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ABSTRACT 

 

Intervertebral disc (IVD) degeneration and associated inflammation often lead to low back 

pain, one of the major causes of disability worldwide. Although available clinical treatments 

decrease symptoms' progression, they fail to restore native IVD properties. Clinical trials 

using cell therapies are increasing, but the hostile pro-inflammatory environment of IVD may 

challenge their success, since may impair cell survival and matrix formation. Due to the high 

impact on population health and the lack of adequate solutions, novel therapies that 

modulate the inflammatory response can be a new hope to treat IVD degeneration.  

This works opens new perspectives on alternative therapeutic approaches to modulate 

inflammation, while stimulating IVD regeneration, and on how the inflammatory environment 

of IVD can challenge the regenerative process. 

Though a high number of animal models have been developed to mimic IVD degeneration, 

when this investigation commenced there was no model that simulated the inflammatory 

process of human progressive disc degeneration, while allowing its standardized control. 

Therefore, a standardized degenerative/pro-inflammatory ex vivo IVD model was first 

established and validated, using bovine caudal disc cultures, under static loading, stimulated 

by needle-puncture and IL-1β. From several conditions tested, these were shown to mimic 

more closely the human IVD degeneration and associated inflammatory response. Moreover, 

this model showed great potential for testing bioactive molecules and cell therapy 

approaches. 

A nanotechnology-based therapy, based on chitosan (Ch) and poly(-glutamic acid) (-PGA) 

nanoparticles/nanocomplexes (NCs) with a non-steroidal anti-inflammatory drug, diclofenac 

(Df), were previously developed in the group. The anti-inflammatory NCs were injected into 

the established IVD ex vivo model and were shown to effectively down-regulate pro-

inflammatory markers production, while promoting matrix remodelling by native cells. Df-NCs 

were then injected in degenerated discs in vivo, in a rat model of tail punctured IVD, already 

established in the lab. The preliminary results obtained indicate that 2 weeks’ post-injury the 

intradiscal administration of Df-NCs did not seem to promote proteoglycan production in the 

IVD, contrasting with the promising ex vivo results previously obtained. Moreover, Df-NCs did 

not promote hernia regression. Nevertheless, in the group of animals receiving intradiscal Df 

injection, the hernia volume was reduced. Ongoing work is being performed to comprehend 

the results discrepancy. 

Finally, due to the promisor but controversial results obtained with cell therapies, namely with 

mesenchymal stem/stromal cells (MSCs) for low back pain, the effect of pro-
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inflammatory/degenerative environment of IVD on MSCs evaluated using the ex vivo model 

previously established. MSC revealed to have an immunomodulatory, but not pro-

regenerative, role on degenerated IVD, decreasing the inflammatory response of IVD cells. 

The results obtained suggest that MSCs act through a feedback loop mechanism, producing 

other inflammatory factors, but how this impacts on low back pain has not been addressed 

so far.  

 In summary, this thesis contributed to advance knowledge on how the modulation of 

inflammation can affect IVD regeneration. The work developed in this thesis also opened 

new perspectives in the use intradiscal injection of anti-inflammatory drugs in IVD 

degeneration and how the degenerated IVD can influence the success of cell therapies for 

low back pain.  
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RESUMO 

 

A degeneração do disco intervertebral (IVD) e a inflamação associada contribuem 

frequentemente para a dor lombar, uma das principais causas mundiais de incapacidade. 

Embora os tratamentos clínicos disponíveis diminuam a progressão dos sintomas, não têm 

capacidade de restaurar as propriedades nativas do IVD. Os ensaios clínicos que utilizam 

terapias celulares estão a aumentar, mas o ambiente pró-inflamatório hostil do IVD pode 

desafiar o seu sucesso, pois pode impedir a sobrevivência celular e a formação da matriz.  

Devido ao elevado impacto sobre a saúde da população e à falta de soluções adequadas, 

novas terapias que modelem a resposta inflamatória podem ser uma nova esperança para o 

tratamento da degeneração do IVD.  

Este trabalho apresenta novas perspetivas sobre abordagens terapêuticas alternativas para 

modular a inflamação, e ao mesmo tempo estimular a regeneração do IVD, e sobre como o 

ambiente inflamatório do IVD pode desafiar o processo regenerativo. 

Embora haja um elevado número de modelos animais desenvolvidos para mimetizar a 

degeneração do IVD, quando esta investigação começou, não existia um modelo que 

simulasse o processo inflamatório da degeneração progressiva do disco humano, permitindo 

um controlo padronizado. Por conseguinte, um modelo ex vivo degenerativo/pró-inflamatório 

de IVD padronizado foi primeiro estabelecido e validado, utilizando culturas de disco da 

cauda de bovino, sob carga estática, estimuladas por punção com agulha e IL-1β. Das 

várias condições testadas, estas foram mostradas as mais próximas em mimetizar a 

degeneração do IVD humano e a resposta inflamatória associada. Além disso, este modelo 

mostrou grande potencial para testar abordagens que incluam moléculas bioativas e terapia 

celular. 

Uma terapia nanotecnológica baseada em nanopartículas/nanocomplexos (NCs) de 

quitosano (Ch) e ácido poli(-glutâmico) com um fármaco anti-inflamatório não esteróide, 

diclofenac (Df), foi anteriormente desenvolvido no grupo. Estes NCs anti-inflamatórios foram 

injetadas no modelo ex vivo de IVD estabelecido e demonstraram efetivamente diminuir a 

produção de marcadores pró-inflamatórios, enquanto promoveram a remodelação da matriz 

por células nativas. Os Df-NCs foram então injetados in vivo, em discos degenerados, num 

modelo de IVD da cauda de rato puncionado, já estabelecido no laboratório. Os resultados 

preliminares obtidos indicam que, 2 semanas após a lesão, a administração intradiscal de 

Df-NCs não pareceu promover a produção de proteoglicanos no IVD, contrastando com os 

resultados promissores ex vivo anteriormente obtidos.  Além disso, os Df-NCs não 

promoveram a regressão da hérnia. No entanto, no grupo de animais que receberam injeção 
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intradiscal de Df, o volume da hérnia foi reduzido. Está em curso a continuação deste 

trabalho no sentido de compreender a discrepância dos resultados.  

Por fim, devido aos resultados promissores, mas controversos, obtidos com as terapias 

celulares, nomeadamente com células estaminais/estromais mesenquimais (MSCs) para a 

dor lombar, o efeito do ambiente pró-inflamatório/degenerativo do IVD nas MSCs foi 

avaliado, utilizando o modelo ex vivo anteriormente estabelecido. As MSCs revelaram ter um 

papel imunomodulador, mas não pró-regenerativo, sobre o IVD degenerado, diminuindo a 

resposta inflamatória das células do IVD. Os resultados obtidos sugerem que as MSCs 

atuam através de um mecanismo de autorregulação, produzindo outros fatores 

inflamatórios, mas como isto afeta a dor lombar não tem sido abordado até agora.  

Em suma, esta tese contribuiu para o avanço do conhecimento em como a modulação da 

inflamação pode afetar a regeneração IVD. O trabalho desenvolvido nesta tese também 

abriu novas perspetivas no uso de injeção intradiscal de drogas anti-inflamatórias na 

degeneração do IVD, e como o IVD degenerado pode influenciar o sucesso de terapias 

celulares para a dor lombar. 
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1. Social impact of low back pain 

Low back pain (LBP) has been described to affect approximately two thirds of the word 

population at some point in their life (Andersson 1999, Deyo and Weinstein 2001) and it is 

considered the number one disease regarding global years lived with disability (YLDs) (Vos et 

al. 2012). Recent findings showed that both in 1990 and 2010, LBP was contributing to about 

10.7% of total YLDs (Vos et al. 2012). Over the past two decades, this musculoskeletal 

condition has been common cause of activity limitations in people younger than 45 years, 

absence from work, seeking for primary care, admission to hospital, and surgical procedures 

(Andersson 1999). Nonetheless, there is also a possibility that psychosocial factors may 

influence the prevalence of the disease, namely stress, anxiety, and depression (Andersson 

1999). The population awareness of the symptoms and their reporting may also contribute to 

the high LBP prevalence observed (Croft 2000, Weiner 2008).  

Although it is estimated that about 90% of the patients recover from LBP within a few months 

after receiving primary care (Shekelle et al. 1995), the remaining patients may develop chronic 

LBP (described as pain lasting for 12 weeks or longer) or suffer from recurrent pain episodes 

(corresponding to around 20% to 44% within one year after the initial episode and may reach 

up to 85% along life) (Andersson 1999, van Tulder et al. 2002). Reports estimate that the total 

costs associated with back problems corresponded to about $85.9 billion per year, in the USA 

(Martin, Deyo et al. 2008) and £12.3 billion in the UK (Maniadakis and Gray 2000, Hong et al. 

2013).  

 

2. Low back pain generators  

Acute LBP (defined as lasting less than 4 weeks) is most commonly caused by muscle strains, 

ligaments sprains, and tendonitis (Cooper 2015). It may also be caused by traumatic injury, 

intervertebral disc (IVD) degeneration, disc herniation or rupture, radiculopathy (compression, 

inflammation and/or injury to a spinal nerve root), skeletal irregularities (e.g. scoliosis and 

lordosis), spinal stenosis (spine narrowing, which pressures the spinal cord and nerves) or 

spondylolisthesis (displacement of the vertebra and pinching of the nerves) (Cooper 2015). 

Although rarer, LBP may also be related to underlying conditions such as compression 

fracture, cancer, cauda equine syndrome or spinal infection (Chou et al. 2007).  

Degeneration of the IVD has been perceived as the major cause of functional alterations and 

spinal instability (Iatridis et al. 2009, Galbusera et al. 2014). In young individuals, it has been 

described that discogenic LBP (with absence of disc herniation and nerve root compression) 

accounts for about 40% of chronic LBP (Cheung et al. 2009, Verrills et al. 2015). Sciatica cases 

(with disc herniation and nerve root compression) represent about 20 to 30% (Koes et al. 

2007), and zygapophysial joint pain is estimated to account between 5% to 15% of the chronic 
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LBP cases (van Kleef et al. 2010, Cooper 2015).  

The neurological symptoms of LBP are treated depending on whether the pain is acute or 

chronic. Frequently, the doctors struggle about the most effective option. Commonly, surgery 

is only recommended when diagnostics indicate worsening nerve damage or spinal structural 

changes that can be corrected with surgery. Conventionally, treatments with non-surgical 

methods consist on alleviating pain through resting, physical therapy and/or pain medication, 

including administration of analgesics, corticosteroids, non-steroidal anti-inflammatory drugs 

(NSAIDs), opioids and antidepressants (Shen et al. 2006). If these treatments fail, surgical 

interventions such as discectomy, spinal arthroplasty, and arthrodesis may be considered 

(Leahy et al. 2008, Wei et al. 2013a). However, these treatments are transient in time, and 

may cause neurological alterations, affecting patients’ mobility, and potentially altering spine 

biomechanics, leading to degeneration of adjacent discs (Lund and Oxland 2011, Natarajan 

and Andersson 2017).  

Several proposals converging into regenerative medicine, as cell-based therapies, growth 

factor injection, gene therapy and tissue engineering, have been focusing on IVD’s 

mechanobiology and function reestablishment (Hughes et al. 2012, Molinos et al. 2015a). 

These alternatives look for less invasive, long-term effective and safe treatment options which 

could bring greater consensus among the medical community. Furthermore, by integrating 

these strategies, it would be possible to target different discogenic disease features such as 

to modulate inflammation and decrease pain, as well as to promote native tissue regeneration.  

 

3. The healthy intervertebral disc 

The IVD’s complex structure has a major biomechanical role, despite the differences among 

humans and other species in the disc size, mechanics, biochemistry and nutrition (Alini et al. 

2008). In humans, IVD enables stability, absorption and dispersion of loads, while allowing 

spine’s multiaxial motions, such as flexion-extension, rotation, and lateral bending (Stokes and 

Iatridis 2004). The IVD is the main spinal joint (occupying about one third of its length), and the 

largest avascular and aneural tissue in the body of a healthy adult (Urban and Roberts 2003, 

Raj 2008, Huang et al. 2014). The biomechanical role of the disc is conditioned by the 

synthesis of macromolecules by a small population of resident cells (Huang et al. 2014). It is 

known since the 70’s that the IVD is mainly composed by water, proteoglycans, and collagen 

(Adams and Muir 1976, Eyre 1979), with their relative proportions varying between its different 

constitutive regions. The IVD comprises a highly hydrated central structure, the nucleus 

pulposus (NP), surrounded by a concentric annular lamellar structure, the annulus fibrosus 

(AF), delimited above and below by cartilaginous endplate (CEP) that connect an IVD to the 

adjacent vertebrae (Raj 2008). A schematic representation of the IVD is depicted in Figure 1. 
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In Table 1, it is summarized the differences in extracellular matrix (ECM) composition within 

the different areas of the IVD. 

The disc size varies along the spinal region and the cellular content also varies between the 

regions. Of notice, in the human lumbar disc the NP cellular content is only about 4x106 

cells/cm3, while the AF has around 9x106 cells/cm3, corresponding to approximately 1% of the 

IVD volume (Roughley 2004, Anderson et al. 2005). The specific cells within each region of 

the IVD are affected by a variety of physical and biochemical cues from the microenvironment. 

The cells are crucial for producing IVD ECM components and maintain its homeostasis (Hwang 

et al. 2014). Overall, the low cell concentration is described as an adaptive response to the 

IVD microenvironment, which has a limited nutrient supply to support cell proliferation 

(Anderson et al. 2005).  

 

 

Figure 1. Schematic representation of healthy intervertebral disc. Adapted by permission from Macmillan 

Publishers Ltd: Nature Reviews Rheumatology (Huang et al. 2014), copyright (2014).  

 

3.1.  Cartilaginous endplate 

In adults, the CEP consists of relatively thin layers of hyaline cartilage (of about 0.5 - 1 mm) 

adjacent on one side to the vertebral endplate (VEP), the region from the subchondral bone to 

a depth of 2 mm, and are continuous with the AF and NP on the other side (Donisch and Trapp 

1971, Rodriguez et al. 2012). The CEP ECM consists largely of proteoglycans and collagen 

fibers, namely collagen type II (COL2), with a water content lower than that of the NP and AF 

(Roberts et al. 1989). Cells resemble chondrocytes, but present a slightly different gene 

expression signature than the IVD cells (Minogue et al. 2010a). CEP and vertebrae are derived 

from the sclerotome (Risbud and Shapiro 2011). In babies (younger than approximately 12 

months old), blood vessel capillaries and nerves arising from multiple superior and inferior 

dorsal root ganglia are still present in the endplate and IVD (Raj 2008).  
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Table 1. IVD anatomy and physiology. 

IVD 
tissue 

Composition (% to wet weight) 
Biomechanical 
characteristics 

References 

 water proteoglycans collagen   

CEP 55% 8% 
25% 

 COL2 

dispersion of 
loads 

(Raj 2008, 
Ochia et al. 
2003) 

AF 
60-70%             

(no change with 
age) 

5%     
(decrease with 

age) 

15% 
(little change with 

age)  elasticity 

 tensile loading 
capacity 

(Raj 2008, 
Smith and 
Fazzalari 2009, 
Shapiro and 
Risbud 2014, 
Le Maitre et al. 
2007a) 

Outer AF    COL1 

Inner AF   
COL1 to COL2 

transition 

NP 
90% at birth     

80% at age 20 
70% at older age 

15%    
(decrease with 

age) 

4%                       

 COL2            
(little change with 

age) 

 hydrostatic 
pressure 

 absorption and 
dispersion of 
compressive 
loads 

(Raj 2008, 
Stokes and 
Iatridis 2004, 
Shapiro and 
Risbud 2014, 
Le Maitre et al. 
2007a) 

 higher 

 

During spine development, the IVD becomes practically avascular, the vertebrae ossify and 

the CEPs undergo changes of shape, circumference, thickness and maturation (Donisch and 

Trapp 1971). The CEP has been considered the main diffusional route for oxygen, nutrients 

and residues, which occurs predominantly through passive diffusion (Holm et al. 1981, Ogata 

and Whiteside 1981, Huang et al. 2014). Therefore, the concentration gradients are 

determined by the balance in cells consumption and nutrients supply (Urban et al. 1982, Huang 

et al. 2014). Nonetheless, due to the scarcity of blood vessels, a hypoxic and limited nutrition 

environment is generated. While the cells present in the outer AF can eliminate their 

metabolites and have access to nutrients through the capillaries present in the surrounding 

soft tissues, the remaining cells within the IVD only have access to a scarcity of capillaries that 

enter the subchondral plate and terminate adjacent to the CEP, feature which may impair IVD’s 

regenerative capacity (Raj 2008, Huang et al. 2014).  

 

3.2. Annulus fibrosus 

The AF is derived from the sclerotome and formed by a concentric lamellar structure, with 

around 70% of water, and rich in COL1 fibers, lying parallel within each lamella (Raj 2008, 

Risbud and Shapiro 2011, Huang et al. 2014). The concentric lamellae of regularly arranged 

collagen fibers, which are interconnected by a network of elastin and fibrillin, form the 

translamellar bridging network (TLBN) (Yu et al. 2007, Schollum et al. 2009, Yu et al. 2015). 

The presence of elastin fibers, crossing radially the collagen ones, contribute to tissue 

mechanical support and elasticity (Raj 2008). The AF provides lateral NP confinement and 

resistance to tensile and compressive stresses during physiological loading, with changes in 

the loading environment from more tension in the outer AF, to more compression towards the 
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NP (Eyre 1979). The outer AF fibers are directly inserted into the cortical bone of the vertebrae, 

whereas the inner tissue connects to the endplate, this probably to support the higher tensile 

loads present in the outer AF (Eyre 1979). A transitional region from COL2 to COL1, poorly 

organized and interspersed with aggregated proteoglycans (corresponding to approximately 

5% wet weight) and elastin fibers, characterizes the inner part of the AF (Raj 2008, Rodrigues-

Pinto et al. 2014). The AF cells are elongated and fibroblastic in appearance, and are 

orientated in the same axis as the collagen fibrils (Raj 2008).  

 

3.3. Nucleus pulposus 

The NP is rich in aggrecan (ACAN), the major proteoglycan of the IVD, and interspersed with 

COL2 fibers, randomly arranged, and with elastin fibers radially distributed (Raj 2008, Huang 

et al. 2014, Rodrigues-Pinto et al. 2014). Of notice, ACAN is responsible for mediating the 

osmotic pressure within the NP, and the resistance to compressive loads. ACAN forms large 

aggregates by binding to hyaluronan, and this mesh limits ACAN diffusion within the matrix. 

ACAN osmotic properties and water binding capacity are due to its substitution by other 

glycosaminoglycan (GAG) chains of chondroitin sulfate and keratan sulfate (Urban et al. 1979, 

Lotz and Hsieh 2014). Water content represents about 80% of the wet weight of the NP, having 

a mechanical behavior characteristic of a viscoelastic material (Iatridis et al. 1997, Raj 2008).  

In the mature NP, it is possible to identify mostly NP cells, which are small (approximately 10 

μm diameter) and resembling chondrocytes in morphology (Sive et al. 2002). Nonetheless, it 

is recognized a morphological heterogeneity of cells within the NP. The NP derives from the 

notochord, and notochordal cells can still be found in the NP in immature and young IVDs in 

humans (Risbud and Shapiro 2011, Risbud et al. 2015, Sakai and Andersson 2015). 

Notochordal cells have a distinct morphology from NP cells. They are larger (around 25 - 85 

μm diameter), commonly appear in clusters, and contain intracellular vacuoles that occupy at 

least 25% of the cell area (Trout et al. 1982, Hunter et al. 2003, Risbud et al. 2015, Sakai and 

Andersson 2015). After birth, the number of notochordal cells decreases very rapidly. 

Nonetheless, it has been described that the human and bovine NP tissue still retains some 

notochordal cells throughout life, even if in low number (Gilson et al. 2010). In other species, 

such as mouse, rat, cat, mink, dog, pig and rabbit, the number of notochordal cells found in 

adults is higher (Alini et al. 2008, Weiler et al. 2010, Sakai and Andersson 2015). Henriksson 

and colleagues’ studies in rabbit raised the possibility of stem/progenitor cell niches within the 

IVD, namely present in the epiphyseal plate and inner parts of the IVD (Henriksson et al. 2009, 

Henriksson et al. 2012). Notochordal cells have been shown to shift into NP cells, under 

standard in vitro culture (Kim et al. 2009a) or dynamic loading (Purmessur et al. 2013a), as 

well as after injury stimulus in vivo (Yang et al. 2009). Notochordal cells, as well as a progenitor 
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cell population, which can differentiate along the mesengenic pathway, present higher 

expression of NP-phonotypic markers, among other markers, as discussed below and 

summarized in Table 2 (Minogue et al. 2010a, Risbud et al. 2010, Risbud and Shapiro 2011, 

Sakai et al. 2012). Furthermore, while previous studies from Kim and colleagues suggested 

chondrocyte migration from the CEP and the inner AF into the NP as source of NP cells in 

mature IVDs of rat and rabbit (Kim et al. 2003, Kim et al. 2005a), Henriksson et al. (2009) 

proposed the existence of stem/progenitor cell niches within the IVD. 

 

4. Phenotypic markers of the different IVD cell populations 

Gene expression and phenotypical differences between notochordal, NP, AF, CEP cells and 

articular chondrocytes (ACs) have been pursued to trace a distinctive phenotypic profile for 

these cells. In the adult IVD, cells share typical markers with articular chondrocytes (ACs), 

namely regarding the production of ECM components such as COL2, ACAN and versican 

(VCAN) (Sive et al. 2002). Recently, Molinos et al. (2015b) identified three phenotypically 

distinct cell subpopulations in the young bovine NP, corroborating the heterogeneity previously 

observed. Yet, the distinctive function of the tissues is determined by the exact amount and 

composition of the proteins synthesized (Sive et al. 2002, Minogue et al. 2010a, Minogue et 

al. 2010b). 

Finding distinct markers of IVD cells may play an important role in the development of 

regenerative strategies for IVD degeneration, in addition to providing further knowledge of its 

biology (Minogue et al. 2010a). Studies struggle with identifying markers that are both cell- and 

species-specific. Up to date, it has not been identified an exclusive NP marker. Henriksson 

and Brisby (2013) reviewed the differences in marker profiles between NP cells and ACs. 

However, studies have been focusing on differentiating AF cells, NP cells and ACs mostly by 

comparing the fold-change in expression of IVD markers. Taking this into account, it was 

defined in 2014 a series of recommendations by the Spine Research Interest Group at the 

Annual ORS Meeting, to characterize the healthy NP phenotypic markers. A ratio of 

ACAN/COL2 > 20 seen in healthy human juvenile and young adult NP, and the expression of 

hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)-1, sonic hedgehog (Shh), 

Brachyury (T), keratin (KRT)18 and KRT19, carbonic anhydrase (CA)12, and CD24 were the 

proposed primary markers (Risbud et al. 2015). However, other secondary markers are also 

presented in Table 3. 

HIF-1α is responsible for the up-regulation of many pro-survival genes in NP, namely GLUT-1 

and -3, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ACAN, β-1,3-

glucuronyltransferase, galectin-3 and vascular endothelial growth factor (VEGF)-A (Risbud et 

al. 2015). GLUT-1 is expressed in hypoxic tissues and CA12 promotes acid-base balance 
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(Richardson et al. 2008a). Moreover, genes expressed during notochord development, such 

as Shh, a ligand of the hedgehog family (Dahia et al. 2009, Dahia et al. 2012, Winkler et al. 

2014), and Brachyury (Minogue et al. 2010b, Risbud and Shapiro 2011, Smolders et al. 2012, 

Maier et al. 2013) have been reported to remain active in the postnatal and mature human, 

bovine, canine and murine NP cells, being crucial for the growth, differentiation and function 

of NP cells (Risbud et al. 2015). KRT18 and KRT19, also identified in human notochordal cells 

during development, are important for cell integrity, and are possibly involved in signaling 

pathways, although not yet fully elucidated (Risbud et al. 2015). CD24 is a cell adhesion 

molecule, yet its relevance to NP physiology is still unknown (Fujita et al. 2005, Rutges et al. 

2010, Risbud et al. 2015). Also of notice is the presence of CD68+ cells in human nonherniated 

disc (which are not invading monocytes or macrophages), indicating phagocytic activity of NP 

cells (Nerlich et al. 2002). 

Nonetheless, it is noteworthy that, when comparing humans to other animals, there are 

differences in the markers expressed, as well as in their amount. It is hypothesized that this 

may be due to differences in age, size, native cell composition, and environment in the IVD 

among species (Minogue et al. 2010a). For example, the expression of glypican 3 (GPC3) and 

KRT19 from murine (Lee et al. 2007), or KRT18 and cadherin 2 (CDH2) from bovine studies 

did not translate directly into similar expression levels by human IVD cells (Minogue et al. 

2010b). Also, HIF-1α (Risbud et al. 2006), GLUT-1 (Richardson et al. 2008a) and VEGF-A 

(Rajpurohit et al. 2002, Fujita et al. 2008) characterized in human did not appear to change 

significantly in bovine NP cells, when compared with ACs (Minogue et al. 2010a). Moreover, 

CD24 was identified as a specific cell surface marker for NP cells in the rat (Fujita et al. 2005), 

and neural cell adhesion molecule CD56 was found to be expressed in canine NP cells (Sakai 

et al. 2009), but gene expression analysis of human disc cells revealed that CD24 was not 

specific for NP cells, whereas CD56 was expressed only at low levels (Rutges et al. 2010).  

Regarding progeny, compared with NP cells, notochordal cells were shown to display 

significantly higher expression of KRT8, KRT18, KRT19, CDH2, sclerostin domain containing 

1 (SOSTDC1) (Gilson et al. 2010, Minogue et al. 2010a), integrin subunits α3, α6 and β1 (Chen 

et al. 2006), as well as Brachyury (Minogue et al. 2010b, Risbud and Shapiro 2011). 

Several works have shown that, when culturing cells derived from CEP, AF or NP in vitro, 

these also express mesenchymal stem/stromal cells (MSCs) markers, namely CD73, CD90, 

CD105 and stromal precursor antigen (STRO)-1, being negative for the pan-macrophage 

marker CD11b, the pan-monocytic antigen CD14, the pan-B-cell markers CD19, CD79, the 

hematopoietic stem cell marker CD34, the pan-hematopoietic marker CD45 and the class II 

human leukocyte antigen (HLA) antigen HLA-DR (Risbud et al. 2007, Liu et al. 2011, Brisby et 

al. 2013, Sakai and Andersson 2015, Chen et al. 2016). It was also observed that both NP and 
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Table 2. Characterization of the phenotypic markers of the IVD cell types in different species. The table’s information was partially adapted from Risbud et al. (2015) and Sakai 

and Anderson (2015). 

IVD cell type 
Phenotypic markers 

References 
human bovine canine murine 

AF cells CDH2 
COL1 
COMP 
FOXF1 
GPC3 
KRT8 
KRT18 
SNAP25 
TNMD 
VCAN 

AQP1 
COL1 
FOXF1 
FOXF2 
IBSP 
PTN 
TNFAIP6 
TNMD 
 
FBLN1- 

  (Minogue et al. 2010b, Rutges et al. 
2010) 

NP cells ACAN/COL2 ratio > 20 
Brachyury  
CA12 
CD24 
CD68 
CDH2 
FOXF1 
GLUT-1 
Hemoglobin β-chain 
HIF-1α 
Integrin α3, α6, β4  
KTR8 
KTR18 
KTR19 
Lubricin 
NCAM-1 
Ovostatin 
PAX1 
Shh 
SNAP25 
VCAN 
VEGF-A  
α2-macroglobulin 
 
CYTL1- 
FBLN1- 
GDF-10- 
IBSP- 

BASP1 
Brachyury  
CDH2 
FOXF1 
KRT8 
KRT18 
KRT19 
SNAP25 
SOSTDC1 
 
FBLN1- 
IBSP- 
 
 

Brachyury 
CD56 
DSC-2 
KRT18 
α2-macroglobulin 
 
 

Annexin A3 
BASP1 
Brachyury 
CA3 
CA12 
CD24 
CD56 
CD155 
CD221 
GLUT-1 
GPC3 
HIF-1α 
KRT19 
Neurochondrin 
Neuropilin-1 
PTN 
Shh 
 

(Lyons et al. 1991, Buckwalter 1995, 
Nerlich et al. 2002, Rajpurohit et al. 
2002, Sive et al. 2002, Mwale et al. 
2004, Nettles et al. 2004, Fujita et al. 
2005, Risbud et al. 2006, Agrawal et 
al. 2007, Lee et al. 2007, Le Maitre 
et al. 2007b, Risbud et al. 2007, 
Agrawal et al. 2008, Fujita et al. 
2008, Richardson et al. 2008a, 
Shine et al. 2009, Chen et al. 2009, 
Dahia et al. 2009, Sakai et al. 2009, 
Gilson et al. 2010, Minogue et al. 
2010a, Minogue et al. 2010b, 
Rutges et al. 2010, Power et al. 
2011, Risbud and Shapiro 2011, 
Dahia et al. 2012, Smolders et al. 
2012, Önnerfjord et al. 2012, Sakai 
et al. 2012, Tang et al. 2012, Maier 
et al. 2013, van den Akker et al. 
2014, Winkler et al. 2014)  
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Notochordal cells 
 

Brachyury 
CD24 
Galectin-3 
Integrin α3, α6, β1 
KRT8 
KRT18 
KRT19 

Brachyury 
CDH2 
KRT8  
KRT18 
KRT19 
SOSTDC1 

 CA3 
 
 

(Lyons et al. 1991, Chen et al. 2006, 
Minogue et al. 2010b, Weiler et al. 
2010, Risbud and Shapiro 2011, 
Smolders et al. 2012) 

Stem/progenitor cells CD73 
CD90 
CD105 
C-KIT 
DLL4 
GD2 
Jagged-1 
Ki-67 
NOTCH1 
OCT3/4 
STRO-1 
TIE2 
 
CD11b- 
CD14- 
CD19- 
CD34- 
CD45- 
CD79- 
HLA-DR- 

  C-KIT 
GD2 
Jagged-1 
Ki-67 
NOTCH1 
STRO-1 
TIE2 
 

(Risbud et al. 2007, Henriksson et 
al. 2009, Blanco et al. 2010, Feng et 
al. 2010, Liu et al. 2011, Sakai et al. 
2012, Brisby et al. 2013, Chen et al. 
2016) 
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AF cells of rabbit, rat, minipig and human degenerated IVD tissue expressed progenitor 

markers such as the multipotency marker octamer-binding transcription factor (OCT)3/4, delta-

like (DLL)4, neurogenic locus notch homolog protein (NOTCH)1, Jagged-1, mast/stem cell 

growth factor receptor Kit (C-KIT) and Ki-67 (Henriksson et al. 2009, Brisby et al. 2013). Sakai 

and colleagues observed, in mouse and human NP, progenitor cell populations expressing 

transmembrane tyrosine protein kinase receptor TIE2 (also named angiopoietin-1 receptor) 

and ganglioside GD2 (Sakai et al. 2012). These cells were more proliferative, could form 

spheroids with multipotent differentiation capacity, and were capable of differentiating towards 

the chondrogenic lineage, expressing COL2 and ACAN (Sakai et al. 2012, Sakai and 

Andersson 2015). 

These findings show great potential for the development of therapies that may stimulate 

degenerated IVD native stem cells differentiation into functional NP and AF cells to reestablish 

the balance between anabolic and catabolic events and promote tissue regeneration. For such, 

it is important the understand of the morphological and biochemical changes that occur during 

aging and in premature degenerative diseases. 

 

5. Aging and degeneration 

Disc degeneration is linked with aging (Roberts et al. 2006), as recently reviewed by Vo et al. 

(2016). Nonetheless, it has been also observed in young children (11 to 16 years old) (Boos 

et al. 2002). IVD’s well-defined microstructural organization and biochemical composition is 

affected by aging molecular mechanisms, and can ultimately lead to a cell-mediated structural 

failure (Iatridis et al. 2009, Vo et al. 2016). With age, variations in abundance and structure of 

IVD’s ECM macromolecules may be a consequence of catabolism and anabolism imbalance 

(Roughley 2004), but in cases of early degeneration, abnormal age-related changes also occur 

(Iatridis et al. 2009). 

Degenerated IVD pathogenesis might be affected by multiple factors such as gene 

polymorphisms, as recently reviewed by Martirosyan et al. (2016), which include genes that 

mediate apoptosis, contribute to structural proteins, and encode molecules involved in 

inflammatory pathways (Martirosyan et al. 2016). 

 

5.1. The aging/degeneration mechanism 

The aging/degenerative process of IVD is characterized by an initial increase in cell 

proliferation and formation of cell clusters, as well as alterations in cell cycle and an increase 

in cell senescence and apoptosis, with increased production of pro-apoptotic (Fas ligand 

[FasL], caspase-3) proteins, and death (Roberts et al. 2006, Richardson et al. 2007, Gruber et 

al. 2009, Bertolo et al. 2011).  
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The NP changes from gelatinous to a more fibrous structure, cracks and fissures often occur, 

namely in the AF, and there is a decrease in IVD water content. This is commonly due to a 

turnover of ECM components (shift from COL2 to COL1 production by NP cells, and a 

decrease in ACAN synthesis), schematically depicted in Figure 2 (Richardson et al. 2007, 

Bertolo et al. 2011). An up-regulation of specific metalloproteinases (MMPs), such as MMP-1, 

-2, -3, -7, -8, -10, and -13, a disintegrin and MMP with thrombospondin motifs (ADAMTS)-1, -

4, -5, -9 and -15, and tissue inhibitors of MMPs (TIMPs)-1 and -2 were observed (Doita et al. 

2001, Le Maitre et al. 2007b, Bachmeier et al. 2009, Pockert et al. 2009, Vo et al. 2013).  

During degeneration, several changes may occur in the capillaries arising from the vertebral 

bodies, namely atherosclerosis, reduced capillary density, occlusion of the marrow spaces and 

CEP obstruction due to calcification/increased mineralization (Huang et al. 2014, Grant et al. 

2016a). It has been hypothesized that an increase in free calcium ions (Ca2+) may impair CEP 

homeostasis, compromising nutrient diffusion and availability to the cells, consequently leading 

to alterations in cell metabolism and viability (Huang et al. 2014, Grant et al. 2016a). It has 

also been reported that ECM components degradation may promote obstruction of the CEP, 

contributing to the drastic decrease of oxygen and nutrients diffusion into the disc (Ogata and 

Whiteside 1981, Huang et al. 2014). Particularly the NP, it is subjected to high mechanical and 

osmotic pressures, severe hypoxia and limited nutrients supply (Mehrkens et al. 2012). 

Additionally, blood vessels begin to grow into the disc from the outer areas of the AF (Roberts 

et al. 2006).  

 

 

Figure 2. Schematic representation of intervertebral disc degeneration. Adapted by permission from Macmillan 

Publishers Ltd: Nature Reviews Rheumatology (Huang et al. 2014), copyright (2014). 
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Moreover, a wide number of inflammatory mediators, including prostaglandins, namely PGE2, 

interleukins (IL-1, -6, -8, -12 and -17), tumor necrosis factor (TNF)-α and interferon (IFN)- 

have been described as crucial players in the catabolic processes in human NP and AF, nerve 

ingrowth and pain (Le Maitre et al. 2007a, Cuellar et al. 2010, Shamji et al. 2010, Purmessur 

et al. 2013b, Risbud and Shapiro 2014). Furthermore, increased amounts of nitric oxide (NO) 

have also been detected (Saal et al. 1990, Kang et al. 1996, O'Donnell and O'Donnell 1996). 

As the latest reviews point out, inflammation is an important contributor to the pathogenesis of 

IVD degeneration (Wuertz and Haglund 2013, Risbud and Shapiro 2014, Gorth et al. 2015). A 

balance between inflammatory response and tissue resorption may be achieved by controlling 

the levels of pro-inflammatory cytokines known to be involved in enzymatic degrading activity 

(Le Maitre et al. 2007c). 

 

6. Study models of IVD degeneration and inflammation 

Several ex vivo and in vivo models have focused on mechanical injury to simulate IVD 

degeneration (Anderson et al. 2002, Sobajima et al. 2005a, Sobajima et al. 2005b, Iatridis et 

al. 2009). Mechanical injury often comprises stab or needle puncture, and may include partial 

mechanical or chemical tissue removal with collagenase (Stern and Coulson 1976), papain 

(Roberts et al. 2008, Chan et al. 2013, Malonzo et al. 2015), trypsin (Jim et al. 2011, AlGarni 

et al. 2016) or chondroitinase ABC (Yamada et al. 2001, Ghosh et al. 2012, Krupkova et al. 

2016). Several works showed, depending on needle gauge size, that needle puncture may 

induce AF disruption, while causing depressurization of the NP (Masuda et al. 2005, Iatridis et 

al. 2009). Needle calibers varying between 16 to 22G often lead to significant pressure failure, 

decreased cell viability, expression of pro-inflammatory and degenerative factors and 

alterations in ECM composition in IVDs from both large animals, such as bovine (Illien-Junger 

et al. 2012, Pattappa et al. 2014), and small animals, namely rabbit (Yang et al. 2015) and rat 

(Masuda et al. 2005). Of notice, as reviewed by Elliott and colleagues (2008), in animal models 

in which degeneration was stimulated with needle puncture or sham injection, with needle 

diameter/disc height ratios up to 25%, no significant disc changes were observed. For ratios 

between 25-40%, effects were variable with some minor nonsignificant changes (Elliott et al. 

2008). However, when needle diameter/disc height ratios were over 40%, degenerative 

changes were observed in all animal modes reviewed (rat, rabbit, dog, minipig, and sheep) 

(Elliott et al. 2008). Disc height, area and NP ratio (normalized to human IVD) are summarized 

for different animals in Table 3.  

Due to the defects induced by needle puncture injury, AF and NP mechanical integrity can be 

compromised and lead to degeneration, allowing the recreation of an injury scenario to be 

studied (Korecki et al. 2008). Overall, for needles with caliber higher that 29G, no apparent 
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degenerative changes were induced in small animals as rabbit (Henderson et al. 1991) or rat 

(Crevensten et al. 2004). In mouse, 33 and 35G needles did not lead to significant 

degenerative changes between punctured and non-punctured groups (Ohnishi et al. 2016). 

 

Table 3. IVD size and cell content in different species. Adapted from O’Connell et al. (2007). 

Species 
IVD height 

(mm) 

IVD area 

(mm2) 

NP area 

(mm2)  
NP/IVD ratio 

NP/IVD fold 

change (Human) 

Human (lumbar) 11.30±0.30 1727±550 479±110 0.28 - 

Bovine (tail) 6.90±0.35 622±71 176±22  0.28 1.02 

Baboon (lumbar) 4.45±1.39 749±82 242±50 0.32 1.16 

Sheep (lumbar) 3.93±0.07 676±122 267±79  0.39 1.42 

Rabbit (lumbar) 1.42±0.39 73.4±6.1 18.0±1.6  0.25 0.88 

Rat (lumbar) 0.93±0.24 20.4±2.1 5.00±2.06 0.25 0.88 

Rat (tail) 0.94±0.09 8.86±3.54 3.30±1.55 0.37 1.34 

Mouse (lumbar) 0.31±0.03 1.81±0.14 0.33±0.07 0.18 0.66 

Mouse (tail) 0.24±0.06 1.19±0.51 0.35±0.09 0.29 1.06 

 

6.1.  Ex vivo 

Several authors have pointed out the importance of developing in vivo-mimicking ex vivo organ 

cultures to translate the degenerative events that occur in humans (Korecki et al. 2007, 

Teixeira et al. 2015, Krupkova et al. 2016). IVD organ cultures are one step further in 

complexity than in vitro studies, allowing the introduction of more variables in a mechanically 

and biochemically controlled environment, maintaining several microenvironment cues and the 

tissue structure (Korecki et al. 2007, Korecki et al. 2008). However, most existing organ culture 

systems induce severe tissue degradation with only limited representation of the in vivo 

processes (Krupkova et al. 2016), low oxygenation and nutrition (Rinkler et al. 2010, 

Neidlinger-Wilke et al. 2012), or pro-inflammatory cues (Teixeira et al. 2015). 

Ex vivo studies use a variety of tissue sources, including human, bovine, sheep, rabbit, rat and 

mouse (as briefed in Table 4), among others. Commonly safe and easy to manipulate, organ 

cultures can be used to screen several experimental conditions, while reducing the number of 

animals in further in vivo trials (Teixeira et al. 2015). They allow detailed analysis of ECM 

composition, cellular mechanisms, metabolism and related pathways in health and disease 

(Korecki et al. 2007, Korecki et al. 2008). These models have also the advantage of being 

combined with loading systems (0.1 MPa to 0.6 MPa) simulating physiological forces applied 

on the spine (Korecki et al. 2007, Illien-Junger et al. 2010, Illien-Junger et al. 2012, Pirvu et al. 

2015).  

Ex vivo models are promising alternatives to examine the effect of different treatments (Alini 

et al. 2008). An IVD organ culture system, namely of animal origin, offers a simpler and 

inexpensive alternative, when compared to humans, due to the difficulty of obtaining human 

material,  particularly  “normal”  human  tissue (Alini et al. 2008),  and  facilitates the design of 
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Table 4. Ex vivo models for studying intervertebral disc degeneration and inflammation. Adapted from Gantenbein et al. (2015) (Gantenbein, Illien-Junger et al. 2015). 

