it has been successfully identified several therapeutic genes, the safety of the delivery systems, associated morbidity and cell irreversible alterations may limit the use of gene transfer vectors in clinics (Woods et al. 2011, Molinos et al. 2015a).

Also with great novel therapeutic targeting potential is the mRNA expression of cytokines and chemokines in degenerated IVDs (Ahn et al. 2002). For example, the inhibition of miR-494 protected NP cells from TNF-alpha-induced apoptosis by targeting JunD (Wang et al. 2015b), and the inhibition of miR-34a in NP cells prevented IL-1 β -induced ECM degradation by increasing GDF-5 expression (Liu et al. 2016b).

Nonetheless, there is still a long way for the new therapies to go through. Extensive processes of *in vivo* tests and clinical trials are essential to guarantee their safety and long-term effectiveness before a widespread use.

2.4. Cell-based therapies

Cell-based therapies aim to colonize the IVD with cells capable of differentiating and of stimulating endogenous IVD cells' function (Sakai and Andersson 2015). Different cell types

have been transplanted over time. NP cells alone (Nishimura and Mochida 1998, Watanabe et al. 2003, Huang et al. 2011), in combination with AF cells (Gruber et al. 2002, Ganey et al. 2003), elastic cartilage derived chondrocytes (Gorensek et al. 2004), articular chondrocytes (Acosta et al. 2011), or MSCs have been widely reviewed in the literature (Molinos et al. 2015a, Sakai and Andersson 2015, Richardson et al. 2016, Vadalà et al. 2016), reporting that cells remain viable thought the studies time course and that a delayed IVD degeneration is observed. Moreover, a clinical trial using autologous cultured disc-derived chondrocytes transplantation, after discectomy, significantly reduced LBP and allowed retention of hydration in adjacent IVD segments at 2 years, when compared to operated patents without cell intervention (Meisel et al. 2007). Allogenic juvenile chondrocytes (NC01771471) and autologous disc chondrocytes (NCT01640457) are currently being tested in phase II clinical trials.

2.4.1. Endogenous therapies

Progenitor cell populations, as previously discussed, have been pointed out to be present within animal and human IVDs (Risbud et al. 2007, Henriksson et al. 2009, Sakai et al. 2012, Brisby et al. 2013). IVD-derived stem cells were shown to differentiate into chondrogenic and neurogenic lineages, suggesting potential for IVD regeneration (Erwin et al. 2013). They were also shown to play a protective role by modulating IVD inflammatory environment since, for instance, rabbit notochordal cells reduced the expression levels of IL-6, IL-8 and iNOS by human macrophage-exposed AF pellets (Kim et al. 2012). Although these promising results, Sakai et al. (2012) observed that a population of progenitor cells identified within the human IVD decreases with both age and degeneration, indicating that the isolation of sufficient cell numbers in the NP may be an obstacle when thinking of a clinical application.

It has also been proposed endogenous progenitor cell recruitment/homing to the degenerated disc, as an alternative therapeutic approach (Grad et al. 2015). MSCs migration was enhanced by degenerative cues and chemoattractor-delivery systems ex vivo, in bovine organ culture models (Illien-Junger et al. 2012, Pereira et al. 2014) and in vivo, in a mouse tail-looping disc degeneration model (Sakai et al. 2015). In vivo, cell homing by the degenerated environment alone is challenging, since it might be widely determined by the degree of neovascularization of the degenerated tissue and of the potential of circulating or bone marrow-derived MSCs to migrate into the NP (Grad et al. 2015, Sakai et al. 2015). Nonetheless, these results provide important data for the development of novel molecular therapies (Sakai et al. 2015), as discussed in the previous section.

On the other hand, MSCs transplantation potential has been linked to their ability to differentiate into an NP cell phenotype, possibly acquiring NP cell-like function, producing IVD

native ECM components, or promoting stimulation of endogenous IVD cells, thus enabling anticatabolic and anti-inflammatory effects, as reviewed by Sakai and Anderson (2015). Moreover, MSCs are also described to have an immunomodulatory role (Yoo et al. 2009, Prockop and Oh 2012).

2.4.2. Exogenous stem cell delivery: clinical trials

MSCs-based therapies have been tested in a few clinical scenarios of degenerative disc disease and LBP (Yoshikawa et al. 2010, Orozco et al. 2011, Pettine et al. 2015). Yoshikawa and colleagues (2010) reported two case studies, in which patients underwent hernia fenestration surgery and degenerated IVD percutaneous engraftment of a collagen sponge containing autologous MSCs. Two years after surgery, it was observed an increase in MRI signal intensity of IVDs with cell grafts, suggesting higher hydration. Disc instability and pain symptons also seemed to have improved (Yoshikawa, Ueda et al. 2010). Orozco et al. (2011) also showed safety and feasibility of autologous bone marrow-derived MSCs intradiscal inject. Patients exhibited rapid improvement of pain and disability (85% of maximum in 3 months) that approached 71% of optimal efficacy, described to be comparable with the results of procedures such as spinal fusion or total disc replacement. Although disc height was not recovered, water content was significantly elevated at 12 months (Orozco et al. 2011). Moreover, it was recently reported that percutaneous injection of autologous bone marrow concentrate cells significantly reduced lumbar discogenic pain over 12 months (Pettine et al. 2014).

These results encouraged other trials that are currently ongoing, addressing the use of allogenic (NCT02097862) or autologous cell transplantation (NCT02338271, NCT02529566) and implantation of cell-seeded scaffolds in degenerated IVD (NCT01290367, NCT01513694, NCT01643681, NCT02412735).

2.4.3. Exogenous stem cell delivery: in vivo and in vitro studies

Sakai and Anderson (2015) reviewed several preclinical studies investigating transplantation of stem cells derived from bone marrow, adipose, synovial and umbilical cord tissues, as well as from CEP, AF and NP for IVD regeneration. Overall, it was reported improvement in MRI signaling, disc height maintenance, or up-regulation of IVD ECM components expression (Sakai and Anderson 2015).

The immunomodulatory role of MSCs has been previously addressed in several contexts. *In vitro*, co-culture of human adipose-derived MSCs and osteoarthritic chondrocytes induced down-regulation of inflammatory factors such as IL-6, IL-8, IL-1 β , MCP-1, MIP-1 α and RANTES expression by MSCs (Manferdini et al. 2013). Pro-inflammatory cytokines, NO, and other damage-associated molecules from injured tissues have also been shown to activate

MSCs to secrete PGE₂, which binds to macrophages and polarizes them to an M2 phenotype that secretes IL-10 (Nemeth et al. 2009).

 $Ex\ vivo$, synovial explants exposed to MSC-conditioned medium showed down-regulation of IL-1β, MMPs 1 and 13, and up-regulation of suppressor of cytokine signaling (SOCS)1 (van Buul et al. 2012). In cartilage, expression of IL-1Ra was upregulated, while ADAMTS-5 and COL2 were down-regulated. MSC-conditioned medium reduced NO production in cartilage explants and the presence of the NF-κB inhibitor, IκBα, was increased in synoviocytes and chondrocytes treated with MSC-conditioned medium (van Buul et al. 2012). MSCs administered systemically were shown to secrete anti-inflammatory TNF- α stimulated gene/protein (TSG)-6 in myocardial infarction in mice (Lee et al. 2009b), and in rat injured cornea (Roddy et al. 2011).

In the IVD context, FasL protein (found in other immune privileged sites) was shown to be expressed in the NP region after MSCs intradiscal administration into beagle nucleotomized IVDs, indicating that either MSCs differentiated into cells expressing FasL, or stimulated the few remaining NP cells to express it (Hiyama et al. 2008). Moreover, IL-1Ra was shown to mediate the anti-inflammatory and antifibrotic effects of MSCs in a mouse model of lung injury (Ortiz et al. 2007). However, MSCs mechanism of action in the IVD and their impact on inflammation mediators is often disregarded in the multiple studies across the literature (Molinos et al. 2015a).

This chapter covered numerous works on immunomodulatory and therapeutic approaches that have potential to promote a pro-regenerative milieu in the IVD. Although the inherent variability and contradictions arising from different studies, as suggested in Molinos et al. (2015a) review work, integrated strategies contemplating the different features of IVD degeneration may contribute to a better translation of *ex vivo* and *in vivo* results and therapeutics to humans.

CHAPTER III

Aim of the thesis

The main aim of this thesis was to enhance the knowledge regarding the inflammatory response of degenerated IVD, and propose potential immunomodulatory therapies with the final goal of regenerating the degenerated IVD.

For such, the work was divided in four main parts:

- 1. The establishment of a standardized degenerative/pro-inflammatory *ex vivo* IVD organ culture model. Different stimulation methods were compared to induce a pro-inflammatory/degenerative environment in bovine IVD organ cultures and inflammatory markers, MMPs and ECM components were analyzed by gene expression upon different stimuli.
- 2. The evaluation of the feasibility of an intradiscal application of anti-inflammatory nanoparticles/nanocomplexes (NCs), previously developed in our group (Gonçalves et al. 2015), to treat inflammation in degenerated IVD. This was performed in the degenerative/pro-inflammatory *ex vivo* IVD organ culture model previously established.
- 3. The assessment of the therapeutic potential of an intradiscal administration of antiinflammatory NCs *in vivo*, in a rat model of degenerated/herniated IVD, established in our lab (Cunha et al. 2015, Cunha et al. 2016).
- 4. The analysis of the immunomodulatory potential of MSCs in degenerated IVD and the influence of the pro-inflammatory/degenerative IVD environment in their immunomodulatory/regenerative role. This was conducted *ex vivo*, in the model established in the first part.

Overall, the work presented here opens new perspectives to immunomodulatory therapies in degenerated IVD, namely on the use of nanotechnology-based knowhow to improve intradiscal treatments. Furthermore, the work highlights the importance of taking into account the inflammatory environment when evaluating the potential of MSC-based therapies to treat IVD degeneration and associated LBP.

CHAPTER IV
A degenerative/pro-inflammatory intervertebral disc organ culture: an <i>ex vivo</i> model for anti-inflammatory drug and
cell therapy
Published in Tissue Eng Part C Methods 22(1):8-19, 2015 doi: 10.1089/ten.tec.2015.0195

IVD degeneration and associated inflammation often lead to low back pain, one of the major causes of disability worldwide (Johnson et al. 2015). Although broadly available, up-to-date treatments, ranging from more conservative approaches (e.g. physical therapy, drug prescription) to more invasive approaches (ultimately disc replacement) have proven to be, in many clinical scenarios, transient solutions, often leading to restrained patient mobility or adjacent disc degeneration (Lund and Oxland 2011, Natarajan and Andersson 2017). Therefore, there's a need for alternative treatments.

Although, the motivation of our work is, ultimately, the development of new therapies for intervertebral disc regeneration, we considered at the point of work developed in this chapter, that other models and studies focus on the degeneration, while poorly considering the interplay with inflammation (Molinos et al. 2015a), and its contribution to the challenges which are the novel cell therapies for degeneration and LBP. Taking this into account, the present manuscript describes the establishment of a new *ex vivo* degenerative/pro-inflammatory disc organ culture model.

IL-1β-treated discs in an organ culture showed increased levels of PGE₂, pro-inflammatory cytokines and MMPs, while ECM proteins were significantly down-regulated in the model. This is a standardized model that provides a mean for understanding the mechanobiology of the healthy and degenerated IVD and its link with inflammation, as well as it is suitable for testing intradiscal therapeutic approaches.

To validate this model, we have injected a non-steroidal anti-inflammatory drug, commonly used for back pain but administered orally (Df). Df intradiscal injection revealed to be an adequate therapy to reduce disc inflammation, while delaying/decreasing ECM degradation. We also evaluated the suitability of MSCs injection to modulate the inflammatory response in the degenerated disc, since stem cells rather support matrix degradation and the hostile IVD environment impairs matrix formation (Huang et al. 2014). Although this approach could be tested in the model developed, our findings were not uniform among different MSCs donors, suggesting that MSCs-based therapy to degenerated disc requires further investigation. However, a treatment of inflammation prior to cell therapy might improve the conditions for a cell therapy approach.

Overall, we considered that this degenerative/pro-inflammatory organ culture can be a suitable approach for the continuation of our work, namely in vitro testing of intradiscal/anti-inflammatory therapeutic strategies for disc regeneration. This in more physiological conditions that in vitro cell culture, and able to reduce the number of animals in animal in vivo experimentation. Furthermore, intradiscal controlled release of anti-inflammatory drugs may be a promising disc therapy as this treatment might reduce inflammation, delay and/or decrease matrix protein degradation, further promoting MSCs effect, their integration and adaptation on IVD degenerative environment.

A degenerative/pro-inflammatory intervertebral disc organ culture: an *ex vivo* model for anti-inflammatory drug and cell therapy

Graciosa Q. Teixeira, a-d Antje Boldt, a Ines Nagl, a Catarina Leite Pereira, b-d Karin Benz, a Hans-Joachim Wilke, a Anita Ignatius, a Mário A. Barbosa, b-d Raquel M. Gonçalves, b,c a Cornelia Neidlinger-Wilke

^aInstitute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm, Ulm, Germany

^bInstituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ^cInstituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal ^dInstituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto,

Portugal

^eNatural and Medical Sciences Institute (NMI) at the University of Tuebingen, Reutlingen, Germany

^{*}equal contribution

Abstract

Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite for tissue regeneration and could possibly be achieved by strategies ranging from pharmacological to cell-based therapies. In this study, a pro-inflammatory disc organ culture model was established. Bovine caudal disc punches were needle punctured and additionally stimulated with lipopolysaccharide (10 μg/mL) or interleukin-1β (IL-1β, 10–100 ng/mL) for 48 h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an albumin/hyaluronan hydrogel. IL-1β-treated disc organ cultures showed a statistically significant up-regulation of pro-inflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins (collagen type II, aggrecan) were significantly down-regulated. The injection of the antiinflammatory drug, Df, was able to reduce the levels of pro-inflammatory cytokines and MMPs and surprisingly increase ECM protein levels. These results point the intradiscal application of anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the immunomodulatory role of MSCs on this model was also evaluated. Although a slight downregulation of IL-6 and IL-8 expression could be found, the variability among the five donors tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs to be further evaluated. The pro-inflammatory/degenerative IVD organ culture model established can be considered a suitable approach for testing novel therapeutic drugs, thus reducing the number of animals in in vivo experimentation. Moreover, this model can be used to address the cellular and molecular mechanisms that regulate inflammation in the IVD and their implications in tissue degeneration.

1. Introduction

Degeneration of intervertebral disc (IVD) is an age-related progressive process considered to be the major cause of spine disorders. The current treatments either conservative (exercise, oral medication, physical therapy), surgical (discectomy, spinal fusion, disc replacement by mechanical prostheses) or analgesic (intradiscal injection of steroids or glucocorticoids) are transient solutions, often leading to restrained patient's mobility or adjacent disc degeneration. ²⁻⁶

The degenerated IVD is characterized by cell death and changes in matrix composition, being the nucleus pulposus (NP) subjected to high mechanical and osmotic pressures, severe hypoxia and limited nutrient supply.⁷⁻⁹ In this process, increased levels of nitric oxide and prostaglandin E₂ (PGE₂), as well as up-regulation of metalloproteases (MMPs) and a wide number of inflammatory mediators (e.g. tumor necrosis factor-α (TNF-α), interleukin-1β [IL-1β], IL-6) have also been observed.^{3, 5, 10-13} Ultimately, structural damage of the outer annulus provides an opportunity for blood vessels and nerves to invade the disc and cause pain.^{10, 14} The high impact on population health and the lack of adequate solutions in the clinics stimulates the development of novel IVD biological therapies,¹⁵ with the goal to promote IVD regeneration and/or control inflammation-associated pain.^{8, 16, 17} But the question of how inflammation can be related with IVD degeneration is still controversial and has been described differently from *in vitro* experiments to *in vivo* animal models.¹⁸

Nevertheless, there is a lack of adequate models to study inflammation within IVD degeneration. IVD cells *in vitro* lose their ability to produce IVD native ECM.¹⁹ *In vivo* models of disc injury by puncture alone or NP digestion do not mimic the natural process of human IVD degeneration.^{20, 21} Thus, *ex vivo* organ culture models using disc explants from different species have been established for studying disc degeneration in a more physiologically relevant environment.²¹ Explant cultures of bovine discs have the advantage of easy availability and they are assumed to be suitable *ex vivo* models for studying therapies of disc degeneration as they allow well controlled environmental conditions^{21, 22} and they show high similarities with human samples regarding the induction of a degenerative environment.²³

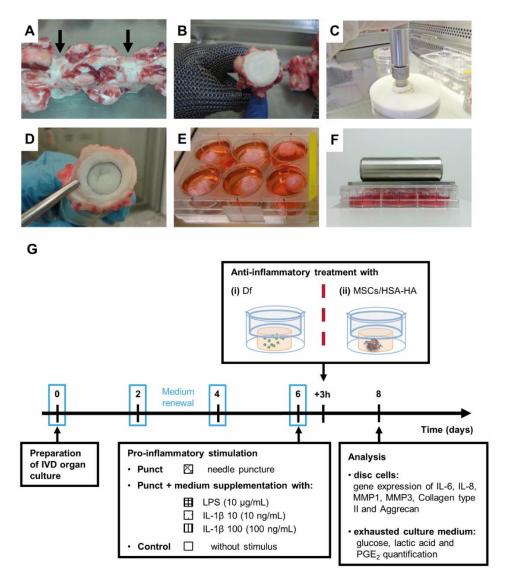
The aim of the present study was to establish a bovine organ culture model in a proinflammatory environment.

The control of inflammation by intradiscal injection of a nonsteroidal anti-inflammatory drug (NSAID), Diclofenac (Df), was then tested and used to validate this model. NSAIDs are known as the most effective anti-inflammatory agents in the market²⁴ but their systemic administration presents drawbacks such as short biological half-life, rapid metabolism and high percentage of protein binding. These characteristics lead to the use of high doses in patients, which causes

side effects in gastrointestinal, hepatorenal and cardiac systems.^{25, 26} Intradiscal administration of these drugs could overcome some of the drug systemic side effects.

Furthermore, to analyze if mesenchymal stem/stromal cells (MSCs)-based therapy could have an impact in the reduction of inflammation in degenerated IVD, MSCs embedded in a human serum albumin/hyaluronan (HSA-HA) hydrogel²⁷ were injected in the same model. MSCs have been suggested to be an adequate cell source, being capable of differentiating towards an NP-like phenotype in co-culture with NP cells²⁸⁻³¹ and promoting the production of healthy ECM in NP *in vivo*.^{32, 33} However, although animal model studies have reported that MSCs can promote IVD regeneration,^{34, 20} less is known about possible beneficial effect of MSCs in the modulation/resolution of inflammation in IVD. The expression of Fas ligand (*FasL*), a protein found in immune privileged sites, has been restored in the IVD upon implantation of MSCs.³⁵ Human MSCs were able to down-regulate gene expression of pro-inflammatory cytokines (*IL*-3, *IL*-6, *IL*-11, *IL*-15, *TNF-α*) and MMPs produced by rat NP cells³⁶ and also reduce IgG production from human NP fragments.¹⁴ In human trials, patients referred reduction of pain,^{37, 38} but the influence of MSCs on inflammation was poorly investigated in the context of disc degeneration. Therefore, we investigated in our organ culture approach if MSCs injection into a pro-inflammatory disc environment has the capacity to control the inflammation response.

2. Materials and Methods


2.1. Establishment of a bovine organ culture model

Bovine IVD tissue was isolated from tails of young adult animals (age < 48 months old) from a local slaughterhouse (in Germany by the local abattoir Ulmer Fleisch GmbH, in Portugal with the ethical approval of the Portuguese National Authority for Animal Health). Within 3 hours after slaughter, up to six caudal discs from each specimen were isolated by removal of skin, muscles and ligaments. Discs were dissected from the adjacent vertebral bodies as close as possible to the upper and lower cartilaginous endplate (Fig. 1A, B).³⁹ Standardized punches (diameter of 13 mm) were prepared from each disc with the NP in the center and few surrounding annulus lamellae (Fig. 1C, D).

In pre-experiments, constrained and unconstrained conditions were compared (Supplementary Materials and Methods). Disc explants were cultured in 6-well cell culture plates (Nunc) (Fig. 1E) with membrane filter inserts and 0.46 MPa static loading (constrained conditions) (Fig. 1F). Parallel cultures without the inserts and the extra weight were used as unconstrained controls. Samples were maintained for 6 days in BM: Dulbecco's Modified Eagle's Medium with low glucose (DMEM, Biochrom), supplemented with 5% v/v fetal bovine serum (FBS, PAA), 1% v/v L-glutamine, 1% v/v non-essential amino acids, 1% v/v penicillin/streptomycin (10.000 U/mL/10.000 µg/mL), 0.5% v/v fungizone (all from Biochrom)

and with the osmolarity adjusted to IVD-physiological 400 mOsm by addition of 1.5% v/v of a 5 M NaCl/0.4 M KCl solution. Samples were incubated at reduced oxygen atmosphere (37 °C, 6% O₂ and 8.5% CO₂) and saturated humidity as described previously. Culture medium was replaced every second day.

To compare constrained and unconstrained conditions, macroscopic parameters of disc punches were determined by measurement of disc height, diameter, and wet-weight after 14 days of culture in BM. Biochemical characterization was performed by quantification of glycosaminoglycans (GAG) release over a culture period of 5 weeks. Also, alcian blue staining of IVD sections was performed at different time points. For all the following experiments constrained conditions were used.

Fig. 1. Organ culture preparation. (**A**) Bovine tail segment with intervertebral disc (IVD; *arrows*). (**B**) IVD isolation. (**C**) IVD punch (diameter of 13 mm). (**D**) Collection of the nucleus pulposus with few surrounding annulus fibrosus. (**E**) Design of the organ culture system with IVD punches cultured in a six-well tissue culture plate. (**F**) 4.9 N weight placed on top of the plate with inserts to prevent punches from swelling over time in culture and generating a 0.46 MPa static loading. (**G**) Experimental timeline.

2.2. Simulation of pro-inflammatory environment

For simulation of the pro-inflammatory/degenerative environment, after 6 days of culture in BM, IVD organ cultures were injured by needle-puncture alone⁴⁰ (Punct) or also stimulated with pro-inflammatory factors: lipopolysaccharide (LPS)^{41,42} or IL-1β.^{43,44} Briefly, samples were punctured with a sterile 21G needle; discs were oriented with sterile forceps, while the needle was inserted laterally throughout the remaining AF into the NP and rotated clockwise for 30 seconds. Discs were cultured in BM supplemented with bacterial (*Escherichia coli*) LPS (10 μg/mL, Sigma-Aldrich) or recombinant human IL-1β (10 or 100 ng/mL, R&D Systems) according to Fig. 1G. Nonpunctured untreated discs (only cultured in BM) were used as controls. Tissue samples were collected after 48 h of pro-inflammatory treatment for cell viability and gene expression analysis. Metabolic activity analysis and PGE₂ quantification were performed in culture supernatants.

2.3. Evaluation of diclofenac injection in the pro-inflammatory IVD organ culture

Three hours after pro-inflammatory stimulus, discs were treated with injection of 500 μ L of Df in solution (Sigma-Aldrich, 19 μ M) using a microsyringe and a 33G needle (Hamilton). The time point for Df treatment was selected based on our previous work with in vitro studies of an anti-inflammatory treatment of activated macrophages. Non-manipulated samples cultured only in BM were used as controls. The effects were evaluated 2 days later by gene expression and by PGE₂ production. The experimental scheme is represented in Fig. 1G.

2.4. Culture of human MSCs

Human MSCs harvested from bone marrow were obtained from 5 different donors who underwent knee-joint surgery with informed consent and according to the rules of the ethical commission of the University of Ulm (Ulm, Germany). One patient was a healthy young donor for bone marrow transplantation. MSCs phenotype was tested immunohistochemically by CD9, CD90, CD105, CD44 and Stro-1 staining. In addition, the cells were confirmed to be able to differentiate into osteogenic, chondrogenic, and adipogenic lineages as described. All cells were expanded in DMEM (Biochrom) supplemented with 10% v/v FBS (HyClone, Thermo Scientific), 1% v/v penicillin/ streptomycin (10000 U/mL/10000 μg/mL, Biochrom) and 0.5% v/v fungizone (Biochrom). Cells were seeded at a concentration of 3000 cells/cm² and expanded in T-flasks at 37°C, under a humidified atmosphere of 5% v/v CO₂ in air, with culture medium being changed twice a week and trypsinized when reaching 70% confluence. Experiments were performed with MSCs in passage two.

2.5. MSCs injection in the pro-inflammatory IVD organ culture

A hydrogel of albumin-hyaluronan was selected as a carrier system for MSCs.^{27, 47} MSCs/HSA–HA (500 μL) with a cell concentration of 2x10⁶ MSCs/mL of hydrogel was injected in the IVD in culture using a double-chamber syringe (Medmix Systems AG) and a 21G needle. The cell-containing gel mixture was filled in the larger chamber of a two-chamber syringe, the cross-linker in the smaller one. The gel was polymerized in situ.

2.6. Sample preparation for quantitative real-time reverse transcription polymerase chain reaction

Gene expression levels were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), performed in triplicate on cDNA derived from disc samples. NP samples were digested enzymatically, cell pellets were recovered, total RNA isolated, quantified and transcribed into cDNA.

Briefly, each tissue sample was dissected into 2 to 3 mm³ fragments and enzymatically digested for 2 hours in 0.8 mg/mL collagenase type I (Sigma-Aldrich) in DMEM, under agitation (50 rpm), reduced oxygen atmosphere (37 °C, 6% O_2 and 8.5% CO_2) and saturated humidity. Supernatant was passed through a 40 μ m filter (BD Falcon) to remove tissue debris. Cells were collected by centrifugation at 400g for 7 minutes. Total RNA was extracted from disc punch cells, using ReliaPrep RNA Cell Miniprep System (Promega), according to manufacturer's instructions. RNA was quantified using a NanoQuant spectrophotometer (Infinite M200, Tecan). Quality was checked by means of RNA ratio, pooled from two disc samples for each condition. Of each RNA pool, 2 μ g was reversed transcribed into cDNA using Omniscript RT Kit (Qiagen) completed with oligo-deoxythymidine primers (5 μ M), random hexamer primers (50 μ M) and RNase inhibitor (10 units) in a total volume of 20 μ L. The obtained cDNA was diluted at a ratio of 1:4 in RNase free water (Qiagen) and used for qRT-PCR.

2.7. Quantitative real-time reverse transcription-polymerase chain reaction

Specific primer pairs were designed using published gene sequences (PubMed, NCBI Entrez Nucleotide Database) and Primer 3 software⁴⁸ for bovine *IL-6*, *IL-8*, *MMP1*, *MMP3*, *collagen type II (COL2)*, *Aggrecan (ACAN)* and glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*) (Table 1) and synthesized by Thermo Fisher Scientific (Ulm, Germany). The analysis was carried out using SYBR® Green method. Reactions were conducted on StepOnePlus Real-TimePCR System (Applied Biosystems), in triplicate, in PCR 96-well TW-MT-Plates (Biozym Scientific), under standard conditions. Reaction mixes contained 12.5 µL of Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) master mix, 0.25 µL ROX Reference Dye

(Invitrogen), 1 µL (0.4 µM) forward primer, 1 µL (0.4 µM) reverse primer, 8.25 µL RNase free water and 2 µL cDNA. For the analysis of the mRNA expression, cloned amplification products were provided and used as standards for qRT-PCR. Statistical analysis was performed on ΔC_t values according to a modified method described by MacLean et al.⁴⁹ Fold changes in gene expression were presented as $2^{-(average\Delta\Delta Ct)}$. The average Ct value of each triplicate measurement of each sample was normalized to the house-keeping gene GAPDH in each sample ($\Delta Ct = Ct(gene\ of\ interest) - Ct(GAPDH)$). The ΔCt of each stimulated sample was related to the respective ΔCt of each control sample. Normalized values of samples collected at the end of the experiments were compared with the control and between the different experimental groups.

2.8. Statistical analysis

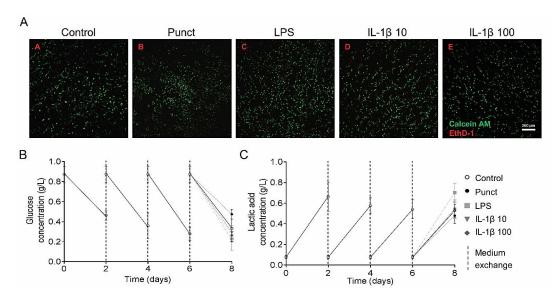
Since the data follows a non-parametric distribution, for qRT-PCR, Mann-Whitney and Kruskal-Wallis tests were used to compare two or several groups, respectively. Statistical analysis was performed using GraphPad Prism vs. 6.0 (La Jolla) for Windows (vs. 6.01), with values of p<0.05 considered significant.

Table 1. Bovine Oligonucleotide Primers

Gene	Sequence (forward and reverse primer)	Product length (bp)	NCBI Reference Sequence
GAPDH	5'-ACC CAG AAG ACT GTG GAT GG-3'	178	XM_001252511
	5'-CAA CAG ACA CGT TGG GAG TG-3'		
IL-6	5'-ACC CCA GGC AGA CTA CTT CT-3'	183	EU276071
	5'-GCA TCC GTC CTT TTC CTC CA-3'		
IL-8	5'-ATT CCA CAC CTT TCC ACC CC-3'	148	AF232704
	5'-ACA ACC TTC TGC ACC CAC TT-3'		
MMP1	5'-ATG CTG TTT TCC AGA AAG GTG G-3'	193	NM_174112.1
	5'-TCA GGA AAC ACC TTC CAC AGA C-3'		
MMP3	5'-AAT CAG TTC TGG GCC ATC AG-3'	237	AF069642
	5'-CTC TGA TTC AAC CCC TGG AA-3'		
Collagen type II	5'-CCT GTA GGA CCT TTG GGT CA-3'	145	X02420
	5'-ATA GCG CCG TTG TGT AGG AC-3'		
Aggrecan	5'-ACA GCG CCT ACC AAG ACA AG-3'	155	NM_173981
	5'-ACG ATG CCT TTT ACC ACG AC-3'		

Bovine oligonucleotide primers used for qRT-PCR.

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IL, interleukin; MMP, metalloprotease; qRT-PCR, quantitative real-time reverse transcription—polymerase chain reaction.

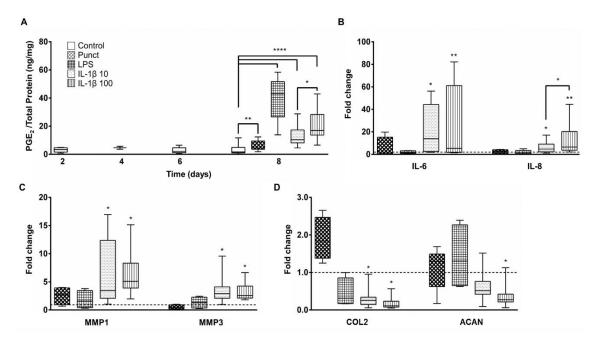

3. Results

3.1. Cell viability and metabolic activity in a bovine IVD organ culture model in proinflammatory conditions

Disc punches were prepared as described and cultured at 5 mM glucose, 400 mOsm, 8.5%

CO₂ and 6% O₂ under constrained conditions. Discs were constrained with membrane-inserts posed on top of each disc punch covered by a weight on the top of the culture plate (simulating 0.5 MPa static loading, which corresponds to physiological loads during standing phase⁵⁰ and allowed the prevention of disc swelling and tissue deformation (Supplementary Results) that occurred without endplates (supplementary Fig. S1). In these conditions tissue GAG slightly decrease (supplementary Fig. S2).

To induce a degenerative and pro-inflammatory environment, cultures were stimulated at day 6 after isolation with Punct or puncture with supplements: LPS, 10 or 100 ng/mL IL-1β (IL-1β 10 or IL-1β 100, respectively). A microscopic evaluation of cell viability by LIVE/DEAD assay showed that cells remained viable at day 8 of culture, with no apparent differences between the tested conditions, indicating that neither the low oxygen tension nor the puncture and pro-inflammatory stimulus lead to a significant loss of cell viability (Fig. 2A). In addition, glucose and lactic acid levels were quantified in the collected supernatants during culture (Fig. 2B, C). Results showed similar glucose consumption and lactic acid production for all stimulated groups and the control, corroborating cell viability results.

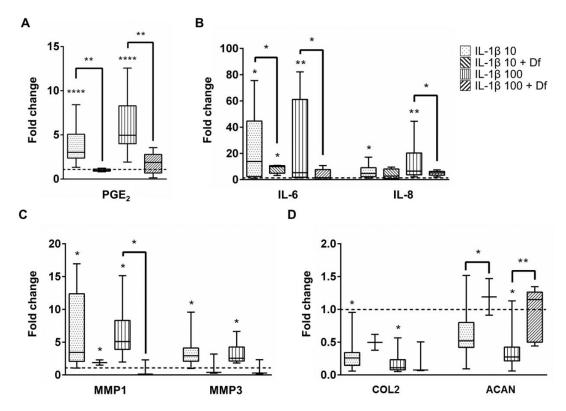

Fig. 2. Cell viability and metabolic activity over the culture period of IVD punches cultured under constrained conditions. (**A**) Representative CLSM images (z-stacks) from LIVE/DEAD cytotoxicity/viability assay acquired at day 8, after 2 days of stimulation, for the conditions tested: control, puncture alone (Punct), puncture plus culture medium supplementation with 10 μg/mL lipopolysaccharide (LPS), 10 and 100 ng/mL interleukin-1β (IL-1β 10 and IL-1β 100, respectively). Calcein AM stains live cells in green; ethidium homodimer-1 (EthD-1) stains dead cells in red (scale bar, 200 μm). (**B**) Glucose and (**C**) lactic acid concentration (g/L) in supernatants collected during time in culture. Results are shown as mean \pm standard deviation (n=14-23).

3.2. Analysis of pro-inflammatory markers, MMPs and ECM proteins of the pro-inflammatory IVD organ culture model

PGE₂ production was quantified in culture supernatants over time. No statistically significant differences were found between time points during culture in basal medium (BM). After 2 days of stimulation with different conditions (day 8), PGE₂ production significantly increased for all the groups tested, in comparison to the control (Fig. 3A). LPS group showed the highest PGE₂ fold increase (11.5 \pm 1.2-fold, p<0.0001), while Punct presented only 1.8 \pm 1.2-fold (p<0.01). IL-1 β 10 and 100 stimulated groups achieved respectively 3.7 \pm 1.2-fold and 5.8 \pm 1.2-fold (both with p<0.0001). Thus, IL-1 β 100 increased 1.6 \pm 0.7-fold (p<0.05) compared with IL-1 β 10. Gene expression of pro-inflammatory markers and MMPs was also analyzed at day 8 of culture. IL-1 β 10 and 100 groups showed statistically significant up-regulation of IL-6. II-8

culture. IL-1 β 10 and 100 groups showed statistically significant up-regulation of IL-6, *IL-8*, *MMP1* and *MMP3* expression compared with unstimulated discs (p<0.05, Fig. 3B, C). For *IL-8*, IL-1 β 100 was also significantly up-regulated in comparison to IL-1 β 10 (p<0.05).

Concerning gene expression of ECM proteins, COL2 and ACAN was down-regulated in the presence of IL-1 β (Fig. 3D). While a statistically significant down-regulation was observed in


Fig. 3. Quantitative analysis of pro-inflammatory markers, matrix degrading enzymes, and extracellular matrix (ECM) components in IVD organ cultures. The IVD organ cultures were stimulated with Punct, puncture plus culture medium supplementation with 10 μg/mL LPS (LPS), 10 and 100 ng/mL IL-1β (IL-1β 10 and IL-1β 100, respectively), and compared with unstimulated control. (**A**) Prostaglandin E₂ (PGE₂) concentration normalized to total protein (ng/mg) in culture supernatants. The kinetics of PGE₂ production was traced by ELISA over an 8-day culture. (**B**) mRNA expression of *IL-6*, *IL-8*, (**C**) *MMP1*, *MMP3*, and (D) collagen type II (*COL2*) and aggrecan (*ACAN*). Levels of mRNA were normalized to glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*). The ratio of stimulation to control indicates the fold change of induction after stimulation (control level=1; dashed line). Results are presented as box and whiskers plots (n=12-36 for PGE₂ and n=4-17 for mRNA expression). *p<0.05; **p<0.01; ****p<0.001 (Kruskal–Wallis test).

COL2 expression for IL-1 β 10 and 100 groups, ACAN expression was only down-regulated for IL-1 β 100 (p<0.05).

Since IL-1 β stimulation, in addition to puncture, appears to induce a pro-inflammatory/ degenerated IVD environment, with an up-regulation of pro-inflammatory markers, as well as a down-regulation of ECM proteins, and moreover, since it is a more physiological method to induce this inflammatory milieu than LPS, the pro-inflammatory model with IL-1 β was selected for the following experiments.

3.3. Evaluation of an anti-inflammatory (diclofenac) injection in the pro-inflammatory IVD organ culture

To validate the pro-inflammatory IVD organ culture model, an injection of a commonly used anti-inflammatory drug (Df) was tested (Fig. 4). For that, soluble Df (19 μ M) was injected in the NP, 3 hours after pro-inflammatory stimulus. The concentration and time point of addition was selected based on previous work from our group with Df treatment in human macrophages.⁴⁵

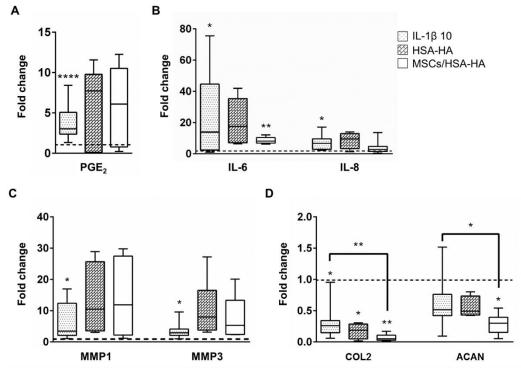


Fig. 4. Effect of Diclofenac injection in IVD organ cultures. Quantitative analysis of pro-inflammatory markers, matrix degrading enzymes and ECM components in IVD organ cultures after pro-inflammatory stimulus with puncture plus culture medium supplementation with 10 and 100 ng/mL IL-1β (IL-1β 10 and IL-1β 100, respectively), and treatment with 19 μM Df for 2 days (IL-1β 10 + Df and IL-1β 100 + Df). (**A**) PGE₂ fold change in culture supernatants. (**B**) mRNA expression of *IL-6*, *IL-8*, (**C**) *MMP1*, *MMP3*, (**D**) *COL2* and *ACAN*. Levels of mRNA were normalized to *GAPDH*. The ratio of stimulation to control indicates the fold change of induction after stimulation (control level=1; dashed line). Results are presented as box and whiskers plots (n=6-36 for PGE₂ and n=4-17 for mRNA expression). *p<0.05; **p<0.01; ******p<0.001 (Mann–Whitney test).

Two days after injection, PGE₂ production significantly decreased in the groups supplemented by Df (IL-1 β 10 + Df and IL-1 β 100 + Df, p<0.05) in comparison to the respective IL-1 β -stimulated group alone (IL-1 β 10 and IL-1 β 100, Fig. 4A). Expression of *IL-6* was significantly down-regulated and *MMP3* was slightly down-regulated with Df injection for both IL-1 β concentrations (p<0.05, Fig. 4B, C). For the higher IL-1 β concentration used, *IL-8* and *MMP1* were significantly down-regulated after Df injection (p<0.05, Fig. 4B, C). Concerning the ECM proteins, *COL2* did not show significant differences after Df injection. On the other hand, an up-regulation of *ACAN* was observed after Df injection for both IL-1 β concentrations (p<0.05, Fig. 4D).

3.4. Evaluation of MSCs injection in the pro-inflammatory IVD organ culture

MSCs anti-inflammatory effect was evaluated in the IVD pro-inflammatory model stimulated with IL-1β 10. For this, MSCs were injected in the IVD using an HSA-HA hydrogel as vehicle. Injection of either MSCs embedded in HSA-HA (MSCs/HSA-HA) or HSA-HA alone did not alter PGE₂ production (Fig. 5A). Regarding the pro-inflammatory cytokines, there was an app arent

Fig. 5. Effect of MSCs injection in HSA-HA hydrogel in IVD organ cultures. Quantitative analysis of pro-inflammatory markers, matrix degrading enzymes and ECM components in IVD organ cultures after pro-inflammatory stimulus with puncture plus culture medium supplementation with 10 ng/mL IL-1β (IL-1β 10), and treatment with HSA-HA or MSCs/HSA-HA for 2 days. (**A**) PGE₂ fold change in culture supernatants. (**B**) mRNA expression of *IL*-6, *IL*-8, (**C**) *MMP1*, *MMP3*, (**D**) *COL2* and *ACAN*. Levels of mRNA were normalized to *GAPDH*. The ratio of stimulation to control indicates the fold change of induction after stimulation (control level=1; dashed line). Results are presented as box and whiskers plots (n=5-36 for PGE₂ and n=5-17 for mRNA expression). *p<0.05; **p<0.01; *****p<0.0001 (Kruskal–Wallis test).

slight down-regulation of *IL-6* and *IL-8* expression in the MSCs/HSA-HA injection group, when compared to IL-1 β 10 stimulus and to the injection of HSA-HA alone (Fig. 5B). *MMP1* and *MMP3* did not appear to have been differently expressed between injections of MSCs/HSA-HA or HSA-HA alone, however they seem to be up-regulated in those two groups in comparison to IL-1 β 10 (Fig. 5C). Gene expression of *COL2* and *ACAN* was down-regulated at all conditions with pro-inflammatory stimulation compared to the unstimulated controls, and HSA-HA scaffold alone or combined with the MSCs further decreased matrix protein expression by IVD cells (p<0.05, Fig. 5D).

4. Discussion

In the present study, we established a standardized bovine organ culture system that simulates pro-inflammatory conditions. The approach used tissue punches that allowed the standardization of explants size. The physical culture conditions in culture plates constrained by inserts and compressed by a constant static loading prevented tissue swelling and tissue deformation that usually occurs without endplates, as reported in the literature.^{23, 51-53} Moreover, the tissue is more easily collected using a less complex protocol (e.g. it does not require sawing the bone or jet-lavage). 52, 54, 55 In our approach, we have used constrained conditions in all experimental groups for standardisation of the samples (prevention of swelling) but we did not simulate complex loading protocols, though we are aware of the importance of complex loading on the initiation and progression of disc degeneration. ^{23, 56} Nevertheless, GAG loss in these conditions was already reported to naturally occur in culture.⁵² Although organ cultures are accepted as more reliable models than 2D in vitro cultures, since they constitute a step further in complexity before in vivo studies, there are also some limitations that all should be aware. Namely, an organ culture model cannot simulate complex interactions with adjacent tissues and can only be kept limited time in culture^{14, 40, 57} to guarantee tissue viability. Another limitation is the lack of vascularization and immune cells. In our approach, tissue viability was assured by controlling metabolites production/consumption levels during culture time and the culture period was rather short. Concerning vascularization, since mature native IVD lacks vasculature, this limitation is of minor relevance in disc organ culture models.

To promote a pro-inflammatory environment, we tested different approaches. Some commonly methods in the literature use mechanical injury by needle-puncture, $^{58, 59}$ to stimulate disc degeneration, or medium supplementation with LPS. 60 However, although LPS is a known stimulus of inflammation, $^{60, 61}$ it is not really a physiological approach. By the contrary, IL-1 β is an interesting candidate, since it is expressed at high levels in the pathogenesis of disc disease $^{13, 62, 63}$ and it has been demonstrated that exposure of NP cells to IL-1 β leads to altered mechanical function, primarily due to loss of GAG. 64

In general, none of the conditions that induce a pro-inflammatory environment impaired cell viability or altered glucose consumption/lactic acid production, thus they did not substantially alter cell metabolism in our approach. This is in accordance with other studies that observed a cell survival rate (after 14 days of rabbit IVD organ culture) higher than 90% in pro-inflammatory conditions (LPS and IL-1 β). However, Korecki and colleagues showed that at the needle insertion site cell damage may occur, while results from Ponnappan and coworkers revealed an increase in apoptosis after IL-1 β treatment.

LPS stimulation is known to induce COX-2 expression, ⁶⁵ and consequently generates different prostanoids, including PGE₂. ⁶⁶ PGE₂ is excessively produced in response to pro-inflammatory cytokines signaling, particularly IL-1 and TNF- α . ^{12, 67} LPS was also shown to stimulate pro-inflammatory cytokines production (IL-1 β , IL-6 and IL-8) by chondrocytes ⁶⁸ and by murine disc cells. ⁶⁹ In the present study, LPS stimulus significantly increased PGE₂ production but no obvious effect was observed in other pro-inflammatory cytokines analyzed or in matrix remodeling.

In contrast, only (100 ng/mL) IL-1 β -treated discs showed a significant up-regulation of proinflammatory cytokines and MMP expression accompanied by a significant down-regulation of ECM proteins, in accordance to disc degeneration description. The other study by Burke *et al.* reported that disc cells from patients with scoliosis or degenerated IVDs respond to an exogenous pro-inflammatory stimulus with an increased secretion of pro-inflammatory markers IL-6, IL-8, and PGE₂. Therefore, a pro-inflammatory IVD organ culture under loaded conditions, punctured and stimulated with IL-1 β (100 ng/mL) was selected as the most reliable model for further studies.

An anti-inflammatory drug (Df) was injected in discs stimulated by IL-1β and its effect on proinflammatory/degenerative IVD was evaluated. As expected, Df injection was able to decrease
PGE₂ production, since Df is a *COX-2* inhibitor. But, besides this known effect, Df also downregulated *IL-6*, *IL-8* and *MMP1* expression, while stimulating *ACAN* synthesis, suggesting that
this treatment might not only reduce inflammation, but could also delay matrix proteins
degradation and/or increase ECM proteins level. Intradiscal injection of steroids or
glucocorticoids to control inflammation in IVD has been used in clinics. However, their
influence on deregulation of matrix turnover leading to further disc degeneration is also
known.⁷⁰ Df direct injection into the IVD may have a limited clinical use as it has a short biologic
half-life and may require repeated administrations. Therefore, a sustained delivery system that
prolongs Df release in the disc may be a promising alternative. In fact, Df intraperitoneal
injection in a rat lumbar disc herniation model showed a reduced analgesic effect with time.⁷¹
Nevertheless, in a pig model of NP-induced nerve root injury, Df reduced NP-induced nerve
root dysfunction, showing good prognosis after Df treatment.⁷² Nonetheless, most of these

studies are focused on pain by analysis of change in disability and pain scores, and not biological effects on matrix turnover and inflammation.⁷³⁻⁷⁵

In parallel, the effect of MSCs transplantation on the pro-inflammatory/degenerated IVD organ culture was here investigated. MSCs are capable to differentiate into NP-like cells,³⁸ increasing expression of non-specific markers as *ACAN* or *COL2*,³⁰ and were reported to induce less pain in IVD degeneration human clinical trials.³⁷ The cell density was used based on the work by Serigano *et al.*, which showed that 10⁶ MSCs per transplanted disc was the ideal number of cells, since less viable cells were detected when 10⁵ MSCs were transplanted and more apoptotic cells were found in 10⁷ MSCs transplanted discs.⁷⁶

The vehicle used to inject MSCs was based on a HSA-HA hydrogel. This hydrogel was shown to be adequate for MSCs differentiation in chondrogenic lineage, in vitro,²⁷ and to enhance disc endogenous repair after 6 months, in an *in vivo* nucleotomized sheep model.⁴⁷ *In vivo* studies using this hydrogel showed good integration with the host without reporting associated inflammatory response.^{77,78} Only low levels of the pro-inflammatory cytokine IL-1β were reported in the nucleotomized sheep model, 6 months after implantation.⁴⁷ Nevertheless, the results from our model demonstrate that this carrier by itself activates the production of pro-inflammatory mediators PGE₂, *IL-6* and *IL-8* by disc cells, when compared to control discs. This suggests a "foreign-body"-type reaction, similar to what happens with biomaterial recognition by immune cells. Interestingly, upon implantation, MSCs were able to reduce this activation status, demonstrating their immunomodulatory effects in this model also.

The literature reports that MSCs are able to increase the expression of the immunosuppressive ligand FasL in IVD, 35 as well as down-regulate gene expression of pro-inflammatory cytokines (IL-3, IL-6, IL-11, IL-15, TNF-α) and MMPs produced by rat NP cells.³⁶ Bertolo et al. also showed that MSCs are able to reduce IgG production by human NP fragments and slightly reduce *TNF-α* expression, although no influence was observed on *IL-1β*.¹⁴ Nevertheless, in the present study, MSCs effect on pro-inflammatory markers appeared to be highly donor dependent. PGE₂ revealed either an up-regulation or a decrease, depending on the donor, and only a slight down-regulation of IL-6 and IL-8 expression was observed after MSCs/HSA-HA injection. The preliminary short-term findings at gene expression level rather suggest impaired matrix formation and increased matrix degradation. Although two days after injection appears to be an adequate time point to address the inflammatory markers, we cannot exclude that it may be a too early time point to analyze matrix formation. Other aspect that we cannot exclude is the use of human MSCs on a bovine disc organ culture, although human MSCs are known by their immunomodulatory capacity^{79, 80} and have frequently been used in animal studies from other species, without immune suppression.81,82 In those cases, no exacerbated immune response was observed. New experiments with MSCs are currently in progress to clarify the open question about the immunomodulatory role of MSCs in the degenerated IVD.

