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ABSTRACT 
 

The work developed in this thesis intends to study the production of vanillin and 

syringaldehyde by oxidative depolymerization of lignins from lignin-rich side streams of pulp and 

paper industry and/or biorefineries. Researches worldwide confirm the importance of lignin in the 

scenario of the integration of biorefinery concept and the efforts are focused in the study of 

alternatives as sources of chemicals. Lignin is an aromatic biopolymer naturally abundant with high 

potential for valorization. One of the routes is the production of vanillin and syringaldehyde by 

lignin oxidation with O2, an environmental friendly process. Vanillin is a phenolic compound with 

increasing demand in international market. Syringaldehyde is not hitherto produced from lignin; 

however, as vanillin, it is a valuable starting chemical for the pharmaceutical industry, and could be 

produced from lignin as well. However, lignin complexity and structural diversity within the same 

molecule is delaying a more generalized exploitation of its functionality comparatively, for 

example, to cellulose.  

The characterization and comparative evaluation of lignins from different biomass species, 

different morphological parts of the same species and submitted to different delignification 

processes were accomplished in this thesis. Lignin-rich side streams and isolated lignins were 

studied through their composition in inorganic material and sugars. Characterization was 

accomplished by nitrobenzene oxidation, 13C, 31P, 1H and HSQC NMR and FTIR spectroscopy. 

Data on lignin structure, particularly key characteristics such as H:G:S ratio, degree of 

condensation, and β-O-4 content, allowed inferring about its potential as raw-material to produce 

aldehydes, such as vanillin and syringaldehyde. All the lignins were classified according to a radar 

classification tool built with selected descriptors, simplifying the evaluation and discussion of the 

impact of the delignification process, species, and morphologic part on lignin structure. This 

comparative study about lignin potential represents an essential tool for the further selection of 

lignins and/or processes to a possible route of valorization within a lignocellulosic-based 

biorefinery. 

The evaluation of the potential of selected lignins for production of functionalized aldehydes 

by oxidative depolymerization was also performed. Industrial Eucalyptus globulus sulfite liquor 

and kraft liquors (collected at different stages of processing before the recovery boiler) were 

evaluated according to their potential for the production of syringaldehyde and vanillin by 
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oxidation with O2 in alkaline medium. Oxidations were performed in a jacketed batch reactor with 

controlled temperature, total and O2 partial pressure, and with defined values of NaOH and lignin 

concentration by direct reaction of pulping liquors and reaction of kraft lignins isolated from 

liquors. An ethanol organosolv lignin from tobacco stalks was also submitted to oxidation and the 

effect of selected reaction conditions (initial lignin concentration, temperature and partial pressure 

of O2) was studied in order to achieve the best conditions to reach the maximum yields of phenolic 

monomers. The kinetic study of products formation from this lignin was attained and the results led 

to the evaluation of its potential as source of vanillin and syringaldehyde.  

In a further stage, an industrial kraft liquor was subjected to ultrafiltration using tubular 

ceramic membranes aiming the fractionation of lignin according to its molecular weight. The 

composition and characterization of each resulting fraction and the respective isolated lignin was 

accessed by means of different analytical techniques The structural information accomplished led 

to a complete study about the functionality and reactivity of each ultrafiltration fraction in view of 

their valorization as source of added-value products and valuable chemicals in the context of a 

second generation biorefinery. 

All the work developed in this thesis opens good perspectives from the point of view of pulp 

and paper industry, aiming for diversification of products and side-streams valorization. 
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RESUMO 
 

O trabalho desenvolvido nesta tese tem como principal objetivo estudar o processo de 

produção de vanilina e seringaldeído através da despolimerização oxidativa de lenhinas obtidas a 

partir de correntes processuais de indústrias de pasta e papel e/ou biorrefinarias. Existe um vasto 

número de estudos que confirmam a relevância da lenhina e a importância da sua integração no 

âmbito das biorrefinarias como fonte de produtos alternativos aos obtidos na indústria 

petroquímica. A lenhina é um polímero aromático naturalmente abundante e com elevado potencial 

de valorização. Uma das suas possíveis vias de valorização é a produção de vanilina e 

seringaldeído por oxidação com O2. A vanilina é um composto fenólico com um crescente interesse 

no mercado internacional. O seringaldeído, apesar de atualmente não ser produzido diretamente a 

partir da lenhina é, tal como a vanilina, um importante produto químico com elevado interesse na 

indústria farmacêutica. Contudo, a complexidade da lenhina e a sua diversidade estrutural 

dificultam o estudo da sua funcionalidade e reatividade com vista á sua valorização como fonte de 

fenólicos de valor acrescentado.  

Lenhinas obtidas a partir de diferentes espécies de biomassa, diferentes partes morfológicas 

da mesma espécie e diferentes processos de deslenhificação foram caracterizadas e avaliadas nesta 

tese. As lenhinas foram estudadas considerando a sua composição em material inorgânico e 

açúcares. A caracterização foi efetuada por oxidação com nitrobenzeno, RMN de 13C, 31P, 1H e 

HSQC e também FTIR. A informação estrutural obtida, especialmente características como a razão 

H:G:S, o grau de condensação e o conteúdo em estruturas β-O-4, permitem inferir acerca do 

potencial das lenhinas como matéria-prima para produção de aldeídos, como a vanilina e o 

seringaldeído. Todas as lenhinas foram classificadas e avaliadas através de radares, usando como 

descritores as suas principais características estruturais. Este tipo de representação simplifica a 

avaliação e discussão do impacto que o processo de deslenhificação, a espécie e a parte 

morfológica representam na estrutura da lenhina. Este estudo, centrado no potencial das lenhinas, 

representa uma ferramenta essencial para a seleção de lenhinas e/ou processos considerando uma 

possível via de valorização no âmbito das biorrefinerias lenhocelulósicas. 

O estudo do potencial de lenhinas para produção de aldeídos funcionalizados através da 

despolimerização oxidativa foi outro dos objetivos desta tese. Licores Eucalyptus globulus obtidos 

através de processos industriais sulfito e kraft foram avaliados de acordo com a sua propensão para 
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produzir vanilina e seringaldeído por oxidação com O2 em meio alcalino. As oxidações dos licores 

e das lenhinas isoladas foram efetuadas num reator batch com condições controladas de 

temperatura, pressão total e pressão parcial de O2 e valores definidos de concentração de NaOH e 

lenhina. Uma lenhina de tabaco obtida a partir do processo organosolv com etanol foi também 

submetida a oxidação e o efeito da concentração inicial de lenhina, temperatura e pressão parcial de 

O2 foi estudado com o objetivo de encontrar as condições que permitem atingir os rendimentos 

máximos de fenólicos. O estudo cinético da formação dos produtos de oxidação desta lenhina foi 

também efetuado e os resultados permitiram uma avaliação do seu potencial como fonte de vanilina 

e seringaldeído. 

Numa última etapa, licor kraft industrial foi submetido a ultrafiltração através de membranas 

cerâmicas tubulares visando o fracionamento da lenhina de acordo com o seu peso molecular. A 

composição e caracterização de cada fração obtida e das respetivas lenhinas isoladas foram 

avaliadas através de diferentes métodos e técnicas analíticas. A informação estrutural obtida 

permitiu o estudo sobre a funcionalidade e reatividade de cada fração do processo de ultrafiltração 

com vista à sua valorização como fonte de produtos de valor acrescentado no contexto das 

biorrefinerias. 