Model Species 
Degenerative stimulus 

References 
Spontaneous Mechanical Chemical Biochemical Genetic 

IVD explant  
(NP and AF) 
 

Human Degenerative disc 
disease, trauma 

    (Bertolo et al. 2011) 

 Herniation 
(protrusion, 
extrusion, 
sequestration), 
scoliosis 

    (Burke et al. 2002a) 

 Degenerative disc 
disease 

    (Le Maitre et al. 2004)  

Bovine  Needle puncture 
(27 G) 

Chondroitinase 
ABC (1-20 U/mL) 

  (Krupkova et al. 2016) 

   IL-1β (100 ng/mL) 
plus TNF-α 
(100 ng/mL) 

 (Krupkova et al. 2016) 

 Static loading, 
needle puncture 
(21G) 

LPS  
(10 µg/mL) 

Low glucose, 
hypoxia 
 

 (Teixeira et al. 2015) 

 Static loading, 
needle puncture 
(21G) 

 Low glucose, 
hypoxia, 
IL-1β (10-
100 ng/mL) 

 (Teixeira et al. 2015, 
Teixeira et al. 2016)  

Rabbit  Annular stab    (Feng et al. 2009) 

IVD without 
endplate 

Bovine 
 Complex loading    (Walter et al. 2011) 

 Static loading  TNF-α (200 ng/mL)  (Purmessur et al. 2013b) 

IVD with 
endplate 

Human Degenerative disc 
disease 

    (Krock et al. 2014) 

 Endplate trauma    (Alkhatib et al. 2014) 

Bovine 
 

 Needle puncture 
(14, 25 G) 

   (Korecki et al. 2008)  

 Free swelling, 
static loading 

   (Pirvu et al. 2015) 

 Static loading, 
diurnal loading 

   (Korecki et al. 2007) 

 High-frequency 
loading, needle 
puncture (22 G) 

   (Illien-Junger et al. 2012, 
Pattappa et al. 2014) 

 Partial nucleotomy    (Pereira et al. 2014) 

 Needle puncture 
(25 G) 

Papain  
(30-150 U/mL) 

   
(Chan et al. 2013)  
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Needle puncture 
(22, 25 G) 

Papain 
(60 U/mL) 
 

 
(Malonzo et al. 2015, 
Bucher et al. 2013)  

  Papain (360 U/mL), 
Trypsin (12,400-
248,000 U/mL) 

  (Roberts et al. 2008)  

 Needle puncture 
(28 G) 

Trypsin  
(0.05 µg/µL) 
(1.3 µg/µL) 
 
(0.2, 2 µg/µL) 

   
(Jim et al. 2011) 
(Mwale et al. 2014, 
AlGarni et al. 2016) 
(Gawri et al. 2014a) 

   HTRA1, MMP3, 
ADAMTS-4 (10 
μg/mL each) 

 (Furtwangler et al. 2013) 

 Partial nucleotomy  IFN-α2β (100 
U/mL) 

 (Kazezian et al. 2016)  

 Dynamic loading  TNF-α (100 ng/mL)  (Walter et al. 2015, 
Walter et al. 2016)  

Sheep  Dynamic loading    (Gantenbein et al. 2006) 

 High frequency 
loading 

 Low glucose  (Jünger et al. 2009, 
Illien-Junger et al. 2010) 

Rabbit  Burst fracture    (Haschtmann et al. 
2008, Dudli et al. 2012, 
Dudli et al. 2014, Dudli 
et al. 2015) 

 Needle puncture 
(18 G) 

   (Dudli et al. 2014)  

Rat  CEP fracture    (Kim et al. 2005a)  

 Needle puncture 
(21, 25, 30 G) 

   (Michalek et al. 2010) 

  LPS (10 µg/mL) 
 

  (Li et al. 2015a, Li et al. 
2016a, Li et al. 2016b)  

  Chondroitinase 
ABC (25 U/mL) 

  (Yerramalli et al. 2007) 

   IL-1β (10 ng/mL) 
plus TNF-α (100 
ng/mL) 

 (Ponnappan et al. 2011, 
Markova et al. 2013) 

Mouse  Static loading    (Ariga et al. 2003) 

 Stab   NF-κβ-luciferase (Abraham et al. 2016) 

   IL-1β (10 ng/mL) NF1fl/fl (Pelle et al. 2014) 
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experiments with more replicates. Nonetheless, due to the IVD’s great swelling potential and 

inhomogeneity (Urban et al. 1979), it is a complex task to establish an adequate model. 

Degenerated discs often present a low proteoglycan to collagen ratio, as well as low hydration 

(Urban et al. 1979). By maintaining the IVD endplates (Gantenbein et al. 2006, Haschtmann 

et al. 2008, Parolin et al. 2010, Alkhatib et al. 2014, Krock et al. 2014, Pereira et al. 2014, 

Grant et al. 2016b), or by culturing NP (Teixeira et al. 2015) and IVD tissue (Walter et al. 2011, 

Purmessur et al. 2013b) under constrained conditions, the swelling may be limited (Iatridis et 

al. 2009). To avoid swelling, but also obstructed transport of nutrients and residues and a 

decrease in cell viability, bovine IVD cultures are commonly done with CEP (Parolin et al. 2010, 

Pereira et al. 2014, Grant et al. 2016b). Nonetheless, for instance, Gantenbein et al. (2006) 

developed an IVD model maintaining the VEPs, which requires a systemically anticoagulant 

administration before killing the animals.  

Another relevant limitation is that human and animal explants can only be kept in culture for a 

limited time to ensure cell viability (Korecki et al. 2008, Bertolo et al. 2011, Pereira et al. 2016), 

commonly up to 28 days (Dudli et al. 2014). Bioreactors were proposed as alternatives to 

culture IVD explants from large animals and human cadavers, providing a defined nutritional 

and mechanical environment, essential for maintaining cell viability and matrix biology 

(Gantenbein et al. 2015). However, the culture periods reported are also only up to 21-22 days 

(Paul et al. 2012, Castro et al. 2014).  

Several ex vivo models using bovine caudal IVDs have been developed to study degeneration 

mechanisms and biology, which allow the outlining of ex vivo trials (Table 4). Bovine coccygeal 

discs are described as the most suitable alternative candidates for ex vivo studies (Roberts et 

al. 2008), due to the commonly easy availability of bovine tails, and given their large size (area 

and volume around 622 mm2 and 4291 mm3, respectively), and similar NP aspect ratio (1.02), 

diffusion distance and resting pressure (0.2-0.3 MPa) to human lumbar IVDs (Oshima et al. 

1993, O'Connell et al. 2007). Besides, cellular and ECM composition similarities with human 

lumbar discs are also high, namely the fast decrease of notochordal cells after birth, the rate 

of proteoglycan synthesis and the composition profile: collagen content lower in the NP and 

higher in the outer AF, with higher hydration and proteoglycan content in the NP (Oshima et 

al. 1993, Demers et al. 2004, Alini et al. 2008, Roberts et al. 2008). However, it was described 

by Demers et al. (2004) some noticeable differences with age. For instance, they observed 

that water content does not drop as abruptly in bovine IVDs as in humans, and that the 

denaturated COL2 content may vary with age and location in both bovine and human IVDs 

(Demers et al. 2004). For bovine, as for other models, caution must always be present when 

interpreting the results.  

If the low degree of complexity can be an advantage, it is also a limitation of organ cultures, 

which may lack vascularization, innervation and the multiple interactions with adjacent tissues 



Chapter I – General introduction 

19 
 

and infiltrating immune cells, characteristic of several degraded and pro-inflammatory 

environments (Molinos et al. 2015a, Sakai and Andersson 2015). The establishment of models 

using human IVD tissue (Burke et al. 2002a, Le Maitre et al. 2004, Bertolo et al. 2011) or whole 

IVD, initially developed by Parolin et al. (2010) with healthy discs, being later analyzed explants 

from donners suffering from degenerative disc disease (Alkhatib et al. 2014, Krock et al. 2014) 

is growing, facilitating IVD co-culture with different allograft cell types, namely MSCs and 

lymphocytes (Bertolo et al. 2011).  

Nevertheless, although the most common degeneration models are established with 

mechanical injury (Anderson et al. 2002, Sobajima et al. 2005a, Sobajima et al. 2005b, Iatridis 

et al. 2009), few studies defined standardized parameters and outcome measurements of 

inflammation (as shown in Table 4). For simulation of the pro-inflammatory environment 

associated with disc degeneration, stimulation of organ cultures with chemical factors such as 

lipopolysaccharide (LPS) (Burke et al. 2003, Rajan et al. 2013), IL-1β (Ponnappan et al. 2011, 

Kepler et al. 2013) and/or TNF-α (Ponnappan et al. 2011, Purmessur et al. 2013b) can be used 

to up-regulate inflammatory factors and matrix degrading enzymes, and therefore impair matrix 

production (Aota et al. 2006, Gorth et al. 2012, Kim et al. 2013a, Rajan et al. 2013). LPS, 

although not physiological, was previously used as pro-inflammatory stimulus (Burke et al. 

2003, Li et al. 2015a, Li et al. 2016a). TNF-α was shown by Purmessur et al. (2013b) to have 

an important role in the pathologic processes of IVD degeneration. Nonetheless, studies 

performed by Le Maitre and colleagues showed that IL-1, namely IL-1β, might have a more 

prominent role than TNF-α, being expressed at higher levels and in a larger proportion of 

samples (Le Maitre et al. 2005, Le Maitre et al. 2007a, Hoyland et al. 2008). Additionally, we 

have shown that IL-1β stimulation induces a degenerative and pro-inflammatory response, 

with expression of several factors identified in humans (Teixeira et al. 2015). 

  

6.2. In vivo 

The suitability of different animal models to study IVD degeneration has been extensively 

reviewed (Lotz 2004, Singh et al. 2005, Alini et al. 2008, Daly et al. 2016) and is briefed in 

Table 5.  

Animal models are one step ahead organ cultures, being widely used to study IVD 

degeneration and to evaluate disc treatment methods, given their high biomechanical 

complicity, the feasibility of in vivo experiments and the possibility to include significant number 

of subjects to follow over time, when compared to human trials (Alini et al. 2008, Shapiro and 

Risbud 2014). Nonetheless, namely due to differences in IVD size, one important issue is the 

scaling up of specific parameters for the interpretation of the experimental findings from animal 

models (Alini et al. 2008). 
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Table 5. Animal models for studying intervertebral disc degeneration and inflammation. Adapted from Alini et al. (2008) and Daly et al. (2016). 

Species 
Degenerative stimulus 

References 
Spontaneous Mechanical Chemical Biochemical Genetic 

Baboon Natural aging     (Lauerman et al. 1992, 
Platenberg et al. 2001) 

Rhesus monkey  Nucleotomy Collagenase 
(5 mg/mL) 

  (Stern and Coulson 1976) 

  Bleomycin (1.5 
mg/mL) 

  (Wei et al. 2014)  

  Pingyangmycin (1.5 
mg/mL) 

  (Wei et al. 2015) 

Non-chondrodystro-
phic dog 

Aging      (Bergknut et al. 2012)  

 Nucleotomy    (Hohaus et al. 2008) 

Chondrodystrophic 
dog 

Accelerated aging      (Gillett et al. 1988, 
Bergknut et al. 2012)  

Hyperactivity 
(running) 

    (Puustjarvi et al. 1993, 
Saamanen et al. 1993, 
Puustjarvi et al. 1994)   

Nucleotomy    (Hiyama et al. 2008, 
Serigano et al. 2010) 

  Krill proteases (5.4 
mg/mL) 

  (Melrose et al. 1995) 

  Chymopapain (2-8 
mU/disc) 

  (Melrose et al. 1996) 

  Chondroitinase ABC 
(250 U/mL) 

  (Yamada, Tanabe et al. 
2001) 

Sheep  Annular lesion    (Osti et al. 1990, Melrose et 
al. 1997a, Melrose et al. 
1997b, Fazzalari et al. 
2001, Melrose et al. 2002a, 
Melrose et al. 2002b, 
Thompson et al. 2004)  

 Needle puncture 
(29G) 

Chondroitinase ABC 
(1.0 IU) 

  (Ghosh et al. 2012) 

Goat  Stab/drill injury, 
annulotomy 

   (Zhang et al. 2011a) 

  Chondroitinase ABC 
(0.25 U/mL) 

  (Hoogendoorn et al. 2007) 

Minipig  Annular stab    (Bendtsen et al. 2011) 

 Needle puncture 
(18G) 

   (Wang et al. 2007a) 
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 Nucleotomy     (Acosta et al. 2011, Omlor 
et al. 2012) 

Rabbit  Annular stab    (Anderson et al. 2002, 
Sobajima et al. 2005b) 

 Needle puncture 
(16, 18, 21G) 

   (Masuda et al. 2005, Moss 
et al. 2013, Yang et al. 
2015) 

 Nucleotomy    (Sakai et al. 2003, Kim et 
al. 2005b) 

 Needle puncture 
(23G) 

Camptothecin (1 
mmol/L) 

  (Kim et al. 2005b) 

  Chondroitinase ABC   (Kiester et al. 1994, Ando 
et al. 1995)  

 Needle puncture 
(32G) 

Fibronectin 
fragments (1 µmol/L) 

  (Greg Anderson et al. 
2003) 

Sand Rat Accelerated ageing, 
obesity  

    (Silberberg et al. 1979, 
Moskowitz et al. 1990, 
Gruber et al. 2002, Gruber 
et al. 2007, Gruber et al. 
2008, Gruber et al. 2014a) 

Rat Natural aging     (Laing et al. 2011) 

 Needle puncture 
(33G) 

LPS (1 µg/mL)   (Rajan et al. 2013) 

    HLA-B27 and 
human β2m 
transgenic 

(Hammer et al. 1990, 
Taurog et al. 1999) 

Rat 
(caudal spine) 

 Annular stab    (Ulrich et al. 2007, Jeong et 
al. 2009) 

 Needle puncture 
(18, 20, 21G) 

   (Han et al. 2008, Zhang et 
al. 2009a, Zhang et al. 
2011b, Cunha et al. 2015) 

 Drill injury     (Kim et al. 2011a) 

 Tail static 
bending 

   (Court et al. 2007) 

 Loading, NP 
compression  

   (Ching et al. 2003, 
Chubinskaya et al. 2007) 

 Needle puncture 
(24 G) plus 
compression 

   (Miyagi et al. 2011, Miyagi 
et al. 2012) 

 Application of NP 
to DRG 

   (Olmarker et al. 2003, Ito et 
al. 2007, Sasaki et al. 
2007, Kim et al. 2011b, Li 
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et al. 2015b, Miao et al. 
2015, Wang et al. 2015a, 
Song et al. 2016)  

  Chondroitinase ABC 
(0.25 U/mL) 

  (Norcross et al. 2003) 

Mouse Natural aging     (Holguin et al. 2014) 

 Needle puncture 
(26, 29, 31, 33, 
35) 

   (Yang et al. 2009, Martin et 
al. 2013, Ohnishi et al. 
2016) 

 Tail static 
bending 

   (Court et al. 2001) 

 Bipedal mice    (Higuchi et al. 1983) 

   proteoglycan-induced 
spondylitis 

IL-4-/- (Haynes et al. 2012, Tseng 
et al. 2016) 

    Bmal1 deficiency (Kondratov et al. 2006, 
Dudek et al. 2016) 

    Ercc1 deficiency (Vo et al. 2010, Nasto et al. 
2012) 

    Dystrophin-utrophin 
double knockout 

(Isaac et al. 2013) 

    CTGF knockout (Bedore et al. 2013) 

     Biglycan deficiency (Furukawa et al. 2009) 

    Cartilage matrix 
deficiency  

(Watanabe et al. 1997, 
Watanabe and Yamada 
2002) 

    Myostatin knockout (Hamrick et al. 2003) 

    COL2 mutation (Sahlman et al. 2001) 

    COL9 mutation (Kimura et al. 1996) 

    Sickle tail mutation (Semba et al. 2006)  

    Ankylosis mutation  (Sweet and Green 1981)  

    HLA-B27 
transgenic 

(Weinreich et al. 1995)  
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As for ex vivo models, there is not fully recognized consensus regarding an ideal in vivo model 

that mimics human disc degeneration (Drazin et al. 2012, Sun et al. 2013a). When considering 

the use of an animal model, several features should be taken into account, namely the 

development, anatomy (size and geometry of the discs), biochemistry and the mechanical 

forces that act on the spine. There are changes not only between different species, but also 

with age and spinal level (Alini et al. 2008, Daly et al. 2016). As previously mentioned, there 

are differences regarding, for instance, IVD’s notochordal cell content. Species including 

mouse, rat, cat, dog, pig and rabbit retain them throughout their adult life, while in humans, 

cows and sheep they rapidly decrease after birth (Alini et al. 2008). When designing an in vivo 

model, and the experimental hypothesis, it should be considered that notochordal cells might 

be potential NP progenitor cells (Smolders et al. 2012), and that they can be involved in the 

regulation, for instance, of ECM components synthesis (Aguiar et al. 1999). Nonetheless, 

some authors argue that the apoptotic processes caused by induced degeneration play a role 

in notochordal cells loss, as in aged and degenerated human discs (Roberts et al. 2006, Gruber 

et al. 2009, Yurube et al. 2014), and therefore, the results obtained with these models have 

relevance after notochordal cells loss (Daly et al. 2016).  

Spontaneous disc degeneration models are considered useful for studying the natural 

evolution of degeneration (Singh et al. 2005, Alini et al. 2008, Daly et al. 2016). Baboons, 

although quadruped, have been used for spontaneous disc degeneration models (Lauerman 

et al. 1992, Platenberg et al. 2001). They can spend much time in semi-erect and erect 

positions, conducting forces through the spine similarly to humans (Lauerman et al. 1992), are 

relatively large (adult males 20-26 kg, adult females 12-17 kg), have a long-life expectancy 

(30-45 years) and are closely related to humans (Lauerman et al. 1992, Platenberg et al. 2001). 

Nonetheless, these animals need space and time to develop a condition that cannot be fully 

controlled. Other animal models, such as the chondrodystrophic dog (Gillett et al. 1988, 

Bergknut et al. 2012) and sand rat (Silberberg et al. 1979, Moskowitz et al. 1990, Gruber et al. 

2002, Gruber et al. 2007, Gruber et al. 2008, Gruber et al. 2014a) are also used, since they 

often develop disc related pathologies. Nevertheless, Singh et al. (2005) considered that 

naturally occurring animal models present several drawbacks, namely the lack of knowledge 

regarding the high rate of disc degeneration and impossibility to control the progressive 

structural failure. For instance, in chondrodystrophic canine models, the NP matrix contains 

higher collagen content, decreased proteoglycan and water content, and calcifications, in 

contrast with human discs (Singh et al. 2005). 

Experimentally induced animal models have been extensively described in the literature, and 

when established in a control environment, can preset high reproducibility (Singh et al. 2005, 

Alini et al. 2008). Large animal models have been developed in rhesus monkey, dog, sheep, 

goat or minipig (Table 5). Sheep and goat present several advantages. Both species, in 
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comparison to humans, suffer a loss of notochordal cells in early adulthood, present similar 

lumbar disc size and are exposed to similar mechanical loadings, although being quadruped 

(Alini et al. 2008, Daly et al. 2016). Moreover, they are animals that commonly tolerate surgical 

interventions well (Daly et al. 2016).  

Small animal models such as rabbit, rat and mouse are relatively simple to manipulate and 

present cost-effectiveness as a model, when compared to large animals (Daly et al. 2016). 

They are commonly used for developing models of mechanical injury and tissue enzymatic 

degradation, as shown in Table 5. Also, very important are the genetic knockout (Bedore et al. 

2013, Isaac et al. 2013) and mutation (Sweet and Green 1981, Kimura et al. 1996, Sahlman 

et al. 2001, Semba et al. 2006) mice models, which allow to investigate the role that certain 

genes may play in disc degeneration (Singh et al. 2005, Daly et al. 2016). Nevertheless, small 

animal models have limitations regarding the injection of relevant volumes of therapeutics or 

implantation of engineered tissue constructs (Zhang et al. 2011a). 

 

This chapter covered numerous works on the healthy and degenerated IVD anatomy and 

physiology, microenvironment, cell content, molecular key players and the pathomechanisms 

associated with degeneration. Nonetheless, to study degeneration, inflammation and how this 

correlates with pain, it is important not to look only to the IVD itself. Analysis at systemic level 

are also important to further understand questions such as, for instance, the interplay with the 

immune system. Several models might be chosen for IVD degeneration studies; however, the 

choice of a model should be clarified regarding the scientific question proposed and the 

outcomes to be analyzed. In general, animal models are highly focused in assessing outcomes 

at the IVD level, while often disregarding the neurological morphology and functions that may 

simulate the clinical symptoms (Alini et al. 2008).  
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1. Immunogenic phenotype of IVD cell populations and induced immune cell response 

An association between disc degeneration, herniation and inflammation has been established 

over time (Johnson et al. 2015, Molinos et al. 2015a). IVD cells can secrete pro-inflammatory 

cytokines to induce and enhance inflammation (Le Maitre et al. 2007a) and an inflammatory 

response occurs not only in the IVD, but also in the surrounding tissues (Risbud and Shapiro 

2014). Therefore, an in-depth characterization of the synergic interplay between degeneration, 

inflammation and pain could promote the development of more advanced and targeted 

therapies for IVD degeneration and LBP (Teixeira et al. 2015, Molinos et al. 2015a, Teixeira et 

al. 2016). In this section, we discuss the contributions of different factors to cellular and tissue 

level changes seen during disc degeneration (schematically summarized in Figure 1). 

 

 

Figure 1. Role of the cytokines involved in different phases of intervertebral disc degeneration and herniation, 

leading to back and radicular pain. In the first phase of degeneration, IVD cells express several catabolic molecules 

in the inflammatory environment, promoting ACAN and COL2 degradation, which leads to mechanical instability 

and ECM breakdown. In many cases, AF tearing and herniation occur. Secondly, the release of cytokines and 

chemokines by the IVD cells enhances activation and infiltration of immune cells, which also produce pro-

inflammatory factors by themselves, further amplifying the inflammatory response. Of notice, together with the 

infiltration of immune cells, there is also microvascularization and innervation by nociceptive nerve fibers arising 

from the dorsal root ganglion (DRG). In the third phase, neurogenic factors, particularly nerve growth factor (NGF) 

and brain-derived neurotrophic factor (BDNF), produced by the herniated disc and immune cells, induce the 

expression of the pain associated cation channels like acid-sensing ion channel 3 (ASIC3) and transient receptor 

potential cation channel, subfamily V, member 1 (Trpv1) in the DRGs, promoting discogenic pain and enhancing 

the cytokine mediated disc degeneration. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 

Rheumatology (Risbud and Shapiro, 2013), copyright (2013). 

 

IVD cells express several inflammatory factors already during homeostasis (Molinos et al. 

2015a). However, an initial insult, related with aging and degeneration, leads to an 

upregulation of inflammation mediators such as key pro-inflammatory cytokines, namely IL-1β 

and TNF-α, but also IL-6, IL-17, IFN- and chemokines, among others (Takahashi et al. 1996, 

Kang et al. 1997, Burke et al. 2002b, Park et al. 2002, Specchia et al. 2002, Le Maitre et al. 

2005, Weiler et al. 2005, Le Maitre et al. 2007a, Huang et al. 2008, Kokubo et al. 2008, Shamji 
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et al. 2010, Risbud and Shapiro 2014). These are initiating events of the IVD degenerative 

cascade (Risbud and Shapiro 2014, Walter et al. 2015). They contribute to the increase of cell 

senescence, unbalanced anabolism and catabolism in ECM synthesis (Le Maitre et al. 2005, 

Seguin et al. 2005, Shamji et al. 2010, Cuellar et al. 2013, Purmessur et al. 2013b). Herniated 

discs are known to induce a specific autoimmune response (Sun et al. 2013b). Macrophages, 

leucocytes, neutrophils and T cells were found in extruded tissues (Kokubo et al. 2008, Shamji 

et al. 2010, Risbud and Shapiro 2014), surrounded by granulation tissue, neovascularization 

and innervation (Burke et al. 2002a, Freemont et al. 2002a). Vascular and nerve ingrowth into 

the avascular IVD occurs from the outer layers of the AF into the NP (Sakai and Andersson 

2015). 

The factors produced by both IVD and immune cells, as well as their effect in degeneration, 

inflammatory state and associated pain will be discussed ahead. As Molinos et al. (2015a) 

highlighted, there are numerous inflammatory mediators found in the human IVD, which may 

be produced by NP, AF and/or infiltrating inflammatory cells, as summarized in Table 1.  

 

1.1.  Key pro-inflammatory molecules in IVD degeneration and associated inflammation 

Both IVD cells and leucocytes secrete IL-1β and TNF-α (Le Maitre et al. 2005, Le Maitre et al. 

2007a). IL-1 and TNF-α have been identified in painful hernia samples, being associated with 

the mechanism of sensory nerves ingrowth into the NP (Hayashi et al. 2008), damage of the 

dorsal root ganglion (DRG) and neuropathic pain (Olmarker and Larsson 1998, Igarashi et al. 

2000, Murata et al. 2006, Leung and Cahill 2010). Expression of TNF-α and IL-1β was shown 

to increase with age and severity of degeneration, as observed by analysis of human hernia 

samples from donors with different ages, being these cytokines by themselves degeneration 

precursors (Le Maitre et al. 2005, Bachmeier et al. 2007, Le Maitre et al. 2007a, Wang et al. 

2014, Johnson et al. 2015).  

 

1.1.1.  TNF-α  

TNF-α was shown to be one of the first cytokines highly produced by human IVD cells in both 

IVD degeneration and herniation scenarios (Weiler et al. 2005, Le Maitre et al. 2007a, Ulrich 

et al. 2007, Dudli et al. 2012). It was shown that by exposing bovine organ cultures to TNF-α, 

as it may occur from injured surrounding tissues, it can penetrate in healthy intact IVDs, induce 

expression of additional pro-inflammatory cytokines and alter the tissue mechanical behavior 

(Millward-Sadler et al. 2009, Walter et al. 2015). NP cells stimulated with TNF-α and IL-1β 

showed a strong induction of ECM degrading enzymes expression, namely ADAMTS-4 and -

5, MMPs 1, 2, 3 and 13, (Shen et al. 2003, Jimbo, Park et al. 2005, Le Maitre et al. 2005, 

Seguin et al. 2005, Wang et al. 2011a, Wang et al. 2014, Krupkova et al. 2016), and other pro- 
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Table 1. Inflammation mediators expressed with degeneration by IVD cells and infiltrating cells in painful human intervertebral discs. Table adapted from Wuertz and Haglund 

(2013) and Molinos et al. (2015a). 

Mediators Tissue Tissue collection Disorder References 

TNF-α AF Autopsy, biopsy Degeneration (Dongfeng et al. 2011) 

AF + NP Autopsy, biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Weiler et al. 2005, Le 
Maitre et al. 2007a, 
Bachmeier et al. 2007) 

AF + NP Autopsy, biopsy Degeneration, herniation (Weiler et al. 2005, Le 
Maitre et al. 2007a) 

AF + NP + CEP Biopsy Herniation, spondylosis (Kokubo et al. 2008) 

NP Autopsy, biopsy Degeneration (Richardson et al. 2009) 

NP Biopsy Herniation  (Park et al. 2011)  

NP Biopsy Herniation (protrusion, extrusion, sequestration)  (Chen et al. 2017) 

IVD Autopsy, biopsy Degeneration, herniation (Akyol et al. 2010) 

IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

IVD Biopsy Herniation (protrusion, extrusion, sequestration) (Takahashi et al. 1996) 

IVD Biopsy Herniation (extrusion, sequestration) (Miyamoto et al. 2000) 

IVD Biopsy Herniation (subligamentous extensions, transligamentous 
extensions including sequestration) 

(Ahn et al. 2002) 

TNFR1 AF + NP Autopsy, biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Le Maitre et al. 2007a, 
Bachmeier et al. 2007) 

TNFR2, TACE AF + NP Autopsy, biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Bachmeier et al. 2007) 

IL-1α AF + NP Autopsy, biopsy Degeneration (Le Maitre et al. 2005) 

IVD Biopsy Herniation (protrusion, extrusion, sequestration) (Takahashi et al. 1996) 

IVD Biopsy Herniation (subligamentous extensions, transligamentous 
extensions including sequestration) 

(Ahn et al. 2002) 

IL-1β AF + NP Autopsy, biopsy Degeneration, herniation (Le Maitre et al. 2007a) 

AF + NP Autopsy, biopsy Degeneration (Le Maitre et al. 2005) 

NP Autopsy, biopsy Degeneration (Richardson et al. 2009) 

NP Autopsy, biopsy Herniation (Gronblad et al. 1994) 

NP Biopsy Herniation (Park et al. 2011) 

IVD Autopsy, biopsy Degeneration, herniation (Akyol et al. 2010) 

IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

IVD Biopsy Herniation (protrusion, extrusion, sequestration)  (Takahashi et al. 1996) 

IVD Biopsy Herniation (extrusion, sequestration) (Miyamoto et al. 2000) 

IL-1Ra AF + NP Autopsy, biopsy Degeneration (Le Maitre et al. 2005) 

IL-1R1 AF + NP Autopsy, biopsy Degeneration, herniation (Le Maitre et al. 2007a) 

AF + NP Autopsy, biopsy Degeneration (Le Maitre et al. 2005) 

IL-2 IVD Autopsy, biopsy Degeneration, herniation (Akyol et al. 2010) 

IL-4 AF + NP Autopsy, biopsy Degeneration, herniation (Shamji et al. 2010) 
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NP Biopsy Herniation (subligamentous extrusion and protrusion, 
sequestration and transligamentous extrusion) 

(Park et al. 2002) 

IVD Autopsy, biopsy Degeneration, herniation (Akyol et al. 2010) 

IL-6 AF + NP Autopsy, biopsy Degeneration, herniation (Shamji et al. 2010) 

IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

IVD Biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Burke et al. 2002b) 

IVD Biopsy Herniation (Kang et al. 1996) 

IVD Biopsy Herniation (extrusion, sequestration, protrusion) (Takahashi et al. 1996) 

Lavage fluid from 
disc space 

Biopsy Herniation (Gajendran et al. 2011) 

IL-8 IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

IVD Biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Burke et al. 2002b) 

IVD Biopsy Herniation (subligamentous extensions, transligamentous 
extensions including sequestration) 

(Ahn et al. 2002) 

IVD Biopsy Herniation (protrusion, extrusion, sequestration), scoliosis (Burke et al. 2002a) 

IL-10 IVD Autopsy, biopsy Degeneration, herniation (Akyol et al. 2010) 

IVD Biopsy Herniation (subligamentous extensions, transligamentous 
extensions including sequestration) 

(Ahn et al. 2002) 

IL-12 AF + NP Autopsy, biopsy Degeneration, herniation (Shamji et al. 2010) 

NP Biopsy Herniation (subligamentous extrusion and protrusion, 
sequestration and transligamentous extrusion) 

(Park et al. 2002) 

IVD Autopsy, biopsy Degeneration, herniation (Akyol et al. 2010) 

IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

IL-16 NP Autopsy, biopsy Degeneration, prolapse, herniation (protrusion, extrusion, 
sequestration) 

(Phillips et al. 2013, 
Phillips et al. 2015) 

IL-17 AF + NP Autopsy, biopsy Degeneration, herniation (Shamji et al. 2010) 

AF + NP Biopsy Degeneration, herniation (Gruber et al. 2013) 

IL-20 (and its 
receptor subunits) 

IVD Biopsy Herniation (extrusion, sequestration) (Huang et al. 2008) 

IL-21 NP Biopsy Herniation (protrusion, extrusion, sequestration) (Chen et al. 2017) 

CCL2, CCL7, CXCL8 NP Autopsy, biopsy Degeneration, prolapse, herniation (protrusion, extrusion, 
sequestration) 

(Phillips et al. 2013) 

CCR1, CXCR1, 
CXCR2 

NP Autopsy, biopsy Degeneration, prolapse, herniation (protrusion, extrusion, 
sequestration) 

(Phillips et al. 2015) 

IFN- AF + NP Autopsy, biopsy Degeneration, herniation (Shamji et al. 2010) 

NP Biopsy Herniation (subligamentous extrusion and protrusion, 
sequestration and transligamentous extrusion) 

(Park et al. 2002) 

Lavage fluid from 
disc space 
 

Biopsy Herniation (Gajendran et al. 2011) 
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Lavage fluid from 
disc space 

Biopsy Degeneration, scoliosis (Cuellar et al. 2010) 

RANTES AF + NP Biopsy Degeneration, herniation (Gruber et al. 2014b) 

IVD Biopsy Herniation (subligamentous extensions, transligamentous 
extensions including sequestration) 

(Ahn et al. 2002) 

TGF-β IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

TGF-β1 IVD Biopsy Herniation (subligamentous extensions, transligamentous 
extensions including sequestration) 

(Ahn et al. 2002) 

Substance P AF + NP + CEP Biopsy Herniation, spondylosis (Kokubo et al. 2008) 

NP Autopsy, biopsy Degeneration (Richardson et al. 2009) 

MCP-1 IVD Biopsy Herniation (protrusion, extrusion, sequestration), scoliosis (Burke et al. 2002a) 

Lavage fluid from 
disc space 

Biopsy Herniation (Gajendran et al. 2011) 

MIP-1β Lavage fluid from 
disc space 

Biopsy Herniation (Gajendran et al. 2011) 

NGF AF + NP + CEP Biopsy Herniation, spondylosis (Kokubo et al. 2008) 

NP Autopsy, biopsy Degeneration (Richardson et al. 2009) 

IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

bFGF AF + NP + CEP Biopsy Herniation, spondylosis (Kokubo et al. 2008) 

VEGF AF + NP + CEP Biopsy Herniation, spondylosis (Kokubo et al. 2008) 

IVD Biopsy Degeneration, herniation (Lee et al. 2009a) 

GDF-5 AF Biopsy Degeneration, herniation (Gruber et al. 2014c) 

GM-CSF IVD Biopsy Herniation: extrusion, sequestration, protrusion (Takahashi et al. 1996) 

MMPs AF + NP Biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Bachmeier et al. 2009) 

AF + NP + CEP Biopsy Herniation, spondylosis (Kokubo et al. 2008) 

NP Autopsy, biopsy Degeneration (Richardson et al. 2009) 

NP Biopsy Herniation (protrusion, subligamentous extrusion, 
transligamentous extrusion, sequestration) 

(Matsui et al. 1998) 

IVD Biopsy Herniation (Kang et al. 1996) 

FasL NP Biopsy Herniation (subligamentous extrusion and protrusion, 
sequestration and transligamentous extrusion) 

(Park et al. 2001a) 

FasR NP Biopsy Herniation (subligamentous extrusion and protrusion, 
sequestration and transligamentous extrusion) 

(Park et al. 2001b) 

CDMP AF + NP Autopsy, biopsy Degeneration (Le Maitre et al. 2009) 

COX-2 IVD Biopsy Herniation (extrusion, sequestration) (Miyamoto et al. 2000) 

PGE2 NP Biopsy Herniation (protrusion, extrusion, sequestration) (O'Donnell and O'Donnell 
1996) 

IVD Biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Burke et al. 2002b) 

IVD Biopsy Herniation (Kang et al. 1996) 

IVD Biopsy Herniation (extrusion, sequestration) (Miyamoto et al. 2000) 
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NO IVD Biopsy Herniation (Kang et al. 1996) 

ADAMTS-1, -4, -5, -
9, -15 

AF + NP Autopsy, biopsy Degeneration (Pockert et al. 2009) 

ADAMTS-7 NP Biopsy Herniation (protrusion, extrusion, sequestration) (Chen et al. 2017) 

TIMP-1, TIMP-2 AF + NP Biopsy Degeneration, herniation (protrusion, extrusion, 
sequestration) 

(Bachmeier et al. 2009) 

TIMP-3 AF + NP Autopsy, biopsy Degeneration (Pockert et al. 2009) 

PLA2 AF + NP Autopsy, biopsy Herniation, spondylosis, spondylolisthesis (among others) (Miyahara et al. 1996) 
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inflammatory factors, as IL-6 or COX-2 (Jimbo et al. 2005, Fujita et al. 2012), previously 

identified in human IVD degenerated samples (Bachmeier et al. 2009, Pockert et al. 2009). 

TNF-α belongs to a superfamily of ligand/receptor proteins designated TNF/TNFR superfamily 

proteins. Human TNF is synthesized as a type II transmembrane protein (membrane-bound 

TNF, mTNF), forming stable homotrimers. mTNF is processed by TNF-α-converting enzyme 

(TACE) into soluble TNF (sTNF) (Black et al. 1997, Risbud and Shapiro 2014, Johnson et al. 

2015). Both sTNF-α and mTNF-α can bind through the TNF homology domain (THD) to the 

cysteine-rich domains (CRDs) of its receptors (TNFRs), TNFR1 or TNFR2, which act as TNF 

antagonists (Leung and Cahill 2010). TACE, TNFR1 and TNFR2 are expressed in human NP 

tissue (Johnson et al. 2015). Binding promotes the recruitment of several factors such as 

TNFR1-assoicated death domain protein (TRADD), receptor-interacting protein 1 (RIP1), TNF-

receptor-associated factor 2 (TRAF2) and baculoviral IAP repeat containing 1 and 2, resulting 

in formation of Complex I signaling (Johnson et al. 2015). Downstream signaling is mediated 

by nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated 

protein kinases (MAPK) pathways (Silke 2011, Risbud and Shapiro 2014). 

NF-κB controls the expression of several inflammatory and catabolic genes, playing an 

important role in the regulation of inflammatory response (Risbud and Shapiro 2014). NF-κB 

is one of the most important regulators of the synthesis of cytokines, such as TNF-α, IL-1β, IL-

6, and IL-8, as of the expression of COX-2 (Tak and Firestein 2001). It is a direct modulator of 

HIF-1α expression, which is an important transcription factor in cells under hypoxia and vital 

to chondrocyte survival (Dudli et al. 2012). NF-κB activation may also be involved in cell 

apoptosis (Tak and Firestein 2001). Regarding the MAPK pathways, they not only control 

inflammation, but have several other functions as cell growth and differentiation, among others 

(Li et al. 2015a).  

Moreover, it was shown that TNF-α can activate the Wnt/β-catenin signaling pathway in NP 

cells, increasing the expression of MMP13 (Ye et al. 2011), and that the Wnt/β-catenin 

signaling can also induce TNF-α expression in NP cells (Hiyama et al. 2013). It is hypothesized 

that this may lead to a pro-degenerative feed-forward loop between the two signaling pathways 

(Hiyama et al. 2013).  

 

1.1.2.  IL-1β 

Regarding IL-1 family, among 9 other cytokines are IL-1α and IL-1β. Although TNF-α seems 

to be the first cytokines produced in a degeneration scenario by human IVD cells, IL-1 appears 

to be the predominant cytokine (Le Maitre et al. 2005, Weiler et al. 2005, Le Maitre et al. 2007a, 

Dudli et al. 2012). Both proteins are encoded by two separate genes and synthesized as pro-

peptide precursors (pro-IL-1α and pro-IL-1β), and then activated through intracellular 
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proteolytic cleavage (IL-1α is cleaved by calpain and IL-1β by caspase-1), forming membrane-

bound mIL-1α and mIL-1β (Gabay et al. 2010, Risbud and Shapiro 2014, Johnson et al. 2015). 

Although pro-IL-1β requires extracellular activation by neutrophil proteases, membrane 

associated pro-IL-1α is biologically active and can exert both intracellular and extracellular 

effects (Gabay et al. 2010). Pro-IL-1α can signal adjacent cells through the IL-1 receptor, type 

1 (IL-1R1), which was identified by Le Maitre et al. (2005) in non-degenerate and degenerate 

human IVDs. Moreover, pro-IL-1α retains a nuclear localization sequence, working as 

transcriptional modulator (Risbud and Shapiro 2014, Johnson et al. 2015). Pro-IL-1α, mIL-1α 

and mIL-1β can bind to IL-1R1, recruit the IL-1 receptor accessory protein (IL-1RAcP) and 

create a complex, which then recruits two adaptor proteins, the myeloid differentiation primary 

response gene 88 (MYD88) and the IL-1 receptor-activated protein kinase (IRAK) (Risbud and 

Shapiro 2014, Johnson et al. 2015). This leads to downstream activation of numerous signaling 

proteins, such as c-Jun N-terminal kinase (JNK), p38 and MAPK, and transcription factors, like 

NF-κB and activating protein (AP)-1, controlling the expression of several inflammatory and 

catabolic genes (Risbud and Shapiro 2014, Johnson et al. 2015). 

In organ culture models, stimulation with TNF-α and IL-1β down-regulated the expression of 

ECM components, increased the expression of ECM degrading enzymes, pro-inflammatory 

cytokines and PGE2, and pain-associated molecule nerve growth factor (NGF) (Abe et al. 

2007, Ponnappan et al. 2011, Markova et al. 2013, Purmessur et al. 2013b, Teixeira et al. 

2015, Walter et al. 2015, Krupkova et al. 2016, Walter et al. 2016), and compromised disc 

biomechanics (Walter et al. 2015). In vitro, human disc cells, upon stimulation with IL-1β and 

TNF-α, produced high levels of regulated upon activation, normal T-cell expressed, and 

secreted (RANTES, also named CC chemokine ligand [CCL]5), which was also observed in 

lumbar disc AF tissue with higher degree of degeneration (Gruber et al. 2014b). Additionally, 

TNF-α and IL-1β treatment of NP cells also seems to mediate IVD cell proliferation, affecting 

the NOTCH signaling pathway (Wang et al. 2013).  

 

1.1.3.  IL-6 

IL-6 is also a cytokine with impact in promoting IL-1 and TNF-α mediated catabolism in IVD 

cells (Risbud and Shapiro 2014). Similarly to the effect of TNF-α (Murata et al. 2008), IL-6 was 

also shown to induce DRG neurons apoptosis (Murata et al. 2011), and to contribute to 

neuropathic pain (Wei et al. 2013b). Secreted by T cells, macrophages and IVD cells (Rand et 

al. 1997), IL-6 has been characterized as a pro-inflammatory cytokine in the context of IVD 

degeneration, but it is also involved in regenerative or anti-inflammatory events (Scheller et al. 