In conclusion, we have developed and validated a reproducible pro-inflammatory/ degenerative organ culture model. This model is suitable to investigate inflammation-associated mechanisms and other possible pathways that cause disc degeneration. Moreover, this *ex vivo* model could be used to assess cytotoxic effects of novel pharmaceutical strategies for IVD, prior to animal experimentation. Particularly, Df intradiscal injection seems to be a promising approach to control inflammation while delay and/or decrease matrix protein degradation. Regarding the suitability of MSCs injection to modulate the inflammatory response in the degenerated disc, although this approach could be tested in the model developed, our findings were not uniform among different MSCs donors, suggesting that MSCs-based therapy with regard to control the inflammatory response in the IVD requires further investigation.

Acknowledgements

The authors of the present study wish to thank Helga Bach and Iris Baum for their excellent technical assistance and the local abattoir Ulmer Fleisch GmbH for providing bovine tails.

This work had the financial support of FCT/MEC through National Funds and, when applicable, was co-financed by the FEDER via the PT2020 Partnership Agreement under the 4293 Unit I&D. Graciosa Q. Teixeira and Catarina L. Pereira also acknowledge FCT for their PhD grants (SFRH/BD/88429/2012 and SFRH/BD/85779/2012, respectively). The authors would also like to acknowledge the German Spine Foundation (Deutsche Wirbelsäulenstiftung), the German Academic Exchange Service (DAAD) and the Conselho de Reitores das Universidades Portuguesas (CRUP).

Disclosure Statement

The authors declare no competing financial interests.

References

- Rodrigues-Pinto, R., Richardson, S.M., and Hoyland, J.A. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J 23, 1803, 2014.
- 2. Jacobs, W., Van der Gaag, N.A., Tuschel, A., de Kleuver, M., Peul, W., Verbout, A.J., and Oner, F.C. Total disc replacement for chronic back pain in the presence of disc degeneration. Cochrane Database Syst Rev 9, CD008326, 2012.

- 3. Lee, M.J., Dettori, J.R., Standaert, C.J., Brodt, E.D., and Chapman, J.R. The natural history of degeneration of the lumbar and cervical spines: a systematic review. Spine (Phila Pa 1976) 37, S18, 2012.
- 4. Phillips, F.M., Slosar, P.J., Youssef, J.A., Andersson, G., and Papatheofanis, F. Lumbar spine fusion for chronic low back pain due to degenerative disc disease: a systematic review. Spine (Phila Pa 1976) **38**, E409, 2013.
- 5. Raj, P.P. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract **8**, 18, 2008.
- 6. Toyone, T., Ozawa, T., Inada, K., Shirahata, T., Shiboi, R., Watanabe, A., Matsuki, K., Hasue, F., Fujiyoshi, T., Aoki, Y., Inoue, G., Orita, S., Ohtori, S., Wada, Y., Tanaka, T., and Takahashi, K. Short-segment fixation without fusion for thoracolumbar burst fractures with neurological deficit can preserve thoracolumbar motion without resulting in post-traumatic disc degeneration: a 10-year follow-up study. Spine (Phila Pa 1976) 38, 1482, 2013.
- 7. Gilbert, H.T., Nagra, N.S., Freemont, A.J., Millward-Sadler, S.J., and Hoyland, J.A. Integrin dependent mechanotransduction in mechanically stimulated human annulus fibrosus cells: evidence for an alternative mechanotransduction pathway operating with degeneration. PLoS One **8**, e72994, 2013.
- 8. Mehrkens, A., Müller, A.M., Valderrabano, V., Schären, S., and Vavken, P. Tissue engineering approaches to degenerative disc disease A meta-analysis of controlled animal trials. Osteoarthritis Cartilage **20**, 1316, 2012.
- 9. Neidlinger-Wilke, C., Mietsch, A., Rinkler, C., Wilke, H.J., Ignatius, A., and Urban, J. Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells. J Orthop Res **30**, 112, 2012.
- 10. Adams, M.A., Lama, P., Zehra, U., and Dolan, P. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat **28**, 195, 2014.
- 11. Cavanaugh, J.M. Neural mechanisms of lumbar pain. Spine (Phila Pa 1976) **20**, 1804, 1995.
- Kang, J.D., Georgescu, H.I., McIntyre-Larkin, L., Stefanovic-Racic, M., Donaldson, W.F., and Evans, C.H. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976) 21, 271, 1996.
- 13. Le Maitre, C.L., Hoyland, J.A., and Freemont, A.J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther **9**, R77, 2007.

- 14. Bertolo, A., Thiede, T., Aebli, N., Baur, M., Ferguson, S.J., and Stoyanov, J.V. Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro. Eur Spine J **20**, 592, 2011.
- 15. Hughes, S.P., Freemont, A.J., Hukins, D.W., McGregor, A.H., and Roberts, S. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J Bone Joint Surg Br **94**, 1298, 2012.
- 16. Hegewald, A.A., Ringe, J., Sittinger, M., and Thome, C. Regenerative treatment strategies in spinal surgery. Front Biosci **13**, 1507, 2008.
- 17. Kalson, N.S., Richardson, S., and Hoyland, J.A. Strategies for regeneration of the intervertebral disc. Regen Med **3**, 717, 2008.
- 18. Molinos, M., Almeida, C.R., Caldeira, J., Cunha, C., Gonçalves, R.M., and Barbosa, M.A. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface **12**, (in press), 2015.
- Hwang, P.Y., Chen, J., Jing, L., Hoffman, B.D., and Setton, L.A. The Role Of Extracellular Matrix Elasticity and Composition In Regulating the Nucleus Pulposus Cell Phenotype in the Intervertebral Disc: A Narrative Review. J Biomech Eng 136, 0210101, 2014.
- 20. Wang, Z., Perez-Terzic, C.M., Smith, J., Mauck, W.D., Shelerud, R.A., Maus, T.P., Yang, T.H., Murad, M.H., Gou, S., Terry, M.J., Dauffenbach, J.P., Pingree, M.J., Eldrige, J.S., Mohammed, K., Benkhadra, K., van Wijnen, A.J., and Qu, W. Efficacy of intervertebral disc regeneration with stem cells A systematic review and meta-analysis of animal controlled trials. Gene 564, 1, 2015.
- 21. Alini, M., Eisenstein, S.M., Ito, K., Little, C., Kettler, A.A., Masuda, K., Melrose, J., Ralphs, J., Stokes, I., and Wilke, H.J. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17, 2, 2008.
- 22. Roberts, S., Menage, J., Sivan, S., and Urban, J.P. Bovine explant model of degeneration of the intervertebral disc. BMC Musculoskelet Disord **9**, 24, 2008.
- 23. Walter, B.A., Illien-Junger, S., Nasser, P.R., Hecht, A.C., and latridis, J.C. Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture. J Biomech **47**, 2095, 2014.
- 24. Dougados, M. Why and how to use NSAIDs in osteoarthritis. J Cardiovasc Pharmacol **47 Suppl 1**, S49, 2006.
- Arias, J.L., López-Viota, M., López-Viota, J., and Delgado, A.V. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Int J Pharm 382, 270, 2009.
- 26. Mason, L., Moore, R.A., Edwards, J.E., Derry, S., and McQuay, H.J. Topical NSAIDs for chronic musculoskeletal pain: systematic review and meta-analysis. BMC Musculoskelet Disord **5**, 28, 2004.

- 27. Benz, K., Freudigmann, C., Müller, J., Wurst, H., Albrecht, D., Badke, A., Gaissmaier, C., and Mollenhauer, J. A Polyethylene Glycol-Crosslinked Serum Albumin/Hyaluronan Hydrogel for the Cultivation of Chondrogenic Cell Types. Adv Eng Mater **12**, B539, 2010.
- 28. Allon, A.A., Butcher, K., Schneider, R.A., and Lotz, J.C. Structured bilaminar coculture outperforms stem cells and disc cells in a simulated degenerate disc environment. Spine (Phila Pa 1976) **37**, 813, 2012.
- 29. Richardson, S.M., Doyle, P., Minogue, B.M., Gnanalingham, K., and Hoyland, J.A. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells **24**, 707, 2006.
- 30. Strassburg, S., Richardson, S.M., Freemont, A.J., and Hoyland, J.A. Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype. Regen Med **5**, 701, 2010.
- 31. Wei, A., Chung, S.A., Tao, H., Brisby, H., Lin, Z., Shen, B., Ma, D.D., and Diwan, A.D. Differentiation of rodent bone marrow mesenchymal stem cells into intervertebral disc-like cells following coculture with rat disc tissue. Tissue Eng Part A **15**, 2581, 2009.
- 32. Sakai, D., Mochida, J., Iwashina, T., Hiyama, A., Omi, H., Imai, M., Nakai, T., Ando, K., and Hotta, T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials **27**, 335, 2006.
- 33. Yim, R.L., Lee, J.T., Bow, C.H., Meij, B., Leung, V., Cheung, K.M., Vavken, P., and Samartzis D. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev 23, 2553, 2014.
- 34. Crevensten, G., Walsh, A.J., Ananthakrishnan, D., Page, P., Wahba, G.M., Lotz, J.C., and Berven, S. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng **32**, 430, 2004.
- 35. Hiyama, A., Mochida, J., Iwashina, T., Omi, H., Watanabe, T., Serigano, K., Tamura, F., Sakai, D. Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res **26**, 589, 2008.
- 36. Miyamoto, T., Muneta, T., Tabuchi, T., Matsumoto, K., Saito, H., Tsuji, K., Sekiya, I. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther **12**, R206, 2010.
- 37. Orozco, L., Soler, R., Morera, C., Alberca, M., Sanchez, A., and Garcia-Sancho, J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation **92**, 822, 2011.

- 38. Yoshikawa, T., Ueda, Y., Miyazaki, K., Koizumi, M., and Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976) **35**, E475, 2010.
- 39. Mwale, F., Wang, H. T., Roughly, P., Antoniou, J., and Haglund, L. Link N and MSCs can induce regeneration of the early degenerate intervertebral disc. Tissue Eng Part A **20**, 2942, 2014.
- 40. Korecki, C.L., Costi, J.J., and latridis, J.C. Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine (Phila Pa 1976) **33**, 235, 2008.
- 41. Burke, J.G., Watson, R.W., Conhyea, D., McCormack, D., Dowling, F.E., Walsh, M.G., and Fitzpatrick, J.M. Human nucleus pulposis can respond to a pro-inflammatory stimulus. Spine (Phila Pa 1976) **28**, 2685, 2003.
- 42. Rajan, N.E., Bloom, O., Maidhof, R., Stetson, N., Sherry, B., Levine, M., and Chahine, N.O. Toll-Like Receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Spine (Phila Pa 1976) **38**, 1343, 2013.
- 43. Kepler, C.K., Markova, D.Z., Dibra, F., Yadla, S., Vaccaro, A.R., Risbud, M.V., Albert, T.J., and Anderson, D.G. Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs. Spine (Phila Pa 1976) **38**, 873, 2013.
- 44. Ponnappan, R.K., Markova, D.Z., Antonio, P.J., Murray, H.B., Vaccaro, A.R., Shapiro, I.M., Anderson, D.G., Albert, T.J., and Risbud, M.V. An organ culture system to model early degenerative changes of the intervertebral disc. Arthritis Res Ther **13**, R171, 2011.
- 45. Gonçalves, R.M., Pereira, A.C.L., Pereira, I.O., Oliveira, M.J., and Barbosa, M.A. Macrophage response to Chitosan/Poly-(γ-Glutamic acid) nanoparticles carrying an anti-inflammatory drug. J Mat Sci Mat Med, (in press), 2015.
- 46. Tautzenberger, A., Lorenz, S., Kreja, L., Zeller, A., Musyanovych, A., Schrezenmeier, H., Landfester, K., Mailander, V., and Ignatius, A. Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation. Biomaterials **31**, 2064, 2010.
- 47. Benz, K., Stippich, C., Fischer, L., Mohl, K., Weber, K., Lang, J., Steffen, F., Beintner, B., Gaissmaier, C., and Mollenhauer, J.A. Intervertebral disc cell- and hydrogel-supported and spontaneous intervertebral disc repair in nucleotomized sheep. Eur Spine J 21, 1758, 2012.
- 48. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res **40**, e115, 2012.

- 49. MacLean, J.J., Lee, C.R., Grad, S., Ito, K., Alini, M., and latridis, J.C. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine (Phila Pa 1976) **28**, 973, 2003.
- 50. Malandrino, A., Noailly, J., and Lacroix, D. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc. J Biomech **47**, 1520, 2014.
- 51. Illien-Jünger, S., Lu, Y., Purmessur, D., Mayer, J.E., Walter, B.A., Roughley, P.J., Qureshi, S.A., Hecht, A.C., and latridis, J.C. Detrimental effects of discectomy on intervertebral disc biology can be decelerated by growth factor treatment during surgery: a large animal organ culture model. Spine J 14, 2724, 2014.
- 52. Jim, B., Steffen, T., Moir, J., Roughley, P., and Haglund, L. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. Eur Spine J **20**, 1244, 2011.
- 53. Jünger, S., Gantenbein-Ritter, B., Lezuo, P., Alini, M., Ferguson, S. J., and Ito, K. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine (Phila Pa 1976) **34**, 1264, 2009.
- 54. Gawri, R., Mwale, F., Ouellet, J., Roughley, P.J., Steffen, T., Antoniou, J., and Haglund, L. Development of an organ culture system for long-term survival of the intact human intervertebral disc. Spine (Phila Pa 1976) **36**, 1835, 2011.
- 55. Lee, C.R., latridis, J.C., Poveda, L., and Alini, M. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine (Phila Pa 1976) **31**, 515, 2006.
- 56. Chan, S.C., Walser, J., Kappeli, P., Shamsollahi, M.J., Ferguson, S.J., and Gantenbein-Ritter, B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS One **8**, e72489, 2013.
- 57. Pereira, C.L., Gonçalves, R.M., Peroglio, M., Pattappa, G., D'Este, M., Eglin, D., Barbosa, M.A., Alini, M., Grad, S. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials **35**, 8144, 2014.
- 58. de Oliveira, C.P., Rodrigues, L.M., Fregni, M.V., Gotfryd, A., Made, A.M., and Pinhal, M.A. Extracellular matrix remodeling in experimental intervertebral disc degeneration. Acta Ortop Bras **21**, 144, 2013.
- 59. latridis, J.C., Michalek, A.J., Purmessur, D., and Korecki, C.L. Localized Intervertebral Disc Injury Leads to Organ Level Changes in Structure, Cellularity, and Biosynthesis. Cell Mol Bioeng **2**, 437, 2009.

- 60. Kim, J.S., Ellman, M.B., Yan, D., An, H.S., Kc, R., Li, X., Chen, D., Xiao, G., Cs-Szabo, G., Hoskin, D.W., Buechter, D.D., Van Wijnen, A.J., and Im, H.J. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc. J Cell Physiol **228**, 1884, 2013.
- 61. Salmon, M., Tannheimer, S.L., Gentzler, T.T., Cui, Z.H., Sorensen, E.A., Hartsough, C.K., Kim, M., Purvis, L.J., Barrett, E.G., McDonald, J.D., Rudolph, K., Doyle-Eisele, M., Kuehl, P.J., Royer, C.M., Baker, W.R., Phillips, G.B., and Wright, C.D. The in vivo efficacy and side effect pharmacology of GS-5759, a novel bifunctional phosphodiesterase 4 inhibitor and long-acting beta 2-adrenoceptor agonist in preclinical animal species. Pharmacol Res Perspect 2, e00046, 2014.
- 62. Hoyland, J.A., Le Maitre, C., and Freemont, A.J. Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology **47**, 809, 2008.
- 63. Le Maitre, C.L., Freemont, A.J., and Hoyland, J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther **7**, R732, 2005.
- 64. Smith, L.J., Chiaro, J.A., Nerurkar, N.L., Cortes, D.H., Horava, S.D., Hebela, N.M., Mauck, R.L., Dodge, G.R., and Elliott, D.M. Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long term agarose culture. Eur Cell Mater **22**, 291, 2011.
- 65. Kato, M., Nishida, S., Kitasato, H., Sakata, N., and Kawai, S. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: investigation using human peripheral monocytes. J Pharm Pharmacol **53**, 1679, 2001.
- 66. Medeiros, A., Peres-Buzalaf, C., Fortino Verdan, F., and Serezani, C.H. Prostaglandin E(2) and the Suppression of Phagocyte Innate Immune Responses in Different Organs. Mediators Inflamm **2012**, 327568, 2012.
- 67. Burke, J.G., Watson, R.W., Conhyea, D., McCormack, D., Dowling, F.E., Walsh, M.G., and Fitzpatrick, J.M. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg Br **84**, 196, 2002.
- 68. Mathy-Hartert, M., Deby-Dupont, G.P., Reginster, J.Y., Ayache, N., Pujol, J. P., and Henrotin, Y. E. Regulation by reactive oxygen species of interleukin-1beta, nitric oxide and prostaglandin E(2) production by human chondrocytes. Osteoarthritis Cartilage **10**, 547, 2002.
- 69. Rand, N., Reichert, F., Floman, Y., and Rotshenker, S. Murine nucleus pulposus-derived cells secrete interleukins-1-beta, -6, and -10 and granulocyte-macrophage colony-stimulating factor in cell culture. Spine (Phila Pa 1976) **22**, 2598, 1997.
- 70. Berthelot, J.M., Le Goff, B., and Maugars, Y. Side effects of corticosteroid injections: what's new? Joint Bone Spine **80**, 363, 2013.

- 71. Sasaki, N., Sekiguchi, M., Kikuchi, S., and Konno, S. Anti-nociceptive effect of bovine milk-derived lactoferrin in a rat lumbar disc herniation model. Spine (Phila Pa 1976) **35**, 1663, 2010.
- 72. Cornefjord, M., Olmarker, K., Otani, K. and Rydevik, B. Nucleus pulposus-induced nerve root injury: effects of diclofenac and ketoprofen. Eur Spine J 11, 57, 2001.
- 73. Buttermann, G. R. The effect of spinal steroid injections for degenerative disc disease. Spine J **4**, 495, 2004.
- 74. Cao, P., Jiang, L., Zhuang, C., Yang, Y., Zhang, Z., Chen, W., and Zheng, T. Intradiscal injection therapy for degenerative chronic discogenic low back pain with end plate Modic changes. Spine J 11, 100, 2011.
- 75. Khot, A., Bowditch, M., Powell, J., and Sharp, D. The use of intradiscal steroid therapy for lumbar spinal discogenic pain: a randomized controlled trial. Spine (Phila Pa 1976) **29**, 833, 2004.
- 76. Serigano, K., Sakai, D., Hiyama, A., Tamura, F., Tanaka, M., and Mochida, J. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res **28**, 1267, 2010.
- 77. Benz, K., Stippich, C., Osswald, C., Gaissmaier, C., Lembert, N., Badke, A., Steck, E., Aicher, W.K., Mollenhauer, J.A. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair. BMC Musculoskelet Disord **13**, 54, 2012.
- 78. Omlor, G.W., Fischer, J., Kleinschmitt, K., Benz, K., Holschbach, J., Brohm, K., Anton, M., Guehring, T., Richter, W. Short-term follow-up of disc cell therapy in a porcine nucleotomy model with an albumin-hyaluronan hydrogel: in vivo and in vitro results of metabolic disc cell activity and implant distribution. Eur Spine J 23, 1837, 2014.
- 79. MacFarlane, R.J., Graham, S.M., Davies, P.S., Korres, N., Tsouchnica, H., Heliotis, M., Mantalaris, A., and Tsiridis, E. Anti-inflammatory role and immunomodulation of mesenchymal stem cells in systemic joint diseases: potential for treatment. Expert Opin Ther Targets 17, 243, 2013.
- 80. Swartzlander, M.D., Blakney, A.K., Amer, L.D., Hankenson, K.D., Kyriakides, T.R., and Bryant, S.J. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials **41**, 79, 2015.
- 81. Lin, C.S., Lin, G., and Lue, T.F. Allogeneic and xenogeneic transplantation of adiposederived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev 21, 2770, 2012.
- 82. Urdzíková, L.M., Růžička, J., LaBagnara, M., Kárová, K., Kubinová, Š., Jiráková, K., Murali, R., Syková, E., Jhanwar-Uniyal, M., and Jendelová, P. Human mesenchymal stem

cells modulate inflammatory cytokines after spinal cord injury in rat. Int J Mol Sci 15, 11275, 2014.

Supplementary Data

Materials and Methods

Alcian blue staining

Organ culture samples were analyzed histologically in paraffin sections for proteoglycans. IVD punches were washed with PBS, fixed with 4% formalin solution for 2 days, dehydrated in a gradient series of EtOH and then embedded in paraffin blocks. Sections of 7 µm thickness were sequentially recovered, deparaffinised, diafanized and rehydrated. Sections were acidified with 3% acetic acid for 5 minutes, stained with 1% Alcian Blue 8GX (Sigma-Aldrich) in 3% acetic acid for 30 minutes and rinsed in distilled water. Counterstaining was carried out with nuclear fast red (Merck) for 3 minutes. Sections were rinsed in distilled water, dehydrated in absolute ethanol, diafanized in xylene and mounted with Vitro-Clud (Merck). Sections were imaged with brightfield microscopy (DMI6000 B, Leica).

Evaluation of glycosaminoglycan content in disc tissue

The amount of glycosaminoglycans (GAG) in the IVD was determined by Dimethylmethylene blue (DMMB) assay, based on the binding of DMMB to GAG. Briefly, disc tissue samples were dissected into 2 to 3 mm³ fragments and enzymatically digested overnight with proteinase K (0.5 mg/mL, Sigma-Aldrich) at 58°C. Afterwards, samples were vortexed to a clear solution, indicating that the digestion was complete after the incubation. A dilution series of 20 μ g/mL to 0.625 μ g/mL chondroitin 4-sulfate standards was prepared. Subsequently, 50 μ L of standards and samples were transferred to a 96-well plate, 200 μ L of DMMB reagent solution was added to each well and absorbance was measured at 656 nm. Each sample was measured in triplicate.

Analysis of cell viability

Cell viability was qualitatively assessed at day 8 through fluorescence-based LIVE/DEAD Cell Viability/Cytotoxicity kit (Invitrogen), by confocal laser scanning microscopy (CLSM), according to Teixeira et al.² Briefly, organ culture samples were rinsed first in PBS and then in phenol-red/serum-free DMEM (Gibco), three times each, to remove traces of esterases and to avoid phenol red interference with fluorescence readings. Samples were then simultaneously stained with a solution of 1 µM calcein acetoxymethyl ester (Calcein AM, Invitrogen) and 2.5 µM ethidium homodimer-1 (EthD-1, Invitrogen) for 45 minutes at 37°C, protected from light. After discarding supernatant and adding new phenol red/serum free DMEM samples were imaged by CLSM (Leica SP2 AOBS SE, Leica Microsystems), using LCS Software (Leica Microsystems). Calcein AM (Ex 485 nm/Em 530 nm) stains live cells green, indicating

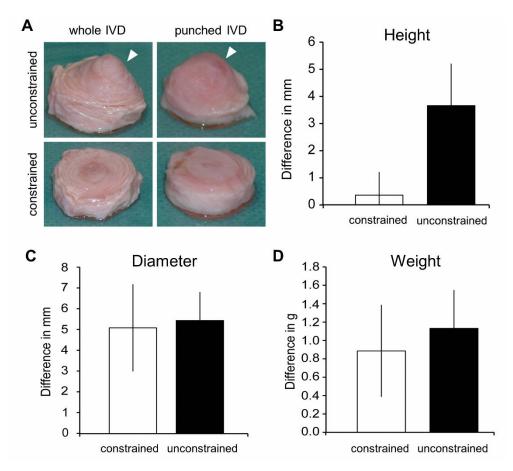
intracellular esterase activity, while EthD-1 (Ex 530 nm /Em 645 nm) stains dead cells red, indicating loss of plasma membrane integrity. Images were analyzed using ImageJ 1.43u software (Wayne Rasband).

Cell metabolic activity analysis

In order to follow cell metabolic profile in the different culture conditions, samples of 0.5 mL of exhausted culture medium were collected at time points 0, 2, 4, 6 and 8 days of culture. After collection, supernatants were incubated at 80°C for 15 minutes, to inactivate most enzymes, and centrifuged at 10000 rpm for 5 minutes. The supernatant samples were kept at -20°C until posterior analysis. D-glucose consumption and L-lactic acid production were quantified by UV-method kits (Boehringer Mannheim/R-Biopharm, Roche), adapted for 96-well microplates according to manufacturer's instructions. Each sample was measured in triplicate.

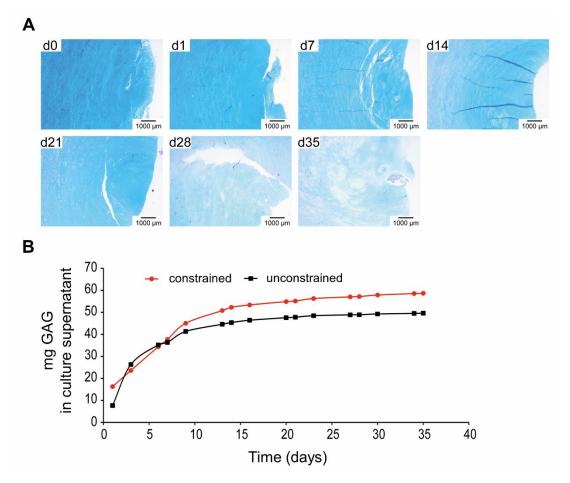
Evaluation of Prostaglandin E2 concentration in conditioned media

Conditioned medium was collected at days 0, 2, 6 and 8, centrifuged (3000 rpm, 5 minutes) and the supernatant kept at -20°C for posterior analysis. PGE₂ was quantified by ELISA (Arbor Assays) according to manufacturer's instructions and normalized by total protein.


Total protein quantification

The bicinchoninic acid (BCA) colorimetric protein assay was performed in cell lysates according to the manufacturer's instructions (Bio-Rad), adapted to a microplate format. Briefly, 5 μ L of lysed samples were transferred to a 96-well microplate (Greiner). 25 μ L of working reagent (A) were added to the samples followed by 200 μ L of solution B. Samples were incubated for 15 min at room temperature, protected from light. Absorbance was measured at 750 nm, in a microplate reader (PowerWave XS, Biotek). Total protein values were converted into mg/mL using a standard curve of bovine serum albumin (BSA) in the range of 0.03125 to 1 mg/mL. Each sample was measured in triplicate.

Results


Evaluation of constrained conditions in the establishment of a bovine IVD organ culture model As caudal bovine discs differ in diameter, preparation of disc punches allowed a standardization of the organ culture explants with regard to disc diameter and disc size compared to complete discs (Fig. S1A). In the constrained group, IVD punches height was strongly reduced by covering the samples with inserts and by adding a weight on top to fixate the dish plate cover as described (Fig. 1B). Due to the differences in swelling behaviour between NP and AF, the NP was extruded in direction of lowest resistance under

unconstrained conditions and hence the height of the IVD increased (Fig. S1A, B). Determination of disc diameter (Fig. S1C) and disc weight (Fig. S1D) between constrained and unconstrained groups did not seem to reveal differences.

Supplementary Fig. S1. Macroscopic parameters of IVD. (**A**) Whole IVD were compared macroscopically to punched IVD under constrained (*white columns*) and unconstrained (*black columns*) culture conditions (*arrowhead* indicates swollen nucleus pulposus). IVD punches were analyzed concerning physical parameters: (**B**) height, (**C**) diameter and (**D**) weight. Parameters of the IVD were compared before and after cultivation and differences are shown as mean ± standard deviation (n=7 donors).

With ongoing culture time, the disc punches underwent a loosening of proteoglycans that were released into the culture medium. Histological analysis of organ culture samples revealed a decreased staining intensity for disc matrix proteoglycans as shown by alcian blue staining (Fig. S2A). This finding was confirmed by an increased concentration of GAG in the conditioned medium collected during medium exchange, as shown in Fig. S2B. Constrained and unconstrained groups presented only small differences between each other, namely when reaching a plateau stage. However, constrained samples seemed to have suffered higher GAG loss.

Supplementary Fig. S2. Release of glycosaminoglycans (GAG) over a culture period of 5 weeks. (**A**) Representative images of alcian blue staining of IVD punches of one donor at different time points (days 0, 1, 7, 14, 21, 28 and 35), under constrained conditions (strongly acidic mucosubstances are stained *blue*, cell nuclei are stained *pink* to *red*, and cytoplasm is stained *pale pink*; scale bars, 1000 μm). (**B**) Release of GAG to the supernatant. IVD punches were cultured under constrained (*red line*) and unconstrained (*black line*) conditions, and results were plotted cumulatively along the culture period.

References

- 1. Stone, J.E., Akhtar, N., Botchway, S., and Pennock, C.A. Interaction of 1,9-dimethylmethylene blue with glycosaminoglycans. Ann Clin Biochem **31**, 147, 1994.
- Teixeira, G.Q., Barrias, C.C., Lourenco, A.H., and Goncalves, R.M. A multicompartment holder for spinner flasks improves expansion and osteogenic differentiation of mesenchymal stem cells in three-dimensional scaffolds. Tissue Eng Part C Methods 20, 984, 2014.

Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc

Published in Acta Biomater. 42:168-79, 2016

doi: 10.1016/j.actbio.2016.06.013

IVD degeneration associated diseases have been focus of different treatment approaches. The regenerative potential of hydrogels for nucleus pulposus replacement, cell-based therapies, growth factors injection or gene therapy has been investigated (Sakai and Andersson 2015). However, as we have defended in the previous chapters, the modulation and control of inflammation are crucial for tissue regeneration.

Facing this, we consider immunomodulatory biomaterials of great interest for IVD applications. γ -PGA is one of the most appealing natural polymers, mainly due to its biodegradability into glutamate residues, as due to its potential in promoting chondrogenic differentiation of human MSCs (Antunes et al. 2015). Since γ -PGA is anionic (pka 2.19), it can be combined by electrostatic interaction with cationic polymers as Ch (Antunes et al. 2011), forming polyelectrolyte complexes with great potential as delivery systems. Our group has previously reported the production of a low molecular weight and highly pure γ -PGA (Pereira et al. 2012). The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Ch/ γ -PGA NCs with an anti-inflammatory drug (Df), previously developed by our team (Gonçalves et al. 2015).

Ch/Df/ γ -PGA NCs were produced by co-acervation method (Pereira et al. 2012). This drug delivery system was tested in the pro-inflammatory/degenerative intervertebral disc *ex vivo* model presented in the previous chapter (Teixeira et al. 2015). Given the NCs liquid consistency, it is possible to inject them directly into the IVD tissue using a microsyringe and a 33G needle, reducing the challenges of further disc degeneration due to puncture.

The main findings support the success of an anti-inflammatory therapy for degenerated IVD that not only reduces inflammation but also promotes native IVD matrix production.

Furthermore, although the potential of this soluble intradiscal therapy to be used alone, it shows great prospective to be combined with other therapies, potentiating their effect.

Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc

Graciosa Q. Teixeira^{a-d}, Catarina Leite Pereira^{a,b,d}, Flávia Castro^{a,b,d}, Joana R. Ferreira^{a,b,d}, Maria Gomez-Lazaro^{a,b}, Paulo Aguiar^{a,b}, Mário A. Barbosa^{a,b,d}, Cornelia Neidlinger-Wilke^c, Raquel M. Goncalves^{a,b,d}

^aInstituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal

^bINEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal

^cInstitute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany

^dICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

Abstract

Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration.

Anti-inflammatory nanoparticles/nanocomplexes (NCs) of Chitosan and Poly-(γ -glutamic acid) with a non-steroidal anti-inflammatory drug, Diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NCs in degenerated IVD was evaluated. For that, Df-NCs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1 β . Df-NCs were internalized by IVD cells, down-regulating *IL*-6, *IL*-8, *MMP1* and *MMP3*, and decreasing PGE₂ production, compared with IL-1 β -stimulated IVD punches. Interestingly, at the same time, Df-NCs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NCs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation.

1. Introduction

Pathologies of intervertebral disc (IVD) such as disc degeneration, herniation or cervical radiculopathology are strongly associated with low back pain (LBP).^{1,2} This might be caused by herniation-induced pressure on over-sensitized nerve roots, due to mechanical stimuli, and by molecules arising from the inflammatory cascade.^{1,3}

In degenerated discs, an up-regulation of metalloproteinases (MMPs) and an over-expression of a wide number of inflammatory mediators (tumor necrosis factor [TNF]- α , interleukin [IL]-1 β , IL-6) have been observed. A balance between inflammatory mediators and their counter-regulatory molecules may be important for determining the immune and regenerative outcome of IVD pathologies.^{4,5}

Current therapeutic interventions for degenerated IVD are determined by the degree, severity and persistence of pain: conservative approaches, involving rest, pain medication or physiotherapy, in contrast to non-conservative treatments that include microdiscectomy, spinal fusion of two or more disc levels, or disc replacement by prostheses. However, these approaches are only transient and may affect patients' mobility or induce adjacent-level IVD degeneration within few years, leading to chronic low back pain symptoms.^{2,6}

Therefore, new therapies for degenerative disc disease have been encouraged and intradiscal injection of different molecules has been one of the most appealing strategies. In this context, inflammatory players (including TNF, IL-1 and IL-6) have been suggested as possible targets.^{5,7} For example, intradiscal injections of steroids or glucocorticoids are currently performed to decrease intradiscal inflammation in patients with nucleus pulposus (NP)-induced spinal nerve root injury.^{8,9} Nonetheless, only 25% of success rate has been shown with intradiscal steroid injection at short-term follow-up.¹⁰ At long-term, in patients with chronic LBP, this strategy did not show clinical benefits.¹¹ Furthermore, intradiscal steroids are thought to promote spinal segment stabilization via further disc degeneration.¹²

Non-steroidal anti-inflammatory drugs (NSAIDs), as diclofenac (Df), are considered the most effective anti-inflammatory drugs. ¹³ These drugs affect the arachidonic acid cascade, inhibiting particularly the cyclo-oxygenase (COX) and lipoxygenase pathways, decreasing inflammation and pain, ^{14,15} and have been widely used in osteoarticular disorders. ¹⁶ A local NSAIDs-based therapy would increase drug targeting and bioactivity, while minimizing drug bio-distribution through the organism and the risk of side effects. ¹⁷

Different strategies are being investigated to treat degenerated IVD, such as hydrogels for NP replacement, cell-based therapies, growth factors injection or gene therapy¹⁸. Inflammation is an important aspect of this disorder that is frequently neglected, but its control in the degenerated IVD scenario is crucial for tissue regeneration. Recently, IL-10 and transforming growth factor (TGF)-β anti-inflammatory molecules were described as potential successful

therapeutic approaches for the treatment of LBP mediated by IVD degeneration, not only inhibiting inflammation but also, in the case of TGF- β , promoting ECM production. Anti-inflammatory NCs have been previously investigated by our group: Chitosan (Ch)/Df/Poly- γ -glutamic acid (γ -PGA) NCs were able to inhibit and revert prostaglandin E₂ (PGE₂) production by activated macrophages *in vitro*, while decreasing IL-6 and partially TNF- α production. NCs were address the effect of these NCs to control inflammation in degenerated IVD. These NCs revealed to be an effective drug-delivery system that can be combined with other strategies as hydrogels to control local inflammation.

Chitosan (Ch) is a natural biodegradable polysaccharide that has been widely used in biomedical applications, mainly in drug delivery systems, gene therapy and tissue engineering²¹. Ch is biochemically active, biocompatible and non-toxic.²² Previous studies from our group have shown that Ch ultra-thin surfaces polarized macrophages into an M2c phenotype and stimulated dendritic cells, without leading to significant T-cell proliferation.²³ In vivo, Ch implants with higher degree of acetylation (DA, 15%) induced a stronger inflammatory reaction, with more extended fibrous capsule and higher number of infiltrated cells.²⁴ Nevertheless, when Fibrinogen was adsorbed in Ch films, most inflammatory cytokines produced by monocytes/macrophages were down-regulated. 25 Also, when Resolvin D1, a lipid inflammatory mediator, was incorporated into Ch implants, the immune response was almost shut down.²⁶ Overall, Ch is a versatile biomaterial that can be tuned by its chemistry or protein incorporation to be immunomodulatory.²⁷ On the other hand, γ-PGA is a naturally occurring peptide that consists of D- and L-glutamic acids polymerized through γ -glutamyl bonds. Contrarily to α -PGA, a counterpart chemically synthetized, γ -PGA is microbially produced by certain Bacillus strains as a capsular or extra-cellular viscous material, is water-soluble, biochemically degraded into glutamate residues and non-toxic.²⁸ Also, by forming a ternary complex, γ -PGA can be recognized by an intrinsic membrane protein, γ -glutamyl transpeptidase (GGT), resulting in a significant increase in its cellular uptake. 28,29

Ch and γ -PGA are ions with opposite charges that spontaneously self-assemble in a controlled pH environment. The electrostatic interactions between Ch and γ -PGA have been previously explored by our group. ²² Ch/ γ -PGA polyelectrolytes are stable at pH 5.0 and have been proposed as delivery systems for different proteins/molecules in different contexts: stromal derived factor-1, ³⁰ interferon- γ ³¹ and Df. ¹⁷ Ch/ γ -PGA nanoparticles/nanocomplexes (NCs) with Df were previously demonstrated to be an effective anti-inflammatory drug delivery system *in vitro*. ¹⁷

Therefore, we propose the intradiscal injection of an anti-inflammatory drug delivery system based on $Ch/Df/\gamma$ -PGA NCs to locally control the inflammatory response in degenerated IVD. For that, a pro-inflammatory/degenerated bovine IVD organ culture model recently established

was used.³² The effect of Ch/Df/ γ -PGA NCs specifically on IVD inflammatory markers was here addressed, and also ECM remodeling upon this therapy was evaluated.

2. Materials and Methods

2.1. Pro-inflammatory IVD organ culture model and intradiscal anti-inflammatory treatment

Bovine IVDs were isolated from young adult animals' tails (age<48 months old) within 3 hours' post-slaughter in a local slaughterhouse, with the ethical approval of the Portuguese National Authority for Animal Health. Caudal discs were isolated and cultured according to Teixeira et al.³² Briefly, standardized disc punches (with diameter of 9 mm) were collected with NP in the center and few surrounding annulus fibrosus (AF) and maintained for 6 days in 6-well tissue culture plates, with membrane filter inserts and 0.46 MPa static loading. Basal medium (BM) was Dulbecco's Modified Eagle's Medium with low glucose (DMEM, Biochrom), supplemented with 5% v/v fetal bovine serum (FBS, HyClone), 1% v/v penicillin/streptomycin (10.000 U/mL/10.000 μg/mL, Biowest), 0.5% v/v amphotericin B (Capricorn) and with the osmolarity adjusted to IVD-physiological 400 mOsm by addition of 1.5% v/v of a 5 M NaCl/0.4 M KCl solution. Samples were incubated at reduced oxygen atmosphere (37°C, 6% O₂ and 8.5% CO₂) and saturated humidity. Culture medium was replaced every second day.

Pro-inflammatory/degenerative stimulation was induced as optimized by Teixeira et al.³² Briefly, after 6 days of culture in BM, IVD organ cultures were injured by needle-puncture with a sterile 21-gauge needle and stimulated with pro-inflammatory factor IL-1β (100 ng/mL, PeproTech). Three hours after pro-inflammatory stimulus, discs were treated with injection of 500 μL (corresponding to 10% v/v in solution) of Ch/γ-PGA NCs (0.7 mg/mL), Ch/Df/γ-PGA NCs (0.7 mg/mL) (Df, Sigma-Aldrich) using a microsyringe and a 33-gauge needle (Hamilton). The time point for treatment was selected based on previous work from our team.^{17,32} Non-manipulated samples kept in BM were used as controls. The effects were evaluated 2 days later by gene expression and PGE₂ production quantification. Metabolic activity of the disc cells, tissue DNA and sGAG content and pH of culture supernatants were also analyzed at this time point. For analysis of ECM components at protein level, organ cultures were maintained for 14 days and samples collected for histology. The experimental scheme and groups are represented in Fig. 1.

2.2. Mitochondrial metabolic activity of IVD cells in the organ culture model

To assess cell mitochondrial metabolic activity, resazurin assay was performed. Resazurin (Sigma-Aldrich) stock solution (0.1 mg/mL) was added to IVD culture medium at a final concentration of 10% v/v. Samples were incubated for 3 hours at 37°C. Fluorescence intensity was measured in a spectrophotometer microplate reader (BioTek Synergy HT), with 530 nm

excitation filters and 590 nm emission filters. A calibration curve was previously designed to exclude saturated values.

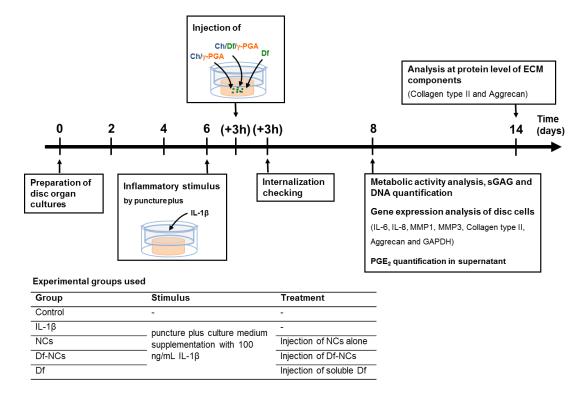


Fig. 1. Scheme of the experimental timeline and experimental groups.

2.3. DNA quantification

DNA content of IVD punches was quantified using Quant-iT PicoGreen double standard DNA (dsDNA) kit (Invitrogen), according to manufacturer's instructions, and normalized to the wet weight of the digested tissue. Tissue digests were obtained by previous incubation of the IVD minced samples with proteinase K (Sigma-Aldrich) solution (0.5 mg/mL in phosphate buffer containing 10.68 g/L NaH₂PO₄.2H₂O, 8.45 g/L Na₂HPO₄.7H₂O and 3.36 g/L Disodium-EDTA in ultrapure water, pH 6.5) overnight at 56°C.

2.4. Ch/γ-PGA nanocomplexes preparation and incorporation of diclofenac

Ch/ γ -PGA and Ch/Df/ γ -PGA NCs were prepared by co-acervation as previously described by our team. ^{17,33} Briefly, Ch (France-Chitine) was purified and characterized after purification according to Antunes et al. ²² Ch with DA of 10.4±1.6% (degree of deacetylation of approximately 89.6%), determined by Fourier transform infrared spectrometry using KBr pellets (FTIR-KBr), and molecular weight (Mw) of 324±27 kDa, determined by size-exclusion chromatography, was used. γ -PGA (Mw of 10-50 kDa; purity level of 99.5%) was microbially produced by *Bacillus subtilis* as described by Pereira et al. ³³ Ch/ γ -PGA NPs were prepared at

a molar ratio of 1:1.5 (mol Ch:mol γ -PGA). ¹⁷ Solutions of Ch (0.2 mg/mL in 0.2 M AcOH) and γ -PGA (0.2 mg/mL in 0.05 M Tris-HCl buffer with 0.15 M NaCl) were combined by co-acervation method, in which γ -PGA solution was added dropwise to Ch solution, using a 1 mL syringe in a syringe pump (KD Scientific Inc., Holliston, MA), at constant speed (3.6 μ L/s) and high stirring at room temperature. The solution's pH was adjusted to 5.0. Df sodium salt (Sigma-Aldrich) solution (10 mg/mL in distilled water) was incorporated in Ch/ γ -PGA NPs at a molar ratio of 2:0.35:1.5 (mol Ch:mol Df:mol γ -PGA), according to Gonçalves et al. ¹⁷

2.5. Characterization of Ch/Df/γ-PGA nanocomplexes

NCs were characterized concerning their size and polydispersion index (PdI) by dynamic light scattering (DLS, ZetaSizer Nano Zs, Malvern Instruments) as described elsewhere.³⁵ The calculation used as dispersants the original solutions of γ -PGA (γ -PGA at 0.2 mg/mL in 0.05 M Tris-HCl buffer with 0.15 M NaCl) and Ch (0.2 mg/mL in 0.2 M AcOH), i.e. the solutions where the NCs were formed.

2.6. Preparation of fluorescent Ch and fluorescent Ch/ γ -PGA nanocomplexes with and without Df

Fluorescent NCs were prepared according to Gonçalves et al. ¹⁷ Briefly, Ch was labeled with fluorescein isothiocyanate (FITC) with 5% of modification (5% of amine groups with FITC), 100 mg of dried Ch were dissolved in 100 mL of 1% v/v AcOH at 4°C until complete dissolution. FITC (11 mg to achieve 5% modification) was dissolved in 100 mL of methanol. Both solutions (Ch and FITC) were mixed at constant stirring, protected from light, for 3 hours. The FITC-labeled Ch (ftCh) was then precipitated with 0.5 M NaOH and washed with ultrapure water until no fluorescence was seen in the supernatant. ftCh was lyophilized, dried and weighted. ftCh/Df/ γ -PGA NCs (Df-ftNCs) were prepared as described above.

2.7. Analysis of internalization of $ftCh/Df/\gamma$ -PGA nanocomplexes by IVD cells using confocal microscopy

Df-ftNCs internalization by IVD cells in the tissue organ culture was analyzed by confocal laser scanning microscopy (CLSM). The Df-ftNCs were injected in disc punches (0.7 mg/mL) as described above. After 1 hour of incubation at 37°C, approximately a 1 mm thickness slice was collected from the center of the disc punch and fixed with 4% v/v paraformaldehyde (PFA). Cells cytoskeleton was stained with Alexa Fluor 594-conjugated Phalloidin (Invitrogen), while cell nuclei were stained with Vectashield with DAPI. The tissue was imaged by CLSM (Leica

TCS SP5 AOBS, Leica Microsystems). Z-stacks and orthogonal projections (in XZ and YZ) of single images were analyzed using ImageJ 1.43u software (Wayne Rasband).

2.8. Quantification of ftCh/Df/ γ -PGA nanocomplexes internalization by IVD cells in the organ culture model

The internalization of Df-ftNCs was quantified by imaging flow cytometry. Disc punches were incubated with Df-ftNCs (0.7 mg/mL) for 3 hours. Afterwards, tissue samples were dissected into 2 to 3 mm³ fragments and enzymatically digested for 2 hours in 1 mg/mL collagenase type I (Sigma-Aldrich) in DMEM, under agitation (50 rpm), reduced oxygen atmosphere (37 °C, 6% O₂ and 8.5% CO₂) and saturated humidity. The supernatant was passed through a 100 µm filter (BD Falcon) to remove tissue debris. Cells were collected by centrifugation at 400 g for 7 minutes. The cell suspension was washed once with PBS and fixed in 1% v/v PFA. For imaging flow cytometry (ImagestreamX, Amnis, EDM Millipore), only single cells were used in the analysis, ftCh fluorescence was assessed in Channel 2 (505-560 nm) and at least 2000 events were collected. Image analysis was performed using IDEAS® data analysis software (Amnis). Internalization quantification is described in Supplementary Materials and Methods (S1.1). Briefly, internalization score was calculated based on the ratio of the FITC fluorescence intensity inside the cell and the intensity of the entire cell. 34,35 Higher scores denote larger NCs concentration in the cell cytoplasm, while negative scores denote cells with little internalization.

2.9. Quantitative real-time reverse transcription polymerase chain reaction

Gene expression levels were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) on cDNA derived from disc samples. Specific primer pairs were designed using published gene sequences (PubMed, NCBI Entrez Nucleotide Database) and Primer 3 software48 for bovine *IL-6, IL-8, MMP1, MMP3*, collagen type II (*COL2*), aggrecan (*ACAN*) and glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*),³² and synthesized by Alfagene. The analysis was carried out using SYBR Green method. Briefly, IVD punches were digested enzymatically as described above, cell pellets were recovered and total RNA was extracted with ReliaPrep RNA Cell Miniprep System (Promega) according to the manufacturer's instructions. Total RNA was quantified by a NanoDrop spectrophotometer (ND-1000, Thermo) and RNA quality was assessed by means of RNA ratio. Total RNA was reverse transcribed into cDNA using SuperScript® III Reverse Transcriptase kit (Invitrogen). Gene expression levels were determined by qRT-PCR conducted on iQ5 Real-Time PCR Detection System (Bio-Rad), and using iQTM SYBR® Green Supermix (Bio-Rad). Statistical analysis was performed on ΔCt values according to a modified method described by MacLean et al.³⁶ Fold changes in gene expression were presented as 2-(averageΔΔCt). The average Ct value

of each triplicate measurement of each sample was normalized to the house-keeping gene GAPDH in each sample ($\Delta Ct = Ct(_{gene\ of\ interest}) - Ct(_{GAPDH})$). The ΔCt of each stimulated sample was related to the respective ΔCt of each control sample. Normalized values of samples collected at the end of the experiments were compared with the control and between the different experimental groups.

2.10. Prostaglandin E₂ quantification in culture supernatants

Culture medium collected at day 8 was centrifuged (3000 rpm, 5 minutes) and kept at -20°C for posterior analysis. PGE₂ was quantified by ELISA (Arbor Assays) according to manufacturer's instructions and normalized by total protein. The bicinchoninic acid colorimetric protein assay was performed according to the manufacturer's instructions (Bio-Rad).

2.11. Sulphated glycosaminoglycans quantification

Sulphated glycosaminoglycan (sGAG) content of IVD punches was assessed at day 8 by reaction with 1,9-dimethyl-methylene blue zinc chloride double salt (DMMB, Sigma-Aldrich) dye reagent solution, containing 40 mM sodium chloride (NaCl, Roth), 40 mM Glycine (Roth) and 46 µM DMMB, previously adjusted to pH 3.0. Chondroitin sulphate A sodium salt from bovine trachea (Sigma) was used as standard. Results were normalized by DNA content.

2.12. Detection of proteoglycans by safranin O/light green staining

IVD punches collected at day 14 of culture were fixed with 4% v/v PFA, processed and embedded in paraffin. Sections of 7 µm thickness were sequentially recovered and stained for safranin O/light green (Saf. O/L. Green, 0.1% v/v Saf. O [Sigma]/0.4% v/v L. Green [Sigma]). Sections were imaged using an Olympus CX31 light microscope equipped with a DP-25 camera (Imaging Software Cell^B, Olympus) using the 20x objective.