Todo o trabalho desenvolvido nesta tese é um importante contributo que abre novas 

perspetivas no âmbito das indústrias de pasta e de papel visando a diversificação dos seus produtos 

e valorização das correntes processuais. 
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ABBREVIATIONS 
 

A - constant in the Arrhenius equation 

Am - membrane surface area 

Ara - arabinose 

ATZ - alumina-titania-zirconia 

BSTFA - N,O-bis-(trimethylsilyl)-trifluoroacetamide 

BTX - benzene, toluene, xylene 

C - carbon  

CA - coumarates 

CDCl3 - deuterated chloroform 

Cornroot - roots of corn 

Cornstalk - stalks of corn 

Cottonroot - roots of cotton 

Cottonstalk - stalks of cotton 

DC - degree of condensation 

DMF - dimethylformamide 

DMS - dimethyl sulfide 

DMSO - dimethyl sulfoxide 

DMSO-d6 - deuterated dimethyl sulfoxide 

DP - degradation products 

Ea - activation energy 

EKL - industrial kraft liquor of eucalyptus wood collected after the evaporation stage 

EKLlig - lignin isolated by mild acidolysis from EKL liquor 
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FA - ferrulates 

FTIR - Fourier transform infrared spectroscopy 

G - guaiacyl 

Gal - galactose 

GC-FID - gas chromatography with flame ionization detector 

GC-MS - gas chromatography mass spectrometry  

Glc - glucose 

GPC - gel permeation chromatography 

H - p-hydroxyphenyl 

H2SO4 - sulfuric acid 

HCl - hydrogen chloride 

HPLC - high performance liquid chromatography 

HSQC - heteronuclear single quantum coherence 

HTKL - industrial kraft liquor of eucalyptus wood collected after heat treatment just before the 

recovery furnace 

HTKLlig - lignin isolated by mild acidolysis from HTKL liquor 

Hy - p-hydroxybenzaldehyde 

J - permeate flux (m3.s-1.m-2) 

Jw - water permeate flux  

KBr - potassium bromide 

kdegrad - degradation rate constant 

KL - industrial kraft liquor of eucalyptus wood collected at the outlet of kraft digester (thin liquor) 

KLlig - lignin isolated by mild acidolysis from KL liquor 

koxid - production rate constant 

LCornroot - lignin isolated by mild acidolysis from corn roots 

LCornstalk - lignin isolated by mild acidolysis from corn stalks 

LCottonroot - lignin isolated by mild acidolysis from cotton roots 

LCottonstalk - lignin isolated by mild acidolysis from cotton stalks 
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LEgbark - lignin isolated by mild acidolysis from eucalyptus bark 

LEgKraft - lignin isolated and further purified from industrial kraft liquor of eucalyptus wood  

LEgOrg - lignin produced by ethanol organosolv process of eucalyptus wood  

LEgwood - lignin isolated by mild acidolysis from eucalyptus wood 

LiCl - lithium chloride 

LLC - lignin-carbohydrate complexes 

Lp - membrane permeability coefficient 

LP5kDa - lignin isolated by mild acidolysis from the permeate obtained from 5 kDa membrane 

LR15kDa - lignin isolated by mild acidolysis from the retentate obtained from 15 kDa membrane 

LR50kDa - lignin isolated by mild acidolysis from the retentate obtained from 50 kDa membrane 

LR5kDa - lignin isolated by mild acidolysis from the retentate obtained from 5 kDa membrane 

LS - eucalyptus lignosulfonate 

LSCaneroot - lignin isolated by mild acidolysis from sugarcane roots 

LSCanestalk - lignin isolated by mild acidolysis from sugarcane stalks 

LTobObut - lignin produced by butanol organosolv process of tobacco stalks 

LTobOethan - lignin produced by ethanol organosolv process of tobacco stalks 

LTobroot - lignin isolated by mild acidolysis from tobacco roots 

LTobSE - lignin produced by steam explosion process of tobacco stalks 

LTobstalk - lignin isolated by mild acidolysis from tobacco stalks 

M - molecular mass 

Man - mannose 

Mn - number-average molecular weight  

Mw - weight-average molecular weight  

N - nitrogen 

NaBH4 - sodium borohydride 

NaOH - sodium hydroxide 

NCS - non-condensed structures 

NMR - nuclear magnetic resonance 
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NO - nitrobenzene oxidation 

O2 - oxygen 

OCH3 - methoxyl groups 

OHph - phenolic groups 

P5kDa - permeate obtained from 5 kDa membrane 

PHBA - p-hydroxy benzoic acids 

pO2 - oxygen partial pressure 

ppu - phenylpropane unit 

Qp - permeate flowrate 

R - universal gas constant 

R15kDa - retentate obtained from 15 kDa membrane 

R50kDa - retentate obtained from 50 kDa membrane 

R5kDa - retentate obtained from 5 kDa membrane 

Rha - rhamnose 

Rm - membrane hydraulic resistance coefficient (m-1) 

S - syringyl 

SA - syringic acid 

SCaneroot - roots of sugarcane 

SCanestalk - stalks of sugarcane 

sccpm - standard cubic centimeter per minute 

SL - industrial spent liquor from magnesium-based acidic sulfite pulping of eucalyptus wood 

collected after the evaporation step (referred as sulfite liquor) 

SO - acetosyringone 

SPE - solid phase extraction 

Sy - syringaldehyde 

T - temperature 

TDS - total dissolved solids 

TiO2-Al2O3 - titanium dioxide-aluminium oxide 
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TMP - transmembrane pressure (Pa) 

TMS - chlorotrimethylsilane 

Tobroot - roots of tobacco 

Tobstalk - stalks of tobacco 

V - vanillin 

VA - vanillic acid 

VCF - volume concentration factor  

VO - acetovanillone 

VR - volume reduction  

Xyl - xylose 

ZrO2 - zirconium dioxide 

μ0 - viscosity of water at 25 ºC 
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Introduction 

This chapter provides a general overview about the relevance and viability of side streams of 

pulp and paper industries and biorefineries to generate high-added value products. This is an 

important issue for the development of a pathway for vanillin and syringaldehyde production from 

renewable resources, which contributes to decrease the dependence on petroleum derivatives. The 

objectives related to the proposed tasks for this work and the outline of this PhD thesis are also 

presented. 
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1.1 RELEVANCE AND MOTIVATION 

The recent development in biorefineries has become a worldwide effort to a variety of 

drivers that include the need of alternative source of chemicals, energy, and environmental 

concerns. One of the main objectives of biorefineries process is the production of bio-based 

compounds that can be classified into two major groups: bio-based chemicals/materials and 

bioenergy carriers (electricity, heat, and biofuels). Moreover, if the integrated process of 

biorefinery comprises a perspective of both chemicals/materials and energy production this offers a 

major opportunity for synergies (Dapsens et al., 2012). Biorefinery products stand in competition 

with petroleum-based products with respect to quality, economic efficiency, and product 

characteristics. However, to ensure the sustainability of biorefinery operations it is crucial the 

existence of further studies about the progress of products and processes from biorefineries 

(Ragauskas et al., 2014). A variety of raw-materials (e.g. wood, straw, organic wastes) can be 

processed in biorefineries, although the selection of raw-material has to take into account some 

requirements that include quality, quantity, and moderated costs. Biomass represents a valuable 

feedstock, with a continuous growth in the field of biorefinery, and its use can reduce the existing 

dependence on fossil feedstocks. One of the main goals of biorefineries is the processing of 

lignocellulosic biomass by recycling forest and agricultural wastes. This type of biomass includes 

essentially cellulose, hemicellulose, and lignin in its composition.  

Studies worldwide confirm the importance of lignin in the scenario of the integration of 

biorefinery concept in the existent or new mills (Kim and Pan, 2010; Lersch, 2011; Michels and 

Wagemann, 2011; Sjöde et al., 2009) and the efforts to find oil alternatives as sources of chemicals. 

Lignin represents a renewable feedstock that is composed of aromatics, and this occurrence largely 

depends on the origin of biomass. This polymer can be used to replace chemical fossils in a wide 

range of products, from plastics, binders, dispersants, and as precursor for carbon fibers (Arkell et 

al., 2014; Strassberger et al., 2014). 