2011). IL-6 forms monomers and dimers and it can signal through a type I cytokine receptor 

complex, which includes the ligand-binding IL-6Rα chain and the membrane glycoprotein 



Chapter II – Immunomodulation in degenerated IVD 

35 
 

gp130, a receptor and signal-transducing subunit, leading to the activation of intracellular 

signaling cascades via gp130 (Rose-John et al. 2007, Scheller et al. 2011). This pathway is 

limited to cells that express IL-6R on their surface (Rose-John et al. 2007). It signals through 

Janus kinase/signal transducers and activators of transcription (JAK/STAT), MAPK and 

phosphoinositide-3 kinase (PI3K) signal transduction pathways (Scheller et al. 2011), 

promoting functions include B- and T- cells growth and differentiation, as well as acute-phase 

protein induction, among others (Risbud and Shapiro 2014). On the other hand, soluble IL-6R 

(sIL-6R) can be formed by proteolytic cleavage of the mIL-6R protein or translation from 

alternatively spliced mRNA (Rose-John et al. 2007). sIL-6R amplifies IL-6-mediated signaling 

by the activation of cell that express the signal transducer protein gp130 but lack trans-

membrane IL-6R, working as paracrine factor (Scheller et al. 2011, Risbud and Shapiro 2014).  

 

1.2. TLRs 

Toll-like receptors (TLRs) are plasma- and endolysosomal-bound pattern recognition receptors 

implicated in innate immunity and inflammation (Klawitter et al. 2014, De Nardo 2015). TLRs 

are usually expressed by immune cells, namely dendritic cells, macrophages, neutrophils, 

monocytes, T and B cells but can also be expressed by other cell types as synovial fibroblasts, 

chondrocytes and IVD cells (Klawitter et al. 2014, De Nardo 2015). Klawitter et al. (2014) 

detected also the expression of TLRs 1, 3, 5, 6, 9 and 10 in human cells isolated from 

degenerated discs, and observed that TLRs 1, 2, 4 and 6 expression was dependent on the 

IVD’s degree of degeneration. While TLRs 1, 2, 4, 5 and 6 are located on the cell surface, 

TLRs 3, 7, 8 and 9 are in the endosomal/lysosomal compartment (Klawitter et al. 2014). 

Namely TLRs 2 and 4 have been described to be expressed by human (Ellman et al. 2012, 

Klawitter et al. 2012a, Klawitter et al. 2012b, Gawri et al. 2014b, Klawitter et al. 2014) and 

bovine IVD cells (Rajan et al. 2013). TLR2 and TLR4 are known to mediate the innate 

immunity, being highly specific in their pathogen recognition. They activate NF-κB, JNK, and 

p38 signaling pathways, leading to increased expression of TNF-α, IL-1α, IL-1β, IL-6, IL-8, 

COX-2, IκBα (an inhibitor of NF-κB transcription factor), MMP1, MMP13, monocyte 

chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-2 and mitogen-

activated protein kinase phosphatase (MKP)-1 (Schaefer et al. 2005, Gabay et al. 2010, Quero 

et al. 2013). JNK, p38 and MAPK, as well as NF-κB (Risbud and Shapiro 2014). 

Furthermore, as Johnson et al. (2015) discussed, several studies have shown that ECM 

degradation products may act as signaling molecules, as TLRs endogenous ligands, playing 

a relevant role in the enhancement of the inflammatory state. For instance, proteolytically-

cleaved biglycan activated pro-inflammatory cascades through binding to TLR2 and TLR4 in 

macrophages (Schaefer et al. 2005), hyaluronic acid fragments activated the TLR2 signaling 
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pathway in resident IVD cells (Quero et al. 2013), fibronectin fragments worked as endogenous 

ligands for TLR4 (Okamura et al. 2001), and VCAN aggregates activated TLR2 in carcinoma 

(Kim et al. 2009b). Moreover, it was observed that excessive mechanical loading of IVD cells 

may upregulate TLR2 and TLR4 expression (Gawri et al. 2014b). Also, it was seen a significant 

increase in TLR2 mRNA expression and production by stimulating human disc cells with IL-1β 

or TNF-α, which was linked to the NF-κB pathway activation (Klawitter et al. 2014). 

 

1.3. microRNAs 

The role of microRNAs (miRNAs) and their potential as biomarkers for early diagnosis of IVD 

degeneration has lately drawn great attention (Li et al. 2015c, Zhou et al. 2017). To date, the 

precise role of miRNAs in the pathogenesis of degeneration is not yet elucidated (Liu et al. 

2014, Zhou et al. 2017). 

miRNAs are small non-coding RNA molecules with about 18 to 22 nucleotides (Li et al. 2015c), 

transcribed from their respective gene loci as primary miRNAs (pri-miRNAs) 

(Papagiannakopoulos and Kosik 2008), followed by a series of maturation steps (Sato et al. 

2011). pri-miRNAs can be transcribed from specific miRNA-encoding regions of the genome 

or derive from mRNA intronic sequences (Li et al. 2015c). miRNAs work by selectively binding 

to the 3'-untranslated region of their target mRNAs through complementary base pairing, 

leading to mRNA degradation or suppression of protein translation (Wang et al. 2011b, Ying 

et al. 2013). 

As components of several gene regulatory networks, miRNAs are involved in cell proliferation, 

differentiation and apoptosis (Luo et al. 2013, Mathieu and Ruohola-Baker 2013, Cao et al. 

2014), tissue development (Joglekar et al. 2009, Bae et al. 2012, Khoshgoo et al. 2013, Ying 

et al. 2013), homeostasis, metabolism and tumorigenesis (Majid et al. 2012, Xie et al. 2013). 

Defective expression or alterations in miRNAs combination with their target genes can 

contribute, for instance, to different cancers, including gastrointestinal (Bandres et al. 2009), 

osteosarcoma (Duan et al. 2011) and hepatocellular carcinoma (Furuta et al. 2010), 

autoimmune diseases, such as rheumatoid arthritis and osteoarthritis (Buckland 2010), and 

IVD degeneration (Wang et al. 2011c, Tsirimonaki et al. 2013, Zhao et al. 2014). Bioinformatics 

analysis are commonly used to investigate miRNA target genes and predict possible signaling 

pathways (Zhou et al. 2017). Several authors identified miRNAs which were differentially 

expressed by human NP cells in degenerative samples, compared to controls (Wang et al. 

2011c, Zhao et al. 2014, Ji et al. 2016, Li et al. 2016c, Xu et al. 2016). miRNAs involved in the 

mechanisms associated with disc degeneration have been recently revised by Li et al. (2015c) 

and Zhou et al. (2017), and are summarized in Table 2. 
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Table 2. miRNAs reported to be involved in human degenerative NP. Adapted from Li et al. (2015c) and Zhou et 

al. (2017). 

miRNA Expression Target Function References 

Apoptosis mediators 

miR-27a   PIK3CD Regulates the PI3K/Akt signaling 
pathway 

(Liu et al. 
2013a) 

miR-155   FADD, caspase-
3 

Involved in the FasL-Fas signaling 
pathway 

(Wang et al. 
2011c) 

miR-494   JunD Mediates TNF-α-induced cell apoptosis (Wang et al. 
2015b) 

Cell proliferation mediators  

miR-10b  HOXD10 Targets the RhoC-Akt signaling pathway (Yu et al. 
2013) 

miR-15a  MAP3K9 Inhibits NP cells proliferation and 
induced cells apoptosis by targeting 
MAP3K9. Involved in MAPKs signal 
pathway. 

(Cai et al. 
2017) 

miR-21  PTEN Targets the PTEN/Akt signaling pathway (Liu et al. 
2014) 

miR-27b  MMP13 Induces type II collagen loss by directly 
targeting MMP13 

(Li et al. 
2016c) 

miR-184   GAS1 Negatively regulates the GAS1/Akt 
signaling pathway 

(Li et al. 
2017a) 

Degeneration and inflammation mediators 

miR-7  GDF-5 Mediates IL-1β-induced ECM 
degradation 

(Liu et al. 
2016a) 

miR-15b  SMAD3 Mediates IL-1β-induced ECM 
degradation 

(Kang et al. 
2017) 

miR-34a  GDF-5 Mediates IL-1β-induced ECM 
degradation 

(Liu et al. 
2016b) 

miR-93   MMP3 Positively regulates COL2 loss by 
directly targeting MMP3 

(Jing and 
Jiang 2015) 

miR-98   STAT3 Promotes ECM degradation by targeting 
IL-6/STAT3 signaling pathway 

(Ji et al. 
2016a) 

miR-100   FGFR1, FGFR3 Activates MMP13 through suppression 
of FGFR3 via imbalance of FGFR1 and 
FGFR3 levels 

(Yan et al. 
2015) 

miR-133a  MMP9 Mediates COL2 loss by directly targeting 
MMP9 

(Xu et al. 
2016) 

miR-146a   FADD, IL-1β, IL-
6, TNF, MMP16 

Involved in IL-1 induced IVD 
degeneration and inflammation 

(Gu et al. 
2015) 

miR-193a-3p   MMP14 Positively regulates COL2 expression by 
directly targeting MMP14 

(Ji et al. 
2016b) 

miR-377   ADAMTS5 Negatively regulates ACAN degradation 
by ADAMTS5  

(Tsirimonaki 
et al. 2013) 

 Down-regulated.  Up-regulated. 

 

1.4. Immune cell activation 

The IVD has been defined as an immune-privileged organ (Wang et al. 2007b, Sun et al. 

2013b). A study by Sheikh et al. (2009) did not observed immune response to a xenograft of 

mouse cells in an immunocompetent rabbit model, which suggests the hypothesis of existence 

of immune-privileged sites within the IVD. The immunological privilege was shown to be 

maintained by FasL (predominantly expressed in activated T lymphocytes and stromal cells of 

immune-privileged sites) and the physiological barrier together in rat (Takada et al. 2002) and 

rabbit (Wang et al. 2007b, Wang et al. 2011c) models (Kaneyama et al. 2008). In human 
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samples, FasL expression was observed to decrease with degeneration (Kaneyama et al. 

2008). FasL belongs to the TNF family and when binding to its receptor Fas, Fas-FasL pathway 

activation induces cell apoptosis of T lymphocytes (Bellgrau et al. 1995, Griffith et al. 1995, 

Greil et al. 1998) and of IVD cells (Park et al. 2001a, Park et al. 2001b, Wang et al. 2011d), 

and contributes to pro-inflammatory cytokines production (Yamamoto et al. 2013).  

AF tear and NP leakage is recognizable to the immune system as a foreign body (Sun et al. 

2013b). This may induce antigen capture, activation of B cells with the production of auto-

antibodies and CD8+ cytotoxic T (TC) cells (Sun et al. 2013b). Antibodies/immunoglobulins 

have been detected in human herniated IVD tissue (Marshall et al. 1977, Pennington et al. 

1988, Takahashi et al. 1996, Szymczak-Workman et al. 2009, Shamji et al. 2010). The immune 

system downstream cascades promote migration and infiltration, in the region, of specific and 

nonspecific immune cells, which together with the cytokines they and IVD cells secret, intensify 

the inflammatory response and cause pain (Risbud and Shapiro 2014). Takahashi and 

colleagues (1996) identified that most of the cytokine-producing cells, in protrusions, are IVD 

cells, but also histiocytes, fibroblasts, or endothelial cells, in extruded and sequestrated 

tissues.  

 

Risbud and Shapiro (2014) reviewed the role of different immune cells infiltrating into the IVD, 

commonly in herniation and back and radicular pain scenarios, which is schematically 

presented in Figure 2 and described in the following sections. 

 

 

Figure 2. Role of the different classes of immune cells in amplifying the inflammatory response by disc cells during 

IVD degeneration. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology (Risbud 

and Shapiro, 2013), copyright (2013). 
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1.4.1. T cells 

The presence of inflammatory cells, predominantly macrophages, but also mast cells, 

subtypes of CD4+ T helper (TH) cells, and neutrophils was observed in painful herniated lumbar 

discs (Gronblad et al. 1994, Doita et al. 1996, Habtemariam et al. 1998, Matsui et al. 1998, 

Burke et al. 2002b, Peng et al. 2006, Shamji et al. 2010, Risbud and Shapiro 2014), with 

significant vascular invasion in non-contained/extruded tissues (Kokubo et al. 2008).  

IL-12 and IFN- were shown to be highly expressed in herniated disc fragments, compared 

with bulging discs, which may suggest activation of TH1 CD4+ lymphocytes upon NP exposure 

to systemic circulation (Park et al. 2002, Cuellar et al. 2010, Shamji et al. 2010). IL-12, known 

to be produced mainly by macrophages, leads TH1 cells to produce high amounts of IFN-, as 

well as TNF (Trinchieri 1994, Risbud and Shapiro 2014). Of notice, IFN- was found to be most 

commonly elevated in LBP symptomatic patients, but absent in asymptomatic controls (Cuellar 

et al. 2010). 

On the other hand, increased levels of IL-4 were found in herniated IVD tissue (Shamji et al. 

2010), which suggest the involvement of TH2 CD4+ cells (Risbud and Shapiro 2014). Moreover, 

higher levels of IL-4 had already been detected in contained discs, when compared to non-

contained ones (Park et al. 2002).  

The presence of IL-17 was also implicated in IVD degeneration, being identified CD4+IL-17A+ 

and CD4+CCR6+ IL-17-producing cells and high levels of IL-17 in degenerated and herniated 

tissues, in contrast with low level observed in control tissues obtained from autopsies (Shamji 

et al. 2010, Zhang et al. 2013a, Liu et al. 2016c). IL-17 is secreted by TH17 cells, neutrophils, 

mast cells (Gaffen 2011, Gruber et al. 2013, Kenna and Brown 2013), was well as by IVD 

resident cells (Liu et al. 2016c). IL-17 is known to induce the activation and mobilization of 

neutrophils, triggering the production of chemokines and pro-inflammatory cytokines (Gaffen 

2011, Gruber et al. 2013, Kenna and Brown 2013). IL-17 supplementation promoted the 

production of inflammatory mediators, such as NO, PEG2 and IL-6, and the expression of 

Intercellular adhesion molecule (ICAM)-1 by IVD cells (Gabr et al. 2011). Moreover, co-

stimulation with IL-12 and IFN- or TNF-α showed a synergistic increase of the inflammatory 

mediators and ICAM-1, suggesting an impact of IL-17 at different levels and an important role 

of TH17 lymphocytes in the pathology of IVD disease (Gabr et al. 2011). Moreover, IVD cells 

might recruit additional lymphocytes and immune cells to the IVD (Gabr et al. 2011). IL-17 

receptors may signal through JAK/STAT1, MAPK or NF-κB pathways, correlated with IFN- 

and TNF-α signaling pathways (Albanesi et al. 1999, Miljkovic and Trajkovic 2004, Weaver et 

al. 2007).  

IL-21, also known to be a cytokine secreted by TH17 cells (Wei et al. 2007, Liu et al. 2012), 

was recently found in human degenerated IVD (Chen et al. 2017). IL-21 production was shown 
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to contribute to the enhancement of IVD degeneration by stimulation of TNF-α through the 

JAK/STAT signaling pathway (Chen et al. 2017). It has also been previously shown that IL-21 

produced by TH17 cells leads to IL-17 production in a STAT3-dependent manner to 

promote/sustain TH17 lineage commitment (Wei et al. 2007). 

 

1.4.2.  Macrophages 

In herniated tissues, it was shown that aside degenerated IVD cells, also invading monocytes 

or macrophages (CD68+ cells) may secrete cytokines in the IVD tissue (Peng et al. 2006, 

Kokubo et al. 2008, Shamji et al. 2010, Wuertz and Haglund 2013). Co-culture studies showed 

that the interaction between IVD cells and macrophages may lead to the production of IL-6, IL-

8, inducible nitric oxide synthase (iNOS), and PGE2 (Takada et al. 2004, Kim et al. 2008, Kim 

et al. 2009, Hamamoto et al. 2012, Kim et al. 2012, Takada et al. 2012, Yamamoto et al. 2013). 

After tissue injury or infection, monocytes can be recruited to the site as effectors and 

differentiate into macrophages and dendritic cells (Shi and Pamer 2011). Macrophages are 

important innate immunity participants, with heterogeneous functions dependent on the 

microenvironmental cues. Inflammatory macrophages (M1) are described as the “classically 

activated” subset (Mantovani et al. 2004, Ogle et al. 2016). M1-activated macrophages are 

part of polarized TH1 response (i.e. stimulation with IFN-, LPS and/or inflammatory cytokines, 

such as TNF-α), producing numerous inflammatory cytokines (IL-1β, TNF-α, IL-6), reactive 

oxygen species, and growth factors, such as VEGF (Mills et al. 2000, Gordon 2003, Mantovani 

et al. 2004, Spiller et al. 2014). On the other hand, macrophages can also be polarized towards 

an anti-inflammatory phenotype (M2), which can further be subdivided into M2a, M2b and M2c, 

based on activation signals, cell surface receptors, and functional diversity (Mantovani et al. 

2004). Naïve macrophages can be polarized, in vitro, by stimulation with IL-4 and/or IL-13 to 

M2a, with TLR or IL-1R ligands to M2b, or with IL-10 to an M2c phenotype (Mantovani et al. 

2004). While M2a macrophages contribute to wound healing, M2b and M2c promote the 

resolution of inflammation through secretion of IL-10 (Mosser and Edwards 2008). 

Nonetheless, since macrophages polarization may depend, among other cues, on the amounts 

of factors present in the area where they migrate to (Mantovani et al. 2009), findings from 

Shamji et al. (2010) from herniated human disc fragments point out to immune lymphocyte 

activation of the TH1 lineage, hence macrophages that migrate to herniated IVD tissues will 

most probably polarize towards an M1 phenotype.  

Moreover, infiltrating macrophages, fibroblasts, and endothelial cells, together with native IVD 

cells, were shown to spontaneously produce MCP-1, MIP-1α, which together with IL-8 work as 

chemotactic molecules for macrophages and other immune cells (Gronblad et al. 1994, Burke 

et al. 2002a). Several studies hypothesize that the mechanism of spontaneous disc herniation 
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regression may include tissue retraction and dehydration, inflammatory response, and the 

recruitment, infiltration and activity of phagocytic cells, among which are neutrophils, 

monocytes, macrophages and mast cells (Ikeda et al. 1996, Ito et al. 1996, Haro et al. 1997, 

Burke et al. 2002a, Kim et al. 2013b). Peng and colleagues (2006) detected high numbers of 

macrophages and mast cells in painful IVDs. Macrophages and mast cells were similarly 

distributed around blood vessels and among collagenous fibers of scar/granulation tissue, 

while being absent in non-degenerated controls or aging discs (Peng et al. 2006). Mast cells 

are highly specialized mononuclear cells, which contribute to disc tissue inflammation, 

neovascularization, fibrosis, degradation and secretion of NGF, with a possible causative role 

in chronic LBP (Freemont et al. 2002b, Peng et al. 2006). Nonetheless, for instance, Nerlich 

et al. (2002) also observed that non-herniated NP tissue collected during surgery also 

presented high number of resident CD68+ cells. Moreover, Jones et al. (2008) identified, in 

vitro, that IVD cells can undergo phagocytosis, by ingesting latex beads, indicating that 

endogenous inflammatory-like cells are comprised in the IVD.  

Additionally, alterations at systemic level have also been reported, namely a significant 

increase in CD3+, CD4+, CD4+/CD8+ lymphocytes in the peripheral blood of patients with 

lumbar disc herniation, and with (Ma et al. 2010) or without (Tian et al. 2009) AF rupture. A 

positive correlation between the percentage of CD4+ T lymphocytes or the ratio CD4+/CD8+ 

and pain was also observed (Tian et al. 2009, Ma et al. 2010). 

 

1.5. Other factors involved in innervation, vascularization and pain 

In human extruded or sequestrated discs, other factors have been identified, namely anti-IL-1, 

lymphocyte function-associated antigen (LFA)-1, granulocyte-macrophage colony-stimulating 

factor (GM-CSF), basic fibroblast growth factor (bFGF) and VEGF, which suggests an active 

role of those factors in angiogenesis and neovascularization associated with IVD degeneration 

(Tolonen et al. 1995, Doita et al. 1996). Peng et al. (2006) reported strong expressions of 

bFGF, transforming growth factor (TGF)-β1 and their receptors, as well as cell proliferation, in 

granulation tissue from painful lumbar IVDs. 

Furthermore, substance P and neurotrophins such as NGF and brain-derived neurotrophic 

factor (BDNF) have been implicated in the mechanisms associated with an enhancement of 

innervation and neuropathic pain in some cases of IVD degeneration (Freemont et al. 2002a, 

Freemont et al. 2002b, Purmessur et al. 2008, Ponnappan et al. 2011, Purmessur et al. 2013b). 

A study by Freemont and colleagues observed production of NGF in painful IVDs with ingrowth 

of blood vessels and nociceptive nerve fibers. Of notice, NGF expression was not identified in 

non-painful or control IVDs (Freemont et al. 2002a).  

The production of neurotrophins induces DRGs pain associated cation channels depolarization 
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(Risbud and Shapiro 2014). The increased expression of transient receptor potential cation 

channel, subfamily V, member 1 (Trpv1) and the acid-sensing ion channel 3 (ASIC3) induce 

discogenic pain and further cytokine mediated disc degeneration (Zhang et al. 2005, Ohtori et 

al. 2006, Risbud and Shapiro 2014).  

 

2. Strategies for immunomodulation of degenerated intervertebral disc  

Some regenerative medicine- and tissue engineering-based strategies for degenerated IVD 

have considered the interplay between IVD degeneration, immune cell response and 

inflammation, when focused in promoting the production of healthy ECM by native IVD cells, 

while reducing discogenic pain (Molinos et al. 2015a). Well-balanced approaches targeting not 

only regeneration, but also the modulation of inflammation mediators have been presented as 

the most promising therapies in reducing IVD-associated pain (Molinos et al. 2015a). These 

include biological approaches (using different molecules such as growth factors), gene 

therapy, and cell therapies, ranging from autologous/exogenous cell transplantation to 

endogenous cell stimulation and recruitment (Figure 3), that are under different development 

levels (clinical trials, in vivo trials, ex vivo and in vitro studies) and have been reviewed over 

time (Hughes et al. 2012, Molinos et al. 2015a, Sakai and Andersson 2015, Richardson et al. 

2016). 

 
Figure 3. Cell sources for intervertebral disc regeneration. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Reviews Rheumatology (Sakai and Andersson, 2015), copyright (2015). 

 

2.1. Molecular therapy: clinical trials 

The modulation and balance of anabolic and anti-catabolic responses of IVD cells addressing 

the aberrant cytokine-rich/pro-inflammatory degenerative IVD environment are the main target 
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of the molecular therapies proposed so far (Vadala et al. 2015). An overview of these therapies 

is summarized in Table 3. Cocktails or single drug administrations of steroids, corticosteroids 

and anesthetics through epidural delivery or nerve root infiltration, as well as oxygen-ozone 

(O2-O3) gas infiltrations are routine treatments of discogenic diseases (Bonetti et al. 2005, 

Burgher et al. 2011). Recently, epidural injection of clonidine, an alpha-2 adrenergic receptor 

agonist, has also shown potential in patients’ pain improvement (Burgher et al. 2011). 

Clonidine has been previously shown to have anti-inflammatory effects in preclinical studies of 

nerve injury and may also indirectly influence pain (Romero-Sandoval et al. 2005).  

Nonetheless, several clinical trials have been evaluating the safety and efficacy of single-dose 

injections into the NP: for chronic LBP and degenerative disc disease, clinical trials are 

currently focusing on intradiscal injection of jellified ethanol (NCT02343484), hydrolyzed 

polyacrylonitrile (HPAN)-based hydrogels (NCT02763956), autologous platelet-rich plasma 

(PRP), combined with NSAID oral medication (NCT02983747), or recombinant human GDF-5 

(NCT00813813, NCT01124006, NCT01158924), a member of the TGF-β superfamily and the 

bone morphogenetic protein (BMP) subfamily, which is known to influence the growth and 

differentiation of various tissues, including the intervertebral disc (Feng et al. 2015). 

Furthermore, in patients with inflammatory discopathy, intradiscal injection of steroids 

(NCT00804531) or corticoids (NCT01694134) have been compared. Drugs with TGF-β 

antagonist active ingredients (NCT02320019) have also been tested. 

In patients suffering from IVD herniation, intradiscal injection of condoliase, a GAG-

decomposing enzyme do degrade the herniated tissue, with high substrate specificity for 

chondroitin sulfate, dermatan sulfate and hyaluronic acid (NCT01282606), a recombinant 

human MMP (NCT01978912), or a fibrin sealant (Yin et al. 2014) have been proposed as 

potential alternatives. While the MMP and the condoliase studies are currently still in phases 

II and III of clinical trial, respectively, their selective activity on the hernia, leading to its 

degradation and regression without risk of side effects are expected to be low (NCT01978912, 

NCT01282606). On the other hand, the fibrin sealant was considered to improve pain and 

function in selected patients with discogenic pain, although neurological assessments, X-ray, 

and MRI showed no significant changes (Yin et al. 2014). 

O2-O3, although promoting tissue stabilization through nucleolysis, is being considered by 

some clinicians a successful pain relief approach in some herniated disc patients who failed to 

respond to conservative therapy (Paoloni et al. 2009, Melchionda et al. 2012, Zhang et al. 

2013b), although this is not consensual since many specialists point the absence of functional 

results in the patients. 

TNF-α inhibition and antagonism of TNF-α receptors was early shown to reduce pain-related 

symptoms in a chronic constriction injury of rat nerve (Sommer et al. 1998). In human trials, a 

short course of TNF-α inhibitors, such as infliximab, adalimumab and etanercept, have shown  
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Table 3. Bioactive molecules to target IVD degeneration, inflammation and discogenic pain. Adapted from Molinos et al. (2015a). 

Therapy 
Administration 
route 

Condition / Model 
Post-
treatment 
follow-up  

Outcomes References 

Clinical trials      

Clonidine, 
triamcinolone 

Transforaminal 
epidural injection 

Acute lumbosacral 
radiculopathy related to 
disk herniation 

Up to 1 month Radicular pain improved rapidly with clonidine or 
triamcinolone, compared to a corticosteroid; 
corticosteroid injections led to greater functional 
improvement, without differences in analgesia. 

(Burgher et al. 2011) 

Corticosteroid Peri-radicular 
infiltration 

Radicular pain Up to 1 year No additional benefit, when compared to local 
anesthetic injection alone; corticosteroids did not 
avoid subsequent interventions such as additional 
root blocks or surgery. 

(Tafazal et al. 2009) 

Intradiscal 
injection 

Discogenic LBP Up to 6 months Potential as short-term alternative for LBP patients 
unwilling to accept surgery when conservative 
treatments failed. 

(Cao et al. 2011) 

Local anesthetic Transforaminal 
epidural injection 

Disc herniation and 
radiculitis 

Up to 2 years Significant improvement in all participants who 
received local anesthetic alone and who received 
local anesthetic and steroid. 

(Manchikanti et al. 
2014) 

Oxygen-ozone (O2-
O3) 

Paravertebral 
injections 

LBP due to 
lumbar disc herniation 

Up to 6 months Minimally invasive; seemed to be safe and effective 
in reducing root inflammation with a corresponding 
reduction of pain; reduced disability and intake of 
analgesic drugs. 

(Paoloni et al. 2009, 
Melchionda et al. 2012) 

Intradiscal and 
intraforaminal 
injection 

LBP pain and radicular 
pain 

Up to 1 year O2-O3 nucleolysis provided pain relief in most 
patients who failed to respond to conservative 
therapy; no significant differences between O2-O3 

injection only or combined with steroid. 

(Zhang et al. 2013b) 

Pamidronate Intravenous 
infusion 

Erosive degenerative disc 
disease; patients fail to 
respond to NSAIDs 

Up to 1 year Significant improvements in pain and in mean 
disability scores. The pain no longer showed an 
inflammatory pattern in 9 of 10 patients. 

(Poujol et al. 2007) 

Steroid and O2-O3 Intraforaminal and 
intradiscal 
injections 

Radicular pain related to 
acute lumbar disk 
herniation 

Up to 6 months Intraforaminal and intradiscal injections of steroid 
and O2-O3 were more effective than injections of a 
steroid alone. 

(Gallucci et al. 2007) 

Steroid Oral 
administration 

Acute sciatica due to 
herniated disc 

Up to 13 
months 

Modest improvement in function and no 
improvement in pain after a short course of oral 
steroids administration, compared with placebo. 

(Goldberg et al. 2015) 

Epidural injection Sciatica caused by 
lumbosacral disc 
prolapse 

Up to 3 months Short-term management of painful sciatica, but no 
additional long-term improvement over placebo. 

(Nandi and Chowdhery 
2017) 

TNF-α blocker - 
adalimumab 

Subcutaneous 
injection 

lumbar disc herniation, 
sciatica 

Up to 6 
months,  
3 years 

Small decrease in leg pain; significantly fewer 
surgical procedures. 

(Genevay et al. 2010, 
Genevay et al. 2012)  
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TNF-α blocker - 
etanercept 

Perispinal 
administration 

Degenerative disc 
disease, disc herniation, 
sciatica 

Up to 1 month, 
230 days 

Significant clinical improvement in selected patients 
with chronic, treatment-resistant disc-related pain. 

(Tobinick and Britschgi-
Davoodifar 2003, 
Tobinick and 
Davoodifar 2004) 

Subcutaneous 
injection 

Sciatica Up to 6 weeks Patients with severe sciatica had sustained 
improvement after a short treatment with etanercept, 
compared with standard care plus a short course of 
methylprednisolone. 

(Genevay et al. 2004)  

Transforaminal 
epidural injection 

Persistent lumbosacral 
radicular pain secondary 
to lumbar disc herniation 

Up to 26 
weeks 

Clinically significant reductions in mean daily worst 
leg pain and worst back pain compared to placebo. 

(Freeman et al. 2013) 

Single intradiscal 
injection 

Discogenic LBP Up to 2 months Discogenic LBP alleviation. (Sainoh et al. 2016) 

TNF-α blocker - 
infliximab 

Intravenous 
infusion 

Sciatica, disc herniation Up to 6 months Infliximab was superior in terms of leg pain and 
back-related disability decrease compared to control; 
but, did not appear to interfere with disc herniation 
resorption. 

(Karppinen et al. 2003)  
(Autio et al. 2006) 

Intravenous 
infusion 

Acute/subacute sciatica 
secondary to herniated 
disc 

Up to 1 year Short-term pain reduction; but, long-term results did 
not show differences between infliximab and 
placebo. 

(Korhonen et al. 2006) 

In vivo studies      

BMP-7 Intradiscal 
injection 

Rabbit, in vivo disc 
degeneration 

Up to 2 months Increased disc height up to the 8-week timepoint, 
and increased NP proteoglycan content at 2 weeks. 

(An et al. 2005) 

Intradiscal 
injection 

Rabbit, in vivo disc 
degeneration 

Up to 4 months A single BMP-7 injection dramatically reversed the 
decrease in disc height induced by chondroitinase 
ABC chemonucleolysis. 

(Imai et al. 2007) 

BMP-13 Intradiscal 
injection 

Sheep, in vivo disc 
degeneration 

Up to 4 months BMP-13 injected at the time of injury reversed or 
arrested loss of matrix proteins. 

(Wei et al. 2009) 

Corticosteroid Corticosteroid-
loaded ceramic 
capsule placed 
adjacent to 
the punctured disc 

Rat, in vivo disc 
degeneration 

4 weeks Continuous sustained release of corticosterone 
tricalcium phosphate from ceramic capsules could 
slow the process of degeneration within 
the traumatized disc in the rat model. 

(Ragab et al. 2009) 

COX-2 inhibitor Epidural injection Rat, in vivo disc 
degeneration 

Up to 1 week Decrease in mechanical hyperalgesia 1 hour, 3 and 
7 days after the epidural injection of COX-2 inhibitor. 

(Kawakami et al. 2002) 

Epoxyeicosatrienoic 
acids 

Intradiscal 
injection 

Rat, in vivo disc 
degeneration 

1 month Enhanced the survival of NP cells and inhibited IVD 
degeneration. 

(Li et al. 2017b) 

GDF-5, TGF-β1 

 

Intradiscal 
injection 

Mouse, in vivo disc 
degeneration 

Up to 4 weeks Early intervention avoided or slowed the 
degenerative process.  

(Walsh et al. 2004) 
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IκB kinase-β 
inhibitor  
 

Intradiscal 
injection 

Rat, in vivo disc 
degeneration 

Up to 2 weeks Injury-induced up-regulation of inflammatory 
cytokines within IVD, and increased levels of 
neuropeptides within DRG neurons could be 
suppressed by inhibiting IκB kinase-β. 

(Kobori et al. 2014) 

p38 MAP kinase 
inhibitor 

Intradiscal 
injection 

Rat, in vivo disc 
degeneration 

Up to 2 weeks A direct single application of p38 inhibitor did not 
suppress calcitonin gene-related peptide expression 
in DRGs innervating punctured discs. 

(Hayashi et al. 2009) 

Phosphodiesterase-
2A inhibitor 

Intrathecal 
administration 

Rat, in vivo non-
compressive lumbar disc 
herniation 

Up to 1 week Alleviates radicular inflammation and mechanical 
allodynia. 

(Wang et al. 2017) 

Platelet-rich plasma 
(PRP) 

Intradiscal 
injection 

Rabbit, in vivo disc 
degeneration 

8 weeks Suppression of degeneration progress. (Nagae et al. 2007) 

Injection into and 
around the IVD 

Rat, in vivo disc 
degeneration 

Up to 6 weeks PRP-treated groups retained more normal 
morphologic features, contained fewer inflammatory 
cells, and showed higher hydration on MRI. 

(Gullung et al. 2011) 

Resveratrol Local application Rodent, in vivo disc 
degeneration 

Up to 2 weeks Significant pain behavior reduction (it was also seen 
in vitro, in human NP tissue, that resveratrol 
exhibited an anti-inflammatory and anti-catabolic 
effect). 

(Wuertz et al. 2011) 

Simvastatin Intradiscal 
injection 

Rat, in vivo disc 
degeneration 

Up to 4 weeks A single injection of simvastatin loaded in a gel had 
the potential to retard or regenerate the 
degenerative disc. 

(Zhang et al. 2009b) 

Thalidomide Injection in the 
epineurium (distal 
to the NP) 

Rat, in vivo disc 
degeneration 

Up to 28 days Significantly inhibited radiculopathic pain in vivo (and 
the expression of pro-inflammatory mediators and 
MMPs in vitro) 

(Song et al. 2016) 

Ex vivo studies 

Crocin Culture medium 
supplementation 

Rat, ex vivo disc 
degeneration 

1 week Effectively suppressed the degeneration-related 
inflammation and catabolism in rat IVDs, suggesting 
a potential use as a therapeutic strategy in the 
treatment of LBP. 

(Li et al. 2015d) 

Diclofenac Intradiscal 
injection 

Bovine, ex vivo disc 
degeneration 

Up to 8 days Df decreased the expression of pro-inflammatory 
factors; Df-loaded nanoparticles promoted an up-
regulation of extracellular matrix proteins, namely 
COL2 and ACAN. 

(Teixeira et al. 2015, 
Teixeira et al. 2016) 

Epigallocatechin 3-
gallate 

Culture medium 
supplementation 

Bovine, ex vivo disc 
degeneration 

Up to 21 days The anti-inflammatory and anti-catabolic compound 
epigallocatechin 3-gallate down-regulated the 
expression of inflammatory and catabolic genes in 
the NP. 

(Krupkova et al. 2016) 
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clinical improvement in reducing initial pain in patients with acute or severe sciatica (Karppinen 

et al. 2003, Tobinick and Davoodifar 2004, Goupille et al. 2007, Genevay et al. 2010, Genevay 

et al. 2012), and the number of patients undergoing surgical procedures. Adalimumab 

subcutaneous injection, although showing after 3 years only a small decrease in leg pain, 

significantly reduced the need for back surgery (Genevay et al. 2012). In the case of sciatica, 

it was shown that intravenous or subcutaneous injection of anti-TNF therapy is short lived and, 

although lower, might have an associated risk of infection (Goupille et al. 2007). Nonetheless, 

a single etanercept intradiscal injection was recently shown to alleviate discogenic pain up to 

2 months (Sainoh et al. 2016).  

 

2.2. Molecular therapy: in vivo and ex vivo studies 

Growth factors have been showing overall to enhance ECM production and to stimulate IVD 

cells proliferation (Masuda 2008). PRP injections into IVD injury models, in rat (Gullung et al. 

2011) and rabbit (Nagae et al. 2007), pointed out a maintenance of tissue features, with fewer 

inflammatory cells, higher fluid content correlated with a more intense signal on MRI (Gullung 

et al. 2011), and therefore, a delay in the progression of degeneration (Nagae et al. 2007). 

BMP-7 (An et al. 2005, Masuda et al. 2006, Imai et al. 2007), BMP-13 (Wei et al. 2009), TGF-

β1 (Walsh et al. 2004, Matta et al. 2017) and GDF-5 (Walsh et al. 2004, Chujo et al. 2006) 

have been shown to promote matrix synthesis in vivo. While very important, these studies are 

frequently limited in understanding the effect of the factors injected in native tissue production, 

disregarding inflammation and pain outputs. Exogenous growth factors were shown to promote 

matrix synthesis; however, have the disadvantage of a short biological half-life, ranging from 

hours to days, and a high cost (Winn et al. 1999, Richardson et al. 2016). Moreover, other 

works also raise questions about supra-physiologic doses administration for effectiveness and 

undesired blood vessel ingrowth into the IVD (Zhang et al. 2009b).  

In vitro tests have also shown great potential of other factors. IL-1Ra released from poly(lactic-

co-glycolic acid) microspheres attenuated IL-1β-mediated NP degradation up to 20 days in 

bovine NP cultures (Gorth et al. 2012). Fullerol nanoparticles were shown to suppress the 

catabolic activity and adipogenesis of vertebral bone marrow stromal cells under inflammatory 

stimulus (Liu et al. 2013b). Cobalt protoporphyrin IX treatment of human NP cells from patients 

with IVD degeneration induced hemeoxygenase (HO)-1 expression, which seemed to reverse 

the effect of IL-1β on expression of catabolic markers and matrix MMPs (Hu et al. 2016). 

Natural compounds such as curcumin (Klawitter et al. 2012a) and triptolide (Klawitter et al. 

2012b) also exhibited anti-inflammatory, anti-catabolic and anti-oxidant activity in disc cells.  

Other molecules have been successfully tested ex vivo: crocin, a bioactive component of 

saffron (Li et al. 2015d), diclofenac, a NSAID (Teixeira et al. 2015, Teixeira et al. 2016), and 



Chapter II – Immunomodulation in degenerated IVD 

48 
 

epigallocatechin 3-gallate (Krupkova et al. 2016). All these molecules have shown potential to 

suppress the degeneration-related inflammation and catabolism in degenerated IVD tissue, 

suggesting they can be potentially used as therapeutic drugs in the treatment of LBP. 

 

2.3. Gene therapy 

The degenerative disc disease is a chronic condition. Therefore, high and long-lasting local 

levels of different molecules are necessary for a continuous effect of the regenerative therapies 

(Vadala et al. 2015). Gene therapy has gained significant attention since it promises more 

prolonged effects in the treatment of IVD degeneration and mediation of inflammation, and 

provides the possibility to locally modulate the expression of a specific gene and the 

consequent production of its protein (Vadala et al. 2007, Vadala et al. 2015). 

IL-1Ra transfected cells have been suggested as a therapy to inhibit IVD matrix degradation 

(Muller-Ladner et al. 1997, Le Maitre et al. 2006, Le Maitre et al. 2007c). TGF-β1 transfection 

of IVD cells through an adenoviral vector was shown to enhance cell activity and proteoglycan 

synthesis in a rabbit model in vivo (Nishida et al. 1999), and in human NP and AF cells in vitro 

(Tan et al. 2003). Also, the transfection of BMP-2, insulin-like growth factor (IGF)-1 (Li et al. 

2004) and their combination with TGF-β1 also promoted an increase in proteoglycan synthesis, 

namely the combined therapy showed a more promising effect in comparison with the 

individual transfection treatment (Moon et al. 2008). Moreover, rabbit intradiscal injection of 

adeno-associated virus serotype 2 vector carrying genes for BMP-2 and TIMP-1 demonstrated 

an IVD degeneration delay by 12 weeks (Leckie et al. 2012).   

Though it has been successfully identified several therapeutic genes, the safety of the delivery 

systems, associated morbidity and cell irreversible alterations may limit the use of gene 

transfer vectors in clinics (Woods et al. 2011, Molinos et al. 2015a). 

Also with great novel therapeutic targeting potential is the mRNA expression of cytokines and 

chemokines in degenerated IVDs (Ahn et al. 2002). For example, the inhibition of miR-494 

protected NP cells from TNF-alpha-induced apoptosis by targeting JunD (Wang et al. 2015b), 

and the inhibition of miR-34a in NP cells prevented IL-1β-induced ECM degradation by 

increasing GDF-5 expression (Liu et al. 2016b).  

Nonetheless, there is still a long way for the new therapies to go through. Extensive processes 

of in vivo tests and clinical trials are essential to guarantee their safety and long-term 

effectiveness before a widespread use.  

 

2.4. Cell-based therapies 

Cell-based therapies aim to colonize the IVD with cells capable of differentiating and of 

stimulating endogenous IVD cells’ function (Sakai and Andersson 2015). Different cell types 



Chapter II – Immunomodulation in degenerated IVD 

49 
 

have been transplanted over time. NP cells alone (Nishimura and Mochida 1998, Watanabe 

et al. 2003, Huang et al. 2011), in combination with AF cells (Gruber et al. 2002, Ganey et al. 

2003), elastic cartilage derived chondrocytes (Gorensek et al. 2004), articular chondrocytes 

(Acosta et al. 2011), or MSCs have been widely reviewed in the literature (Molinos et al. 2015a, 

Sakai and Andersson 2015, Richardson et al. 2016, Vadalà et al. 2016), reporting that cells 

remain viable thought the studies time course and that a delayed IVD degeneration is 

observed. Moreover, a clinical trial using autologous cultured disc-derived chondrocytes 

transplantation, after discectomy, significantly reduced LBP and allowed retention of hydration 

in adjacent IVD segments at 2 years, when compared to operated patents without cell 

intervention (Meisel et al. 2007). Allogenic juvenile chondrocytes (NC01771471) and 

autologous disc chondrocytes (NCT01640457) are currently being tested in phase II clinical 

trials. 