2.13. Detection of collagen type II and aggrecan in the IVD

COL2 distribution was analyzed by immunofluorescence (IF) staining. ACAN production and distribution was analyzed by immunohistochemistry (IHC). For IHC, Novolink[™] Polymer Detection Kit (Leica Biosystems) was used, following the manufacturer's instructions. For both, antigen retrieval was performed in paraffin sections through incubation with 20 µg/mL proteinase K (Sigma-Aldrich) solution for 15 minutes at 37°C. For COL2 staining, after a blocking step, sections were then incubated for 2 hours at 37°C with anti-collagen II-II6B3 (Developmental Studies Hybridoma Bank) at a 1:50 dilution. Alexa Fluor 594-labeled goat antimouse (Invitrogen-Molecular Probes, 1:1000) was used as secondary antibody. For ACAN,

sections were incubated overnight with ACAN primary antibody (H-300) sc-25674 (Santa Cruz Biotechnology) to a 1:50 dilution.

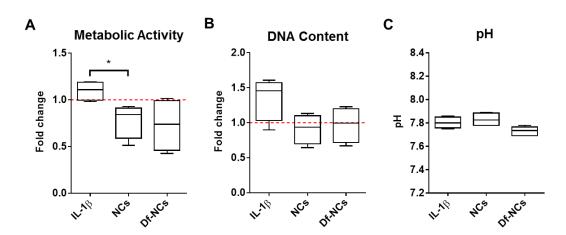
All sections were mounted in Fluorshield with DAPI (Sigma). Control sections for each labeling excluded primary antibody staining. Representative images of the slides were taken using an inverted fluorescence microscope (Axiovert 200 M, Zeiss) and the 20x objective, for COL2 staining. COL2 intensity was quantified using a custom-made MATLAB (The MathWorks Inc., Natick MA, USA) script, the IntensityStatisticsMask Software (described in Supplementary Materials and Methods). ACAN stained sections were imaged with light microscopy, the 20x objective for counting and the 100x oil objective for detailed imaging.

2.14. Statistical Analysis

Results are presented as Median±Interquartile Range (IQR) in box and whiskers plots. Data normality was first analyzed by D'Agostino and Pearson Normality Test. Statistical analysis was performed with non-parametric Kruskal-Wallis test and Dunns multiple comparison test as post hoc test in Graph Pad v6.02 for Windows. A confidence level of at least 95% (*p<0.05) was used.

3. Results

3.1. Viability of IVD organ culture model upon Ch/Df/γ-PGA nanocomplexes injection


In the present study, we investigated the ability of Df-NCs to revert IL-1 β -induced proinflammatory stimulus, using an IVD organ culture model previously established.³² The model closely mimics the IVD inflammatory/degenerative process *in vivo*, for which IL-1 β is known to be one of the key mediators.⁵ Df-NCs, previously optimized by our group, were able to decrease PGE₂, IL-6 and partially TNF- α production in LPS-activated macrophages,¹⁷ thus suggesting that they might be potentially used in other inflammatory scenarios, as in degenerated IVD.

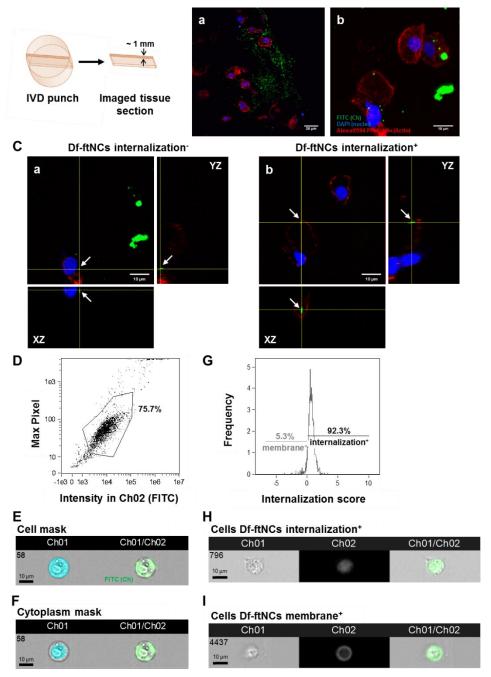
To produce Df-NCs, Df was incorporated in Ch/ γ -PGA NCs at a molar ratio of 2.0:0.35:1.5 (Ch:Df: γ -PGA) at pH 5.0, as previously reported.¹⁷ Particle size and PdI of obtained NCs and Df-NCs are summarized in Table 1. The molar ratio, polymer concentration and pH of interaction were first optimized to obtain a low poly-disperse solution with nano-size particles of Ch and γ -PGA.³³ Df concentration and its order of addition to those particles were then optimized to guarantee the maximum amount of drug incorporated in the NCs with nano-size and the lowest PdI.¹⁷

Table 1. Particle size and polydispersion index of Ch/γ -PGA nanocomplexes alone (NCs) and $Ch/Df/\gamma$ -PGA nanocomplexes (Df-NCs).

	Particle size (nm)	Polydispersion index (PdI)	Zeta potential (mV)
NCs	166±32	0.24±0.02	20.8±1.6
Df-NCs	175±32	0.26±0.02	20.5±1.9

The concentration of Df in the NCs was confirmed as previously described, by UV/Vis absorbance (275 nm) of NCs supernatant obtained after NCs centrifugation: about 75% of the initial amount of Df (0.06 mg/mL) was incorporated in Ch/γ-PGA NCs, 1 hour after preparation, i.e. Df concentration estimated in the NCs is about 0.045 mg/mL. First, IVD cultures were evaluated concerning their mitochondrial metabolic activity and DNA content, after IL-1β stimulation and treatment with NCs or Df-NCs, to discard possible cytotoxic effects (Fig. 2A and B). Results of the ratio between metabolic activity of disc punches in different conditions and controls showed that IL-1β stimulation slightly increased IVD metabolic activity, which was posteriorly significantly reduced when NCs were injected. In addition, DNA content of IL-1βtreated IVD punches increased significantly, when compared to control discs (1.5±0.5-fold increase, p<0.05). NCs and Df-NCs-treated IVD punches presented similar DNA content to the control (ratios of 0.9±0.4 and 1.0±0.5-fold for NCs-treated/control IVD punches and Df-NCs-treated/control IVD punches in comparison, respectively). Regarding the pH alteration of the cell culture medium upon injection of acidic solutions (NCs and Df-NCs), which might create a toxic or inhibitory environment for the cells, no significant alterations were detected, indicating that the injection of NCs or Df-NCs at pH 5.0 did not significantly acidify the cell culture medium (Fig. 2C).

Fig. 2. Viability of the organ culture model, 2 days after pro-inflammatory stimulus with puncture plus IL-1β supplementation (IL-1β), and treatment with injection of Ch/ γ -PGA NCs (NCs) or Df/Ch/ γ -PGA NCs (Df-NCs). (**A**) Mitochondrial metabolic activity and (**B**) DNA content of disc punches. Results were compared with unstimulated IVD organ cultures (control=1; dashed line). (**C**) pH of organ culture supernatants for the different conditions. Results are shown as box and whiskers plots (n=4). *p<0.05


3.2. Evaluation of Ch/Df/γ-PGA NCs internalization in IVD organ culture

Imaging of Df-NCs in IVD was performed in inner slices of tissue, as schematically described in Fig. 3A. The fate of Df-NCs in IVD organ culture was evaluated 3 hours after Df-NCs injection, in the tissue, by CLSM imaging (Fig. 3B). Df-ftNCs were prepared by previously labeling Ch with FITC, as described by Gonçalves et al. 17 A broad distribution of NCs within the IVD tissue and partial NCs internalization by IVD cells was observed in randomly selected IVD regions (n=17 stacks from 3 discs) (Fig. 3B, images a and b). Orthogonal projections in XZ and YZ were performed to evaluate NCs internalization in IVD cells. In those images, we observed that some of Df-ftNCs aggregates were located outside the Phalloidin-stained cell membrane (Fig. 3C, image a, white arrow points Df-ftNCs aggregates), while other Df-ftNCs aggregates were effectively inside the cell (as in Fig. 3C, image b, white arrow points Df-ftNCs aggregates). Therefore, Df-ftNCs internalization was assessed in a high-throughput manner using imaging flow cytometry. First it was determined a viable cell population positive for FITC signal (as shown in Fig. 3D for one donor). By applying a cell mask (Fig. 3E, in blue) and a cytoplasm mask (Fig. 3F, in blue) in the FITC positive cell population, it was possible to determine the internalization ratio between FITC fluorescence intensity inside the cell cytoplasm and FITC fluorescence intensity of the whole cell. This result is depicted for one representative donor in Fig. 3G. Overall, about 92±1% of viable cells presented higher FITC fluorescence in the cytoplasm (Fig. 3H), represented by a positive value of the internalization score, thus being Df-ftNCs internalization+ cells. On the other hand, 6±1% of viable cells presented higher fluorescence intensity in the cell membrane (Fig. 3I), represented by a negative value of the internalization score, meaning that in these cells Df-NCs were mostly not internalized (Df-ftNCs membrane+ cells).

3.3. Anti-inflammatory potential of Ch/Df/ γ -PGA nanocomplexes injection in proinflammatory/degenerative IVD organ culture model and evaluation of ECM remodeling

In the IVD organ culture model previously established, the up-regulation of the inflammatory markers *IL-6*, *IL-8* and PGE₂ obtained in pro-inflammatory conditions was reverted by intradiscal injection of Df.³² Therefore, the efficacy of Df-NCs was first evaluated by assessing the expression of *IL-6* and *IL-8* by IVD cells, and by quantification of PGE₂ in culture medium, 2 days after treatment. MMPs and main ECM proteins of the pro-inflammatory/degenerated IVD *ex vivo* model were also analyzed 2 days' post-treatment with Df-NCs. The results are presented as the Median±IQR fold change to unstimulated IVD punches (Fig. 4).

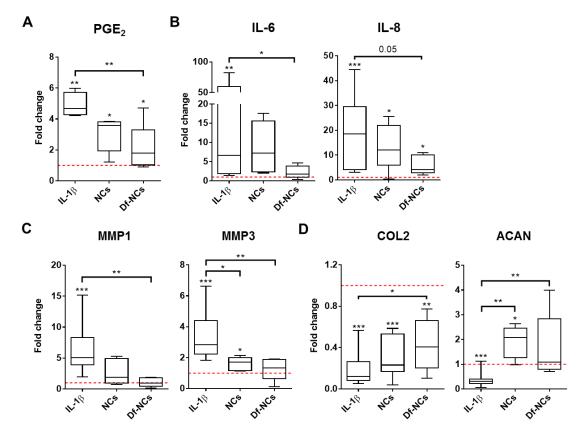
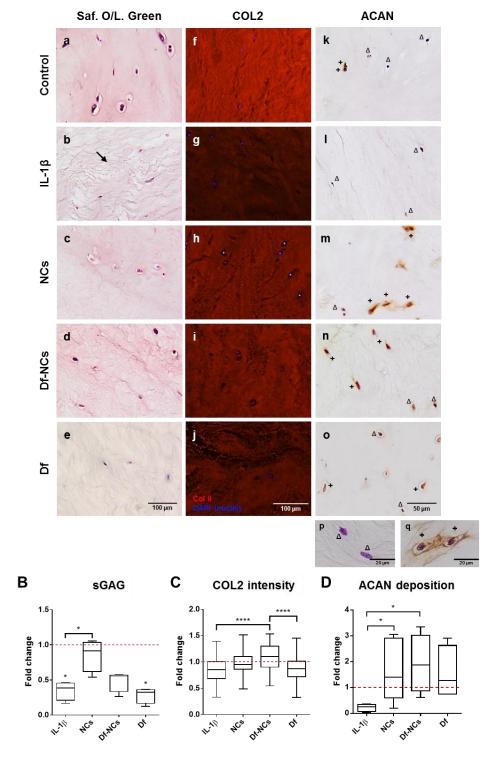

In the present work, the injection of Df-NCs was able to significantly decrease PGE₂ (**, p<0.01) and down-regulate IL-6 (*, p<0.05) when compared to IL-1 β -stimulated group (Fig. 4A and B). Df-NCs also seemed to decrease IL-8 of IL-1 β group (from 19±25-fold to 4±7-fold).

Fig. 3. Internalization of Df-ftNCs by disc cells, after injection treatment of IVD organ cultures, previously stimulated with puncture and IL-1β supplementation. (**A**) Scheme of tissue collection for image acquisition. (**B**) Representative CLSM z-projection images of IVD tissue with Df-ftNCs (images a and b; scale bars, 20 μm and 10 μm), acquired 3 hours after injection treatment. (**C**) Orthogonal projections of single images from A (image b) z-projection, showing negative (image a) and positive (image b) cells for Df-ftNCs internalization (white arrow points Df-ftNCs aggregates). Scale bars represent 10 μm. FITC stains the Ch from the Df-ftNCs in green, Alexa®594-Phalloidin stains F-actin in red and DAPI stains nuclei in blue. (**D**) Representative dot plot profile for the Df-ftNCs internalization analysis. Internalization was assessed by FITC fluorescence in Channel 2 (Ch02). (**E**) Cell mask (in blue). (**F**) Cytoplasm mask (in blue). (**G**) Representative internalization score histogram, after application of an internalization mask in the population of positive cells for Df-ftNCs (Df-ftNCs⁺). (**H**) Positive cells for Df-ftNCs internalization (internalization⁺). (**I**) Cells with higher fluorescence on the cell membrane compared to the cytoplasm (membrane⁺). Each cell is represented by a row of three images acquired simultaneously in flow, from left to right: brightfield (gray), FITC fluorescence (green) from the Df-ftNCs, merged image (scale bars, 10 μm) (n=4).

These values correspond to a reduction of about 73%, 61% and 78% for IL-6, PGE₂ and IL-8, in relation to IL-1 β -stimulated discs. In parallel, control injections with NCs (without anti-inflammatory drug) were also performed. The injection of NCs by itself also reduced IL-8 expression and PGE₂ production, although no significant differences were observed (reduction to 12±16-fold and 4±2-fold for IL-8 and PGE₂, respectively), representing approximately a reduction of 35% and 61% when compared to IL-1 β group.

Df intradiscal injection was previously shown to down-regulate MMP1 and up-regulate ACAN gene expression levels, but no significant effects in MMP3 and COL2 levels were observed.³² In this study, Df-NCs were able to significantly down-regulate both *MMP1* and *MMP3* gene expression (**, p<0.01, Fig. 4C). In addition, NCs alone significantly decreased *MMP3* (*, p<0.05) and slightly down-regulated *MMP1* (from 5±4-fold, for IL-1β group, to 2±4-fold). These results represent a down-regulation of approximately 63% and 40% for *MMP1* and *MMP3* genes, respectively. Concerning ECM proteins (Fig. 4D), *COL2* and *ACAN* were significantly

Fig. 4. Effect of different injectable treatments in the inflammatory response and in the ECM remodeling of IVD organ culture pro-inflammatory/degenerative model, 2 days after injection. Quantitative analysis of pro-inflammatory markers of IVD organ cultures stimulated with puncture and IL-1β supplementation (IL-1β), and treated with injection of NCs or Df-NCs. (**A**) PGE₂ fold change in culture supernatants. (**B**) mRNA expression of *IL-6*, *IL-8*, (**C**) matrix degrading enzymes *MMP1* and *MMP3*, and (**D**) ECM components *COL2* and *ACAN*. mRNA levels were normalized to *GAPDH* control gene and to the unstimulated discs (control level=1; dashed line). Results are presented as box and whiskers plots (n=6-19). *p<0.05; **p<0.01; ***p<0.001


up-regulated upon Df-NCs treatment (*, p<0.05 and **, p<0.01, for COL2 and ACAN, respectively) in IL-1 β -treated IVD punches. Interestingly, NCs group by itself also up-regulated *ACAN* expression (**, p<0.01) and increased *COL2* (from 0.1±0.2 of IL-1 β -IVDs to 0.2±0.4 of NCs-IVDs). These results represent an increase of about 45% and 85% for *COL2* and *ACAN* gene expression, in relation to IL-1 β .

3.4. Evaluation at protein level of ECM remodeling in longer-term pro-inflammatory IVD organ culture upon treatment with Ch/Df/ γ -PGA NCs

To confirm the effects of these different treatments at protein level, the IVD organ cultures were maintained for 14 days, after which COL2 and ACAN deposition were analyzed by histology/IHC. A group injected with soluble Df (19 μ m) was added, since previous results only showed the effect of soluble Df at gene expression level.³² Fig. 5A (images a-e) shows Saf. O/L. Green-stained sections of IVD NP for all conditions tested. The control group seemed to present a compact matrix, with cells and the respective lacunae perfectly contained within the matrix, while in the remaining conditions a higher disorganization in the fibers arrangement was observed, namely in IL-1 β condition (Fig. 5A, image b, arrow). Quantification of disc punches (NP containing few surrounding AF) sGAG content was performed at day 8 of culture. IL-1 β and Df presented a lower concentration of sGAG in tissue, when compared to the control, as shown in Fig. 6B. On the other hand, NCs-treated group presented a significantly higher sGAG content relatively to IL-1 β -stimulated group (*, p<0.05).

COL2 and ACAN deposition were assessed by IHC. Fig. 5A (images f-j) shows images of COL2 staining of all the conditions tested. There were collected 65 to 98 images from randomly selected areas of each section and samples were collected from 4 different donors. COL2 fluorescence intensity was quantified in the IntensityStatisticsMask Software and is depicted as fold change to unstimulated IVD punches in Fig. 5C. The results obtained display significantly higher COL2 deposition in Df-NCs group, in comparison with the IL-1β-stimulated samples (****, p<0.0001). This was not observed in NCs and in Df groups.

In Fig. 5A (images k-o) it is also shown ACAN deposition (brown) for the different conditions analyzed (images p and q portray in higher magnification cells negative (ACAN-, Δ) and positive (ACAN+, +) for ACAN production). Since ACAN deposition was located only around the cells, the numbers of ACAN+ and ACAN- cells were quantified (Fig. 5D). In Fig. 5D it is depicted the fold change of the % of ACAN+ cells (normalized to control group), for 4 different donors. The results obtained show that IVD treatments with NCs and Df-NCs significantly increased the percentage of ACAN+ cells, compared to IL-1 β -stimulated discs, when normalized to control group (*, p<0.05).

Fig. 5. Effect of different injectable treatments in the ECM of IVD pro-inflammatory/degenerative organ culture model, at the protein level. (**A**) Sagittal sections of disc punches stained for proteoglycans (a-e; scale bar, 100 μm), COL2 (f-j; scale bar, 200 μm), ACAN (k-o; scale bar, 100 μm) and higher magnification of ACAN negative (p, ACAN-, Δ) and positive (q, ACAN-, +) cells (scale bars, 10 μm). Samples were collected after a 14-days culture. One representative experiment of 3-4 different donors is presented here. (**B**) Biochemical analysis of sGAG content of IVD punches, at day 8 of organ culture, normalized to control (n=4 donors). (**C**) COL2 fluorescence intensity normalized to control (dashed line; n=65-98 from 4 donors), at day 14 of culture. (**D**) Fold change in % of ACAN+ cells normalized to control group (n=4 donors), at day 14 of culture. Results are shown as box and whiskers plots (B-D). *p<0.05; *****p<0.0001

4. Discussion

This study hypothesizes that local control of inflammation in degenerated IVD could improve ECM remodeling, which would improve LBP symptoms, constituting a more effective intradiscal therapy. Pro-inflammatory cytokines, TNF-α and IL-1β, are known to induce the expression of genes coding for MMPs, and also induce NP cells to secrete innervation and angiogenic growth factors when the balance between human IVD anabolism and catabolism is disrupted. MMPs degrade both collagen and proteoglycans, leading to tissue dehydration and progressive ECM disorganization. With increasing time, COL2 in the NP is replaced by COL1, and the anatomical border between NP and AF becomes less defined, with the nucleus becoming fibrous.³⁷

For that, a pro-inflammatory/degenerative organ culture model, with 0.46 MPa static loading, tissue needle punctured and stimulated with IL-1 β (100 ng/mL) was used upon previous validation.³² This model mimics human IVD degeneration, in which pro-inflammatory cytokines TNF- α and IL-1 β are key mediators.^{5,38} In this model, an up-regulation of pro-inflammatory markers (*IL*-6, *IL*-8, *MMP1* and *MMP3*), as well as a down-regulation of ECM proteins (*COL2* and *ACAN*) was observed,³² in accordance to findings reported during human disc degeneration.^{5,38}

Although organ cultures as this model are accepted as more reliable models than 2D *in vitro* cultures, constituting an important step before animal experimentation, they have some limitations. One of these include time in culture to guarantee tissue viability (usually up to 1 week).³⁹⁻⁴¹ Here, tissue viability maintenance was monitored by mitochondrial metabolic activity and DNA content. Other studies had already reported high cell viability in IVD organ cultures in pro-inflammatory conditions after 7³² and 14 days.⁴² Nonetheless, needle insertion can cause cell damage,⁴⁰ as well as an increase in cell apoptosis after IL-1β treatment.⁴³ Also, cell viability upon intradiscal injection in acidic conditions (with NCs) was not significantly affected. Another limitation of the organ culture model is the lack of vasculatization/innervation (and immune cells) in the disc surroundings. Nevertheless, in this case the lack of complexicity constitutes an important advantage when analyzing the direct effect of an intradiscal therapy on IVD cells, without the complex cell crosstalk that we find *in vivo*.

As previously discussed, intradiscal steroid therapy has been adopted by patients with symptomatic disc degeneration and low back pain, unwilling to accept surgical procedures. However, placebo-controlled studies about intradiscal steroid injections for discogenic pain have reported either no clinical improvement compared to placebo¹¹ or short-term improvement. Furthermore, their influence on deregulation of matrix turnover promotes disc degeneration. Also, an increase in the frequency and dosage of intradiscal steroid injections may further accelerate it through puncture injury.

Df reduced NP-induced nerve root dysfunction after 7 days of treatment.¹⁵ In the proinflammatory/degenerated IVD *ex vivo* model previously established by us, Df injection downregulated *IL-6*, *IL-8* and decreased PGE₂ production, and also seemed to have an effect in IVD ECM remodeling by down-regulating *MMP1*, while up-regulating *ACAN* expression.³²

Nonetheless, Df intraperitoneal injection in a rat lumbar disc herniation model showed a reduced analgesic effect with time.⁴⁵ Therefore, Df direct injection into the IVD may have a limited long-term clinical use as it has a short biologic half-life and may require repeated administrations.³²

In this study, we hypothesize that a Df delivery system based on Ch/γ -PGA NCs could extend Df action, controlling inflammation while contributing to ECM remodeling in degenerated IVD. Therefore, Df-NCs were tested as an anti-inflammatory therapy for degenerated IVD.

Small-scale particles are emerging as delivery systems for IVD regeneration. NCs size enables them to pass through biological barriers, having the possibility to be internalized into target cells.46 Moreover, NCs can be easily combined with hydrogels for cell delivery or NP regeneration, increasing the functionality of biomaterials for IVD.47,48 Examples of NCs are fullerol NCs (approximately 25-50 nm size) that decreased IVD degeneration in human cells and rabbits.⁴⁹ NCs are low viscous vehicle, thus easy to inject into the IVD. Moreover, Ch/γ-PGA NCs were recently shown to promote COL2 production in nucleotomized IVD model.⁵⁰ Df-NCs are a monodisperse population of NCs that release Df within 2 hours in physiological pH (maximum of 80%). 17,33 In this study, Df-NCs were injected in IVD organ cultures 3 hours after the pro-inflammatory stimulus. This time point was selected based in previous work using LPS-activated macrophages, after which PGE₂, the Df target, started to be released to the culture medium. 17 NCs internalization by IVD cells was verified, showing that about 65±6% of tissue total cells contained NCs, corroborating the phagocytic activity of NP cells previously suggested. 50,51 The mechanism of intracellular trafficking of these NCs was not specifically addressed, but others have already investigated the intracellular fate of Ch/γ-PGA nanoparticles. Peng et al. showed that Ch/DNA/γ-PGA nanoparticles can be internalized by specific trypsin-cleavable proteins,52 and by a lipid raft-mediated route, and via macropinocytosis, in a minor extent.²⁹ Moreover, these authors have shown that when γ -PGA is present in Ch/DNA nanoparticles, less percentage of nanoparticles co-localization with lysosomes, is observed, suggesting that γ-PGA can escape this defense mechanism.²⁹

Df-NCs decreased *IL-6*, *IL-8* and PGE₂ production, indicating that Df released from the NCs maintained its ability to inhibit COX-2 pathway, as expected,¹⁵ and similarly to what was observed with Df injection.³² NCs, with and without Df, were shown to affect macrophage functional behavior *in vitro*, by stimulating the production of IL-6, IL-10, TNF-α but not IL-12/23,

while PGE₂ was only stimulated by NCs without Df.¹⁷ Weather Df-NCs influence macrophage behavior in degenerated IVD will be addressed in the future.

The promisor results of Df-NCs in the reduction of pro-inflammatory markers in the *ex vivo* model do not exclude the need to perform more studies in order to conclude about the feasibility of this therapy, namely testing *in vivo* different times and dosages of NCs administration before moving to pre-clinical research. Although this model aims to mimic human IVD degeneration by up-regulating pro-inflammatory mediators, MMPs and down-regulating ECM proteins,³² it cannot be considered as mimicking the process of chronic IVD degeneration, as naturally occurs in humans and in other species as chondrodystrophic dogs⁵³ or the sand rat.⁵⁴ Nevertheless, these models also present drawbacks: first, the rat/dog IVD contains notochordal cells, which does not happen in human adults or bovine IVD; second, the long waiting time to observe spontaneous IVD degeneration; and third, the lack of control of this process, which discourages the use of these models.^{53,54}

Concerning ECM remodeling, previous studies have demonstrated that Df injection was able to decrease *MMP1* and increase *ACAN* expression.³² Interestingly, NCs by itself down-regulated *MMP3* (but not *MMP1*) expression, while Df-NCs down-regulated the expression of both *MMP1* and *MMP3* compared to IL-1β-stimulated discs. In the case of ECM proteins, NCs alone significantly up-regulate *ACAN* expression, while Df-NCs significantly increase both *COL2* and *ACAN* gene expression levels. This result was confirmed at the protein level.

These results support previous evidences from our group, demonstrating that γ -PGA promotes chondrogenesis of MSCs *in vitro*, enhancing COL2, ACAN and Sox-9 early expression. ⁵⁵ This effect was partially observed in IVD organ cultures. ⁵⁰ In addition, γ -PGA injections have already been patented for treating joint pain. ⁵⁶ Nevertheless, Ch/ γ -PGA NCs mechanism behind chondrogenesis/cartilage formation remains to be explored. The concentration of γ -PGA used in this study was in accordance with previous work from our group. ^{17,22,30,31,33,50} Nevertheless, in the literature several studies have been used γ -PGA to elicit immune response: about 2.7 mg/mL of γ -PGA with different Mw (from 10 to 2000 kDa) were orally administered inducing significant NK-cell-mediated anti-tumor immunity in mice. ⁵⁷ Other study administered 5 mg/mL of γ -PGA in mice, inducing antiviral activity and protective immune responses against H1N1 influenza-A virus infection. ⁵⁸ Another frequent use of γ -PGA is as adjuvant in cancer treatment, by combination with chemotherapeutic agents. γ -PGA nanoparticles were shown to activate dendritic cells usually in high concentrations (10 mg/mL). ^{59,60} To the best of our knowledge, the concentrations administered are slightly higher than ours.

Previous studies demonstrate that Ch/γ -PGA NCs are able to infiltrate cell-cell junctions^{61,62} and that internalization of Ch/γ -PGA NCs might occur mainly via non-specific charge-mediated interaction (NCs positive charge vs negative charged cell membrane).⁵² Further studies found

that Ch/DNA/γ-PGA internalization take place via macropinocytosis and caveolae-mediated pathway, with the latter playing a major role.²⁹ On the other hand, γ-PGA-coated complexes can be internalized via a specific γ-glutamyltransferase (GGT)-mediated pathway.^{28,63} The results obtained in this study suggest the involvement of MMP3, but not MMP1, in the IVD ECM remodeling mediated by Ch/γ -PGA complexes. Moreover, the synergy between Df and Ch/γ -PGA NCs suggests that control of inflammation in degenerated IVD is essential for COL2, but not for ACAN production. In fact, this observation was observed in other models across the literature. For example, in PGE₂ (10 pg/mL)-stimulated osteoarthritic cartilage-explant cultures cleavage of COL2 was down-regulated, while no effect was observed in ACAN production.⁶⁴ In MSCs/NP cells co-cultures, inhibition of TGF-β1 profoundly constrained COL2 production, while ACAN synthesis was only slightly inhibited, suggesting a crucial role of TGF-β in COL2 production in the NP.²⁰ Nevertheless, to our knowledge this relation is not straightforward, since other authors have suggested that ACAN production is also dependent on inflammation control and that TGF-β1 may be also involved. Treatment of (TNF-α+IL-1β)-stimulated AF cells with TGF-β1 and bone morphogenic protein (BMP)-2 showed a synergic action of both proteins in recovering degenerated IVD ECM: a high increase in ACAN gene expression was observed after TGF-β1-treatment, while a high increase in COL2 was observed with BMP-2 treatment. Overall, when treated with TGF-β1+BMP-2, an increase in both ACAN and COL2 was observed.65

Nevertheless, future studies will be necessary to highlight the molecular mechanisms behind $Ch/Df/\gamma$ -PGA NCs-driving effect in degenerated IVD and confirm the hypothesis of a MMP3-mediated stimulation of ECM production in the disc.

5. Conclusions

Intradiscal injection of Ch/Df/ γ -PGA NCs reduced pro-inflammatory mediators (*IL-6*, *IL-8* and PGE₂) in a pro-inflammatory/degenerative IVD organ culture model. This anti-inflammatory delivery system also down-regulated the expression of both *MMPs 1* and 3, while up-regulated COL2 and ACAN production. Overall, this study suggests that Ch/Df/ γ -PGA NCs injection is a promisor intradiscal therapy for degenerated IVD repair/regeneration. This work provides a solid base for testing intradiscal injection of Ch/Df/ γ -PGA NCs *in vivo* in an animal model. Although Df has a limited long-term clinical use, as it has a short biologic half-life, we hope to decrease Df administration rates with this strategy and contribute to sustain the native ECM production in patients with discogenic pain. Moreover, the versatility of Ch/ γ -PGA NCs allows its combination with other therapies.

Disclosure

The authors declare no competing financial interests.

Acknowledgements

The authors of the present study wish to thank Carnes Landeiro, SA, for kindly providing the bovine tails, Susana Santos and Ana H. Lourenço for the assistance with CLSM, Inês Almeida for the help with qRT-PCR, Daniela Vasconcelos for the help with samples preparation, and also to Helga Bach and Iris Baum for their excellent technical assistance.

This work was financed by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of project UID/BIM/04293/2013. Graciosa Q. Teixeira, Catarina L. Pereira, Flávia Castro and Raquel M Gonçalves acknowledge FCT for their grants (PhD grants SFRH/BD/88429/2012, SFRH/BD/85779/2012 and PD/BI/105905/2014, for Graciosa, Catarina and Flávia, respectively) and FCT Investigator Starting Grant (IF/00638/2014 for Raquel). The authors would also like to acknowledge the German Spine Foundation (Deutsche Wirbelsäulenstitung), the German Academic Exchange Service (DAAD), the EuroSpine Task Force, and the Conselho de Reitores das Universidades Portuguesas (CRUP).

References

- 1. M.A. Adams, P. Lama, U. Zehra, P. Dolan, Why do some intervertebral discs degenerate, when others (in the same spine) do not?, Clin. Anat. 28 (2014) 195-204.
- 2. F.M. Phillips, P.J. Slosar, J.A. Youssef, G. Andersson, F. Papatheofanis, Lumbar spine fusion for chronic low back pain due to degenerative disc disease: a systematic review, Spine 38 (2013) E409-422.
- 3. E.I. de Schepper, J. Damen, J.B. van Meurs, A.Z. Ginai, M. Popham, A. Hofman, B.W. Koes, S.M. Bierma-Zeinstra SM, The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features, Spine 35 (2010) 531-536.
- 4. C.L. Le Maitre, J.A. Hoyland, A.J. Freemont, Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study, Arthritis. Res. Ther. 9 (2007) R83.
- 5. M.V. Risbud, I.M. Shapiro, Role of cytokines in intervertebral disc degeneration: pain and disc content, Nat. Rev. Rheumatol. 10 (2014) 44-56.
- 6. P.P. Raj, Intervertebral disc: anatomy-physiology-pathophysiology-treatment, Pain Pract. 8 (2008) 18-44.

- 7. M. Molinos, C.R. Almeida, J. Caldeira, C. Cunha, R.M. Gonçalves, M.A. Barbosa, Inflammation in intervertebral disc degeneration and regeneration, J. R. Soc. Interface 12 (2015) 20141191.
- 8. J.M. Berthelot, B. Le Goff, Y. Maugars, Side effects of corticosteroid injections: what's new?, Joint Bone Spine 80 (2013) 363-367.
- 9. L. Manchikanti, M.V. Boswell, S. Datta, B. Fellows, S. Abdi, V. Singh, R.M. Benyamin, F.J. Falco, S. Helm, S.M. Hayek, H.S. Smith, Comprehensive review of therapeutic interventions in managing chronic spinal pain, Pain Physician 12 (2009) E123-E198.
- 10. G.R. Buttermann, The effect of spinal steroid injections for degenerative disc disease, Spine J. 4 (2004) 495-505.
- 11. A. Khot, M. Bowditch, J. Powell, D. Sharp, The use of intradiscal steroid therapy for lumbar spinal discogenic pain: a randomized controlled trial, Spine 29 (2004) 833-837.
- 12. S. Muzin, Z. Isaac, J. Walker 3rd, The role of intradiscal steroids in the treatment of discogenic low back pain, Curr. Rev. Musculoskelet. Med. 1 (2008) 103-107.
- 13. M. Dougados, Why and how to use NSAIDs in osteoarthritis, J. Cardiovasc. Pharmacol. 47 (2006) S49-54.
- M. Kato, S. Nishida, H. Kitasato, N. Sakata, S. Kawai, Cyclooxygenase-1 and cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: investigation using human peripheral monocytes, J. Pharm. Pharmacol. 53 (2001) 1679-1685.
- 15. M. Cornefjord, K. Olmarker, K. Otani, B. Rydevik, Nucleus pulposus-induced nerve root injury: effects of diclofenac and ketoprofen, Eur. Spine J. 11 (2002) 57-61.
- 16. F. Richy, O. Bruyere, O. Ethgen, V. Rabenda, G. Bouvenot, M. Audran, G. Herrero-Beaumont, A. Moore, R. Eliakim, M. Haim, J.Y. Reginster, Time dependent risk of gastrointestinal complications induced by non-steroidal anti-inflammatory drug use: a consensus statement using a meta-analytic approach, Ann. Rheum. Dis. 63 (2004) 759-766.
- 17. R.M. Gonçalves, A.C.L. Pereira, I.O. Pereira, M.J. Oliveira, M.A. Barbosa, Macrophage response to chitosan/poly-(γ-glutamic acid) nanoparticles carrying an anti-inflammatory drug, J. Mat. Sci. Mat. Med. 26 (2015) 167-178.
- 18. D. Sakai, G.B. Andersson, Stem cell therapy for intervertebral disc regeneration: obstacles and solutions, Nat. Rev. Rheumatol. 11 (2015) 243-56.
- 19. W. Li, T. Liu, L. Wu, C. Chen, Z. Jia, X. Bai, D. Ruan, Blocking the function of inflammatory cytokines and mediators by using IL-10 and TGF-β: a potential biological immunotherapy for intervertebral disc degeneration in a beagle model, Int. J. Mol. Sci. 15 (2014) 17270-17283.
- 20. H. Yang, C. Cao, C. Wu, C. Yuan, Q. Gu, Q. Shi, J. Zou, TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration, Sci. Rep. 5 (2015) 13254.

- 21. I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim, B.C. Kim, C.S. Cho, Chitosan and its derivatives for tissue engineering applications, Biotechnol. Adv. 26 (2008) 1-21.
- 22. J.C. Antunes, C.L. Pereira, M. Molinos, F. Ferreira-da-Silva, M. Dessi, A. Gloria, L. Ambrosio, R.M. Gonçalves, M.A. Barbosa, Layer-by-layer self-assembly of chitosan and poly(γ-glutamic acid) into polyelectrolyte complexes, Biomacromolecules 12 (2011) 4183-4195.
- 23. M.I. Oliveira, S.G. Santos, M.J. Oliveira, A.L. Torres, M.A. Barbosa, Chitosan drives antiinflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation, Eur. Cell Mater. 24 (2012) 136-153.
- 24. J.N. Barbosa, I.F. Amaral, A.P. Aguas, M.A. Barbosa, Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds, J. Biomed. Mater. Res. A 93 (2010) 20-28.
- 25. J. Maciel, M.I. Oliveira, E. Colton, A.K. McNally, C. Oliveira, J.M. Anderson, M.A. Barbosa, Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages, Tissue Eng. Part A 20 (2014) 250-263.
- 26. D.P. Vasconcelos, M. Costa, I.F. Amaral, M.A. Barbosa, A.P. Águas, J.N. Barbosa, Development of an immunomodulatory biomaterial: using resolvin D1 to modulate inflammation, Biomaterials 53 (2015) 566-573.
- 27. S. Franz, S. Rammelt, D. Scharnweber, J.C. Simon, Immune responses to implants a review of the implications for the design of immunomodulatory biomaterials, Biomaterials 32 (2011) 6692-6709.
- 28. Z.X. Liao, S.F. Peng, Y.C. Ho, F.L. Mi, B. Maiti, H.W. Sung, Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid), Biomaterials 33 (2012) 3306-3315.
- 29. S.F. Peng, M.T. Tseng, Y.C. Ho, M.C. Wei, Z.X. Liao, H.W. Sung, Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector, Biomaterials 32 (2011) 239-248.
- 30. R.M. Gonçalves, J.C. Antunes, M.A. Barbosa, Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes, Eur. Cell Mater. 23 (2012) 249-260.
- 31. A.P. Cardoso, R.M. Gonçalves, J.C. Antunes, M.L. Pinto, A.T. Pinto, F. Castro, C. Monteiro, M.A. Barbosa, M.J. Oliveira, An interferon-γ-delivery system based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion *in vitro*, Acta Biomater. 23 (2015) 157-171.
- 32. G.Q. Teixeira, A. Boldt, I. Nagl, C.L. Pereira, K. Benz, H.J. Wilke, A. Ignatius, M.A. Barbosa, R.M. Gonçalves, C. Neidlinger-Wilke, A degenerative/pro-inflammatory

- intervertebral disc organ culture: an *ex vivo* model for anti-inflammatory drug and cell therapy. Tissue Eng. Part C Methods 22 (2016) 8-19.
- 33. C.L. Pereira, J.C. Antunes, R.M. Gonçalves, F. Ferreira-da-Silva, M.A. Barbosa, Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. J. Mater. Sci. Mater. Med. 23 (2012) 1583-1591.
- 34. S. Vranic, N. Boggetto, V. Contremoulins, S. Mornet, N. Reinhardt, F. Marano, A. Baeza-Squiban, S. Boland, Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry, Part. Fibre Toxicol. 10 (2013) 2.
- 35. Y. Phanse, A.E. Ramer-Tait, S.L. Friend, B. Carrillo-Conde, P. Lueth, C.J. Oster, G.J. Phillips, B. Narasimhan, M.J. Wannemuehler, B.H. Bellaire, Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry, J. Vis. Exp. 64 (2012) 3884.
- J.J. MacLean, C.R. Lee, S. Grad, K. Ito, M. Alini, J.C. latridis, Effects of immobilization and dynamic compression on intervertebral disc cell gene expression *in vivo*, Spine 28 (2003) 973-981.
- 37. P. Colombier, J. Clouet, O. Hamel, L. Lescaudron, J. Guicheux, The lumbar intervertebral disc: from embryonic development to degeneration, Joint Bone Spine 81 (2014) 125-129.
- 38. Z.I. Johnson, Z.R. Schoepflin, H. Choi, I.M. Shapiro, M.V. Risbud, Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration, Eur. Cell Mater. 30 (2015) 104-117.
- 39. A. Bertolo, T. Thiede, N. Aebli, M. Baur, S.J. Ferguson, J.V. Stoyanov, Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments *in vitro*, Eur. Spine J. 20 (2011) 592-603.
- 40. C.L. Korecki, J.J. Costi, J.C. latridis, Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model, Spine 22 (2008) 235-241.
- 41. C.L. Pereira, R.M. Gonçalves, M. Peroglio, G. Pattappa, M. D'Este, D. Eglin, M.A. Barbosa, M. Alini, S. Grad, The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs, Biomaterials 35 (2014) 8144-8153.
- 42. J.S. Kim, M.B. Ellman, D. Yan, H.S. An, R. Kc, X. Li, D. Chen, G. Xiao, G. Cs-Szabo, D.W. Hoskin, D.D. Buechter, A.J. Van Wijnen, H.J. Im, Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc, J. Cell. Physiol. 228 (2013) 1884-1896.
- 43. R.K. Ponnappan, D.Z. Markova, P.J. Antonio, H.B. Murray, A.R. Vaccaro, I.M. Shapiro, D.G. Anderson, T.J. Albert, M.V. Risbud, An organ culture system to model early degenerative changes of the intervertebral disc, Arthritis Res. Ther. 13 (2011) R171.

- 44. S.M. Kim, S.H. Lee, B.R. Lee, J.W. Hwang, Analysis of the correlation among age, disc morphology, positive discography and prognosis in patients with chronic low back pain, Ann. Rehabil. Med. 39 (2015) 340-346.
- 45. N. Sasaki, M. Sekiguchi, S. Kikuchi, S. Konno, Anti-nociceptive effect of bovine milk-derived lactoferrin in a rat lumbar disc herniation model, Spine 35 (2010) 1663-1667.
- 46. D.A. LaVan, T. McGuire, R. Langer, Small-scale systems for *in vivo* drug delivery, Nat. Biotechnol. 21 (2003) 1184–1191.
- 47. R. Tsaryk, A. Gloria, T. Russo, L. Anspach, R. de Santis, S. Ghanaati, R.E. Unger, L. Ambrosio, C.J. Kirkpatrick, Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration, Acta Biomater. 20 (2015) 10-21.
- D.R. Pereira, J. Silva-Correia, S.G. Caridade, J.T. Oliveira, R.A. Sousa, A.J. Salgado, J.M. Oliveira, J.F. Mano, N. Sousa, R.L. Reis, Development of gellan gum-based microparticles/hydrogel matrices for application in the intervertebral disc regeneration, Tissue Eng. Part C Methods 17 (2011) 961-972.
- 49. X. Yang X, L. Jin, L. Yao, F.H. Shen, A.L. Shimer, X. Li, Antioxidative nanofullerol prevents intervertebral disk degeneration, Int. J. Nanomedicine 9 (2014) 2419-2430.
- 50. J.C. Antunes, C.L. Pereira, G.Q. Teixeira, R.V. Silva, J. Caldeira, S. Grad, R.M. Gonçalves, M.A. Barbosa, Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc, J. Mater. Sci. Mater. Med. (2015) doi:10.1007/s10856-016-5674-9
- 51. P. Jones, L. Gardner, J. Menage, G.T. Williams, S. Roberts, Intervertebral disc cells as competent phagocytes *in vitro*: implications for cell death in disc degeneration, Arthritis Res. Ther. 10 (2008) R86.
- 52. S.F. Peng, M.J. Yang, C.J. Su, H.L. Chen, P.W. Lee, M.C. Wei, H.W.Sung, Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency, Biomaterials 30 (2009) 1797-1808.
- 53. F.C. Bach, N. Willems, L.C. Penning, K. Ito, B.P. Meij, M.A. Tryfonidou, Potential regenerative treatment strategies for intervertebral disc degeneration in dogs, BMC Vet. Res. 10 (2014) 3
- 54. H.E. Gruber, B. Gordon, C.Williams, J.A. Ingram, H.J. Norton, E.N. Hanley Jr, A new small animal model for the study of spine fusion in the sand rat: pilot studies, Lab. Anim. 43 (2009) 272-277.
- 55. J.C. Antunes, R. Tsaryk, R.M. Gonçalves, C.L. Pereira, C. Landes, C. Brochhausen, S. Ghanaati, M.A. Barbosa, C.J. Kirkpatrick, Poly(γ-glutamic acid) as an exogenous promoter of chondrogenic differentiation of human mesenchymal stem/stromal cells, Tissue Eng. Part A 21 (2015) 1869-1885.

- 56. A. Prescott, Methods for treating joint pain using poly-gamma-glutamic acid, US20060234192 A1 2006.
- 57. T.W. Kim, T.Y. Lee, H.C. Bae, J.H. Hahm, Y.H. Kim, C. Park, T.H. Kang, C.J. Kim, M.H. Sung, H. Poo, Oral administration of high molecular mass poly-gamma-glutamate induces NK cell-mediated antitumor immunity, J. Immunol. 179 (2007) 775-780.
- 58. E.H. Kim, Y.K. Choi, C.J. Kim, M.H. Sung, H. Poo, Intranasal administration of polygamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection, Virol J. 12 (2015) 160.
- 59. T. Uto, T. Akagi, K. Yoshinaga, M. Toyama, M. Akashi, M. Baba, The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway, Biomaterials 32 (2011) 5206-5212.
- 60. T. Akagi, T. Kaneko, T. Kida, M. Akashi, Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with I-phenylalanine as a protein carrier, J. Control Release 108 (2005) 226-236.
- 61. C.H. Chang, Y.H. Lin, C.L. Yeh, Y.C. Chen, S.F. Chiou, Y.M. Hsu, Y.S. Chen, C.C. Wang, Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori, Biomacromolecules 11 (2010) 133-142.
- 62. Y.H. Lin, C.K. Chung, C.T. Chen, H.F. Liang, S.C. Chen, H.W. Sung, Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells, Biomacromolecules 6 (2005) 1104-1112.
- 63. A. Corti, M. Franzini, A. Paolicchi, A. Pompella, Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting, Anticancer Res. 30 (2010) 1169-1181.
- 64. E.V. Tchetina, J.A. Di Battista, D.J. Zukor, J. Antoniou, A.R. Poole, Prostaglandin PGE2 at very low concentrations suppresses collagen cleavage in cultured human osteoarthritic articular cartilage: this involves a decrease in expression of proinflammatory genes, collagenases and COL10A1, a gene linked to chondrocyte hypertrophy, Arthritis Res. Ther. 9 (2007) R75.
- 65. H. Cho, S. Lee, S.H. Park, J. Huang, K.A. Hasty, S.J. Kim, Synergistic effect of combined growth factors in porcine intervertebral disc degeneration, Connect. Tissue Res. 54 (2013) 181-186.

Supplementary Data

Materials and Methods

S1.1. Quantification of Ch/Df/γ-PGA nanocomplexes internalization

For the quantification of the particles internalization, the "internalization score" was measured for every cell. For each cell image two masks were created: the cell mask that defines the total area of the cell and the corresponding cytoplasm mask performed by eroding the cell membrane from the cell mask (obtained in brightfield images in Channel 1). NCs internalization was then assessed by FITC fluorescence in Channel 2. To define the positive FITC signal, IVD cells with Df-NCs, without previous FITC labeling, were run in the same conditions in the imaging flow cytometer. Internalization score was calculated based on the ratio of the FITC fluorescence intensity inside the cell and the intensity of the entire cell. Higher scores denote larger NCs concentration in the cell cytoplasm, while negative scores denote cells with little internalization.

\$1.2. Collagen type II quantification

IF was performed in IVD section and COL2 expression intensity was quantified. Images were captured using an inverted microscope (Axiovert 200 M, Zeiss) with the 20x objective. The intensity of COL2 expression in the tissue was determined using an additional custom-made MATLAB script, the IntensityStatisticsMask Software.

Software design

The purpose behind the construction of this script was to obtain a faster and unbiased method for color intensity quantification. The script performs image segmentation, based on a user-defined threshold level, to create a mask for the tissue regions expressing collagen. Intensity measurements, such as mean values and standard deviation, are then calculated only for the pixels belonging to the collagen mask. Unless otherwise stated, the intensity threshold value used for the segmentation was 10.

CHAPTER VI

Evaluation of anti-inflammatory chitosan/poly-γ-glutamic acid nanocomplexes *in vivo*: insights from a rat caudal degenerated/herniated intervertebral disc model

As previously discussed, intradiscal therapies that not only promote IVD matrix synthesis, but also modulate the inflammatory response can have a major impact in IVD regeneration.

Ch/Df/ γ -PGA NCs that previously presented promising results, upon intradiscal administration in *ex vivo* IVD punches under pro-inflammatory/degenerative conditions (Teixeira et al. 2016), were here evaluated *in vivo*. In this context, an IVD herniation and degeneration model by rat caudal needle puncture using a 21G needle, previously established in our team, was used (Cunha et al. 2015, Cunha et al. 2016). This model leads to an increase in cell death in the IVD, hernia formation and its infiltration by CD68 $^+$ macrophages; however, the degeneration features were observed to spontaneously regress between 2 to 6 weeks (Cunha et al. 2015). In this work, 10 µL of soluble Df and Df-NCs were injected into the lesioned rat IVDs, with hernia formation, 24 hours after injury, using a 33G needle. Two weeks' post IVD injury, Df-NCs did not promote NP-like matrix production, which contrasts with the *ex vivo* results (Teixeira et al. 2016). Furthermore, Df-NCs did not seem to influence hernia reduction at 2 weeks timepoint. On the other hand, the Df intradiscal injection seemed to slightly contribute to the decrease of hernia volume.

We are currently performing further experiments to better understand the behavior of the injected NCs and the rat physiological response to the treatment.