The present thesis intends to gather the emergent interest in lignin. In 2010, the pulp and 

paper industry produced about 50 Mtons of low purity lignin. Of this, only 2% was used 

commercially in the dispersants or binding sectors. The remaining 98% was recovered as fuel. One 

further complication is that the structure of kraft, organosolv, and sulfite lignins differs between 

plant sources. Therefore, introducing lignin to new markets will depend strongly on its structure 

and related properties (Strassberger et al., 2014). 

Among all the lignin based products, vanillin and syringaldehyde are two important high 

added value compounds widely recognized. Vanillin is used as flavouring and fragrance ingredient 

in food, cosmetic, and as intermediate for the synthesis of several second-generation fine chemicals 

and pharmaceuticals. About 85% of world supply of vanillin still comes from petrochemical route; 

the remaining is produced from lignin oxidation and from vanilla beans.  
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Syringaldehyde is also a precursor for pharmaceutical or chemical industry (Erofeev et al., 

1990). However, it is not produced by lignin oxidation, mainly because the lignin traditionally used 

as raw-material is of softwood type (composed by guaiacyl units) rather than hardwood type 

(composed by syringyl and guaiacyl units). In fact, by oxidation of hardwood lignin both aldehydes 

are produced at yields that depend of the process conditions and lignin structure. The 

implementation at industrial scale depends on the economic sustainability of the process which, in 

turn, depends largely of the raw material availability and products yield (from reaction to final 

separation).  

 

1.2 OBJECTIVES  

In this thesis the characterization and comparative evaluation of newly lignin sources will be 

accomplished, as organosolv lignin from a lignocellulosic biorefinery, lignins from herbaceous 

plants, and fractions of lignins produced in laboratory by ultrafiltration. Lignins isolated from mild 

acidolysis of several lignocellulosic materials (hardwood and herbaceous plants) were also 

comprehensively analyzed by selected characterization techniques and methods, assessing the most 

important structural features of lignin structure.  

 

The first objective of this work includes a comprehensive and comparative analysis of E. 

globulus lignins, revealing the importance of processing on lignin functionality and reactivity as 

one of the possible tools for the selection of lignins/processes to a valorization route within a 

lignocellulosic-based biorefinery. The characterization of lignin from stalks and roots of corn, 

cotton, sugarcane, and tobacco production will be also performed considering their availability and 

valorization as feedstock.  

 

The oxidation reactions of different lignins and liquors will be the focus of the second 

objective. The aim is to evaluate the potential of industrial Eucalyptus globulus sulfite liquor and 

kraft liquors (collected at different stages of processing before the recovery boiler) and an 

organosolv tobacco lignin for the production of syringaldehyde and vanillin by oxidation with O2 in 

alkaline medium. Oxidations were performed in a jacketed reactor with controlled temperature, 

total and O2 partial pressure, and with defined values of NaOH and lignin concentration. 

 

The third objective is the kinetic evaluation of products formation from one selected lignin 

evaluating their potential as source of vanillin and syringaldehyde. For the selected lignin, the 

evaluation of the influence of temperature, initial lignin concentration, and partial pressure of O2 in 

the reaction, as also the estimation of the kinetic parameters of oxidation will be achieved. The 

reaction mixture will be characterized aiming to identify other possible valuable products; the 
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maximum yields of the low molecular weight products in the oxidation mixture at different 

oxidation reaction conditions will be attained.  

 

An ultrafiltration process for the fractionation of a selected lignin will be performed and the 

fourth objective will be achieved. For the lignin fractionation by ultrafiltration sequential 

membranes with a suitable cut-off will be used and different fractions with different molecular 

weight values will be obtained. The lignin fractions and the respective isolated lignins will be 

comprehensively characterized and evaluated. 

 

1.3 OUTLINE 

The main goal of the present thesis is to produce vanillin and syringaldehyde by oxidative 

depolymerization of lignins, achieving the process conditions to take full benefit of the potential of 

each lignin studied. 

 

A review, based on the most important works published in literature about pulp and paper 

industries and biorefineries, lignin structure, characterization methods, lignin depolymerization, 

including process conditions and principal results, will be accomplished in Chapter 2 (State of the 

art). 

 

In Chapter 3 and Chapter 4 the structural characterization of lignins coming from different 

process streams and different sources will be discussed. Lignins structure will be studied with 

reference to uncondensed units obtained by nitrobenzene oxidation, and with reference to 

functional groups and typical structures/linkages by quantitative 13C, 31P, 1H, and 2D nuclear 

magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FTIR). The obtained 

results will support a comprehensive and comparative analysis of lignins structure, enabling to infer 

about the importance of processing and biomass source on lignin functionality and reactivity. A 

comparative approach, using radar classification, highlighting for each material the characteristic 

features of its lignin will be also established. The main outcomes of these chapters were compiled 

and analyzed giving origin to three publications: 

 

- Costa, C.A.E., Pinto, P.C.R., Rodrigues, A.E. Evaluation of chemical processing impact on 

E. globulus wood lignin and comparison with bark lignin. Ind. Crop. Prod. 2014, 61, 479-491 

- Costa, C.A.E., Pinto, P.C.R., Rodrigues, A.E. Radar tool for lignin classification on the 

perspective of its valorization. Ind. Eng. Chem. Res. 2015, 54, 7580-7590. 
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- Costa, C.A.E., Coleman, W., Dube, M., Rodrigues, A.E., Pinto, P.C.R. Assessment of key 

features of lignin from lignocellulosic crops: Stalks and roots of corn, cotton, sugarcane, and 

tobacco. Ind. Crop. Prod. 2016, 92, 136-148. 

 

The oxidation reactions with molecular oxygen in alkaline medium applied to different 

lignins and liquors will be discussed in detail in Chapter 5 (Lignins oxidation in alkaline medium). 

This chapter also includes, for one selected lignin, the evaluation of the effect of temperature, 

lignin concentration, and partial pressure of O2 in the reaction and the kinetic study of products 

formation. The data from the oxidation of industrial Eucalyptus globulus sulfite liquor and kraft 

liquors (collected at different stages of processing before the recovery boiler) and the respective 

isolated lignins led to the evaluation of the potential of each sample for the production of vanillin 

and syringaldehyde and the results were already published in the following publication: 

- Pinto, P.C.R.; Costa, C.E.; Rodrigues, A.E. Oxidation of lignin from Eucalyptus globulus 

pulping liquors to produce syringaldehyde and vanillin. Ind. Eng. Chem. Res. 2013, 52, 4421-4428. 

 

In Chapter 6 a study about the fractionation of E. globulus industrial kraft liquor by 

ultrafiltration will be attained. The composition and characterization of each resulting fraction and 

the respective isolated lignin will be accessed by means of different analytical techniques, being 

able to establish the differences in their composition and structural characteristics and subsequently 

their more adequate commercial application as high added-value products. 

 

Chapter 7 includes the main conclusions of all the work developed in this thesis, as well as 

some key suggestions for future work. 
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State of the art 

2.1 PULP AND PAPER INDUSTRIES AND BIOREFINERIES 

In the second half of the 20th century crude oil was the main raw material for energy, 

transportation, and chemicals. Technologies for processing crude oil have been developing since 

1860s, and today´s refineries are highly integrated industrial plants (Strassberger et al., 2014). 

However, the depleting stocks of fossil fuels and the growing concern over economic and 

environmental issues have motivated the researches to find renewable and abundant alternatives for 

the use of petrochemicals (Fernando et al., 2006; Lucia, 2008). Lignocellulosic biomass appears to 

be a valuable feedstock for the production of second generation biofuels, chemicals, and 

biomaterials (Azadi et al., 2013; FitzPatrick et al., 2010; Long et al., 2015) and it is becoming a 

logical and promising alternative to petroleum resources. The main goal of tomorrow’s 

biorefineries will be the processing of lignocellulosic biomass by recycling forest and agricultural 

residues (Strassberger et al., 2014).  