 

2.4.1. Endogenous therapies  

Progenitor cell populations, as previously discussed, have been pointed out to be present 

within animal and human IVDs (Risbud et al. 2007, Henriksson et al. 2009, Sakai et al. 2012, 

Brisby et al. 2013). IVD-derived stem cells were shown to differentiate into chondrogenic and 

neurogenic lineages, suggesting potential for IVD regeneration (Erwin et al. 2013). They were 

also shown to play a protective role by modulating IVD inflammatory environment since, for 

instance, rabbit notochordal cells reduced the expression levels of IL-6, IL-8 and iNOS by 

human macrophage-exposed AF pellets (Kim et al. 2012). Although these promising results, 

Sakai et al. (2012) observed that a population of progenitor cells identified within the human 

IVD decreases with both age and degeneration, indicating that the isolation of sufficient cell 

numbers in the NP may be an obstacle when thinking of a clinical application. 

It has also been proposed endogenous progenitor cell recruitment/homing to the degenerated 

disc, as an alternative therapeutic approach (Grad et al. 2015). MSCs migration was enhanced 

by degenerative cues and chemoattractor-delivery systems ex vivo, in bovine organ culture 

models (Illien-Junger et al. 2012, Pereira et al. 2014) and in vivo, in a mouse tail-looping disc 

degeneration model (Sakai et al. 2015). In vivo, cell homing by the degenerated environment 

alone is challenging, since it might be widely determined by the degree of neovascularization 

of the degenerated tissue and of the potential of circulating or bone marrow-derived MSCs to 

migrate into the NP (Grad et al. 2015, Sakai et al. 2015). Nonetheless, these results provide 

important data for the development of novel molecular therapies (Sakai et al. 2015), as 

discussed in the previous section. 

On the other hand, MSCs transplantation potential has been linked to their ability to 

differentiate into an NP cell phenotype, possibly acquiring NP cell-like function, producing IVD 
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native ECM components, or promoting stimulation of endogenous IVD cells, thus enabling 

anticatabolic and anti-inflammatory effects, as reviewed by Sakai and Anderson (2015). 

Moreover, MSCs are also described to have an immunomodulatory role (Yoo et al. 2009, 

Prockop and Oh 2012). 

 

2.4.2. Exogenous stem cell delivery: clinical trials 

MSCs-based therapies have been tested in a few clinical scenarios of degenerative disc 

disease and LBP (Yoshikawa et al. 2010, Orozco et al. 2011, Pettine et al. 2015). Yoshikawa 

and colleagues (2010) reported two case studies, in which patients underwent hernia 

fenestration surgery and degenerated IVD percutaneous engraftment of a collagen sponge 

containing autologous MSCs. Two years after surgery, it was observed an increase in MRI 

signal intensity of IVDs with cell grafts, suggesting higher hydration. Disc instability and pain 

symptons also seemed to have improved (Yoshikawa, Ueda et al. 2010). Orozco et al. (2011) 

also showed safety and feasibility of autologous bone marrow-derived MSCs intradiscal inject. 

Patients exhibited rapid improvement of pain and disability (85% of maximum in 3 months) that 

approached 71% of optimal efficacy, described to be comparable with the results of procedures 

such as spinal fusion or total disc replacement. Although disc height was not recovered, water 

content was significantly elevated at 12 months (Orozco et al. 2011). Moreover, it was recently 

reported that percutaneous injection of autologous bone marrow concentrate cells significantly 

reduced lumbar discogenic pain over 12 months (Pettine et al. 2014). 

These results encouraged other trials that are currently ongoing, addressing the use of 

allogenic (NCT02097862) or autologous cell transplantation (NCT02338271, NCT02529566) 

and implantation of cell-seeded scaffolds in degenerated IVD (NCT01290367, NCT01513694, 

NCT01643681, NCT02412735). 

 

2.4.3. Exogenous stem cell delivery: in vivo and in vitro studies 

Sakai and Anderson (2015) reviewed several preclinical studies investigating transplantation 

of stem cells derived from bone marrow, adipose, synovial and umbilical cord tissues, as well 

as from CEP, AF and NP for IVD regeneration. Overall, it was reported improvement in MRI 

signaling, disc height maintenance, or up-regulation of IVD ECM components expression 

(Sakai and Anderson 2015).  

The immunomodulatory role of MSCs has been previously addressed in several contexts. In 

vitro, co-culture of human adipose-derived MSCs and osteoarthritic chondrocytes induced 

down-regulation of inflammatory factors such as IL-6, IL-8, IL-1β, MCP-1, MIP-1α and 

RANTES expression by MSCs (Manferdini et al. 2013). Pro-inflammatory cytokines, NO, and 

other damage-associated molecules from injured tissues have also been shown to activate 
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MSCs to secrete PGE2, which binds to macrophages and polarizes them to an M2 phenotype 

that secretes IL-10 (Nemeth et al. 2009). 

Ex vivo, synovial explants exposed to MSC-conditioned medium showed down-regulation of 

IL-1β, MMPs 1 and 13, and up-regulation of suppressor of cytokine signaling (SOCS)1 (van 

Buul et al. 2012). In cartilage, expression of IL-1Ra was upregulated, while ADAMTS-5 and 

COL2 were down-regulated. MSC-conditioned medium reduced NO production in cartilage 

explants and the presence of the NF-κB inhibitor, IκBα, was increased in synoviocytes and 

chondrocytes treated with MSC-conditioned medium (van Buul et al. 2012). MSCs 

administered systemically were shown to secrete anti-inflammatory TNF-α stimulated 

gene/protein (TSG)-6 in myocardial infarction in mice (Lee et al. 2009b), and in rat injured 

cornea (Roddy et al. 2011).  

In the IVD context, FasL protein (found in other immune privileged sites) was shown to be 

expressed in the NP region after MSCs intradiscal administration into beagle nucleotomized 

IVDs, indicating that either MSCs differentiated into cells expressing FasL, or stimulated the 

few remaining NP cells to express it (Hiyama et al. 2008). Moreover, IL-1Ra was shown to 

mediate the anti-inflammatory and antifibrotic effects of MSCs in a mouse model of lung injury 

(Ortiz et al. 2007). However, MSCs mechanism of action in the IVD and their impact on 

inflammation mediators is often disregarded in the multiple studies across the literature 

(Molinos et al. 2015a).  

 

This chapter covered numerous works on immunomodulatory and therapeutic approaches that 

have potential to promote a pro-regenerative milieu in the IVD. Although the inherent variability 

and contradictions arising from different studies, as suggested in Molinos et al. (2015a) review 

work, integrated strategies contemplating the different features of IVD degeneration may 

contribute to a better translation of ex vivo and in vivo results and therapeutics to humans. 
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The main aim of this thesis was to enhance the knowledge regarding the inflammatory 

response of degenerated IVD, and propose potential immunomodulatory therapies with the 

final goal of regenerating the degenerated IVD. 

 

For such, the work was divided in four main parts:  

 

1.  The establishment of a standardized degenerative/pro-inflammatory ex vivo IVD organ 

culture model. Different stimulation methods were compared to induce a pro-

inflammatory/degenerative environment in bovine IVD organ cultures and inflammatory 

markers, MMPs and ECM components were analyzed by gene expression upon different 

stimuli. 

 

2.  The evaluation of the feasibility of an intradiscal application of anti-inflammatory 

nanoparticles/nanocomplexes (NCs), previously developed in our group (Gonçalves et al. 

2015), to treat inflammation in degenerated IVD. This was performed in the 

degenerative/pro-inflammatory ex vivo IVD organ culture model previously established. 

 

3.  The assessment of the therapeutic potential of an intradiscal administration of anti-

inflammatory NCs in vivo, in a rat model of degenerated/herniated IVD, established in our lab 

(Cunha et al. 2015, Cunha et al. 2016). 

 

4.  The analysis of the immunomodulatory potential of MSCs in degenerated IVD and the 

influence of the pro-inflammatory/degenerative IVD environment in their immunomodulatory/ 

regenerative role. This was conducted ex vivo, in the model established in the first part. 

 

Overall, the work presented here opens new perspectives to immunomodulatory therapies in 

degenerated IVD, namely on the use of nanotechnology-based knowhow to improve 

intradiscal treatments. Furthermore, the work highlights the importance of taking into account 

the inflammatory environment when evaluating the potential of MSC-based therapies to treat 

IVD degeneration and associated LBP.  

  



 



CHAPTER IV        

 

 

 

 

 

 

 

 

 

 

 

 

 

A degenerative/pro-inflammatory intervertebral disc organ 

culture: an ex vivo model for anti-inflammatory drug and 

cell therapy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published in Tissue Eng Part C Methods 22(1):8-19, 2015 

doi: 10.1089/ten.tec.2015.0195



 



Chapter IV - Pro-inflammatory disc organ culture model 

59 
 

IVD degeneration and associated inflammation often lead to low back pain, one of the major 

causes of disability worldwide (Johnson et al. 2015). Although broadly available, up-to-date 

treatments, ranging from more conservative approaches (e.g. physical therapy, drug 

prescription) to more invasive approaches (ultimately disc replacement) have proven to be, in 

many clinical scenarios, transient solutions, often leading to restrained patient mobility or 

adjacent disc degeneration (Lund and Oxland 2011, Natarajan and Andersson 2017). 

Therefore, there’s a need for alternative treatments.  

Although, the motivation of our work is, ultimately, the development of new therapies for 

intervertebral disc regeneration, we considered at the point of work developed in this chapter, 

that other models and studies focus on the degeneration, while poorly considering the interplay 

with inflammation (Molinos et al. 2015a), and its contribution to the challenges which are the 

novel cell therapies for degeneration and LBP. Taking this into account, the present manuscript 

describes the establishment of a new ex vivo degenerative/pro-inflammatory disc organ culture 

model.  

IL-1β-treated discs in an organ culture showed increased levels of PGE2, pro-inflammatory 

cytokines and MMPs, while ECM proteins were significantly down-regulated in the model. This 

is a standardized model that provides a mean for understanding the mechanobiology of the 

healthy and degenerated IVD and its link with inflammation, as well as it is suitable for testing 

intradiscal therapeutic approaches.  

To validate this model, we have injected a non-steroidal anti-inflammatory drug, commonly 

used for back pain but administered orally (Df). Df intradiscal injection revealed to be an 

adequate therapy to reduce disc inflammation, while delaying/decreasing ECM degradation.  

We also evaluated the suitability of MSCs injection to modulate the inflammatory response in 

the degenerated disc, since stem cells rather support matrix degradation and the hostile IVD 

environment impairs matrix formation (Huang et al. 2014). Although this approach could be 

tested in the model developed, our findings were not uniform among different MSCs donors, 

suggesting that MSCs-based therapy to degenerated disc requires further investigation. 

However, a treatment of inflammation prior to cell therapy might improve the conditions for a 

cell therapy approach. 

Overall, we considered that this degenerative/pro-inflammatory organ culture can be a suitable 

approach for the continuation of our work, namely in vitro testing of intradiscal/anti-

inflammatory therapeutic strategies for disc regeneration. This in more physiological conditions 

that in vitro cell culture, and able to reduce the number of animals in animal in vivo 

experimentation. Furthermore, intradiscal controlled release of anti-inflammatory drugs may 

be a promising disc therapy as this treatment might reduce inflammation, delay and/or 

decrease matrix protein degradation, further promoting MSCs effect, their integration and 

adaptation on IVD degenerative environment. 
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Abstract 

Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite 

for tissue regeneration and could possibly be achieved by strategies ranging from 

pharmacological to cell-based therapies. In this study, a pro-inflammatory disc organ culture 

model was established. Bovine caudal disc punches were needle punctured and additionally 

stimulated with lipopolysaccharide (10 µg/mL) or interleukin-1β (IL-1β, 10–100 ng/mL) for 48 

h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory 

drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an 

albumin/hyaluronan hydrogel. IL-1β-treated disc organ cultures showed a statistically 

significant up-regulation of pro-inflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and 

metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins 

(collagen type II, aggrecan) were significantly down-regulated. The injection of the anti-

inflammatory drug, Df, was able to reduce the levels of pro-inflammatory cytokines and MMPs 

and surprisingly increase ECM protein levels. These results point the intradiscal application of 

anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the 

immunomodulatory role of MSCs on this model was also evaluated. Although a slight down-

regulation of IL-6 and IL-8 expression could be found, the variability among the five donors 

tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs 

to be further evaluated. The pro-inflammatory/degenerative IVD organ culture model 

established can be considered a suitable approach for testing novel therapeutic drugs, thus 

reducing the number of animals in in vivo experimentation. Moreover, this model can be used 

to address the cellular and molecular mechanisms that regulate inflammation in the IVD and 

their implications in tissue degeneration. 
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1. Introduction 

Degeneration of intervertebral disc (IVD) is an age-related progressive process considered to 

be the major cause of spine disorders.1 The current treatments either conservative (exercise, 

oral medication, physical therapy), surgical (discectomy, spinal fusion, disc replacement by 

mechanical prostheses) or analgesic (intradiscal injection of steroids or glucocorticoids) are 

transient solutions, often leading to restrained patient’s mobility or adjacent disc 

degeneration.2-6  

The degenerated IVD is characterized by cell death and changes in matrix composition, being 

the nucleus pulposus (NP) subjected to high mechanical and osmotic pressures, severe 

hypoxia and limited nutrient supply.7-9 In this process, increased levels of nitric oxide and 

prostaglandin E2 (PGE2), as well as up-regulation of metalloproteases (MMPs) and a wide 

number of inflammatory mediators (e.g. tumor necrosis factor-α (TNF-α), interleukin-1β [IL-1β], 

IL-6) have also been observed.3, 5, 10-13 Ultimately, structural damage of the outer annulus 

provides an opportunity for blood vessels and nerves to invade the disc and cause pain.10, 14  

The high impact on population health and the lack of adequate solutions in the clinics 

stimulates the development of novel IVD biological therapies,15 with the goal to promote IVD 

regeneration and/or control inflammation-associated pain.8, 16, 17 But the question of how 

inflammation can be related with IVD degeneration is still controversial and has been described 

differently from in vitro experiments to in vivo animal models.18 

Nevertheless, there is a lack of adequate models to study inflammation within IVD 

degeneration. IVD cells in vitro lose their ability to produce IVD native ECM.19 In vivo models 

of disc injury by puncture alone or NP digestion do not mimic the natural process of human 

IVD degeneration.20, 21 Thus, ex vivo organ culture models using disc explants from different 

species have been established for studying disc degeneration in a more physiologically 

relevant environment.21 Explant cultures of bovine discs have the advantage of easy 

availability and they are assumed to be suitable ex vivo models for studying therapies of disc 

degeneration as they allow well controlled environmental conditions21, 22 and they show high 

similarities with human samples regarding the induction of a degenerative environment.23 

The aim of the present study was to establish a bovine organ culture model in a pro-

inflammatory environment.  

The control of inflammation by intradiscal injection of a nonsteroidal anti-inflammatory drug 

(NSAID), Diclofenac (Df), was then tested and used to validate this model. NSAIDs are known 

as the most effective anti-inflammatory agents in the market24 but their systemic administration 

presents drawbacks such as short biological half-life, rapid metabolism and high percentage 

of protein binding. These characteristics lead to the use of high doses in patients, which causes 
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side effects in gastrointestinal, hepatorenal and cardiac systems.25, 26 Intradiscal administration 

of these drugs could overcome some of the drug systemic side effects. 

Furthermore, to analyze if mesenchymal stem/stromal cells (MSCs)-based therapy could have 

an impact in the reduction of inflammation in degenerated IVD, MSCs embedded in a human 

serum albumin/hyaluronan (HSA-HA) hydrogel27 were injected in the same model. MSCs have 

been suggested to be an adequate cell source, being capable of differentiating towards an NP-

like phenotype in co-culture with NP cells28-31 and promoting the production of healthy ECM in 

NP in vivo.32, 33 However, although animal model studies have reported that MSCs can promote 

IVD regeneration,34, 20 less is known about possible beneficial effect of MSCs in the 

modulation/resolution of inflammation in IVD. The expression of Fas ligand (FasL), a protein 

found in immune privileged sites, has been restored in the IVD upon implantation of MSCs.35 

Human MSCs were able to down-regulate gene expression of pro-inflammatory cytokines (IL-

3, IL-6, IL-11, IL-15, TNF-α) and MMPs produced by rat NP cells36 and also reduce IgG 

production from human NP fragments.14 In human trials, patients referred reduction of pain,37, 

38 but the influence of MSCs on inflammation was poorly investigated in the context of disc 

degeneration. Therefore, we investigated in our organ culture approach if MSCs injection into 

a pro-inflammatory disc environment has the capacity to control the inflammation response.  

 

2. Materials and Methods 

2.1. Establishment of a bovine organ culture model  

Bovine IVD tissue was isolated from tails of young adult animals (age < 48 months old) from a 

local slaughterhouse (in Germany by the local abattoir Ulmer Fleisch GmbH, in Portugal with 

the ethical approval of the Portuguese National Authority for Animal Health). Within 3 hours 

after slaughter, up to six caudal discs from each specimen were isolated by removal of skin, 

muscles and ligaments. Discs were dissected from the adjacent vertebral bodies as close as 

possible to the upper and lower cartilaginous endplate (Fig. 1A, B).39 Standardized punches 

(diameter of 13 mm) were prepared from each disc with the NP in the center and few 

surrounding annulus lamellae (Fig. 1C, D). 

In pre-experiments, constrained and unconstrained conditions were compared 

(Supplementary Materials and Methods). Disc explants were cultured in 6-well cell culture 

plates (Nunc) (Fig. 1E) with membrane filter inserts and 0.46 MPa static loading (constrained 

conditions) (Fig. 1F). Parallel cultures without the inserts and the extra weight were used as 

unconstrained controls. Samples were maintained for 6 days in BM: Dulbecco’s Modified 

Eagle’s Medium with low glucose (DMEM, Biochrom), supplemented with 5% v/v fetal bovine 

serum (FBS, PAA), 1% v/v L-glutamine, 1% v/v non-essential amino acids, 1% v/v 

penicillin/streptomycin (10.000 U/mL/10.000 µg/mL), 0.5% v/v fungizone (all from Biochrom) 
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and with the osmolarity adjusted to IVD-physiological 400 mOsm by addition of 1.5% v/v of a 

5 M NaCl/0.4 M KCl solution. Samples were incubated at reduced oxygen atmosphere (37 °C, 

6% O2 and 8.5% CO2) and saturated humidity as described previously.9 Culture medium was 

replaced every second day. 

To compare constrained and unconstrained conditions, macroscopic parameters of disc 

punches were determined by measurement of disc height, diameter, and wet-weight after 14 

days of culture in BM. Biochemical characterization was performed by quantification of 

glycosaminoglycans (GAG) release over a culture period of 5 weeks. Also, alcian blue staining 

of IVD sections was performed at different time points. For all the following experiments 

constrained conditions were used. 

 
 

Fig. 1. Organ culture preparation. (A) Bovine tail segment with intervertebral disc (IVD; arrows). (B) IVD isolation. 

(C) IVD punch (diameter of 13 mm). (D) Collection of the nucleus pulposus with few surrounding annulus fibrosus. 

(E) Design of the organ culture system with IVD punches cultured in a six-well tissue culture plate. (F) 4.9 N weight 

placed on top of the plate with inserts to prevent punches from swelling over time in culture and generating a 0.46 

MPa static loading. (G) Experimental timeline. 
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2.2. Simulation of pro-inflammatory environment 

For simulation of the pro-inflammatory/degenerative environment, after 6 days of culture in 

BM, IVD organ cultures were injured by needle-puncture alone40 (Punct) or also stimulated 

with pro-inflammatory factors: lipopolysaccharide (LPS)41, 42 or IL-1β.43, 44 Briefly, samples were 

punctured with a sterile 21G needle; discs were oriented with sterile forceps, while the needle 

was inserted laterally throughout the remaining AF into the NP and rotated clockwise for 30 

seconds. Discs were cultured in BM supplemented with bacterial (Escherichia coli) LPS (10 

µg/mL, Sigma-Aldrich) or recombinant human IL-1β (10 or 100 ng/mL, R&D Systems) 

according to Fig. 1G. Nonpunctured untreated discs (only cultured in BM) were used as 

controls. Tissue samples were collected after 48 h of pro-inflammatory treatment for cell 

viability and gene expression analysis. Metabolic activity analysis and PGE2 quantification 

were performed in culture supernatants. 

 

2.3. Evaluation of diclofenac injection in the pro-inflammatory IVD organ culture 

Three hours after pro-inflammatory stimulus, discs were treated with injection of 500 µL of Df 

in solution (Sigma-Aldrich, 19 µM) using a microsyringe and a 33G needle (Hamilton). The 

time point for Df treatment was selected based on our previous work with in vitro studies of an 

anti-inflammatory treatment of activated macrophages.45 Non-manipulated samples cultured 

only in BM were used as controls. The effects were evaluated 2 days later by gene expression 

and by PGE2 production. The experimental scheme is represented in Fig. 1G. 

 

2.4. Culture of human MSCs 

Human MSCs harvested from bone marrow were obtained from 5 different donors who 

underwent knee-joint surgery with informed consent and according to the rules of the ethical 

commission of the University of Ulm (Ulm, Germany). One patient was a healthy young donor 

for bone marrow transplantation. MSCs phenotype was tested immunohistochemically by CD9, 

CD90, CD105, CD44 and Stro-1 staining. In addition, the cells were confirmed to be able to 

differentiate into osteogenic, chondrogenic, and adipogenic lineages as described.46 All cells 

were expanded in DMEM (Biochrom) supplemented with 10% v/v FBS (HyClone, Thermo 

Scientific), 1% v/v penicillin/ streptomycin (10000 U/mL/10000 µg/mL, Biochrom) and 0.5% v/v 

fungizone (Biochrom). Cells were seeded at a concentration of 3000 cells/cm2 and expanded 

in T-flasks at 37ºC, under a humidified atmosphere of 5% v/v CO2 in air, with culture medium 

being changed twice a week and trypsinized when reaching 70% confluence. Experiments 

were performed with MSCs in passage two. 
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2.5. MSCs injection in the pro-inflammatory IVD organ culture 

A hydrogel of albumin-hyaluronan was selected as a carrier system for MSCs.27, 47 

MSCs/HSA–HA (500 µL) with a cell concentration of 2x106 MSCs/mL of hydrogel was injected 

in the IVD in culture using a double-chamber syringe (Medmix Systems AG) and a 21G needle. 

The cell-containing gel mixture was filled in the larger chamber of a two-chamber syringe, the 

cross-linker in the smaller one. The gel was polymerized in situ. 

 

2.6. Sample preparation for quantitative real-time reverse transcription polymerase chain 

reaction 

Gene expression levels were determined by quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR), performed in triplicate on cDNA derived from disc 

samples. NP samples were digested enzymatically, cell pellets were recovered, total RNA 

isolated, quantified and transcribed into cDNA.  

Briefly, each tissue sample was dissected into 2 to 3 mm3 fragments and enzymatically 

digested for 2 hours in 0.8 mg/mL collagenase type I (Sigma-Aldrich) in DMEM, under agitation 

(50 rpm), reduced oxygen atmosphere (37 °C, 6% O2 and 8.5% CO2) and saturated humidity. 

Supernatant was passed through a 40 μm filter (BD Falcon) to remove tissue debris. Cells 

were collected by centrifugation at 400g for 7 minutes. Total RNA was extracted from disc 

punch cells, using ReliaPrep RNA Cell Miniprep System (Promega), according to 

manufacturer´s instructions. RNA was quantified using a NanoQuant spectrophotometer 

(Infinite M200, Tecan). Quality was checked by means of RNA ratio, pooled from two disc 

samples for each condition. Of each RNA pool, 2 µg was reversed transcribed into cDNA using 

Omniscript RT Kit (Qiagen) completed with oligo-deoxythymidine primers (5 µM), random 

hexamer primers (50 µM) and RNase inhibitor (10 units) in a total volume of 20 µL. The 

obtained cDNA was diluted at a ratio of 1:4 in RNase free water (Qiagen) and used for qRT-

PCR. 

 

2.7. Quantitative real-time reverse transcription-polymerase chain reaction 

Specific primer pairs were designed using published gene sequences (PubMed, NCBI Entrez 

Nucleotide Database) and Primer 3 software48 for bovine IL-6, IL-8, MMP1, MMP3, collagen 

type II (COL2), Aggrecan (ACAN) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

(Table 1) and synthesized by Thermo Fisher Scientific (Ulm, Germany). The analysis was 

carried out using SYBR® Green method. Reactions were conducted on StepOnePlus Real-

TimePCR System (Applied Biosystems), in triplicate, in PCR 96-well TW-MT-Plates (Biozym 

Scientific), under standard conditions. Reaction mixes contained 12.5 μL of Platinum SYBR 

Green qPCR SuperMix-UDG (Invitrogen) master mix, 0.25 μL ROX Reference Dye 
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(Invitrogen), 1 μL (0.4 μM) forward primer, 1 μL (0.4 μM) reverse primer, 8.25 μL RNase free 

water and 2 μL cDNA. For the analysis of the mRNA expression, cloned amplification products 

were provided and used as standards for qRT-PCR. Statistical analysis was performed on ∆Ct 

values according to a modified method described by MacLean et al.49 Fold changes in gene 

expression were presented as 2-(average∆∆Ct). The average Ct value of each triplicate 

measurement of each sample was normalized to the house-keeping gene GAPDH in each 

sample (∆Ct = Ct(gene of interest) – Ct(GAPDH)). The ∆Ct of each stimulated sample was related to 

the respective ∆Ct of each control sample. Normalized values of samples collected at the end 

of the experiments were compared with the control and between the different experimental 

groups. 

 

2.8. Statistical analysis 

Since the data follows a non-parametric distribution, for qRT-PCR, Mann-Whitney and Kruskal-

Wallis tests were used to compare two or several groups, respectively. Statistical analysis was 

performed using GraphPad Prism vs. 6.0 (La Jolla) for Windows (vs. 6.01), with values of 

p<0.05 considered significant. 

 

Table 1. Bovine Oligonucleotide Primers 

Gene Sequence (forward and reverse primer) Product 

length (bp) 

NCBI Reference 

Sequence 

GAPDH 5´-ACC CAG AAG ACT GTG GAT GG-3´ 

5´-CAA CAG ACA CGT TGG GAG TG-3´ 

178 XM_001252511 

IL-6 5´-ACC CCA GGC AGA CTA CTT CT-3´ 

5´-GCA TCC GTC CTT TTC CTC CA-3´ 

183 EU276071 

IL-8 5´-ATT CCA CAC CTT TCC ACC CC-3´ 

5´-ACA ACC TTC TGC ACC CAC TT-3´ 

148 AF232704 

MMP1 5´-ATG CTG TTT TCC AGA AAG GTG G-3´ 

5´-TCA GGA AAC ACC TTC CAC AGA C-3´ 

193 NM_174112.1 

MMP3 5´-AAT CAG TTC TGG GCC ATC AG-3´ 

5´-CTC TGA TTC AAC CCC TGG AA-3´ 

237 AF069642 

Collagen type II 5´-CCT GTA GGA CCT TTG GGT CA-3´ 

5´-ATA GCG CCG TTG TGT AGG AC-3´ 

145 X02420 

Aggrecan 5´-ACA GCG CCT ACC AAG ACA AG-3´ 

5´-ACG ATG CCT TTT ACC ACG AC-3´ 

155 NM_173981 

Bovine oligonucleotide primers used for qRT-PCR. 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IL, interleukin; MMP, metalloprotease; qRT-PCR, 

quantitative real-time reverse transcription–polymerase chain reaction. 
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3. Results 

3.1. Cell viability and metabolic activity in a bovine IVD organ culture model in pro-

inflammatory conditions 

Disc punches were prepared as described and cultured at 5 mM glucose, 400 mOsm, 8.5% 

CO2 and 6% O2 under constrained conditions. Discs were constrained with membrane-inserts 

posed on top of each disc punch covered by a weight on the top of the culture plate (simulating 

0.5 MPa static loading, which corresponds to physiological loads during standing phase50 and 

allowed the prevention of disc swelling and tissue deformation (Supplementary Results) that 

occurred without endplates (supplementary Fig. S1). In these conditions tissue GAG slightly 

decrease (supplementary Fig. S2). 

To induce a degenerative and pro-inflammatory environment, cultures were stimulated at day 

6 after isolation with Punct or puncture with supplements: LPS, 10 or 100 ng/mL IL-1β (IL-1β 

10 or IL-1β 100, respectively). A microscopic evaluation of cell viability by LIVE/DEAD assay 

showed that cells remained viable at day 8 of culture, with no apparent differences between 

the tested conditions, indicating that neither the low oxygen tension nor the puncture and pro-

inflammatory stimulus lead to a significant loss of cell viability (Fig. 2A). In addition, glucose 

and lactic acid levels were quantified in the collected supernatants during culture (Fig. 2B, C). 

Results showed similar glucose consumption and lactic acid production for all stimulated 

groups and the control, corroborating cell viability results.  

 

Fig. 2. Cell viability and metabolic activity over the culture period of IVD punches cultured under constrained 

conditions. (A) Representative CLSM images (z-stacks) from LIVE/DEAD cytotoxicity/viability assay acquired at 

day 8, after 2 days of stimulation, for the conditions tested: control, puncture alone (Punct), puncture plus culture 

medium supplementation with 10 µg/mL lipopolysaccharide (LPS), 10 and 100 ng/mL interleukin-1β (IL-1β 10 and 

IL-1β 100, respectively). Calcein AM stains live cells in green; ethidium homodimer-1 (EthD-1) stains dead cells in 

red (scale bar, 200 µm). (B) Glucose and (C) lactic acid concentration (g/L) in supernatants collected during time 

in culture. Results are shown as mean ± standard deviation (n=14-23). 
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3.2. Analysis of pro-inflammatory markers, MMPs and ECM proteins of the pro-inflammatory 

IVD organ culture model  

PGE2 production was quantified in culture supernatants over time. No statistically significant 

differences were found between time points during culture in basal medium (BM). After 2 days 

of stimulation with different conditions (day 8), PGE2 production significantly increased for all 

the groups tested, in comparison to the control (Fig. 3A). LPS group showed the highest PGE2 

fold increase (11.5±1.2-fold, p<0.0001), while Punct presented only 1.8±1.2-fold (p<0.01). IL-

1β 10 and 100 stimulated groups achieved respectively 3.7±1.2-fold and 5.8±1.2-fold (both 

with p<0.0001). Thus, IL-1β 100 increased 1.6±0.7-fold (p<0.05) compared with IL-1β 10.  

Gene expression of pro-inflammatory markers and MMPs was also analyzed at day 8 of 

culture. IL-1β 10 and 100 groups showed statistically significant up-regulation of IL-6, IL-8, 

MMP1 and MMP3 expression compared with unstimulated discs (p<0.05, Fig. 3B, C). For IL-

8, IL-1β 100 was also significantly up-regulated in comparison to IL-1β 10 (p<0.05).  

Concerning gene expression of ECM proteins, COL2 and ACAN was down-regulated in the 

presence of IL-1β  (Fig.  3D).  While a statistically significant down-regulation was observed  in 

 

Fig. 3. Quantitative analysis of pro-inflammatory markers, matrix degrading enzymes, and extracellular matrix 

(ECM) components in IVD organ cultures. The IVD organ cultures were stimulated with Punct, puncture plus culture 

medium supplementation with 10 µg/mL LPS (LPS), 10 and 100 ng/mL IL-1β (IL-1β 10 and IL-1β 100, respectively), 

and compared with unstimulated control. (A) Prostaglandin E2 (PGE2) concentration normalized to total protein 

(ng/mg) in culture supernatants. The kinetics of PGE2 production was traced by ELISA over an 8-day culture. (B) 

mRNA expression of IL-6, IL-8, (C) MMP1, MMP3, and (D) collagen type II (COL2) and aggrecan (ACAN). Levels 

of mRNA were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The ratio of stimulation to 

control indicates the fold change of induction after stimulation (control level=1; dashed line). Results are presented 

as box and whiskers plots (n=12-36 for PGE2 and n=4-17 for mRNA expression). *p<0.05; **p<0.01; ****p<0.0001 

(Kruskal–Wallis test). 
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COL2 expression for IL-1β 10 and 100 groups, ACAN expression was only down-regulated for 

IL-1β 100 (p<0.05).  

Since IL-1β stimulation, in addition to puncture, appears to induce a pro-inflammatory/ 

degenerated IVD environment, with an up-regulation of pro-inflammatory markers, as well as 

a down-regulation of ECM proteins, and moreover, since it is a more physiological method to 

induce this inflammatory milieu than LPS, the pro-inflammatory model with IL-1β was selected 

for the following experiments.  

 

3.3. Evaluation of an anti-inflammatory (diclofenac) injection in the pro-inflammatory IVD 

organ culture 

To validate the pro-inflammatory IVD organ culture model, an injection of a commonly used 

anti-inflammatory drug (Df) was tested (Fig. 4). For that, soluble Df (19 µM) was injected in the 

NP, 3 hours after pro-inflammatory stimulus. The concentration and time point of addition was 

selected based on previous work from our group with Df treatment in human macrophages.45  

 

Fig. 4. Effect of Diclofenac injection in IVD organ cultures. Quantitative analysis of pro-inflammatory markers, matrix 

degrading enzymes and ECM components in IVD organ cultures after pro-inflammatory stimulus with puncture plus 

culture medium supplementation with 10 and 100 ng/mL IL-1β (IL-1β 10 and IL-1β 100, respectively), and treatment 

with 19 µM Df for 2 days (IL-1β 10 + Df and IL-1β 100 + Df). (A) PGE2 fold change in culture supernatants. (B) 

mRNA expression of IL-6, IL-8, (C) MMP1, MMP3, (D) COL2 and ACAN. Levels of mRNA were normalized to 

GAPDH. The ratio of stimulation to control indicates the fold change of induction after stimulation (control level=1; 

dashed line). Results are presented as box and whiskers plots (n=6-36 for PGE2 and n=4-17 for mRNA expression). 

*p<0.05; **p<0.01; ****p<0.0001 (Mann–Whitney test). 



Chapter IV - Pro-inflammatory disc organ culture model 

74 
 

Two days after injection, PGE2 production significantly decreased in the groups supplemented 

by Df (IL-1β 10 + Df and IL-1β 100 + Df, p<0.05) in comparison to the respective IL-1β-

stimulated group alone (IL-1β 10 and IL-1β 100, Fig. 4A). Expression of IL-6 was significantly 

down-regulated and MMP3 was slightly down-regulated with Df injection for both IL-1β 

concentrations (p<0.05, Fig. 4B, C). For the higher IL-1β concentration used, IL-8 and MMP1 

were significantly down-regulated after Df injection (p<0.05, Fig. 4B, C). Concerning the ECM 

proteins, COL2 did not show significant differences after Df injection. On the other hand, an 

up-regulation of ACAN was observed after Df injection for both IL-1β concentrations (p<0.05, 

Fig. 4D).  

 

3.4. Evaluation of MSCs injection in the pro-inflammatory IVD organ culture 

MSCs anti-inflammatory effect was evaluated in the IVD pro-inflammatory model stimulated 

with IL-1β 10. For this, MSCs were injected in the IVD using an HSA-HA hydrogel as vehicle. 

Injection of either MSCs embedded in HSA-HA (MSCs/HSA-HA) or HSA-HA alone did not alter 

PGE2 production (Fig. 5A). Regarding the pro-inflammatory cytokines, there was an app  arent            

Fig. 5. Effect of MSCs injection in HSA-HA hydrogel in IVD organ cultures. Quantitative analysis of pro-inflammatory 

markers, matrix degrading enzymes and ECM components in IVD organ cultures after pro-inflammatory stimulus 

with puncture plus culture medium supplementation with 10 ng/mL IL-1β (IL-1β 10), and treatment with HSA-HA or 

MSCs/HSA-HA for 2 days. (A) PGE2 fold change in culture supernatants. (B) mRNA expression of IL-6, IL-8, (C) 

MMP1, MMP3, (D) COL2 and ACAN. Levels of mRNA were normalized to GAPDH. The ratio of stimulation to 

control indicates the fold change of induction after stimulation (control level=1; dashed line). Results are presented 

as box and whiskers plots (n=5-36 for PGE2 and n=5-17 for mRNA expression). *p<0.05; **p<0.01; ****p<0.0001 

(Kruskal–Wallis test). 
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slight down-regulation of IL-6 and IL-8 expression in the MSCs/HSA-HA injection group, when 

compared to IL-1β 10 stimulus and to the injection of HSA-HA alone (Fig. 5B). MMP1 and 

MMP3 did not appear to have been differently expressed between injections of MSCs/HSA-

HA or HSA-HA alone, however they seem to be up-regulated in those two groups in 

comparison to IL-1β 10 (Fig. 5C). Gene expression of COL2 and ACAN was down-regulated 

at all conditions with pro-inflammatory stimulation compared to the unstimulated controls, and 

HSA-HA scaffold alone or combined with the MSCs further decreased matrix protein 

expression by IVD cells (p<0.05, Fig. 5D). 

 

4. Discussion 

In the present study, we established a standardized bovine organ culture system that simulates 

pro-inflammatory conditions. The approach used tissue punches that allowed the 

standardization of explants size. The physical culture conditions in culture plates constrained 

by inserts and compressed by a constant static loading prevented tissue swelling and tissue 

deformation that usually occurs without endplates, as reported in the literature.23, 51-53 

Moreover, the tissue is more easily collected using a less complex protocol (e.g. it does not 

require sawing the bone or jet-lavage).52, 54, 55 In our approach, we have used constrained 

conditions in all experimental groups for standardisation of the samples (prevention of swelling) 

but we did not simulate complex loading protocols, though we are aware of the importance of 

complex loading on the initiation and progression of disc degeneration.23, 56 Nevertheless, GAG 

loss in these conditions was already reported to naturally occur in culture.52 Although organ 

cultures are accepted as more reliable models than 2D in vitro cultures, since they constitute 

a step further in complexity before in vivo studies, there are also some limitations that all should 

be aware. Namely, an organ culture model cannot simulate complex interactions with adjacent 

tissues and can only be kept limited time in culture14, 40, 57 to guarantee tissue viability. Another 

limitation is the lack of vascularization and immune cells. In our approach, tissue viability was 

assured by controlling metabolites production/consumption levels during culture time and the 

culture period was rather short. Concerning vascularization, since mature native IVD lacks 

vasculature, this limitation is of minor relevance in disc organ culture models. 

To promote a pro-inflammatory environment, we tested different approaches. Some commonly 

methods in the literature use mechanical injury by needle-puncture,58, 59 to stimulate disc 

degeneration, or medium supplementation with LPS.60 However, although LPS is a known 

stimulus of inflammation,60, 61 it is not really a physiological approach. By the contrary, IL-1β is 

an interesting candidate, since it is expressed at high levels in the pathogenesis of disc 

disease13, 62, 63 and it has been demonstrated that exposure of NP cells to IL-1β leads to altered 

mechanical function, primarily due to loss of GAG.64 
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In general, none of the conditions that induce a pro-inflammatory environment impaired cell 

viability or altered glucose consumption/lactic acid production, thus they did not substantially 

alter cell metabolism in our approach. This is in accordance with other studies that observed 

a cell survival rate (after 14 days of rabbit IVD organ culture) higher than 90% in pro-

inflammatory conditions (LPS and IL-1β).60 However, Korecki and colleagues showed that at 

the needle insertion site cell damage may occur,40 while results from Ponnappan and co-

workers revealed an increase in apoptosis after IL-1β treatment.44  

LPS stimulation is known to induce COX-2 expression,65 and consequently generates different 

prostanoids, including PGE2.66 PGE2 is excessively produced in response to pro-inflammatory 

cytokines signaling, particularly IL-1 and TNF-α.12, 67 LPS was also shown to stimulate pro-

inflammatory cytokines production (IL-1β, IL-6 and IL-8) by chondrocytes68 and by murine disc 

cells.69 In the present study, LPS stimulus significantly increased PGE2 production but no 

obvious effect was observed in other pro-inflammatory cytokines analyzed or in matrix 

remodeling. 

In contrast, only (100 ng/mL) IL-1β-treated discs showed a significant up-regulation of pro-

inflammatory cytokines and MMP expression accompanied by a significant down-regulation of 

ECM proteins, in accordance to disc degeneration description.43, 44, 63 The other study by Burke 

et al. reported that disc cells from patients with scoliosis or degenerated IVDs respond to an 

exogenous pro-inflammatory stimulus with an increased secretion of pro-inflammatory markers 

IL-6, IL-8, and PGE2.41, 67 Therefore, a pro-inflammatory IVD organ culture under loaded 

conditions, punctured and stimulated with IL-1β (100 ng/mL) was selected as the most reliable 

model for further studies.  

An anti-inflammatory drug (Df) was injected in discs stimulated by IL-1β and its effect on pro-

inflammatory/degenerative IVD was evaluated. As expected, Df injection was able to decrease 

PGE2 production, since Df is a COX-2 inhibitor. But, besides this known effect, Df also down-

regulated IL-6, IL-8 and MMP1 expression, while stimulating ACAN synthesis, suggesting that 

this treatment might not only reduce inflammation, but could also delay matrix proteins 

degradation and/or increase ECM proteins level. Intradiscal injection of steroids or 

glucocorticoids to control inflammation in IVD has been used in clinics. However, their 

influence on deregulation of matrix turnover leading to further disc degeneration is also 

known.70 Df direct injection into the IVD may have a limited clinical use as it has a short biologic 

half-life and may require repeated administrations. Therefore, a sustained delivery system that 

prolongs Df release in the disc may be a promising alternative. In fact, Df intraperitoneal 

injection in a rat lumbar disc herniation model showed a reduced analgesic effect with time.71 

Nevertheless, in a pig model of NP-induced nerve root injury, Df reduced NP-induced nerve 

root dysfunction, showing good prognosis after Df treatment.72 Nonetheless, most of these 
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studies are focused on pain by analysis of change in disability and pain scores, and not 

biological effects on matrix turnover and inflammation.73-75 

In parallel, the effect of MSCs transplantation on the pro-inflammatory/degenerated IVD organ 

culture was here investigated. MSCs are capable to differentiate into NP-like cells,38 increasing 

expression of non-specific markers as ACAN or COL2,30 and were reported to induce less pain 

in IVD degeneration human clinical trials.37 The cell density was used based on the work by 

Serigano et al., which showed that 106 MSCs per transplanted disc was the ideal number of 

cells, since less viable cells were detected when 105 MSCs were transplanted and more 

apoptotic cells were found in 107 MSCs transplanted discs.76  

The vehicle used to inject MSCs was based on a HSA-HA hydrogel. This hydrogel was shown 

to be adequate for MSCs differentiation in chondrogenic lineage, in vitro,27 and to enhance 

disc endogenous repair after 6 months, in an in vivo nucleotomized sheep model.47 In vivo 

studies using this hydrogel showed good integration with the host without reporting associated 

inflammatory response.77,78 Only low levels of the pro-inflammatory cytokine IL-1β were 

reported in the nucleotomized sheep model, 6 months after implantation.47 Nevertheless, the 

results from our model demonstrate that this carrier by itself activates the production of pro-

inflammatory mediators PGE2, IL-6 and IL-8 by disc cells, when compared to control discs. 