Evaluation of anti-inflammatory chitosan/poly-γ-glutamic acid nanocomplexes *in vivo*: insights from a rat caudal degenerated/herniated intervertebral disc model

Graciosa Q. Teixeira^{a-c*}, Carla Cunha^{a,b*}, Cláudia Ribeiro-Machado^{a,b}, Catarina Leite Pereira^{a-c}, Joana R. Ferreira^{a-c}, Maria Molinos^{a-c}, Susana G. Santos^{a,b}, Mário A. Barbosa^{a-c}, Raquel M. Goncalves^{a-c}

^aInstituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal ^bINEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal ^cICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal *equal contribution

Abstract

Low back pain (LBP) is often associated with nucleus pulposus (NP) extrusion and herniation-induced pressure that promote over-sensitized nerve roots, due to mechanical stimuli and by molecules arising from the inflammatory cascade. Inflammation plays an important role in LPB and IVD degeneration. Hence, different inflammatory targets have been purposed in the context of regeneration. Non-steroidal anti-inflammatory drugs, as diclofenac (Df), are commonly prescribed for LBP symptoms, with oral, intravenous or percutaneous (in some cases, epidural) administration presenting moderate success. If administered through intradiscal injection and using a long-term release delivery system, several drawbacks of these drugs could possibly be overcome, increasing their success rate. The aim of this work was to evaluate, *in vivo*, the effect of previously developed chitosan/poly- γ -glutamic acid nanocomplexes (NCs) for delivery of Df.

In this study, soluble Df and Df-NCs were injected into a rat IVD lesion model with hernia formation, 24 hours after injury. NCs and Df-NCs were prepared by coacervation method, and all solutions were injected at pH 5.0. NCs and Df-NCs were obtained with sizes of 328±6 and 310±16 nm and poly dispersion indexes of 0.33±0.04 and 0.30±0.01, respectively. At 2 weeks after injection treatment, animals were sacrificed. NCs vehicle, NCs, Df and Df-NCs did not promote an increase in the percentage of disc height index nor of NP-like matrix production, namely proteoglycans, when compared to the Injury group. NCs injection alone up-regulated *IL-1β*, *IL-6* and *COX-2* by NP cells, compared to Injury. This up-regulation was statistically significant for *COX-2* (p<0.01). It was observed great loss of healthy NP structure and composition, namely in NC and Df-NCs conditions. In all injured animals, NP extrusion and hernia formation occurred. Df intradiscal injection seemed to slightly contribute to the decrease of hernia volume from about 0.12±0.05 to 0.04±0.03 mm³ (p=0.08). Nonetheless, there were no significant changes regarding the percentage of CD68+ cells macrophages infiltration into the hernias formed in the animal undergoing different treatments.

Overall, this study focused on the modulation of local inflammatory response to promote IVD regeneration by native IVD cells. A Df intradiscal-delivery approach might promote hernia regression and contribute, in the future, to pain reduction, as well as reduction of the number of patients undergoing hernia removal surgery.

1. Introduction

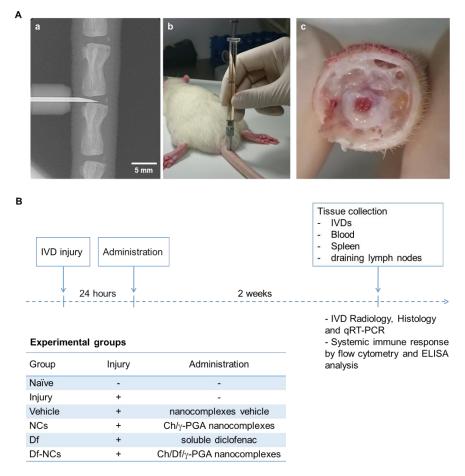
The degenerative disc disease is perceived as the primary cause of chronic low back pain (LBP).^{1,2} In the clinic, the progression of disc dehydration and loss of the disc height is mainly diagnosed by imaging modalities, namely magnetic resonance imaging (MRI).^{3,4} The decrease of the water signal inside the IVD is considered as an indirect sign of alterations in the composition and structure of the disc structure and tissue, and therefore of degeneration.4 Although not always linked with IVD rupture, LBP is very frequently caused by NP extrusion and herniation-induced pressure on over-sensitized nerve roots, that are stimulated by mechanical cues and by molecules arising from the inflammatory cascade.⁵⁻⁷ Structural damage of the outer annulus provides then an opportunity for blood vessels and nerves to invade the disc.8 Non-surgical interventions may vary between active physical therapy, education/counseling with home exercise and pain medication.^{5, 9} Up to date, most treatments are transient in time, leading to neurological alterations, affecting patients' mobility, and potentially altering spine biomechanics leading to degeneration of adjacent discs. 10, 11 The regenerative therapies proposed overtime have been described to act in early stages of disease's development, and to look for less invasive, long term effective and safe approaches. 12-14 More integrated strategies that could act on different targets of the discogenic disease, such as the inflammatory process, would probably promote native tissue generation and decrease of LBP.

The local delivery of bioactive molecules, such as non-steroidal anti-inflammatory drugs (NSADs), is an interesting approach to reduce the drugs dosage and increase targeting, potentially overcoming the risk of side effects, namely in the gastrointestinal tract. Chitosan (Ch)/poly-(γ -glutamic acid) (γ -PGA) nanocarriers (NCs) demonstrated a potential use as effective anti-inflammatory drug delivery system, *in vitro*. Promising results were also observed with Df-NCs intradiscal administration in bovine tail IVD punches, cultured under pro-inflammatory/degenerative conditions.

Several *in vivo* models of IVD degeneration (and inflammation) are described in the literature, being commonly used murine tail models of mechanical injury, namely performed by needle puncture, as reviewed by others.¹⁷⁻¹⁹

The aim of this work was to evaluate the intradiscal injection of the NCs-based anti-inflammatory drug delivery system *in vivo*, with the final goal to locally control the inflammatory response in degenerated IVD. In this context, the anti-inflammatory NCs were tested in an IVD herniation and degeneration model by rat caudal needle puncture, using a 21G needle, previously developed and validated in the group.^{20, 21} This model leads to an increase in cell death in the IVD, hernia formation and its infiltration by CD68+ macrophages.²¹ The effect of

the injected Df-NCs in the control of inflammation and in IVD matrix remodeling was here addressed 2 weeks post-injury.


2. Materials and Methods

2.1. Nanocomplexes preparation, incorporation of diclofenac and characterization

 γ -PGA with molecular weight (Mw) of 10-50 kDa and purity level of 99.5% was produced by Bacillus subtilis as described by Pereira et al.22 Purified Ch (France-Chitine) with degree of acetylation (DA) of approximately 10.4% and Mw of 324±27 kDa, as determined by Antunes et al., 23 was used. NCs and Df-NCs were assembled by co-acervation as previously described. 15 A solution of 0.05 M Tris-HCl buffer containing 0.15 M NaCl was used as vehicle to prepare the NCs solution. Briefly, γ-PGA solution (0.2 mg/mL) was added dropwise to Ch solution (0.2 mg/mL) at a molar ratio of 1:1.5 (mol Ch:mol γ-PGA). Df sodium salt (Sigma-Aldrich) solution (10 mg/mL in distilled water) was incorporated in Ch/γ-PGA nanocomplexes at a molar ratio of 2:0.35:1.5 (mol Ch:mol Df:mol γ-PGA). 15 Before injection in the IVD, NCs and Df-NCs solutions were centrifuged (15000 rpm, RT) for 30 min.²⁴ The pellets were concentrated 50 times in the vehicle. A soluble Df solution of 2.975 mg/mL was also prepared. All solutions' pH was adjusted to 5.0. Concentrated NCs and Df-NCs were characterized concerning their size, polydispersion index (PdI) and surface electrical charge (ζ potential), determined using a Zetasizer Nano ZS (Malvern Instruments), as described elsewhere. 24 The calculation used as dispersants the original solutions of γ-PGA (γ-PGA at 0.2 mg/mL in 0.05 M Tris-HCl buffer with 0.15 M NaCl) and Ch (0.2 mg/mL in 0.2 M AcOH).

2.2. Animal experimentation

Male Wistar Han (Crl:WI/Han) rats (36 rats, n=6 per experimental group) with 2 months of age were used. Experiments were carried out at *Instituto de Investigação e Inovação em Saúde* (i3S) animal house, in accordance with European Legislation on Animal Experimentation through the Directive 2010/63/UE and approved by the Institute's Animal Ethics Committee and *Direcção Geral de Alimentação e Veterinária* through the license no. 3773/2015-02-09. The IVD lesion was performed by caudal needle puncture, as previously described by Cunha et al.²¹ The animals were anaesthetized by isoflurane inhalation and placed in prone position and the tail skin was disinfected with ethanol prior to every procedure. To induce the lesion, a percutaneous puncture using a 21G needle was done in the coccygeal IVDs Co5/6, Co6/7 and Co7/8 (Fig. 1A, image a). Radiography was performed for IVDs identification.

Fig. 1. Rat model of IVD herniation for intradiscal therapy. A) Experimental procedure, needle puncture into a rat coccygeal intervertebral disc, as imaged by X-ray radiography (scale bar, 5 mm) (a), nanocomplexes injection into the IVD with Hamilton syringe (b) and rat tail cross section, showing representative lesioned IVD and adjacent tissue (c). B) Experimental timeline.

After 24 hours, lesioned animals were treated by intradiscal administration of 10 μ L of vehicle, NCs alone, soluble Df and Df-NCs, using a 33G needle coupled to a microsyringe (Hamilton, image b). Naïve (healthy and non-injured) and only lesioned animals were kept as controls. Two weeks later, the animals were sacrificed for tissue collection (image c depicts a transversal cut of the rat tail, exposing the IVD and surrounding tissues). The experimental scheme and the different outputs analyzed are represented in Fig. 1B.

A pilot study with 3 animals was performed to determine the timepoint of the acute phase of the inflammatory response post-injury for the treatments' administration and to observe the Df-NCs distribution in the tissue after injection. IVD lesion was induced as previously described and the animals were followed over 50 hours (Supplementary Data).

2.3. Determination of the disc height index

Digital radiographs were acquired by the Owandy-RX radiology system equipped with an Opteo digital sensor (Owandy Radiology) and processed with QuickVision software. The

percentage of the disc height index (% DHI) was calculated by the DHI ratio between post-injury and pre-injury (% DHI = $DHI_{post-injury}$ / $DHI_{pre-injury}$ x 100), using ImageJ 1.43u software (Wayne Rasband) for radiograph measurements, as previously described.²¹

2.4. IVD RNA isolation and quantitative real-time reverse transcription polymerase chain reaction

Total RNA was isolated from the NP using TRIzol reagent (Ambion) and quantified by Nanodrop spectrophotometry (ND-1000, Thermo Fisher). RNA quality was assessed by means of RNA ratio. Samples were treated with DNase (Turbo DNA-free Kit, Thermo Fisher). Complementary DNA (cDNA) was obtained through the high-capacity cDNA reverse transcription kit, per the manufacturer's instructions (Applied Biosystems).

Gene expression levels were determined by qRT-PCR conducted on iQ5 Real-Time PCR Detection System (Bio-Rad), using TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assays (Applied Biosystems) for interleukin (IL)-1 β (Rn00580432_m1), IL-6 (Rn00561420_m1), cyclooxygenase (COX)-2 (Rn01483828_m1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Rn99999916_s1), as a reference gene. Experiments were performed in duplicate and a quantification cycle (Cq) 35 cutoff was used. Relative expression levels were calculated using the Cq method (Δ Ct = Ct(gene of interest) – Ct(GAPDH)), according to published guidelines.²⁵

2.5. IVD collection and histological analysis

Target IVDs with adjacent vertebrae were collected 2 weeks' post-injury, fixed in 10% neutral buffered formalin (VWR) for 1 week at room temperature. Tissue was decalcified in EDTA-glycerol solution, processed for paraffin embedding and sequential transversal 5 µm sections of the IVD were collected. Sections were deparaffinized in xylene solution and rehydrated through a graded series of ethanol. Alcian blue/Picrosirius red and Safranin-O/Fast green stainings were performed throughout the IVD length to identify proteoglycans and collagen tissue distribution.

2.5.1. Alcian Blue/Picrosirius Red staining

A Picrosirius red solution was prepared by dilution of 3g of Sirius red (Sigma) in 500 mL of picric acid (Sigma) saturated aqueous solution. After rehydration, the sections were then incubated in Weigert's Iron Hematoxylin for 8 minutes and washed in tap water. Afterwards, the sections were incubated in Picrosirius red solution for 1 hour and then washed twice in 1% acetic acid. Afterwards, the samples were air-dried, dehydrated and mounted with DPX (VWR) and analyzed in a Zeiss Axiovert200 inverted microscope (Zeiss). Alcian blue stains the

proteoglycans and Sirius red stains collagen type I and III. The hernia area was determined, in each slide, by delimitating the proteoglycans region extruded through the AF. The hernia volume was calculated by the sum of the areas of each individual section throughout the IVD, as previously described.²¹

2.5.2. Safranin-O/Fast Green staining

For Safranin O/Fast Green staining, dehydrated sections were incubated in Gill's Hematoxylin (Sigma-Aldrich) for 5 minutes and washed in distilled water. Afterwards, the samples were immersed in 0.4% Fast Green (Sigma) solution during 5 minutes as a counterstain, and washed twice in 1% acetic acid. Sections were then immersed for 30 minutes in 1.5% Safranin O (Sigma-Aldrich) solution, which stains orange the proteoglycans. After hydration, slides were mounted and imaged as described in 2.5.1.

2.6. Detection of CD68+ cells

CD68⁺ cells distribution in the IVD was analyzed by immunohistochemistry (IHC), using the Novolink[™] Polymer Detection Kit (Leica Biosystems) and following the manufacturer's instructions. Antigen retrieval was performed in paraffin sections through incubation in near-boiling point 10 mmol/L sodium citrate buffer, pH 6.0, for 1 minute, followed by incubation with 20 µg/mL proteinase K (Sigma-Aldrich) solution for 15 minutes at 37°C. Sections were incubated with anti-CD68 (clone ED1, 1:100 dilution, Bio-Rad Laboratories) primary antibody, overnight at 4°C.

2.7. Statistical analysis

Results are shown in dot plots, and discussed as average ± standard deviation. Normality was assessed by D'Agostino-Pearson omnibus normality test, after which statistical analysis was performed with non-parametric Kruskal-Wallis test with GraphPad v6.01 for Windows. Statistical significance was set at *p<0.05.

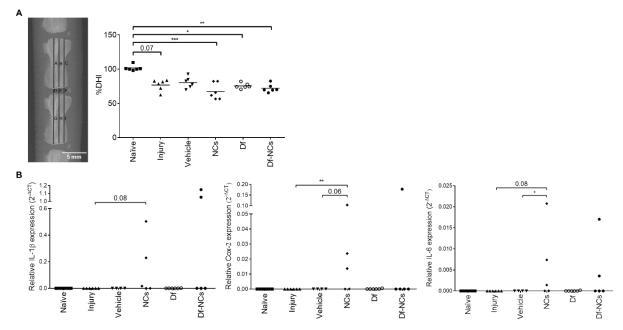
3. Results

3.1. Characterization of the nanocomplexes used for intradiscal injection

Df was incorporated in Ch/ γ -PGA NCs as previously reported by Gonçalves et al.,¹⁵ at a molar ratio of 2.0:0.35:1.5 (Ch:Df: γ -PGA) and pH 5.0. The molar ratio, polymer concentration, pH of interaction, Df concentration and components order of addition were previously optimized.¹⁵ About 75% of the initial amount of Df (0.06 mg/mL) was incorporated in Ch/Df/ γ -PGA NCs, 1 hour after preparation.¹⁵ To concentrate Df-NCs, in order to inject the maximum amount of NCs

and Df in the small animal model, NCs were concentrated 50 times by centrifugation. The features of concentrated NCs were then analyzed by comparison with the ones previously used in *ex vivo* experiments with bovine tail NP punches (NCs dil. and Df-NCs dil.). ¹⁶ The particle size (nm) and polydispersion index (PdI) observed for NCs, NCs dil., Df-NCs and Df-NCs dil. are summarized in Table 1. The ζ potential (mV) of NCs and Df-NCs was also analyzed. The particle size distribution plots obtained in DLS analysis are shown in supplementary Figure S1.

Table 1. Characterization of NCs and Df-NCs.


	Particle size (nm)	Polydispersion index (PdI)	ζ potential (mV)
NCs dil.	194±5	0.27±0.02	-
NCs	328±6	0.33±0.04	15.30±1.15
Df-NCs dil.	203±4	0.26±0.02	-
Df-NCs	310±16	0.30±0.01	19.2±1.39

With the concentration by centrifugation, particle size seemed to be increased about 70% and 53% for NCs and Df-NCs, respectively. This was observed also for the PdI, which seemed to increase about 22% for NCs and approximately 15% for Df-NCs, when compared to diluted solutions. The concentrated particles remained positively charged, 15.30±1.15 mV (NCs) and 19.2±1.39 mV (Df-NCs), similarly to the values previously observed for diluted NCs (20.8±1.6 mV) and Df-NCs (20.5±1.9 mV).¹⁶

3.2. Disc height index and local profile of pro-inflammatory markers after injury and intradiscal treatment

The intradiscal injection of this anti-inflammatory nanotechnology-based therapy was then tested in a rat caudal herniation and degeneration IVD model, previously developed by our team.²¹ As previously mentioned, the IVD injury was induced by needle puncture into the coccygeal discs 5/6, 6/7 and 7/8 and, after 24 hours, the intradiscal treatments were administered. The effect of intradiscal injection of NCs alone, soluble Df and Df-NCs was directly compared, 2 weeks after injury. Naïve, injury alone and NCs vehicle alone were analyzed in parallel as control groups. The timepoint of NCs administration was determined in a pilot experiment, where 2 out of 3 animals showed high levels of systemic IL-1β and PGE₂ (see Supplementary Fig. S2), suggesting this was a peak in the acute inflammatory response upon injury. At 2 weeks' post-injury, tissue samples were analyzed. This time point was previously selected to analyze IVD herniation, since the hernia formed is reduced from 2 to 6 weeks' post-injury.²¹

IVDs were radiographed before and 2 weeks after injury. The percentage of DHI was calculated as a value inversely proportional to the degree of disc degeneration (Fig. 2A). It was observed a slight decrease of percentage of DHI in the Injury group, compared to Naïve animals (from 101±4% to 77±8%, p=0.07). Moreover, when compared to Naïve, a statistically significant decrease of percentage of DHI was observed in all the groups: NCs (68±12%, p<0.001), Df (75±4%, p<0.05) and Df-NCs (72±6%, p<0.01). When comparing Injury alone with the treated groups, no differences were observed between them.

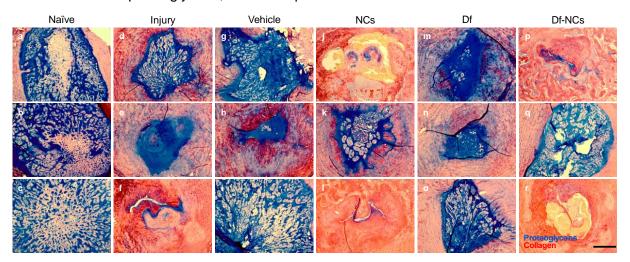
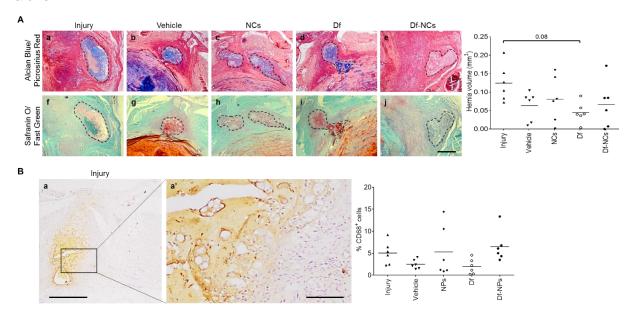


Fig. 2. Local effect of different injectable treatments in the inflammatory response and ECM remodeling of degenerated/herniated IVD, 2 weeks after injury. A) Representative digital radiograph and percentage of disc height index (% DHI). DHI was calculated by DHI=2x(D+E+F)/(A+B+C+G+H+I). %DHI=DHI_{post-injury}/DHI_{pre-injury}x100. B) Relative mRNA expression of *IL-1β*, *COX-2* and *IL-6* of IVD cells. mRNA levels were normalized to *GAPDH* control gene. %DHI and mRNA expression results are presented as dot plots (n=4-6). *p<0.05; **p<0.01; ***p<0.001

The local inflammatory response in IVD samples was evaluated by gene expression analysis of pro-inflammatory markers, namely IL- 1β , COX-2 and IL-6, 2 weeks after injury (Fig. 2B). No expression of these pro-inflammatory markers was observed for the Naïve, Injury, Vehicle and Df groups. Whereas, an up-regulation of IL- 1β (p=0.08), COX-2 (p<0.01) and IL-6 (p=0.08) mRNA expression was observed for the NCs group, when compared to the Injury group. The up-regulation of COX-2 (p=0.06) and IL-6 (p<0.05) in NCs group was also observed when compared to the vehicle group. In addition, one to two animals of Df-NCs-treated group also expressed higher IL- 1β , COX-2 and IL-6 gene expression comparatively to others of the same group. The results suggest that both NCs and Df-NCs caused an increase in the local inflammatory response in some of the injected animals (max. 3 out of 6 animals). Nevertheless, the relative expression ($2^{-\Delta Ct}$) of the pro-inflammatory markers is low: under 1.2 (for IL- 1β in Df-NCs), 0.20 (for COX-2 in Df-NCs) and 0.021 (for IL-6 in NCs group).

3.3. IVD ECM composition analysis

Histological analysis of the IVD ECM composition was also performed. In Fig. 3 it is depicted the NP, based on the blue staining of proteoglycans in the center of the IVD, for 3 representative animals from all the conditions tested. When analyzing qualitatively the proteoglycans content (stained in blue), there seemed to have occurred alterations in the tissue morphology and a decrease of the proteoglycans content in the NP, for all the stimulated conditions, in contrast with the Naïve animals, with exception of two animals in the Vehicle group (Fig. 3, the NP section of one of the animals is shown in image i). Of notice, in the Injury group one of the animals completely lost NP integrity and proteoglycans content, and in both NCs and Df-NCs conditions, four and five animals, respectively, also were absent of a healthy NP structure with proteoglycans, when compared to NP sections of Naïve animals.


Fig. 3. Analysis performed at the IVD NP, 2 weeks after lesion. A) Alcian blue and picrosirius red staining of one IVD from three different animals, for each condition tested (n=6). Alcian blue stains proteoglycans in blue and sirius red stains collagen type I and III in red (scale bar, 500 μ m).

3.4. Hernia size and immune cell infiltration

The *in vivo* model used in this study consists in a needle puncture that leads to hernia formation.²¹ In this study the effect of intradiscal anti-inflammatory treatments on formation of herniated tissue was specifically addressed. The preliminary microscopic evaluation of consecutive stained sections for Alcian blue/Picrosirius red (Fig. 4A: a-e) and Safranin O/Fast green (Fig. 4A: f-j) allowed an overview of tissue morphological changes, namely NP leakage and hernia formation (delimited in white dashed lines). A pronounced hernia was formed in injured animals, with proteoglycan-rich tissue extruded, in blue in the Alcian Blue/Pricosirius Red staining, and orange in the Safranin O/Fast Green staining. In most cases, the tissue was extruded to the region between dorsal segmental muscles.

Quantification of the hernia volume (mm³) indicated a higher tissue herniation in injured animals that seems to be slightly reduced upon Df intradiscal injection (p=0.08, Fig. 4A).

Furthermore, a detailed assessment of macrophages infiltration in the hernia was performed and it is shown in Fig. 4B for a representative lesioned animal (a; border area magnification: a'). After delimitation of the hernia area, using ImageJ software, the percentage of CD68+ cells was calculated (as described in Supplementary Materials and Methods). Macrophages were present in the hernias of all injured groups. The % of CD68+ cells present in the hernia seem to follow the same trend as in the determination of the hernia volume, for all the IVD samples analyzed (i.e. bigger hernias may have a higher % of CD68+ cells within). Nonetheless, no statically significant differences were found, when comparing the treated groups with the Injury alone.

Fig. 4. Hernia formation analysis, 2 weeks after lesion. A) Herniation in the lesioned discs, showing Alcian Blue/Picrosirius Red and Safranin O/Fast Green stainings (hernia delimitated by dashed line; scale bar, 500 μm) and hernia volume (mm³) quantification. B) Macrophages identification within the hernia by CD68 immunohistochemistry (positive cells are shown in brown). Respective image of the hernia extruded out of the IVD of an animal from the Injury group (a; scale bar, 500 μm) and magnification (a'; scale bar, 100 μm). Quantification of % of CD68+ cells within the hernia. Results are presented as dot plots (n=6).

4. Discussion

An intradiscal injection treatment with Df was previously evaluated in an *ex vivo* culture of bovine tail IVD punches, under pro-inflammatory/degenerative conditions. ^{16, 26} Df administration induced, 2 days after intradiscal injection in the degenerative/pro-inflammatory organ culture model, a significant decrease in PGE₂ production, and down-regulation of *IL-6*, *IL-8* and *MMP1* expression by IVD cells, while *ACAN* expression was up-regulated; ²⁶ however, without changes at protein level, after 8 days of Df treatment. ¹⁶ The Df-NCs demonstrated a potential use as effective anti-inflammatory drug delivery system, *in vitro*. ¹⁵ In the work of Gonçalves et al., the Df was incorporated at a maximum concentration of 0.05 mg/mL in the

NCs. After adding Df-NCs to macrophages' culture medium at a concentration of 10% v/v, the particles were shown to be nontoxic to the cells. Moreover, the Df released could inhibit or revert PGE₂ production by lipopolysaccharide activated macrophages.¹⁵ Promising results were also observed with Df-NCs intradiscal administration in the *ex vivo* culture of bovine tail IVD punches, under pro-inflammatory/degenerative conditions.¹⁶ Df-NCs down-regulated the expression of pro-inflammatory markers by IVD cells, 2 days after treatment.¹⁶ The analysis at protein level revealed that 8 days after administration, only Df-NCs significantly promoted COL2 and ACAN production by the native IVD cells, when compared to pro-inflammatory/degenerative conditions alone.¹⁶

Given the promising results, this therapeutic approach was here investigated *in vivo*, in the IVD needle puncture injury model. 20,21 In previous experiments using this model, 24 hours after injury was the timepoint selected for systemic delivery of mesenchymal stem/stromal cells (MSCs), and IVD tissue analysis was also performed 2 weeks after intradiscal injection. 20 In this model, it was formerly seen spontaneous hernia regression 2 to 6 weeks' post injury. 21 Moreover, 2 weeks after intravenous administration of MSCs, it was observed in the transplanted local down-regulation of glucose transporter (GLUT)-1, a target of the hypoxia-inducible transcription factor (HIF)-1 α , and significantly less NP tissue herniation, with higher number of Pax5+ B lymphocytes. 20

For this work, give the differences regarding the NP and IVD volumes in the rat tail (about 3 to 8 mm³) and bovine tail (1 to 4 cm³) (O'Connell et al. 2007), the volume to be injected was adapted. Therefore, the particles were concentrated 50 times and re-suspended in 10 µL of injection vehicle. Also, Df soluble was injected at a concentration 50 times higher (2.98 mg/mL) than the one used in the ex vivo model. NCs features were monitored and, although NCs and Df-NCs remained stable at pH 5.0, their size and PdI increased after centrifugation and concentration, suggesting some particle aggregation, as shown in the tissue, after injection (Supplementary Figure S2). In a previous work from our group, Antunes et al. also concentrated Ch/γ-PGA NCs about 10 times,²⁴ obtaining particles with size and PdI about 40 and 25% higher, respectively, than the diluted NCs used in the previous work from our team. 16 Although the dimensions of the NCs used in the present work were higher (about 70%, compared to NCs dil.), the PdI was similar (approximately 22% higher than the one from NCs dil.). The 10 times concentrated NCs, once injected at acidic pH in a nucleotomized IVD model from bovine origin, significantly reduced cell metabolic activity and DNA content of the NP.²⁴ In this study, due to increased size and PdI of the NCs, we hypothesize that lower internalization of NCs and Df-NCs by the rat IVD cells might have occurred, contrasting with the previous ex vivo results, in which internalization was about 92%. 16 Although Ch/γ-PGA NCs internalization may mainly occur via non-specific charge-mediated interactions, 27 these NCs are able to infiltrate cell-cell junctions.^{28, 29} Additionally, Ch/DNA/γ-PGA were shown to be

internalized via macropinocytosis and caveolae-mediated pathway,³⁰ and γ -PGA-coated Ch/DNA complexes via a specific γ -glutamyltransferase (GGT)-mediated pathway.³¹

The use of Ch/ γ -PGA NCs as drug delivery systems rely on pH changes, that allow the disruption of electrostatic interaction between both polymers and the molecule/drug incorporated, in order to release it. The pH of a healthy IVD is reported to be about 7.1, 32 and commonly drops to 6.8 up to 6.5, from mild to severe degeneration. 33 Given this, we are currently performing experiments to better understand if the pH of the rat IVD after injury also drops to the values described in the literature. Moreover, we are also performing experiments to determine the Df release kinetics from the NCs in solutions at different pH values, ranging namely from 6.5 to 7.1. We hypothesize that the much higher ratio NCs volume/IVD volume in the rat (10 μ L/3 mm 3 of NP, representing over a 2 times higher injection volume than the NP volume) than in the bovine model (500 μ L/1 cm 3 of NP, representing half of the theoretical bovine NP volume), may cause an increase in the pH of the IVD, hindering Df release.

In this model, 2 weeks after MSCs systemic transplantation, DHI and histological grading score seemed to indicate less degeneration; however, without alterations at the ECM level.²⁰ In the present work, it was seen a decrease in DHI, 2 weeks after needle puncture injury, as well as greater loss of proteoglycans after injury, and of integrity of NP-AF border, with no recovery after the application of the different treatments. Qualitative analysis might indicate formation of fibrocartilaginous matrix, as pointed out by others.³⁴ Matta et al. observed 6 weeks after a single intradiscal injection of recombinant transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) proteins in a rat-tail IVD model of needle puncture, restored notochordal cell content in NP, increase expression of ACAN, COL2, Brachyury and octamer-binding transcription factor 4, compared to injured discs, or injected with PBS.³⁴ In this last model, the active form of IL-1β was not observed until between 8 to 10 weeks, timepoints at which was also observed an increased expression of the inflammatory mediator, COX-2 and the ECM degrading enzymes, metalloproteinases (MMPs)-3 and -13.³⁴

In the present work, the inflammatory markers (IL- 1β , COX2 and IL-6) mRNA expression was very low, possibly indicating that the resolution of inflammation might be occurring. In a rat IVD degeneration model induced by prolonged upright posture, COX2 and IL- 1β were up-regulated about 30- and over 90-fold, respectively, in degenerated IVDs, compare to naïve animals, which were significantly decreased after a 30-days treatment with intraperitoneal injections of a NSAD, meloxicam. On the other hand, in a rat tail torsion loading study, it was observed an overall down-regulation of IL- 1β , and no effect on IL-6 or INF- α expression, for the different conditions tested, compared with sham group, 24 hours following the applied loading. In future experiments, it would be interesting to analyze the acute inflammatory response at an earlier timepoint (for instance, up to 72 hours). Cuellar and colleagues evaluated up to 24 hours the protein levels of pro- and anti-inflammatory cytokines in the epidural space of a rat model

of non-compressive disc herniation-induced inflammation.³⁷ They detected the highest production of IL-6 at 3 hours after inflammation induction, of IL-1β at 6 to 24 hours and of TNF-α at 24 hours.³⁷ Moreover, a study by MacLean et al. focusing the changes in gene expression due to dynamic compression in caudal motion segments *in vivo* demonstrated that mRNA levels of most catabolic and anabolic genes reached maximum levels 24 hours following mechanical stimulation (but, some had maximum levels 8 and 72 hours following loading).³⁸ Nonetheless, to evaluate ECM production at protein level, the animal experiments should be kept for longer time periods of, for instance, 4 to 10 weeks, as suggested by other works *in vivo*, focusing on intradiscal injection of factors to promote IVD ECM production.^{34, 39, 40} In this study, intradiscal Df injection seemed to decrease the hernia volume. Nonetheless, it is important to highlight that a single intradiscal injection of a drug with short biological half-life,

important to highlight that a single intradiscal injection of a drug with short biological half-life, as Df, due to a very rapid metabolism,⁴¹ may not be enough to promote ECM components production by native IVD cells. Zhang et al. evaluated the pharmacokinetic-pharmacodynamic modeling of Df in normal and Freund's complete adjuvant-induced arthritic male Sprague-Dawley rats.⁴² In their model, Df was administered to arthritic rats intravenously (10 mg/kg), in the tail vein, and their results showed a decrease in plasma levels of PGE₂, in both normal and arthritic rats, up to 360 min after dosing.⁴² Moreover, the inhibitory effect on PGE₂ levels was proportional to the Df concentration in plasma.⁴²

Furthermore, the inflammatory process in degenerated/herniated IVD is complex and is frequently reported that is linked to the presence of macrophages. An antigen-specific immune response is widely considered in regression of herniated disc where lymphocytes exist. We consider that an initial M1 pro-inflammatory macrophage response might be important to promote hernia tissue phagocytosis in earlier time points, but a polarization of M1 to M2 macrophages might be key to promote IVD regeneration to avoid chronic inflammation. Therefore, it would be also of interest to prepare NCs using Ch with a 5% DA, which showed to induce a benign M2 anti-inflammatory macrophage response, compared to 15% DA Ch, or incorporate pro-resolution mediators, such as inflammatory resolution lipoxin A4 (LxA4) and resolvin D1 (RvD1), to modulate the inflammatory response to chitosan, as suggested in the work by Vasconcelos et al.

Rat models of mechanical injury, namely coccygeal IVD needle puncture (with 18 to 21G needle, to cause significant tissue damage), are frequently used.^{21, 51-53} These present a cost-effectiveness, when compared to large animals¹⁹ and have to follow less complex requirements for experimental approval, when compared to human trials.^{18, 54} Nonetheless, the model used might present limitations regarding the small dimensions of the coccygeal IVDs, with IVD and NP volumes of approximately 8 and 3.1 mm³, respectively.⁵⁵ Therefore, it presented also limitations in the scaling of specific parameters,¹⁸ such as the injection of relevant volumes,⁵⁶ and the translation of the NCs and Df concentrations with success in the

ex vivo organ culture. Therefore, it is important to perform more experiments to better understand the activity of the 50 times concentrated NCs and the Df release kinetics, for the interpretation of the present experimental findings.

Overall, this study focused on the modulation of local inflammatory response to promote IVD regeneration by native cells. Df intradiscal injection seemed to contribute to the decrease of hernia volume. However, due to the need of a needle puncture, the drug administration cannot be a repeated process. So, if combined with an optimized, biocompatible drug delivery system, to better promote a controlled delivery of Df overtime, this might contribute, in the future, to hernia retraction, reducing the number of patients undergoing discectomy surgery.

Disclosure

The authors declare no competing financial interests.

Acknowledgements

This work was financed by European Union funds through "Projetos Estruturados de I&D&I - Norte-01-0145-FEDER-000012, Portugal 2020 - FEDER" and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of Raquel Goncalves' Exploratory Project of FCT Investigator (IF/00638/2014). Carla Cunha acknowledges FCT for her PostDoc grant (SFRH/BDP/87071/2012), Graciosa Q. Teixeira and Catarina L. Pereira for their PhD grants (SFRH/BD/88429/2012 and SFRH/BD/85779/2012, respectively), and Joana R. Ferreira for her research grant (PD/BI/128357/2017).

References

- 1. Iatridis JC, Michalek AJ, Purmessur D, Korecki CL. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis. Cell Mol Bioeng 2009, 2(3):437-447.
- 2. Galbusera F, van Rijsbergen M, Ito K, Huyghe JM, Brayda-Bruno M, Wilke HJ. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur Spine J 2014, 23 Suppl 3:S324-332.
- Zhou X, Chen L, Grad S, Alini M, Pan H, Yang D, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration. J Tissue Eng Regen Med 2017. doi: 10.1002/term.2261.
- 4. Bostelmann R, Bostelmann T, Nasaca A, Steiger HJ, Zaucke F, Schleich C. Biochemical validity of imaging techniques (X-ray, MRI, and dGEMRIC) in degenerative disc disease of the human cervical spine-an in vivo study. Spine J 2017, 17(2):196-202.

- 5. Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 2008, 8(1):18-44.
- 6. Adams MA, Lama P, Zehra U, Dolan P. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat 2015, 28(2):195-204.
- 7. Cavanaugh JM. Neural mechanisms of lumbar pain. Spine (Phila Pa 1976) 1995, 20(16):1804-1809.
- 8. Bertolo A, Thiede T, Aebli N, Baur M, Ferguson SJ, Stoyanov JV. Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro. Eur Spine J 2011, 20(4):592-603.
- 9. Shen FH, Samartzis D, Andersson GB. Nonsurgical management of acute and chronic low back pain. J Am Acad Orthop Surg 2006, 14(8):477-487.
- Natarajan RN, Andersson GB. Lumbar disc degeneration is an equally important risk factor as lumbar fusion for causing adjacent segment disc disease. J Orthop Res 2017, 35(1):123-130.
- 11. Lund T, Oxland TR. Adjacent level disk disease is it really a fusion disease? Orthop Clin North Am 2011, 42(4):529-541.
- 12. Molinos M, Almeida CR, Caldeira J, Cunha C, Goncalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015, 12(104):20141191.
- 13. Sakai D, Andersson GB. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol 2015, 11(4):243-256.
- 14. Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016, 99:69-80.
- Gonçalves RM, Pereira ACL, Pereira IO, Oliveira MJ, Barbosa MA. Macrophage response to Chitosan/Poly-(γ-Glutamic acid) nanoparticles carrying an anti-inflammatory drug. J Mat Sci Mat Med 2015, 26(4):167.
- 16. Teixeira GQ, Leite Pereira C, Castro F, Ferreira JR, Gomez-Lazaro M, Aguiar P, et al. Anti-inflammatory Chitosan/Poly-gamma-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomater. 2016, 42:168-79.
- 17. Elliott DM, Yerramalli CS, Beckstein JC, Boxberger JI, Johannessen W, Vresilovic EJ The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine (Phila Pa 1976) 2008, 33(6):588-596.
- 18. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, et al. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 2008, 17(1):2-19.

- Daly C, Ghosh P, Jenkin G, Oehme D, Goldschlager T. A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic. BioMed Res Int 2016, 2016:5952165.
- 20. Cunha C, Almeida CR, Almeida MI, Silva AM, Molinos M, Lamas S, et al. Systemic delivery of bone marrow mesenchymal stem cells for in situ intervertebral disc regeneration. Stem Cells Transl Med 2017, 6(3):1029-1039.
- 21. Cunha C, Lamas S, Goncalves RM, Barbosa MA. Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model. J Orthop Res 2017, 35(2):258-268.
- 22. Pereira CL, Antunes JC, Gonçalves RM, Ferreira-da-Silva F, Barbosa MA. Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. J Mater Sci Mater Med 2012, 23(7):1583-1591.
- 26. Antunes J, Pereira CL, Molinos M, Ferreira-da-Silva F, Dessì M, Gloria A, et al. Layer-by-layer self-assembly of Chitosan and Poly(γ-glutamic acid) into polyelectrolyte complexes. Biomacromolecules 2011, 12:4183-4195.
- 24. Antunes JC, Pereira CL, Teixeira GQ, Silva RV, Caldeira J, Grad S, et al. Poly(gamma-glutamic acid) and poly(gamma-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. J Mater Sci Mater Med 2017, 28(1):6.
- 25. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55(4):611-22.
- 26. Teixeira GQ, Boldt A, Nagl I, Leite Pereira C, Benz K, Wilke HJ, et al. A degenerative/ proinflammatory intervertebral disc organ culture: an ex vivo model for anti-inflammatory drug and cell therapy. Tissue Eng Part C Methods 2016, 22(1):8-19.
- 27. Peng SF, Yang MJ, Su CJ, Chen HL, Lee PW, Wei MC, et al. Effects of incorporation of poly(g-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 2009, 30:1797–1808.
- 28. Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, et al. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules 2010, 11(1):133-142.
- 29. Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 2005, 6(2):1104-1112.
- 30. Peng SF, Tseng MT, Ho YC, Wei MC, Liao ZX, Sung HW. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials 2011, 32(1):239-248.

- 31. Liao ZX, Peng SF, Ho YC, Mi FL, Maiti B, Sung HW.Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials 2012, 33(11):3306-3315.
- 32. Ichimura K, Tsuji H, Matsui H, Makiyama N. Cell culture of the intervertebral disc of rats: factors influencing culture, proteoglycan, collagen, and deoxyribonucleic acid synthesis. J Spinal Disord 1991, 4(4):428-436.
- 33. Kitano T, Zerwekh JE, Usui Y, Edwards ML, Flicker PL, Mooney V. Biochemical changes associated with the symptomatic human intervertebral disk. Clin Orthop Relat Res 1993, (293):372-377.
- 34. Matta A, Karim MZ, Isenman DE, Erwin WM. Molecular therapy for degenerative disc disease: clues from secretome analysis of the notochordal cell-rich nucleus pulposus. Sci Rep 2017, 7:45623.
- 35. Liang QQ, Ding DF, Xi ZJ, Chen Y, Li CG, Liu SF, et al. Protective effect of ligustrazine on lumbar intervertebral disc degeneration of rats induced by prolonged upright posture. Evid Based Complement Alternat Med 2014, 2014:508461.
- 36. Barbir A, Godburn KE, Michalek AJ, Lai A, Monsey RD, Iatridis JC. Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Spine (Phila Pa 1976) 2011, 36(8):607-614.
- 37. Cuellar JM, Borges PM, Cuellar VG, Yoo A, Scuderi GJ, Yeomans DC. Cytokine expression in the epidural space: a model of noncompressive disc herniation-induced inflammation. Spine (Phila Pa 1976) 2013, 38(1):17-23.
- 38. MacLean JJ, Roughley PJ, Monsey RD, Alini M, latridis JC. In vivo intervertebral disc remodeling: kinetics of mRNA expression in response to a single loading event. J Orthop Res 2008, 26(5):579-588.
- 39. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, et al. Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976) 2005, 30(1):25-31; discussion 31-22.
- 40. Walsh AJ, Bradford DS, Lotz JC. In vivo growth factor treatment of degenerated intervertebral discs. Spine (Phila Pa 1976) 2004, 29(2):156-163.
- 41. Arias JL, Lopez-Viota M, Lopez-Viota J, Delgado AV. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Int J Pharm 2009, 382(1-2):270-276.
- 42. Zhang J, Li P, Guo HF, Liu L, Liu XD. Pharmacokinetic-pharmacodynamic modeling of diclofenac in normal and Freund's complete adjuvant-induced arthritic rats. Acta Pharmacol Sin 2012, 33(11):1372-1378.

- 43. Kokubo Y, Uchida K, Kobayashi S, Yayama T, Sato R, Nakajima H, et al. Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. Laboratory investigation. J Neurosurg Spine 2008, 9(3):285-295.
- 44. Shamji MF, Setton LA, Jarvis W, So S, Chen J, Jing L, et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 2010, 62(7):1974-1982.
- 45. Wuertz K, Haglund L. Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J 2013, 3(3):175-184.
- 46. Peng B, Hao J, Hou S, Wu W, Jiang D, Fu X, et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976) 2006, 31(5):560-566.
- 47. Yang C, Cao P, Gao Y, Wu M, Lin Y, Tian Y, et al. Differential expression of p38 MAPK alpha, beta, gamma, delta isoforms in nucleus pulposus modulates macrophage polarization in intervertebral disc degeneration. Sci Rep 2016, 6:22182.
- 48. Ogle ME, Segar CE, Sridhar S, Botchwey EA. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol Med 2016, 241(10):1084-1097.
- 49. Vasconcelos DP, Fonseca AC, Costa M, Amaral IF, Barbosa MA, Águas AP, et al. Macrophage polarization following chitosan implantation. Biomaterials 2013, 34(38):9952-9959.
- 50. Vasconcelos DP, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN. Modulation of the inflammatory response to chitosan through M2 macrophage polarization using proresolution mediators. Biomaterials 2015, 37:116-123.
- 51. Han B, Zhu K, Li FC, Xiao YX, Feng J, Shi ZL, et al. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine (Phila Pa 1976) 2008, 33(18):1925-1934.
- 52. Zhang H, La Marca F, Hollister SJ, Goldstein SA, Lin CY. Developing consistently reproducible intervertebral disc degeneration at rat caudal spine by using needle puncture. J Neurosurg Spine 2009, 10(6):522-530.
- 53. Zhang H, Yang S, Wang L, Park P, La Marca F, Hollister SJ, et al. Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine: laboratory investigation. J Neurosurg Spine 2011, 15(4):404-413.
- 54. Shapiro IM, Risbud MV. The intervertebral disc: molecular and structural studies of the disc in health and disease, 1 edn. Wien: Springer-Verlag Wien; 2014.
- 55. O'Connell GD, Vresilovic EJ, Elliott DM. Comparison of animals used in disc research to human lumbar disc geometry. Spine (Phila Pa 1976) 2007, 32(3):328-333.

56. Zhang Y, Drapeau S, An HS, Markova D, Lenart BA, Anderson DG. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine (Phila Pa 1976) 2011, 36(19):1519-1527.

Supplementary Data

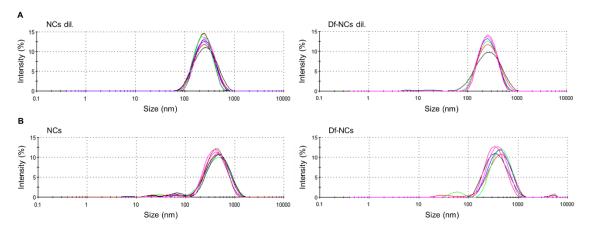
Materials and Methods

1.1. Preparation of fluorescent Ch and fluorescent Ch/ γ -PGA nanoparticles with and without Df

Fluorescent NCs (ftNCs) and Df-ftNCs were prepared as described in Materials and Methods. Ch was labeled with fluorescein isothiocyanate (FITC, 5% modification of amine groups with FITC) according to Gonçalves et al.¹

1.2. Analysis of ftCh/Df/γ-PGA nanoparticles distribution in the IVD using confocal microscopy

Df-ftNCs distribution in the rat IVD tissue was analyzed 2 hours after intradiscal administration, by confocal laser scanning microscopy (CLSM, Leica TCS-SP5, Leica microsystems). The Df-ftNCs were injected in IVDs as described in Materials and Methods. Animals were sacrificed, IVDs were collected and fixed in 10% formalin. Cells cytoskeleton was stained with Alexa Fluor 594-conjugated Phalloidin (Invitrogen), while cell nuclei were stained with DAPI. The tissue was imaged by CLSM and serial optical sections were analyzed using ImageJ 1.43u software (Wayne Rasband).


1.3. Calculation of the percentage of CD68⁺ cells in the hernia region

Sections stained for CD68 were imaged with light microscopy, using the same settings to allow comparison. Diaminobenzidine tetrahydrochloride (DAB) staining intensity, corresponding to CD68⁺ cells, was quantified using an ImageJ H-DAB plugin, based on a color deconvolution technique, which calculates the contributions of DAB and hematoxylin, based on stain-specific red-green-blue (RGB) absorption.² By applying this method, DAB and hematoxylin color channels were digitally separated, allowing quantification of color intensity only in the DAB channel. The measurement parameter was optical density (OD), obtained by log(max intensity/mean intensity), where max intensity corresponds to 255, for 8-bit images.² The area of CD68⁺ cells within the previously selected region of interest (ROI) was then determined and normalized to the ROI, for each sample.

Results

3.1. Characterization of Ch/γ-PGA and Ch/Df/γ-PGA NCs

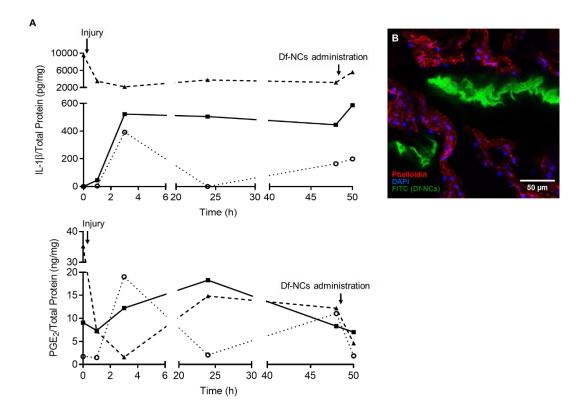

NCs and Df-NCs, obtained by coacervation method, were concentrated 50 times by centrifugation and resuspension in vehicle solution, previous to injection in rat IVDs. After concentration, these particles were compared with diluted NCs (NCs dil.) and Df-NCs (Df-NCs dil.). In Fig. S1 it is shown the size distribution of the different solutions analyzed.

Fig. S1. Characterization of the size dispersion of different nanocomplexes solutions, analyzed by dynamic and electrophoretic light scattering (DLS). A) Diluted NCs and Df-NCs (NCs dil. and Df-NCs dil., respectively). B) NCs and DF-NCs, which were 50 times concentrated after preparation, for injection into the rat IVDs. Particle size distribution plots obtained by intensity of the scattered light (n=6-9).

3.1. Systemic inflammatory profile after IVD lesion

A pilot study was performed to determine the timepoint of administration of the intradiscal treatments after causing the needle-puncture injury into 3 consecutive coccygeal rat IVDs (Co5/6, Co6/7, Co7/8). Blood was collected from the caudal vein at 0, 1, 3, 24, 48 and 50 hours' post-injury, and analyzed for quantification of IL-1 β and PGE₂ in plasma (Fig. S2A). Df-ftNCs were injected into the IVD 48 hours after inducing the injury. The animals were sacrificed 2 hours later and the IVD tissue injected with the Df-ftNCs was imaged by CLSM (Fig. S2B).