Lignocellulosic biomass is composed of three major components: cellulose, hemicelluloses, 

and lignin (Figure 1). The concept of a biorefinery that integrates processes and technologies for 

biomass conversion demands an efficient utilization of all the three components. However, most of 

the biorefinery schemes are focused on the valorization of cellulose and hemicelluloses, a so-called 

sugar platform, while lignin remains relatively underutilized to its potential, and is usually 

considered a low-value residue (Vishtal and Kraslawski, 2011). Most of the low-purity lignin 

produced in pulp and paper industries is used as low-cost fuel to generate energy for mill 

operations, and only a small fraction, approximately 1 million ton per year, is used for commercial 

applications (Holladay et al., 2007; Saito et al., 2014; Strassberger et al., 2014). 
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Figure 1 - Average distribution of the main biomass constituents: cellulose, hemicellulose, and lignin 
(FitzPatrick et al., 2010; Ragauskas et al., 2014). 

 

Numerous studies have pointed out that the inherent properties of lignin could significantly 

improve the productivity of the biorefinery processes and its potential applications (Azadi et al., 

2013; Ragauskas et al., 2014; Strassberger et al., 2014; Vishtal and Kraslawski, 2011; Yuan et al., 

2013). However, the application and valorization of this biopolymer largely depends on their 

structure, purity, and properties. 

 

2.2 LIGNIN VALORIZATION  

Lignin plays a significant role in the operational improvement of the emerging 

lignocellulosic-based biorefinery activity; it is available at large-scale from the side streams of pulp 

and paper industries, representing a valuable renewable resource (Berlin and Balakshin, 2014; 

Pinto et al., 2011; Strassberger et al., 2014). The largest volume of lignin produced worldwide 

comes from wood pulping, with more than 70 million tons occurring annually; the lignin generated 

is known as lignosulfonate or as kraft depending on the process used, sulfite or kraft pulping 

respectively. 

Kraft process accounts for 80% of the world chemical pulp production (Fahlbusch et al., 

2002). Black liquor is a by-product of this process and holds about 12-18 wt% of dry matter 

content, mainly composed by lignin material (30-45 wt%) and wood carbohydrates (25-35 wt%), as 

well as formic and acetic acids (10 wt%), wood extractives (3-5 wt%), methanol (1 wt%) and 

several inorganic elements mainly sodium and sulphur (Rojas et al., 2006; Wallberg et al., 2003). 

Lignin from pulping liquors, improves significantly the profitability of pulp and paper industries by 

debottlenecking wood pulp production as a result of increasing the recovery capacity of pulping 

chemicals and the valorization of the lignin stream. However, pulping operations are highly 

integrated and dependent on pulping liquor, which is concentrated and burned in the recovery 

boiler, supporting the energetic integration of some pulp mill operations with the simultaneously 

recovery of pulping chemicals (Krotschek and Sixta, 2008). 
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In some mills, part of liquor produced is diverted to increase the pulp production capacity 

(situations where recovery furnace is limited) or to upgrade its components, mainly lignin. For 

these reasons, the economic and environmental sustainability of these new industries depends on 

the successful integration of a route for lignin valorization, since the conversion of this low-value 

by-product into high-value co-products will help to offset the costs of lignocellulosic-based 

biorefineries production. In Figure 2 current and potential lignin-product combinations are 

presented. 

 

Figure 2 – Lignin production and potential lignin derived product market and value (Gosselink, 2011). 

 

Current and potential applications of lignin have been reviewed extensively, lignin can be a 

potential source of renewable fuels and potential high added-value products, such as adhesives, 

dispersants, emulsifiers, concrete additives, foams, resins, and thermoplastics, and also low 

molecular weight phenolic compounds (Azadi et al., 2013; Berlin and Balakshin, 2014; Borges da 

Silva et al., 2009; Calvo-Flores and Dobado, 2010; Lora, 2008; Pinto et al., 2012; Ragauskas et al., 

2014; Sjöde et al., 2009; Stewart, 2008). Nowadays, Borregaard LignoTech (Norway) is the main 

world producer (and processor) of lignosulfonates with an annual production of 160,000 solid 

tons/year, followed by Tempec (Canada). Moreover, Borregaard LignoTech is the only producer of 

vanillin from lignin (Lersch, 2011). 

Both low- and high-value lignin applications are often seen as efficient vehicles to increase 

the productivity, reduce fossil fuel consumption, and increase the profitability of the industrial 

plants where lignin is produced as a by-product (Berlin and Balakshin, 2014). However, this is still 

restricted to a low fraction of the lignin produced around the world, being a challenging task for the 
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next years due to the increase of lignin availability as a consequence of lignocellulosic biorefineries 

activity. However, regarding the chemical valorization of lignin it is important to take into account 

its complexity and heterogeneity, since their reactivity and physico-chemical properties depend 

strongly on the source, the delignification and isolation process. 

 

2.3 LIGNIN CHEMISTRY AND STRUCTURE 

Lignin occurs widely in the middle lamellae and secondary cell walls of higher plants and 

plays a key role in constructive tissues as a building material, giving it its strength and rigidity and 

resistance to environmental stresses (Behling et al., 2016). Lignin is one of the principal 

components of the lignocellulosic materials; this three-dimensional phenolic macromolecule 

contribute as much as 30% of the weight and 40% of the energy content of lignocellulosic biomass 

(Azadi et al., 2013). The contents of lignin may vary in softwoods from 18-33% and in hardwoods 

from 15-35% (Azadi et al., 2013; Buranov and Mazza, 2008; Lin and Dence, 1992; Ragauskas et 

al., 2014). In non-wood fiber crops the lignin content is generally lower and ranges from below 5%, 

in cotton and in extracted flax or hemp bast fibres, to around 11-15% for sisal and jute (Gosselink, 

2011). In grasses such as cereal straws, bamboo or bagasse the lignin content ranges from 15-25% 

(Buranov and Mazza, 2008; Monteil-Rivera et al., 2013). Despite the differences found between 

the major groups of higher plants, lignin content and composition also differs between species and 

even morphological parts of the same plant (Sjöström, 1993). 

Lignin exhibits a complex three-dimensional amorphous structure, arising from the 

polymerization of its general structural subunit, the phenylpropane unit (ppu). The ppu can 

comprise several functional groups, being the most frequent ones aromatic methoxyl and phenolic 

hydroxyl, primary and secondary aliphatic hydroxyl, minor amounts of carbonyl groups (of 

aldehydes and ketones), and carboxyl groups (Berlin and Balakshin, 2014; Calvo-Flores and 

Dobado, 2010; Pinto et al., 2012). Coniferyl, sinapyl, and p-coumaryl alcohols are the precursors of 

the main moieties of lignin structure, guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) 

respectively, and differ between them in the methoxylation of the aromatic nuclei, as depicted in 

Figure 3.  

 

Figure 3 - p-Coumaryl (1), coniferyl (2), and sinapyl (3) alcohols. 
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The ratio between G, S, and H units, the molecular weight and the amount of lignin differs 

among groups of plants. Softwood lignins primarily contain G units and small proportions of H 

units and hardwood lignins contain both S and G units, with a minor proportion of H units. 

Moreover, even in the same group of plants, in this case hardwoods, there is a high variety of 

proportions between G and S units as detailed in the literature (Santos R.B. et al., 2011). For that 

reason, the first factor to take into account is the lignin nature, an unalterable factor. Usually, 

herbaceous plants contain a higher frequency of H units than hardwoods. Therefore, one should 

expect lower G and S units in these lignins compared with lignins composed exclusively by these 

units. In addition, lignins from herbaceous plants contain significant amounts of cinnamic and 

ferrulic acid derivatives attached to lignin predominantly via ester linkages with the hydroxyl in Cγ 

of C9-units (Lin and Dence, 1992). Lignin-carbohydrate complexes (LCC) are also formed in plant 

cells. The main types of LCC linkages in lignocellulosic materials are believed to be phenyl 

glycoside bonds, esters, and benzyl ethers (Balakshin et al., 2011). 