This suggests a “foreign-body”-type reaction, similar to what happens with biomaterial 

recognition by immune cells. Interestingly, upon implantation, MSCs were able to reduce this 

activation status, demonstrating their immunomodulatory effects in this model also. 

The literature reports that MSCs are able to increase the expression of the immunosuppressive 

ligand FasL in IVD,35 as well as down-regulate gene expression of pro-inflammatory cytokines 

(IL-3, IL-6, IL-11, IL-15, TNF-α) and MMPs produced by rat NP cells.36 Bertolo et al. also 

showed that MSCs are able to reduce IgG production by human NP fragments and slightly 

reduce TNF-α expression, although no influence was observed on IL-1β.14 Nevertheless, in 

the present study, MSCs effect on pro-inflammatory markers appeared to be highly donor 

dependent. PGE2 revealed either an up-regulation or a decrease, depending on the donor, and 

only a slight down-regulation of IL-6 and IL-8 expression was observed after MSCs/HSA-HA 

injection. The preliminary short-term findings at gene expression level rather suggest impaired 

matrix formation and increased matrix degradation. Although two days after injection appears 

to be an adequate time point to address the inflammatory markers, we cannot exclude that it 

may be a too early time point to analyze matrix formation. Other aspect that we cannot exclude 

is the use of human MSCs on a bovine disc organ culture, although human MSCs are known 

by their immunomodulatory capacity79, 80 and have frequently been used in animal studies from 

other species, without immune suppression.81,82 In those cases, no exacerbated immune 

response was observed. New experiments with MSCs are currently in progress to clarify the 

open question about the immunomodulatory role of MSCs in the degenerated IVD. 
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In conclusion, we have developed and validated a reproducible pro-inflammatory/ 

degenerative organ culture model. This model is suitable to investigate inflammation-

associated mechanisms and other possible pathways that cause disc degeneration. Moreover, 

this ex vivo model could be used to assess cytotoxic effects of novel pharmaceutical strategies 

for IVD, prior to animal experimentation. Particularly, Df intradiscal injection seems to be a 

promising approach to control inflammation while delay and/or decrease matrix protein 

degradation. Regarding the suitability of MSCs injection to modulate the inflammatory 

response in the degenerated disc, although this approach could be tested in the model 

developed, our findings were not uniform among different MSCs donors, suggesting that 

MSCs-based therapy with regard to control the inflammatory response in the IVD requires 

further investigation. 
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Supplementary Data 

Materials and Methods 

Alcian blue staining 

Organ culture samples were analyzed histologically in paraffin sections for proteoglycans. IVD 

punches were washed with PBS, fixed with 4% formalin solution for 2 days, dehydrated in a 

gradient series of EtOH and then embedded in paraffin blocks. Sections of 7 μm thickness 

were sequentially recovered, deparaffinised, diafanized and rehydrated. Sections were 

acidified with 3% acetic acid for 5 minutes, stained with 1% Alcian Blue 8GX (Sigma-Aldrich) 

in 3% acetic acid for 30 minutes and rinsed in distilled water. Counterstaining was carried out 

with nuclear fast red (Merck) for 3 minutes. Sections were rinsed in distilled water, dehydrated 

in absolute ethanol, diafanized in xylene and mounted with Vitro-Clud (Merck). Sections were 

imaged with brightfield microscopy (DMI6000 B, Leica). 

 

Evaluation of glycosaminoglycan content in disc tissue 

The amount of glycosaminoglycans (GAG) in the IVD was determined by Dimethylmethylene 

blue (DMMB) assay, based on the binding of DMMB to GAG.1 Briefly, disc tissue samples were 

dissected into 2 to 3 mm3 fragments and enzymatically digested overnight with proteinase K 

(0.5 mg/mL, Sigma-Aldrich) at 58°C. Afterwards, samples were vortexed to a clear solution, 

indicating that the digestion was complete after the incubation. A dilution series of 20 µg/mL to 

0.625 µg/mL chondroitin 4-sulfate standards was prepared. Subsequently, 50 µL of standards 

and samples were transferred to a 96-well plate, 200 µL of DMMB reagent solution was added 

to each well and absorbance was measured at 656 nm. Each sample was measured in 

triplicate. 

 

Analysis of cell viability  

Cell viability was qualitatively assessed at day 8 through fluorescence-based LIVE/DEAD Cell 

Viability/Cytotoxicity kit (Invitrogen), by confocal laser scanning microscopy (CLSM), according 

to Teixeira et al.2 Briefly, organ culture samples were rinsed first in PBS and then in phenol-

red/serum-free DMEM (Gibco), three times each, to remove traces of esterases and to avoid 

phenol red interference with fluorescence readings. Samples were then simultaneously stained 

with a solution of 1 μM calcein acetoxymethyl ester (Calcein AM, Invitrogen) and 2.5 μM 

ethidium homodimer-1 (EthD-1, Invitrogen) for 45 minutes at 37ºC, protected from light. After 

discarding supernatant and adding new phenol red/serum free DMEM samples were imaged 

by CLSM (Leica SP2 AOBS SE, Leica Microsystems), using LCS Software (Leica 

Microsystems). Calcein AM (Ex 485 nm/Em 530 nm) stains live cells green, indicating 
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intracellular esterase activity, while EthD-1 (Ex 530 nm /Em 645 nm) stains dead cells red, 

indicating loss of plasma membrane integrity. Images were analyzed using ImageJ 1.43u 

software (Wayne Rasband). 

 

Cell metabolic activity analysis  

In order to follow cell metabolic profile in the different culture conditions, samples of 0.5 mL of 

exhausted culture medium were collected at time points 0, 2, 4, 6 and 8 days of culture. After 

collection, supernatants were incubated at 80ºC for 15 minutes, to inactivate most enzymes, 

and centrifuged at 10000 rpm for 5 minutes. The supernatant samples were kept at -20ºC until 

posterior analysis. D-glucose consumption and L-lactic acid production were quantified by UV-

method kits (Boehringer Mannheim/R-Biopharm, Roche), adapted for 96-well microplates 

according to manufacturer's instructions. Each sample was measured in triplicate. 

 

Evaluation of Prostaglandin E2 concentration in conditioned media 

Conditioned medium was collected at days 0, 2, 6 and 8, centrifuged (3000 rpm, 5 minutes) 

and the supernatant kept at -20ºC for posterior analysis. PGE2 was quantified by ELISA (Arbor 

Assays) according to manufacturer’s instructions and normalized by total protein. 

 

Total protein quantification 

The bicinchoninic acid (BCA) colorimetric protein assay was performed in cell lysates 

according to the manufacturer’s instructions (Bio-Rad), adapted to a microplate format. Briefly, 

5 μL of lysed samples were transferred to a 96-well microplate (Greiner). 25 μL of working 

reagent (A) were added to the samples followed by 200 μL of solution B. Samples were 

incubated for 15 min at room temperature, protected from light. Absorbance was measured at 

750 nm, in a microplate reader (PowerWave XS, Biotek). Total protein values were converted 

into mg/mL using a standard curve of bovine serum albumin (BSA) in the range of 0.03125 to 

1 mg/mL. Each sample was measured in triplicate. 

 

Results 

Evaluation of constrained conditions in the establishment of a bovine IVD organ culture model  

As caudal bovine discs differ in diameter, preparation of disc punches allowed a 

standardization of the organ culture explants with regard to disc diameter and disc size 

compared to complete discs (Fig. S1A). In the constrained group, IVD punches height was 

strongly reduced by covering the samples with inserts and by adding a weight on top to fixate 

the dish plate cover as described (Fig. 1B). Due to the differences in swelling behaviour 

between NP and AF, the NP was extruded in direction of lowest resistance under 
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unconstrained conditions and hence the height of the IVD increased (Fig. S1A, B). 

Determination of disc diameter (Fig. S1C) and disc weight (Fig. S1D) between constrained and 

unconstrained groups did not seem to reveal differences. 

 

 

Supplementary Fig. S1. Macroscopic parameters of IVD. (A) Whole IVD were compared macroscopically to 

punched IVD under constrained (white columns) and unconstrained (black columns) culture conditions (arrowhead 

indicates swollen nucleus pulposus). IVD punches were analyzed concerning physical parameters: (B) height, (C) 

diameter and (D) weight. Parameters of the IVD were compared before and after cultivation and differences are 

shown as mean ± standard deviation (n=7 donors). 

 

With ongoing culture time, the disc punches underwent a loosening of proteoglycans that were 

released into the culture medium. Histological analysis of organ culture samples revealed a 

decreased staining intensity for disc matrix proteoglycans as shown by alcian blue staining 

(Fig. S2A). This finding was confirmed by an increased concentration of GAG in the 

conditioned medium collected during medium exchange, as shown in Fig. S2B. Constrained 

and unconstrained groups presented only small differences between each other, namely when 

reaching a plateau stage. However, constrained samples seemed to have suffered higher GAG 

loss. 
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Supplementary Fig. S2. Release of glycosaminoglycans (GAG) over a culture period of 5 weeks. (A) 

Representative images of alcian blue staining of IVD punches of one donor at different time points (days 0, 1, 7, 

14, 21, 28 and 35), under constrained conditions (strongly acidic mucosubstances are stained blue, cell nuclei are 

stained pink to red, and cytoplasm is stained pale pink; scale bars, 1000 μm). (B) Release of GAG to the 

supernatant. IVD punches were cultured under constrained (red line) and unconstrained (black line) conditions, and 

results were plotted cumulatively along the culture period. 
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IVD degeneration associated diseases have been focus of different treatment approaches. 

The regenerative potential of hydrogels for nucleus pulposus replacement, cell-based 

therapies, growth factors injection or gene therapy has been investigated (Sakai and 

Andersson 2015). However, as we have defended in the previous chapters, the modulation 

and control of inflammation are crucial for tissue regeneration. 

Facing this, we consider immunomodulatory biomaterials of great interest for IVD applications. 

-PGA is one of the most appealing natural polymers, mainly due to its biodegradability into 

glutamate residues, as due to its potential in promoting chondrogenic differentiation of human 

MSCs (Antunes et al. 2015). Since -PGA is anionic (pka 2.19), it can be combined by 

electrostatic interaction with cationic polymers as Ch (Antunes et al. 2011), forming 

polyelectrolyte complexes with great potential as delivery systems. Our group has previously 

reported the production of a low molecular weight and highly pure -PGA (Pereira et al. 2012). 

The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on 

Ch/-PGA NCs with an anti-inflammatory drug (Df), previously developed by our team 

(Gonçalves et al. 2015). 

Ch/Df/-PGA NCs were produced by co-acervation method (Pereira et al. 2012). This drug 

delivery system was tested in the pro-inflammatory/degenerative intervertebral disc ex vivo 

model presented in the previous chapter (Teixeira et al. 2015). Given the NCs liquid 

consistency, it is possible to inject them directly into the IVD tissue using a microsyringe and 

a 33G needle, reducing the challenges of further disc degeneration due to puncture.   

The main findings support the success of an anti-inflammatory therapy for degenerated IVD 

that not only reduces inflammation but also promotes native IVD matrix production. 

Furthermore, although the potential of this soluble intradiscal therapy to be used alone, it 

shows great prospective to be combined with other therapies, potentiating their effect. 
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Abstract 

Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain 

(LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role 

in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have 

been purposed in the context of IVD regeneration.  

Anti-inflammatory nanoparticles/nanocomplexes (NCs) of Chitosan and Poly-(-glutamic acid) 

with a non-steroidal anti-inflammatory drug, Diclofenac (Df), were previously shown to 

counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal 

injection of Df-NCs in degenerated IVD was evaluated. For that, Df-NCs were injected in a 

bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with 

needle-puncture and interleukin (IL)-1β. Df-NCs were internalized by IVD cells, down-

regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-

1β-stimulated IVD punches. Interestingly, at the same time, Df-NCs promoted an up-regulation 

of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study 

suggests that IVD treatment with Df-NCs not only reduces inflammation, but also delays and/or 

decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD 

degeneration, based on the modulation of inflammation. 
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1. Introduction 

Pathologies of intervertebral disc (IVD) such as disc degeneration, herniation or cervical 

radiculopathology are strongly associated with low back pain (LBP).1,2 This might be caused 

by herniation-induced pressure on over-sensitized nerve roots, due to mechanical stimuli, and 

by molecules arising from the inflammatory cascade.1,3 

In degenerated discs, an up-regulation of metalloproteinases (MMPs) and an over-expression 

of a wide number of inflammatory mediators (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, 

IL-6) have been observed. A balance between inflammatory mediators and their counter-

regulatory molecules may be important for determining the immune and regenerative outcome 

of IVD pathologies.4,5 

Current therapeutic interventions for degenerated IVD are determined by the degree, severity 

and persistence of pain: conservative approaches, involving rest, pain medication or 

physiotherapy, in contrast to non-conservative treatments that include microdiscectomy, spinal 

fusion of two or more disc levels, or disc replacement by prostheses. However, these 

approaches are only transient and may affect patients’ mobility or induce adjacent-level IVD 

degeneration within few years, leading to chronic low back pain symptoms.2,6 

Therefore, new therapies for degenerative disc disease have been encouraged and intradiscal 

injection of different molecules has been one of the most appealing strategies. In this context, 

inflammatory players (including TNF, IL-1 and IL-6) have been suggested as possible 

targets.5,7 For example, intradiscal injections of steroids or glucocorticoids are currently 

performed to decrease intradiscal inflammation in patients with nucleus pulposus (NP)-induced 

spinal nerve root injury.8,9 Nonetheless, only 25% of success rate has been shown with 

intradiscal steroid injection at short-term follow-up.10 At long-term, in patients with chronic LBP, 

this strategy did not show clinical benefits.11 Furthermore, intradiscal steroids are thought to 

promote spinal segment stabilization via further disc degeneration.12 

Non-steroidal anti-inflammatory drugs (NSAIDs), as diclofenac (Df), are considered the most 

effective anti-inflammatory drugs.13 These drugs affect the arachidonic acid cascade, inhibiting 

particularly the cyclo-oxygenase (COX) and lipoxygenase pathways, decreasing inflammation 

and pain,14,15 and have been widely used in osteoarticular disorders.16 A local NSAIDs-based 

therapy would increase drug targeting and bioactivity, while minimizing drug bio-distribution 

through the organism and the risk of side effects.17 

Different strategies are being investigated to treat degenerated IVD, such as hydrogels for NP 

replacement, cell-based therapies, growth factors injection or gene therapy18. Inflammation is 

an important aspect of this disorder that is frequently neglected, but its control in the 

degenerated IVD scenario is crucial for tissue regeneration. Recently, IL-10 and transforming 

growth factor (TGF)-β anti-inflammatory molecules were described as potential successful 
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therapeutic approaches for the treatment of LBP mediated by IVD degeneration, not only 

inhibiting inflammation but also, in the case of TGF-β, promoting ECM production.19,20 Anti-

inflammatory NCs have been previously investigated by our group: Chitosan (Ch)/Df/Poly--

glutamic acid (-PGA) NCs were able to inhibit and revert prostaglandin E2 (PGE2) production 

by activated macrophages in vitro, while decreasing IL-6 and partially TNF-α production.17 So, 

here we address the effect of these NCs to control inflammation in degenerated IVD. These 

NCs revealed to be an effective drug-delivery system that can be combined with other 

strategies as hydrogels to control local inflammation. 

Chitosan (Ch) is a natural biodegradable polysaccharide that has been widely used in 

biomedical applications, mainly in drug delivery systems, gene therapy and tissue 

engineering21. Ch is biochemically active, biocompatible and non-toxic.22 Previous studies from 

our group have shown that Ch ultra-thin surfaces polarized macrophages into an M2c 

phenotype and stimulated dendritic cells, without leading to significant T-cell proliferation.23 In 

vivo, Ch implants with higher degree of acetylation (DA, 15%) induced a stronger inflammatory 

reaction, with more extended fibrous capsule and higher number of infiltrated cells.24 

Nevertheless, when Fibrinogen was adsorbed in Ch films, most inflammatory cytokines 

produced by monocytes/macrophages were down-regulated.25 Also, when Resolvin D1, a lipid 

inflammatory mediator, was incorporated into Ch implants, the immune response was almost 

shut down.26 Overall, Ch is a versatile biomaterial that can be tuned by its chemistry or protein 

incorporation to be immunomodulatory.27 On the other hand, -PGA is a naturally occurring 

peptide that consists of D- and L-glutamic acids polymerized through -glutamyl bonds. 

Contrarily to α-PGA, a counterpart chemically synthetized, -PGA is microbially produced by 

certain Bacillus strains as a capsular or extra-cellular viscous material, is water-soluble, 

biochemically degraded into glutamate residues and non-toxic.28 Also, by forming a ternary 

complex, -PGA can be recognized by an intrinsic membrane protein, -glutamyl 

transpeptidase (GGT), resulting in a significant increase in its cellular uptake.28,29 

Ch and -PGA are ions with opposite charges that spontaneously self-assemble in a controlled 

pH environment. The electrostatic interactions between Ch and -PGA have been previously 

explored by our group.22 Ch/-PGA polyelectrolytes are stable at pH 5.0 and have been 

proposed as delivery systems for different proteins/molecules in different contexts: stromal 

derived factor-1,30 interferon-31 and Df.17 Ch/-PGA nanoparticles/nanocomplexes (NCs) with 

Df were previously demonstrated to be an effective anti-inflammatory drug delivery system in 

vitro.17 

Therefore, we propose the intradiscal injection of an anti-inflammatory drug delivery system 

based on Ch/Df/-PGA NCs to locally control the inflammatory response in degenerated IVD. 

For that, a pro-inflammatory/degenerated bovine IVD organ culture model recently established 
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was used.32 The effect of Ch/Df/-PGA NCs specifically on IVD inflammatory markers was here 

addressed, and also ECM remodeling upon this therapy was evaluated.  

 

2. Materials and Methods 

2.1. Pro-inflammatory IVD organ culture model and intradiscal anti-inflammatory treatment 

Bovine IVDs were isolated from young adult animals’ tails (age<48 months old) within 3 hours’ 

post-slaughter in a local slaughterhouse, with the ethical approval of the Portuguese National 

Authority for Animal Health. Caudal discs were isolated and cultured according to Teixeira et 

al.32 Briefly, standardized disc punches (with diameter of 9 mm) were collected with NP in the 

center and few surrounding annulus fibrosus (AF) and maintained for 6 days in 6-well tissue 

culture plates, with membrane filter inserts and 0.46 MPa static loading. Basal medium (BM) 

was Dulbecco’s Modified Eagle’s Medium with low glucose (DMEM, Biochrom), supplemented 

with 5% v/v fetal bovine serum (FBS, HyClone), 1% v/v penicillin/streptomycin (10.000 

U/mL/10.000 µg/mL, Biowest), 0.5% v/v amphotericin B (Capricorn) and with the osmolarity 

adjusted to IVD-physiological 400 mOsm by addition of 1.5% v/v of a 5 M NaCl/0.4 M KCl 

solution. Samples were incubated at reduced oxygen atmosphere (37°C, 6% O2 and 8.5% 

CO2) and saturated humidity. Culture medium was replaced every second day. 

Pro-inflammatory/degenerative stimulation was induced as optimized by Teixeira et al.32 

Briefly, after 6 days of culture in BM, IVD organ cultures were injured by needle-puncture with 

a sterile 21-gauge needle and stimulated with pro-inflammatory factor IL-1β (100 ng/mL, 

PeproTech). Three hours after pro-inflammatory stimulus, discs were treated with injection of 

500 µL (corresponding to 10% v/v in solution) of Ch/-PGA NCs (0.7 mg/mL), Ch/Df/-PGA 

NCs (0.7 mg/mL) (Df, Sigma-Aldrich) using a microsyringe and a 33-gauge needle (Hamilton). 

The time point for treatment was selected based on previous work from our team.17,32 Non-

manipulated samples kept in BM were used as controls. The effects were evaluated 2 days 

later by gene expression and PGE2 production quantification. Metabolic activity of the disc 

cells, tissue DNA and sGAG content and pH of culture supernatants were also analyzed at this 

time point. For analysis of ECM components at protein level, organ cultures were maintained 

for 14 days and samples collected for histology. The experimental scheme and groups are 

represented in Fig. 1. 

 

2.2. Mitochondrial metabolic activity of IVD cells in the organ culture model 

To assess cell mitochondrial metabolic activity, resazurin assay was performed. Resazurin 

(Sigma-Aldrich) stock solution (0.1 mg/mL) was added to IVD culture medium at a final 

concentration of 10% v/v. Samples were incubated for 3 hours at 37ºC. Fluorescence intensity 

was measured in a spectrophotometer microplate reader (BioTek Synergy HT), with 530 nm 
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excitation filters and 590 nm emission filters. A calibration curve was previously designed to 

exclude saturated values. 

 

 

Fig. 1. Scheme of the experimental timeline and experimental groups. 

 

2.3. DNA quantification 

DNA content of IVD punches was quantified using Quant-iT PicoGreen double standard DNA 

(dsDNA) kit (Invitrogen), according to manufacturer’s instructions, and normalized to the wet 

weight of the digested tissue. Tissue digests were obtained by previous incubation of the IVD 

minced samples with proteinase K (Sigma-Aldrich) solution (0.5 mg/mL in phosphate buffer 

containing 10.68 g/L NaH2PO4.2H2O, 8.45 g/L Na2HPO4.7H2O and 3.36 g/L Disodium-EDTA 

in ultrapure water, pH 6.5) overnight at 56ºC.  

 

2.4. Ch/-PGA nanocomplexes preparation and incorporation of diclofenac 

Ch/-PGA and Ch/Df/-PGA NCs were prepared by co-acervation as previously described by 

our team.17,33 Briefly, Ch (France-Chitine) was purified and characterized after purification 

according to Antunes et al.22 Ch with DA of 10.4±1.6% (degree of deacetylation of 

approximately 89.6%), determined by Fourier transform infrared spectrometry using KBr 

pellets (FTIR-KBr), and molecular weight (Mw) of 324±27 kDa, determined by size-exclusion 

chromatography, was used. -PGA (Mw of 10-50 kDa; purity level of 99.5%) was microbially 

produced by Bacillus subtilis as described by Pereira et al.33 Ch/-PGA NPs were prepared at 



Chapter V - Intradiscal application of anti-inflammatory nanocomplexes 

103 
 

a molar ratio of 1:1.5 (mol Ch:mol -PGA).17 Solutions of Ch (0.2 mg/mL in 0.2 M AcOH) and 

-PGA (0.2 mg/mL in 0.05 M Tris-HCl buffer with 0.15 M NaCl) were combined by co-acervation 

method, in which -PGA solution was added dropwise to Ch solution, using a 1 mL syringe in 

a syringe pump (KD Scientific Inc., Holliston, MA), at constant speed (3.6 µL/s) and high stirring 

at room temperature. The solution’s pH was adjusted to 5.0. Df sodium salt (Sigma-Aldrich) 

solution (10 mg/mL in distilled water) was incorporated in Ch/-PGA NPs at a molar ratio of 

2:0.35:1.5 (mol Ch:mol Df:mol -PGA), according to Gonçalves et al.17 

 

2.5. Characterization of Ch/Df/-PGA nanocomplexes 

NCs were characterized concerning their size and polydispersion index (PdI) by dynamic light 

scattering (DLS, ZetaSizer Nano Zs, Malvern Instruments) as described elsewhere.35 The 

calculation used as dispersants the original solutions of -PGA (-PGA at 0.2 mg/mL in 0.05 M 

Tris-HCl buffer with 0.15 M NaCl) and Ch (0.2 mg/mL in 0.2 M AcOH), i.e. the solutions where 

the NCs were formed.  

 

2.6. Preparation of fluorescent Ch and fluorescent Ch/-PGA nanocomplexes with and 

without Df 

Fluorescent NCs were prepared according to Gonçalves et al.17 Briefly, Ch was labeled with 

fluorescein isothiocyanate (FITC) with 5% of modification (5% of amine groups with FITC), 100 

mg of dried Ch were dissolved in 100 mL of 1% v/v AcOH at 4ºC until complete dissolution. 

FITC (11 mg to achieve 5% modification) was dissolved in 100 mL of methanol. Both solutions 

(Ch and FITC) were mixed at constant stirring, protected from light, for 3 hours. The FITC-

labeled Ch (ftCh) was then precipitated with 0.5 M NaOH and washed with ultrapure water 

until no fluorescence was seen in the supernatant. ftCh was lyophilized, dried and weighted. 

ftCh/Df/-PGA NCs (Df-ftNCs) were prepared as described above. 

 

2.7. Analysis of internalization of ftCh/Df/-PGA nanocomplexes by IVD cells using confocal 

microscopy 

Df-ftNCs internalization by IVD cells in the tissue organ culture was analyzed by confocal laser 

scanning microscopy (CLSM). The Df-ftNCs were injected in disc punches (0.7 mg/mL) as 

described above. After 1 hour of incubation at 37ºC, approximately a 1 mm thickness slice was 

collected from the center of the disc punch and fixed with 4% v/v paraformaldehyde (PFA). 

Cells cytoskeleton was stained with Alexa Fluor 594-conjugated Phalloidin (Invitrogen), while 

cell nuclei were stained with Vectashield with DAPI. The tissue was imaged by CLSM (Leica 
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TCS SP5 AOBS, Leica Microsystems). Z-stacks and orthogonal projections (in XZ and YZ) of 

single images were analyzed using ImageJ 1.43u software (Wayne Rasband).  

 

2.8. Quantification of ftCh/Df/-PGA nanocomplexes internalization by IVD cells in the organ 

culture model 

The internalization of Df-ftNCs was quantified by imaging flow cytometry. Disc punches were 

incubated with Df-ftNCs (0.7 mg/mL) for 3 hours. Afterwards, tissue samples were dissected 

into 2 to 3 mm3 fragments and enzymatically digested for 2 hours in 1 mg/mL collagenase type 

I (Sigma-Aldrich) in DMEM, under agitation (50 rpm), reduced oxygen atmosphere (37 °C, 6% 

O2 and 8.5% CO2) and saturated humidity. The supernatant was passed through a 100 μm 

filter (BD Falcon) to remove tissue debris. Cells were collected by centrifugation at 400 g for 7 

minutes. The cell suspension was washed once with PBS and fixed in 1% v/v PFA. For imaging 

flow cytometry (ImagestreamX, Amnis, EDM Millipore), only single cells were used in the 

analysis, ftCh fluorescence was assessed in Channel 2 (505-560 nm) and at least 2000 events 

were collected. Image analysis was performed using IDEAS® data analysis software (Amnis). 

Internalization quantification is described in Supplementary Materials and Methods (S1.1). 

Briefly, internalization score was calculated based on the ratio of the FITC fluorescence 

intensity inside the cell and the intensity of the entire cell.34,35 Higher scores denote larger NCs 

concentration in the cell cytoplasm, while negative scores denote cells with little internalization.  

 

2.9. Quantitative real-time reverse transcription polymerase chain reaction 

Gene expression levels were determined by quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR) on cDNA derived from disc samples. Specific primer 

pairs were designed using published gene sequences (PubMed, NCBI Entrez Nucleotide 

Database) and Primer 3 software48 for bovine IL-6, IL-8, MMP1, MMP3, collagen type II 

(COL2), aggrecan (ACAN) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH),32 and 

synthesized by Alfagene. The analysis was carried out using SYBR Green method. Briefly, 

IVD punches were digested enzymatically as described above, cell pellets were recovered and 

total RNA was extracted with ReliaPrep RNA Cell Miniprep System (Promega) according to 

the manufacturer’s instructions. Total RNA was quantified by a NanoDrop spectrophotometer 

(ND-1000, Thermo) and RNA quality was assessed by means of RNA ratio. Total RNA was 

reverse transcribed into cDNA using SuperScript® III Reverse Transcriptase kit (Invitrogen). 

Gene expression levels were determined by qRT-PCR conducted on iQ5 Real-Time PCR 

Detection System (Bio-Rad), and using iQ™ SYBR® Green Supermix (Bio-Rad). Statistical 

analysis was performed on ∆Ct values according to a modified method described by MacLean 

et al.36 Fold changes in gene expression were presented as 2-(average∆∆Ct). The average Ct value 
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of each triplicate measurement of each sample was normalized to the house-keeping gene 

GAPDH in each sample (∆Ct = Ct(gene of interest) – Ct(GAPDH)). The ∆Ct of each stimulated sample 

was related to the respective ∆Ct of each control sample. Normalized values of samples 

collected at the end of the experiments were compared with the control and between the 

different experimental groups. 

 

2.10. Prostaglandin E2 quantification in culture supernatants 

Culture medium collected at day 8 was centrifuged (3000 rpm, 5 minutes) and kept at -20ºC 

for posterior analysis. PGE2 was quantified by ELISA (Arbor Assays) according to 

manufacturer’s instructions and normalized by total protein. The bicinchoninic acid colorimetric 

protein assay was performed according to the manufacturer’s instructions (Bio-Rad). 

 

2.11. Sulphated glycosaminoglycans quantification 

Sulphated glycosaminoglycan (sGAG) content of IVD punches was assessed at day 8 by 

reaction with 1,9-dimethyl-methylene blue zinc chloride double salt (DMMB, Sigma-Aldrich) 

dye reagent solution, containing 40 mM sodium chloride (NaCl, Roth), 40 mM Glycine (Roth) 

and 46 μM DMMB, previously adjusted to pH 3.0. Chondroitin sulphate A sodium salt from 

bovine trachea (Sigma) was used as standard. Results were normalized by DNA content. 

 

2.12. Detection of proteoglycans by safranin O/light green staining 

IVD punches collected at day 14 of culture were fixed with 4% v/v PFA, processed and 

embedded in paraffin. Sections of 7 μm thickness were sequentially recovered and stained for 

safranin O/light green (Saf. O/L. Green, 0.1% v/v Saf. O [Sigma]/0.4% v/v L. Green [Sigma]). 

Sections were imaged using an Olympus CX31 light microscope equipped with a DP-25 

camera (Imaging Software CellˆB, Olympus) using the 20x objective. 

 

2.13. Detection of collagen type II and aggrecan in the IVD 

COL2 distribution was analyzed by immunofluorescence (IF) staining. ACAN production and 

distribution was analyzed by immunohistochemistry (IHC). For IHC, NovolinkTM Polymer 

Detection Kit (Leica Biosystems) was used, following the manufacturer’s instructions. For both, 

antigen retrieval was performed in paraffin sections through incubation with 20 μg/mL 

proteinase K (Sigma-Aldrich) solution for 15 minutes at 37ºC. For COL2 staining, after a 

blocking step, sections were then incubated for 2 hours at 37ºC with anti-collagen II-II6B3 

(Developmental Studies Hybridoma Bank) at a 1:50 dilution. Alexa Fluor 594-labeled goat anti-

mouse (Invitrogen-Molecular Probes, 1:1000) was used as secondary antibody. For ACAN, 
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sections were incubated overnight with ACAN primary antibody (H-300) sc-25674 (Santa Cruz 

Biotechnology) to a 1:50 dilution.  

All sections were mounted in Fluorshield with DAPI (Sigma). Control sections for each labeling 

excluded primary antibody staining. Representative images of the slides were taken using an 

inverted fluorescence microscope (Axiovert 200 M, Zeiss) and the 20x objective, for COL2 

staining. COL2 intensity was quantified using a custom-made MATLAB (The MathWorks Inc., 

Natick MA, USA) script, the IntensityStatisticsMask Software (described in Supplementary 

Materials and Methods). ACAN stained sections were imaged with light microscopy, the 20x 

objective for counting and the 100x oil objective for detailed imaging.  

 

2.14. Statistical Analysis  

Results are presented as Median±Interquartile Range (IQR) in box and whiskers plots. Data 

normality was first analyzed by D’Agostino and Pearson Normality Test. Statistical analysis 

was performed with non-parametric Kruskal-Wallis test and Dunns multiple comparison test as 

post hoc test in Graph Pad v6.02 for Windows. A confidence level of at least 95% (*p<0.05) 

was used. 

 

3. Results 

3.1. Viability of IVD organ culture model upon Ch/Df/-PGA nanocomplexes injection 

In the present study, we investigated the ability of Df-NCs to revert IL-1β-induced pro-

inflammatory stimulus, using an IVD organ culture model previously established.32 The model 

closely mimics the IVD inflammatory/degenerative process in vivo, for which IL-1β is known to 

be one of the key mediators.5 Df-NCs, previously optimized by our group, were able to 

decrease PGE2, IL-6 and partially TNF-α production in LPS-activated macrophages,17 thus 

suggesting that they might be potentially used in other inflammatory scenarios, as in 

degenerated IVD. 

To produce Df-NCs, Df was incorporated in Ch/-PGA NCs at a molar ratio of 2.0:0.35:1.5 

(Ch:Df:-PGA) at pH 5.0, as previously reported.17 Particle size and PdI of obtained NCs and 

Df-NCs are summarized in Table 1. The molar ratio, polymer concentration and pH of 

interaction were first optimized to obtain a low poly-disperse solution with nano-size particles 

of Ch and -PGA.33 Df concentration and its order of addition to those particles were then 

optimized to guarantee the maximum amount of drug incorporated in the NCs with nano-size 

and the lowest PdI.17 
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Table 1. Particle size and polydispersion index of Ch/-PGA nanocomplexes alone (NCs) and Ch/Df/-PGA 

nanocomplexes (Df-NCs). 

 Particle size (nm) Polydispersion index (PdI) Zeta potential (mV) 

NCs 166±32 0.24±0.02 20.8±1.6 

Df-NCs 175±32 0.26±0.02 20.5±1.9 

 

The concentration of Df in the NCs was confirmed as previously described, by UV/Vis 

absorbance (275 nm) of NCs supernatant obtained after NCs centrifugation: about 75% of the 

initial amount of Df (0.06 mg/mL) was incorporated in Ch/-PGA NCs, 1 hour after preparation, 

i.e. Df concentration estimated in the NCs is about 0.045 mg/mL. First, IVD cultures were 

evaluated concerning their mitochondrial metabolic activity and DNA content, after IL-1β 

stimulation and treatment with NCs or Df-NCs, to discard possible cytotoxic effects (Fig. 2A 

and B). Results of the ratio between metabolic activity of disc punches in different conditions 

and controls showed that IL-1β stimulation slightly increased IVD metabolic activity, which was 

posteriorly significantly reduced when NCs were injected. In addition, DNA content of IL-1β-

treated IVD punches increased significantly, when compared to control discs (1.5±0.5-fold 

increase, p<0.05). NCs and Df-NCs-treated IVD punches presented similar DNA content to 

the control (ratios of 0.9±0.4 and 1.0±0.5-fold for NCs-treated/control IVD punches and Df-

NCs-treated/control IVD punches in comparison, respectively). Regarding the pH alteration of 

the cell culture medium upon injection of acidic solutions (NCs and Df-NCs), which might create 

a toxic or inhibitory environment for the cells, no significant alterations were detected, 

indicating that the injection of NCs or Df-NCs at pH 5.0 did not significantly acidify the cell 

culture medium (Fig. 2C). 

 

 

Fig. 2. Viability of the organ culture model, 2 days after pro-inflammatory stimulus with puncture plus IL-1β 

supplementation (IL-1β), and treatment with injection of Ch/-PGA NCs (NCs) or Df/Ch/-PGA NCs (Df-NCs). (A) 

Mitochondrial metabolic activity and (B) DNA content of disc punches. Results were compared with unstimulated 

IVD organ cultures (control=1; dashed line). (C) pH of organ culture supernatants for the different conditions. Results 

are shown as box and whiskers plots (n=4). *p<0.05 
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3.2. Evaluation of Ch/Df/-PGA NCs internalization in IVD organ culture  

Imaging of Df-NCs in IVD was performed in inner slices of tissue, as schematically described 

in Fig. 3A. The fate of Df-NCs in IVD organ culture was evaluated 3 hours after Df-NCs 

injection, in the tissue, by CLSM imaging (Fig. 3B). Df-ftNCs were prepared by previously 

labeling Ch with FITC, as described by Gonçalves et al.17 A broad distribution of NCs within 

the IVD tissue and partial NCs internalization by IVD cells was observed in randomly selected 

IVD regions (n=17 stacks from 3 discs) (Fig. 3B, images a and b). Orthogonal projections in 

XZ and YZ were performed to evaluate NCs internalization in IVD cells. In those images, we 

observed that some of Df-ftNCs aggregates were located outside the Phalloidin-stained cell 

membrane (Fig. 3C, image a, white arrow points Df-ftNCs aggregates), while other Df-ftNCs 

aggregates were effectively inside the cell (as in Fig. 3C, image b, white arrow points Df-ftNCs 

aggregates). Therefore, Df-ftNCs internalization was assessed in a high-throughput manner 

using imaging flow cytometry. First it was determined a viable cell population positive for FITC 

signal (as shown in Fig. 3D for one donor). By applying a cell mask (Fig. 3E, in blue) and a 

cytoplasm mask (Fig. 3F, in blue) in the FITC positive cell population, it was possible to 

determine the internalization ratio between FITC fluorescence intensity inside the cell 

cytoplasm and FITC fluorescence intensity of the whole cell. This result is depicted for one 

representative donor in Fig. 3G. Overall, about 92±1% of viable cells presented higher FITC 

fluorescence in the cytoplasm (Fig. 3H), represented by a positive value of the internalization 

score, thus being Df-ftNCs internalization+ cells. On the other hand, 6±1% of viable cells 

presented higher fluorescence intensity in the cell membrane (Fig. 3I), represented by a 

negative value of the internalization score, meaning that in these cells Df-NCs were mostly not 

internalized (Df-ftNCs membrane+ cells). 

 

3.3. Anti-inflammatory potential of Ch/Df/-PGA nanocomplexes injection in pro-

inflammatory/degenerative IVD organ culture model and evaluation of ECM remodeling  

In the IVD organ culture model previously established, the up-regulation of the inflammatory 

markers IL-6, IL-8 and PGE2 obtained in pro-inflammatory conditions was reverted by 

intradiscal injection of Df.32 Therefore, the efficacy of Df-NCs was first evaluated by assessing 

the expression of IL-6 and IL-8 by IVD cells, and by quantification of PGE2 in culture medium, 

2 days after treatment. MMPs and main ECM proteins of the pro-inflammatory/degenerated 

IVD ex vivo model were also analyzed 2 days’ post-treatment with Df-NCs. The results are 

presented as the Median±IQR fold change to unstimulated IVD punches (Fig. 4). 

In the present work, the injection of Df-NCs was able to significantly decrease PGE2 (**, 

p<0.01) and down-regulate IL-6 (*, p<0.05) when compared to IL-1β-stimulated group (Fig. 4A 

and B). Df-NCs also seemed to decrease IL-8 of IL-1β group (from 19±25-fold to 4±7-fold). 
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Fig. 3. Internalization of Df-ftNCs by disc cells, after injection treatment of IVD organ cultures, previously stimulated 

with puncture and IL-1β supplementation. (A) Scheme of tissue collection for image acquisition. (B) Representative 

CLSM z-projection images of IVD tissue with Df-ftNCs (images a and b; scale bars, 20 μm and 10 μm), acquired 3 

hours after injection treatment. (C) Orthogonal projections of single images from A (image b) z-projection, showing 

negative (image a) and positive (image b) cells for Df-ftNCs internalization (white arrow points Df-ftNCs aggregates). 

Scale bars represent 10 μm. FITC stains the Ch from the Df-ftNCs in green, Alexa®594-Phalloidin stains F-actin in 

red and DAPI stains nuclei in blue. (D) Representative dot plot profile for the Df-ftNCs internalization analysis. 

Internalization was assessed by FITC fluorescence in Channel 2 (Ch02). (E) Cell mask (in blue). (F) Cytoplasm 

mask (in blue). (G) Representative internalization score histogram, after application of an internalization mask in 

the population of positive cells for Df-ftNCs (Df-ftNCs+). (H) Positive cells for Df-ftNCs internalization 

(internalization+). (I) Cells with higher fluorescence on the cell membrane compared to the cytoplasm (membrane+). 

Each cell is represented by a row of three images acquired simultaneously in flow, from left to right: brightfield 

(gray), FITC fluorescence (green) from the Df-ftNCs, merged image (scale bars, 10 µm) (n=4). 
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These values correspond to a reduction of about 73%, 61% and 78% for IL-6, PGE2 and IL-8, 

in relation to IL-1β-stimulated discs. In parallel, control injections with NCs (without anti-

inflammatory drug) were also performed. The injection of NCs by itself also reduced IL-8 

expression and PGE2 production, although no significant differences were observed (reduction 

to 12±16-fold and 4±2-fold for IL-8 and PGE2, respectively), representing approximately a 

reduction of 35% and 61% when compared to IL-1β group. 