Fig. S2. Systemic inflammatory profile of animals with punctured IVD over a 50 hours' period. Blood plasma samples were collected from the lateral tail vein before injury and 1, 3, 24, 48 and 50 hours' post-lesion to trace a systemic inflammatory profile upon injury. A) Kinetics of Interleukin-1β (IL-1β) (pg/mg protein) and Prostaglandin E_2 (PGE₂) (ng/mg protein) levels in the plasma (n=3). B) Representative CLSM images (maximum intensity projection of serial optical sections) of IVD tissue with Df-ftNCs (FITC stains Ch from the Df-ftNCs in green, Alexa[®]594-Phalloidin stains F-actin in red and DAPI stains cell nuclei in blue; scale bar, 50 μm), acquired from time point 2 hours' post-administration (n=3).

References

- R.M. Gonçalves, A.C.L. Pereira, I.O. Pereira, M.J. Oliveira, M.A. Barbosa, Macrophage response to chitosan/poly-(γ-glutamic acid) nanoparticles carrying an anti-inflammatory drug, J. Mat. Sci. Mat. Med. 26 (2015) 167-178.
- M. Morimoto, Y. Matsuo, S. Koide, K. Tsuboi, T. Shamoto, T. Sato, K. Saito, H. Takahashi, H. Takeyama, Enhancement of the CXCL12/CXCR4 axis due to acquisition of gemcitabine resistance in pancreatic cancer: effect of CXCR4 antagonists, BMC Cancer. 16 (2016) 305.

Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration: insights from a pro-inflammatory/degenerative *ex vivo* model

In this manuscript, we have investigated how the pro-inflammatory/degenerative IVD microenvironment can affect the regenerative and immunomodulatory behavior of human bone marrow-derived MSCs. As recently highlighted, for instance, by Sakai and Andersson (2015), the number of trials proposing MSCs-based therapies to treat low back pain and IVD degeneration are increasing. Moreover, although MSCs intradiscal injection (Crevensten et al. 2004) and recruitment (Illien-Junger et al. 2012, Pereira et al. 2014) have been attempted by other authors, the studies published so far do not (or poorly) address the inflammatory environment characteristic of IVD degeneration, and how this milieu can influence the MSCs response. IVD's microenvironment has been recognized to be harsh for MSCs, potentially impairing their survival and function (Rinkler et al. 2010). Furthermore, it was suggested that MSCs immunomodulatory response contributes, initially, to counteract inflammation instead of stimulating matrix formation in short-term ex vivo culture of osteoarthritic synovium and cartilage (van Buul et al. 2012). To increase the knowledge on this topic, human bone marrow-derived MSCs isolated by us were co-cultured with pro-inflammatory/degenerative IVD organ cultures in a model of bovine origin previously established and validated (Teixeira et al. 2015). The results obtained so far show an immunomodulatory paracrine effect of MSCs in degenerated IVD, without an apparent effect in ECM remodeling, and suggest that the mechanisms of action of MSCs are based on a cytokine feedback loop.

Importantly, we consider of great relevance to highlight that the results from this study raise the importance of investigating MSCs behavior in degenerated IVD before their widespread use for LPB treatment.

Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration: insights from a pro-inflammatory/degenerative ex vivo model

Graciosa Q. Teixeira^{a-d}, Catarina Leite Pereira^{a,b,d}, Joana R. Ferreira^{a,b,d}, André F. Maia^{a,e}, Maria Gomez-Lazaro^{a,b}, Paulo Aguiar^{a,b}, Mário A. Barbosa^{a,b,d}, Cornelia Neidlinger-Wilke^c, Raquel M. Goncalves^{a,b,d}

^aInstituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal

^bINEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal

^cInstitute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany

^dICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

^eIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal

Abstract

Objective: Low back pain (LBP) is one of the causes of disability worldwide, frequently associated with intervertebral disc (IVD) degeneration and inflammation. Mesenchymal stem/stromal cells (MSCs)-based therapies to LBP have been advocated but the involvement of inflammation in the remodeling mechanism of IVD has not been explored. Here we investigated how the pro-inflammatory/degenerative IVD microenvironment affects the regenerative and immunomodulatory behavior of human bone marrow-derived MSCs, using a bovine ex vivo model.

Design: IVD punches were cultured in basal or pro-inflammatory/degenerative conditions (needle-punctured and IL-1β supplemented). MSCs were posteriorly co-cultured on top of transwells, above IVD punches, for up to 2 weeks. Cell viability and MSCs migration were analyzed. Extracellular matrix (ECM) remodeling of IVD organ cultures, MSCs response to the pro-inflammatory/degenerative environment and gene expression profile of IVD cells after co-culture with MSCs were also assessed.

Results: The pro-inflammatory/degenerative IVD conditions did not affect MSCs viability, but promoted migration, despite very few MSCs being found in IVD tissue. This has led us to investigate the possibility of MSCs acting via a paracrine mechanism. The pro-inflammatory/degenerative IVD conditions promoted IL-6, IL-8, MCP-1 and PGE₂ production by MSCs, while reducing TGF- β 1. Furthermore, the presence of MSCs did not stimulate ECM production in neither basal nor inflammatory conditions, but down-regulated bovine pro-inflammatory gene expression levels (*IL-6, IL-8, TNF-α*) in IL-1 β -stimulated IVDs.

Conclusions: This study provides evidence for a mechanism dependent on a cytokine feedback loop, through which MSCs are capable of immunomodulating the IVD microenvironment.

1. Introduction

Discogenic low back pain (LBP) accounts for almost 40% of chronic LBP, the leading disorder in number of years lived with disability.¹ In patients with discogenic LBP, degeneration of the intervertebral disc (IVD) without apparent nerve compression occurs, associated with increased inflammation and pain.² IVD degeneration is characterized by a decrease in water content, a reduction of cell numbers and the turnover of extracellular matrix (ECM) components.³ A shift from collagen type II (COL2) to type I (COL1) production by nucleus pulposus (NP) cells, and a decrease in aggrecan (ACAN) synthesis occur.³ Furthermore, an up-regulation of specific metalloproteinases (MMPs), MMPs with thrombospondin motifs (ADAMTS),^{4,5} and a wide number of inflammatory mediators^{6,7} have been described as responsible for IVD degeneration, nerve ingrowth and pain.

Cell-based therapies to stimulate IVD regeneration are being increasingly investigated, particularly using mesenchymal stem cells (MSCs).8,9-11 However, the behavior of MSCs in IVD-associated inflammation scenarios has been neglected. Moreover, though a high number of degenerated/injured IVD animal models has been developed, there is no ideal model that both mimics progressive human disc degeneration and allows a standardized control. 12 IVD organ cultures have been arising to address specific questions, although, of course, with limitations, such as lack of the immune host response and pain assessment.¹³ In multiple in vitro and animal studies, MSCs have been proposed to have a beneficial effect in IVD regeneration due to their differentiation capacity into an NP-like phenotype. 14-16 MSCs are known to contribute to the regenerative process by interacting with the surrounding environment through the secretion of numerous molecules, such as growth factors, cytokines and chemokines. 17 Nonetheless, the IVD hypoxic environment and mechanical load, the high osmolarity and low pH may impair MSCs survival and function. 18 In humans, MSCs are currently being tested in several LBP clinical trials. 11,19,20 However, the results obtained so far remain controversial since the patients referred pain reduction, but no increase of disc height was observed. 11,19 In a clinical trial, in which patients received autologous bone marrow concentrate, discogenic pain reduction was reported after 12 months of follow-up.²⁰ Ongoing clinical trials are addressing the use of allogenic²¹ or autologous MSCs transplantation^{22,23} and implantation of cell-seeded scaffolds in degenerated IVD.24,25

Besides their multi-differentiation potential, MSCs are accepted as immunomodulatory cells, by interacting with the different immune cells.²⁶ Thus, MSCs might modulate the inflammatory milieu associated with IVD degeneration. This aspect has been neglected in several studies, although MSCs have already been shown to contribute to maintain IVD immune privilege by the expression of fas ligand (*FasL*).²⁷

This study explores for the first time the synergic interplay between MSCs and IVD cells in the presence of pro-inflammatory/degenerative IVD conditions, namely in what refers to their pro-regenerative and immunomodulatory contributions through a paracrine mechanism. In addition, we expect to increase the knowledge of how IVD degenerative and pro-inflammatory environment can affect and change MSCs immunomodulatory profile. The knowledge generated will impact to increase their successful use in the discogenic pain treatment.

2. Materials and Methods

2.1. Culture of human MSCs

Human MSCs harvested from bone marrow were obtained from different donors who underwent bone marrow donation, hip replacement or knee joint surgery, with informed consent and following the rules of the ethical commission of the University of Ulm (Ulm, Germany) and the Portuguese authorities (*Direcção-Geral da Saúde*, Porto, Portugal). MSCs phenotypic profile was previously accessed either by immunohistochemistry for CD9, CD90, CD105, CD44, and Stro-1 staining,²⁸ or by flow cytometry for CD19, CD14, CD73, CD34, CD90, CD105, CD45 and HLA-DR.²⁹ Multi-lineage differentiation potential was also previously assessed.^{28,29} Cells were expanded as reported in Almeida et al.²⁹ Experiments were performed with MSCs from 7 donors, in passages 3-7 (detailed information in Supplementary Table S1).

2.2. Pro-inflammatory IVD organ culture model

Bovine IVDs were isolated from young adult animals' tails (age<48 months) within 3 hours' post-slaughter, with the ethical approval of the Portuguese National Authority for Animal Health. Caudal discs were isolated and cultured in basal conditions according to Teixeira et al. 30 Pro-inflammatory/degenerative stimulation was induced as described by Teixeira et al. 30 Briefly, after 6 days of culture in basal conditions, organ cultures were injured by needle-puncture with a 21G needle and stimulated with pro-inflammatory factor IL-1 β (10 ng/mL, PeproTech, UK).

2.3. MSCs co-culture with IVD

Three hours after pro-inflammatory stimulus, 1x10⁶ MSCs per IVD punch were seeded on top of the transwell. MSCs were stained, prior to seeding, with CellTracker™ Blue CMAC Dye (CTB, Molecular Probes), For confocal microscopy analysis, or with CellTracker™ CM-Dil Dye (Thermo Fisher Scientific), for identification by flow cytometry analysis (Supplementary

Methods). This time point was selected based on previous work from our team.³⁰ Non-manipulated samples kept in BM were used as controls. Two days later it was checked if cells were still alive and if they had migrated to the disc by LIVE/DEAD and migration assays. IVD and MSCs apoptosis and viability were accessed by flow cytometry analysis, gene expression and protein production by both cell types were analyzed 2 days after stimulation and co-culture (day 7). Tissue sulphated glycosaminoglycan (sGAG) content was analyzed at days 7 and 21 of culture. ECM components were analyzed at protein level at day 21 of culture. The experimental scheme and groups are depicted in Fig. 1.

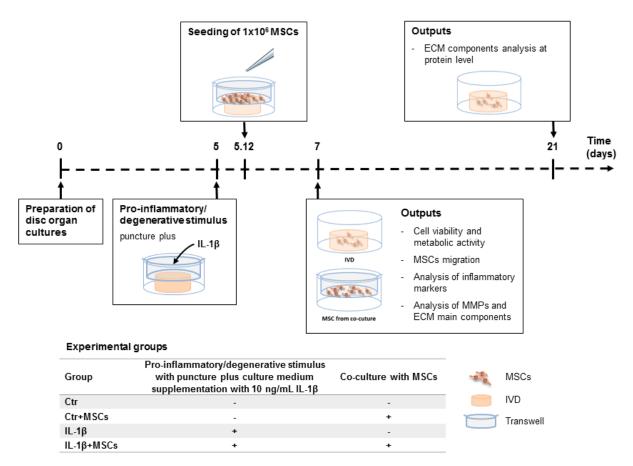


Fig. 1. Experimental timeline and culture groups.

2.4. Human MSCs migration assessment, samples preparation, image acquisition and analysis

To evaluate MSCs migration, transwells with a polyethylene terephthalate membrane with 8 µm pore size and 4.5 cm² membrane surface area (Millipore) were used. After 2 days of MSCs co-culture with IVD punches, cells were fixed with 4% paraformaldehyde and rinsed with PBS. Inserts were carefully washed with PBS, and cells remaining on the upper face of the filters were removed with a cotton wool swab³¹. The filters were cut out and in two halves with a scalpel, stained with DAPI and mounted onto glass slides, with the down part facing

upwards. The number of cells that had migrated was determined by counting each half filter (spanning 172-383 microscope fields), avoiding areas with air bubbles. Images with $6.4x10^{-3}$ cm² were collected with a Nikon 20x/0.45 NA Plan Fluor objective in a high-throughput automated fluorescence widefield microscope (IN Cell Analyzer 2000, GE Healthcare). 2.5D Acquisition & Deconvolution mode was used integrating the signal over $2.0 \ \mu m$ Z section, generating a pseudo 3D projection.

Quantification of the number of cells that migrated through the transwell was performed with Developer Toolbox 1.9.2 (GE Healthcare). Briefly, a nuclear segmentation algorithm was used to identify and quantify the number of migrated cells. Data are expressed as number of migrated cells per cm². The corrected number of migrated MSCs per cm² was obtained by the sum of the results for both halves of the insert, and subtraction of the number of cells per cm² counted in the respective control conditions without MSCs (corrected (cells/cm²)_{IL-1β+MSCs} = (cells/cm²)_{IL-1β+MSCs} – (cells/cm²)_{IL-1β}), due to the transwell direct contract with the IVD tissue, from which IVD cells can attach to the polymeric surface. The results include independent experiments with 6 different bovine IVD donors, and 3 different human MSCs donors in passages 4 to 7.

2.5. Mitochondrial metabolic activity of IVD cells in the organ culture model

Cell mitochondrial metabolic activity was accessed by resazurin assay. Resazurin solution (0.1 mg/mL) was added to IVD culture medium at a final concentration of 10% v/v. Samples were incubated for 3 hours at 37°C. Fluorescence intensity was measured in a spectrophotometer microplate reader (BioTek Synergy HT), with 530 nm excitation filters and 590 nm emission filters. A calibration curve was previously designed to exclude saturated values.

2.6. MSCs identification and LIVE/DEAD assay

MSCs were stained before seeding with CellTracker™ Blue CMAC Dye (CTB, Molecular Probes) for further identification after culture. Cell viability was qualitatively assessed through fluorescence-based LIVE/DEAD Cell Viability/Cytotoxicity kit (Invitrogen), by confocal laser scanning microscopy (CLSM, Leica TCS-SP5, Leica microsystems). Briefly, IVD tissue samples collected from the center of the disc punch by sagittal cut were incubated with Calcein Acetoxymethyl Ester (Calcein AM; 1 mM) and Ethidium Homodimer-1 (EthD-1; 2.5 mM) for 45 min at 37°C. Calcein AM (Ex 485 nm/Em 530 nm) stains live cells green, indicating intracellular esterase activity, while EthD-1 (Ex 530 nm/Em 645 nm) stains dead cells red, indicating loss of plasma membrane integrity. Images were analyzed, using ImageJ 1.43u software (Wayne Rasband).

2.7. DNA quantification

DNA content of IVD punches was quantified using Quant-iT PicoGreen double standard DNA kit (Invitrogen), and normalized to the wet weight of the digested tissue. Tissue digests were obtained by incubation of IVD minced samples with proteinase K solution (0.5 mg/mL) overnight at 56°C.

2.8. Quantitative real-time reverse transcription polymerase chain reaction

Gene expression levels were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) on cDNA derived from disc samples. Specific primer pairs for bovine were designed using published gene sequences (PubMed, NCBI Entrez Nucleotide Database) and Primer 3 software 48. The bovine primer sequences for *TNF-α* and MMP13 are in Table 1, while IL-6, IL-8, MMP1, MMP3, collagen type II (COL2), ACAN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are published in Teixeira et al.³⁰ The analysis was carried out using SYBR Green method. Briefly, IVD punches were digested enzymatically as described above, cell pellets were recovered and total RNA was extracted with ReliaPrep RNA Cell Miniprep System (Promega), as per the manufacturer's instructions. Total RNA was quantified by a NanoDrop spectrophotometer (ND-1000, Thermo) and RNA quality was assessed by means of RNA ratio. Total RNA was reverse transcribed into cDNA using SuperScript® III Reverse Transcriptase kit (Invitrogen). Gene expression levels were determined by qRT-PCR conducted on iQ5 Real-Time PCR Detection System (Bio-Rad), and using iQ™ SYBR® Green Supermix (Bio-Rad). Statistical analysis was performed on ∆Ct values, as described by MacLean et al. 32 Fold changes in gene expression were presented as 2-(average \text{\text{ACT}}). The average Ct value of each triplicate measurement of each sample was normalized to the house-keeping gene GAPDH in each sample (\(\Delta\text{Ct} = Ct_{(gene of interest)}\) - $Ct_{(GAPDH)}$). The ΔCt of each stimulated sample was related to the respective ΔCt of each control sample. Normalized values of samples collected at the end of the experiments were compared with the control and between the different experimental groups.

Table 1. Bovine oligonucleotide primers.

Gene	Forward and reverse primer, 5'-3'	Product length (bp)	NCBI reference sequence
TNF-α	CCATCAACAGCCCTCTGGTT	134	AF011926
	GAGGGCATTGGCATACGAGT	134	AF011920
MMP13	CATGAGTTTGGCCATTCCTT	170	NM 474200
	GGCGTTTTGGGATGTTTAGA	179	NM_174389

2.9. Detection of relative protein expression

A commercially available array of 40 human inflammatory factors (Human Inflammation Array C3, AAH-INF-3, RayBiotech) was used to evaluate the relative levels of cytokine production in the IVD punches' culture supernatants. A pool of 8 culture supernatants of each experimental group was prepared for this determination, and 1 mL of the prepared pool was used. Data shown are from 25.5 sec exposure in Chemidoc XRSb (BioRad). Quantification of the results was generated by quantifying the mean spot pixel density from the array using image software analyses (ImageLab 4.1; BioRad). Briefly, the pixel intensities gathered from the array spots were obtained using the volume tools option of the software. It was defined an area of interest of the reference spots by surrounding it with a circle, and then equal circles were used for all spots of the array. Afterwards, the circles were analyzed and the densities of signals were normalized by the background.

2.10. Protein quantification in culture supernatants

Culture medium collected at day 8 was centrifuged (3000 rpm, 5 minutes) and kept at -20°C for posterior analysis. PGE₂ (Arbor Assays), free active TGF-β1 (BioLegend), and human IL-6, IL-8, monocyte chemoattractant protein (MCP)-1, IL-1β and regulated on activation, normal T-cell expressed and secreted RANTES, also called chemokine ligand 5 (CCL5) (PeproTech) were quantified by ELISA, as per the manufacturers' instructions.

2.11. Sulphated glycosaminoglycans quantification

Sulphated glycosaminoglycan (sGAG) content of IVD punches was assessed at day 8 by reaction with 1,9-dimethyl-methylene blue zinc chloride double salt (DMMB, Sigma-Aldrich) dye reagent solution, containing 40 mM sodium chloride (NaCl, Roth), 40 mM Glycine (Roth) and 46 µM DMMB, previously adjusted to pH 3.0. Chondroitin sulphate A sodium salt from bovine trachea (Sigma) was used as standard. Results were normalized by DNA content.

2.12. Detection of type II collagen and aggrecan in the IVD

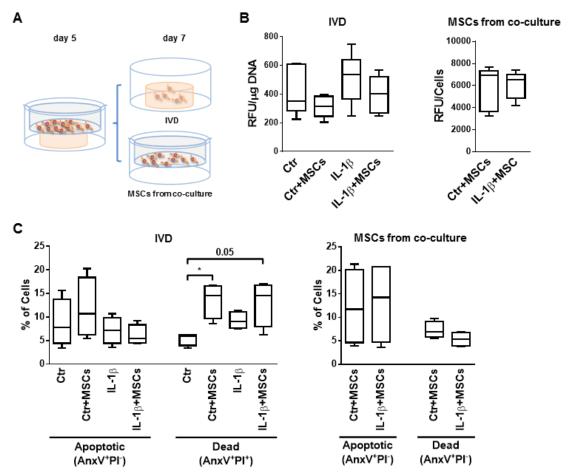
COL2 distribution was analyzed by immunofluorescence (IF) staining. ACAN production and distribution was analyzed by immunohistochemistry (IHC). For IHC, NovolinkTM Polymer Detection Kit (Leica Biosystems) was used, following the manufacturer's instructions. For both, antigen retrieval was performed in paraffin sections through incubation with 20 μg/mL proteinase K solution for 15 minutes at 37°C. For COL2 staining, after a blocking step, sections were incubated for 2 hours at 37°C with anti-collagen II-II6B3 (Developmental Studies Hybridoma Bank) at a 1:50 dilution. Alexa Fluor 594-labeled goat anti-mouse

(Invitrogen-Molecular Probes, 1:1000) was used as secondary antibody. For ACAN, sections were incubated overnight with primary antibody (H-300) sc-25674 (Santa Cruz Biotechnology) to a 1:50 dilution. All samples were stained at the same time for comparison purposes.

Sections stained for COL2 were mounted in Fluorshield with DAPI (Sigma). Control sections for each labeling excluded primary antibody staining. In COL2 staining, representative images of the slides (covering all section) were taken using an inverted fluorescence microscope (Axiovert 200 M, Zeiss), and the same exposure time for all samples. COL2 intensity was quantified using a custom-made MATLAB (The MathWorks Inc., Natick MA, USA) script, the IntensityStatisticsMask Software.³³

Sections stained for ACAN were imaged with light microscopy, using the same settings to allow comparison. Diaminobenzidine tetrahydrochloride (DAB) staining intensity, corresponding to ACAN deposition in the tissue, was quantified using a custom ImageJ H-DAB plugin, based on a color deconvolution technique, that calculated the contribution of DAB and hematoxylin, based on stain-specific red-green-blue (RGB) absorption.³⁴ By applying the macro, DAB and hematoxylin color channels were digitally separated, allowing quantification of color intensity only in the DAB channel. The measurement parameter was optical density (OD), obtained by log(max intensity/mean intensity), where max intensity corresponds to 255, for 8-bit images.³⁴ ACAN negative (ACAN⁻) and positive (ACAN⁺) cells were quantified using another custom-made MATLAB script, the ImmunoCellCounter Software, as previously described.³⁵

2.13. Statistical analysis


Results are presented as Median±Interquartile Range (IQR) in box and whiskers plots. Data normality was first analyzed by D'Agostino and Pearson Normality Test after which statistical analysis was performed with either non-parametric Mann-Whitney or Kruskal-Wallis test and Dunns multiple comparison as post hoc test. MSCs migration was compared with Wilcoxon test for paired analysis. Graph Pad v6.02 for Windows. Tests were two-sided, and a confidence level of at least 95% (*, p<0.05) was used.

3. Results

3.1. Metabolic activity, viability and apoptosis of MSCs and IVD in healthy vs proinflammatory/degenerated IVD environment

To simulate the pro-inflammatory environment associated with IVD degeneration an *ex vivo* model of bovine IVD organ culture stimulated with IL-1β and puncture, previously established and validated by us was used.³⁰ Briefly, bovine disc punches were isolated and cultured

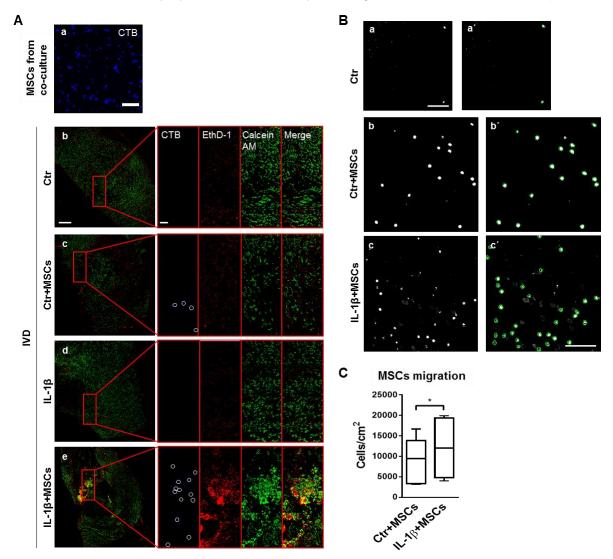

under static loading, and the degenerative/pro-inflammatory environment was induced by stimulation with needle puncture (21G) and medium supplementation with 10 ng/mL IL-1 β . Three hours after stimulus, 1x10⁶ human BM-derived MSCs were cultured on the top of the transwells, above the IVD punches. After 48 hours, IVD punches and MSCs on the top of the transwells were analyzed separately for metabolic activity and cell apoptosis/death, as schematically represented in Fig. 2(A). The mitochondrial metabolic activity of IVD punches was maintained in the presence of IL-1 β and slightly decreased in the presence of MSCs for both control and IL-1 β -stimulated IVDs [Fig. 2(B)]. Mitochondrial metabolic activity of MSCs remaining in the transwells was similar in the presence of IL-1 β (IL-1 β +MSCs) and non-stimulated group [Fig. 2(B)]. Cell apoptosis/death were analyzed by Annexin V (AnxV) and propidium iodide (PI) staining by flow cytometry, and these levels were overall low (under 20%) [Fig. 2(C)]. Results are presented as Median±IQR fold change. No differences were observed in cell apoptosis but an increase in the number of dead IVD cells (AnxV+PI+ cells) in the presence of MSCs was observed (from 6±2% to 14±7% in Ctr+MSCs and from 9±3% to

Fig. 2. Viability of the IVD organ culture model, 2 days after proinflammatory stimulus (puncture+10 ng/mL IL-1β) and co-culture with MSCs. (**A**) Experimental scheme of the samples used for the analysis performed (IVD tissue and MSCs from co-culture). (**B**) Mitochondrial metabolic activity of IVD tissue and MSCs in the transwells. (**C**) Early and late apoptosis/death of cells isolated from IVD tissue and MSCs in the transwells, by Annexin V/PI double staining. Results are shown as box and whiskers plots (n=4-5). *p<0.05

15 \pm 9% in IL-1 β +MSCs), being this increase statistically significant in the Ctr groups (p<0.05). Nevertheless, apoptosis/death of MSCs collected from transwells was maintained in Ctr and IL-1 β -stimulated conditions.

In parallel, MSCs labeled with CTB dye were seeded in the transwells above IVD punches. After 48 h MSCs collected from transwells remained blue [Fig. 3(A): a] and a microscopic evaluation of cell viability by LIVE/DEAD assay of a sagittal tissue section showed presence

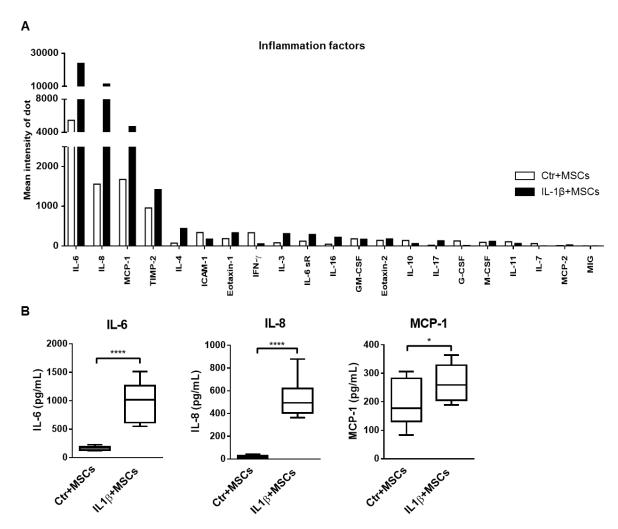


Fig. 3. Cell viability and MSCs identification, after 2 days in co-culture with IVD tissue, under control or proinflammatory/degenerative conditions. (A) Representative CLSM images (maximum intensity projection of serial optical sections) of MSCs from co-culture stained with CellTracker Blue (CTB, a; scale bar, 200 μm), and LIVE/DEAD cytotoxicity/viability assay (b-e; scale bar, 1mm), with higher magnification of splitted and merged channels, for all the conditions tested (CTB stains MSCs, ethidium homodimer-1 (EthD-1) stains dead cells and calcein AM stains live cells in green; MSCs, white arrow; scale bar, 200 μm). (B) Migration of human MSCs trough transwells with 8-μm pore size, when in co-culture with IVD punches alone (Ctr+MSCs), or in presence of 10 ng/mL IL-1β in the culture medium (IL-1β+MSCs). It is shown representative micrographs for groups Ctr (a), Ctr+MSCs (b) and IL-1β+MSCs (c), and their respective segmentation masks (a', b' and c') for cell counting (counted cells in green; scale bar, 100 μm). (C) MSCs migration results normalized by the imaged area (cm²) and respective controls. Results are shown as box and whiskers plots (n=6). *p<0.05

of dead cells in the IVD, with no apparent differences between Ctr and IL-1 β -supplemented cultures [Fig. 3(A): b and d]. However, an increase of cell death in MSCs and IL-1 β +MSCs groups was apparently observed [Fig. 3(A): c and e], in accordance with results from AnxV/PI staining. In basal conditions, the higher number of dead cells appears to be found in the lower half of the disk, being MSCs found closer to the upper IVD tissue border. On the other hand, in pro-inflammatory conditions, cell clusters formation was observed with higher number of MSCs. In addition, MSCs migration trough transwells on the top of the IVDs was analyzed by DAPI staining of the lower part of the membrane [Fig. 3(B)]. Representative images of Ctr, Ctr+MSCs and IL-1 β +MSCs conditions are presented [Fig. 3(B): a, b and c, respectively]. MSCs migration was significantly increased in the presence of IL-1 β (p<0.05). Of notice, flow cytometry analysis of IVD cells upon tissue digestion did not reveal the presence of labeled MSCs, suggesting that their frequency in the IVD was below to 0.01%, the equipment's detection limit (data not shown).

3.2. Screening of inflammatory factors produced by MSCs under pro-inflammatory/degenerative culture conditions

To evaluate whether pro-inflammatory/degenerative IVD conditions could influence MSCs cytokine profile the protein content in the culture supernatants was evaluated by a human inflammatory cytokines array (40 proteins). A pool of samples from 8 independent experiments was used. The human factors detected only in the presence of MSCs are shown in Fig. 4(A), for Ctr+MSCs and IL-1β+MSCs groups. The results show that the IVD punches induced the production of IL-6, IL-8 and MCP-1 by MSCs, with higher intensity in proinflammatory/degenerative conditions (IL-1β+MSCs group). Also, tissue inhibitor of metalloproteinase (TIMP)-2 and IL-4 production seemed to increase in IL-1β+MSCs. To validate the array, IL-6, IL-8 and MCP-1 protein content in the supernatants was quantified by ELISA [Fig. 4(B)]. Results showed a statistically significant increase of IL-6, IL-8 and MCP-1 by MSCs in presence of IL-1β of about 6-fold for IL-6 (p<0.0001), 41-fold for IL-8 (p<0.0001) and 2-fold for MCP-1 (p<0.05). In the groups without MSCs (Ctr and IL-1β) IL-6, IL-8 and MCP-1 were glucose), osmolarity (400 mOsm), hypoxia (6% O₂ and 8.5% CO₂) and pro-inflammatory stimulus (10 ng/mL IL-1β) expressed higher IL-6 and IL-10, produced higher PGE₂, while in presence of IL-1β [Supplementary Fig. S1]. Furthermore, other immune regulatory cytokines such as, TNF-α, IL-10, indoleamine-2,3-dioxygenase (IDO) and TNF-α stimulated gene/protein 6 (TSG-6) were also analyzed by ELISA, but if present, their values were below the detection limit of the technique.

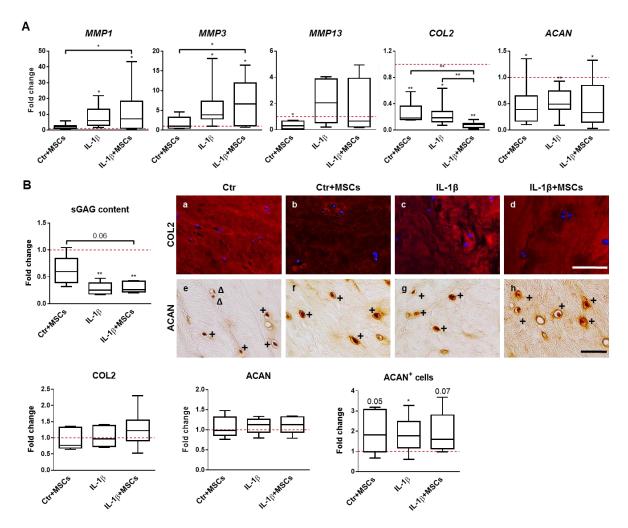
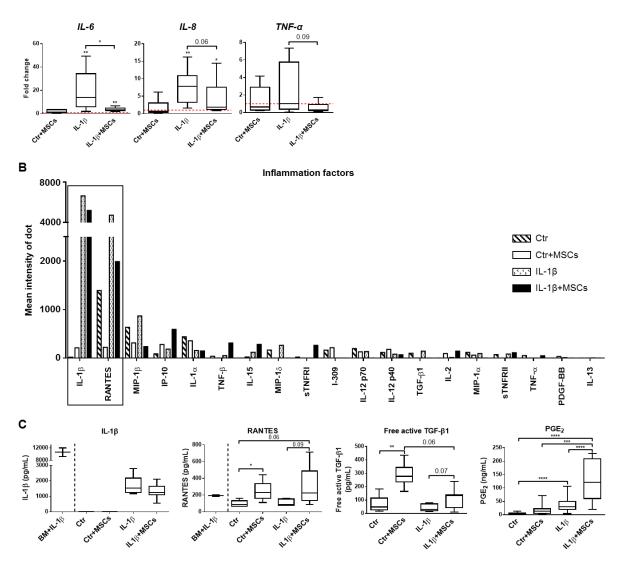


Fig. 4. MSCs production of inflammation factors, after 2 days in co-culture with IVD tissue, under control or proinflammatory/degenerative conditions. (A) Inflammation factors detected by human membrane cytokine array, for Ctr+MSCs and IL-1β+MSCs groups. Values are expressed as average of two dots. (B) Concentration of IL-6 (pg/mL), IL-8 (pg/mL) and MCP-1 (pg/mL) in co-culture supernatants. Results are presented as box and whiskers plots (n=8-13). *p<0.05; ****p<0.0001

3.3. Influence of MSCs in the profile of MMPs and ECM components

In the IVD organ culture model previously established, *MMP1* and *MMP3* were shown to be up-regulated, while ECM components *COL2* and *ACAN* were down-regulated in the IVD tissue under degenerative/pro-inflammatory conditions.³⁰ Here, MMPs and the main ECM components of IVD were analyzed 2 days after IL-1β stimulation and co-culture with MSCs [Fig. 5(A)]. The presence of MSCs did not induce by itself an up-regulation of *MMP1* and *MMP3* by IVD cells. On the other hand, it was observed up-regulation in IL-1β+MSCs, when compared to Ctr+MSCs co-culture, of *MMP1* of approximately 3-fold (p=0.05) and of *MMP3* of about 7-fold (p<0.05). *MMP13* expression was down-regulated in Ctr+MSCs, relatively to Ctr (0.3±0.6, p<0.05). Furthermore, MSCs were not able to down-regulate the increased

levels of MMPs in presence of IL-1 β . Concerning ECM proteins, *COL2* and *ACAN* were significantly down-regulated in all the conditions tested in comparison to the control. Furthermore, it was also seen a down-regulation of *COL2* after IL-1 β -stimulated discs' coculture with MSCs to 0.09±0.06, compared both with Ctr+MSCs (0.2±0.2) and IL-1 β (0.2±0.2) groups (p<0.01). *ACAN* expression did not seem to be altered after IL-1 β +MSCs stimulation, when compared either with Ctr+MSCs or IL-1 β alone groups.


Fig. 5. Effect on the IVD ECM composition of proinflammatory/degenerative stimulus and co-culture with MSCs, after 2 and 14 days. (A) mRNA expression of bovine *MMP1*, *MMP3*, *MMP13*, *COL2A1* and *ACAN* of IVD cells, after 2 days of co-culture. mRNA levels were normalized to *GAPDH* control gene and to the unstimulated discs (control level=1; dashed line). (B) Analysis at protein level of IVD ECM components, 14 days after co-culture. Biochemical analysis of sGAG content of IVD punches, normalized to control. Representative sagittal sections of disc punches stained for COL2A1 (a-d; scale bar, 100 μm) and ACAN (e-h; scale bar, 50 μm), displaying ACAN negative (ACAN-, Δ) and positive (ACAN+, +) cells. COL2A1 fluorescence intensity normalized to control. ACAN intensity in the tissue, determined by measuring the optic density (OD) of the DAB staining, normalized to control. Percentage of ACAN+ cells normalized to the imaged area (mm²) and to control group. Results are shown as box and whiskers plots (n=5-20). *P < 0.05; **P < 0.05; **P < 0.01

3.4. Evaluation of ECM remodeling in longer-term pro-inflammatory MSCs/IVD co-culture

To evaluate the effects of MSCs co-culture on IVD tissue ECM at protein level, the organ cultures were maintained for 21 days, after which sGAG content was quantified, and COL2 and ACAN deposition were analyzed by IHC [Fig. 5(B)]. A statistically significant decrease of sGAG content of about 0.3 in both IL-1β and IL-1β+MSCs groups was observed, compared to Ctr (p<0.01). Also in the Ctr+MSCs group sGAG content seemed to be lower in comparison with Ctr (0.6±0.4). COL2 staining [Fig. 5(B): a-d] fluorescence intensity was quantified using the IntensityStatisticsMask software and is presented as fold change to Ctr group. Results indicated similar COL2 for Ctr+MSCs and IL-1β groups, compared to Ctr. Yet, IL-1β+MSCs samples seemed to have slightly higher COL2 content, when compared to Ctr (1.2±0.6-fold) and to Ctr+MSCs (about 2-fold). ACAN deposition (brown) [Fig. 5(B): e-h], as well as cells negative (ACAN $^{-}$, Δ) and positive (ACAN $^{+}$, +) for ACAN deposition were quantified for the different conditions and normalized to Ctr. ACAN deposition in tissue was determined by color intensity measurements in DAB channel and presented as OD fold change to unstimulated IVD punches, for each donor. As mentioned in Supplementary Materials and Methods, all slides were stained at the same time to allow comparison between them. Overall, results indicated similar ACAN content in all the different conditions tested. Nonetheless, the numbers of ACAN+ and ACAN cells were quantified using the ImmunoCellCounter software, and presented as % of ACAN+ cells, normalized to the imaged area (mm²) and in fold change to Ctr. Results showed that IVD stimulation with MSCs alone (Ctr+MSCs), IL-1β or IL-1β+MSCs appeared to increase the % of ACAN+ cells/mm², compared to Ctr discs. These results represented a fold change of approximately 2-fold for all Ctr+MSCs, IL-1β and IL-1β+MSCs. Overall, no significant effect of MSCs in ECM production was observed, when compared to either control or IL-1β cultures.

3.5. Inflammatory gene expression in cells isolated from the organ culture, 2 days after culture in pro-inflammatory conditions

IVD cells pro-inflammatory gene expression profile was assessed by the expression of IL-6, IL-8 and TNF- α , 2 days after IL-1 β stimulation and co-culture with MSCs [Fig. 6(A)]. In the IVD organ culture model an up-regulation of inflammatory markers IL-6 and IL-8 (14±29-fold and 8±8-fold, respectively; p<0.01) were here observed in the presence of IL-1 β , in accordance with previous results³⁰. TNF- α gene expression was similar between the IL-1 β group and the control. Interestingly, IVD cells in co-culture with MSCs in basal conditions expressed similar IL-6 and IL-8 levels and TNF- α , when compared to Ctr.

Fig. 6. Inflammatory profile of IVD cells and MSCs, after 2 days in co-culture under control or proinflammatory/ degenerative conditions. (A) mRNA expression of bovine proinflammatory markers *IL-6*, *IL-8*, *TNF-α* by IVD cells. mRNA levels were normalized to *GAPDH* control gene and to the unstimulated discs (control level=1; dashed line). (B) Quantification of the detected cytokines of array membranes obtained for all conditions tested, values are expressed as average of two dots. (C) Concentration of IL-1β (pg/mL), RANTES (pg/mL), TGF-β1 (pg/mL) and PGE₂ (ng/mL) in co-culture supernatants. Results are presented as box and whiskers plots (n=6-34). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001

In presence of IL-1 β , MSCs significantly down-regulated *IL-6* (from 14±28- to 3±2-fold; p<0.05). In addition, MSCs also seemed to down-regulated bovine *IL-8* levels (from 8±8- to 2±6-fold, p=0.06) and *TNF-a* (from 1±5-fold to 0.3±0.7-fold; p=0.09). Although gene expression of these pro-inflammatory players remarkably decrease in the presence of MSCs, their expression levels were still significantly up-regulated compared to control IVDs.

In addition, the inflammatory cytokine array performed on IVDs culture supernatant allowed us to screen the factors involved in the immunoregulatory crosstalk between MSCs and IVD cells. The factors identified either in MSCs/IVD co-cultures and IVD cultures alone are

depicted in Fig. 6(B). IL-1β, RANTES and macrophage inflammatory protein (MIP)-1β concentrations were lower in IL-1β+MSCs than in IL-1β-stimulated samples alone. On the other hand, it seemed that IP-10 concentration was higher in IL-1β+MSCs in comparison to IL-1β. To validate the array's qualitative results, IL-1β and RANTES were quantified by ELISA, in supernatants from experiments other than the ones used in the array analysis, as well as free-active TGF-β1 and PGE₂ [Fig. 6(C)]. In basal conditions, IL-1β was not detected (Ctr and Ctr+MSCs), but a consumption of IL-1\beta in both groups in pro-inflammatory conditions (IL-1β and IL-1β+MSCs) was observed from 10.6±2.8 ng/mL to approximately 1.5±0.9 and 1.2±0.5 ng/mL, respectively. RANTES was detected in the basal medium, as well as in all the experimental conditions tested, and was apparently consumed in the Ctr and IL-1β conditions, showing a reduction about 0.4. RANTES was produced in the presence of MSCs, with increase of approximately 1.2-fold, in both Ctr+MSCs and IL-1β+MSCs groups. RANTES concentration in presence of MSCs was significantly higher in basal conditions (about 2.7-fold to Ctr, p<0.05) and slightly higher in pro-inflammatory conditions (circa 2.6-fold to IL-1β). In addition, although total TGF-β1 was not identified in the inflammation array, free active form of TGF-β1 was detected in all experimental conditions. MSCs in Ctr IVDs contributed to an increase of TGF-β1 from 49±89- to 277±107-fold (p<0.01), while in the IL-1β groups, an increase from 30±51- to 132±97-fold was observed in the presence of MSCs (p=0.07). A significantly higher production of PGE2 was observed in IL-1β-stimulated samples, compared to Ctr (p<0.0001), similarly to what was previous described by us.³⁰ PGE₂ production slightly increased from 4±3- to 13±18-fold when MSCs were co-cultured with IVD punches in basal conditions. But under pro-inflammatory conditions, MSCs remarkably increased PGE₂ from 30±29- to 121±148-fold (p<0.0001).

4. Discussion

This study investigated the regenerative and immunomodulatory role of MSCs in a pro-inflammatory/degenerative IVD *ex vivo* model. This organotypic culture consists in bovine IVD explant cultures stimulated with needle puncture, IL-1β supplementation (10 ng/mL) and 0.46 MPa static loading and was previously validated by us.³⁰ An up-regulation of pro-inflammatory markers (*IL-6, IL-8, MMP1* and *MMP3*), as well as a down-regulation of ECM components (*COL2* and *ACAN*) were observed in this model,³⁰ in accordance with human disc degeneration,^{7,36} in which IL-1 was proposed as a key regulator of matrix-degrading enzymes.³⁷⁻³⁹ In this study, 1x10⁶ MSCs/IVD were selected as the optimal cell concentration based in previous works with other models.⁴⁰ MSCs were added to IVD culture 3 hours after pro-inflammatory stimulus. Maidhof et al. studies in a rat disc stab injury model suggest that cell administration at an early stage of injury/disease progression might decrease matrix loss,

through a potentially higher MSCs activity, due to the inflammatory microenvironment associated with injury.⁴¹ Nonetheless, higher metabolic activity might also be connected to cell senescence.^{42,43} Cell apoptosis and death remained low in our study and MSCs did not present an anti-apoptotic effect, in contrast with findings from Yang and colleagues.⁴⁴ Of notice, there was formation of cell cluster inside the NP and higher MSCs migration in presence of IL-1β-stimulated IVDs, which could be due to an increased production of chemotactic recruitment mediators such as, for example, RANTES,⁴⁵ TNF-α and/or IL-1β.⁴⁶ In this pro-inflammatory/degenerative IVD model, MSCs exhibited overall a pro-inflammatory profile, producing higher amounts of IL-6, IL-8, MCP-1, TIMP-2 and IL-4, and contributing to an increase of PGE₂ production, while seemed to have decreased free active TGF-β1 production. MSCs pro-inflammatory profile was also previously observed when MSCs were injected into the IVD.³⁰ In the work of van Buul et al., MSCs stimulated with TNF-α and interferon (IFN)-γ showed higher production inflammation markers (IL-6, IDO) and anticatabolic TIMP-2, whereas TGF-β1 decreased.⁴⁷

It has been proposed that MSCs can create negative feedback loops as mode of action. For instance, while TNF- α and other pro-inflammatory cytokines from resident macrophages have shown to activate MSCs to secrete TSG-6 on injured cornea, pro-inflammatory cytokines, nitric oxide, and other damage-associated molecules from injured tissues have also been shown to activate MSCs to secrete PGE₂, which bound to macrophages and polarized them to an M2 phenotype that secreted IL-10. IVD cultures in degenerative and conditions stimulated MSCs to significant increase the expression of chemokine ligand CCL5/RANTES and chemokine receptors CCR1 and CCR4, as well as to produce factors as MCP-1 and MIP-1 α , described to have a variety of pro-inflammatory activities, including chemotaxis.

TGF- β is known to enhance proteoglycans and COL2 in NP 3D cultures,⁵² and it is conventionally used to induce MSCs differentiation into a NP-like phenotype.⁸ This cytokine has a potent regulatory and inflammatory activity and, among others, regulates MSCs immune responses.⁵³ In a human MSCs/IVD fragments co-culture model it was observed, over time in culture, up-regulation of *TGF-\beta1* by MSCs, and a decrease of *TNF-\alpha*, stabilization of *IL-1\alpha* and up-regulation of *IL-1\beta* expression by IVD cells.³⁸ This is in opposition with our observations, in which a decrease of TGF-\beta1 production was related with a decrease of inflammatory markers *IL-6*, *IL-8* and *TNF-\alpha* of bovine IVDs. We hypothesize that it may be due to the differences between study models (human *vs* bovine) and to the culture stimulation with IL-1\beta in the bovine and not in the human model that may modify MSCs mode of action.

PGE₂ is known to be produced by both IVD cells⁵⁴ and MSCs,⁵⁵ in response to proinflammatory cytokine signaling, particularly IL-1 β , as it was observed in this co-culture

model. Activated by environmental signals, PGE₂ from MSCs exert regulatory influence on the activation status, proliferation, differentiation and function of immune cells from adaptive and innate immunity.⁵³ Additionally, it has been shown that cyclooxygenase (COX)-2/PGE₂ pathway may be one of the modulators of MSCs anti-inflammatory mechanism of action in osteoarthritic chondrocytes.²⁶

MSCs stimulation of proteoglycans and COL2 production in IVD were already reported in different literature models, in which the inflammatory environment was not addressed. 35,56,57 Furthermore, in vivo observations showed increased ECM components only after 12⁵⁸ to 48 weeks.⁵⁶ In the present inflammatory conditions, MMP1 and MMP3 expression by IVD cells was up-regulated 2 days after co-culture with MSCs and no stimulatory effect of MSCs was observed at ECM level after 14 days, which we hypothesized that could be due to be an early time point. In agreement with our results, van Buul et al. observe significant downregulation of COL2 gene expression in human osteoarthritic cartilage explants cultured with TNF-α and IFN)-γ stimulated MSC-conditioned medium.⁴⁷ The literature suggests that MSCs have an immunomodulatory response when in an inflammatory environment,26 and that they are mainly triggered to first counteract inflammation instead of stimulating matrix formation.⁴⁷ Overall, MSCs co-culture with IVDs under degenerative/pro-inflammatory conditions contribute to a less pro-inflammatory profile of native IVD cells. This immunomodulatory action was already described in osteoarthritic chondrocytes cultures with adipose-derived MSCs by a reduction of IL-6, IL-8, IL-1β, MCP-1, MIP-1α and RANTES²⁶ and in rat NP cells, co-cultured with human synovial MSCs, where it was observed down-regulated gene expression of, for example, nuclear factor, interleukin 3 regulated, IL-15, IL-6 signal transducer, IL-11 receptor, alpha chain 1, TSG-6 and TNF receptor superfamily, member 6.59 However, MSCs influence in IVD inflammatory response, degeneration and regeneration has not yet been extensively characterized.¹⁰

Here, MSCs seemed to possess anti-inflammatory, but not anti-catabolic properties in the pro-inflammatory/degenerative IVD. This mode of action seems to occur via a negative feedback loop, with increasing production of pro-inflammatory factors by MSCs. Overall, this study calls the attention to the need of more thorough studies before the widespread use of MSCs-based approaches for LBP. Moreover, differences in people's genetic predisposition may impact on the response to MSCs immunomodulation and thus affect LBP and IVD function. In the future, it would be interesting to explore the effect of MSCs in more complex models of IVD degeneration/inflammation. It is crucial to better understand the interactions between MSCs, IVD cells and immune cells in the context of the degenerated intervertebral disc and associated inflammation and pain.