The exact mechanism of lignin polymerization and biosynthesis has been exhaustively 

studied in literature and details of this complex pathway can be found in the some review articles 

(Boerjan et al., 2003; Lewis and Yamamoto, 1990; Ralph et al., 2004). The proportion of each type 

of linkage in lignin structure depends on the relative contribution of a particular monomer to the 

polymerization process. The phenylpropane units of lignin are linked through aryl ether bonds (β-

O-4, α-O-4, 4-O-5) and carbon-carbon linkages (5-5’, β-5, β-1, β–β) (Calvo-Flores and Dobado, 

2010; Lin and Dence, 1992). The most abundant dilignol is the β-O-4 type (structure A, Figure 4), 

accounting for more than 50% of the interunit linkages in lignin (Berlin and Balakshin, 2014; Pinto 

et al., 2012). Other common lignin interunit linkages include 5-5’ (structure B, Figure 4), α-O-4 

(structure C, Figure 4), phenylcoumaran (β-5; structure D, Figure 4), resinol (β–β; structure E, 

Figure 4), 4-O-5’ (structure F, Figure 4), and β-5 (structure G, Figure 4) moieties.  

 

 

Figure 4 – Main structural moieties of native and technical lignins (Pandey and Kim, 2011). 
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The occurrence of the most common and important inter-unit linkages identified in 

hardwood and softwood lignins are shown in Table 1. 

 

Table 1 – Types and occurrence (number per 100 ppu) of major structural moieties in lignins from softwoods 
and hardwoods (Lin and Dence, 1992; Pinto et al., 2012; Santos R.B. et al., 2013). 

Linkages 
number/100 ppu  

Softwood Hardwood 

β-O-4 45-50 50-65 

5-5’ 10-25 4-10 

β-5 9-12 4-6 

α-O-4 6-8 4-8 

β-1 3-10 5-7 

4-O-5’ 4-8 6-7 

β-β 2-4 3-7 

 

The degree of condensation (DC) is an important lignin characteristic often correlated 

(negatively) with lignin reactivity. The definition of condensed lignin moieties found in literature is 

not always clear (Berlin and Balakshin, 2014). Most commonly, the DC is related with the lignin 

moieties linked with C-C linkages with other lignin units via C2, or C6 positions in the aromatic 

ring of S units, C2, C5 or C6 positions of the aromatic ring of G units, and in the case of H units also 

C3 position is available. The most common condensed structures are 5-5’, β-5, and 4-O-5’ 

structures (Berlin and Balakshin, 2014). On the other hand, α-aryl ether and β-aryl ether linkages 

are the most easily cleaved, providing a basis for industrial processes, such as chemical pulping, 

and several methods in lignin chemical analysis. The other linkages are all more resistant to 

chemical degradation (Sannigrahi et al., 2010).  

G type lignins, contain more resistant linkages as those involving the C5 of aromatic nuclei 

(β-5, 5-5’ and 4-O-5’) than SG lignins due to the availability of the C5 position for coupling. This 

could be one of the reasons for the higher condensation degree of softwood lignins than hardwood 

and herbaceous plants ones; consequently, this fact has implications on lignin reactivity.  

 

As already mentioned, the source of biomass and the delignification process have 

considerable influence on lignin structure (linkages and functional groups) and consequently on its 

reactivity toward a further chemical process (Pinto et al., 2011). Hence, the lignin obtained from 

delignification processes differs from the native one as a result of multiple reactions (Pinto et al., 

2012), that predominantly involve condensation and degradation reactions (Berlin and Balakshin, 

2014). Considering the delignification process, kraft and organosolv lignins from softwoods 

(Froass et al., 1998; Pan et al., 2005; Saito et al., 2014; Sannigrahi et al., 2009), hardwoods (Ibarra 

et al., 2007; Pan et al., 2006; Pinto et al., 2005; Pinto et al., 2002; Wen et al., 2013a; Wen et al., 
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2013b) or both (Capanema et al., 2001), and also herbaceous plants (Alriols et al., 2010; El Hage et 

al., 2010) have been extensively analyzed. All the authors have concluded that the delignification 

process undergoes structural transformations in lignin. In general, lignins obtained from 

delignification processes have higher contents of phenolic hydroxyl groups, carboxylic acid groups, 

and condensed structures, and lower contents of aliphatic hydroxyl groups and β-O-4 structures 

than the respective native lignins (Fernández-Costas et al., 2014; Ibarra et al., 2007; Lourenço et 

al., 2012). 

 

 Lignin characterization: techniques and methods  

A detailed understanding of lignin structure is essential in order to combine efforts toward 

their valorization into valuable products. Besides all the existing information about lignin structure, 

this polymer is not described through a simple structural characterization due to its high complexity 

and diverse possibilities of combination between sub-units in this macromolecule. All of these 

specifications have implications on lignin reactivity and for this reason it is essential that for lignin 

characterization several complementary methods have to be applied in order to determine their 

major structural features.  

Over the last decades, both destructive and nondestructive methods have been developed for 

lignin characterization. The destructive methods include hydrogenolysis, nitrobenzene oxidation, 

cupric (II) oxidation, permanganate oxidation, ozonation, thioacidolysis, and also derivatization 

followed by reductive cleavage (Lu and Ralph, 1997; Pepper et al., 1967; Quesada et al., 1999). All 

of these destructive methods could provide information regarding the structure of lignin through 

the generation of low-molecular weight compounds. However, all of them only comprise the 

selective cleavage of a specific fraction of lignin, hindering the study of the whole lignin structure. 

To overcome this challenge, nondestructive methods are available and enable the identification and 

quantification of the main structural features of lignin.  

The advantage of spectroscopic methods over degradation techniques is their ability to 

analyze the whole lignin structure and directly detect lignin moieties and/or functional groups. The 

nondestructive methods include different spectroscopic techniques such as Fourier transform 

infrared spectroscopy (FTIR), Raman spectroscopy and nuclear magnetic resonance (NMR) 

(Capanema et al., 2004; Fernández-Costas et al., 2014; Froass et al., 1998; Lin and Dence, 1992; 

Ralph et al., 1998). NMR techniques comprise 13C, 31P, 1H, and 2D heteronuclear single quantum 

coherence (HSQC) NMR, and among all, quantitative 13C NMR is the most widely used method for 

the evaluation of the main structural features of hardwoods (Evtuguin et al., 2001; Fernández-

Costas et al., 2014), softwoods (Capanema et al., 2004; Nimz et al., 1981), and also annual plant 

(Sun et al., 2004; Xiao et al., 2001) lignins. A combination of quantitative 13C and 2D HSQC NMR 
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has been also applied to provide comprehensive structural information on lignin from a variety of 

sources (Capanema et al., 2001; Fernández-Costas et al., 2014). 

Extensive data about lignin composition and structure are generated from all of the referred 

techniques: relative abundance of H, G, and S units, distribution of inter-unit linkages and 

functional groups, as well as the degree of condensation of this polymer. The assessment and 

correlation between these key structural features are essential for the evaluation of a lignin relative 

to its potential as source of value-added compounds. However, the complexity of lignin structure 

makes difficult to extract comprehensive, focused, and “ready to use” information.  

 

2.4 LIGNIN DEPOLYMERIZATION 

The heterogeneous molecular structure of lignin constitutes a valuable source of chemicals, 

particularly phenolics. However, lignin depolymerization with selective bond cleavage is the major 

challenge for converting it into value-added chemicals and to accomplish its subsequent 

valorization. The need of defining structural parameters for the assessment of lignin potential for 

vanillin (V) and syringaldehyde (Sy) production was previously identified by other authors (Pinto 

et al., 2011).  