Df intradiscal injection was previously shown to down-regulate MMP1 and up-regulate ACAN 

gene expression levels, but no significant effects in MMP3 and COL2 levels were observed.32 

In this study, Df-NCs were able to significantly down-regulate both MMP1 and MMP3 gene 

expression (**, p<0.01, Fig. 4C). In addition, NCs alone significantly decreased MMP3 (*, 

p<0.05) and slightly down-regulated MMP1 (from 5±4-fold, for IL-1β group, to 2±4-fold). These 

results represent a down-regulation of approximately 63% and 40% for MMP1 and MMP3 

genes, respectively.  Concerning ECM proteins (Fig. 4D),  COL2 and ACAN were significantly  

 

Fig. 4. Effect of different injectable treatments in the inflammatory response and in the ECM remodeling of IVD 

organ culture pro-inflammatory/degenerative model, 2 days after injection. Quantitative analysis of pro-inflammatory 

markers of IVD organ cultures stimulated with puncture and IL-1β supplementation (IL-1β), and treated with injection 

of NCs or Df-NCs. (A) PGE2 fold change in culture supernatants. (B) mRNA expression of IL-6, IL-8, (C) matrix 

degrading enzymes MMP1 and MMP3, and (D) ECM components COL2 and ACAN. mRNA levels were normalized 

to GAPDH control gene and to the unstimulated discs (control level=1; dashed line). Results are presented as box 

and whiskers plots (n=6-19). *p<0.05; **p<0.01; ***p<0.001 
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up-regulated upon Df-NCs treatment (*, p<0.05 and **, p<0.01, for COL2 and ACAN, 

respectively) in IL-1β-treated IVD punches. Interestingly, NCs group by itself also up-regulated 

ACAN expression (**, p<0.01) and increased COL2 (from 0.1±0.2 of IL-1β-IVDs to 0.2±0.4 of 

NCs-IVDs). These results represent an increase of about 45% and 85% for COL2 and ACAN 

gene expression, in relation to IL-1β. 

 

3.4. Evaluation at protein level of ECM remodeling in longer-term pro-inflammatory IVD organ 

culture upon treatment with Ch/Df/-PGA NCs 

To confirm the effects of these different treatments at protein level, the IVD organ cultures were 

maintained for 14 days, after which COL2 and ACAN deposition were analyzed by 

histology/IHC. A group injected with soluble Df (19 μm) was added, since previous results only 

showed the effect of soluble Df at gene expression level.32 Fig. 5A (images a-e) shows Saf. 

O/L. Green-stained sections of IVD NP for all conditions tested. The control group seemed to 

present a compact matrix, with cells and the respective lacunae perfectly contained within the 

matrix, while in the remaining conditions a higher disorganization in the fibers arrangement 

was observed, namely in IL-1β condition (Fig. 5A, image b, arrow). Quantification of disc 

punches (NP containing few surrounding AF) sGAG content was performed at day 8 of culture. 

IL-1β and Df presented a lower concentration of sGAG in tissue, when compared to the control, 

as shown in Fig. 6B. On the other hand, NCs-treated group presented a significantly higher 

sGAG content relatively to IL-1β-stimulated group (*, p<0.05). 

COL2 and ACAN deposition were assessed by IHC. Fig. 5A (images f-j) shows images of 

COL2 staining of all the conditions tested. There were collected 65 to 98 images from randomly 

selected areas of each section and samples were collected from 4 different donors. COL2 

fluorescence intensity was quantified in the IntensityStatisticsMask Software and is depicted 

as fold change to unstimulated IVD punches in Fig. 5C. The results obtained display 

significantly higher COL2 deposition in Df-NCs group, in comparison with the IL-1β-stimulated 

samples (****, p<0.0001). This was not observed in NCs and in Df groups. 

In Fig. 5A (images k-o) it is also shown ACAN deposition (brown) for the different conditions 

analyzed (images p and q portray in higher magnification cells negative (ACAN-, Δ) and 

positive (ACAN+, +) for ACAN production). Since ACAN deposition was located only around 

the cells, the numbers of ACAN+ and ACAN- cells were quantified (Fig. 5D). In Fig. 5D it is 

depicted the fold change of the % of ACAN+ cells (normalized to control group), for 4 different 

donors. The results obtained show that IVD treatments with NCs and Df-NCs significantly 

increased the percentage of ACAN+ cells, compared to IL-1β-stimulated discs, when 

normalized to control group (*, p<0.05). 
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Fig. 5. Effect of different injectable treatments in the ECM of IVD pro-inflammatory/degenerative organ culture 

model, at the protein level. (A) Sagittal sections of disc punches stained for proteoglycans (a-e; scale bar, 100 µm), 

COL2 (f-j; scale bar, 200 µm), ACAN (k-o; scale bar, 100 µm) and higher magnification of ACAN negative (p, ACAN-

, Δ) and positive (q, ACAN+, +) cells (scale bars, 10 µm). Samples were collected after a 14-days culture. One 

representative experiment of 3-4 different donors is presented here. (B) Biochemical analysis of sGAG content of 

IVD punches, at day 8 of organ culture, normalized to control (n=4 donors). (C) COL2 fluorescence intensity 

normalized to control (dashed line; n=65-98 from 4 donors), at day 14 of culture. (D) Fold change in % of ACAN+ 

cells normalized to control group (n=4 donors), at day 14 of culture. Results are shown as box and whiskers plots 

(B-D). *p<0.05; ****p<0.0001 
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4. Discussion 

This study hypothesizes that local control of inflammation in degenerated IVD could improve 

ECM remodeling, which would improve LBP symptoms, constituting a more effective 

intradiscal therapy. Pro-inflammatory cytokines, TNF-α and IL-1β, are known to induce the 

expression of genes coding for MMPs, and also induce NP cells to secrete innervation and 

angiogenic growth factors when the balance between human IVD anabolism and catabolism 

is disrupted. MMPs degrade both collagen and proteoglycans, leading to tissue dehydration 

and progressive ECM disorganization. With increasing time, COL2 in the NP is replaced by 

COL1, and the anatomical border between NP and AF becomes less defined, with the nucleus 

becoming fibrous.37 

For that, a pro-inflammatory/degenerative organ culture model, with 0.46 MPa static loading, 

tissue needle punctured and stimulated with IL-1β (100 ng/mL) was used upon previous 

validation.32 This model mimics human IVD degeneration, in which pro-inflammatory cytokines 

TNF-α and IL-1β are key mediators.5,38 In this model, an up-regulation of pro-inflammatory 

markers (IL-6, IL-8, MMP1 and MMP3), as well as a down-regulation of ECM proteins (COL2 

and ACAN) was observed,32 in accordance to findings reported during human disc 

degeneration.5,38 

Although organ cultures as this model are accepted as more reliable models than 2D in vitro 

cultures, constituting an important step before animal experimentation, they have some 

limitations. One of these include time in culture to guarantee tissue viability (usually up to 1 

week).39-41 Here, tissue viability maintenance was monitored by mitochondrial metabolic 

activity and DNA content. Other studies had already reported high cell viability in IVD organ 

cultures in pro-inflammatory conditions after 732 and 14 days.42 Nonetheless, needle insertion 

can cause cell damage,40 as well as an increase in cell apoptosis after IL-1β treatment.43 Also, 

cell viability upon intradiscal injection in acidic conditions (with NCs) was not significantly 

affected. Another limitation of the organ culture model is the lack of vasculatization/innervation 

(and immune cells) in the disc surroundings. Nevertheless, in this case the lack of complexicity 

constitutes an important advantage when analyzing the direct effect of an intradiscal therapy 

on IVD cells, without the complex cell crosstalk that we find in vivo. 

As previously discussed, intradiscal steroid therapy has been adopted by patients with 

symptomatic disc degeneration and low back pain, unwilling to accept surgical procedures.10,44 

However, placebo-controlled studies about intradiscal steroid injections for discogenic pain 

have reported either no clinical improvement compared to placebo11 or short-term 

improvement.10 Furthermore, their influence on deregulation of matrix turnover promotes disc 

degeneration.8 Also, an increase in the frequency and dosage of intradiscal steroid injections 

may further accelerate it through puncture injury.44 
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Df reduced NP-induced nerve root dysfunction after 7 days of treatment.15 In the pro-

inflammatory/degenerated IVD ex vivo model previously established by us, Df injection down-

regulated IL-6, IL-8 and decreased PGE2 production, and also seemed to have an effect in IVD 

ECM remodeling by down-regulating MMP1, while up-regulating ACAN expression.32 

Nonetheless, Df intraperitoneal injection in a rat lumbar disc herniation model showed a 

reduced analgesic effect with time.45 Therefore, Df direct injection into the IVD may have a 

limited long-term clinical use as it has a short biologic half-life and may require repeated 

administrations.32 

In this study, we hypothesize that a Df delivery system based on Ch/-PGA NCs could extend 

Df action, controlling inflammation while contributing to ECM remodeling in degenerated IVD. 

Therefore, Df-NCs were tested as an anti-inflammatory therapy for degenerated IVD.  

Small­scale particles are emerging as delivery systems for IVD regeneration. NCs size enables 

them to pass through biological barriers, having the possibility to be internalized into target 

cells.46 Moreover, NCs can be easily combined with hydrogels for cell delivery or NP 

regeneration, increasing the functionality of biomaterials for IVD.47, 48 Examples of NCs are 

fullerol NCs (approximately 25-50 nm size) that decreased IVD degeneration in human cells 

and rabbits.49 NCs are low viscous vehicle, thus easy to inject into the IVD. Moreover, Ch/-

PGA NCs were recently shown to promote COL2 production in nucleotomized IVD model.50 

Df-NCs are a monodisperse population of NCs that release Df within 2 hours in physiological 

pH (maximum of 80%).17,33 In this study, Df-NCs were injected in IVD organ cultures 3 hours 

after the pro-inflammatory stimulus. This time point was selected based in previous work using 

LPS-activated macrophages, after which PGE2, the Df target, started to be released to the 

culture medium.17 NCs internalization by IVD cells was verified, showing that about 65±6% of 

tissue total cells contained NCs, corroborating the phagocytic activity of NP cells previously 

suggested.50,51 The mechanism of intracellular trafficking of these NCs was not specifically 

addressed, but others have already investigated the intracellular fate of Ch/-PGA 

nanoparticles. Peng et al. showed that Ch/DNA/-PGA nanoparticles can be internalized by 

specific trypsin-cleavable proteins,52 and by a lipid raft-mediated route, and via 

macropinocytosis, in a minor extent.29 Moreover, these authors have shown that when -PGA 

is present in Ch/DNA nanoparticles, less percentage of nanoparticles co-localization with 

lysosomes, is observed, suggesting that -PGA can escape this defense mechanism.29 

Df-NCs decreased IL-6, IL-8 and PGE2 production, indicating that Df released from the NCs 

maintained its ability to inhibit COX-2 pathway, as expected,15 and similarly to what was 

observed with Df injection.32 NCs, with and without Df, were shown to affect macrophage 

functional behavior in vitro, by stimulating the production of IL-6, IL-10, TNF-α but not IL-12/23, 
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while PGE2 was only stimulated by NCs without Df.17 Weather Df-NCs influence macrophage 

behavior in degenerated IVD will be addressed in the future. 

The promisor results of Df-NCs in the reduction of pro-inflammatory markers in the ex vivo 

model do not exclude the need to perform more studies in order to conclude about the 

feasibility of this therapy, namely testing in vivo different times and dosages of NCs 

administration before moving to pre-clinical research. Although this model aims to mimic 

human IVD degeneration by up-regulating pro-inflammatory mediators, MMPs and down-

regulating ECM proteins,32 it cannot be considered as mimicking the process of chronic IVD 

degeneration, as naturally occurs in humans and in other species as chondrodystrophic dogs53 

or the sand rat.54 Nevertheless, these models also present drawbacks: first, the rat/dog IVD 

contains notochordal cells, which does not happen in human adults or bovine IVD; second, the 

long waiting time to observe spontaneous IVD degeneration; and third, the lack of control of 

this process, which discourages the use of these models.53,54 

Concerning ECM remodeling, previous studies have demonstrated that Df injection was able 

to decrease MMP1 and increase ACAN expression.32 Interestingly, NCs by itself down-

regulated MMP3 (but not MMP1) expression, while Df-NCs down-regulated the expression of 

both MMP1 and MMP3 compared to IL-1β-stimulated discs. In the case of ECM proteins, NCs 

alone significantly up-regulate ACAN expression, while Df-NCs significantly increase both 

COL2 and ACAN gene expression levels. This result was confirmed at the protein level.  

These results support previous evidences from our group, demonstrating that -PGA promotes 

chondrogenesis of MSCs in vitro, enhancing COL2, ACAN and Sox-9 early expression.55 This 

effect was partially observed in IVD organ cultures.50 In addition, -PGA injections have already 

been patented for treating joint pain.56 Nevertheless, Ch/-PGA NCs mechanism behind 

chondrogenesis/cartilage formation remains to be explored. The concentration of -PGA used 

in this study was in accordance with previous work from our group.17,22,30,31,33,50 Nevertheless, 

in the literature several studies have been used -PGA to elicit immune response: about 2.7 

mg/mL of -PGA with different Mw (from 10 to 2000 kDa) were orally administered inducing 

significant NK-cell-mediated anti-tumor immunity in mice.57 Other study administered 5 mg/mL 

of -PGA in mice, inducing antiviral activity and protective immune responses against H1N1 

influenza-A virus infection.58 Another frequent use of -PGA is as adjuvant in cancer treatment, 

by combination with chemotherapeutic agents. -PGA nanoparticles were shown to activate 

dendritic cells usually in high concentrations (10 mg/mL).59,60 To the best of our knowledge, 

the concentrations administered are slightly higher than ours. 

Previous studies demonstrate that Ch/-PGA NCs are able to infiltrate cell-cell junctions61,62 

and that internalization of Ch/-PGA NCs might occur mainly via non-specific charge-mediated 

interaction (NCs positive charge vs negative charged cell membrane).52 Further studies found 
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that Ch/DNA/-PGA internalization take place via macropinocytosis and caveolae-mediated 

pathway, with the latter playing a major role.29 On the other hand, -PGA-coated complexes 

can be internalized via a specific -glutamyltransferase (GGT)-mediated pathway.28,63 The 

results obtained in this study suggest the involvement of MMP3, but not MMP1, in the IVD 

ECM remodeling mediated by Ch/-PGA complexes. Moreover, the synergy between Df and 

Ch/-PGA NCs suggests that control of inflammation in degenerated IVD is essential for COL2, 

but not for ACAN production. In fact, this observation was observed in other models across the 

literature. For example, in PGE2 (10 pg/mL)-stimulated osteoarthritic cartilage-explant cultures 

cleavage of COL2 was down-regulated, while no effect was observed in ACAN production.64 

In MSCs/NP cells co-cultures, inhibition of TGF-β1 profoundly constrained COL2 production, 

while ACAN synthesis was only slightly inhibited, suggesting a crucial role of TGF-β in COL2 

production in the NP.20 Nevertheless, to our knowledge this relation is not straightforward, 

since other authors have suggested that ACAN production is also dependent on inflammation 

control and that TGF-β1 may be also involved. Treatment of (TNF-α+IL-1β)-stimulated AF cells 

with TGF-β1 and bone morphogenic protein (BMP)-2 showed a synergic action of both proteins 

in recovering degenerated IVD ECM: a high increase in ACAN gene expression was observed 

after TGF-β1-treatment, while a high increase in COL2 was observed with BMP-2 treatment. 

Overall, when treated with TGF-β1+BMP-2, an increase in both ACAN and COL2 was 

observed.65 

Nevertheless, future studies will be necessary to highlight the molecular mechanisms behind 

Ch/Df/-PGA NCs-driving effect in degenerated IVD and confirm the hypothesis of a MMP3-

mediated stimulation of ECM production in the disc.  

 

5. Conclusions 

Intradiscal injection of Ch/Df/-PGA NCs reduced pro-inflammatory mediators (IL-6, IL-8 and 

PGE2) in a pro-inflammatory/degenerative IVD organ culture model. This anti-inflammatory 

delivery system also down-regulated the expression of both MMPs 1 and 3, while up-regulated 

COL2 and ACAN production. Overall, this study suggests that Ch/Df/-PGA NCs injection is a 

promisor intradiscal therapy for degenerated IVD repair/regeneration. This work provides a 

solid base for testing intradiscal injection of Ch/Df/-PGA NCs in vivo in an animal model. 

Although Df has a limited long-term clinical use, as it has a short biologic half-life, we hope to 

decrease Df administration rates with this strategy and contribute to sustain the native ECM 

production in patients with discogenic pain. Moreover, the versatility of Ch/-PGA NCs allows 

its combination with other therapies. 
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Supplementary Data 

Materials and Methods 

S1.1. Quantification of Ch/Df/-PGA nanocomplexes internalization 

For the quantification of the particles internalization, the “internalization score” was measured 

for every cell. For each cell image two masks were created: the cell mask that defines the total 

area of the cell and the corresponding cytoplasm mask performed by eroding the cell 

membrane from the cell mask (obtained in brightfield images in Channel 1). NCs internalization 

was then assessed by FITC fluorescence in Channel 2. To define the positive FITC signal, IVD 

cells with Df-NCs, without previous FITC labeling, were run in the same conditions in the 

imaging flow cytometer. Internalization score was calculated based on the ratio of the FITC 

fluorescence intensity inside the cell and the intensity of the entire cell. Higher scores denote 

larger NCs concentration in the cell cytoplasm, while negative scores denote cells with little 

internalization. 

 

S1.2. Collagen type II quantification 

IF was performed in IVD section and COL2 expression intensity was quantified. Images were 

captured using an inverted microscope (Axiovert 200 M, Zeiss) with the 20x objective. The 

intensity of COL2 expression in the tissue was determined using an additional custom-made 

MATLAB script, the IntensityStatisticsMask Software.  

 

Software design 

The purpose behind the construction of this script was to obtain a faster and unbiased method 

for color intensity quantification. The script performs image segmentation, based on a user-

defined threshold level, to create a mask for the tissue regions expressing collagen. Intensity 

measurements, such as mean values and standard deviation, are then calculated only for the 

pixels belonging to the collagen mask. Unless otherwise stated, the intensity threshold value 

used for the segmentation was 10. 
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As previously discussed, intradiscal therapies that not only promote IVD matrix synthesis, but 

also modulate the inflammatory response can have a major impact in IVD regeneration.  

Ch/Df/-PGA NCs that previously presented promising results, upon intradiscal administration 

in ex vivo IVD punches under pro-inflammatory/degenerative conditions (Teixeira et al. 2016), 

were here evaluated in vivo. In this context, an IVD herniation and degeneration model by rat 

caudal needle puncture using a 21G needle, previously established in our team, was used 

(Cunha et al. 2015, Cunha et al. 2016). This model leads to an increase in cell death in the 

IVD, hernia formation and its infiltration by CD68+ macrophages; however, the degeneration 

features were observed to spontaneously regress between 2 to 6 weeks (Cunha et al. 2015).   

In this work, 10 µL of soluble Df and Df-NCs were injected into the lesioned rat IVDs, with 

hernia formation, 24 hours after injury, using a 33G needle. Two weeks’ post IVD injury, Df-

NCs did not promote NP-like matrix production, which contrasts with the ex vivo results 

(Teixeira et al. 2016). Furthermore, Df-NCs did not seem to influence hernia reduction at 2 

weeks timepoint. On the other hand, the Df intradiscal injection seemed to slightly contribute 

to the decrease of hernia volume. 

We are currently performing further experiments to better understand the behavior of the 

injected NCs and the rat physiological response to the treatment. 
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Abstract 

Low back pain (LBP) is often associated with nucleus pulposus (NP) extrusion and herniation-

induced pressure that promote over-sensitized nerve roots, due to mechanical stimuli and by 

molecules arising from the inflammatory cascade. Inflammation plays an important role in LPB 

and IVD degeneration. Hence, different inflammatory targets have been purposed in the 

context of regeneration. Non-steroidal anti-inflammatory drugs, as diclofenac (Df), are 

commonly prescribed for LBP symptoms, with oral, intravenous or percutaneous (in some 

cases, epidural) administration presenting moderate success. If administered through 

intradiscal injection and using a long-term release delivery system, several drawbacks of these 

drugs could possibly be overcome, increasing their success rate. The aim of this work was to 

evaluate, in vivo, the effect of previously developed chitosan/poly--glutamic acid 

nanocomplexes (NCs) for delivery of Df.  

In this study, soluble Df and Df-NCs were injected into a rat IVD lesion model with hernia 

formation, 24 hours after injury. NCs and Df-NCs were prepared by coacervation method, and 

all solutions were injected at pH 5.0. NCs and Df-NCs were obtained with sizes of 328±6 and 

310±16 nm and poly dispersion indexes of 0.33±0.04 and 0.30±0.01, respectively. At 2 weeks 

after injection treatment, animals were sacrificed. NCs vehicle, NCs, Df and Df-NCs did not 

promote an increase in the percentage of disc height index nor of NP-like matrix production, 

namely proteoglycans, when compared to the Injury group. NCs injection alone up-regulated 

IL-1β, IL-6 and COX-2 by NP cells, compared to Injury. This up-regulation was statistically 

significant for COX-2 (p<0.01). It was observed great loss of healthy NP structure and 

composition, namely in NC and Df-NCs conditions. In all injured animals, NP extrusion and 

hernia formation occurred. Df intradiscal injection seemed to slightly contribute to the decrease 

of hernia volume from about 0.12±0.05 to 0.04±0.03 mm3 (p=0.08). Nonetheless, there were 

no significant changes regarding the percentage of CD68+ cells macrophages infiltration into 

the hernias formed in the animal undergoing different treatments.  

Overall, this study focused on the modulation of local inflammatory response to promote IVD 

regeneration by native IVD cells. A Df intradiscal-delivery approach might promote hernia 

regression and contribute, in the future, to pain reduction, as well as reduction of the number 

of patients undergoing hernia removal surgery.  
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1. Introduction 

The degenerative disc disease is perceived as the primary cause of chronic low back pain 

(LBP).1, 2 In the clinic, the progression of disc dehydration and loss of the disc height is mainly 

diagnosed by imaging modalities, namely magnetic resonance imaging (MRI).3, 4 The decrease 

of the water signal inside the IVD is considered as an indirect sign of alterations in the 

composition and structure of the disc structure and tissue, and therefore of degeneration.4  

Although not always linked with IVD rupture, LBP is very frequently caused by NP extrusion 

and herniation-induced pressure on over-sensitized nerve roots, that are stimulated by 

mechanical cues and by molecules arising from the inflammatory cascade.5-7 Structural 

damage of the outer annulus provides then an opportunity for blood vessels and nerves to 

invade the disc.8 Non-surgical interventions may vary between active physical therapy, 

education/counseling with home exercise and pain medication.5, 9 Up to date, most treatments 

are transient in time, leading to neurological alterations, affecting patients’ mobility, and 

potentially altering spine biomechanics leading to degeneration of adjacent discs.10, 11 The 

regenerative therapies proposed overtime have been described to act in early stages of 

disease’s development, and to look for less invasive, long term effective and safe 

approaches.12-14 More integrated strategies that could act on different targets of the discogenic 

disease, such as the inflammatory process, would probably promote native tissue generation 

and decrease of LBP. 

The local delivery of bioactive molecules, such as non-steroidal anti-inflammatory drugs 

(NSADs), is an interesting approach to reduce the drugs dosage and increase targeting, 

potentially overcoming the risk of side effects, namely in the gastrointestinal tract.15 Chitosan 

(Ch)/poly-(-glutamic acid) (-PGA) nanocarriers (NCs) demonstrated a potential use as 

effective anti-inflammatory drug delivery system, in vitro.15 Promising results were also 

observed with Df-NCs intradiscal administration in bovine tail IVD punches, cultured under pro-

inflammatory/degenerative conditions.16 

Several in vivo models of IVD degeneration (and inflammation) are described in the literature, 

being commonly used murine tail models of mechanical injury, namely performed by needle 

puncture, as reviewed by others.17-19 

The aim of this work was to evaluate the intradiscal injection of the NCs-based anti-

inflammatory drug delivery system in vivo, with the final goal to locally control the inflammatory 

response in degenerated IVD. In this context, the anti-inflammatory NCs were tested in an IVD 

herniation and degeneration model by rat caudal needle puncture, using a 21G needle, 

previously developed and validated in the group.20, 21 This model leads to an increase in cell 

death in the IVD, hernia formation and its infiltration by CD68+ macrophages.21 The effect of 
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the injected Df-NCs in the control of inflammation and in IVD matrix remodeling was here 

addressed 2 weeks post-injury. 

 

2. Materials and Methods  

2.1. Nanocomplexes preparation, incorporation of diclofenac and characterization 

-PGA with molecular weight (Mw) of 10-50 kDa and purity level of 99.5% was produced by 

Bacillus subtilis as described by Pereira et al.22 Purified Ch (France-Chitine) with degree of 

acetylation (DA) of approximately 10.4% and Mw of 324±27 kDa, as determined by Antunes 

et al., 23 was used. NCs and Df-NCs were assembled by co-acervation as previously 

described.15 A solution of 0.05 M Tris-HCl buffer containing 0.15 M NaCl was used as vehicle 

to prepare the NCs solution. Briefly, -PGA solution (0.2 mg/mL) was added dropwise to Ch 

solution (0.2 mg/mL) at a molar ratio of 1:1.5 (mol Ch:mol -PGA). Df sodium salt (Sigma-

Aldrich) solution (10 mg/mL in distilled water) was incorporated in Ch/-PGA nanocomplexes 

at a molar ratio of 2:0.35:1.5 (mol Ch:mol Df:mol -PGA).15 Before injection in the IVD, NCs 

and Df-NCs solutions were centrifuged (15000 rpm, RT) for 30 min.24 The pellets were 

concentrated 50 times in the vehicle. A soluble Df solution of 2.975 mg/mL was also prepared. 

All solutions’ pH was adjusted to 5.0. Concentrated NCs and Df-NCs were characterized 

concerning their size, polydispersion index (PdI) and surface electrical charge ( potential), 

determined using a Zetasizer Nano ZS (Malvern Instruments), as described elsewhere.24 The 

calculation used as dispersants the original solutions of -PGA (-PGA at 0.2 mg/mL in 0.05 M 

Tris-HCl buffer with 0.15 M NaCl) and Ch (0.2 mg/mL in 0.2 M AcOH). 

 

2.2. Animal experimentation 

Male Wistar Han (Crl:WI/Han) rats (36 rats, n=6 per experimental group) with 2 months of age 

were used. Experiments were carried out at Instituto de Investigação e Inovação em Saúde 

(i3S) animal house, in accordance with European Legislation on Animal Experimentation 

through the Directive 2010/63/UE and approved by the Institute’s Animal Ethics Committee 

and Direcção Geral de Alimentação e Veterinária through the license no. 3773/2015-02-09. 

The IVD lesion was performed by caudal needle puncture, as previously described by Cunha 

et al.21 The animals were anaesthetized by isoflurane inhalation and placed in prone position 

and the tail skin was disinfected with ethanol prior to every procedure. To induce the lesion, a 

percutaneous puncture using a 21G needle was done in the coccygeal IVDs Co5/6, Co6/7 and 

Co7/8 (Fig. 1A, image a). Radiography was performed for IVDs identification.  
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Fig. 1. Rat model of IVD herniation for intradiscal therapy. A) Experimental procedure, needle puncture into a rat 

coccygeal intervertebral disc, as imaged by X-ray radiography (scale bar, 5 mm) (a), nanocomplexes injection into 

the IVD with Hamilton syringe (b) and rat tail cross section, showing representative lesioned IVD and adjacent tissue 

(c). B) Experimental timeline. 

 

After 24 hours, lesioned animals were treated by intradiscal administration of 10 µL of vehicle, 

NCs alone, soluble Df and Df-NCs, using a 33G needle coupled to a microsyringe (Hamilton, 

image b). Naïve (healthy and non-injured) and only lesioned animals were kept as controls. 

Two weeks later, the animals were sacrificed for tissue collection (image c depicts a transversal 

cut of the rat tail, exposing the IVD and surrounding tissues). The experimental scheme and 

the different outputs analyzed are represented in Fig. 1B. 

A pilot study with 3 animals was performed to determine the timepoint of the acute phase of 

the inflammatory response post-injury for the treatments’ administration and to observe the Df-

NCs distribution in the tissue after injection. IVD lesion was induced as previously described 

and the animals were followed over 50 hours (Supplementary Data).  

 

2.3. Determination of the disc height index 

Digital radiographs were acquired by the Owandy-RX radiology system equipped with an 

Opteo digital sensor (Owandy Radiology) and processed with QuickVision software. The 
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percentage of the disc height index (% DHI) was calculated by the DHI ratio between post-

injury and pre-injury (% DHI = DHIpost-injury / DHIpre-injury x 100), using ImageJ 1.43u software 

(Wayne Rasband) for radiograph measurements, as previously described.21 

 

2.4. IVD RNA isolation and quantitative real-time reverse transcription polymerase chain 

reaction 

Total RNA was isolated from the NP using TRIzol reagent (Ambion) and quantified by 

Nanodrop spectrophotometry (ND-1000, Thermo Fisher). RNA quality was assessed by 

means of RNA ratio. Samples were treated with DNase (Turbo DNA-free Kit, Thermo Fisher). 

Complementary DNA (cDNA) was obtained through the high-capacity cDNA reverse 

transcription kit, per the manufacturer’s instructions (Applied Biosystems). 

Gene expression levels were determined by qRT-PCR conducted on iQ5 Real-Time PCR 

Detection System (Bio-Rad), using TaqMan Gene Expression Master Mix and TaqMan Gene 

Expression Assays (Applied Biosystems) for interleukin (IL)-1β (Rn00580432_m1), IL-6 

(Rn00561420_m1), cyclooxygenase (COX)-2 (Rn01483828_m1) and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (Rn99999916_s1), as a reference gene. Experiments 

were performed in duplicate and a quantification cycle (Cq) 35 cutoff was used. Relative 

expression levels were calculated using the Cq method (∆Ct = Ct(gene of interest) – Ct(GAPDH)), 

according to published guidelines.25 

 

2.5. IVD collection and histological analysis 

Target IVDs with adjacent vertebrae were collected 2 weeks’ post-injury, fixed in 10% neutral 

buffered formalin (VWR) for 1 week at room temperature. Tissue was decalcified in EDTA-

glycerol solution, processed for paraffin embedding and sequential transversal 5 µm sections 

of the IVD were collected. Sections were deparaffinized in xylene solution and rehydrated 

through a graded series of ethanol. Alcian blue/Picrosirius red and Safranin-O/Fast green 

stainings were performed throughout the IVD length to identify proteoglycans and collagen 

tissue distribution. 

 

2.5.1. Alcian Blue/Picrosirius Red staining 

A Picrosirius red solution was prepared by dilution of 3g of Sirius red (Sigma) in 500 mL of 

picric acid (Sigma) saturated aqueous solution. After rehydration, the sections were then 

incubated in Weigert’s Iron Hematoxylin for 8 minutes and washed in tap water. Afterwards, 

the sections were incubated in Picrosirius red solution for 1 hour and then washed twice in 1% 

acetic acid. Afterwards, the samples were air-dried, dehydrated and mounted with DPX (VWR) 

and analyzed in a Zeiss Axiovert200 inverted microscope (Zeiss). Alcian blue stains the 
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proteoglycans and Sirius red stains collagen type I and III. The hernia area was determined, 

in each slide, by delimitating the proteoglycans region extruded through the AF. The hernia 

volume was calculated by the sum of the areas of each individual section throughout the IVD, 

as previously described.21 

 

2.5.2. Safranin-O/Fast Green staining 

For Safranin O/Fast Green staining, dehydrated sections were incubated in Gill’s Hematoxylin 

(Sigma-Aldrich) for 5 minutes and washed in distilled water. Afterwards, the samples were 

immersed in 0.4% Fast Green (Sigma) solution during 5 minutes as a counterstain, and 

washed twice in 1% acetic acid. Sections were then immersed for 30 minutes in 1.5% Safranin 

O (Sigma-Aldrich) solution, which stains orange the proteoglycans. After hydration, slides were 

mounted and imaged as described in 2.5.1. 

 

2.6. Detection of CD68+ cells 

CD68+ cells distribution in the IVD was analyzed by immunohistochemistry (IHC), using the 

NovolinkTM Polymer Detection Kit (Leica Biosystems) and following the manufacturer’s 

instructions. Antigen retrieval was performed in paraffin sections through incubation in near-

boiling point 10 mmol/L sodium citrate buffer, pH 6.0, for 1 minute, followed by incubation with 

20 μg/mL proteinase K (Sigma-Aldrich) solution for 15 minutes at 37ºC. Sections were 

incubated with anti-CD68 (clone ED1, 1:100 dilution, Bio-Rad Laboratories) primary antibody, 

overnight at 4ºC.  

 

2.7. Statistical analysis 

Results are shown in dot plots, and discussed as average ± standard deviation. Normality was 

assessed by D’Agostino-Pearson omnibus normality test, after which statistical analysis was 

performed with non-parametric Kruskal-Wallis test with GraphPad v6.01 for Windows. 

Statistical significance was set at *p<0.05. 

 

3. Results 

3.1. Characterization of the nanocomplexes used for intradiscal injection 

Df was incorporated in Ch/-PGA NCs as previously reported by Gonçalves et al.,15 at a molar 

ratio of 2.0:0.35:1.5 (Ch:Df:-PGA) and pH 5.0. The molar ratio, polymer concentration, pH of 

interaction, Df concentration and components order of addition were previously optimized.15 

About 75% of the initial amount of Df (0.06 mg/mL) was incorporated in Ch/Df/-PGA NCs, 1 

hour after preparation.15 To concentrate Df-NCs, in order to inject the maximum amount of NCs 
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and Df in the small animal model, NCs were concentrated 50 times by centrifugation. The 

features of concentrated NCs were then analyzed by comparison with the ones previously 

used in ex vivo experiments with bovine tail NP punches (NCs dil. and Df-NCs dil.).16 The 

particle size (nm) and polydispersion index (PdI) observed for NCs, NCs dil., Df-NCs and Df-

NCs dil. are summarized in Table 1. The  potential (mV) of NCs and Df-NCs was also 

analyzed. The particle size distribution plots obtained in DLS analysis are shown in 

supplementary Figure S1.  

Table 1. Characterization of NCs and Df-NCs. 

 Particle size 

(nm) 

Polydispersion 

index (PdI) 

 potential (mV) 

NCs dil. 194±5 0.27±0.02 - 

NCs 328±6 0.33±0.04 15.30±1.15 

Df-NCs dil. 203±4 0.26±0.02 - 

Df-NCs 310±16 0.30±0.01 19.2±1.39 

 

With the concentration by centrifugation, particle size seemed to be increased about 70% and 

53% for NCs and Df-NCs, respectively. This was observed also for the PdI, which seemed to 

increase about 22% for NCs and approximately 15% for Df-NCs, when compared to diluted 

solutions. The concentrated particles remained positively charged, 15.30±1.15 mV (NCs) and 

19.2±1.39 mV (Df-NCs), similarly to the values previously observed for diluted NCs (20.8±1.6 

mV) and Df-NCs (20.5±1.9 mV).16 

 

3.2. Disc height index and local profile of pro-inflammatory markers after injury and intradiscal 

treatment 

The intradiscal injection of this anti-inflammatory nanotechnology-based therapy was then 

tested in a rat caudal herniation and degeneration IVD model, previously developed by our 

team.21 As previously mentioned, the IVD injury was induced by needle puncture into the 

coccygeal discs 5/6, 6/7 and 7/8 and, after 24 hours, the intradiscal treatments were 

administered. The effect of intradiscal injection of NCs alone, soluble Df and Df-NCs was 

directly compared, 2 weeks after injury. Naïve, injury alone and NCs vehicle alone were 

analyzed in parallel as control groups. The timepoint of NCs administration was determined in 

a pilot experiment, where 2 out of 3 animals showed high levels of systemic IL-1β and PGE2 

(see Supplementary Fig. S2), suggesting this was a peak in the acute inflammatory response 

upon injury. At 2 weeks’ post-injury, tissue samples were analyzed. This time point was 

previously selected to analyze IVD herniation, since the hernia formed is reduced from 2 to 6 

weeks’ post-injury.21 
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IVDs were radiographed before and 2 weeks after injury. The percentage of DHI was 

calculated as a value inversely proportional to the degree of disc degeneration (Fig. 2A). It was 

observed a slight decrease of percentage of DHI in the Injury group, compared to Naïve 

animals (from 101±4% to 77±8%, p=0.07). Moreover, when compared to Naïve, a statistically 

significant decrease of percentage of DHI was observed in all the groups: NCs (68±12%, 

p<0.001), Df (75±4%, p<0.05) and Df-NCs (72±6%, p<0.01). When comparing Injury alone 

with the treated groups, no differences were observed between them.  

 

Fig. 2. Local effect of different injectable treatments in the inflammatory response and ECM remodeling of 

degenerated/herniated IVD, 2 weeks after injury. A) Representative digital radiograph and percentage of disc height 

index (% DHI). DHI was calculated by DHI=2x(D+E+F)/(A+B+C+G+H+I). %DHI=DHIpost-injury/DHIpre-injuryx100. B) 

Relative mRNA expression of IL-1β, COX-2 and IL-6 of IVD cells. mRNA levels were normalized to GAPDH control 

gene. %DHI and mRNA expression results are presented as dot plots (n=4-6). *p<0.05; **p<0.01; ***p<0.001 

 

The local inflammatory response in IVD samples was evaluated by gene expression analysis 

of pro-inflammatory markers, namely IL-1β, COX-2 and IL-6, 2 weeks after injury (Fig. 2B). No 

expression of these pro-inflammatory markers was observed for the Naïve, Injury, Vehicle and 

Df groups. Whereas, an up-regulation of IL-1β (p=0.08), COX-2 (p<0.01) and IL-6 (p=0.08) 

mRNA expression was observed for the NCs group, when compared to the Injury group. The 

up-regulation of COX-2 (p=0.06) and IL-6 (p<0.05) in NCs group was also observed when 

compared to the vehicle group. In addition, one to two animals of Df-NCs-treated group also 

expressed higher IL-1β, COX-2 and IL-6 gene expression comparatively to others of the same 

group. The results suggest that both NCs and Df-NCs caused an increase in the local 

inflammatory response in some of the injected animals (max. 3 out of 6 animals). Nevertheless, 

the relative expression (2-ΔCt) of the pro-inflammatory markers is low:  under 1.2 (for IL-1β in 

Df-NCs), 0.20 (for COX-2 in Df-NCs) and 0.021 (for IL-6 in NCs group).  
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3.3. IVD ECM composition analysis 

Histological analysis of the IVD ECM composition was also performed. In Fig. 3 it is depicted 

the NP, based on the blue staining of proteoglycans in the center of the IVD, for 3 

representative animals from all the conditions tested. When analyzing qualitatively the 

proteoglycans content (stained in blue), there seemed to have occurred alterations in the tissue 

morphology and a decrease of the proteoglycans content in the NP, for all the stimulated 

conditions, in contrast with the Naïve animals, with exception of two animals in the Vehicle 

group (Fig. 3, the NP section of one of the animals is shown in image i). Of notice, in the Injury 

group one of the animals completely lost NP integrity and proteoglycans content, and in both 

NCs and Df-NCs conditions, four and five animals, respectively, also were absent of a healthy 

NP structure with proteoglycans, when compared to NP sections of Naïve animals.  

 

Fig. 3. Analysis performed at the IVD NP, 2 weeks after lesion. A) Alcian blue and picrosirius red staining of one 

IVD from three different animals, for each condition tested (n=6). Alcian blue stains proteoglycans in blue and sirius 

red stains collagen type I and III in red (scale bar, 500 µm). 

 

3.4. Hernia size and immune cell infiltration 

The in vivo model used in this study consists in a needle puncture that leads to hernia 

formation.21 In this study the effect of intradiscal anti-inflammatory treatments on formation of 

herniated tissue was specifically addressed. The preliminary microscopic evaluation of 

consecutive stained sections for Alcian blue/Picrosirius red (Fig. 4A: a-e) and Safranin O/Fast 

green (Fig. 4A: f-j) allowed an overview of tissue morphological changes, namely NP leakage 

and hernia formation (delimited in white dashed lines). A pronounced hernia was formed in 

injured animals, with proteoglycan-rich tissue extruded, in blue in the Alcian Blue/Pricosirius 

Red staining, and orange in the Safranin O/Fast Green staining. In most cases, the tissue was 

extruded to the region between dorsal segmental muscles.  

Quantification of the hernia volume (mm3) indicated a higher tissue herniation in injured 

animals that seems to be slightly reduced upon Df intradiscal injection (p=0.08, Fig. 4A). 

Injury Vehicle NCs Df Df-NCsNaïve

a d g j m p

b e h k n q

c f i l o r

Proteoglycans
Collagen
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Furthermore, a detailed assessment of macrophages infiltration in the hernia was performed 

and it is shown in Fig. 4B for a representative lesioned animal (a; border area magnification: 

a´). After delimitation of the hernia area, using ImageJ software, the percentage of CD68+ cells 

was calculated (as described in Supplementary Materials and Methods). Macrophages were 

present in the hernias of all injured groups. The % of CD68+ cells present in the hernia seem 

to follow the same trend as in the determination of the hernia volume, for all the IVD samples 

analyzed (i.e. bigger hernias may have a higher % of CD68+ cells within). Nonetheless, no 

statically significant differences were found, when comparing the treated groups with the Injury 

alone. 

 

Fig. 4. Hernia formation analysis, 2 weeks after lesion. A) Herniation in the lesioned discs, showing Alcian 

Blue/Picrosirius Red and Safranin O/Fast Green stainings (hernia delimitated by dashed line; scale bar, 500 µm) 

and hernia volume (mm3) quantification. B) Macrophages identification within the hernia by CD68 

immunohistochemistry (positive cells are shown in brown). Respective image of the hernia extruded out of the IVD 

of an animal from the Injury group (a; scale bar, 500 µm) and magnification (a’; scale bar, 100 µm). Quantification 

of % of CD68+ cells within the hernia. Results are presented as dot plots (n=6). 