Contributions

GQT, CN-W, MAB and RMG substantially contributed to the study conception and design. GQT and RMG contributed to the acquisition, analysis and interpretation of data, and to drafting the article. CLP and JRF contributed to data acquisition. AFM and MG-L contributed to image acquisition and analysis. MAB and RMG provided the funding for this study. All authors have critically revised the manuscript for important intellectual content and approved its final version.

Competing interests

The authors declare no competing financial interests.

Acknowledgements

The authors would like to acknowledge the following scientific services at i3S: BioSciences Screening Unit, Cell Culture and Genotyping Unit and Histology and Electron Microscopy Service. This work was supported by European Union funds through "Projetos Estruturados de I&D&I - Norte-01-0145-FEDER-000012, Portugal 2020 - FEDER" and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of RMG's Exploratory Project of FCT Investigator (IF/00638/2014). GQT and CLP also acknowledge FCT for their PhD grants (SFRH/BD/88429/2012 and SFRH/BD/85779/2012, respectively). The authors would also like to acknowledge Eurospine, the German Spine Foundation (Deutsche Wirbelsäulenstitung), the German Academic Exchange Service (DAAD) and the Conselho de Reitores das Universidades Portuguesas (CRUP). The funding agencies did not have any involvement in the study design, data collection/analysis/interpretation, manuscript preparation, or in the decision to submit the manuscript for publication.

References

- Rodrigues-Pinto R, Richardson SM, Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J 2014;23:1803-14.
- Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A. Low back pain in relation to lumbar disc degeneration. Spine 2000;25:487-92.
- Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA. Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 2007;22:1033-41.

- 4. Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 2007;35:652-5.
- 5. Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 2013;13:331-41.
- Le Maitre CL, Hoyland JA, Freemont AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 2007;9:R77.
- 7. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 2014;10:44-56.
- 8. Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 2016;99:69-80.
- 9. Yim RL, Lee JT, Bow CH, Meij B, Leung V, Cheung KM, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev 2014;23:2553-67.
- Molinos M, Almeida CR, Caldeira J, Cunha C, Goncalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015;12:20141191.
- 11. Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takakura Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine 2010;35:E475-80.
- 12. Sun F, Qu JN, Zhang YG. Animal models of disc degeneration and major genetic strategies. Pain Physician 2013;16:E267-75.
- Gantenbein B, Illien-Junger S, Chan SC, Walser J, Haglund L, Ferguson SJ, et al. Organ culture bioreactors – platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2015;10:339-52.
- Strassburg S, Richardson SM, Freemont AJ, Hoyland JA. Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype. Regen Med 2010;5:701-11.
- 15. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014;16:R67.

- 16. Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 2004;29:2627-32.
- 17. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009;20:419-27.
- 18. Rinkler C, Heuer F, Pedro MT, Mauer UM, Ignatius A, Neidlinger-Wilke C. Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading. J Neurosurg Spine 2010;13:535-42.
- 19. Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 2011;92:822-8.
- Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015;33:146-56.
- 21. Red de Terapia Celular. Treatment of degenerative disc disease with allogenic mesenchymal stem cells (MSV). URL: https://clinicaltrials.gov/ct2/show/study/NCT01860417.
- 22. Inbo Han. Autologous adipose derived stem cell therapy for intervertebral disc degeneration. URL: https://clinicaltrials.gov/ct2/show/NCT02338271.
- 23. The Foundation for Spinal Research, Education and Humanitarian Care, Inc. Human autograft mesenchymal stem cell mediated stabilization of the degenerative lumbar spine. URL: https://clinicaltrials.gov/ct2/show/NCT02529566.
- 24. Mesoblast, Ltd. Safety and preliminary efficacy study of mesenchymal precursor cells (MPCs) in subjects with lumbar back pain. URL: https://clinicaltrials.gov/ct2/show/NCT01290367.
- 25. Mesoblast, Ltd. A prospective, multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of a single injection of rexlemestrocel-L alone or combined with hyaluronic acid (HA) in subjects with chronic low back pain (MSB-DR003). URL: https://clinicaltrials.gov/ct2/show/study/NCT02412735.
- 26. Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum 2013;65:1271-81.
- 27. Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 2008;26:589-600.

- 28. Tautzenberger A, Lorenz S, Kreja L, Zeller A, Musyanovych A, Schrezenmeier H, et al. Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation. Biomaterials 2010;31:2064-71.
- 29. Almeida CR, Vasconcelos DP, Goncalves RM, Barbosa MA. Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. J R Soc Interface 2012;9:261-71.
- 30. Teixeira GQ, Boldt A, Nagl I, Pereira CL, Benz K, Wilke HJ, et al. A degenerative/proinflammatory intervertebral disc organ culture: an ex vivo model for anti-inflammatory drug and cell therapy. Tissue Eng Part C Methods 2016;22:8-19.
- 31. Goncalves RM, Antunes JC, Barbosa MA. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(gamma-glutamic acid) polyelectrolyte complexes. Eur Cell Mater 2012;23:249-61.
- 32. MacLean JJ, Lee CR, Grad S, Ito K, Alini M, Iatridis JC. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine 2003;28:973-81.
- 33. Teixeira GQ, Leite Pereira C, Castro F, Ferreira JR, Gomez-Lazaro M, Aguiar P, et al. Anti-inflammatory chitosan/poly-gamma-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomater 2016;42:168-79.
- 34. Morimoto M, Matsuo Y, Koide S, Tsuboi K, Shamoto T, Sato T, et al. Enhancement of the CXCL12/CXCR4 axis due to acquisition of gemcitabine resistance in pancreatic cancer: effect of CXCR4 antagonists. BMC Cancer. 2016;16:305.
- 35. Pereira CL, Teixeira GQ, Ribeiro-Machado C, Caldeira J, Costa M, Figueiredo F, et al. Mesenchymal stem/stromal cells seeded on cartilaginous endplates promote intervertebral disc regeneration through extracellular matrix remodeling. Sci Rep 2016;6:33836.
- 36. Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV. Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater 2015;30:104-17.
- 37. Hoyland JA, Le Maitre C, Freemont AJ. Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology (Oxford) 2008;47:809-14.
- 38. Bertolo A, Thiede T, Aebli N, Baur M, Ferguson SJ, Stoyanov JV. Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro. Eur Spine J 2011;20:592-603.
- 39. Phillips KL, Cullen K, Chiverton N, Michael AL, Cole AA, Breakwell LM, et al. Potential roles of cytokines and chemokines in human intervertebral disc degeneration: interleukin-1 is a master regulator of catabolic processes. Osteoarthritis Cartilage 2015;23:1165-77.

- 40. Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res 2010;28:1267-75.
- 41. Maidhof R, Rafiuddin A, Chowdhury F, Jacobsen T, Chahine NO. Timing of mesenchymal stem cell delivery impacts the fate and therapeutic potential in intervertebral disc repair. J Orthop Res 2016. doi: 10.1002/jor.23350
- 42. Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM. Senescence in human intervertebral discs. Eur Spine J 2006;15:S312-6.
- 43. Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated betagalactosidase in human and sand rat discs. Spine 2007;32:321-7.
- 44. Yang H, Wu J, Liu J, Ebraheim M, Castillo S, Liu X, et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration. Spine J 2010;10:802-10.
- 45. Pattappa G, Peroglio M, Sakai D, Mochida J, Benneker LM, Alini M, et al. CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur Cell Mater 2014;27:124-36.
- 46. Le Maitre CL, Hoyland JA, Freemont AJ. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther 2007;9:R83.
- 47. van Buul GM, Villafuertes E, Bos PK, Waarsing JH, Kops N, Narcisi R, et al. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthritis Cartilage 2012:20:1186-96.
- 48. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 2012;20:14-20.
- 49. Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, et al. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 2011;29:1572-9.
- 50. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009;15:42-9.
- 51. Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 2012;7:e35685.

- 52. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 alone and together with TGF-β promote the differentiation of human mesenchymal stem cells into a nucleus pulposus-like phenotype. Int J Mol Sci 2015;16:20344-59.
- 53. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014;6:552-70.
- 54. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1996;21:271-7.
- 55. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815-22.
- 56. Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 2005;30:2379-87.
- 57. Zhang YG, Guo X, Xu P, Kang LL, Li J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 2005;430:219-26.
- 58. Henriksson HB, Svanvik T, Jonsson M, Hagman M, Horn M, Lindahl A, et al. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine 2009;34:141-8.
- 59. Miyamoto T, Muneta T, Tabuchi T, Matsumoto K, Saito H, Tsuji K, et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther 2010;12:R206.

Supplementary Data

Materials and Methods

Culture of human MSCs

The data regarding age, gender, bone marrow origin and passaged used for the experiments conducted for the present work are shown in Table S1.

Table S1. Human MSCs Donors.

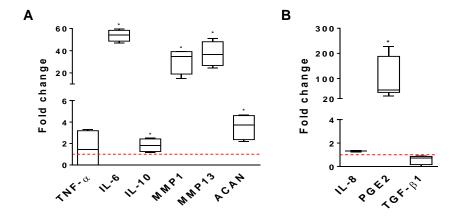
Donor	Age	Gender	Bone marrow origin	Passage used
1	18	male	Healthy donor for bone marrow for transplantation	3
2	21	male	Aspirate from knee joint surgery	5, 6, 7
3	22	male	Aspirate from knee joint surgery	5
4	25	female	Aspirate from knee joint surgery	5
5	34	male	Aspirate from knee joint surgery	3
6	45	male	Hip replacement surgery	4
7	56	female	Hip replacement surgery	3

Human MSCs 2D culture and quantitative real-time reverse transcription polymerase chain reaction

In parallel with IVD punches co-culture with MSCs in the transwells, a 2D culture was performed. MSCs ($1x10^6$) were seeded in 6-well plates and stimulated by IVD culture medium supplemented with 10 ng/mL IL-1 β (IL-1 β 2D). MSCs cultured in IVD basal medium were used as control (Ctr 2D).

MSCs gene expression was analyzed 2 days later by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Specific primer pairs were designed using published gene sequences (PubMed, NCBI Entrez Nucleotide Database) and Primer 3 software for human *GAPDH*, *TNF-α*, *IL-6*, *IL-8*, *IL-10*, *MMP1*, *MMP3*, *MMP13*, *COL2* and *ACAN* (Table S2), and synthesized by Thermo Fisher Scientific.

Table S2. Human oligonucleotide primers


Gene	Gene Forward and reverse primer, 5'-3'		NCBI reference sequence
GAPDH	GAAGGTGAAGGTCGGAGTC	224	NM_002046
GAPDH	GAAGATGGTGATGGGATTTC	224	
TNF-α	AACCTCCTCTCTGCCATCAA	100	HQ201306
	GGAAGACCCCTCCCAGATAG	100	
IL-6	AGGAGACTTGCCTGGTGAAA	180	NM_000600
	CAGGGGTGGTTATTGCATCT	100	
IL-10	CTGGGTTGCCAAGCCTTGTCTGA	154	NM_000572.2
	ATCGATGACAGCGCCGTAGCC	104	
MMP1	ATGCTGAAACCCTGAAGGTG	234	NM 002421
	CTGCTTGACCCTCAGAGACC	234	INIVI_UUZ4Z I

ММР 3	GGAGATGCCCACTTTGATGAT CATCTTGAGACAGGCGGAAC	187	NM_002422
MMP13	TTGAGCTGGACTCATTGTCG GGAGCCTCTCAGTCATGGAG	172	NM_002427
COL2	CGCACCTGCAGAGACCTGAA TCTTCTTGGGAACGTTTGCTGG	162	XM_056481
ACAN	TCTGTAACCCAGGCTCCAAC CTGGCAAAATCCCCACTAAA	199	XM_007701

Results

Evaluation of MSCs anti-inflammatory potential in the proinflammatory conditions 2 days after 2D culture

After 2 days of culture, MSCs gene expression analysis showed a significant up-regulation of proinflammatory interleukin *IL-6*, anti-inflammatory *IL-10*, matrix degrading enzymes *MMP1* and *MMP13*, and ECM component *ACAN*, compared to Ctr 2D (p<0.05) [Fig. S1(A)]. *TNF-\alpha* expression was similar between IL-1 β 2D and Ctr 2D groups. Furthermore, *MMP3* and *COL2* expression was not detected in MSCs 2D cultures, although they were previously shown to be expressed by human by nucleus pulposus cells.¹

Fig. S1. Effect on MSCs in 2D culture of proinflammatory stimulus with culture medium supplementation of 10 ng/mL IL-1β, for 2 days. (A) mRNA expression of proinflammation markers (TNF- α , IL-6, IL-10), matrix degrading enzymes (MMP1, MMP13), and an ECM component (ACAN) in MSCs 2D culture. Levels of mRNA were normalized to GAPDH. The ratio of stimulation to control (Crt 2D) indicates the fold change of induction after stimulation (control level = 1; dashed line). (B) Fold change of IL-8, PGE₂ and free active TGF-β1 concentrations normalized to control (Crt 2D) (n=3-7). *p<0.05

IL-8, PGE₂ and free active TGF- β 1 productions were quantified in culture supernatants [Fig. S1(B)]. After 2 days of stimulation with IL-1 β , PGE₂ production by MSCs was significantly increased (P = 0.02), while TGF- β 1 production seemed to have decreased about 0.7±0.7, in comparison to control.

These results indicate that MSCs cultured in 2D are sensitive to the presence of proinflammatory conditions, namely IL-1 β , presenting a more proinflammatory profile.

References

 Rinkler C, Heuer F, Pedro MT, Mauer UM, Ignatius A, Neidlinger-Wilke C. Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading. J Neurosurg Spine 2010;13:535-42.

CHAPTER VIII

General discussion and future perspectives

The work on this thesis was developed in view of enhancing knowledge concerning the inflammatory response of degenerated IVD, as well as to propose immunomodulatory therapies for this disorder.

As proposed by other authors, the modulation of inflammation is key for promoting matrix synthesis by the cells in the IVD microenvironment, both by native or transplanted cells (Wuertz and Haglund 2013, Risbud and Shapiro 2014, Gorth et al. 2015). For instance, herniated tissues, mostly extruded but also with intact AF structure (Lee et al. 2009, Phillips et al. 2015), are often described to contain abundant macrophage infiltration (Peng et al. 2006, Kokubo et al. 2008, Shamji et al. 2010, Wuertz and Haglund 2013). AF tear and consequent NP leakage is recognizable to the immune system as a foreign body, activating immune cell migration (lymphocytes, such as natural killer, T and B cells, and monocytes/macrophages) and infiltration in the extruded tissue, which together with the produced cytokines, amplify the inflammatory response, leading to increased innervation and associated pain (Sun et al. 2013b, Risbud and Shapiro 2014). The control of the inflammatory response for successful tissue repair/regeneration has been explored in other tissues, such as bone (Rozen et al. 2007, Santos et al. 2013, Lin et al. 2017), skin (Cardoso et al. 2011), tendon (Shen et al. 2016), cartilage (Pers et al. 2015, Kim et al. 2016, Sakata and Reddi 2016), peripheral nerve (Bombeiro et al. 2016), spinal cord (Watanabe et al. 2015), kidney (Semedo et al. 2009) or cardiac tissue (Han et al. 2015, Reina-Couto et al. 2016, Zlatanova et al. 2016), among others. In this work, the modulation of inflammation in degenerated IVD was attempted to promote tissue repair. However, it is important to highlight that the healthy human IVD has specific characteristic that may render difficult the reestablishment of homeostasis upon degeneration. The IVD is the largest avascular and aneural tissue in the body (Urban and Roberts 2003, Raj 2008, Huang et al. 2014), populated by a small number of resident cells in a slightly acidic and hypoxic environment (Huang et al. 2014). Moreover, it has access to low nutrient supply and is subjected to high mechanical and osmotic pressures (Rinkler et al. 2010).

The first contribution of this thesis to the field was the establishment of a study model of IVD degeneration and inflammation *ex vivo* (Chapter IV) that was shown to be adequate to test different therapeutics for IVD degeneration and associated inflammation (Teixeira et al. 2015, Teixeira et al. 2016). Due to the low accessibility of healthy human IVD tissue, this revealed to be a simple and inexpensive model (Alini et al. 2008), with high availability, enabling the design of more complex experiments requiring higher number of replicates. Nonetheless, due to the IVD's great swelling potential (Urban et al. 1979), and variability of IVD sizes within the same tail, it is difficult to establish a reproducible model of IVD tissue without endplate. To overcome these issues, standardized punches were performed to collect similar tissue samples from the different discs along the tail (with few surrounding AF) and these were cultured with membrane

filter inserts on top and under 0.46 MPa static loading, to prevent swelling (Teixeira et al. 2015). This pro-inflammatory/degenerative model was developed with needle puncture and IL-1β stimulation, a more physiological approach than most of the models available at the time, that simulated tissue degeneration by: 1) tissue removal (Pereira et al. 2014), 2) injury (Korecki et al. 2008) and/or 3) loading (Korecki et al. 2007, Illien-Junger et al. 2012, Pattappa et al. 2014), or also by tissue digestion with 4) chemical compounds, such as papain (Bucher et al. 2013, Chan et al. 2013, Malonzo et al. 2015) or trypsin (Jim et al. 2011, Gawri et al. 2014a, Mwale et al. 2014, AlGarni et al. 2016). Other ex vivo models in the presence of TNF-α were established for bovine (Purmessur et al. 2013b) and rat IVD (Walter et al. 2015, Walter et al. 2016). Ponnappan and colleagues (2011) had developed a rat lumbar IVD proinflammatory/degenerative model with IL-1β and TNF-α stimulation. This system is an atraumatic in vitro model of early IVD degeneration, and therefore, based on changes in the microenvironmental cues that promote wide changes in the expression of several genes linked to the IVD degenerative process (Ponnappan et al. 2011, Markova et al. 2013). The culture of the IVD with endplates allows for a better preservation of tissue structure, avoiding excessive swelling. Nonetheless, given the differences regarding the NP and IVD volumes from the rat lumbar (about 5 to 19 mm³), bovine tail (1 to 4 cm³), and human lumbar (5 to 20 cm³) regions (O'Connell et al. 2007), bovine IVDs promote a similar environment to human, namely for translation of intradiscal injection treatment volumes. Also, bovine discs suffer similar loss of notochordal cell content as humans, while rat IVDs preserve them in great number throughout adulthood, which confers a higher regenerative capacity to this model, that is far away from the human IVD potential (Alini et al. 2008). Moreover, bovine tails are cost-efficient and easily available for our studies. Recently, Krupkova et al. (2016) proposed an ex vivo bovine NP tissue culture in presence of IL-1β and TNF-α, to simulate the pro-inflammatory environment. In their work, the NP tissue is cultured inside a hypertonic polyethylene glycol structure, used as an artificial annulus system that was previously shown to prevent tissue swelling and proteoglycans loss, while maintaining cell viability for 42 days (van Dijk et al. 2013). Nonetheless, our NP punches culture with few surrounding AF, membrane filter inserts on top and under 0.46 MPa static loading also prevent excessive swelling (Teixeira et al. 2015). Though our model was shown to be suitable to test the direct effect of intradiscal therapies on IVD cells, which can be analyzed without the complex in vivo cell crosstalk, we consider that this model can be improved. The ex vivo model was developed without simulation of the normal physiological loadings to which discs are exposed in vivo (Haschtmann et al. 2006, Junger et al. 2009, Gawri et al. 2014a), which might influence the outcome. Moreover, using disc punches are a reliable simplification step, but not as physiological when compared to more

complex organ culture approaches which use complete discs with the adjacent endplates and additional dynamic loading application (Illien-Junger et al. 2012, Pattappa et al. 2014, Walter

et al. 2015, Walter et al. 2016). Another limitation is the absence of vascularization and innervation, and therefore, of immune cells in the disc and surroundings. To improve this, it would be interesting to complex the *ex vivo* model to focus on inflammation studies and correlation with pain mediators, since not all patients diagnosed with degenerative disc disease report pain, which suggests that only some specific features of disc degeneration are associated with LBP (Cheung et al. 2009, de Schepper et al. 2010, Adams et al. 2014). The establishment of a co-culture of the IVD punches with, for instance, macrophages (currently being performed in our team) will allow a better understanding of the local interactions between these cells and the IVD, in presence of different treatments. Previous *ex vivo* works showed that macrophage-IVD interactions promote the secretion of matrix degrading enzymes linked to a positive effect in spontaneous hernia regression (Haro et al. 2000, Doita et al. 2001), but on the other hand they play a major role in sciatica and in the production of TNF-α, IL-6, IL-8 and PGE₂ (Takada et al. 2004, Takada et al. 2012). Therefore, such model would be of great interest to further test the intradiscal therapies proposed in this thesis.

Nanotechnology-based therapies present several advantages for drug delivery. Chitosan (Ch) and poly(γ -glutamic acid) (γ -PGA) nanoparticles/nanocomplexes (NCs) have been previously used in our group to deliver an anti-inflammatory drug, diclofenac (Df). These Df-NCs inhibited and reverted macrophage activation in vitro (Gonçalves et al. 2015). In this thesis, Df-NCs intradiscal injection was attempted using the pro-inflammatory organ culture previously established. IVD cells were able to internalize the particles, which promoted down-regulation of IL-6, IL-8, MMP1 and MMP3 expression and decreased PGE₂ production, while NCs by themselves only significantly decreased MMP3. Moreover, Df-NCs promoted an increase in matrix proteins production by native cells, namely COL2 and ACAN, while NPs alone increased ACAN production only. γ -PGA is one of the most appealing natural polymers, mainly due to its biodegradability into glutamate residues. Since γ-PGA is anionic (pKa 2.19) it can be easily combined by electrostatic interaction with cationic polymers as Ch (Antunes et al. 2011), forming polyelectrolyte complexes with great potential as delivery systems. γ-PGA has been pointed out by prior works from our team to promote earlier chondrogenic differentiation of MSCs in pellet culture (Antunes et al. 2015) and to enhance COL2 production in a nucleotomized IVD ex vivo model (Antunes et al. 2017).

Despite the promising results ex vivo, we failed to determine the most adequate concentration of Df-NCs for intradiscal injection in the rat caudal injury model (Cunha et al. 2015), as discussed in Chapter VI. The injection of 10 μ L of Df and Df-NCs 50 times concentrated represented a too high NCs/NP volume ratio (over 2 times higher injection volume than the NP volume). Moreover, given that these solutions were injected at pH 5.0, a high acidification of

the IVD environment may have occurred, impeding the release of Df from Df-NCs. We look forward to improve the delivery system and to better understand if the pH of the rat IVD after injury drops under healthy physiological values of around 7.1 (Ichimura et al. 1991). Moreover, we are also performing experiments to determine the Df release kinetics from the NCs in solutions at different pH values, ranging namely from 6.5, pointed out the be characteristic of a severely degenerated environment (Kitano et al. 1993), to 7.1. On the other hand, further complexation of this system is required to promote prolonged drug release. Nanocapsules production in a layer-by-layer methodology could facilitate a single intradiscal injection with prolonged release periods.

Nonetheless, although the degeneration/herniation rat caudal model is of great interest to study molecular mechanisms in a complex environment, such as cell recruitment (Cunha et al. 2016), it presented limitations in the translation from *ex vivo* bovine organ cultures (as seen in Chapter VI), namely related with the determination of the most adequate volume and dosage for intradiscal injection of therapeutics or implantation of engineered tissue constructs, as reviewed by Zhang et al. (2011a). Large animal models, reviewed in Chapter I, as sheep or goat present several advantages regarding similar loss of notochordal cells and IVD size as humans, and even if quadruped, they suffer similar mechanical loadings applied on the lumbar spine region (O'Connell et al. 2007, Alini et al. 2008, Daly et al. 2016), facilitating the translation of volumes and concentrations, compared to rat (Zhang et al. 2011a).

Mao et al. studied the effect of injection volume on disc degeneration in a rat tail model, and observed significantly higher histologic score in IVDs, 1 week after injection of 3 μ L of saline solution, and more severe degeneration, particularly during week 4, when compared to animals injected with 2.5 μ L of saline solution or less (Mao et al. 2011). Rat degenerate discs treated with 2 μ L simvastatin in a hydrogel carrier demonstrated, after 6 weeks, radiographic and histologic features resembling non-injured IVDs (Than et al. 2014). Nonetheless, other studies of rat intradiscal injection of about 8 μ L of growth factors solutions have shown to promote matrix synthesis (Walsh et al. 2004, Matta et al. 2017). The needle diameter used is also of great importance to minimize the risk associated with further IVD degeneration. Elliott et al. (2008) review of several animal IVD models of needle puncture or sham injection denoted that needle injection in models where needle diameter/disc height ratio was smaller than 25%, no significant disc changes seemed to be observed regarding degenerative features.

In addition, the degree of acetylation (DA) of the Ch used to produce the NCs is about 11%. Nonetheless, Vasconcelos et al. (2013) showed that Ch scaffolds with 5% DA induced the adhesion of lower numbers of inflammatory cells after implantation in a murine air-pouch model, having the adherent macrophages predominantly an anti-inflammatory phenotypic profile (M2), compared to scaffold produced with Ch with 15% DA, predominantly with pro-inflammatory M1 macrophages both adherent to the scaffold and in the exudates. Therefore,

it would be of interest to produce NCs with different DA, namely 5%, and analyze *in vivo* if differences would be observed regarding the percentage of macrophages migration to the hernia, as well as their inflammatory profile. Additionally, the incorporation of immunomodulatory molecules, such as TGF-β1 (Yang et al. 2015), or resolvins (Vasconcelos et al. 2015a, Vasconcelos et al. 2015b) on the NCs could trigger a shift in the macrophage response towards an M2 phenotype, to promote resolution of inflammation and tissue repair *in vivo*.

IVD's ability to regenerate benefits from the presence of cells capable of proliferating and differentiating into NP-like cells. Although IVD progenitor cells have been found in the human IVD, after birth, the number of notochordal cells decreases very rapidly (Blanco et al. 2010, Feng et al. 2010, Liu et al. 2011). An exhaustion of these cells with ageing and degeneration limits IVD's potential to counteract degeneration (Sakai et al. 2012, Sakai and Andersson 2015). Therefore, cell-based therapies to LBP, with the purpose to stimulate regeneration of the IVD, are being increasingly used (Sakai and Andersson 2015). Autologous or allogeneic MSCs transplantation is suggested as an adequate cell source (Yoshikawa et al. 2010, Sakai and Andersson 2015). In this work, the influence of the pro-inflammatory/degenerative environment of IVD in MSCs behavior was evaluated, namely in their immunomodulatory role. MSCs help minimize organ damage caused by the inflammation and cells activated by the immune system (Zachar et al. 2016). Several mechanisms of action have been proposed for MSC immunomodulation, including the secretion of soluble factors, among others, as reviewed (Caplan and Dennis 2006, English 2013). Initial striking clinical trials showed that in patients suffering from lumbar IVD degeneration with associated LBP, autologous bone marrow MSCs grafted percutaneously to degenerated IVDs (Yoshikawa et al. 2010) or injections into the NP (Orozco et al. 2011) did not seem to promote an increase in disc height, but increased MRI signal intensity and improved pain symptoms, at 1 and 2 years after surgery. Moreover, autologous bone marrow concentrate disc injections also seemed to have reduced patients' discogenic pain after 12 months (Pettine et al. 2015). In rabbits, MSCs injection in nucleotomized discs promoted COL2 synthesis by native cells, inhibited the expression of degrading enzymes and inflammatory cytokines, indicating a possible immunomodulatory effect (Miyamoto et al. 2010). Nonetheless, as suggested by others and by our results (Chapter VII), in a pro-inflammatory environment MSCs are firstly triggered to modulate inflammation instead of stimulating matrix production (van Buul et al. 2012, Manferdini et al. 2013). MSCs have been shown to differentiate to an NP-like phenotype in vitro (Risbud et al. 2004, Richardson et al. 2008b, Strassburg et al. 2010). In vivo, MSCs transplantation showed to increase COL2 expression, while decreasing cell apoptosis in the disc (Yang et al. 2010). MSCs can be recruited by chemoattractants to IVD (Pereira et al. 2014), but their role in the

pro-inflammatory/degenerative conditions of degenerated IVD seems to be somehow committed (Chapter VII).

Currently, bone marrow is the primary used source of adult MSCs, in which one of 10⁵ nucleated cells is an MSC. This low cell number leads to the need of in vitro cell expansion to obtain sufficient cell numbers for clinical application (Hoogendoorn et al. 2008, Kregar Velikonja et al. 2014). In alternative, adipose-tissue is an abundant, expendable and easily accessible source of MSCs. For instance, Serigano et al. (2010) suggested 106 MSCs/disc as optimum cell number for transplantation into a dog disc degeneration model. The use of adipose-derived stem cells (ASCs) could reduce the need for in vitro expansion and subsequently one-step regenerative treatment strategies could be developed (Hoogendoorn et al. 2008, Kregar Velikonja et al. 2014). Few works have addressed the potential of ASCs in the IVD microenvironment, especially at long-term. However, it has been demonstrated that co-culture with degenerative NP tissue (Li et al. 2005) and cells (Choi et al. 2011) increase ASCs expression of COL2 and ACAN. Moreover, ASCs have also shown to promote matrix synthesis and cell proliferation of degenerated NP cells (Song et al. 2015). ASCs implanted in a rabbit model of traumatic degeneration of lumbar discs, showed proliferation 10 weeks after cell injection, ECM secretion and less ossification of damaged NP, compared with degenerative control discs (Chun et al. 2012). Recently, ASCs were shown to modulate inflammation in autoimmune arthritis (Lopez-Santalla et al. 2016).

Additionally, MSCs secrete numerous soluble factors in response to the microenvironmental cues, tuning several mechanisms in neighbor tissues via paracrine signaling (Caplan and Dennis 2006, Brisby et al. 2013). Thus, several studies focused on, for example, MSCs secretome for cardiac tissue repair (Dai et al. 2007) and recovery of hepatic (Parekkadan et al. 2007) and kidney (van Koppen et al. 2012) functions. MSCs secretome was suggested to stimulate IVD progenitor cells activity within degenerated human IVD tissue samples toward the repair process (Brisby et al. 2013). Hence, our group is currently comparing the therapeutic potential of not only MSCs, but also their secretome in the established degenerative/pro-inflammatory organ culture model.

Ultimately, the establishment of an experimental setup of IVD/macrophages co-culture, under pro-inflammatory/degenerative conditions could be used to evaluate the MSCs immunomodulatory effect, either in co-culture with the macrophages colonized IVD tissue or of their secretome. Moreover, given the results from the work in Chapter VII, which point out that in the degenerative environment, MSCs have a pro-inflammatory profile, while contributing to a less pro-inflammatory profile of native IVD cells, it would be of interest to treat the system with the anti-inflammatory Df-NCs. Taking this, if addition of the Df-NCs would decrease production of pro-inflammatory molecules by all cells, MSC could possibly differentiate and produce IVD-like ECM components.

This thesis focused mainly in the NP tissue. As future work, it would also be interesting to investigate the effect of different anti-inflammatory and immunomodulatory therapies in mechanical and biochemical properties of AF for repair stimulation. Aside the hostile environment of the NP, also the risk of AF tear has been challenging alternative solutions for IVD degeneration/herniation. As stated by Long et al. (Long et al. 2016), although discectomy is the most effective surgical procedure to treat hernia-associated LBP (Asch et al. 2002, Gray et al. 2006, Weinstein et al. 2008), this requires an incision in the AF, which may contribute, together with pre-existing annular injury, to worsening the IVD biomechanical stability (Masuda et al. 2005, Elliott et al. 2008, Michalek and latridis 2012). Failure of the AF is often associated with disc degeneration, whereas this structure gets too weak to restrain the hydrated NP material (Adams and Roughley 2006, Stefanakis et al. 2012, Stefanakis et al. 2014). As described before, the AF consists in concentric lamellae of regularly arranged collagen fibers, interconnected by a network of elastin and fibrillin, the so called translamellar bridging network (TLBN), which increase tensile strength of the annular wall (Yu et al. 2007, Schollum et al. 2009, Yu et al. 2015). But the pathomechanism leading to mechanical weakness (and ultimately rupture) of AF and consequent disc herniation is not yet fully understood.

The studies regarding the inflammation in the pathomechanism of disc degeneration and the inflammatory targets proposed for therapeutic strategies in degenerated IVD, previously discussed in Chapter II, are mostly focused in the NP tissue, often disregarding the influence of pro-inflammatory conditions on the TLBN of AF. Therefore, the influence of pro-inflammatory conditions on the mechanical properties of the AF tissue should be further addressed, along with the impact of anti-inflammatory treatment strategies. For this, an IVD *ex vivo* AF model, under physiological and degenerative biomechanical loading conditions (Neidlinger-Wilke et al. 2014), is being established to contribute with further knowledge in the field of therapeutic approaches for IVD regeneration. This model results from a new collaborative project between Portugal and Germany, that will enhance the knowledge on immunomodulatory strategies for IVD, that hopefully will increase the success of LBP therapeutic approaches.

REFERENCES

- Abe, Y., et al. (2007). "Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells." Spine (Phila Pa 1976) **32**(6): 635-642.
- Abraham, A. C., J. W. Liu and S. Y. Tang (2016). "Longitudinal changes in the structure and inflammatory response of the intervertebral disc due to stab injury in a murine organ culture model." J Orthop Res **34**(8): 1431-1438.
- Acosta, F.L. Jr., et al. (2011). "Porcine intervertebral disc repair using allogenic juvenile articular chondrocytes or mesenchymal stem cells." Tissue Eng Part A **17**(23-24): 3045-3055.
- Adams, M. A. and P. J. Roughley (2006). "What is intervertebral disc degeneration, and what causes it?" Spine (Phila Pa 1976) **31**(18): 2151-2161.
- Adams, M.A., P. Lama, U. Zehra and P. Dolan (2014). "Why do some intervertebral discs degenerate, when others (in the same spine) do not?" Clin Anat **28**(2):195-204.
- Adams, P. and H. Muir (1976). "Qualitative changes with age of proteoglycans of human lumbar discs." Ann Rheum Dis **35**(4): 289-296.
- Agrawal, A., et al. (2007). "Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk." Am J Physiol Cell Physiol **293**(2): C621-631.
- Agrawal, A., et al. (2008). "Cited2 modulates hypoxia-inducible factor-dependent expression of vascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc." Arthritis Rheum **58**(12): 3798-3808.
- Aguiar, D. J., S. L. Johnson and T. R. Oegema (1999). "Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis." Exp Cell Res **246**(1): 129-137.
- Ahn, S. H., et al. (2002). "mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs." Spine (Phila Pa 1976) **27**(9): 911-917.
- Akyol, S., B. S. Eraslan, H. Etyemez, T. Tanriverdi and M. Hanci (2010). "Catabolic cytokine expressions in patients with degenerative disc disease." Turk Neurosurg **20**(4): 492-499.
- Albanesi, C., A. Cavani and G. Girolomoni (1999). "IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha." J Immunol **162**(1): 494-502.
- AlGarni, N., et al. (2016). "Short Link N stimulates intervertebral disc repair in a novel long-term organ culture model that includes the bony vertebrae." Tissue Eng Part A **22**(21-22): 1252-1257.

- Alini, M., et al. (2008). "Are animal models useful for studying human disc disorders/degeneration?" Eur Spine J **17**(1): 2-19.
- Alkhatib, B., et al. (2014). "Acute mechanical injury of the human intervertebral disc: link to degeneration and pain." Eur Cell Mater **28**: 98-110; discussion 110-111.
- An, H. S., et al. (2005). "Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits." Spine (Phila Pa 1976) **30**(1): 25-31; discussion 31-22.
- Anderson, D. G., et al. (2002). "Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model." Spine (Phila Pa 1976) **27**(12): 1291-1296.
- Anderson, D. G., et al. (2005). "Cellular therapy for disc degeneration." Spine (Phila Pa 1976) **30**(17 Suppl): S14-19.
- Andersson, G. B. (1999). "Epidemiological features of chronic low-back pain." Lancet **354**(9178): 581-585.
- Ando, T., F. Kato, K. Mimatsu and H. Iwata (1995). "Effects of chondroitinase ABC on degenerative intervertebral discs." Clin Orthop Relat Res (318): 214-221.
- Antunes, J. C., et al. (2011). "Layer-by-layer self-assembly of chitosan and poly(gamma-glutamic acid) into polyelectrolyte complexes." Biomacromolecules **12**(12): 4183-4195.
- Antunes, J. C., et al. (2015). "Poly(γ-glutamic acid) as an exogenous promoter of chondrogenic differentiation of human mesenchymal stem/stromal cells." Tissue Engineering Part A **21**(11-12): 1869-1885.
- Antunes, J. C., et al. (2017). "Poly(gamma-glutamic acid) and poly(gamma-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc." J Mater Sci Mater Med **28**(1): 6.
- Aota, Y., et al. (2006). "Comparison of cellular response in bovine intervertebral disc cells and articular chondrocytes: effects .of lipopolysaccharide on proteoglycan metabolism." Cell Tissue Res **326**(3): 787-793.
- Ariga, K., et al. (2003). "Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study." Spine (Phila Pa 1976) **28**(14): 1528-1533.
- Asch, H. L., et al. (2002). "Prospective multiple outcomes study of outpatient lumbar microdiscectomy: should 75 to 80% success rates be the norm?" J Neurosurg **96**(1 Suppl): 34-44.
- Autio, R. A., et al. (2006). "The effect of infliximab, a monoclonal antibody against TNF-alpha, on disc herniation resorption: a randomized controlled study." Spine (Phila Pa 1976) **31**(23): 2641-2645.
- Bachmeier, B. E., et al. (2009). "Matrix metalloproteinase expression levels suggest distinct

- enzyme roles during lumbar disc herniation and degeneration." Eur Spine J **18**(11): 1573-1586.
- Bachmeier, B.E., et al. (2007). "Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc." Ann N Y Acad Sci **1096**: 44-54.
- Bae, Y., et al. (2012). "miRNA-34c regulates Notch signaling during bone development." Hum Mol Genet **21**(13): 2991-3000.
- Bandres, E., et al. (2009). "microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells." Clin Cancer Res **15**(7): 2281-2290.
- Bedore, J., et al. (2013). "Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2." Arthritis Rheum **65**(10): 2634-2644.
- Bellgrau, D., et al. (1995). "A role for CD95 ligand in preventing graft rejection." Nature **377**(6550): 630-632.
- Bendtsen, M., C. E. Bunger, X. Zou, C. Foldager and H. S. Jorgensen (2011). "Autologous stem cell therapy maintains vertebral blood flow and contrast diffusion through the endplate in experimental intervertebral disc degeneration." Spine (Phila Pa 1976) **36**(6): E373-379.
- Bergknut, N., et al. (2012). "The dog as an animal model for intervertebral disc degeneration?" Spine (Phila Pa 1976) **37**(5): 351-358.
- Bertolo, A., et al. (2011). "Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro." Eur Spine J **20**(4): 592-603.
- Black, R. A., et al. (1997). "A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells." Nature **385**(6618): 729-733.
- Blanco, J. F., et al. (2010). "Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects." Spine (Phila Pa 1976) **35**(26): 2259-2265.
- Bombeiro, A. L., et al. (2016). "Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy." Front Cell Neurosci 10: 151.
- Bonetti, M., et al. (2005). "Intraforaminal O(2)-O(3) versus periradicular steroidal infiltrations in lower back pain: randomized controlled study." AJNR Am J Neuroradiol **26**(5): 996-1000.
- Boos, N., et al. (2002). "Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science." Spine (Phila Pa 1976) **27**(23): 2631-2644.
- Brisby, H., et al. (2013). "The presence of local mesenchymal progenitor cells in human

- degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans." Stem Cells Dev **22**(5): 804-814.
- Bucher, C., A. Gazdhar, L. M. Benneker, T. Geiser and B. Gantenbein-Ritter (2013). "Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system." Stem Cells Int **2013**: 326828.
- Buckland, J. (2010). "Biomarkers: microRNAs under the spotlight in inflammatory arthritis." Nat Rev Rheumatol **6**(8): 436.
- Buckwalter, J. A. (1995). "Aging and degeneration of the human intervertebral disc." Spine (Phila Pa 1976) **20**(11): 1307-1314.
- Burgher, A. H., B. C. Hoelzer, D. R. Schroeder, G. A. Wilson and M. A. Huntoon (2011). "Transforaminal epidural clonidine versus corticosteroid for acute lumbosacral radiculopathy due to intervertebral disk herniation." Spine (Phila Pa 1976) **36**(5): E293-E300.
- Burke, J. G., et al. (2002a). "Spontaneous production of monocyte chemoattractant protein-1 and interleukin-8 by the human lumbar intervertebral disc." Spine (Phila Pa 1976) **27**(13): 1402-1407.
- Burke, J. G., et al. (2002b). "Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators." J Bone Joint Surg Br **84**(2): 196-201.
- Burke, J. G., et al. (2003). "Human nucleus pulposis can respond to a pro-inflammatory stimulus." Spine (Phila Pa 1976) **28**(24): 2685-2693.
- Cai, P., et al. (2017). "Role of miR-15a in intervertebral disc degeneration through targeting MAP3K9." Biomed Pharmacother **87**: 568-574.
- Cao, H., et al. (2014). "Upregulation of let-7a inhibits vascular smooth muscle cell proliferation in vitro and in vein graft intimal hyperplasia in rats." J Surg Res **192**(1): 223-233.
- Cao, P., et al. (2011). "Intradiscal injection therapy for degenerative chronic discogenic low back pain with end plate Modic changes." Spine J **11**(2): 100-106.
- Caplan, A. I. and J. E. Dennis (2006). "Mesenchymal stem cells as trophic mediators." J Cell Biochem **98**(5): 1076-1084.
- Cardoso, C. R., et al. (2011). "Oleic acid modulation of the immune response in wound healing: a new approach for skin repair." Immunobiology **216**(3): 409-415.
- Castro, A. P. G., et al. (2014). "Long-term creep behavior of the intervertebral disk: comparison between bioreactor data and numerical results." Front Bioeng Biotechnol **2**: 56.
- Chan, S. C. and B. Gantenbein-Ritter (2012). "Preparation of intact bovine tail intervertebral discs for organ culture." J Vis Exp (60).
- Chan, S. C., A. Burki, H. M. Bonel, L. M. Benneker and B. Gantenbein-Ritter (2013). "Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus

- therapy." Spine J 13(3): 273-283.
- Chen, B., et al. (2017). "IL-21 is positively associated with intervertebral disc degeneration by interaction with TNF-alpha through the JAK-STAT signaling pathway." Inflammation **40**(2): 612-622.
- Chen, J., et al. (2009). "Expression of laminin isoforms, receptors and binding proteins unique to nucleus pulposus cells of immature intervertebral disc." Connect Tissue Res **50**(5): 294-306.
- Chen, J., W. Yan and L. A. Setton (2006). "Molecular phenotypes of notochordal cells purified from immature nucleus pulposus." Eur Spine J **15**(Suppl 3): 303-311.
- Chen, X., et al. (2016). "A comparison between nucleus pulposus-derived stem cell transplantation and nucleus pulposus cell transplantation for the treatment of intervertebral disc degeneration in a rabbit model." Int J Surg 28: 77-82.
- Cheung, K. M., et al. (2009). "Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals." Spine (Phila Pa 1976) **34**(9): 934-940.
- Ching, C. T., D. H. Chow, F. Y. Yao and A. D. Holmes (2003). "The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model." Clin Biomech (Bristol, Avon) **18**(3): 182-189.
- Choi, E.H., et al. (2011). "Effect of nucleus pulposus cells having different phenotypes on chondrogenic differentiation of adipose-derived stromal cells in a coculture system using porous membranes." Tissue Eng Part A **17**(19-20): 2445-2451.
- Chou, R., et al. (2007). "Diagnosis and treatment of low back pain: A joint clinical practice guideline from the american college of physicians and the american pain society." Ann Intern Med **147**(7): 478-491.
- Chubinskaya, S., et al. (2007). "Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs." J Orthop Res **25**(4): 517-530.
- Chujo, T., et al. (2006). "Effects of growth differentiation factor-5 on the intervertebral disc--in vitro bovine study and in vivo rabbit disc degeneration model study." Spine (Phila Pa 1976) **31**(25): 2909-2917.
- Chun, H. J., et al. (2012). "Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs." World Neurosurg **78**(3-4): 364-371.
- Cooper, G. (2015). Non-Operative Treatment of the Lumbar Spine. Switzerland, Springer International Publishing.
- Court, C., et al. (2001). "The effect of static in vivo bending on the murine intervertebral disc." Spine J 1(4): 239-245.
- Court, C., J. R. Chin, E. Liebenberg, O. K. Colliou and J. C. Lotz (2007). "Biological and mechanical consequences of transient intervertebral disc bending." Eur Spine J **16**(11):

- 1899-1906.
- Crevensten, G., et al. (2004). "Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs." Ann Biomed Eng **32**(3): 430-434.
- Croft, P. (2000). "Is life becoming more of a pain?" BMJ **320**(7249): 1552-1553.
- Cuellar, J. M., et al. (2010). "Cytokine evaluation in individuals with low back pain using discographic lavage." Spine J **10**(3): 212-218.
- Cuellar, J. M., et al. (2013). "Cytokine expression in the epidural space: a model of noncompressive disc herniation-induced inflammation." Spine (Phila Pa 1976) **38**(1): 17-23.
- Cunha, C., et al. (2016). "Systemic delivery of bone marrow mesenchymal stem cells for in situ intervertebral disc regeneration." Stem Cells Transl Med **6**(3): 1029-1039.
- Cunha, C., S. Lamas, R. M. Goncalves and M. A. Barbosa (2015). "Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model." J Orthop Res **35**(2):258-268.
- Dahia, C. L., E. J. Mahoney, A. A. Durrani and C. Wylie (2009). "Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging." Spine (Phila Pa 1976) **34**(5): 456-462.
- Dahia, C. L., E. Mahoney and C. Wylie (2012). "Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc." PLoS One **7**(4): e35944.
- Dai, W., S. L. Hale and R. A. Kloner (2007). "Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats." Regen Med **2**(1): 63-68.
- Daly, C., P. Ghosh, G. Jenkin, D. Oehme and T. Goldschlager (2016). "A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic." Biomed Res Int 2016: 5952165.
- De Nardo, D. (2015). "Toll-like receptors: activation, signalling and transcriptional modulation." Cytokine **74**(2): 181-189.
- de Schepper, E.I., et al. (2010). "The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features." Spine (Phila Pa 1976) **35**(5): 531-536.
- Demers, C. N., J. Antoniou and F. Mwale (2004). "Value and limitations of using the bovine tail as a model for the human lumbar spine." Spine (Phila Pa 1976) **29**(24): 2793-2799.
- Deyo, R. A. and J. N. Weinstein (2001). "Low back pain." N Engl J Med. 344(5): 363-370.
- Doita, M., et al. (2001). "Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption." Spine (Phila Pa 1976) **26**(14): 1522-1527.