Pyrolysis (thermolysis), gasification, hydrogenolysis, chemical oxidation, and hydrolysis 

under supercritical conditions are the major thermochemical methods studied regarding lignin 

depolymerization (Azadi et al., 2013; Pandey and Kim, 2011). All the referred depolymerization 

methods lead to phenolic compounds of low molecular weight of great interest, which are produced 

with different yields depending on the source of lignin and the reaction conditions.  

The oxidative depolymerization of lignin can be performed through different types of 

oxidants, and the characteristics of each oxidant determine their activity and selectivity in the 

reaction (Lin and Dence, 1992). Consequently, the oxidant selection is based on the properties that 

allow obtaining the maximum products yields from lignin oxidation. The high yields reported, 

considering mainly V and Sy, were obtained by oxidation with molecular oxygen in alkaline 

medium (Pandey and Kim, 2011; Pinto et al., 2012). 

The use of molecular oxygen as oxidant is advantageous when economic and environmental 

questions are considered (Fargues et al., 1996a). This is an inexpensive and green oxidant, which 

preserves the lignin aromatic rings during the oxidation reaction. However, when oxygen is used it 

is important to take into account some limitations: its nonselectivity, the possibility of over 

oxidation, its low solubility in the reaction medium, and the requirement of high temperatures for 

activation (Marshall and Sankey, 1951; Pinto et al., 2012; Tromans, 1998). Moreover, it is well 

known the phenolic units and ring-conjugated structures of lignin became more reactive with 

oxygen.  
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The oxidative depolymerization of lignin gives a complex mixture of products highly 

dependent on the nature of the raw material and the selected reaction conditions. Between them it is 

possible to find oligomeric products, phenolic, and non-phenolic compounds. However, in most 

studies, the authors focus their attention on the identification and quantification of specific phenolic 

compounds of greatest interest that usually include several aldehydes (V and Sy), acids (vanillic 

acid (VA) and syringic acid (SA)), and ketones (acetovanillone (VO) and acetosyringone (SO)). 

 

 Vanillin and syringaldehyde 

Vanillin (V, 4-hydroxy-3-methoxybenzaldehyde,Figure 5) is the highest volume aroma 

chemical produced worldwide. Their numerous advantages: it is a safe compound, aromatic, and it 

bears two reactive functions that can be chemically modified (the methoxy group being less 

reactive than the aldehyde and phenol functions), make this compound with potential to be a key 

renewable aromatic building-block.  

V is widely used as flavouring and fragrance ingredient in food, cosmetic and as 

intermediate for the synthesis of several second-generation fine chemicals and pharmaceuticals 

(Calvo-Flores and Dobado, 2010). It is produced from different sources, namely petro-based 

intermediates, woody biomass, and orchid pods. Around 20,000 tons of V are produced per year, 

15% of which coming from lignin (around 3,000 tons/y), while the worldwide production of natural 

V extract is only 40 to 50 tonnes per year, which represents less than 1% of its total production. 

85% of the world supply is produced from petro-based intermediates, especially guaiacol. There 

are different ways to prepare V from guaiacol being the most employed is the Riedel process 

(Huang et al., 2012). The great advantage of this process is that the glyoxylic acid condensation is 

highly region-selective towards the para position, which avoids side-products and thus expensive 

separation reactions. Other advantages of the petrochemical production of V is the production 

costs, when made from petrochemical sources V costs as little as $10 per kg, and does not depend 

of natural conditions to yield considerably amounts, whereas V made in a way that can be labelled 

as natural can cost hundreds of dollars per kg (Fache et al., 2016). 

 

 

Figure 5 - Structure of vanillin (4-hydroxy-3-methoxybenzaldehyde) and syringaldehyde (4-hydroxy-3,5-
dimethoxybenzaldehyde). 
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Syringaldehyde (Sy, 4-hydroxy-3,5-dimethoxybenzaldehyde, Figure 5) is also a precursor 

for pharmaceutical or chemical industry (Erofeev et al., 1990) and it has been synthesized from 

gallic acid, pyrogallol, and V itself (Ibrahim, 2012). Recently, the demand for chemicals from 

renewable sources has brought new life on the lignin route to produce V. Furthermore, there is an 

increasing interest also for homologous compounds such as Sy (German Federal Government, 

2012; Holladay et al., 2007), for direct applications (Schneider, 1997), or as precursors of fine 

chemicals and drugs (Erofeev et al., 1990; Ibrahim, 2012; Lee et al., 2009).  

Sy can be produced from oxidative depolymerization of lignin from hardwood (Pinto et al., 

2011; Villar et al., 2001; Wu et al., 1994) or from annual plants (Sales et al., 2006). In fact, by 

oxidation of these lignins both aldehydes are produced at yields that depend of the process 

conditions and lignin structure. Considering its current availability in the side streams of pulp 

industries and biorefineries, this could be an important approach in view of lignin exploitation for 

high added value applications. This promising research field was not explored so far. The 

implementation at industrial scale depends on the economic sustainability of the process which, in 

turn, depends largely of the raw material availability and products yield (from reaction to final 

separation). 

 

 Lignin oxidation in alkaline medium 

In the last decades, several authors have been working on lignin oxidation with O2 in alkaline 

conditions in order to develop an effective process of V and Sy production from different sources 

of lignin (Araújo et al., 2010; Fargues et al., 1996a; Mathias et al., 1995; Mathias and Rodrigues, 

1995; Pinto et al., 2013; Sales et al., 2006; Santos S.G. et al., 2011; Tarabanko et al., 2001).  

The oxidative depolymerization of lignin involves the cleavage of aromatic rings, aryl ether 

linkages, and/or other linkages in lignin structure. Products from lignin alkaline oxidation are 

predominantly aromatic aldehydes or acids depending on the reaction conditions. Among them, V 

and Sy and other phenolics like p-hydroxybenzaldehyde (Hy), VA and SA are the most important 

and their occurrence plays a decisive role to determine the reaction efficiency (Pinto et al., 2012; 

Wu et al., 1994). V and Sy yields depend first on lignin type: guaiacyl lignins (G type, typical of 

softwoods) yield V under oxidative depolymerization, whereas p-hydroxyphenyl:guaiacyl:syringyl 

(H:G:S) lignins (typical of herbaceous plants and hardwoods) are able to produce Sy, Hy, and 

lower yields of V. Moreover, other interesting mono-phenolic compounds such as guaiacol and 

syringol are also often mentioned as depolymerization products (Pinto et al., 2012; Vigneault et al., 

2007; Wong et al., 2010).  

An overview of some representative non- catalytic oxidation studies concerning the raw 

material, the reaction conditions, and yields of V and Sy are gathered in Table 2.  
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Table 2 - V and Sy maximum yields, reported to %w/wlignin, obtained from non- catalytic oxidation with O2 
of different lignin samples and liquors. 

 

The values, found in the literature, do not exceed 10.8 %w/wlignin in the case of V and 19.7 

%w/wlignin for Sy (Fargues et al., 1996a; Mathias and Rodrigues, 1995; Pinto et al., 2011; Santos 

S.G. et al., 2011; Tarabanko and Petukhov, 2003). The oxidation of lignin to produce V and Sy has 

been demonstrated at high pH (almost 14) and high temperatures (higher than 373 K) with 

molecular oxygen (with a partial pressure equal or higher than 3 bar). The limitation of this process 

is the low solubility of oxygen in the reaction medium of sodium hydroxide (NaOH) and lignin in 

the high operational temperatures (Pinto et al., 2012).  