 

4. Discussion 

An intradiscal injection treatment with Df was previously evaluated in an ex vivo culture of 

bovine tail IVD punches, under pro-inflammatory/degenerative conditions.16, 26 Df 

administration induced, 2 days after intradiscal injection in the degenerative/pro-inflammatory 

organ culture model, a significant decrease in PGE2 production, and down-regulation of IL-6, 

IL-8 and MMP1 expression by IVD cells, while ACAN expression was up-regulated;26 however, 

without changes at protein level, after 8 days of Df treatment.16 The Df-NCs demonstrated a 

potential use as effective anti-inflammatory drug delivery system, in vitro.15 In the work of 

Gonçalves et al., the Df was incorporated at a maximum concentration of 0.05 mg/mL in the 
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NCs. After adding Df-NCs to macrophages’ culture medium at a concentration of 10% v/v, the 

particles were shown to be nontoxic to the cells. Moreover, the Df released could inhibit or 

revert PGE2 production by lipopolysaccharide activated macrophages.15 Promising results 

were also observed with Df-NCs intradiscal administration in the ex vivo culture of bovine tail 

IVD punches, under pro-inflammatory/degenerative conditions.16 Df-NCs down-regulated the 

expression of pro-inflammatory markers by IVD cells, 2 days after treatment.16 The analysis at 

protein level revealed that 8 days after administration, only Df-NCs significantly promoted 

COL2 and ACAN production by the native IVD cells, when compared to pro-

inflammatory/degenerative conditions alone.16 

Given the promising results, this therapeutic approach was here investigated in vivo, in the 

IVD needle puncture injury model.20, 21 In previous experiments using this model, 24 hours after 

injury was the timepoint selected for systemic delivery of mesenchymal stem/stromal cells 

(MSCs), and IVD tissue analysis was also performed 2 weeks after intradiscal injection.20 In 

this model, it was formerly seen spontaneous hernia regression 2 to 6 weeks’ post injury.21 

Moreover, 2 weeks after intravenous administration of MSCs, it was observed in the 

transplanted local down-regulation of glucose transporter (GLUT)-1, a target of the hypoxia-

inducible transcription factor (HIF)-1α, and significantly less NP tissue herniation, with higher 

number of Pax5+ B lymphocytes.20 

For this work, give the differences regarding the NP and IVD volumes in the rat tail (about 3 to 

8 mm3) and bovine tail (1 to 4 cm3) (O’Connell et al. 2007), the volume to be injected was 

adapted. Therefore, the particles were concentrated 50 times and re-suspended in 10 µL of 

injection vehicle. Also, Df soluble was injected at a concentration 50 times higher (2.98 mg/mL) 

than the one used in the ex vivo model. NCs features were monitored and, although NCs and 

Df-NCs remained stable at pH 5.0, their size and PdI increased after centrifugation and 

concentration, suggesting some particle aggregation, as shown in the tissue, after injection 

(Supplementary Figure S2). In a previous work from our group, Antunes et al. also 

concentrated Ch/-PGA NCs about 10 times,24 obtaining particles with size and PdI about 40 

and 25% higher, respectively, than the diluted NCs used in the previous work from our team.16 

Although the dimensions of the NCs used in the present work were higher (about 70%, 

compared to NCs dil.), the PdI was similar (approximately 22% higher than the one from NCs 

dil.). The 10 times concentrated NCs, once injected at acidic pH in a nucleotomized IVD model 

from bovine origin, significantly reduced cell metabolic activity and DNA content of the NP.24 

In this study, due to increased size and PdI of the NCs, we hypothesize that lower 

internalization of NCs and Df-NCs by the rat IVD cells might have occurred, contrasting with 

the previous ex vivo results, in which internalization was about 92%.16 Although Ch/-PGA NCs 

internalization may mainly occur via non-specific charge-mediated interactions,27 these NCs 

are able to infiltrate cell-cell junctions.28, 29 Additionally, Ch/DNA/-PGA were shown to be 
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internalized via macropinocytosis and caveolae-mediated pathway,30 and -PGA-coated 

Ch/DNA complexes via a specific -glutamyltransferase (GGT)-mediated pathway.31 

The use of Ch/-PGA NCs as drug delivery systems rely on pH changes, that allow the 

disruption of electrostatic interaction between both polymers and the molecule/drug 

incorporated, in order to release it. The pH of a healthy IVD is reported to be about 7.1,32 and  

commonly drops to 6.8 up to 6.5, from mild to severe degeneration.33 Given this, we are 

currently performing experiments to better understand if the pH of the rat IVD after injury also 

drops to the values described in the literature. Moreover, we are also performing experiments 

to determine the Df release kinetics from the NCs in solutions at different pH values, ranging 

namely from 6.5 to 7.1. We hypothesize that the much higher ratio NCs volume/IVD volume in 

the rat (10 µL/3 mm3 of NP, representing over a 2 times higher injection volume than the NP 

volume) than in the bovine model (500 µL/1 cm3 of NP, representing half of the theoretical 

bovine NP volume), may cause an increase in the pH of the IVD, hindering Df release.  

In this model, 2 weeks after MSCs systemic transplantation, DHI and histological grading score 

seemed to indicate less degeneration; however, without alterations at the ECM level.20 In the 

present work, it was seen a decrease in DHI, 2 weeks after needle puncture injury, as well as 

greater loss of proteoglycans after injury, and of integrity of NP-AF border, with no recovery 

after the application of the different treatments. Qualitative analysis might indicate formation of 

fibrocartilaginous matrix, as pointed out by others.34 Matta el al. observed 6 weeks after a 

single intradiscal injection of recombinant transforming growth factor (TGF)-β1 and connective 

tissue growth factor (CTGF) proteins in a rat-tail IVD model of needle puncture, restored 

notochordal cell content in NP, increase expression of ACAN, COL2, Brachyury and octamer-

binding transcription factor 4, compared to injured discs, or injected with PBS.34 In this last 

model, the active form of IL-1β was not observed until between 8 to 10 weeks, timepoints at 

which was also observed an increased expression of the inflammatory mediator, COX-2 and 

the ECM degrading enzymes, metalloproteinases (MMPs)-3 and -13.34  

In the present work, the inflammatory markers (IL-1β, COX2 and IL-6) mRNA expression was 

very low, possibly indicating that the resolution of inflammation might be occurring. In a rat IVD 

degeneration model induced by prolonged upright posture, COX2 and IL-1β were up-regulated 

about 30- and over 90-fold, respectively, in degenerated IVDs, compare to naïve animals, 

which were significantly decreased after a 30-days treatment with intraperitoneal injections of 

a NSAD, meloxicam.35 On the other hand, in a rat tail torsion loading study, it was observed 

an overall down-regulation of IL-1β, and no effect on IL-6 or TNF-α expression, for the different 

conditions tested, compared with sham group, 24 hours following the applied loading.36 In 

future experiments, it would be interesting to analyze the acute inflammatory response at an 

earlier timepoint (for instance, up to 72 hours). Cuellar and colleagues evaluated up to 24 hours 

the protein levels of pro- and anti-inflammatory cytokines in the epidural space of a rat model 
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of non-compressive disc herniation-induced inflammation.37 They detected the highest 

production of IL-6 at 3 hours after inflammation induction, of IL-1β at 6 to 24 hours and of TNF-

α at 24 hours.37 Moreover, a study by MacLean et al. focusing the changes in gene expression 

due to dynamic compression in caudal motion segments in vivo demonstrated that mRNA 

levels of most catabolic and anabolic genes reached maximum levels 24 hours following 

mechanical stimulation (but, some had maximum levels 8 and 72 hours following loading).38 

Nonetheless, to evaluate ECM production at protein level, the animal experiments should be 

kept for longer time periods of, for instance, 4 to 10 weeks, as suggested by other works in 

vivo, focusing on intradiscal injection of factors to promote IVD ECM production.34, 39, 40 

In this study, intradiscal Df injection seemed to decrease the hernia volume. Nonetheless, it is 

important to highlight that a single intradiscal injection of a drug with short biological half-life, 

as Df, due to a very rapid metabolism,41 may not be enough to promote ECM components 

production by native IVD cells. Zhang et al. evaluated the pharmacokinetic-pharmacodynamic 

modeling of Df in normal and Freund's complete adjuvant-induced arthritic male Sprague-

Dawley rats.42 In their model, Df was administered to arthritic rats intravenously (10 mg/kg), in 

the tail vein, and their results showed a decrease in plasma levels of PGE2, in both normal and 

arthritic rats, up to 360 min after dosing.42 Moreover, the inhibitory effect on PGE2 levels was 

proportional to the Df concentration in plasma.42  

Furthermore, the inflammatory process in degenerated/herniated IVD is complex and is 

frequently reported that is linked to the presence of macrophages.43-46 An antigen-specific 

immune response is widely considered in regression of herniated disc where lymphocytes 

exist.47 We consider that an initial M1 pro-inflammatory macrophage response might be 

important to promote hernia tissue phagocytosis in earlier time points, but a polarization of M1 

to M2 macrophages might be key to promote IVD regeneration to avoid chronic inflammation.47, 

48 Therefore, it would be also of interest to prepare NCs using Ch with a 5% DA, which showed 

to induce a benign M2 anti-inflammatory macrophage response, compared to 15% DA Ch,49 

or incorporate pro-resolution mediators, such as inflammatory resolution lipoxin A4 (LxA4) and 

resolvin D1 (RvD1), to modulate the inflammatory response to chitosan, as suggested in the 

work by Vasconcelos et al.50 

Rat models of mechanical injury, namely coccygeal IVD needle puncture (with 18 to 21G 

needle, to cause significant tissue damage), are frequently used.21, 51-53 These present a cost-

effectiveness, when compared to large animals19 and have to follow less complex 

requirements for experimental approval, when compared to human trials.18, 54 Nonetheless, the 

model used might present limitations regarding the small dimensions of the coccygeal IVDs, 

with IVD and NP volumes of approximately 8 and 3.1 mm3, respectively.55 Therefore, it 

presented also limitations in the scaling of specific parameters,18 such as the injection of 

relevant volumes,56 and the translation of the NCs and Df concentrations with success in the 
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ex vivo organ culture. Therefore, it is important to perform more experiments to better 

understand the activity of the 50 times concentrated NCs and the Df release kinetics, for the 

interpretation of the present experimental findings. 

Overall, this study focused on the modulation of local inflammatory response to promote IVD 

regeneration by native cells. Df intradiscal injection seemed to contribute to the decrease of 

hernia volume. However, due to the need of a needle puncture, the drug administration cannot 

be a repeated process. So, if combined with an optimized, biocompatible drug delivery system, 

to better promote a controlled delivery of Df overtime, this might contribute, in the future, to 

hernia retraction, reducing the number of patients undergoing discectomy surgery.  
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Supplementary Data 

Materials and Methods 

1.1. Preparation of fluorescent Ch and fluorescent Ch/-PGA nanoparticles with and 

without Df 

Fluorescent NCs (ftNCs) and Df-ftNCs were prepared as described in Materials and 

Methods. Ch was labeled with fluorescein isothiocyanate (FITC, 5% modification of 

amine groups with FITC) according to Gonçalves et al.1 

 

1.2. Analysis of ftCh/Df/γ-PGA nanoparticles distribution in the IVD using confocal 

microscopy 

Df-ftNCs distribution in the rat IVD tissue was analyzed 2 hours after intradiscal 

administration, by confocal laser scanning microscopy (CLSM, Leica TCS-SP5, Leica 

microsystems). The Df-ftNCs were injected in IVDs as described in Materials and 

Methods. Animals were sacrificed, IVDs were collected and fixed in 10% formalin. Cells 

cytoskeleton was stained with Alexa Fluor 594-conjugated Phalloidin (Invitrogen), while 

cell nuclei were stained with DAPI. The tissue was imaged by CLSM and serial optical 

sections were analyzed using ImageJ 1.43u software (Wayne Rasband).  

 

1.3. Calculation of the percentage of CD68+ cells in the hernia region 

Sections stained for CD68 were imaged with light microscopy, using the same settings 

to allow comparison. Diaminobenzidine tetrahydrochloride (DAB) staining intensity, 

corresponding to CD68+ cells, was quantified using an ImageJ H-DAB plugin, based on 

a color deconvolution technique, which calculates the contributions of DAB and 

hematoxylin, based on stain-specific red-green-blue (RGB) absorption.2 By applying this 

method, DAB and hematoxylin color channels were digitally separated, allowing 

quantification of color intensity only in the DAB channel. The measurement parameter 

was optical density (OD), obtained by log(max intensity/mean intensity), where max 

intensity corresponds to 255, for 8-bit images.2 The area of CD68+ cells within the 

previously selected region of interest (ROI) was then determined and normalized to the 

ROI, for each sample.  

 

 

 

 

 



Chapter VI - Intradiscal anti-inflammatory treatment for IVD herniation 
 

152 
 

Results 

3.1. Characterization of Ch/-PGA and Ch/Df/-PGA NCs 

NCs and Df-NCs, obtained by coacervation method, were concentrated 50 times by 

centrifugation and resuspension in vehicle solution, previous to injection in rat IVDs. After 

concentration, these particles were compared with diluted NCs (NCs dil.) and Df-NCs 

(Df-NCs dil.). In Fig. S1 it is shown the size distribution of the different solutions analyzed.  

 

Fig. S1. Characterization of the size dispersion of different nanocomplexes solutions, analyzed by dynamic 

and electrophoretic light scattering (DLS). A) Diluted NCs and Df-NCs (NCs dil. and Df-NCs dil., 

respectively). B) NCs and DF-NCs, which were 50 times concentrated after preparation, for injection into the 

rat IVDs. Particle size distribution plots obtained by intensity of the scattered light (n=6-9).   

 

 

3.1. Systemic inflammatory profile after IVD lesion  

A pilot study was performed to determine the timepoint of administration of the intradiscal 

treatments after causing the needle-puncture injury into 3 consecutive coccygeal rat 

IVDs (Co5/6, Co6/7, Co7/8). Blood was collected from the caudal vein at 0, 1, 3, 24, 48 

and 50 hours’ post-injury, and analyzed for quantification of IL-1β and PGE2 in plasma 

(Fig. S2A). Df-ftNCs were injected into the IVD 48 hours after inducing the injury. The 

animals were sacrificed 2 hours later and the IVD tissue injected with the Df-ftNCs was 

imaged by CLSM (Fig. S2B). 
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Fig. S2. Systemic inflammatory profile of animals with punctured IVD over a 50 hours’ period. Blood plasma 

samples were collected from the lateral tail vein before injury and 1, 3, 24, 48 and 50 hours’ post-lesion to 

trace a systemic inflammatory profile upon injury. A) Kinetics of Interleukin-1β (IL-1β) (pg/mg protein) and 

Prostaglandin E2 (PGE2) (ng/mg protein) levels in the plasma (n=3). B) Representative CLSM images 

(maximum intensity projection of serial optical sections) of IVD tissue with Df-ftNCs (FITC stains Ch from the 

Df-ftNCs in green, Alexa®594-Phalloidin stains F-actin in red and DAPI stains cell nuclei in blue; scale bar, 

50 µm), acquired from time point 2 hours’ post-administration (n=3). 
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In this manuscript, we have investigated how the pro-inflammatory/degenerative IVD 

microenvironment can affect the regenerative and immunomodulatory behavior of 

human bone marrow-derived MSCs. As recently highlighted, for instance, by Sakai and 

Andersson (2015), the number of trials proposing MSCs-based therapies to treat low 

back pain and IVD degeneration are increasing. Moreover, although MSCs intradiscal 

injection (Crevensten et al. 2004) and recruitment (Illien-Junger et al. 2012, Pereira et 

al. 2014) have been attempted by other authors, the studies published so far do not (or 

poorly) address the inflammatory environment characteristic of IVD degeneration, and 

how this milieu can influence the MSCs response. IVD’s microenvironment has been 

recognized to be harsh for MSCs, potentially impairing their survival and function (Rinkler 

et al. 2010). Furthermore, it was suggested that MSCs immunomodulatory response 

contributes, initially, to counteract inflammation instead of stimulating matrix formation in 

short-term ex vivo culture of osteoarthritic synovium and cartilage (van Buul et al. 2012). 

To increase the knowledge on this topic, human bone marrow-derived MSCs isolated by 

us were co-cultured with pro-inflammatory/degenerative IVD organ cultures in a model 

of bovine origin previously established and validated (Teixeira et al. 2015). The results 

obtained so far show an immunomodulatory paracrine effect of MSCs in degenerated 

IVD, without an apparent effect in ECM remodeling, and suggest that the mechanisms 

of action of MSCs are based on a cytokine feedback loop.  

Importantly, we consider of great relevance to highlight that the results from this study 

raise the importance of investigating MSCs behavior in degenerated IVD before their 

widespread use for LPB treatment.  
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Abstract 

Objective: Low back pain (LBP) is one of the causes of disability worldwide, frequently 

associated with intervertebral disc (IVD) degeneration and inflammation. Mesenchymal 

stem/stromal cells (MSCs)-based therapies to LBP have been advocated but the 

involvement of inflammation in the remodeling mechanism of IVD has not been explored. 

Here we investigated how the pro-inflammatory/degenerative IVD microenvironment 

affects the regenerative and immunomodulatory behavior of human bone marrow-

derived MSCs, using a bovine ex vivo model. 

Design: IVD punches were cultured in basal or pro-inflammatory/degenerative conditions 

(needle-punctured and IL-1β supplemented). MSCs were posteriorly co-cultured on top 

of transwells, above IVD punches, for up to 2 weeks. Cell viability and MSCs migration 

were analyzed. Extracellular matrix (ECM) remodeling of IVD organ cultures, MSCs 

response to the pro-inflammatory/degenerative environment and gene expression profile 

of IVD cells after co-culture with MSCs were also assessed. 

Results: The pro-inflammatory/degenerative IVD conditions did not affect MSCs viability, 

but promoted migration, despite very few MSCs being found in IVD tissue. This has led 

us to investigate the possibility of MSCs acting via a paracrine mechanism. The pro-

inflammatory/degenerative IVD conditions promoted IL-6, IL-8, MCP-1 and PGE2 

production by MSCs, while reducing TGF-β1. Furthermore, the presence of MSCs did 

not stimulate ECM production in neither basal nor inflammatory conditions, but down-

regulated bovine pro-inflammatory gene expression levels (IL-6, IL-8, TNF-α) in IL-1β-

stimulated IVDs. 

Conclusions: This study provides evidence for a mechanism dependent on a cytokine 

feedback loop, through which MSCs are capable of immunomodulating the IVD 

microenvironment. 
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1. Introduction 

Discogenic low back pain (LBP) accounts for almost 40% of chronic LBP, the leading 

disorder in number of years lived with disability.1 In patients with discogenic LBP, 

degeneration of the intervertebral disc (IVD) without apparent nerve compression occurs, 

associated with increased inflammation and pain.2 IVD degeneration is characterized by a 

decrease in water content, a reduction of cell numbers and the turnover of extracellular 

matrix (ECM) components.3 A shift from collagen type II (COL2) to type I (COL1) production 

by nucleus pulposus (NP) cells, and a decrease in aggrecan (ACAN) synthesis occur.3 

Furthermore, an up-regulation of specific metalloproteinases (MMPs), MMPs with 

thrombospondin motifs (ADAMTS),4,5 and a wide number of inflammatory mediators6,7 have 

been described as responsible for IVD degeneration, nerve ingrowth and pain. 

Cell-based therapies to stimulate IVD regeneration are being increasingly investigated, 

particularly using mesenchymal stem cells (MSCs).8,9-11 However, the behavior of MSCs in 

IVD-associated inflammation scenarios has been neglected. Moreover, though a high 

number of degenerated/injured IVD animal models has been developed, there is no ideal 

model that both mimics progressive human disc degeneration and allows a standardized 

control.12 IVD organ cultures have been arising to address specific questions, although, of 

course, with limitations, such as lack of the immune host response and pain assessment.13 

In multiple in vitro and animal studies, MSCs have been proposed to have a beneficial effect 

in IVD regeneration due to their differentiation capacity into an NP-like phenotype.14-16 MSCs 

are known to contribute to the regenerative process by interacting with the surrounding 

environment through the secretion of numerous molecules, such as growth factors, cytokines 

and chemokines.17 Nonetheless, the IVD hypoxic environment and mechanical load, the high 

osmolarity and low pH may impair MSCs survival and function.18 In humans, MSCs are 

currently being tested in several LBP clinical trials.11,19,20 However, the results obtained so far 

remain controversial since the patients referred pain reduction, but no increase of disc height 

was observed.11,19 In a clinical trial, in which patients received autologous bone marrow 

concentrate, discogenic pain reduction was reported after 12 months of follow-up.20 Ongoing 

clinical trials are addressing the use of allogenic21 or autologous MSCs transplantation22,23 

and implantation of cell-seeded scaffolds in degenerated IVD.24,25 

Besides their multi-differentiation potential, MSCs are accepted as immunomodulatory cells, 

by interacting with the different immune cells.26 Thus, MSCs might modulate the inflammatory 

milieu associated with IVD degeneration. This aspect has been neglected in several studies, 

although MSCs have already been shown to contribute to maintain IVD immune privilege by 

the expression of fas ligand (FasL).27  
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This study explores for the first time the synergic interplay between MSCs and IVD cells in 

the presence of pro-inflammatory/degenerative IVD conditions, namely in what refers to their 

pro-regenerative and immunomodulatory contributions through a paracrine mechanism. In 

addition, we expect to increase the knowledge of how IVD degenerative and pro-

inflammatory environment can affect and change MSCs immunomodulatory profile. The 

knowledge generated will impact to increase their successful use in the discogenic pain 

treatment.  

 

2. Materials and Methods 

2.1. Culture of human MSCs 

Human MSCs harvested from bone marrow were obtained from different donors who 

underwent bone marrow donation, hip replacement or knee joint surgery, with informed 

consent and following the rules of the ethical commission of the University of Ulm (Ulm, 

Germany) and the Portuguese authorities (Direcção-Geral da Saúde, Porto, Portugal). MSCs 

phenotypic profile was previously accessed either by immunohistochemistry for CD9, CD90, 

CD105, CD44, and Stro-1 staining,28 or by flow cytometry for CD19, CD14, CD73, CD34, 

CD90, CD105, CD45 and HLA-DR.29 Multi-lineage differentiation potential was also 

previously assessed.28,29 Cells were expanded as reported in Almeida et al.29 Experiments 

were performed with MSCs from 7 donors, in passages 3-7 (detailed information in 

Supplementary Table S1).  

 

2.2. Pro-inflammatory IVD organ culture model 

Bovine IVDs were isolated from young adult animals’ tails (age<48 months) within 3 hours’ 

post-slaughter, with the ethical approval of the Portuguese National Authority for Animal 

Health. Caudal discs were isolated and cultured in basal conditions according to Teixeira et 

al.30 Pro-inflammatory/degenerative stimulation was induced as described by Teixeira et al.30 

Briefly, after 6 days of culture in basal conditions, organ cultures were injured by needle-

puncture with a 21G needle and stimulated with pro-inflammatory factor IL-1β (10 ng/mL, 

PeproTech, UK).  

 

2.3. MSCs co-culture with IVD 

Three hours after pro-inflammatory stimulus, 1x106 MSCs per IVD punch were seeded on top 

of the transwell. MSCs were stained, prior to seeding, with CellTracker™ Blue CMAC Dye 

(CTB, Molecular Probes), For confocal microscopy analysis, or with CellTracker™ CM-DiI 

Dye (Thermo Fisher Scientific), for identification by flow cytometry analysis (Supplementary 
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Methods). This time point was selected based on previous work from our team.30 Non-

manipulated samples kept in BM were used as controls. Two days later it was checked if 

cells were still alive and if they had migrated to the disc by LIVE/DEAD and migration assays. 

IVD and MSCs apoptosis and viability were accessed by flow cytometry analysis, gene 

expression and protein production by both cell types were analyzed 2 days after stimulation 

and co-culture (day 7). Tissue sulphated glycosaminoglycan (sGAG) content was analyzed 

at days 7 and 21 of culture. ECM components were analyzed at protein level at day 21 of 

culture. The experimental scheme and groups are depicted in Fig. 1. 

 

 

Fig. 1. Experimental timeline and culture groups. 

 

2.4. Human MSCs migration assessment, samples preparation, image acquisition and 

analysis 

To evaluate MSCs migration, transwells with a polyethylene terephthalate membrane with 8 

μm pore size and 4.5 cm2 membrane surface area (Millipore) were used. After 2 days of 

MSCs co-culture with IVD punches, cells were fixed with 4% paraformaldehyde and rinsed 

with PBS. Inserts were carefully washed with PBS, and cells remaining on the upper face of 

the filters were removed with a cotton wool swab31. The filters were cut out and in two halves 

with a scalpel, stained with DAPI and mounted onto glass slides, with the down part facing 
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upwards. The number of cells that had migrated was determined by counting each half filter 

(spanning 172-383 microscope fields), avoiding areas with air bubbles.  Images with 6.4x10-3 

cm2 were collected with a Nikon 20x/0.45 NA Plan Fluor objective in a high-throughput 

automated fluorescence widefield microscope (IN Cell Analyzer 2000, GE Healthcare). 2.5D 

Acquisition & Deconvolution mode was used integrating the signal over 2.0 µm Z section, 

generating a pseudo 3D projection.   

Quantification of the number of cells that migrated through the transwell was performed with 

Developer Toolbox 1.9.2 (GE Healthcare). Briefly, a nuclear segmentation algorithm was 

used to identify and quantify the number of migrated cells. Data are expressed as number of 

migrated cells per cm2. The corrected number of migrated MSCs per cm2 was obtained by 

the sum of the results for both halves of the insert, and subtraction of the number of cells per 

cm2 counted in the respective control conditions without MSCs (corrected (cells/cm2)IL-1β+MSCs 

= (cells/cm2)IL-1β+MSCs – (cells/cm2)IL-1β), due to the transwell direct contract with the IVD tissue, 

from which IVD cells can attach to the polymeric surface. The results include independent 

experiments with 6 different bovine IVD donors, and 3 different human MSCs donors in 

passages 4 to 7. 

 

2.5. Mitochondrial metabolic activity of IVD cells in the organ culture model 

Cell mitochondrial metabolic activity was accessed by resazurin assay. Resazurin solution 

(0.1 mg/mL) was added to IVD culture medium at a final concentration of 10% v/v. Samples 

were incubated for 3 hours at 37ºC. Fluorescence intensity was measured in a 

spectrophotometer microplate reader (BioTek Synergy HT), with 530 nm excitation filters and 

590 nm emission filters. A calibration curve was previously designed to exclude saturated 

values. 

 

2.6. MSCs identification and LIVE/DEAD assay 

MSCs were stained before seeding with CellTracker™ Blue CMAC Dye (CTB, Molecular 

Probes) for further identification after culture. Cell viability was qualitatively assessed through 

fluorescence-based LIVE/DEAD Cell Viability/Cytotoxicity kit (Invitrogen), by confocal laser 

scanning microscopy (CLSM, Leica TCS-SP5, Leica microsystems). Briefly, IVD tissue 

samples collected from the center of the disc punch by sagittal cut were incubated with 

Calcein Acetoxymethyl Ester (Calcein AM; 1 mM) and Ethidium Homodimer-1 (EthD-1; 2.5 

mM) for 45 min at 37ºC. Calcein AM (Ex 485 nm/Em 530 nm) stains live cells green, 

indicating intracellular esterase activity, while EthD-1 (Ex 530 nm/Em 645 nm) stains dead 

cells red, indicating loss of plasma membrane integrity. Images were analyzed, using ImageJ 

1.43u software (Wayne Rasband). 
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2.7. DNA quantification 

DNA content of IVD punches was quantified using Quant-iT PicoGreen double standard DNA 

kit (Invitrogen), and normalized to the wet weight of the digested tissue. Tissue digests were 

obtained by incubation of IVD minced samples with proteinase K solution (0.5 mg/mL) 

overnight at 56ºC.  

 

2.8. Quantitative real-time reverse transcription polymerase chain reaction 

Gene expression levels were determined by quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR) on cDNA derived from disc samples. Specific primer 

pairs for bovine were designed using published gene sequences (PubMed, NCBI Entrez 

Nucleotide Database) and Primer 3 software48. The bovine primer sequences for TNF-α and 

MMP13 are in Table 1, while IL-6, IL-8, MMP1, MMP3, collagen type II (COL2), ACAN, and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are published in Teixeira et al.30 The 

analysis was carried out using SYBR Green method. Briefly, IVD punches were digested 

enzymatically as described above, cell pellets were recovered and total RNA was extracted 

with ReliaPrep RNA Cell Miniprep System (Promega), as per the manufacturer’s instructions. 

Total RNA was quantified by a NanoDrop spectrophotometer (ND-1000, Thermo) and RNA 

quality was assessed by means of RNA ratio. Total RNA was reverse transcribed into cDNA 

using SuperScript® III Reverse Transcriptase kit (Invitrogen). Gene expression levels were 

determined by qRT-PCR conducted on iQ5 Real-Time PCR Detection System (Bio-Rad), 

and using iQ™ SYBR® Green Supermix (Bio-Rad). Statistical analysis was performed on ∆Ct 

values, as described by MacLean et al.32 Fold changes in gene expression were presented 

as 2-(average∆∆Ct). The average Ct value of each triplicate measurement of each sample was 

normalized to the house-keeping gene GAPDH in each sample (∆Ct = Ct(gene of interest) – 

Ct(GAPDH)). The ∆Ct of each stimulated sample was related to the respective ∆Ct of each 

control sample. Normalized values of samples collected at the end of the experiments were 

compared with the control and between the different experimental groups. 

 

Table 1. Bovine oligonucleotide primers. 

Gene Forward and reverse primer, 5’-3’ 
Product 

length (bp) 

NCBI reference 

sequence 

TNF-α 
CCATCAACAGCCCTCTGGTT 

GAGGGCATTGGCATACGAGT 
134 AF011926 

MMP13 
CATGAGTTTGGCCATTCCTT 

GGCGTTTTGGGATGTTTAGA 
179 NM_174389 
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2.9. Detection of relative protein expression 

A commercially available array of 40 human inflammatory factors (Human Inflammation Array 

C3, AAH-INF-3, RayBiotech) was used to evaluate the relative levels of cytokine production 

in the IVD punches’ culture supernatants. A pool of 8 culture supernatants of each 

experimental group was prepared for this determination, and 1 mL of the prepared pool was 

used. Data shown are from 25.5 sec exposure in Chemidoc XRSþ (BioRad). Quantification of 

the results was generated by quantifying the mean spot pixel density from the array using 

image software analyses (ImageLab 4.1; BioRad). Briefly, the pixel intensities gathered from 

the array spots were obtained using the volume tools option of the software. It was defined 

an area of interest of the reference spots by surrounding it with a circle, and then equal 

circles were used for all spots of the array. Afterwards, the circles were analyzed and the 

densities of signals were normalized by the background. 

 

2.10. Protein quantification in culture supernatants 

Culture medium collected at day 8 was centrifuged (3000 rpm, 5 minutes) and kept at -20ºC 

for posterior analysis. PGE2 (Arbor Assays), free active TGF-β1 (BioLegend), and human IL-

6, IL-8, monocyte chemoattractant protein (MCP)-1, IL-1β and regulated on activation, 

normal T-cell expressed and secreted RANTES, also called chemokine ligand 5 (CCL5) 

(PeproTech) were quantified by ELISA, as per the manufacturers’ instructions.  

 

2.11. Sulphated glycosaminoglycans quantification 

Sulphated glycosaminoglycan (sGAG) content of IVD punches was assessed at day 8 by 

reaction with 1,9-dimethyl-methylene blue zinc chloride double salt (DMMB, Sigma-Aldrich) 

dye reagent solution, containing 40 mM sodium chloride (NaCl, Roth), 40 mM Glycine (Roth) 

and 46 μM DMMB, previously adjusted to pH 3.0. Chondroitin sulphate A sodium salt from 

bovine trachea (Sigma) was used as standard. Results were normalized by DNA content. 

 

2.12. Detection of type II collagen and aggrecan in the IVD 

COL2 distribution was analyzed by immunofluorescence (IF) staining. ACAN production and 

distribution was analyzed by immunohistochemistry (IHC). For IHC, NovolinkTM Polymer 

Detection Kit (Leica Biosystems) was used, following the manufacturer’s instructions. For 

both, antigen retrieval was performed in paraffin sections through incubation with 20 μg/mL 

proteinase K solution for 15 minutes at 37ºC. For COL2 staining, after a blocking step, 

sections were incubated for 2 hours at 37ºC with anti-collagen II-II6B3 (Developmental 

Studies Hybridoma Bank) at a 1:50 dilution. Alexa Fluor 594-labeled goat anti-mouse 
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(Invitrogen-Molecular Probes, 1:1000) was used as secondary antibody. For ACAN, sections 

were incubated overnight with primary antibody (H-300) sc-25674 (Santa Cruz 

Biotechnology) to a 1:50 dilution. All samples were stained at the same time for comparison 

purposes.  

Sections stained for COL2 were mounted in Fluorshield with DAPI (Sigma). Control sections 

for each labeling excluded primary antibody staining. In COL2 staining, representative 

images of the slides (covering all section) were taken using an inverted fluorescence 

microscope (Axiovert 200 M, Zeiss), and the same exposure time for all samples. COL2 

intensity was quantified using a custom-made MATLAB (The MathWorks Inc., Natick MA, 

USA) script, the IntensityStatisticsMask Software.33 

Sections stained for ACAN were imaged with light microscopy, using the same settings to 

allow comparison. Diaminobenzidine tetrahydrochloride (DAB) staining intensity, 

corresponding to ACAN deposition in the tissue, was quantified using a custom ImageJ H-

DAB plugin, based on a color deconvolution technique, that calculated the contribution of 

DAB and hematoxylin, based on stain-specific red-green-blue (RGB) absorption.34 By 

applying the macro, DAB and hematoxylin color channels were digitally separated, allowing 

quantification of color intensity only in the DAB channel. The measurement parameter was 

optical density (OD), obtained by log(max intensity/mean intensity), where max intensity 

corresponds to 255, for 8-bit images.34 ACAN negative (ACAN-) and positive (ACAN+) cells 

were quantified using another custom-made MATLAB script, the ImmunoCellCounter 

Software, as previously described.35 

 

2.13. Statistical analysis 

Results are presented as Median±Interquartile Range (IQR) in box and whiskers plots. Data 

normality was first analyzed by D’Agostino and Pearson Normality Test after which statistical 

analysis was performed with either non-parametric Mann-Whitney or Kruskal-Wallis test and 

Dunns multiple comparison as post hoc test. MSCs migration was compared with Wilcoxon 

test for paired analysis. Graph Pad v6.02 for Windows. Tests were two-sided, and a 

confidence level of at least 95% (*, p<0.05) was used. 

 

3. Results 

3.1. Metabolic activity, viability and apoptosis of MSCs and IVD in healthy vs pro-

inflammatory/degenerated IVD environment 

To simulate the pro-inflammatory environment associated with IVD degeneration an ex vivo 

model of bovine IVD organ culture stimulated with IL-1β and puncture, previously established 

and validated by us was used.30 Briefly, bovine disc punches were isolated and cultured 
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under static loading, and the degenerative/pro-inflammatory environment was induced by 

stimulation with needle puncture (21G) and medium supplementation with 10 ng/mL IL-1β.30  

Three hours after stimulus, 1x106 human BM-derived MSCs were cultured on the top of the 

transwells, above the IVD punches. After 48 hours, IVD punches and MSCs on the top of the 

transwells were analyzed separately for metabolic activity and cell apoptosis/death, as 

schematically represented in Fig. 2(A). The mitochondrial metabolic activity of IVD punches 

was maintained in the presence of IL-1β and slightly decreased in the presence of MSCs for 

both control and IL-1β-stimulated IVDs [Fig. 2(B)]. Mitochondrial metabolic activity of MSCs 

remaining in the transwells was similar in the presence of IL-1β (IL-1β+MSCs) and non-

stimulated group [Fig. 2(B)]. Cell apoptosis/death were analyzed by Annexin V (AnxV) and 

propidium iodide (PI) staining by flow cytometry, and these levels were overall low (under 

20%) [Fig. 2(C)]. Results are presented as Median±IQR fold change. No differences were 

observed in cell apoptosis but an increase in the number of dead IVD cells (AnxV+PI+ cells) in 

the presence of MSCs  was observed  (from 6±2% to 14±7% in Ctr+MSCs and from 9±3% to 

  

Fig. 2. Viability of the IVD organ culture model, 2 days after proinflammatory stimulus (puncture+10 ng/mL IL-1β) 

and co-culture with MSCs. (A) Experimental scheme of the samples used for the analysis performed (IVD tissue 

and MSCs from co-culture). (B) Mitochondrial metabolic activity of IVD tissue and MSCs in the transwells. (C) 

Early and late apoptosis/death of cells isolated from IVD tissue and MSCs in the transwells, by Annexin V/PI 

double staining. Results are shown as box and whiskers plots (n=4-5). *p<0.05 
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15±9% in IL-1β+MSCs), being this increase statistically significant in the Ctr groups (p<0.05). 

Nevertheless, apoptosis/death of MSCs collected from transwells was maintained in Ctr and 

IL-1β-stimulated conditions. 

In parallel, MSCs labeled with CTB dye were seeded in the transwells above IVD punches. 

After 48 h MSCs collected from transwells remained blue [Fig. 3(A): a] and a microscopic 

evaluation of cell viability by  LIVE/DEAD assay of a sagittal tissue section  showed presence 

 

Fig. 3. Cell viability and MSCs identification, after 2 days in co-culture with IVD tissue, under control or 

proinflammatory/degenerative conditions. (A) Representative CLSM images (maximum intensity projection of 

serial optical sections) of MSCs from co-culture stained with CellTracker Blue (CTB, a; scale bar, 200 µm), and 

LIVE/DEAD cytotoxicity/viability assay (b-e; scale bar, 1mm), with higher magnification of splitted and merged 

channels, for all the conditions tested (CTB stains MSCs, ethidium homodimer-1 (EthD-1) stains dead cells and 

calcein AM stains live cells in green; MSCs, white arrow; scale bar, 200 µm).  (B) Migration of human MSCs 

trough transwells with 8-µm pore size, when in co-culture with IVD punches alone (Ctr+MSCs), or in presence of 

10 ng/mL IL-1β in the culture medium (IL-1β+MSCs). It is shown representative micrographs for groups Ctr (a), 

Ctr+MSCs (b) and IL-1β+MSCs (c), and their respective segmentation masks (a´, b´ and c´) for cell counting 

(counted cells in green; scale bar, 100 µm). (C) MSCs migration results normalized by the imaged area (cm2) and 

respective controls. Results are shown as box and whiskers plots (n=6). *p<0.05 
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of dead cells in the IVD, with no apparent differences between Ctr and IL-1β-supplemented 

cultures [Fig. 3(A): b and d]. However, an increase of cell death in MSCs and IL-1β+MSCs 

groups was apparently observed [Fig. 3(A): c and e], in accordance with results from AnxV/PI 

staining. In basal conditions, the higher number of dead cells appears to be found in the 

lower half of the disk, being MSCs found closer to the upper IVD tissue border. On the other 

hand, in pro-inflammatory conditions, cell clusters formation was observed with higher 

number of MSCs. In addition, MSCs migration trough transwells on the top of the IVDs was 

analyzed by DAPI staining of the lower part of the membrane [Fig. 3(B)]. Representative 

images of Ctr, Ctr+MSCs and IL-1β+MSCs conditions are presented [Fig. 3(B): a, b and c, 

respectively]. MSCs migration was significantly increased in the presence of IL-1β (p<0.05). 

Of notice, flow cytometry analysis of IVD cells upon tissue digestion did not reveal the 

presence of labeled MSCs, suggesting that their frequency in the IVD was below to 0.01%, 

the equipment’s detection limit (data not shown). 

 

3.2. Screening of inflammatory factors produced by MSCs under pro-inflammatory/ 

degenerative culture conditions 

To evaluate whether pro-inflammatory/degenerative IVD conditions could influence MSCs 

cytokine profile the protein content in the culture supernatants was evaluated by a human 

inflammatory cytokines array (40 proteins). A pool of samples from 8 independent 

experiments was used. The human factors detected only in the presence of MSCs are shown 

in Fig. 4(A), for Ctr+MSCs and IL-1β+MSCs groups. The results show that the IVD punches 

induced the production of IL-6, IL-8 and MCP-1 by MSCs, with higher intensity in pro-

inflammatory/degenerative conditions (IL-1β+MSCs group). Also, tissue inhibitor of 

metalloproteinase (TIMP)-2 and IL-4 production seemed to increase in IL-1β+MSCs. To 

validate the array, IL-6, IL-8 and MCP-1 protein content in the supernatants was quantified 

by ELISA [Fig. 4(B)]. Results showed a statistically significant increase of IL-6, IL-8 and 

MCP-1 by MSCs in presence of IL-1β of about 6-fold for IL-6 (p<0.0001), 41-fold for IL-8 

(p<0.0001) and 2-fold for MCP-1 (p<0.05). In the groups without MSCs (Ctr and IL-1β) IL-6, 

IL-8 and MCP-1 were glucose), osmolarity (400 mOsm), hypoxia (6% O2 and 8.5% CO2) and 

pro-inflammatory stimulus (10 ng/mL IL-1β) expressed higher IL-6 and IL-10, produced 

higher PGE2, while in presence of IL-1β [Supplementary Fig. S1]. Furthermore, other immune 

regulatory cytokines such as, TNF-α, IL-10, indoleamine-2,3-dioxygenase (IDO) and TNF-α 

stimulated gene/protein 6 (TSG-6) were also analyzed by ELISA, but if present, their values 

were below the detection limit of the technique. 
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Fig. 4. MSCs production of inflammation factors, after 2 days in co-culture with IVD tissue, under 

control or proinflammatory/degenerative conditions. (A) Inflammation factors detected by human 

membrane cytokine array, for Ctr+MSCs and IL-1β+MSCs groups. Values are expressed as average 

of two dots. (B) Concentration of IL-6 (pg/mL), IL-8 (pg/mL) and MCP-1 (pg/mL) in co-culture 

supernatants. Results are presented as box and whiskers plots (n=8-13). *p<0.05; ****p<0.0001 

 

3.3. Influence of MSCs in the profile of MMPs and ECM components 

In the IVD organ culture model previously established, MMP1 and MMP3 were shown to be 

up-regulated, while ECM components COL2 and ACAN were down-regulated in the IVD 

tissue under degenerative/pro-inflammatory conditions.30 Here, MMPs and the main ECM 

components of IVD were analyzed 2 days after IL-1β stimulation and co-culture with MSCs 

[Fig. 5(A)]. The presence of MSCs did not induce by itself an up-regulation of MMP1 and 

MMP3 by IVD cells. On the other hand, it was observed up-regulation in IL-1β+MSCs, when 

compared to Ctr+MSCs co-culture, of MMP1 of approximately 3-fold (p=0.05) and of MMP3 

of about 7-fold (p<0.05). MMP13 expression was down-regulated in Ctr+MSCs, relatively to 

Ctr (0.3±0.6, p<0.05). Furthermore, MSCs were not able to down-regulate the increased 
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levels of MMPs in presence of IL-1β. Concerning ECM proteins, COL2 and ACAN were 

significantly down-regulated in all the conditions tested in comparison to the control. 