- Doita, M., T. Kanatani, T. Harada and K. Mizuno (1996). "Immunohistologic study of the ruptured intervertebral disc of the lumbar spine." Spine (Phila Pa 1976) **21**(2): 235-241.
- Dongfeng, R., et al. (2011). "The expression of tumor necrosis factor-alpha and CD68 in high-intensity zone of lumbar intervertebral disc on magnetic resonance image in the patients with low back pain." Spine (Phila Pa 1976) **36**(6): E429-433.
- Donisch, E. W. and W. Trapp (1971). "The cartilage endplates of the human vertebral column (some considerations of postnatal development)." Anat Rec **169**(4): 705-716.
- Drazin D, R. J., Avalos P, Acosta F. (2012). "Stem cell therapy for degenerative disc disease." Adv Orthop **2012**: 961052.
- Duan, Z., E. Choy, D. Harmon, X. Liu, M. Susa, H. Mankin and F. Hornicek (2011). "MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration." Mol Cancer Ther **10**(8): 1337-1345.
- Dudek, M., et al. (2016). "The intervertebral disc contains intrinsic circadian clocks that are regulated by age and cytokines and linked to degeneration." Ann Rheum Dis **76**(3): 576-584.
- Dudli, S., D. Haschtmann and S. J. Ferguson (2012). "Fracture of the vertebral endplates, but not equienergetic impact load, promotes disc degeneration in vitro." J Orthop Res **30**(5): 809-816.
- Dudli, S., D. Haschtmann and S. J. Ferguson (2015). "Persistent degenerative changes in the intervertebral disc after burst fracture in an in vitro model mimicking physiological post-traumatic conditions." Eur Spine J **24**(9): 1901-1908.
- Dudli, S., S. J. Ferguson and D. Haschtmann (2014). "Severity and pattern of post-traumatic intervertebral disc degeneration depend on the type of injury." Spine J **14**(7): 1256-1264.
- Elliott, D. M., et al. (2008). "The effect of relative needle diameter in puncture and sham injection animal models of degeneration." Spine (Phila Pa 1976) **33**(6): 588-596.
- Ellman, M. B., et al. (2012). "Toll-like receptor adaptor signaling molecule MyD88 on intervertebral disk homeostasis: in vitro, ex vivo studies." Gene **505**(2): 283-290.
- English, K. (2013). "Mechanisms of mesenchymal stromal cell immunomodulation." Immunol Cell Biol **91**(1): 19-26.
- Erwin, W. M., et al. (2013). "Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair." Spine (Phila Pa 1976) **38**(3): 211-216.
- Eyre, D. R. (1979). "Biochemistry of the intervertebral disc." Int Rev Connect Tissue Res 8: 227-291.
- Fazzalari, N. L., et al. (2001). "Mechanical and pathologic consequences of induced concentric anular tears in an ovine model." Spine (Phila Pa 1976) **26**(23): 2575-2581.
- Feng, C., H. Liu, Y. Yang, B. Huang and Y. Zhou (2015). "Growth and differentiation factor-5 contributes to the structural and functional maintenance of the intervertebral disc." Cell

- Physiol Biochem 35(1): 1-16.
- Feng, G., et al. (2010). "Multipotential differentiation of human anulus fibrosus cells: an in vitro study." J Bone Joint Surg Am **92**(3): 675-685.
- Feng, G., Y. Wan, F. H. Shen and X. Li (2009). "Nucleus pulposus explant culture model." J Orthop Res **27**(6): 814-819.
- Freeman, B. J., et al. (2013). "Randomized, double-blind, placebo-controlled, trial of transforaminal epidural etanercept for the treatment of symptomatic lumbar disc herniation." Spine (Phila Pa 1976) **38**(23): 1986-1994.
- Freemont, A. J., et al. (2002a). "Nerve growth factor expression and innervation of the painful intervertebral disc." J Pathol **197**(3): 286-292.
- Freemont, A. J., M. Jeziorska, J. A. Hoyland, P. Rooney and S. Kumar (2002b). "Mast cells in the pathogenesis of chronic back pain: a hypothesis." J Pathol **197**(3): 281-285.
- Fujita, N., et al. (2005). "CD24 is expressed specifically in the nucleus pulposus of intervertebral discs." Biochem Biophys Res Commun **338**(4): 1890-1896.
- Fujita, N., et al. (2012). "Prolyl hydroxylase 3 (PHD3) modulates catabolic effects of tumor necrosis factor-alpha (TNF-alpha) on cells of the nucleus pulposus through co-activation of nuclear factor kappaB (NF-kappaB)/p65 signaling." J Biol Chem **287**(47): 39942-39953.
- Fujita, N., J. et al. (2008). "Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc." Biochem Biophys Res Commun **372**(2): 367-372.
- Furtwangler, T., S. C. Chan, G. Bahrenberg, P. J. Richards and B. Gantenbein-Ritter (2013). "Assessment of the matrix degenerative effects of MMP-3, ADAMTS-4, and HTRA1, injected into a bovine intervertebral disc organ culture model." Spine (Phila Pa 1976) 38(22): E1377-1387.
- Furukawa, T., et al. (2009). "Absence of biglycan accelerates the degenerative process in mouse intervertebral disc." Spine (Phila Pa 1976) **34**(25): E911-E917.
- Furuta, M., et al. (2010). "miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma." Carcinogenesis **31**(5): 766-776.
- Gabay, C., C. Lamacchia and G. Palmer (2010). "IL-1 pathways in inflammation and human diseases." Nat Rev Rheumatol **6**(4): 232-241.
- Gabr, M. A., et al. (2011). "Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells." J Orthop Res **29**(1): 1-7.
- Gaffen, S. L. (2011). "Recent advances in the IL-17 cytokine family." Curr Opin Immunol **23**(5): 613-619.
- Gajendran, V. K., M. W. Reuter, S. R. Golish, L. S. Hanna and G. J. Scuderi (2011). "Is the fibronectin-aggrecan complex present in cervical disk disease?" PM R **3**(11): 1030-1034.
- Galbusera, F., et al. (2014). "Ageing and degenerative changes of the intervertebral disc and

- their impact on spinal flexibility." Eur Spine J 23 Suppl 3: S324-332.
- Gallucci, M., et al. (2007). "Sciatica: treatment with intradiscal and intraforaminal injections of steroid and oxygen-ozone versus steroid only." Radiology **242**(3): 907-913.
- Ganey, T., et al. (2003). "Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc." Spine (Phila Pa 1976) **28**(23): 2609-2620.
- Gantenbein, B., et al. (2006). "An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs." Spine (Phila Pa 1976) **31**(23): 2665-2673.
- Gantenbein, B., et al. (2015). "Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy." Curr Stem Cell Res Ther **10**(4): 339-352.
- Gawri, R., et al. (2014a). "Physiological loading can restore the proteoglycan content in a model of early IVD degeneration." PLoS One **9**(7).
- Gawri, R., et al. (2014b). "High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain." Arthritis Res Ther **16**(1): R21.
- Genevay, S., et al. (2010). "Adalimumab in severe and acute sciatica: a multicenter, randomized, double-blind, placebo-controlled trial." Arthritis Rheum **62**(8): 2339-2346.
- Genevay, S., et al. (2012). "Adalimumab in acute sciatica reduces the long-term need for surgery: a 3-year follow-up of a randomised double-blind placebo-controlled trial." Ann Rheum Dis **71**(4): 560-562.
- Genevay, S., S. Stingelin and C. Gabay (2004). "Efficacy of etanercept in the treatment of acute, severe sciatica: a pilot study." Ann Rheum Dis **63**(9): 1120-1123.
- Ghosh, P., et al. (2012). "Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs." J Neurosurg Spine **16**(5): 479-488.
- Gillett, N. A., R. Gerlach, J. J. Cassidy and S. A. Brown (1988). "Age-related changes in the beagle spine." Acta Orthop Scand **59**(5): 503-507.
- Gilson, A., M. Dreger and J. P. G. Urban (2010). "Differential expression level of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers." Arthritis Res Ther **12**(1): R24.
- Goldberg, H., et al. (2015). "Oral steroids for acute radiculopathy due to a herniated lumbar disk: a randomized clinical trial." Jama **313**(19): 1915-1923.
- Gonçalves, R. M., A. C. L. Pereira, I. O. Pereira, M. J. Oliveira and M. A. Barbosa (2015). "Macrophage response to Chitosan/Poly-(γ-Glutamic acid) nanoparticles carrying an anti-inflammatory drug." J Mat Sci Mat Med **26**(4): 167.
- Gordon, S. (2003). "Alternative activation of macrophages." Nat Rev Immunol 3(1): 23-35.

- Gorensek, M., et al. (2004). "Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes." Cell Mol Biol Lett **9**(2): 363-373.
- Gorth, D. J., et al. (2012). "IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1beta-mediated degradation of nucleus pulposus in vitro." Arthritis Res Ther **14**(4): R179.
- Gorth, D. J., I. M. Shapiro and M. V. Risbud (2015). "Discovery of the drivers of inflammation induced chronic low back pain: from bacteria to diabetes." Discov Med **20**(110): 177-184.
- Goupille, P., D. Mulleman, G. Paintaud, H. Watier and J. P. Valat (2007). "Can sciatica induced by disc herniation be treated with tumor necrosis factor alpha blockade?" Arthritis Rheum **56**(12): 3887-3895.
- Grad, S., M. Peroglio, Z. Li and M. Alini (2015). "Endogenous cell homing for intervertebral disk regeneration." J Am Acad Orthop Surg **23**(4): 264-266.
- Grant, M. P., et al. (2016a). "Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc." Eur Cell Mater **32**: 137-151.
- Grant, M., et al. (2016b). "Development of a large animal long-term intervertebral disc organ culture model that includes the bony vertebrae for ex vivo studies." Tissue Eng Part C Methods **22**(7): 636-643.
- Gray, D. T., et al. (2006). "Population-based trends in volumes and rates of ambulatory lumbar spine surgery." Spine (Phila Pa 1976) **31**(17): 1957-1963; discussion 1964.
- Greg Anderson, D., X. Li, T. Tannoury, G. Beck and G. Balian (2003). "A fibronectin fragment stimulates intervertebral disc degeneration in vivo." Spine (Phila Pa 1976) **28**(20): 2338-2345.
- Greil, R., A. Egle and A. Villunger (1998). "On the role and significance of Fas (Apo-1/CD95) ligand (FasL) expression in immune privileged tissues and cancer cells using multiple myeloma as a model." Leuk Lymphoma **31**(5-6): 477-490.
- Griffith, T. S., T. Brunner, S. M. Fletcher, D. R. Green and T. A. Ferguson (1995). "Fas ligand-induced apoptosis as a mechanism of immune privilege." Science **270**(5239): 1189-1192.
- Gronblad, M., et al. (1994). "A controlled immunohistochemical study of inflammatory cells in disc herniation tissue." Spine (Phila Pa 1976) **19**(24): 2744-2751.
- Gruber, H. E., B. Gordon, C. Williams, H. J. Norton and E. N. Hanley, Jr. (2007). "Vertebral endplate and disc changes in the aging sand rat lumbar spine: cross-sectional analyses of a large male and female population." Spine (Phila Pa 1976) **32**(23): 2529-2536.
- Gruber, H. E., et al. (2002). "Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat." Spine (Phila Pa 1976) **27**(15): 1626-1633.
- Gruber, H. E., et al. (2008). "Analysis of cell death and vertebral end plate bone mineral density in the annulus of the aging sand rat." Spine J **8**(3): 475-481.

- Gruber, H. E., et al. (2014b). "Production and expression of RANTES (CCL5) by human disc cells and modulation by IL-1-beta and TNF-alpha in 3D culture." Exp Mol Pathol **96**(2): 133-138.
- Gruber, H. E., G. L. Hoelscher, J. A. Ingram, H. J. Norton and E. N. Hanley, Jr. (2013). "Increased IL-17 expression in degenerated human discs and increased production in cultured annulus cells exposed to IL-1ss and TNF-alpha." Biotech Histochem **88**(6): 302-310.
- Gruber, H. E., G. L. Hoelscher, J. A. Ingram, S. Bethea and E. N. Hanley, Jr. (2014c). "Growth and differentiation factor-5 (GDF-5) in the human intervertebral annulus cells and its modulation by IL-1ss and TNF-alpha in vitro." Exp Mol Pathol **96**(2): 225-229.
- Gruber, H. E., J. A. Ingram, D. E. Davis and E. N. Hanley, Jr. (2009). "Increased cell senescence is associated with decreased cell proliferation in vivo in the degenerating human annulus." Spine J **9**(3): 210-215.
- Gruber, H. E., R. Phillips, J. A. Ingram, H. J. Norton and E. N. Hanley, Jr. (2014a). "Spontaneous age-related cervical disc degeneration in the sand rat." Clin Orthop Relat Res **472**(6): 1936-1942.
- Gruber, H. E., T. Johnson, H. J. Norton and E. N. Hanley, Jr. (2002). "The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses." Spine (Phila Pa 1976) **27**(3): 230-234.
- Gu, S.-X., et al. (2015). "MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc." Gene **555**(2): 80-87.
- Gullung, G. B., et al. (2011). "Platelet-rich plasma effects on degenerative disc disease: analysis of histology and imaging in an animal model." Evid Based Spine Care J **2**(4): 13-18.
- Habtemariam, A., M. Gronblad, J. Virri, S. Seitsalo and E. Karaharju (1998). "A comparative immunohistochemical study of inflammatory cells in acute-stage and chronic-stage disc herniations." Spine (Phila Pa 1976) **23**(20): 2159-2165; discussion 2166.
- Hamamoto, H., et al. (2012). "Capability of nondegenerated and degenerated discs in producing inflammatory agents with or without macrophage interaction." Spine (Phila Pa 1976) **37**(3): 161-167.
- Hammer, R. E., S. D. Maika, J. A. Richardson, J. P. Tang and J. D. Taurog (1990). "Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders." Cell **63**(5): 1099-1112.
- Hamrick, M. W., C. Pennington and C. D. Byron (2003). "Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin)." J Orthop Res **21**(6): 1025-1032.

- Han, B., et al. (2008). "A simple disc degeneration model induced by percutaneous needle puncture in the rat tail." Spine (Phila Pa 1976) **33**(18): 1925-1934.
- Han, C., et al. (2015). "Acute inflammation stimulates a regenerative response in the neonatal mouse heart." Cell Res **25**(10): 1137-1151.
- Haro, H., et al. (1997). "Sequential dynamics of monocyte chemotactic protein-1 expression in herniated nucleus pulposus resorption." J Orthop Res **15**(5): 734-741.
- Haro, H., et al. (2000). "Matrix metalloproteinase-7-dependent release of tumor necrosis factoralpha in a model of herniated disc resorption." J Clin Invest **105**(2): 143-150.
- Haschtmann, D., J. V. Stoyanov and S. J. Ferguson (2006). "Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model." J Orthop Res **24**(10): 1957-1966.
- Haschtmann, D., J. V. Stoyanov, P. Gédet and S. J. Ferguson (2008). "Vertebral endplate trauma induces disc cell apoptosis and promotes organ degeneration in vitro." Eur Spine J **17**(2): 289-299.
- Hayashi, S., et al. (2008). "TNF-alpha in nucleus pulposus induces sensory nerve growth: a study of the mechanism of discogenic low back pain using TNF-alpha-deficient mice." Spine (Phila Pa 1976) **33**(14): 1542-1546.
- Hayashi, Y., et al. (2009). "Direct single injection of p38 mitogen-activated protein kinase inhibitor does not affect calcitonin gene-related peptide expression in dorsal root ganglion neurons innervating punctured discs in rats." Spine (Phila Pa 1976) **34**(26): 2843-2847.
- Haynes, K. R., et al. (2012). "Excessive bone formation in a mouse model of ankylosing spondylitis is associated with decreases in Wnt pathway inhibitors." Arthritis Res Ther 14(6): R253-R253.
- Henderson, N., V. Stanescu and J. Cauchoix (1991). "Nucleolysis of the rabbit intervertebral disc using chondroitinase ABC." Spine (Phila Pa 1976) **16**(2): 203-208.
- Henriksson, H. B. and H. Brisby (2013). "Development and regeneration potential of the mammalian intervertebral disc." Cells Tissues Organs **197**(1): 1-13.
- Henriksson, H. B., E. Svala, E. Skioldebrand, A. Lindahl and H. Brisby (2012). "Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit." Spine (Phila Pa 1976) **37**(9): 722-732.
- Henriksson, H., et al. (2009). "Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species." Spine (Phila Pa 1976) **34**(21): 2278-2287.
- Higuchi, M., K. Abe and K. Kaneda (1983). "Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study." Clin Orthop Relat Res (175): 251-257.

- Hiyama, A., et al. (2008). "Transplantation of mesenchymal stem cells in a canine disc degeneration model." J Orthop Res **26**(5): 589-600.
- Hiyama, A., K. Yokoyama, T. Nukaga, D. Sakai and J. Mochida (2013). "A complex interaction between Wnt signaling and TNF-alpha in nucleus pulposus cells." Arthritis Res Ther **15**(6): R189.
- Hohaus, C., T. M. Ganey, Y. Minkus and H. J. Meisel (2008). "Cell transplantation in lumbar spine disc degeneration disease." Eur Spine J **17**(Suppl 4): 492-503.
- Holguin, N., R. Aguilar, R. A. Harland, B. A. Bomar and M. J. Silva (2014). "The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice." J Appl Physiol **116**(12): 1551-1560.
- Holm, S., A. Maroudas, J. P. Urban, G. Selstam and A. Nachemson (1981). "Nutrition of the intervertebral disc: solute transport and metabolism." Connect Tissue Res 8(2): 101-119.
- Hong, J., C. Reed, D. Novick and M. Happich (2013). "Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database." Spine (Phila Pa 1976) 38(1): 75-82.
- Hoogendoorn, R. J., et al. (2008). "Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future." J Cell Mol Med **12**(6A): 2205-2216.
- Hoogendoorn, R. J., P. I. Wuisman, T. H. Smit, V. E. Everts and M. N. Helder (2007). "Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat." Spine (Phila Pa 1976) **32**(17): 1816-1825.
- Hoyland, J. A., C. Le Maitre and A. J. Freemont (2008). "Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc." Rheumatology (Oxford) **47**(6): 809-814.
- Hu, B., et al. (2016). "Heme oxygenase-1 attenuates IL-1beta induced alteration of anabolic and catabolic activities in intervertebral disc degeneration." Sci Rep 6: 21190.
- Huang, B., Y. Zhuang, C. Q. Li, L. T. Liu and Y. Zhou (2011). "Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model." Spine (Phila Pa 1976) 36(26): 2252-2259.
- Huang, K. Y., et al. (2008). "IL-20 may contribute to the pathogenesis of human intervertebral disc herniation." Spine (Phila Pa 1976) **33**(19): 2034-2040.
- Huang, Y. C., J. P. Urban and K. D. Luk (2014). "Intervertebral disc regeneration: do nutrients lead the way?" Nat Rev Rheumatol **10**(9): 561-566.
- Hughes, S. P., A. J. Freemont, D. W. Hukins, A. H. McGregor and S. Roberts (2012). "The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain." J Bone Joint Surg Br **94**(10): 1298-1304.

- Hunter, C. J., J. R. Matyas and N. A. Duncan (2003). "The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering." Tissue Eng **9**(4): 667-677.
- Hwang, P. Y., J. Chen, L. Jing, B. D. Hoffman and L. A. Setton (2014). "The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review." J Biomech Eng **136**(2): 0210101-0210109.
- latridis, J. C., A. J. Michalek, D. Purmessur and C. L. Korecki (2009). "Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis." Cell Mol Bioeng **2**(3): 437–447.
- Iatridis, J. C., L. A. Setton, M. Weidenbaum and V. C. Mow (1997). "The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear." J Biomech **30**(10): 1005-1013.
- Ichimura, K., H. Tsuji, H. Matsui and N. Makiyama (1991). "Cell culture of the intervertebral disc of rats: factors influencing culture, proteoglycan, collagen, and deoxyribonucleic acid synthesis." J Spinal Disord **4**(4): 428-436.
- Igarashi, T., S. Kikuchi, V. Shubayev and R. R. Myers (2000). "2000 Volvo Award winner in basic science studies: Exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats." Spine (Phila Pa 1976) **25**(23): 2975-2980.
- Ikeda, T., et al. (1996). "Pathomechanism of spontaneous regression of the herniated lumbar disc: histologic and immunohistochemical study." J Spinal Disord **9**(2): 136-140.
- Illien-Junger, S., et al. (2010). "The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates." Spine (Phila Pa 1976) **35**(19): 1744-1752.
- Illien-Junger, S., et al. (2012). "Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system." Spine (Phila Pa 1976) **37**(22): 1865-1873.
- Imai, Y., et al. (2007). "Restoration of disc height loss by recombinant human osteogenic protein-1 injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase ABC." Spine (Phila Pa 1976) **32**(11): 1197-1205.
- Isaac, C., et al. (2013). "Dystrophin and utrophin "double knockout" dystrophic mice exhibit a spectrum of degenerative musculoskeletal abnormalities." J Orthop Res **31**(3): 343-349.
- Ito, T., et al. (1996). "Histologic evidence of absorption of sequestration-type herniated disc." Spine (Phila Pa 1976) **21**(2): 230-234.
- Ito, T., et al. (2007). "Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis." Spine (Phila Pa 1976) **32**(2): 159-167.
- Jeong, J. H., et al. (2009). "Human mesenchymal stem cells implantation into the degenerated coccygeal disc of the rat." Cytotechnology **59**(1): 55-64.

- Ji, M. L., et al. (2016a). "Dysregulated miR-98 contributes to extracellular matrix degradation by targeting IL-6/STAT3 signaling pathway in human intervertebral disc degeneration." J Bone Miner Res **31**(4): 900-909.
- Ji, M. L., et al. (2016b). "Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14." J Mol Med (Berl) **94**(4): 457-468.
- Jim, B., T. Steffen, J. Moir, P. Roughley and L. Haglund (2011). "Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential." Eur Spine J **20**(8): 1244-1254.
- Jimbo, K., J. S. Park, K. Yokosuka, K. Sato and K. Nagata (2005). "Positive feedback loop of interleukin-1beta upregulating production of inflammatory mediators in human intervertebral disc cells in vitro." J Neurosurg Spine **2**(5): 589-595.
- Jing, W. and W. Jiang (2015). "MicroRNA-93 regulates collagen loss by targeting MMP3 in human nucleus pulposus cells." Cell Prolif **48**(3): 284-292.
- Joglekar, M. V., V. M. Joglekar and A. A. Hardikar (2009). "Expression of islet-specific microRNAs during human pancreatic development." Gene Expr Patterns **9**(2): 109-113.
- Johnson, Z. I., Z. R. Schoepflin, H. Choi, I. M. Shapiro and M. V. Risbud (2015). "Disc in flames: Roles of TNF-alpha and IL-1beta in intervertebral disc degeneration." Eur Cell Mater **30**: 104-116; discussion 116-107.
- Jones, P., L. Gardner, J. Menage, G. T. Williams and S. Roberts (2008). "Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration." Arthritis Res Ther. **10**(4): R86.
- Junger, S., et al. (2009). "Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading." Spine (Phila Pa 1976) **34**(12): 1264-1271.
- Kaneyama, S., et al. (2008). "Fas ligand expression on human nucleus pulposus cells decreases with disc degeneration processes." J Orthop Sci **13**(2): 130-135.
- Kang, J. D., et al. (1996). "Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2." Spine (Phila Pa 1976) **21**(3): 271-277.
- Kang, J. D., M. Stefanovic-Racic, L. A. McIntyre, H. I. Georgescu and C. H. Evans (1997).
 "Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases." Spine (Phila Pa 1976) 22(10): 1065-1073.
- Kang, L., et al. (2017). "MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells." Biotechnol Lett **39**(4): 623-632.
- Karppinen, J., et al. (2003). "Tumor necrosis factor-alpha monoclonal antibody, infliximab, used to manage severe sciatica." Spine (Phila Pa 1976) **28**(8): 750-753; discussion 753-

754.

- Kawakami, M., T. Matsumoto, H. Hashizume, K. Kuribayashi and T. Tamaki (2002). "Epidural injection of cyclooxygenase-2 inhibitor attenuates pain-related behavior following application of nucleus pulposus to the nerve root in the rat." J Orthop Res **20**(2): 376-381.
- Kazezian, Z., Z. Li, M. Alini, S. Grad and A. Pandit (2016). "Injectable hyaluronic acid down-regulates interferon signaling molecules, IGFBP3 and IFIT3 in the bovine intervertebral disc." Acta Biomater.
- Kenna, T. J. and M. A. Brown (2013). "The role of IL-17-secreting mast cells in inflammatory joint disease." Nat Rev Rheumatol **9**(6): 375-379.
- Kepler, C. K., R. K. Ponnappan, C. A. Tannoury, M. V. Risbud and D. G. Anderson (2013). "The molecular basis of intervertebral disc degeneration." Spine J **13**(3): 318-330.
- Khoshgoo, N., R. Kholdebarin, B. M. Iwasiow and R. Keijzer (2013). "MicroRNAs and lung development." Pediatr Pulmonol **48**(4): 317-323.
- Kiester, D. P., J. M. Williams, G. B. Andersson, E. J. A. Thonar and T. W. McNeill (1994). "The dose-related effect of intradiscal chymopapain on rabbit intervertebral discs." Spine (Phila Pa 1976) 19(7): 747-751.
- Kim, J. H., et al. (2009a). "Differentiation of intervertebral notochordal cells through live automated cell imaging system in vitro." Spine (Phila Pa 1976) **34**(23): 2486-2493.
- Kim, J. H., et al. Park (2012). "Rabbit notochordal cells modulate the expression of inflammatory mediators by human annulus fibrosus cells cocultured with activated macrophage-like THP-1 cells." Spine (Phila Pa 1976) **37**(22): 1856-1864.
- Kim, J. H., R. K. Studer, G. A. Sowa, N. V. Vo and J. D. Kang (2008). "Activated macrophage-like THP-1 cells modulate anulus fibrosus cell production of inflammatory mediators in response to cytokines." Spine (Phila Pa 1976) **33**(21): 2253-2259.
- Kim, J. S., et al. (2013a). "Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc." J Cell Physiol. **228**(9): 1884-1896.
- Kim, J.S., et al. (2011a). "The rat intervertebral disk degeneration pain model: relationships between biological and structural alterations and pain." Arthritis Res Ther **13**(5): R165.
- Kim, K. S., S. T. Yoon, J. Li, J. S. Park and W. C. Hutton (2005b). "Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models." Spine (Phila Pa 1976) **30**.
- Kim, K. W., et al. (2003). "The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs." Spine (Phila Pa 1976) **28**(10): 982-990.
- Kim, K. W., et al. (2005a). "Expressions of membrane-type I matrix metalloproteinase, Ki-67

- protein, and type II collagen by chondrocytes migrating from cartilage endplate into nucleus pulposus in rat intervertebral discs: a cartilage endplate-fracture model using an intervertebral disc organ culture." Spine (Phila Pa 1976) **30**(12): 1373-1378.
- Kim, S. G., J. C. Yang, T. W. Kim and K. H. Park (2013b). "Spontaneous regression of extruded lumbar disc herniation: three cases report." Korean J Spine **10**(2): 78-81.
- Kim, S. J., et al. (2011b). "Changes in expression of mRNA for interleukin-8 and effects of interleukin-8 receptor inhibitor in the spinal dorsal horn in a rat model of lumbar disc herniation." Spine (Phila Pa 1976) **36**(25): 2139-2146.
- Kim, S. J., et al. (2016). "Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model." Biomaterials **74**: 119-130.
- Kim, S., et al. (2009b). "Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis." Nature **457**(7225): 102-106.
- Kimura, T., et al. (1996). "Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation." Int Orthop **20**(3): 177-181.
- Kitano, T., et al. (1993). "Biochemical changes associated with the symptomatic human intervertebral disk." Clin Orthop Relat Res (293): 372-377.
- Klawitter, M., et al. (2012a). "Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity." J Inflamm (Lond) **9**(1): 29.
- Klawitter, M., et al. (2012b). "Triptolide exhibits anti-inflammatory, anti-catabolic as well as anabolic effects and suppresses TLR expression and MAPK activity in IL-1beta treated human intervertebral disc cells." Eur Spine J **21 Suppl 6**: S850-859.
- Klawitter, M., et al. (2014). "Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells." Eur Spine J **23**(9): 1878-1891.
- Kobori, S., et al. (2014). "Inhibiting IkappaB kinase-beta downregulates inflammatory cytokines in injured discs and neuropeptides in dorsal root ganglia innervating injured discs in rats." Spine (Phila Pa 1976) **39**(15): 1171-1177.
- Koes, B. W., M. W. van Tulder and W. C. Peul (2007). "Diagnosis and treatment of sciatica." BMJ **334**(7607): 1313-1317.
- Kokubo, Y., et al. (2008). "Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. Laboratory investigation." J Neurosurg Spine **9**(3): 285-295.
- Kondratov, R. V., A. A. Kondratova, V. Y. Gorbacheva, O. V. Vykhovanets and M. P. Antoch (2006). "Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock." Genes Dev **20**(14): 1868-1873.

- Korecki, C. L., J. J. Costi and J. C. latridis (2008). "Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model." Spine (Phila Pa 1976) **33**(3): 235-241.
- Korecki, C. L., J. J. MacLean and J. C. latridis (2007). "Characterization of an in vitro intervertebral disc organ culture system." Eur Spine J **16**(7): 1029-1037.
- Korhonen, T., et al. (2006). "The treatment of disc-herniation-induced sciatica with infliximab: one-year follow-up results of FIRST II, a randomized controlled trial." Spine (Phila Pa 1976) **31**(24): 2759-2766.
- Kregar Velikonja, N., et al. (2014). "Cell sources for nucleus pulposus regeneration." Eur Spine J **23 Suppl 3**: S364-374.
- Krock, E., et al. (2014). "Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors." J Cell Mol Med.
- Krupkova, O., et al. (2016). "An inflammatory nucleus pulposus tissue culture model to test molecular regenerative therapies: validation with epigallocatechin 3-gallate." Int J Mol Sci 17(10).
- Laing, A. C., R. Cox, W. Tetzlaff and T. Oxland (2011). "Effects of advanced age on the morphometry and degenerative state of the cervical spine in a rat model." Anat Rec (Hoboken) 294(8): 1326-1336.
- Lauerman, W. C., R. C. Platenberg, J. E. Cain and V. F. Deeney (1992). "Age-related disk degeneration: preliminary report of a naturally occurring baboon model." J Spinal Disord 5(2): 170-174.
- Le Maitre, C. L., A. J. Freemont and J. A. Hoyland (2005). "The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration." Arthritis Res Ther. **7**(4): R732-745.
- Le Maitre, C. L., A. J. Freemont and J. A. Hoyland (2006). "A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration." Int J Exp Pathol 87(1): 17-28.
- Le Maitre, C. L., A. J. Freemont and J. A. Hoyland (2009). "Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells." Arthritis Res Ther **11**(5): R137.
- Le Maitre, C. L., A. Pockert, D. J. Buttle, A. J. Freemont and J. A. Hoyland (2007b). "Matrix synthesis and degradation in human intervertebral disc degeneration." Biochem Soc Trans **35**(Pt 4): 652-655.
- Le Maitre, C. L., J. A. Hoyland and A. J. Freemont (2004). "Studies of human intervertebral disc cell function in a constrained in vitro tissue culture system." Spine (Phila Pa 1976) **29**(11): 1187-1195.
- Le Maitre, C. L., J. A. Hovland and A. J. Freemont (2007a). "Catabolic cytokine expression in

- degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile." Arthritis Res Ther. **9**(4): R77.
- Le Maitre, C. L., J. A. Hoyland and A. J. Freemont (2007c). "Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study." Arthritis Res Ther **9**(4): R83.
- Leahy, M., J. E. Zigler, D. D. Ohnmeiss, R. F. Rashbaum and B. L. Sachs (2008). "Comparison of results of total disc replacement in postdiscectomy patients versus patients with no previous lumbar surgery." Spine (Phila Pa 1976) **33**(15): 1690-1693; discussion 1694-1695.
- Leckie, S. K., et al. (2012). "Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model." Spine J **12**(1): 7-20.
- Lee, C. R., et al. (2007). "A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat." Eur Spine J **16**(12): 2174-2185.
- Lee, R. H., et al. (2009b). "Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6." Cell Stem Cell **5**(1): 54-63.
- Lee, S., et al. (2009a). "Comparison of growth factor and cytokine expression in patients with degenerated disc disease and herniated nucleus pulposus." Clin Biochem **42**(15): 1504-1511.
- Leung, L. and C. M. Cahill (2010). "TNF-α and neuropathic pain a review." J Neuroinflammation **7**: 27-27.
- Li, H. R., et al. (2016c). "Downregulation of miR-27b is involved in loss of type II collagen by directly targeting matrix metalloproteinase 13 (MMP13) in human intervertebral disc degeneration." Spine (Phila Pa 1976) **41**(3): E116-123.
- Li, J., H. Guan, H. Liu, L. Zhao, L. Li, Y. Zhang, P. Tan, B. Mi and F. Li (2017b). "Epoxyeicosanoids prevent intervertebral disc degeneration in vitro and in vivo." Oncotarget **8**(3): 3781-3797.
- Li, J., S. T. Yoon and W. C. Hutton (2004). "Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells." J Spinal Disord Tech **17**(5): 423-428.
- Li, K., Y. Li, B. Xu, L. Mao and J. Zhao (2016b). "Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc." Connect Tissue Res **57**(5): 347-359.
- Li, K., Y. Li, Z. Ma and J. Zhao (2015d). "Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK." Int J Mol Med

- **36**(5): 1291-1299.
- Li, W., P. Wang, Z. Zhang, W. Wang, Y. Liu and Q. Qi (2017a). "MiR-184 Regulates Proliferation in Nucleus Pulposus Cells by Targeting GAS1." World Neurosurg **97**: 710-715.e711.
- Li, W., Y. Zhang, C. Xing and M. Zhang (2015b). "Tanshinone IIA represses inflammatory response and reduces radiculopathic pain by inhibiting IRAK-1 and NF-kappaB/p38/JNK signaling." Int Immunopharmacol **28**(1): 382-389.
- Li, X., J. P. Lee, G. Balian and D. Greg Anderson (2005). "Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus." Connect Tissue Res **46**(2): 75-82.
- Li, Y., et al. (2016a). "Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc." PeerJ **4**: e1992.
- Li, Y., K. Li, Y. Hu, B. Xu and J. Zhao (2015a). "Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc." International Journal of Clinical and Experimental Pathology **8**(6): 6203-6213.
- Li, Z., X. Yu, J. Shen, M. T. Chan and W. K. Wu (2015c). "MicroRNA in intervertebral disc degeneration." Cell Prolif **48**(3): 278-283.
- Lin, T. H., et al. (2017). "NF-kappaB as a Therapeutic Target in Inflammatory-Associated Bone Diseases." Adv Protein Chem Struct Biol **107**: 117-154.
- Liu, G., et al. (2013a). "MiR-27a Regulates Apoptosis in Nucleus Pulposus Cells by Targeting PI3K." PLOS ONE **8**(9): e75251.
- Liu, H., et al. (2014). "miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling." Int J Mol Sci **15**(3): 4007-4018.
- Liu, L. T., et al. (2011). "Characteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate." PLoS One **6**(10).
- Liu, Q., L. Jin, F. H. Shen, G. Balian and X. J. Li (2013b). "Fullerol nanoparticles suppress inflammatory response and adipogenesis of vertebral bone marrow stromal cells a potential novel treatment for intervertebral disc degeneration." Spine J **13**(11): 1571-1580.
- Liu, R., et al. (2012). "A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis." Arthritis Res Ther **14**(6): R255.
- Liu, W., et al. (2016a). "MicroRNA-7 regulates IL-1beta-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells." Biomed Pharmacother **83**: 1414-1421.
- Liu, W., et al. (2016b). "Inhibition of microRNA-34a prevents IL-1beta-induced extracellular matrix degradation in nucleus pulposus by increasing GDF5 expression." Exp Biol Med (Maywood) **241**(17): 1924-1932.
- Liu, X.-G., H.-W. Hou and Y.-L. Liu (2016c). "Expression levels of IL-17 and TNF- α in

- degenerated lumbar intervertebral discs and their correlation." Experimental and Therapeutic Medicine **11**(6): 2333-2340.
- Long, R. G., et al. (2016). "In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair." J Tissue Eng Regen Med. doi: 10.1002/term.2356.
- Lopez-Santalla, M., et al. (2016). "Adipose-derived mesenchymal stromal cells modulate experimental autoimmune arthritis by inducing an early regulatory innate cell signature." Immun Inflamm Dis **4**(2): 213-224.
- Lotz, J. C. (2004). "Animal models of intervertebral disc degeneration: lessons learned." Spine (Phila Pa 1976) **29**(23): 2742-2750.
- Lotz, J. C. and A. H. Hsieh (2014). The effects of mechanical forces on nucleus pulposus and annulus fibrosus cells *in* The intervertebral disc: molecular and structural studies of the disc in health and disease. Editor: I. M. Shapiro and M. V. Risbud. Vienna, Springer Vienna; 109-124.
- Lund, T. and T. R. Oxland (2011). "Adjacent level disk disease is it really a fusion disease?" Orthopedic Clinics of North America **42**(4): 529-541.
- Luo, W., Q. Nie and X. Zhang (2013). "MicroRNAs involved in skeletal muscle differentiation." J Genet Genomics **40**(3): 107-116.
- Lyons, G. E., M. E. Buckingham, S. Tweedie and Y. H. Edwards (1991). "Carbonic anhydrase III, an early mesodermal marker, is expressed in embryonic mouse skeletal muscle and notochord." Development **111**(1): 233-244.
- Ma, X. L., P. Tian, T. Wang and J. X. Ma (2010). "A study of the relationship between type of lumbar disc herniation, straight leg raising test and peripheral T lymphocytes." Orthop Surg **2**(1): 52-57.
- Maier, J. A., Y. Lo and B. D. Harfe (2013). "Foxa1 and Foxa2 are required for formation of the intervertebral discs." PLoS One **8**(1): e55528.
- Majid, S., et al. (2012). "MicroRNA-1280 inhibits invasion and metastasis by targeting ROCK1 in bladder cancer." PLoS One **7**(10): e46743.
- Malonzo, C., et al. (2015). "A papain-induced disc degeneration model for the assessment of thermo-reversible hydrogel-cells therapeutic approach." J Tissue Eng Regen Med **9**(12): E167-176.
- Manchikanti, L., K. A. Cash, V. Pampati and F. J. Falco (2014). "Transforaminal epidural injections in chronic lumbar disc herniation: a randomized, double-blind, active-control trial." Pain Physician **17**(4): E489-501.
- Manferdini, C., et al. (2013). "Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2." Arthritis Rheum **65**(5): 1271-1281.

- Maniadakis, N. and A. Gray (2000). "The economic burden of back pain in the UK." Pain **84**(1): 95-103.
- Mantovani, A., C. Garlanda and M. Locati (2009). "Macrophage diversity and polarization in atherosclerosis: a question of balance." Arterioscler Thromb Vasc Biol **29**(10): 1419-1423.
- Mantovani, A., et al. (2004). "The chemokine system in diverse forms of macrophage activation and polarization." Trends Immunol **25**(12): 677-686.
- Mao, H. J., et al. (2011). "The effect of injection volume on disc degeneration in a rat tail model." Spine (Phila Pa 1976) **36**(16): E1062-1069.
- Markova, D. Z., et al. (2013). "An organ culture system to model early degenerative changes of the intervertebral disc II: profiling global gene expression changes." Arthritis Res Ther **15**(5): R121.
- Marshall, L. L., E. R. Trethewie and C. C. Curtain (1977). "Chemical radiculitis. A clinical, physiological and immunological study." Clin Orthop Relat Res(129): 61-67.
- Martin, B. I., et al. (2008). "Expenditures and health status among adults with back and neck problems." JAMA **299**(6): 656-664.
- Martin, J. T., et al. (2013). "Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration." J Orthop Res **31**(8): 1276-1282.
- Martirosyan, N. L., et al. (2016). "Genetic Alterations in Intervertebral Disc Disease." Front Surg **3**: 59.
- Masuda, K. (2008). "Biological repair of the degenerated intervertebral disc by the injection of growth factors." Eur Spine J **17**(Suppl 4): 441-451.
- Masuda, K., et al. (2005). "A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration." Spine (Phila Pa 1976) **30**.
- Masuda, K., Y. et al. (2006). "Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model." Spine (Phila Pa 1976) **31**(7): 742-754.
- Mathieu, J. and H. Ruohola-Baker (2013). "Regulation of stem cell populations by microRNAs." Adv Exp Med Biol **786**: 329-351.
- Matsui, Y., M. Maeda, W. Nakagami and H. Iwata (1998). "The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation." Spine (Phila Pa 1976) **23**(8): 863-868; discussion 868-869.
- Matta, A., M. Z. Karim, D. E. Isenman and W. M. Erwin (2017). "Molecular therapy for degenerative disc disease: clues from secretome analysis of the notochordal cell-rich nucleus pulposus." Sci Rep **7**: 45623.
- Mehrkens, A., A. M. Müller, V. Valderrabano, S. Schären and P. Vavken (2012). "Tissue

- engineering approaches to degenerative disc disease a meta-analysis of controlled animal trials." Osteoarthritis Cartilage **20**(11): 1316-1325.
- Meisel, H. J., et al. (2007). "Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc." Biomol Eng **24**(1): 5-21.
- Melchionda, D., P. Milillo, G. Manente, L. Stoppino and L. Macarini (2012). "Treatment of radiculopathies: a study of efficacy and tollerability of paravertebral oxygen-ozone injections compared with pharmacological anti-inflammatory treatment." J Biol Regul Homeost Agents **26**(3): 467-474.
- Melrose, J., A. Hall, C. Macpherson, C. R. Bellenger and P. Ghosh (1995). "Evaluation of digestive proteinases from the Antarctic krill Euphasia superba as potential chemonucleolytic agents. In vitro and in vivo studies." Arch Orthop Trauma Surg **114**(3): 145-152.
- Melrose, J., et al. (1996). "Intervertebral disc reconstitution after chemonucleolysis with chymopapain is dependent on dosage." Spine (Phila Pa 1976) **21**(1): 9-17.
- Melrose, J., et al. (1997a). "Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration." Eur Spine J **6**(6): 376-384.
- Melrose, J., et al. (2002b). "Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair." Spine (Phila Pa 1976) **27**(16): 1756-1764.
- Melrose, J., P. Ghosh, T. K. Taylor, J. Latham and R. Moore (1997b). "Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration." J Spinal Disord **10**(1): 55-67.
- Melrose, J., S. Roberts, S. Smith, J. Menage and P. Ghosh (2002a). "Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration." Spine (Phila Pa 1976) **27**(12): 1278-1285.
- Miao, G. S., et al. (2015). "Lipoxin A4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-kappaB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation." Neuroscience **300**: 10-18.
- Michalek, A. J. and J. C. latridis (2012). "Height and torsional stiffness are most sensitive to annular injury in large animal intervertebral discs." Spine J **12**(5): 425-432.
- Michalek, A. J., K. L. Funabashi and J. C. latridis (2010). "Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differently." Eur Spine J **19**(12): 2110-2116.
- Miljkovic, D. and V. Trajkovic (2004). "Inducible nitric oxide synthase activation by interleukin-17." Cytokine Growth Factor Rev **15**(1): 21-32.

- Mills, C. D., K. Kincaid, J. M. Alt, M. J. Heilman and A. M. Hill (2000). "M-1/M-2 macrophages and the Th1/Th2 paradigm." J Immunol **164**(12): 6166-6173.
- Millward-Sadler, S. J., P. W. Costello, A. J. Freemont and J. A. Hoyland (2009). "Regulation of catabolic gene expression in normal and degenerate human intervertebral disc cells: implications for the pathogenesis of intervertebral disc degeneration." Arthritis Res Ther 11(3): R65.
- Minogue, B. M., S. M. Richardson, L. A. Zeef, A. J. Freemont and J. A. Hoyland (2010a). "Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation." Arthritis Rheum **62**(12): 3695-3705.
- Minogue, B. M., S. M. Richardson, L. A. Zeef, A. J. Freemont and J. A. Hoyland (2010b). "Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes." Arthritis Res Ther **12**(1): R22.
- Miyagi, M., et al. (2011). "Disk injury in rats produces persistent increases in pain-related neuropeptides in dorsal root ganglia and spinal cord glia but only transient increases in inflammatory mediators: pathomechanism of chronic diskogenic low back pain." Spine (Phila Pa 1976) **36**(26): 2260-2266.
- Miyagi, M., et al. (2012). "Disc dynamic compression in rats produces long-lasting increases in inflammatory mediators in discs and induces long-lasting nerve injury and regeneration of the afferent fibers innervating discs: a pathomechanism for chronic discogenic low back pain." Spine (Phila Pa 1976) **37**(21): 1810-1818.
- Miyahara, K., et al. (1996). "Human group II phospholipase A2 in normal and diseased intervertebral discs." Biochim Biophys Acta **1316**(3): 183-190.
- Miyamoto, H., R. Saura, T. Harada, M. Doita and K. Mizuno (2000). "The role of cyclooxygenase-2 and inflammatory cytokines in pain induction of herniated lumbar intervertebral disc." Kobe J Med Sci **46**(1-2): 13-28.
- Miyamoto, T., et al. (2010). "Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits." Arthritis Res Ther **12**(6): R206-R206.
- Molinos, M., C. R. Almeida, R. M. Goncalves and M. A. Barbosa (2015b). "Improvement of bovine nucleus pulposus cells isolation leads to identification of three phenotypically distinct cell subpopulations." Tissue Eng Part A **21**(15-16): 2216-2227.
- Molinos, M., et al. (2015a). "Inflammation in intervertebral disc degeneration and regeneration." J R Soc Interface **12**(104): 20141191.
- Moon, S. H., et al. (2008). "Biologic response of human intervertebral disc cells to gene therapy

- cocktail." Spine (Phila Pa 1976) 33(17): 1850-1855.
- Moskowitz, R. W., et al. (1990). "Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis." J Orthop Res **8**(3): 401-411.
- Moss, I. L., et al. (2013). "Retroperitoneal approach to the intervertebral disc for the annular puncture model of intervertebral disc degeneration in the rabbit." Spine J **13**(3): 229-234.
- Mosser, D. M. and J. P. Edwards (2008). "Exploring the full spectrum of macrophage activation." Nat Rev Immunol **8**(12): 958-969.
- Muller-Ladner, U., et al. (1997). "Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective." J Immunol **158**(7): 3492-3498.
- Murata, Y., et al. (2006). "Changes in pain behavior and histologic changes caused by application of tumor necrosis factor-alpha to the dorsal root ganglion in rats." Spine (Phila Pa 1976) **31**(5): 530-535.
- Murata, Y., et al. (2011). "Local application of interleukin-6 to the dorsal root ganglion induces tumor necrosis factor-alpha in the dorsal root ganglion and results in apoptosis of the dorsal root ganglion cells." Spine (Phila Pa 1976) **36**(12): 926-932.
- Murata, Y., U. Nannmark, B. Rydevik, K. Takahashi and K. Olmarker (2008). "The role of tumor necrosis factor-alpha in apoptosis of dorsal root ganglion cells induced by herniated nucleus pulposus in rats." Spine (Phila Pa 1976) **33**(2): 155-162.
- Mwale, F., H. T. Wang, P. Roughly, J. Antoniou and L. Haglund (2014). "Link N and MSCs can induce regeneration of the early degenerate intervertebral disc." Tissue Eng Part A **20**(21-22): 2942-2949.
- Mwale, F., P. Roughley and J. Antoniou (2004). "Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc." Eur Cell Mater **8**: 58-63; discussion 63-54.
- Nagae, M., et al. (2007). "Intervertebral disc regeneration using platelet-rich plasma and biodegradable gelatin hydrogel microspheres." Tissue Eng **13**(1): 147-158.
- Nandi, J. and A. Chowdhery (2017). "A randomized controlled clinical trial to determine the effectiveness of caudal epidural steroid injection in lumbosacral sciatica." J Clin Diagn Res 11(2): Rc04-rc08.
- Nasto, L. A., et al. (2012). "ISSLS prize winner: inhibition of NF-κB activity ameliorates age-associated disc degeneration in a mouse model of accelerated aging." Spine (Phila Pa 1976) **37**(21): 1819-1825.
- Natarajan, R. N. and G. B. Andersson (2017). "Lumbar disc degeneration is an equally important risk factor as lumbar fusion for causing adjacent segment disc disease." J Orthop Res **35**(1):123-130.
- Neidlinger-Wilke, C., et al. (2012). "Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells." J Orthop Res **30**(1):

- 112-121.
- Neidlinger-Wilke, C., et al. (2014). "Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level." Eur Spine J **23 Suppl 3**: S333-343.
- Nemeth, K., et al. (2009). "Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production." Nat Med **15**(1): 42-49.
- Nerlich, A. G., C. Weiler, J. Zipperer, M. Narozny and N. Boos (2002). "Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs." Spine (Phila Pa 1976) **27**(22): 2484-2490.
- Nettles, D. L., W. J. Richardson and L. A. Setton (2004). "Integrin expression in cells of the intervertebral disc." J Anat **204**(6): 515-520.
- Nishida, K., et al. (1999). "Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene." Spine **24**(23): 2419-2425.
- Nishimura, K. and J. Mochida (1998). "Percutaneous reinsertion of the nucleus pulposus. An experimental study." Spine (Phila Pa 1976) **23**(14): 1531-1538; discussion 1539.
- Norcross, J. P., G. E. Lester, P. Weinhold and L. E. Dahners (2003). "An in vivo model of degenerative disc disease." J Orthop Res **21**(1): 183-188.
- Ochia, R. S., A. F. Tencer and R. P. Ching (2003). "Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae." J Biomech **36**(12): 1875-1881.
- O'Connell, G. D., E. J. Vresilovic and D. M. Elliott (2007). "Comparison of animals used in disc research to human lumbar disc geometry." Spine (Phila Pa 1976) **32**(3): 328-333.
- O'Donnell, J. L. and A. L. O'Donnell (1996). "Prostaglandin E2 content in herniated lumbar disc disease." Spine (Phila Pa 1976) **21**(14): 1653-1655; discussion 1655-1656.
- Ogata, K. and L. A. Whiteside (1981). "1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique." Spine (Phila Pa 1976) **6**(3): 211-216.
- Ogle, M. E., C. E. Segar, S. Sridhar and E. A. Botchwey (2016). "Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design." Exp Biol Med **241**(10): 1084-1097.
- Ohnishi, T., et al. (2016). "In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification." PLoS ONE **11**(8): e0160486.
- Ohtori, S., et al. (2006). "Up-regulation of acid-sensing ion channel 3 in dorsal root ganglion neurons following application of nucleus pulposus on nerve root in rats." Spine (Phila Pa 1976) **31**(18): 2048-2052.
- Okamura, Y., et al. (2001). "The extra domain A of fibronectin activates Toll-like receptor 4." J Biol Chem **276**(13): 10229-10233.