A study about the improvement of the process conditions of oxidative cleavage of an aspen 

wood lignin into aromatic aldehydes (V and Sy) was developed by Tarabanko and Petukhov 

(Tarabanko and Petukhov, 2003). In this work a mechanism for the formation of aromatic 

aldehydes from lignin oxidative depolymerization was described, which starts from the formation 

of phenoxyl radical and is accomplished by the formation of V through the cleavage of substituted 

coniferyl aldehyde. The proposed mechanism allow inferring that the selectivity of the oxidation 

process could be achieved using more severe reaction conditions, in order to increase the yield of 

  Oxidation conditions 
maximum yield 

Ref. 
V Sy 

H
ar

d
w

oo
d

 

Organosolv beech lignin 
Tinitial =393 K; 
pO2 = 3.0 bar; Ptotal ≈ 9.7 bar; 
[lignin] = 60 g/L; [NaOH] = 2.0 mol/L 

1.2 2.5 (Pinto et al., 2011) 

E. globulus sulfite liquor 
Tinitial = 403-423 K; 
pO2 = 6.0 bar; Ptotal = 6.0 bar; 
[liquor] = 5 g/L; [NaOH] = 0.75 mol/L 

2-3 5-7 
(Santos S.G. et al., 

2011) 

Aspen wood 
Tinitial = 443-473 K; Ptotal = 2-13 bar; 
[lignin] = 21.8 g/L; 
[NaOH] = 2.0 mol/L 

7.8 19.7 
(Tarabanko and 
Petukhov, 2003) 

 
Pinus kraft lignin 
(Westvaco Co) 

Tinitial = 383-427 K; 
pO2 = 1.2-5.0 bar; Ptotal ≈ 9.7 bar; 
[lignin] = 30-120 g/L; 
[NaOH] = 2.0 mol/L 

10.8 --- (Fargues et al., 1996a) 

So
ft

w
oo

d 

Softwood kraft lignin 
(mainly spruce) isolated 
by LignoBoost process 

Tinitial = 393 K; 
pO2 = 3.0 bar; Ptotal ≈ 9.7 bar; 
[lignin] = 60 g/L; [NaOH] = 2.0 mol/L 

3.1 -- (Pinto et al., 2011) 

Indulin AT, Borregaard) 
Tinitial = 396 K; 
pO2 = 4.0 bar; Ptotal = 9.0 bar; 
[lignin] = 60 g/L; [NaOH] = 2.0 mol/L 

3.3 -- (Araújo et al., 2010) 

Pinus kraft lignin 
(Westvajco Co) 

Tinitial = 393 K; 
pO2 = 3.0 bar; Ptotal ≈ 9.7 bar; 
[lignin] = 60 g/L; [NaOH] = 2.0 mol/L 

4.4 -- (Pinto et al., 2011) 

Pinus kraft lignin 
(Westvaco Co and 
Portucel) 

Tinitial =372-414 K; 
pO2 = 1.8-6.5 bar; Ptotal =4.8-10 bar; 
[lignin] = 30-120 g/L; 
[NaOH] = 1-4 mol/L 

10.5 -- 
(Mathias, 1993; Mathias 

and Rodrigues, 1995) 
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aromatic aldehydes from lignin (Tarabanko and Petukhov, 2003). Villar et al. (Villar et al., 2001) 

attributed the low yield of aldehydes obtained from oxidation to the condensed nature of lignins 

and to the decomposition to lower-molecular weight acids.  

The oxidation with catalysts (mainly transition metal salts) has been referred to increase the 

yields of the products (Sippola and Krause, 2005; Wu et al., 1994; Zakzeski et al., 2010a; Zakzeski 

et al., 2010b). However, Fargues et al. (Fargues et al., 1996a) observed that the addition of copper 

and cobalt catalysts didn’t affect much the conversion and aldehyde yields, which is in contrast to 

the results of Xiang and Lee (Xiang and Lee, 2001) who found a mixture of Cu2+ and Fe3+ to be an 

effective catalyst increasing the yield of aldehydes from 7.9 to11.1 wt%. Wu and Heitz (Wu and 

Heitz, 1995) and Zhang et al. (Zhang et al., 2009) also reported the effectiveness of catalysts in 

increasing the yield of aldehydes.  

 

2.4.2.1 Kinetic study of oxidation products  

Since the goal of alkaline oxidation is to achieve the maximum conversion into phenolic 

compounds, mainly V and Sy, several studies are focused in the discussion of the effect of reaction 

conditions in products yields obtained from lignin or spent liquors oxidation (Araújo et al., 2010; 

Dardelet et al., 1985; Fargues et al., 1996a; Mathias and Rodrigues, 1995). Besides the several 

kinetic studies of oxidation products from different lignins sources, as far as is concerned, there are 

no kinetic studies about oxidation products from kraft E. globulus lignin.  

The accurate selection of the oxidation conditions is important not only to obtain the 

maximum yields of intermediary products, but also to avoid the oxidation of the produced 

aldehydes into organic acids such as formic, acetic, lactic, oxalic, syringic, vanillic, and p-

hydroxybenzoic (Sales et al., 2006). However, the best process conditions for high yields on V and 

Sy should be determined for each lignin. Several authors studied the dependency of these phenolic 

compounds yield on temperature, reaction time, oxygen partial pressure (pO2), initial lignin 

concentration, and alkaline condition (Araújo, 2008; Fargues et al., 1996a; Mathias, 1993; Pinto et 

al., 2012; Sales et al., 2006; Santos S.G. et al., 2011). It was observed that, in general, all the 

parameters have a positive effect on the net conversion as well as the products yields.  

Fargues and co-workers (Fargues et al., 1996a; Fargues et al., 1996b) studied the process 

optimization of the production of V from the oxidation of a kraft Pinus spp. lignin. The kinetic 

study was carried out to measure reaction orders with respect to lignin, oxygen, and alkalinity, as 

well as the influence of temperature on the kinetic rate constants. They proved the dependency of 

the kinetic constant of V production with the temperature, and also show that the V produced is 

also degraded by oxidation whose importance depends on the pH and the temperature of the 

solution. The authors also found a maximum yield of V when oxidation reaction was performed 
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with lignin concentration of 60 g/l, temperature of 393 K, in alkaline medium containing NaOH at 

80 g/l under pO2 of 4 bar.  

Araújo and co-workers (Araújo et al., 2010) observed that whatever is the lignin source, the 

variation of pH is the most important condition in the oxidation reaction: lower values of pH 

increase the rate of V degradation, reducing its yield. The mathematical model, used by these 

authors, to describe V production depends on the lignin source, and the temperature and O2 

pressure should be adjusted for the different reactions taking into account that the final yields are 

the equilibrium between improving the V conversion and minimizing its oxidation.  

The main expressions used in literature for the kinetic study of phenolics production from 

lignin oxidation are depicted in Table 3. 

 

Table 3 - Main expressions related to the kinetic study of lignin oxidation (Araújo et al., 2010; Fargues et al., 
1996a; Fargues et al., 1996b; Mathias, 1993; Santos S.G. et al., 2011). 

Kinetic study of V 
production from lignin 
oxidation, considering also 
the production of some 
degradation compounds 
from V 

lignin
roxid
ሱۛሮ V

rdegrad
ሱۛ ሮۛ DP V - vanillin; 

DP - degradation products; 
koxid – V production rate constant;  
pO2 – partial pressure of O2;  

[lignin] – initial lignin concentration; 
kdegrad – V degradation rate constant;  
A – constant in the Arrhenius equation 
Ea - activation energy;  
R – universal gas constant;  
T - temperature (K) 

r௫ௗ=k [lignin]n pO2
m 

rௗௗ=k [V]a pO2
b 

roxid = A exp ൬-
Ea

RT
൰ [lignin]n  pO2

m 

 

Santos and co-workers (Santos S.G. et al., 2011) studied the major products obtained from 

the oxidation of an eucalyptus lignosulfonate (LS) and the kinetics of their formation. The 

oxidation reactions were performed with molecular O2, in alkaline medium, and in the temperature 

range of 403-423 K. The authors observed that oxidation of LS leads to a predominant formation of 

Sy and V among low molecular weight aromatic oxidation products. The kinetic results proved that 

the rate constant of Sy formation was more than twice that for V, and that Sy also suffered faster 

degradation (about 5 times) than V, under the same conditions. They also suggested that aromatic 

aldehydes in LS oxidation, under alkaline conditions, are formed via different mechanisms than 

aromatic acids, and that their yields are drastically affected by carbohydrates, which should be 

eliminated from sulfite spent liquor before oxidation (Santos S.G. et al., 2011). Fargues and co-

workers (Fargues et al., 1996a) referred that, in lignin oxidation reactions, pO2 should not be too 

high, and the effect of pO2 is on the rate of products formation with no influence on yields. 