Furthermore, it was also seen a down-regulation of COL2 after IL-1β-stimulated discs’ co-

culture with MSCs to 0.09±0.06, compared both with Ctr+MSCs (0.2±0.2) and IL-1β (0.2±0.2) 

groups (p<0.01). ACAN expression did not seem to be altered after IL-1β+MSCs stimulation, 

when compared either with Ctr+MSCs or IL-1β alone groups. 

 

 

Fig. 5. Effect on the IVD ECM composition of proinflammatory/degenerative stimulus and co-culture with MSCs, 

after 2 and 14 days. (A) mRNA expression of bovine MMP1, MMP3, MMP13, COL2A1 and ACAN of IVD cells, 

after 2 days of co-culture. mRNA levels were normalized to GAPDH control gene and to the unstimulated discs 

(control level=1; dashed line). (B) Analysis at protein level of IVD ECM components, 14 days after co-culture. 

Biochemical analysis of sGAG content of IVD punches, normalized to control. Representative sagittal sections of 

disc punches stained for COL2A1 (a-d; scale bar, 100 µm) and ACAN (e-h; scale bar, 50 µm), displaying ACAN 

negative (ACAN-, Δ) and positive (ACAN+, +) cells. COL2A1 fluorescence intensity normalized to control. ACAN 

intensity in the tissue, determined by measuring the optic density (OD) of the DAB staining, normalized to control. 

Percentage of ACAN+ cells normalized to the imaged area (mm2) and to control group. Results are shown as box 

and whiskers plots (n=5-20). *P < 0.05; **P < 0.01 
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3.4. Evaluation of ECM remodeling in longer-term pro-inflammatory MSCs/IVD co-culture 

To evaluate the effects of MSCs co-culture on IVD tissue ECM at protein level, the organ 

cultures were maintained for 21 days, after which sGAG content was quantified, and COL2 

and ACAN deposition were analyzed by IHC [Fig. 5(B)]. A statistically significant decrease of 

sGAG content of about 0.3 in both IL-1β and IL-1β+MSCs groups was observed, compared 

to Ctr (p<0.01). Also in the Ctr+MSCs group sGAG content seemed to be lower in 

comparison with Ctr (0.6±0.4). COL2 staining [Fig. 5(B): a-d] fluorescence intensity was 

quantified using the IntensityStatisticsMask software and is presented as fold change to Ctr 

group. Results indicated similar COL2 for Ctr+MSCs and IL-1β groups, compared to Ctr. Yet, 

IL-1β+MSCs samples seemed to have slightly higher COL2 content, when compared to Ctr 

(1.2±0.6-fold) and to Ctr+MSCs (about 2-fold). ACAN deposition (brown) [Fig. 5(B): e-h], as 

well as cells negative (ACAN-, Δ) and positive (ACAN+, +) for ACAN deposition were 

quantified for the different conditions and normalized to Ctr. ACAN deposition in tissue was 

determined by color intensity measurements in DAB channel and presented as OD fold 

change to unstimulated IVD punches, for each donor. As mentioned in Supplementary 

Materials and Methods, all slides were stained at the same time to allow comparison 

between them. Overall, results indicated similar ACAN content in all the different conditions 

tested. Nonetheless, the numbers of ACAN+ and ACAN- cells were quantified using the 

ImmunoCellCounter software, and presented as % of ACAN+ cells, normalized to the imaged 

area (mm2) and in fold change to Ctr. Results showed that IVD stimulation with MSCs alone 

(Ctr+MSCs), IL-1β or IL-1β+MSCs appeared to increase the % of ACAN+ cells/mm2, 

compared to Ctr discs. These results represented a fold change of approximately 2-fold for 

all Ctr+MSCs, IL-1β and IL-1β+MSCs. Overall, no significant effect of MSCs in ECM 

production was observed, when compared to either control or IL-1β cultures. 

 

3.5. Inflammatory gene expression in cells isolated from the organ culture, 2 days after 

culture in pro-inflammatory conditions 

IVD cells pro-inflammatory gene expression profile was assessed by the expression of IL-6, 

IL-8 and TNF-α, 2 days after IL-1β stimulation and co-culture with MSCs [Fig. 6(A)]. In the 

IVD organ culture model an up-regulation of inflammatory markers IL-6 and IL-8 (14±29-fold 

and 8±8-fold, respectively; p<0.01) were here observed in the presence of IL-1β, in 

accordance with previous results30. TNF-α gene expression was similar between the IL-1β 

group and the control. Interestingly, IVD cells in co-culture with MSCs in basal conditions 

expressed similar IL-6 and IL-8 levels and TNF-α, when compared to Ctr. 
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Fig. 6. Inflammatory profile of IVD cells and MSCs, after 2 days in co-culture under control or proinflammatory/ 

degenerative conditions. (A) mRNA expression of bovine proinflammatory markers IL-6, IL-8, TNF-α by IVD cells. 

mRNA levels were normalized to GAPDH control gene and to the unstimulated discs (control level=1; dashed 

line). (B) Quantification of the detected cytokines of array membranes obtained for all conditions tested, values 

are expressed as average of two dots. (C) Concentration of IL-1β (pg/mL), RANTES (pg/mL), TGF-β1 (pg/mL) 

and PGE2 (ng/mL) in co-culture supernatants. Results are presented as box and whiskers plots (n=6-34). *P < 

0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 

 

In presence of IL-1β, MSCs significantly down-regulated IL-6 (from 14±28- to 3±2-fold; 

p<0.05). In addition, MSCs also seemed to down-regulated bovine IL-8 levels (from 8±8- to 

2±6-fold, p=0.06) and TNF-α (from 1±5-fold to 0.3±0.7-fold; p=0.09). Although gene 

expression of these pro-inflammatory players remarkably decrease in the presence of MSCs, 

their expression levels were still significantly up-regulated compared to control IVDs. 

In addition, the inflammatory cytokine array performed on IVDs culture supernatant allowed 

us to screen the factors involved in the immunoregulatory crosstalk between MSCs and IVD 

cells. The factors identified either in MSCs/IVD co-cultures and IVD cultures alone are 
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depicted in Fig. 6(B). IL-1β, RANTES and macrophage inflammatory protein (MIP)-1β 

concentrations were lower in IL-1β+MSCs than in IL-1β-stimulated samples alone. On the 

other hand, it seemed that IP-10 concentration was higher in IL-1β+MSCs in comparison to 

IL-1β. To validate the array’s qualitative results, IL-1β and RANTES were quantified by 

ELISA, in supernatants from experiments other than the ones used in the array analysis, as 

well as free-active TGF-β1 and PGE2 [Fig. 6(C)]. In basal conditions, IL-1β was not detected 

(Ctr and Ctr+MSCs), but a consumption of IL-1β in both groups in pro-inflammatory 

conditions (IL-1β and IL-1β+MSCs) was observed from 10.6±2.8 ng/mL to approximately 

1.5±0.9 and 1.2±0.5 ng/mL, respectively. RANTES was detected in the basal medium, as 

well as in all the experimental conditions tested, and was apparently consumed in the Ctr 

and IL-1β conditions, showing a reduction about 0.4. RANTES was produced in the presence 

of MSCs, with increase of approximately 1.2-fold, in both Ctr+MSCs and IL-1β+MSCs 

groups. RANTES concentration in presence of MSCs was significantly higher in basal 

conditions (about 2.7-fold to Ctr, p<0.05) and slightly higher in pro-inflammatory conditions 

(circa 2.6-fold to IL-1β). In addition, although total TGF-β1 was not identified in the 

inflammation array, free active form of TGF-β1 was detected in all experimental conditions. 

MSCs in Ctr IVDs contributed to an increase of TGF-β1 from 49±89- to 277±107-fold 

(p<0.01), while in the IL-1β groups, an increase from 30±51- to 132±97-fold was observed in 

the presence of MSCs (p=0.07). A significantly higher production of PGE2 was observed in 

IL-1β-stimulated samples, compared to Ctr (p<0.0001), similarly to what was previous 

described by us.30 PGE2 production slightly increased from 4±3- to 13±18-fold when MSCs 

were co-cultured with IVD punches in basal conditions. But under pro-inflammatory 

conditions, MSCs remarkably increased PGE2 from 30±29- to 121±148-fold (p<0.0001). 

 

4. Discussion 

This study investigated the regenerative and immunomodulatory role of MSCs in a pro-

inflammatory/degenerative IVD ex vivo model. This organotypic culture consists in bovine 

IVD explant cultures stimulated with needle puncture, IL-1β supplementation (10 ng/mL) and 

0.46 MPa static loading and was previously validated by us.30 An up-regulation of pro-

inflammatory markers (IL-6, IL-8, MMP1 and MMP3), as well as a down-regulation of ECM 

components (COL2 and ACAN) were observed in this model,30 in accordance with human 

disc degeneration,7,36 in which IL-1 was proposed as a key regulator of matrix-degrading 

enzymes.37-39 In this study, 1x106 MSCs/IVD were selected as the optimal cell concentration 

based in previous works with other models.40 MSCs were added to IVD culture 3 hours after 

pro-inflammatory stimulus. Maidhof et al. studies in a rat disc stab injury model suggest that 

cell administration at an early stage of injury/disease progression might decrease matrix loss, 
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through a potentially higher MSCs activity, due to the inflammatory microenvironment 

associated with injury.41 Nonetheless, higher metabolic activity might also be connected to 

cell senescence.42,43 Cell apoptosis and death remained low in our study and MSCs did not 

present an anti-apoptotic effect, in contrast with findings from Yang and colleagues.44 Of 

notice, there was formation of cell cluster inside the NP and higher MSCs migration in 

presence of IL-1β-stimulated IVDs, which could be due to an increased production of 

chemotactic recruitment mediators such as, for example, RANTES,45 TNF-α and/or IL-1β.46  

In this pro-inflammatory/degenerative IVD model, MSCs exhibited overall a pro-inflammatory 

profile, producing higher amounts of IL-6, IL-8, MCP-1, TIMP-2 and IL-4, and contributing to 

an increase of PGE2 production, while seemed to have decreased free active TGF-β1 

production. MSCs pro-inflammatory profile was also previously observed when MSCs were 

injected into the IVD.30 In the work of van Buul et al., MSCs stimulated with TNF-α and 

interferon (IFN)- showed higher production inflammation markers (IL-6, IDO) and anti-

catabolic TIMP-2, whereas TGF-β1 decreased.47  

It has been proposed that MSCs can create negative feedback loops as mode of action.48 

For instance, while TNF-α and other pro-inflammatory cytokines from resident macrophages 

have shown to activate MSCs to secrete TSG-6 on injured cornea,49 pro-inflammatory 

cytokines, nitric oxide, and other damage-associated molecules from injured tissues have 

also been shown to activate MSCs to secrete PGE2, which bound to macrophages and 

polarized them to an M2 phenotype that secreted IL-10.50 IVD cultures in degenerative and 

conditions stimulated MSCs to significant increase the expression of chemokine ligand 

CCL5/RANTES and chemokine receptors CCR1 and CCR4,45 as well as to produce factors 

as MCP-1 and MIP-1α, described to have a variety of pro-inflammatory activities, including 

chemotaxis.51 

TGF-β is known to enhance proteoglycans and COL2 in NP 3D cultures,52 and it is 

conventionally used to induce MSCs differentiation into a NP-like phenotype.8 This cytokine 

has a potent regulatory and inflammatory activity and, among others, regulates MSCs 

immune responses.53 In a human MSCs/IVD fragments co-culture model it was observed, 

over time in culture, up-regulation of TGF-β1 by MSCs, and a decrease of TNF-α, 

stabilization of IL-1α and up-regulation of IL-1β expression by IVD cells.38 This is in 

opposition with our observations, in which a decrease of TGF-β1 production was related with 

a decrease of inflammatory markers IL-6, IL-8 and TNF-α of bovine IVDs. We hypothesize 

that it may be due to the differences between study models (human vs bovine) and to the 

culture stimulation with IL-1β in the bovine and not in the human model that may modify 

MSCs mode of action. 

PGE2 is known to be produced by both IVD cells54 and MSCs,55 in response to pro-

inflammatory cytokine signaling, particularly IL-1β, as it was observed in this co-culture 
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model. Activated by environmental signals, PGE2 from MSCs exert regulatory influence on 

the activation status, proliferation, differentiation and function of immune cells from adaptive 

and innate immunity.53 Additionally, it has been shown that cyclooxygenase (COX)-2/PGE2 

pathway may be one of the modulators of MSCs anti-inflammatory mechanism of action in 

osteoarthritic chondrocytes.26 

MSCs stimulation of proteoglycans and COL2 production in IVD were already reported in 

different literature models, in which the inflammatory environment was not addressed.35,56,57 

Furthermore, in vivo observations showed increased ECM components only after 1258 to 48 

weeks.56 In the present inflammatory conditions, MMP1 and MMP3 expression by IVD cells 

was up-regulated 2 days after co-culture with MSCs and no stimulatory effect of MSCs was 

observed at ECM level after 14 days, which we hypothesized that could be due to be an 

early time point. In agreement with our results, van Buul et al. observe significant down-

regulation of COL2 gene expression in human osteoarthritic cartilage explants cultured with 

TNF-α and IFN)- stimulated MSC-conditioned medium.47 The literature suggests that MSCs 

have an immunomodulatory response when in an inflammatory environment,26 and that they 

are mainly triggered to first counteract inflammation instead of stimulating matrix formation.47 

Overall, MSCs co-culture with IVDs under degenerative/pro-inflammatory conditions 

contribute to a less pro-inflammatory profile of native IVD cells. This immunomodulatory 

action was already described in osteoarthritic chondrocytes cultures with adipose-derived 

MSCs by a reduction of IL-6, IL-8, IL-1β, MCP-1, MIP-1α and RANTES26 and in rat NP cells, 

co-cultured with human synovial MSCs, where it was observed down-regulated gene 

expression of, for example, nuclear factor, interleukin 3 regulated, IL-15, IL-6 signal 

transducer, IL-11 receptor, alpha chain 1, TSG-6 and TNF receptor superfamily, member 6.59 

However, MSCs influence in IVD inflammatory response, degeneration and regeneration has 

not yet been extensively characterized.10  

Here, MSCs seemed to possess anti-inflammatory, but not anti-catabolic properties in the 

pro-inflammatory/degenerative IVD. This mode of action seems to occur via a negative 

feedback loop, with increasing production of pro-inflammatory factors by MSCs. Overall, this 

study calls the attention to the need of more thorough studies before the widespread use of 

MSCs-based approaches for LBP. Moreover, differences in people’s genetic predisposition 

may impact on the response to MSCs immunomodulation and thus affect LBP and IVD 

function. In the future, it would be interesting to explore the effect of MSCs in more complex 

models of IVD degeneration/inflammation. It is crucial to better understand the interactions 

between MSCs, IVD cells and immune cells in the context of the degenerated intervertebral 

disc and associated inflammation and pain. 
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Supplementary Data 

Materials and Methods 

Culture of human MSCs 

The data regarding age, gender, bone marrow origin and passaged used for the experiments 

conducted for the present work are shown in Table S1. 

Table S1. Human MSCs Donors. 

Donor Age Gender Bone marrow origin 
Passage 

used 

1 18 male Healthy donor for bone marrow for transplantation 3 

2 21 male Aspirate from knee joint surgery 5, 6, 7 

3 22 male Aspirate from knee joint surgery 5 

4 25 female Aspirate from knee joint surgery 5 

5 34 male Aspirate from knee joint surgery 3 

6 45 male Hip replacement surgery  4 

7 56 female Hip replacement surgery 3 

 

Human MSCs 2D culture and quantitative real-time reverse transcription polymerase chain 

reaction 

In parallel with IVD punches co-culture with MSCs in the transwells, a 2D culture was 

performed. MSCs (1x106) were seeded in 6-well plates and stimulated by IVD culture medium 

supplemented with 10 ng/mL IL-1β (IL-1β 2D). MSCs cultured in IVD basal medium were used 

as control (Ctr 2D).  

MSCs gene expression was analyzed 2 days later by quantitative real-time reverse 

transcription polymerase chain reaction (qRT-PCR). Specific primer pairs were designed using 

published gene sequences (PubMed, NCBI Entrez Nucleotide Database) and Primer 3 

software for human GAPDH, TNF-α, IL-6, IL-8, IL-10, MMP1, MMP3, MMP13, COL2 and 

ACAN (Table S2), and synthesized by Thermo Fisher Scientific. 

 

Table S2. Human oligonucleotide primers 

Gene Forward and reverse primer, 5’-3’ 
Product 

length (bp) 

NCBI reference 

sequence 

GAPDH 
GAAGGTGAAGGTCGGAGTC 

GAAGATGGTGATGGGATTTC 
224 NM_002046 

TNF-α 
AACCTCCTCTCTGCCATCAA 

GGAAGACCCCTCCCAGATAG 
100 HQ201306 

IL-6 
AGGAGACTTGCCTGGTGAAA 

CAGGGGTGGTTATTGCATCT 
180 NM_000600 

IL-10 
CTGGGTTGCCAAGCCTTGTCTGA 

ATCGATGACAGCGCCGTAGCC 
154 NM_000572.2 

MMP1 
ATGCTGAAACCCTGAAGGTG 

CTGCTTGACCCTCAGAGACC 
234 NM_002421 
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MMP3 
GGAGATGCCCACTTTGATGAT 

CATCTTGAGACAGGCGGAAC 
187 NM_002422 

MMP13 
TTGAGCTGGACTCATTGTCG 

GGAGCCTCTCAGTCATGGAG 
172 NM_002427 

COL2 
CGCACCTGCAGAGACCTGAA 

TCTTCTTGGGAACGTTTGCTGG 
162 XM_056481 

ACAN 
TCTGTAACCCAGGCTCCAAC 

CTGGCAAAATCCCCACTAAA 
199 XM_007701 

 

Results 

Evaluation of MSCs anti-inflammatory potential in the proinflammatory conditions 2 days after 

2D culture 

After 2 days of culture, MSCs gene expression analysis showed a significant up-regulation of 

proinflammatory interleukin IL-6, anti-inflammatory IL-10, matrix degrading enzymes MMP1 

and MMP13, and ECM component ACAN, compared to Ctr 2D (p<0.05) [Fig. S1(A)]. TNF-α 

expression was similar between IL-1β 2D and Ctr 2D groups. Furthermore, MMP3 and COL2 

expression was not detected in MSCs 2D cultures, although they were previously shown to be 

expressed by human by nucleus pulposus cells.1 

 

Fig. S1. Effect on MSCs in 2D culture of proinflammatory stimulus with culture medium supplementation of 10 

ng/mL IL-1β, for 2 days. (A) mRNA expression of proinflammation markers (TNF-α, IL-6, IL-10), matrix degrading 

enzymes (MMP1, MMP13), and an ECM component (ACAN) in MSCs 2D culture. Levels of mRNA were normalized 

to GAPDH. The ratio of stimulation to control (Crt 2D) indicates the fold change of induction after stimulation (control 

level = 1; dashed line). (B) Fold change of IL-8, PGE2 and free active TGF-β1 concentrations normalized to control 

(Crt 2D) (n=3-7). *p<0.05 

 

IL-8, PGE2 and free active TGF-β1 productions were quantified in culture supernatants [Fig. 

S1(B)]. After 2 days of stimulation with IL-1β, PGE2 production by MSCs was significantly 

increased (P = 0.02), while TGF-β1 production seemed to have decreased about 0.7±0.7, in 

comparison to control.  

These results indicate that MSCs cultured in 2D are sensitive to the presence of 

proinflammatory conditions, namely IL-1β, presenting a more proinflammatory profile.  
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The work on this thesis was developed in view of enhancing knowledge concerning the 

inflammatory response of degenerated IVD, as well as to propose immunomodulatory 

therapies for this disorder.  

As proposed by other authors, the modulation of inflammation is key for promoting matrix 

synthesis by the cells in the IVD microenvironment, both by native or transplanted cells (Wuertz 

and Haglund 2013, Risbud and Shapiro 2014, Gorth et al. 2015). For instance, herniated 

tissues, mostly extruded but also with intact AF structure (Lee et al. 2009, Phillips et al. 2015), 

are often described to contain abundant macrophage infiltration (Peng et al. 2006, Kokubo et 

al. 2008, Shamji et al. 2010, Wuertz and Haglund 2013). AF tear and consequent NP leakage 

is recognizable to the immune system as a foreign body, activating immune cell migration 

(lymphocytes, such as natural killer, T and B cells, and monocytes/macrophages) and 

infiltration in the extruded tissue, which together with the produced cytokines, amplify the 

inflammatory response, leading to increased innervation and associated pain (Sun et al. 

2013b, Risbud and Shapiro 2014). The control of the inflammatory response for successful 

tissue repair/regeneration has been explored in other tissues, such as bone (Rozen et al. 2007, 

Santos et al. 2013, Lin et al. 2017), skin (Cardoso et al. 2011), tendon (Shen et al. 2016), 

cartilage (Pers et al. 2015, Kim et al. 2016, Sakata and Reddi 2016), peripheral nerve 

(Bombeiro et al. 2016), spinal cord (Watanabe et al. 2015), kidney (Semedo et al. 2009) or 

cardiac tissue (Han et al. 2015, Reina-Couto et al. 2016, Zlatanova et al. 2016), among others. 

In this work, the modulation of inflammation in degenerated IVD was attempted to promote 

tissue repair. However, it is important to highlight that the healthy human IVD has specific 

characteristic that may render difficult the reestablishment of homeostasis upon degeneration. 

The IVD is the largest avascular and aneural tissue in the body (Urban and Roberts 2003, Raj 

2008, Huang et al. 2014), populated by a small number of resident cells in a slightly acidic and 

hypoxic environment (Huang et al. 2014). Moreover, it has access to low nutrient supply and 

is subjected to high mechanical and osmotic pressures (Rinkler et al. 2010). 

 

The first contribution of this thesis to the field was the establishment of a study model of IVD 

degeneration and inflammation ex vivo (Chapter IV) that was shown to be adequate to test 

different therapeutics for IVD degeneration and associated inflammation (Teixeira et al. 2015, 

Teixeira et al. 2016). Due to the low accessibility of healthy human IVD tissue, this revealed to 

be a simple and inexpensive model (Alini et al. 2008), with high availability, enabling the design 

of more complex experiments requiring higher number of replicates. Nonetheless, due to the 

IVD’s great swelling potential (Urban et al. 1979), and variability of IVD sizes within the same 

tail, it is difficult to establish a reproducible model of IVD tissue without endplate. To overcome 

these issues, standardized punches were performed to collect similar tissue samples from the 

different discs along the tail (with few surrounding AF) and these were cultured with membrane 
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filter inserts on top and under 0.46 MPa static loading, to prevent swelling (Teixeira et al. 2015). 

This pro-inflammatory/degenerative model was developed with needle puncture and IL-1β 

stimulation, a more physiological approach than most of the models available at the time, that 

simulated tissue degeneration by: 1) tissue removal (Pereira et al. 2014), 2) injury (Korecki et 

al. 2008) and/or 3) loading (Korecki et al. 2007, Illien-Junger et al. 2012, Pattappa et al. 2014), 

or also by tissue digestion with 4) chemical compounds, such as papain (Bucher et al. 2013, 

Chan et al. 2013, Malonzo et al. 2015) or trypsin (Jim et al. 2011, Gawri et al. 2014a, Mwale 

et al. 2014, AlGarni et al. 2016). Other ex vivo models in the presence of TNF-α were 

established for bovine (Purmessur et al. 2013b) and rat IVD (Walter et al. 2015, Walter et al. 

2016). Ponnappan and colleagues (2011) had developed a rat lumbar IVD pro-

inflammatory/degenerative model with IL-1β and TNF-α stimulation. This system is an 

atraumatic in vitro model of early IVD degeneration, and therefore, based on changes in the 

microenvironmental cues that promote wide changes in the expression of several genes linked 

to the IVD degenerative process (Ponnappan et al. 2011, Markova et al. 2013). The culture of 

the IVD with endplates allows for a better preservation of tissue structure, avoiding excessive 

swelling. Nonetheless, given the differences regarding the NP and IVD volumes from the rat 

lumbar (about 5 to 19 mm3), bovine tail (1 to 4 cm3), and human lumbar (5 to 20 cm3) regions 

(O'Connell et al. 2007), bovine IVDs promote a similar environment to human, namely for 

translation of intradiscal injection treatment volumes. Also, bovine discs suffer similar loss of 

notochordal cell content as humans, while rat IVDs preserve them in great number throughout 

adulthood, which confers a higher regenerative capacity to this model, that is far away from 

the human IVD potential (Alini et al. 2008). Moreover, bovine tails are cost-efficient and easily 

available for our studies. Recently, Krupkova et al. (2016) proposed an ex vivo bovine NP 

tissue culture in presence of IL-1β and TNF-α, to simulate the pro-inflammatory environment. 

In their work, the NP tissue is cultured inside a hypertonic polyethylene glycol structure, used 

as an artificial annulus system that was previously shown to prevent tissue swelling and 

proteoglycans loss, while maintaining cell viability for 42 days (van Dijk et al. 2013). 

Nonetheless, our NP punches culture with few surrounding AF, membrane filter inserts on top 

and under 0.46 MPa static loading also prevent excessive swelling (Teixeira et al. 2015). 

Though our model was shown to be suitable to test the direct effect of intradiscal therapies on 

IVD cells, which can be analyzed without the complex in vivo cell crosstalk, we consider that 

this model can be improved. The ex vivo model was developed without simulation of the normal 

physiological loadings to which discs are exposed in vivo (Haschtmann et al. 2006, Junger et 

al. 2009, Gawri et al. 2014a), which might influence the outcome. Moreover, using disc 

punches are a reliable simplification step, but not as physiological when compared to more 

complex organ culture approaches which use complete discs with the adjacent endplates and 

additional dynamic loading application (Illien-Junger et al. 2012, Pattappa et al. 2014, Walter 
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et al. 2015, Walter et al. 2016). Another limitation is the absence of vascularization and 

innervation, and therefore, of immune cells in the disc and surroundings. To improve this, it 

would be interesting to complex the ex vivo model to focus on inflammation studies and 

correlation with pain mediators, since not all patients diagnosed with degenerative disc disease 

report pain, which suggests that only some specific features of disc degeneration are 

associated with LBP (Cheung et al. 2009, de Schepper et al. 2010, Adams et al. 2014). The 

establishment of a co-culture of the IVD punches with, for instance, macrophages (currently 

being performed in our team) will allow a better understanding of the local interactions between 

these cells and the IVD, in presence of different treatments. Previous ex vivo works showed 

that macrophage-IVD interactions promote the secretion of matrix degrading enzymes linked 

to a positive effect in spontaneous hernia regression (Haro et al. 2000, Doita et al. 2001), but 

on the other hand they play a major role in sciatica and in the production of TNF-α, IL-6, IL-8 

and PGE2 (Takada et al. 2004, Takada et al. 2012). Therefore, such model would be of great 

interest to further test the intradiscal therapies proposed in this thesis.  

 

Nanotechnology-based therapies present several advantages for drug delivery. Chitosan (Ch) 

and poly(-glutamic acid) (-PGA) nanoparticles/nanocomplexes (NCs) have been previously 

used in our group to deliver an anti-inflammatory drug, diclofenac (Df). These Df-NCs inhibited 

and reverted macrophage activation in vitro (Gonçalves et al. 2015). In this thesis, Df-NCs 

intradiscal injection was attempted using the pro-inflammatory organ culture previously 

established. IVD cells were able to internalize the particles, which promoted down-regulation 

of IL-6, IL-8, MMP1 and MMP3 expression and decreased PGE2 production, while NCs by 

themselves only significantly decreased MMP3. Moreover, Df-NCs promoted an increase in 

matrix proteins production by native cells, namely COL2 and ACAN, while NPs alone increased 

ACAN production only. -PGA is one of the most appealing natural polymers, mainly due to its 

biodegradability into glutamate residues. Since -PGA is anionic (pKa 2.19) it can be easily 

combined by electrostatic interaction with cationic polymers as Ch (Antunes et al. 2011), 

forming polyelectrolyte complexes with great potential as delivery systems. -PGA has been 

pointed out by prior works from our team to promote earlier chondrogenic differentiation of 

MSCs in pellet culture (Antunes et al. 2015) and to enhance COL2 production in a 

nucleotomized IVD ex vivo model (Antunes et al. 2017).  

Despite the promising results ex vivo, we failed to determine the most adequate concentration 

of Df-NCs for intradiscal injection in the rat caudal injury model (Cunha et al. 2015), as 

discussed in Chapter VI. The injection of 10 µL of Df and Df-NCs 50 times concentrated 

represented a too high NCs/NP volume ratio (over 2 times higher injection volume than the NP 

volume). Moreover, given that these solutions were injected at pH 5.0, a high acidification of 
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the IVD environment may have occurred, impeding the release of Df from Df-NCs. We look 

forward to improve the delivery system and to better understand if the pH of the rat IVD after 

injury drops under healthy physiological values of around 7.1 (Ichimura et al. 1991). Moreover, 

we are also performing experiments to determine the Df release kinetics from the NCs in 

solutions at different pH values, ranging namely from 6.5, pointed out the be characteristic of 

a severely degenerated environment (Kitano et al. 1993), to 7.1. On the other hand, further 

complexation of this system is required to promote prolonged drug release. Nanocapsules 

production in a layer-by-layer methodology could facilitate a single intradiscal injection with 

prolonged release periods.  

Nonetheless, although the degeneration/herniation rat caudal model is of great interest to 

study molecular mechanisms in a complex environment, such as cell recruitment (Cunha et al. 

2016), it presented limitations in the translation from ex vivo bovine organ cultures (as seen in 

Chapter VI), namely related with the determination of the most adequate volume and dosage 

for intradiscal injection of therapeutics or implantation of engineered tissue constructs, as 

reviewed by Zhang et al. (2011a). Large animal models, reviewed in Chapter I, as sheep or 

goat present several advantages regarding similar loss of notochordal cells and IVD size as 

humans, and even if quadruped, they suffer similar mechanical loadings applied on the lumbar 

spine region (O'Connell et al. 2007, Alini et al. 2008, Daly et al. 2016), facilitating the translation 

of volumes and concentrations, compared to rat (Zhang et al. 2011a). 

Mao et al. studied the effect of injection volume on disc degeneration in a rat tail model, and 

observed significantly higher histologic score in IVDs, 1 week after injection of 3 μL of saline 

solution, and more severe degeneration, particularly during week 4, when compared to animals 

injected with 2.5 μL of saline solution or less (Mao et al. 2011). Rat degenerate discs treated 

with 2 μL simvastatin in a hydrogel carrier demonstrated, after 6 weeks, radiographic and 

histologic features resembling non-injured IVDs (Than et al. 2014). Nonetheless, other studies 

of rat intradiscal injection of about 8 µL of growth factors solutions have shown to promote 

matrix synthesis (Walsh et al. 2004, Matta et al. 2017). The needle diameter used is also of 

great importance to minimize the risk associated with further IVD degeneration. Elliott et al. 

(2008) review of several animal IVD models of needle puncture or sham injection denoted that 

needle injection in models where needle diameter/disc height ratio was smaller than 25%, no 

significant disc changes seemed to be observed regarding degenerative features. 

In addition, the degree of acetylation (DA) of the Ch used to produce the NCs is about 11%. 

Nonetheless, Vasconcelos et al. (2013) showed that Ch scaffolds with 5% DA induced the 

adhesion of lower numbers of inflammatory cells after implantation in a murine air-pouch 

model, having the adherent macrophages predominantly an anti-inflammatory phenotypic 

profile (M2), compared to scaffold produced with Ch with 15% DA, predominantly with pro-

inflammatory M1 macrophages both adherent to the scaffold and in the exudates. Therefore, 
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it would be of interest to produce NCs with different DA, namely 5%, and analyze in vivo if 

differences would be observed regarding the percentage of macrophages migration to the 

hernia, as well as their inflammatory profile. Additionally, the incorporation of 

immunomodulatory molecules, such as TGF-β1 (Yang et al. 2015), or resolvins (Vasconcelos 

et al. 2015a, Vasconcelos et al. 2015b) on the NCs could trigger a shift in the macrophage 

response towards an M2 phenotype, to promote resolution of inflammation and tissue repair 

in vivo. 

 

IVD’s ability to regenerate benefits from the presence of cells capable of proliferating and 

differentiating into NP-like cells. Although IVD progenitor cells have been found in the human 

IVD, after birth, the number of notochordal cells decreases very rapidly (Blanco et al. 2010, 

Feng et al. 2010, Liu et al. 2011). An exhaustion of these cells with ageing and degeneration 

limits IVD’s potential to counteract degeneration (Sakai et al. 2012, Sakai and Andersson 

2015). Therefore, cell-based therapies to LBP, with the purpose to stimulate regeneration of 

the IVD, are being increasingly used (Sakai and Andersson 2015). Autologous or allogeneic 

MSCs transplantation is suggested as an adequate cell source (Yoshikawa et al. 2010, Sakai 

and Andersson 2015). In this work, the influence of the pro-inflammatory/degenerative 

environment of IVD in MSCs behavior was evaluated, namely in their immunomodulatory role. 

MSCs help minimize organ damage caused by the inflammation and cells activated by the 

immune system (Zachar et al. 2016). Several mechanisms of action have been proposed for 

MSC immunomodulation, including the secretion of soluble factors, among others, as reviewed 

(Caplan and Dennis 2006, English 2013). Initial striking clinical trials showed that in patients 

suffering from lumbar IVD degeneration with associated LBP, autologous bone marrow MSCs 

grafted percutaneously to degenerated IVDs (Yoshikawa et al. 2010) or injections into the NP 

(Orozco et al. 2011) did not seem to promote an increase in disc height, but increased MRI 

signal intensity and improved pain symptoms, at 1 and 2 years after surgery. Moreover, 

autologous bone marrow concentrate disc injections also seemed to have reduced patients’ 

discogenic pain after 12 months (Pettine et al. 2015). In rabbits, MSCs injection in 

nucleotomized discs promoted COL2 synthesis by native cells, inhibited the expression of 

degrading enzymes and inflammatory cytokines, indicating a possible immunomodulatory 

effect (Miyamoto et al. 2010). Nonetheless, as suggested by others and by our results (Chapter 

VII), in a pro-inflammatory environment MSCs are firstly triggered to modulate inflammation 

instead of stimulating matrix production (van Buul et al. 2012, Manferdini et al. 2013). MSCs 

have been shown to differentiate to an NP-like phenotype in vitro (Risbud et al. 2004, 

Richardson et al. 2008b, Strassburg et al. 2010). In vivo, MSCs transplantation showed to 

increase COL2 expression, while decreasing cell apoptosis in the disc (Yang et al. 2010). 

MSCs can be recruited by chemoattractants to IVD (Pereira et al. 2014), but their role in the 



Chapter VIII – General discussion and future perspectives 

 

196 
 

pro-inflammatory/degenerative conditions of degenerated IVD seems to be somehow 

committed (Chapter VII).  

Currently, bone marrow is the primary used source of adult MSCs, in which one of 105 

nucleated cells is an MSC. This low cell number leads to the need of in vitro cell expansion to 

obtain sufficient cell numbers for clinical application (Hoogendoorn et al. 2008, Kregar 

Velikonja et al. 2014). In alternative, adipose-tissue is an abundant, expendable and easily 

accessible source of MSCs. For instance, Serigano et al. (2010) suggested 106 MSCs/disc as 

optimum cell number for transplantation into a dog disc degeneration model. The use of 

adipose-derived stem cells (ASCs) could reduce the need for in vitro expansion and 

subsequently one-step regenerative treatment strategies could be developed (Hoogendoorn 

et al. 2008, Kregar Velikonja et al. 2014). Few works have addressed the potential of ASCs in 

the IVD microenvironment, especially at long-term. However, it has been demonstrated that 

co-culture with degenerative NP tissue (Li et al. 2005) and cells (Choi et al. 2011) increase 

ASCs expression of COL2 and ACAN. Moreover, ASCs have also shown to promote matrix 

synthesis and cell proliferation of degenerated NP cells (Song et al. 2015). ASCs implanted in 

a rabbit model of traumatic degeneration of lumbar discs, showed proliferation 10 weeks after 

cell injection, ECM secretion and less ossification of damaged NP, compared with 

degenerative control discs (Chun et al. 2012). Recently, ASCs were shown to modulate 

inflammation in autoimmune arthritis (Lopez-Santalla et al. 2016). 

Additionally, MSCs secrete numerous soluble factors in response to the microenvironmental 

cues, tuning several mechanisms in neighbor tissues via paracrine signaling (Caplan and 

Dennis 2006, Brisby et al. 2013). Thus, several studies focused on, for example, MSCs 

secretome for cardiac tissue repair (Dai et al. 2007) and recovery of hepatic (Parekkadan et 

al. 2007) and kidney (van Koppen et al. 2012) functions. MSCs secretome was suggested to 

stimulate IVD progenitor cells activity within degenerated human IVD tissue samples toward 

the repair process (Brisby et al. 2013). Hence, our group is currently comparing the therapeutic 

potential of not only MSCs, but also their secretome in the established degenerative/pro-

inflammatory organ culture model.  

Ultimately, the establishment of an experimental setup of IVD/macrophages co-culture, under 

pro-inflammatory/degenerative conditions could be used to evaluate the MSCs 

immunomodulatory effect, either in co-culture with the macrophages colonized IVD tissue or 

of their secretome. Moreover, given the results from the work in Chapter VII, which point out 

that in the degenerative environment, MSCs have a pro-inflammatory profile, while contributing 

to a less pro-inflammatory profile of native IVD cells, it would be of interest to treat the system 

with the anti-inflammatory Df-NCs. Taking this, if addition of the Df-NCs would decrease 

production of pro-inflammatory molecules by all cells, MSC could possibly differentiate and 

produce IVD-like ECM components.  
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This thesis focused mainly in the NP tissue. As future work, it would also be interesting to 

investigate the effect of different anti-inflammatory and immunomodulatory therapies in 

mechanical and biochemical properties of AF for repair stimulation. Aside the hostile 

environment of the NP, also the risk of AF tear has been challenging alternative solutions for 

IVD degeneration/herniation. As stated by Long et al. (Long et al. 2016), although discectomy 

is the most effective surgical procedure to treat hernia-associated LBP (Asch et al. 2002, Gray 

et al. 2006, Weinstein et al. 2008), this requires an incision in the AF, which may contribute, 

together with pre-existing annular injury, to worsening the IVD biomechanical stability (Masuda 

et al. 2005, Elliott et al. 2008, Michalek and Iatridis 2012). Failure of the AF is often associated 

with disc degeneration, whereas this structure gets too weak to restrain the hydrated NP 

material (Adams and Roughley 2006, Stefanakis et al. 2012, Stefanakis et al. 2014). As 

described before, the AF consists in concentric lamellae of regularly arranged collagen fibers, 

interconnected by a network of elastin and fibrillin, the so called translamellar bridging network 

(TLBN), which increase tensile strength of the annular wall (Yu et al. 2007, Schollum et al. 

2009, Yu et al. 2015). But the pathomechanism leading to mechanical weakness (and 

ultimately rupture) of AF and consequent disc herniation is not yet fully understood.  

The studies regarding the inflammation in the pathomechanism of disc degeneration and the 

inflammatory targets proposed for therapeutic strategies in degenerated IVD, previously 

discussed in Chapter II, are mostly focused in the NP tissue, often disregarding the influence 

of pro-inflammatory conditions on the TLBN of AF. Therefore, the influence of pro-inflammatory 

conditions on the mechanical properties of the AF tissue should be further addressed, along 

with the impact of anti-inflammatory treatment strategies. For this, an IVD ex vivo AF model, 

under physiological and degenerative biomechanical loading conditions (Neidlinger-Wilke et 

al. 2014), is being established to contribute with further knowledge in the field of therapeutic 

approaches for IVD regeneration. This model results from a new collaborative project between 

Portugal and Germany, that will enhance the knowledge on immunomodulatory strategies for 

IVD, that hopefully will increase the success of LBP therapeutic approaches. 
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Chapter I 

 

Figure 1. “Schematic representation of healthy intervertebral disc.”  

Author: Yong-Chan Huang, Jill P. G. Urban, Keith D. K. Luk  

Source: http://www.nature.com/nrrheum/journal/v10/n9/full/nrrheum.2014.91.html  

License: Please refer to license nº 4041040725377 in this appendix. 

The image was adapted. 

 

Figure 2. “Schematic representation of intervertebral disc degeneration.”  

Author: Yong-Chan Huang, Jill P. G. Urban, Keith D. K. Luk  

Source: http://www.nature.com/nrrheum/journal/v10/n9/full/nrrheum.2014.91.html 

License: Please refer to license nº 4041040725377 in this appendix. 

The image was adapted. 

 

Chapter II 

 

Figure 1. “Role of the cytokines involved in different phases of intervertebral disc degeneration 

and herniation, leading to back and radicular pain.”  

Author: Makarand V. Risbud, Irving M. Shapiro 

Source: http://www.nature.com/nrrheum/journal/v10/n1/full/nrrheum.2013.160.html 

License: Please refer to license nº 4041040533967 in this appendix. 

No modifications were made to the image.  

 

Figure 2. “Role of the different classes of immune cells in amplifying the inflammatory response 

by disc cells during IVD degeneration.”  

Author: Makarand V. Risbud, Irving M. Shapiro 

Source: http://www.nature.com/nrrheum/journal/v10/n1/full/nrrheum.2013.160.html 

License: Please refer to license nº 4041040533967 in this appendix. 

No modifications were made to the image.  

 

Figure 3. “Cell sources for intervertebral disc regeneration.”  

Author: Daisuke Sakai, Gunnar B. J. Andersson 

Source: http://www.nature.com/nrrheum/journal/v11/n4/full/nrrheum.2015.13.html 

License: Please refer to license nº 4070990622889 in this appendix. 

No modifications were made to the image.  
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