- Olmarker, K. and K. Larsson (1998). "Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury." Spine (Phila Pa 1976) **23**(23): 2538-2544.
- Olmarker, K., M. Nutu and R. Storkson (2003). "Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-alpha inhibition." Spine (Phila Pa 1976) **28**(15): 1635-1641; discussion 1642.
- Omlor, G. W., et al. (2012). "Injection of a polymerized hyaluronic acid/collagen hydrogel matrix in an in vivo porcine disc degeneration model." European Spine Journal **21**(9): 1700-1708.
- Önnerfjord, P., A. Khabut, F. P. Reinholt, O. Svensson and D. Heinegård (2012). "Quantitative Proteomic Analysis of Eight Cartilaginous Tissues Reveals Characteristic Differences as well as Similarities between Subgroups." J Biol Chem **287**(23): 18913-18924.
- Orozco, L., et al. (2011). "Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study." Transplantation **92**(7): 822-828.
- Ortiz, L. A., et al. (2007). "Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury." Proc Natl Acad Sci U S A **104**(26): 11002-11007.
- Oshima, H., H. Ishihara, J. P. Urban and H. Tsuji (1993). "The use of coccygeal discs to study intervertebral disc metabolism." J Orthop Res **11**(3): 332-338.
- Osti, O. L., B. Vernon-Roberts and R. D. Fraser (1990). "1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model." Spine (Phila Pa 1976) **15**(8): 762-767.
- Paoloni, M., et al. (2009). "Intramuscular oxygen-ozone therapy in the treatment of acute back pain with lumbar disc herniation: a multicenter, randomized, double-blind, clinical trial of active and simulated lumbar paravertebral injection." Spine (Phila Pa 1976) **34**(13): 1337-1344.
- Papagiannakopoulos, T. and K. S. Kosik (2008). "MicroRNAs: regulators of oncogenesis and stemness." BMC Med **6**: 15.
- Parekkadan, B., et al. (2007). "Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure." PLoS One **2**(9): e941.
- Park, J. B., H. Chang and K. W. Kim (2001a). "Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue." Spine (Phila Pa 1976) **26**(6): 618-621.
- Park, J. B., H. Chang and Y. S. Kim (2002). "The pattern of interleukin-12 and T-helper types 1 and 2 cytokine expression in herniated lumbar disc tissue." Spine (Phila Pa 1976) **27**(19): 2125-2128.
- Park, J. B., K. W. Kim, C. W. Han and H. Chang (2001b). "Expression of Fas receptor on disc cells in herniated lumbar disc tissue." Spine (Phila Pa 1976) **26**(2): 142-146.
- Park, J. Y., S. U. Kuh, H. S. Park and K. S. Kim (2011). "Comparative expression of matrix-associated genes and inflammatory cytokines-associated genes according to disc

- degeneration: analysis of living human nucleus pulposus." J Spinal Disord Tech **24**(6): 352-357.
- Parolin, M., et al. (2010). "Development of a whole disc organ culture system to study human intervertebral disc." Evid Based Spine Care J 1(2): 67-68.
- Pattappa, G., et al. (2014). "CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture." Eur Cell Mater **27**: 124-136; discussion 136.
- Paul, C. P. L., et al. (2012). "Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture." PLoS ONE **7**(3): e33147.
- Pelle, D. W., et al. (2014). "Genetic and functional studies of the intervertebral disc: a novel murine intervertebral disc model." PLoS One **9**(12): e112454.
- Peng, B., et al. (2006). "Possible pathogenesis of painful intervertebral disc degeneration." Spine (Phila Pa 1976) **31**(5): 560-566.
- Pennington, J. B., R. F. McCarron and G. S. Laros (1988). "Identification of IgG in the canine intervertebral disc." Spine (Phila Pa 1976) **13**(8): 909-912.
- Pereira, C. L., et al. (2014). "The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs." Biomaterials **35**(28): 8144-8153.
- Pereira, C. L., et al. (2016). "Mesenchymal stem/stromal cells seeded on cartilaginous endplates promote intervertebral disc regeneration through extracellular matrix remodeling." Sci Rep **6**: 33836.
- Pereira, C. L., J. C. Antunes, R. M. Gonçalves, F. Ferreira-da-Silva and M. A. Barbosa (2012) "Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications." J Mater Sci Mater Med **23**(7): 1583-1591.
- Pers, Y. M., M. Ruiz, D. Noel and C. Jorgensen (2015). "Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives." Osteoarthritis Cartilage **23**(11): 2027-2035.
- Pettine, K.A., M. B. Murphy, R. K. Suzuki and T. T. Sand (2015). "Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months." Stem Cells **33**(1):146-56.
- Phillips, K. L., et al. (2013). "The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc." Arthritis Res Ther **15**(6): R213.
- Phillips, K. L., et al. (2015). "Potential roles of cytokines and chemokines in human intervertebral disc degeneration: interleukin-1 is a master regulator of catabolic processes." Osteoarthritis Cartilage **23**(7): 1165-1177.
- Pirvu, T., et al. (2015). "A combined biomaterial and cellular approach for annulus fibrosus

- rupture repair." Biomaterials 42: 11-19.
- Platenberg, R. C., G. B. Hubbard, W. J. Ehler and C. J. Hixson (2001). "Spontaneous disc degeneration in the baboon model: magnetic resonance imaging and histopathologic correlation." J Med Primatol **30**(5): 268-272.
- Pockert, A. J., et al. (2009). "Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration." Arthritis Rheum **60**(2): 482-491.
- Ponnappan, R. K., et al. (2011). "An organ culture system to model early degenerative changes of the intervertebral disc." Arthritis Res Ther **13**(5): R171.
- Poujol, D., J. M. Ristori, J. J. Dubost and M. Soubrier (2007). "Efficacy of pamidronate in erosive degenerative disk disease: A pilot study." Joint Bone Spine **74**(6): 663-664.
- Power, K. A., et al. (2011). "Identification of cell surface-specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase XII varies with age and degeneration." Arthritis Rheum **63**(12): 3876-3886.
- Prockop, D. J. and J. Y. Oh (2012). "Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation." Molecular Therapy **20**(1): 14-20.
- Purmessur, D., A. J. Freemont and J. A. Hoyland (2008). "Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc." Arthritis Res Ther **10**(4): R99.
- Purmessur, D., et al. (2013a). "Dynamic pressurization induces transition of notochordal cells to a mature phenotype while retaining production of important patterning ligands from development." Arthritis Res Ther **15**(5): R122.
- Purmessur, D., et al. (2013b). "A role for TNFalpha in intervertebral disc degeneration: a non-recoverable catabolic shift." Biochem Biophys Res Commun. **433**(1): 151-156.
- Puustjarvi, K., M. Lammi, H. Helminen, R. Inkinen and M. Tammi (1994). "Proteoglycans in the intervertebral disc of young dogs following strenuous running exercise." Connect Tissue Res **30**(3): 225-240.
- Puustjarvi, K., M. Lammi, I. Kiviranta, H. J. Helminen and M. Tammi (1993). "Proteoglycan synthesis in canine intervertebral discs after long-distance running training." J Orthop Res **11**(5): 738-746.
- Quero, L., et al. (2013). "Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways." Arthritis Res Ther **15**(4): R94.
- Ragab, A. A., et al. (2009). "A preliminary report on the effects of sustained administration of corticosteroid on traumatized disc using the adult male rat model." J Spinal Disord Tech **22**(7): 473-478.
- Raj, P. P. (2008). "Intervertebral disc: anatomy-physiology-pathophysiology-treatment." Pain

- Pract 8(1): 18-44.
- Rajan, N. E., et al. (2013). "Toll-Like Receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration." Spine (Phila Pa 1976) **38**(16): 1343-1351.
- Rajpurohit, R., M. V. Risbud, P. Ducheyne, E. J. Vresilovic and I. M. Shapiro (2002). "Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2." Cell Tissue Res **308**(3): 401-407.
- Rand, N., F. Reichert, Y. Floman and S. Rotshenker (1997). "Murine nucleus pulposus-derived cells secrete interleukins-1-beta, -6, and -10 and granulocyte-macrophage colony-stimulating factor in cell culture." Spine (Phila Pa 1976) **22**(22): 2598-2601; discussion 2602.
- Reina-Couto, M., et al. (2016). "Resolving inflammation in heart failure: novel protective lipid mediators." Curr Drug Targets **17**(10): 1206-1223.
- Richardson, S. M., A. Mobasheri, A. J. Freemont and J. A. Hoyland (2007). "Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies." Histol Histopathol **22**(9): 1033-1041.
- Richardson, S. M., et al. (2016). "Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration." Methods **99**: 69-80.
- Richardson, S. M., N. Hughes, J. A. Hunt, A. J. Freemont and J. A. Hoyland (2008b). "Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels." Biomaterials **29**(1): 85-93.
- Richardson, S. M., P. Doyle, B. M. Minogue, K. Gnanalingham and J. A. Hoyland (2009). "Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc." Arthritis Res Ther. **11**(4): R126.
- Richardson, S. M., R. Knowles, J. Tyler, A. Mobasheri and J. A. Hoyland (2008a). "Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc." Histochem Cell Biol **129**(4): 503-511.
- Rinkler, C., et al. (2010). "Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading." J Neurosurg Spine **13**(4): 535-542.
- Risbud, M. V. and I. M. Shapiro (2011). "Notochordal cells in the adult intervertebral disc: new perspective on an old question." Crit Rev Eukaryot Gene Expr **21**(1): 29-41.
- Risbud, M. V. and I. M. Shapiro (2014). "Role of cytokines in intervertebral disc degeneration: pain and disc content." Nat Rev Rheumatol. **10**(1): 44-56.
- Risbud, M. V., E. Schipani and I. M. Shapiro (2010). "Hypoxic regulation of nucleus pulposus cell survival: from niche to notch." Am J Pathol **176**(4): 1577-1583.
- Risbud, M. V., et al. (2004). "Differentiation of mesenchymal stem cells towards a nucleus

- pulposus-like phenotype in vitro: implications for cell-based transplantation therapy." Spine (Phila Pa 1976) **29**(23): 2627-2632.
- Risbud, M. V., et al. (2006). "Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment." J Cell Biochem **98**(1): 152-159.
- Risbud, M. V., et al. (2007). "Evidence for skeletal progenitor cells in the degenerate human intervertebral disc." Spine (Phila Pa 1976) **32**(23): 2537-2544.
- Risbud, M. V., et al. (2015). "Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 Annual ORS Meeting." J Orthop Res **33**(3): 283-293.
- Roberts, S., H. Evans, J. Trivedi and J. Menage (2006). "Histology and pathology of the human intervertebral disc." J Bone Joint Surg Am **88 Suppl 2**: 10-14.
- Roberts, S., J. Menage and J. P. Urban (1989). "Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc." Spine (Phila Pa 1976) **14**(2): 166-174.
- Roberts, S., J. Menage, S. Sivan and J. P. Urban (2008). "Bovine explant model of degeneration of the intervertebral disc." BMC Musculoskelet Disord. **9**: 24.
- Roddy, G. W., et al. (2011). "Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6." Stem Cells 29(10): 1572-1579.
- Rodrigues-Pinto, R., S. M. Richardson and J. A. Hoyland (2014). "An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration." Eur Spine J 23(9): 1803-1814.
- Rodriguez, A. G., et al. (2012). "Morphology of the human vertebral endplate." J Orthop Res **30**(2): 280-287.
- Romero-Sandoval, E. A., C. McCall and J. C. Eisenach (2005). "Alpha2-adrenoceptor stimulation transforms immune responses in neuritis and blocks neuritis-induced pain." J Neurosci **25**(39): 8988-8994.
- Rose-John, S., G. H. Waetzig, J. Scheller, J. Grotzinger and D. Seegert (2007). "The IL-6/sIL-6R complex as a novel target for therapeutic approaches." Expert Opin Ther Targets 11(5): 613-624.
- Roughley, P. J. (2004). "Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix." Spine (Phila Pa 1976) **29**(23): 2691-2699.
- Rozen, N., et al. (2007). "Fracture repair: modulation of fracture-callus and mechanical properties by sequential application of IL-6 following PTH 1-34 or PTH 28-48." Bone **41**(3):

- 437-445.
- Rutges, J., et al. (2010). "Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration." Osteoarthritis Cartilage **18**(3): 416-423.
- Saal, J. S., et al. (1990). "High levels of inflammatory phospholipase A2 activity in lumbar disc herniations." Spine (Phila Pa 1976) **15**(7): 674-678.
- Saamanen, A. M., et al. (1993). "Effect of running exercise on proteoglycans and collagen content in the intervertebral disc of young dogs." Int J Sports Med **14**(1): 48-51.
- Sahlman, J., et al. (2001). "Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen." Spine (Phila Pa 1976) **26**(23): 2558-2565.
- Sainoh, T., et al. (2016). "Single intradiscal administration of the tumor necrosis factor-alpha inhibitor, etanercept, for patients with discogenic low back pain." Pain Med **17**(1): 40-45.
- Sakai, D. and G. B. J. Andersson (2015). "Stem cell therapy for intervertebral disc regeneration: obstacles and solutions." Nat Rev Rheumatol **11**(4): 243-256.
- Sakai, D., et al. (2003). "Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration." Biomaterials **24**(20): 3531-3541.
- Sakai, D., et al. (2012). "Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc." Nat Commun 3: 1264.
- Sakai, D., et al. (2015). "Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse: a pilot study." Spine J **15**(6): 1356-1365.
- Sakai, D., T. Nakai, J. Mochida, M. Alini and S. Grad (2009). "Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus." Spine (Phila Pa 1976) **34**(14): 1448-1456.
- Sakata, R. and A. H. Reddi (2016). "Platelet-rich plasma modulates actions on articular cartilage lubrication and regeneration." Tissue Eng Part B Rev **22**(5): 408-419.
- Santos, S. G., et al. (2013). "Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response." Acta Biomater **9**(7): 7209-7217.
- Sasaki, N., S. Kikuchi, S. Konno, M. Sekiguchi and K. Watanabe (2007). "Anti-TNF-alpha antibody reduces pain-behavioral changes induced by epidural application of nucleus pulposus in a rat model depending on the timing of administration." Spine (Phila Pa 1976) 32(4): 413-416.
- Sato, F., S. Tsuchiya, S. J. Meltzer and K. Shimizu (2011). "MicroRNAs and epigenetics." FEBS J **278**(10): 1598-1609.

- Schaefer, L., et al. (2005). "The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages." J Clin Invest **115**(8): 2223-2233.
- Scheller, J., A. Chalaris, D. Schmidt-Arras and S. Rose-John (2011). "The pro- and anti-inflammatory properties of the cytokine interleukin-6." Biochim Biophys Acta **1813**(5): 878-888.
- Schollum, M. L., P. A. Robertson and N. D. Broom (2009). "A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the translamellar bridges." J Anat **214**(6): 805-816.
- Seguin, C. A., R. M. Pilliar, P. J. Roughley and R. A. Kandel (2005). "Tumor necrosis factoralpha modulates matrix production and catabolism in nucleus pulposus tissue." Spine (Phila Pa 1976) **30**(17): 1940-1948.
- Semba, K., et al. (2006). "A novel murine gene, sickle tail, linked to the Danforth's short tail locus, is required for normal development of the intervertebral disc." Genetics **172**(1): 445-456.
- Semedo, P., et al. (2009). "Early modulation of inflammation by mesenchymal stem cell after acute kidney injury." Int Immunopharmacol **9**(6): 677-682.
- Serigano, K., et al. (2010). "Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model." J Orthop Res **28**(10): 1267-1275.
- Shamji, M. F., et al. (2010). "Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues." Arthritis Rheum **62**(7): 1974-1982.
- Shapiro, I. M. and M. V. Risbud (2014). The intervertebral disc: molecular and structural studies of the disc in health and disease, 1 edn. Wien: Springer-Verlag Wien.
- Sheikh, H., et al. (2009). "In vivo intervertebral disc regeneration using stem cell-derived chondroprogenitors." J Neurosurg Spine **10**(3): 265-272.
- Shekelle, P. G., M. Markovich and R. Louie (1995). "An epidemiologic study of episodes of back pain care." Spine (Phila Pa 1976) **20**(15): 1668-1673.
- Shen, B., J. Melrose, P. Ghosh and F. Taylor (2003). "Induction of matrix metalloproteinase-2 and -3 activity in ovine nucleus pulposus cells grown in three-dimensional agarose gel culture by interleukin-1beta: a potential pathway of disc degeneration." Eur Spine J **12**(1): 66-75.
- Shen, F. H., D. Samartzis and G. B. Andersson (2006). "Nonsurgical management of acute and chronic low back pain." J Am Acad Orthop Surg **14**(8): 477-487.
- Shen, H., et al. (2016). "The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing." Stem Cell Res Ther **7**(1): 144.
- Shi, C. and E. G. Pamer (2011). "Monocyte recruitment during infection and inflammation." Nat Rev Immunol **11**(11): 762-774.
- Shine, K. M., J. A. Simson and M. Spector (2009). "Lubricin distribution in the human

- intervertebral disc." J Bone Joint Surg Am 91(9): 2205-2212.
- Silberberg, R., M. Aufdermaur and J. H. Adler (1979). "Degeneration of the intervertebral disks and spondylosis in aging sand rats." Arch Pathol Lab Med **103**(5): 231-235.
- Silke, J. (2011). "The regulation of TNF signalling: what a tangled web we weave." Curr Opin Immunol **23**(5): 620-626.
- Singh, K., K. Masuda and H. S. An (2005). "Animal models for human disc degeneration." Spine J 5(6 Suppl): 267s-279s.
- Sive, J. I., et al. (2002). "Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs." Mol Pathol **55**(2): 91-97.
- Smith, L. J. and N. L. Fazzalari (2009). "The elastic fibre network of the human lumbar anulus fibrosus: architecture, mechanical function and potential role in the progression of intervertebral disc degeneration." Eur Spine J **18**(4): 439-448.
- Smolders, L. A., et al. (2012). "Canonical Wnt signaling in the notochordal cell is upregulated in early intervertebral disk degeneration." J Orthop Res **30**(6): 950-957.
- Sobajima, S., et al. (2005a). "Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction." Spine J **5**(1): 14-23.
- Sobajima, S., et al. (2005b). "A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology." Spine (Phila Pa 1976) **30**(1): 15-24.
- Sommer, C., M. Marziniak and R. R. Myers (1998). "The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve." Pain **74**(1): 83-91.
- Song, K., et al. (2015). "Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs." Mol Med Rep **12**(3): 4664-4668.
- Song, T., et al. (2016). "Thalidomide represses inflammatory response and reduces radiculopathic pain by inhibiting IRAK-1 and NF-kappaB/p38/JNK signaling." J Neuroimmunol **290**: 1-8.
- Specchia, N., A. Pagnotta, A. Toesca and F. Greco (2002). "Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine." Eur Spine J **11**(2): 145-151.
- Spiller, K. L., et al. (2014). "The Role of Macrophage Phenotype in Vascularization of Tissue Engineering Scaffolds." Biomaterials **35**(15): 4477-4488.
- Stefanakis, M., et al. (2012). "Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels." Spine (Phila Pa 1976) **37**(22): 1883-1891.
- Stefanakis, M., J. Luo, P. Pollintine, P. Dolan and M. A. Adams (2014). "ISSLS Prize winner: Mechanical influences in progressive intervertebral disc degeneration." Spine (Phila Pa 1976) **39**(17): 1365-1372.

- Stern, W. E. and W. F. Coulson (1976). "Effects of collagenase upon the intervertebral disc in monkeys." J Neurosurg **44**(1): 32-44.
- Stokes, I. A. and J. C. latridis (2004). "Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization." Spine (Phila Pa 1976) **29**(23): 2724-2732.
- Strassburg, S., S. M. Richardson, A. J. Freemont and J. A. Hoyland (2010). "Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype." Regen Med **5**(5): 701–711.
- Sun, F., J. N. Qu and Y. G. Zhang (2013a). "Animal models of disc degeneration and major genetic strategies." Pain Physician **16**(3): E267-275.
- Sun, Z., et al. (2013b). "Immune cascades in human intervertebral disc: the pros and cons." Int J Clin Exp Pathol. **6**(6): 1009-1014.
- Sweet, H. O. and M. C. Green (1981). "Progressive ankylosis, a new skeletal mutation in the mouse." J Hered **72**(2): 87-93.
- Szymczak-Workman, A. L., C. J. Workman and D. A. Vignali (2009). "Cutting edge: regulatory T cells do not require stimulation through their TCR to suppress." J Immunol **182**(9): 5188-5192.
- Tafazal, S., L. Ng, N. Chaudhary and P. Sell (2009). "Corticosteroids in peri-radicular infiltration for radicular pain: a randomised double blind controlled trial. One year results and subgroup analysis." Eur Spine J **18**(8): 1220-1225.
- Tak, P. P. and G. S. Firestein (2001). "NF-κB: a key role in inflammatory diseases." J Clin Invest **107**(1): 7-11.
- Takada, T., et al. (2012). "Intervertebral disc and macrophage interaction induces mechanical hyperalgesia and cytokine production in a herniated disc model in rats." Arthritis Rheum **64**(8): 2601-2610.
- Takada, T., K. Nishida, M. Doita and M. Kurosaka (2002). "Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc." Spine (Phila Pa 1976) **27**(14): 1526-1530.
- Takada, T., K. Nishida, M. Doita, H. Miyamoto and M. Kurosaka (2004). "Interleukin-6 production is upregulated by interaction between disc tissue and macrophages." Spine (Phila Pa 1976) **29**(10): 1089-1092; discussion 1093.
- Takahashi, H., et al. (1996). "Inflammatory cytokines in the herniated disc of the lumbar spine." Spine (Phila Pa 1976) **21**(2): 218-224.
- Tan, Y., Y. Hu and J. Tan (2003). "Extracellular matrix synthesis and ultrastructural changes of degenerative disc cells transfected by Ad/CMV-hTGF-beta 1." Chin Med J **116**(9): 1399-1403.
- Tang, X., L. Jing and J. Chen (2012). "Changes in the molecular phenotype of nucleus pulposus cells with intervertebral disc aging." PLoS One **7**(12).

- Taurog, J. D., et al. (1999). "Inflammatory disease in HLA-B27 transgenic rats." Immunol Rev **169**: 209-223.
- Teixeira, G. Q., et al. (2015). "A degenerative/pro-inflammatory intervertebral disc organ culture: an ex vivo model for anti-inflammatory drug and cell therapy." Tissue Eng Part C Methods **22**(1): 8-19.
- Teixeira, G. Q., et al. (2016). "Anti-inflammatory Chitosan/Poly-gamma-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc." Acta Biomater **42**: 168-79.
- Than, K. D., et al. (2014). "Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease." Spine J 14(6): 1017-1028.
- Thompson, R. E., M. J. Pearcy and T. M. Barker (2004). "The mechanical effects of intervertebral disc lesions." Clin Biomech (Bristol, Avon) **19**(5): 448-455.
- Tian, P., X. L. Ma, T. Wang, J. X. Ma and X. Yang (2009). "Correlation between radiculalgia and counts of T lymphocyte subsets in the peripheral blood of patients with lumbar disc herniation." Orthop Surg 1(4): 317-321.
- Tobinick, E. and S. Davoodifar (2004). "Efficacy of etanercept delivered by perispinal administration for chronic back and/or neck disc-related pain: a study of clinical observations in 143 patients." Curr Med Res Opin **20**(7): 1075-1085.
- Tobinick, E. L. and S. Britschgi-Davoodifar (2003). "Perispinal TNF-alpha inhibition for discogenic pain." Swiss Med Wkly **133**(11-12): 170-177.
- Tolonen, J., et al. (1995). "Basic fibroblast growth factor immunoreactivity in blood vessels and cells of disc herniations." Spine (Phila Pa 1976) **20**(3): 271-276.
- Trinchieri, G. (1994). "Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes." Blood **84**(12): 4008-4027.
- Trout, J. J., J. A. Buckwalter, K. C. Moore and S. K. Landas (1982). "Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age." Tissue Cell **14**(2): 359-369.
- Tseng, H.-W., et al. (2016). "Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes." Arthritis Res Ther **18**: 35.
- Tsirimonaki, E., et al. (2013). "PKCepsilon signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells." PLoS One **8**(11): e82045.
- Ulrich, J. A., E. C. Liebenberg, D. U. Thuillier and J. C. Lotz (2007). "ISSLS prize winner: repeated disc injury causes persistent inflammation." Spine (Phila Pa 1976) **32**(25): 2812-2819.

- Urban, J. P. and S. Roberts (2003). "Degeneration of the intervertebral disc." Arthritis Res Ther **5**(3): 120-130.
- Urban, J. P., A. Maroudas, M. T. Bayliss and J. Dillon (1979). "Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues." Biorheology **16**(6): 447-464.
- Urban, J. P., S. Holm, A. Maroudas and A. Nachemson (1982). "Nutrition of the intervertebral disc: effect of fluid flow on solute transport." Clin Orthop Relat Res(170): 296-302.
- Vadala, G., F. Russo, A. Di Martino and V. Denaro (2015). "Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering." J Tissue Eng Regen Med **9**(6): 679-690.
- Vadalà, G., F. Russo, L. Ambrosio, M. Loppini and V. Denaro (2016). "Stem cells sources for intervertebral disc regeneration." World J Stem Cells **8**(5): 185-201.
- Vadala, G., G. A. Sowa and J. D. Kang (2007). "Gene therapy for disc degeneration." Expert Opin Biol Ther **7**(2): 185-196.
- van Buul, G. M., et al. (2012). "Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture." Osteoarthritis Cartilage **20**(10): 1186-1196.
- van den Akker, G. G. H., et al. (2014). "Novel immortal human cell lines reveal subpopulations in the nucleus pulposus." Arthritis Res Ther **16**(3): R135.
- van Dijk, B. G., E. Potier and K. Ito (2013). "Long-term culture of bovine nucleus pulposus explants in a native environment." Spine J **13**(4): 454-463.
- van Kleef, M., P. Vanelderen, S. P. Cohen, A. Lataster, J. Van Zundert and N. Mekhail (2010). "12. Pain originating from the lumbar facet joints." Pain Pract **10**(5): 459-469.
- van Koppen, A., et al. (2012). "Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease." PLoS One **7**(6): e38746.
- van Tulder, M., B. Koes and C. Bombardier (2002). "Low back pain." Best Pract Res Clin Rheumatol **16**(5): 761-775.
- Vasconcelos, D. P., et al. (2013). "Macrophage polarization following chitosan implantation." Biomaterials **34**(38): 9952-9959.
- Vasconcelos, D. P., et al. (2015a). "Development of an immunomodulatory biomaterial: using resolvin D1 to modulate inflammation." Biomaterials **53**: 566-573.
- Vasconcelos, D. P., et al. (2015b). "Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators." Biomaterials **37**: 116-123.
- Verrills, P., G. Nowesenitz and A. Barnard (2015). "Prevalence and characteristics of discogenic pain in tertiary practice: 223 consecutive cases utilizing lumbar discography."

- Pain Medicine 16(8): 1490-1499.
- Vo, N. V., (2016). "Molecular mechanisms of biological aging in intervertebral discs." J Orthop Res **34**(8): 1289-1306.
- Vo, N. V., et al. (2013). "Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration." Spine J **13**(3): 331-341.
- Vo, N., et al. (2010). "Accelerated aging of intervertebral discs in a mouse model of progeria." J Orthop Res **28**(12): 1600-1607.
- Vos, T., et al. (2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010." Lancet **380**(9859): 2163-2196.
- Walsh, A. J., D. S. Bradford and J. C. Lotz (2004). "In vivo growth factor treatment of degenerated intervertebral discs." Spine (Phila Pa 1976) **29**(2): 156-163.
- Walter, B. A., et al. (2011). "Complex loading affects intervertebral disc mechanics and biology." Osteoarthritis Cartilage **19**(8): 1011-1018.
- Walter, B. A., et al. (2015). "TNFalpha transport induced by dynamic loading alters biomechanics of intact intervertebral discs." PLoS One **10**(3): e0118358.
- Walter, B. A., et al. (2016). "Reduced tissue osmolarity increases TRPV4 expression and proinflammatory cytokines in intervertebral disc cells." Eur Cell Mater **32**: 123-136.
- Wang, F., et al. (2011d). "Expression of Fas receptor and apoptosis in vertebral endplates with degenerative disc diseases categorized as Modic type I or II." Injury **42**(8): 790-795.
- Wang, F., G. Niu, X. Chen and F. Cao (2011b). "Molecular imaging of microRNAs." Eur J Nucl Med Mol Imaging **38**(8): 1572-1579.
- Wang, H. Q., et al. (2011c). "Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3." J Pathol **225**(2): 232-242.
- Wang, H., et al. (2013). "Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: implications in intervertebral disc degeneration." J Biol Chem **288**(23): 16761-16774.
- Wang, J. N., et al. (2017). "Selective phosphodiesterase-2A inhibitor alleviates radicular inflammation and mechanical allodynia in non-compressive lumbar disc herniation rats." Eur Spine J. doi: 10.1007/s00586-017-5023-9.
- Wang, J., et al. (2007b). "The expression of Fas ligand on normal and stabbed-disc cells in a rabbit model of intervertebral disc degeneration: a possible pathogenesis." J Neurosurg Spine **6**(5): 425-430.
- Wang, J., et al. (2011a). "TNF-alpha and IL-1beta promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc." J Biol Chem **286**(46): 39738-39749.
- Wang, Q., et al. (2015a). "Sensitization of P2X3 receptors by cystathionine beta-synthetase

- mediates persistent pain hypersensitivity in a rat model of lumbar disc herniation." Mol Pain **11**: 15.
- Wang, T., et al. (2015b). "MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-alpha-induced apoptosis by targeting JunD." Biochimie **115**: 1-7.
- Wang, X., H. Wang, H. Yang, J. Li, Q. Cai, I. M. Shapiro and M. V. Risbud (2014). "Tumor necrosis factor-α- and interleukin-1β-dependent matrix metalloproteinase-3 expression in nucleus pulposus cells requires cooperative signaling via syndecan 4 and mitogenactivated protein kinase-NF-κB axis: implications in inflammatory disc disease." Am J Pathol **184**(9): 2560-2572.
- Wang, Y.-H., T.-F. Kuo and J.-L. Wang (2007a). "The implantation of non-cell-based materials to prevent the recurrent disc herniation: an in vivo porcine model using quantitative discomanometry examination." Eur Spine J **16**(7): 1021-1027.
- Watanabe, H. and Y. Yamada (2002). "Chondrodysplasia of gene knockout mice for aggrecan and link protein." Glycoconj J **19**(4-5): 269-273.
- Watanabe, H., K. Nakata, K. Kimata, I. Nakanishi and Y. Yamada (1997). "Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan." Proc Natl Acad Sci U S A **94**(13): 6943-6947.
- Watanabe, K., et al. (2003). "Effect of reinsertion of activated nucleus pulposus on disc degeneration: an experimental study on various types of collagen in degenerative discs." Connect Tissue Res **44**(2): 104-108.
- Watanabe, S., et al. (2015). "Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment." Stem Cells **33**(6): 1902-1914.
- Weaver, C. T., R. D. Hatton, P. R. Mangan and L. E. Harrington (2007). "IL-17 family cytokines and the expanding diversity of effector T cell lineages." Annu Rev Immunol **25**: 821-852.
- Wei, A., et al. (2009). "BMP13 prevents the effects of annular injury in an ovine model." Int J Biol Sci **5**(5): 388-396.
- Wei, F., et al. (2014). "In vivo experimental intervertebral disc degeneration induced by bleomycin in the rhesus monkey." BMC Musculoskelet Disord **15**: 340.
- Wei, F., et al. (2015). "Pingyangmycin-induced in vivo lumbar disc degeneration model of rhesus monkeys." Spine (Phila Pa 1976) **40**(4): E199-210.
- Wei, J., Y. Song, L. Sun and C. Lv (2013a). "Comparison of artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials." International Orthopaedics **37**(7): 1315-1325.
- Wei, L., A. Laurence, K. M. Elias and J. J. O'Shea (2007). "IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner." J Biol Chem **282**(48): 34605-34610.

- Wei, X. H., et al. (2013b). "The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection." Exp Neurol **241**: 159-168.
- Weiler, C., A. G. Nerlich, B. E. Bachmeier and N. Boos (2005). "Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls." Spine (Phila Pa 1976) **30**(1): 44-53; discussion 54.
- Weiler, C., et al. (2010). "Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc." Eur Spine J **19**(10): 1761-1770.
- Weiner, B. K. (2008). "Spine update: the biopsychosocial model and spine care." Spine (Phila Pa 1976) **33**(2): 219-223.
- Weinreich, S., B. Hoebe and P. Ivanyi (1995). "Maternal age influences risk for HLA-B27 associated ankylosing enthesopathy in transgenic mice." Ann Rheum Dis **54**(9): 754-756.
- Weinstein, J. N., et al. (2008). "Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT)." Spine (Phila Pa 1976) **33**(25): 2789-2800.
- Winkler, T., E. J. Mahoney, D. Sinner, C. C. Wylie and C. L. Dahia (2014). "Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse." PLoS One **9**(6): e98444.
- Winn, S. R., H. Uludag and J. O. Hollinger (1999). "Carrier systems for bone morphogenetic proteins." Clin Orthop Relat Res (367 Suppl): S95-106.
- Woods, B. I., N. Vo, G. Sowa and J. D. Kang (2011). "Gene therapy for intervertebral disk degeneration." Orthop Clin North Am **42**(4): 563-574, ix.
- Wuertz, K. and L. Haglund (2013). "Inflammatory mediators in intervertebral disk degeneration and discogenic pain." Global Spine J **3**(3): 175-184.
- Wuertz, K., et al. (2011). "The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo." Spine (Phila Pa 1976) **36**(21): E1373-1384.
- Xie, W., Z. Li, M. Li, N. Xu and Y. Zhang (2013). "miR-181a and inflammation: miRNA homeostasis response to inflammatory stimuli in vivo." Biochem Biophys Res Commun **430**(2): 647-652.
- Xu, Y. Q., Z. H. Zhang, Y. F. Zheng and S. Q. Feng (2016). "Dysregulated miR-133a mediates loss of type II collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration." Spine (Phila Pa 1976) **41**(12): E717-724.
- Yamada, K., et al. (2001). "Investigation of the short-term effect of chemonucleolysis with chondroitinase ABC." J Vet Med Sci **63**(5): 521-525.
- Yamamoto, J., et al. (2013). "Fas ligand plays an important role for the production of proinflammatory cytokines in intervertebral disc nucleus pulposus cells." J Orthop Res **31**(4): 608-615.

- Yan, N., S. Yu, H. Zhang and T. Hou (2015). "Lumbar disc degeneration is facilitated by miR-100-mediated FGFR3 suppression." Cell Physiol Biochem **36**(6): 2229-2236.
- Yang, F., V. Y. Leung, K. D. Luk, D. Chan and K. M. Cheung (2009). "Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse." J Pathol **218**(1): 113-121.
- Yang, H., et al. (2010). "Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-b1 decrease rabbit intervertebral disc degeneration." Spine J **10**(9): 802-810.
- Yang, H., et al. (2015). "TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration." Sci Rep **5**: 13254.
- Ye, S., et al. (2011). "Specific inhibitory protein Dkk-1 blocking Wnt/beta-catenin signaling pathway improve protectives effect on the extracellular matrix." J Huazhong Univ Sci Technolog Med Sci **31**(5): 657-662.
- Yerramalli, C. S., et al. (2007). "The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function." Biomech Model Mechanobiol **6**(1-2): 13-20.
- Yin, W., K. Pauza, W. J. Olan, J. F. Doerzbacher and K. J. Thorne (2014). "Intradiscal injection of fibrin sealant for the treatment of symptomatic lumbar internal disc disruption: results of a prospective multicenter pilot study with 24-month follow-up." Pain Med **15**(1): 16-31.
- Ying, S. Y., D. C. Chang and S. L. Lin (2013). "The MicroRNA." Methods Mol Biol 936: 1-19.
- Yoo, K. H., et al. (2009). "Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues." Cell Immunol **259**(2): 150-156.
- Yoshikawa, T., Y. Ueda, K. Miyazaki, M. Koizumi and Y. Takakura (2010). "Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies." Spine (Phila Pa 1976) **35**(11): E475-480.
- Yu, J., et al. (2007). "Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc." Journal of Anatomy **210**(4): 460-471.
- Yu, J., M. L. Schollum, K. R. Wade, N. D. Broom and J. P. Urban (2015). "ISSLS Prize Winner: A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organization." Spine (Phila Pa 1976) **40**(15): 1149-1157.
- Yu, X., et al. (2013). "MicroRNA-10b Promotes Nucleus Pulposus Cell Proliferation through RhoC-Akt Pathway by Targeting HOXD10 in Intervetebral Disc Degeneration." PLOS ONE **8**(12): e83080.
- Yurube, T., et al. (2014). "Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model." Arthritis Res Ther **16**(1): R31-R31.
- Zachar, L., D. Bacenkova and J. Rosocha (2016). "Activation, homing, and role of the

- mesenchymal stem cells in the inflammatory environment." J Inflamm Res 9: 231-240.
- Zhang, H., et al. (2009b). "Intradiscal injection of simvastatin retards progression of intervertebral disc degeneration induced by stab injury." Arthritis Res Ther **11**(6): R172-R172.
- Zhang, H., et al. (2011b). "Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine: laboratory investigation." J Neurosurg Spine **15**(4): 404-413.
- Zhang, H., F. La Marca, S. J. Hollister, S. A. Goldstein and C. Y. Lin (2009a). "Developing consistently reproducible intervertebral disc degeneration at rat caudal spine by using needle puncture." J Neurosurg Spine **10**(6): 522-530.
- Zhang, W., et al. (2013a). "CCL20 Secretion from the nucleus pulposus improves the recruitment of CCR6-expressing Th17 cells to degenerated IVD tissues." PLoS ONE **8**(6): e66286.
- Zhang, X., J. Huang and P. A. McNaughton (2005). "NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels." EMBO J **24**(24): 4211-4223.
- Zhang, Y., et al. (2011a). "Histological features of the degenerating intervertebral disc in a goat disc-injury model." Spine (Phila Pa 1976) **36**(19): 1519-1527.
- Zhang, Y., Y. Ma, J. Jiang, T. Ding and J. Wang (2013b). "Treatment of the lumbar disc herniation with intradiscal and intraforaminal injection of oxygen-ozone." J Back Musculoskelet Rehabil **26**(3): 317-322.
- Zhao, B. O., Q. Yu, H. Li, X. Guo and X. He (2014). "Characterization of microRNA expression profiles in patients with intervertebral disc degeneration." Int J Mol Med **33**(1): 43-50.
- Zhou, X., et al. (2017). "The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration." J Tissue Eng Regen Med. doi: 10.1002/term.2261.
- Zlatanova, I., C. Pinto and J. S. Silvestre (2016). "Immune modulation of cardiac repair and regeneration: the art of mending broken hearts." Front Cardiovasc Med **3**: 40.

APPENDIX

Image licenses

Chapter I

Figure 1. "Schematic representation of healthy intervertebral disc."

Author: Yong-Chan Huang, Jill P. G. Urban, Keith D. K. Luk

Source: http://www.nature.com/nrrheum/journal/v10/n9/full/nrrheum.2014.91.html

License: Please refer to license nº 4041040725377 in this appendix.

The image was adapted.

Figure 2. "Schematic representation of intervertebral disc degeneration."

Author: Yong-Chan Huang, Jill P. G. Urban, Keith D. K. Luk

Source: http://www.nature.com/nrrheum/journal/v10/n9/full/nrrheum.2014.91.html

License: Please refer to license nº 4041040725377 in this appendix.

The image was adapted.

Chapter II

Figure 1. "Role of the cytokines involved in different phases of intervertebral disc degeneration and herniation, leading to back and radicular pain."

Author: Makarand V. Risbud, Irving M. Shapiro

Source: http://www.nature.com/nrrheum/journal/v10/n1/full/nrrheum.2013.160.html

License: Please refer to license no 4041040533967 in this appendix.

No modifications were made to the image.

Figure 2. "Role of the different classes of immune cells in amplifying the inflammatory response by disc cells during IVD degeneration."

Author: Makarand V. Risbud, Irving M. Shapiro

Source: http://www.nature.com/nrrheum/journal/v10/n1/full/nrrheum.2013.160.html

License: Please refer to license nº 4041040533967 in this appendix.

No modifications were made to the image.

Figure 3. "Cell sources for intervertebral disc regeneration."

Author: Daisuke Sakai, Gunnar B. J. Andersson

Source: http://www.nature.com/nrrheum/journal/v11/n4/full/nrrheum.2015.13.html

License: Please refer to license nº 4070990622889 in this appendix.

No modifications were made to the image.

RightsLink Printable License

NATURE PUBLISHING GROUP LICENSE TERMS AND CONDITIONS

Feb 02, 2017

This Agreement between Graciosa Q. Teixeira ("You") and Nature Publishing Group ("Nature Publishing Group") consists of your license details and the terms and conditions provided by Nature Publishing Group and Copyright Clearance Center.

License Number 4041040725377 License date Feb 02, 2017

Licensed Content Publisher Nature Publishing Group Licensed Content Publication Nature Reviews Rheumatology

Licensed Content Title Intervertebral disc regeneration: do nutrients lead the way?

Yong-Can Huang, Jill P. G. Urban, Keith D. K. Luk Licensed Content Author

Licensed Content Date Jun 10, 2014

Licensed Content Volume 10

Number

Licensed Content Issue

Number

Type of Use reuse in a dissertation / thesis

Requestor type academic/educational Format print and electronic Portion figures/tables/illustrations

Number of

figures/tables/illustrations

High-res required no

Figures Figure 1 Figure 3

Author of this NPG article no

Your reference number

Title of your thesis / dissertation

Modulation of inflammatory response associated with intervertebral disc degeneration

Expected completion date Jun 2017

Estimated size (number of

pages)

200

Requestor Location

Graciosa Q. Teixeira

Rua Alfredo Allen, 208

Porto, 4200-135

Portugal

Attn: Graciosa Q. Teixeira

Billing Type Invoice

Billing Address Graciosa Q. Teixeira

Rua Alfredo Allen, 208

Porto, Portugal 4200-135 Attn: Graciosa Q. Teixeira

0.00 USD Total

Terms and Conditions

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=b68dea8e-8104-4aab-9088-ad6a5d71f3a2

RightsLink Printable License

Terms and Conditions for Permissions

Nature Publishing Group hereby grants you a non-exclusive license to reproduce this material for this purpose, and for no other use, subject to the conditions below:

- 1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to Nature Publishing Group and does not carry the copyright of another entity (as credited in the published version). If the credit line on any part of the material you have requested indicates that it was reprinted or adapted by NPG with permission from another source, then you should also seek permission from that source to reuse the material.
- 2. Permission granted free of charge for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to the work as a whole and that the electronic version is essentially equivalent to, or substitutes for, the print version. Where print permission has been granted for a fee, separate permission must be obtained for any additional, electronic re-use (unless, as in the case of a full paper, this has already been accounted for during your initial request in the calculation of a print run).NB: In all cases, web-based use of full-text articles must be authorized separately through the 'Use on a Web Site' option when requesting permission.
- Permission granted for a first edition does not apply to second and subsequent editions and for editions in other languages (except for signatories to the STM Permissions Guidelines, or where the first edition permission was granted for free).
- 4. Nature Publishing Group's permission must be acknowledged next to the figure, table or abstract in print. In electronic form, this acknowledgement must be visible at the same time as the figure/table/abstract, and must be hyperlinked to the journal's homepage.
- 5. The credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

For AOP papers, the credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Note: For republication from the *British Journal of Cancer*, the following credit lines apply.

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)For AOP papers, the credit line should read:

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Adaptations of single figures do not require NPG approval. However, the adaptation should be credited as follows:

Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

Note: For adaptation from the British Journal of Cancer, the following credit line applies.

Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

7. Translations of 401 words up to a whole article require NPG approval. Please visit http://www.macmillanmedicalcommunications.com for more information. Translations of up to a 400 words do not require NPG approval. The translation should be credited as follows:

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication).

Note: For translation from the British Journal of Cancer, the following credit line applies.

Translated by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=b68dea8e-8104-4aab-9088-ad6a5d71f3a2

RightsLink Printable License

We are certain that all parties will benefit from this agreement and wish you the best in the use of this material. Thank you.

Special Terms:

v1.1

Questions? $\underline{\text{customercare@copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

RightsLink Printable License

NATURE PUBLISHING GROUP LICENSE TERMS AND CONDITIONS

Feb 02, 2017

This Agreement between Graciosa Q. Teixeira ("You") and Nature Publishing Group ("Nature Publishing Group") consists of your license details and the terms and conditions provided by Nature Publishing Group and Copyright Clearance Center.

 License Number
 4041040533967

 License date
 Feb 02, 2017

Licensed Content Publisher Nature Publishing Group
Licensed Content Publication Nature Reviews Rheumatology

Licensed Content Title Role of cytokines in intervertebral disc degeneration: pain and disc

content

Licensed Content Author Makarand V. Risbud, Irving M. Shapiro

Licensed Content Date Oct 29, 2013

Licensed Content Volume

Number

10

Licensed Content Issue

Number

1

Type of Use reuse in a dissertation / thesis

Requestor type academic/educational

Format print and electronic

Portion figures/tables/illustrations

Number of

figures/tables/illustrations

High-res required no

Figure 3 Figure 4

Author of this NPG article no

Your reference number

Title of your thesis / dissertation

Modulation of inflammatory response associated with intervertebral

disc degeneration

Expected completion date Estimated size (number of

pages)

Jun 2017 200

Requestor Location

Graciosa Q. Teixeira Rua Alfredo Allen, 208

Porto, 4200-135

Portugal

Attn: Graciosa Q. Teixeira

Billing Type Invoice

Billing Address Graciosa Q. Teixeira

Rua Alfredo Allen, 208

Porto, Portugal 4200-135 Attn: Graciosa Q. Teixeira

Total 0.00 USD

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=0afc832f-3ed4-4123-b6a6-8f82fce1be9e

RightsLink Printable License

Terms and Conditions

Terms and Conditions for Permissions

Nature Publishing Group hereby grants you a non-exclusive license to reproduce this material for this purpose, and for no other use, subject to the conditions below:

- 1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to Nature Publishing Group and does not carry the copyright of another entity (as credited in the published version). If the credit line on any part of the material you have requested indicates that it was reprinted or adapted by NPG with permission from another source, then you should also seek permission from that source to reuse the material.
- 2. Permission granted free of charge for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to the work as a whole and that the electronic version is essentially equivalent to, or substitutes for, the print version. Where print permission has been granted for a fee, separate permission must be obtained for any additional, electronic re-use (unless, as in the case of a full paper, this has already been accounted for during your initial request in the calculation of a print run).NB: In all cases, web-based use of full-text articles must be authorized separately through the 'Use on a Web Site' option when requesting permission.
- Permission granted for a first edition does not apply to second and subsequent editions and for editions in other languages (except for signatories to the STM Permissions Guidelines, or where the first edition permission was granted for free).
- 4. Nature Publishing Group's permission must be acknowledged next to the figure, table or abstract in print. In electronic form, this acknowledgement must be visible at the same time as the figure/table/abstract, and must be hyperlinked to the journal's homepage.
- 5. The credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

For AOP papers, the credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Note: For republication from the *British Journal of Cancer*, the following credit lines apply.

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)For AOP papers, the credit line should read:

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Adaptations of single figures do not require NPG approval. However, the adaptation should be credited as follows:

Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

Note: For adaptation from the British Journal of Cancer, the following credit line applies.

Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

7. Translations of 401 words up to a whole article require NPG approval. Please visit http://www.macmillanmedicalcommunications.com for more information. Translations of up to a 400 words do not require NPG approval. The translation should be credited as follows:

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication).

Note: For translation from the British Journal of Cancer, the following credit line applies.

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=0afc832f-3ed4-4123-b6a6-8f82fce1be9e

RightsLink Printable License

Translated by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

We are certain that all parties will benefit from this agreement and wish you the best in the use of this material. Thank you.

Special Terms:

v1.1

Questions? $\underline{\text{customercare@copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

16/03/2017

RightsLink Printable License

NATURE PUBLISHING GROUP LICENSE TERMS AND CONDITIONS

Mar 16, 2017

This Agreement between Graciosa Q. Teixeira ("You") and Nature Publishing Group ("Nature Publishing Group") consists of your license details and the terms and conditions provided by Nature Publishing Group and Copyright Clearance Center.

License Number 4070990622889 Mar 16, 2017 License date

Licensed Content Publisher Nature Publishing Group Licensed Content Publication Nature Reviews Rheumatology

Licensed Content Title Stem cell therapy for intervertebral disc regeneration: obstacles and

solutions

Licensed Content Author Daisuke Sakai, Gunnar B. J. Andersson

Licensed Content Date Feb 24, 2015

Licensed Content Volume 11 Licensed Content Issue 4

Type of Use reuse in a dissertation / thesis

Requestor type academic/educational **Format** print and electronic

Portion figures/tables/illustrations

Number of figures/tables/illustrations

High-res required no **Figures** Figure 2 Author of this NPG article no

Your reference number

Title of your thesis /

dissertation

Modulation of inflammatory response associated with intervertebral

disc degeneration

Expected completion date Jun 2017 Estimated size (number of 200

pages)

Graciosa Q. Teixeira Requestor Location

Rua Alfredo Allen, 208

Porto, 4200-135 Portugal

Attn: Graciosa Q. Teixeira

Billing Type Invoice

Billing Address Graciosa Q. Teixeira

Rua Alfredo Allen, 208

Porto, Portugal 4200-135 Attn: Graciosa Q. Teixeira

0.00 USD Total

Terms and Conditions

https://s100.copyright.com/AppDispatchServlet

16/03/2017

RightsLink Printable License

Terms and Conditions for Permissions

Nature Publishing Group hereby grants you a non-exclusive license to reproduce this material for this purpose, and for no other use, subject to the conditions below:

- 1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to Nature Publishing Group and does not carry the copyright of another entity (as credited in the published version). If the credit line on any part of the material you have requested indicates that it was reprinted or adapted by NPG with permission from another source, then you should also seek permission from that source to reuse the material.
- 2. Permission granted free of charge for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to the work as a whole and that the electronic version is essentially equivalent to, or substitutes for, the print version. Where print permission has been granted for a fee, separate permission must be obtained for any additional, electronic re-use (unless, as in the case of a full paper, this has already been accounted for during your initial request in the calculation of a print run).NB: In all cases, web-based use of full-text articles must be authorized separately through the 'Use on a Web Site' option when requesting permission.
- Permission granted for a first edition does not apply to second and subsequent editions and for editions in other languages (except for signatories to the STM Permissions Guidelines, or where the first edition permission was granted for free).
- 4. Nature Publishing Group's permission must be acknowledged next to the figure, table or abstract in print. In electronic form, this acknowledgement must be visible at the same time as the figure/table/abstract, and must be hyperlinked to the journal's homepage.
- 5. The credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

For AOP papers, the credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Note: For republication from the British Journal of Cancer, the following credit lines apply.

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)For AOP papers, the credit line should read:

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Adaptations of single figures do not require NPG approval. However, the adaptation should be credited as follows:

Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

Note: For adaptation from the British Journal of Cancer, the following credit line applies.

Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

7. Translations of 401 words up to a whole article require NPG approval. Please visit http://www.macmillanmedicalcommunications.com for more information. Translations of up to a 400 words do not require NPG approval. The translation should be credited as follows:

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication).

Note: For translation from the British Journal of Cancer, the following credit line applies.

Translated by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

https://s100.copyright.com/AppDispatchServlet

16/03/2017

RightsLink Printable License

We are certain that all parties will benefit from this agreement and wish you the best in the use of this material. Thank you.

Special Terms:

v1.1

Questions? $\underline{customercare@copyright.com}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.