Nevertheless, the pO2 should be controlled to avoid further oxidation of V (Collis, 1954; Fargues et 

al., 1996b). Changes in total pressure from 5 to 14 bar do not affect the products yields (Fargues et 

al., 1996a).  
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Some authors also referred that the reaction time and temperature should also be controlled 

to avoid degradation of the aldehydes produced leading to the formation of acids (Fargues et al., 

1996a; Mathias, 1993). On the other hand, it is also stated in the literature that higher temperatures 

allow obtaining higher V yields in a shorter reaction time. Considering that V yield has a maximum 

with regard to the reaction severity, the rate of degradation of this compound is also higher (Pinto 

et al., 2012; Santos S.G. et al., 2011). Sales and co-workers studied lignin degradation reactions 

and aromatic aldehydes formation using a kinetic model quantified by a complex reaction network 

(Sales et al., 2006). Under the selected reaction conditions of temperature (in the range of 373-413 

K) and pO2 (between 2 and 10 bar) the kinetic evolution of a sugarcane lignin oxidation and 

products formation was investigated. The authors demonstrated that moderate pO2 and short 

reaction times must be employed in order to obtain the maximum yields of intermediate oxidation 

products, such as V, Sy, and Hy, and to avoid that the produced aldehydes are oxidized into organic 

acids, since the lignin consumption is a faster reaction step. 

Another important process parameter for aldehydes production is the pH value of the 

mixture. pH should stay higher than 12 in order to keep the high alkalinity during the reaction and 

consequently for the total ionization of phenolic groups and conversion to reactive quinonemethide. 

During the lignin oxidation process, the yield of V decreases when the pH value begins to decrease. 

Indeed, high alkali concentrations (pH > 12) reduce V degradation whereas at lower pH values 

(<11.5), an accentuated decrease in V yield is observed (Fargues et al., 1996a; Pinto et al., 2012). 

This phenomenon was attributed to the protonation of reaction intermediates, more basic than the 

phenolics produced (vanillin pKa = 7.4) (Fargues et al., 1996a; Pinto et al., 2012; Tarabanko and 

Petukhov, 2003).  

 

2.5 LIGNIN FRACTIONATION BY ULTRAFILTRATION 

Due to the inherent heterogeneity of lignin structure and composition a variety of lignin 

fractionation methodologies have been proposed in the literature (Pinto et al., 2012). The molecular 

weight of lignin can vary between 1,000 Da and 300,000 Da within the same sample, and 

fractionation has become one of the most effective methods to obtain and characterize specific 

lignin fractions (Tolbert et al., 2014; Toledano et al., 2010a). Fractionation methods led to 

relatively homogeneous lignin fractions, which makes possible to understand more easily its 

composition, structure, and its use as source of phenolic compounds (Cui et al., 2014). Moreover, 

lignin fractionation methodologies can also be performed with the aim of lignin purification, since 

some methods allow removing contaminants, as carbohydrates and inorganic material. In the 

literature, there are three main methods applied for lignin fractionation, which include sequential 

organic solvent extraction, selective precipitation, and membrane ultrafiltration (Cui et al., 2014; 

Toledano et al., 2010a). 
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Membrane fractionation have been widely studied in the last years; the simple and effective 

separation, the concentration and purification of products, in small and medium scale process, 

makes this an interesting method to apply in several applications, as polymer formulations, or to 

obtain low molecular weight compounds (Alriols et al., 2010). The effectiveness of this 

fractionating method depends on the type of selected membrane and its pore-size or cut-off (Alriols 

et al., 2010; Toledano et al., 2010b). Considering the variety in the membrane types and in the 

operating conditions and, therefore, the field of application, there are four different types of 

membrane fractionation: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. 

However, all of them present important drawbacks related with the fouling and cleaning cycle 

associated to the membrane. 

Membrane processes show all the advantages to be a key separation unit in biorefineries and 

pulp and paper industries due to their excellent fractionation capability, reduced consumption of 

chemicals, and low energy requirement (Abels et al., 2013; Jönsson et al., 2008). The use of 

ultrafiltration membranes in pulp and paper industries have as main applicability the treatment of 

bleach plant effluent and the fractionation and concentration of spent liquors (García et al., 2009). 

This process allows the selective extraction of lignin fractions from the black liquor solutions; the 

obtained fractions vary in composition, chemical structure, and properties. In literature, it is 

demonstrated that lignin fractions obtained from membranes with low molecular weight cut-off 

show a higher amount of phenolic hydroxyl groups and an increase in the content of α-oxidized 

aromatics and carboxylic groups (Keyoumu et al., 2004; Sevastyanova et al., 2014). 

Several authors studied the application of membrane technology for the concentration and 

recovery of different lignin fractions with specific molecular weight. The main objective is to 

obtain different fractions able to be used in the synthesis of different high value-added products, as 

chemical reactants, resins and biocomposites, and antioxidant agents (Abels et al., 2013; Borges da 

Silva et al., 2009). In these studies, different operating conditions and types of membranes were 

considered. Toledano and co-workers processed black liquor resulting from alkaline treatment of 

Miscanthus sinensis using ultrafiltration (Toledano et al., 2010a; Toledano et al., 2010b). Ceramic 

membranes with cut-offs of 5, 10, and 15 kDa were used and lignin fractions with different 

molecular weights were obtained. The authors concluded that the fractionation process applied 

affects lignin properties, since ultrafiltrated fractions show low contents of contaminates, as LCC 

(Toledano et al., 2010a; Toledano et al., 2010b). However, concerning β-O-4 and β-5, guaiacyl, 

syringyl, ferulates and p-coumaric acid contents they didn’t find significant differences between 

fractions.  

Liu and co-workers studied the use of organic and inorganic membranes to separate lignin 

from cellulose fraction in black liquor solutions (Liu et al., 2004). The authors have performed 

batch experiments using black liquor from straw, with a transmembrane pressure of 200 kPa at 303 

K, and the results showed that approximately 80% lignin retention was achieved with 
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microfiltration membranes and 90% lignin retention with ultrafiltration membranes. However, to 

prove the high effectiveness of ultrafiltration membranes it is necessary to develop comparative 

studies with others fractionation methods. Toledano and co-authors presented two methods to 

fractionate lignin resulting from the black liquor of the pulping process of Miscanthus sinensis 

(Toledano et al., 2010b). The first method was the selective precipitation, which is achieved by the 

gradual acidification with concentrated sulfuric acid (H2SO4) of the black liquor, getting different 

precipitates according to the pH, and the second one the ultrafiltration, which uses ceramic 

membranes of different cut-off (5, 10 and 15 kDa) to obtain different liquors containing lignins 

with specific molecular weight. Different lignin fractions were obtained by both methods, and the 

characterization results showed that the fractionation process applied affects the properties of the 

obtained lignin. Ultrafiltrated fractions are less contaminated by LCC than the fractions obtained by 

selective precipitation. Ultrafiltration process also allowed controlling the molecular weight of the 

obtained fractions.  

Besides the large applicability off membranes fractionation in small scale, also pilot scale 

experiments were already performed. Keyoumu and co-workers used ceramic membranes to 

perform the continuous separation of defined low molecular weight lignin fractions from softwood 

and hardwood kraft black liquors on a pilot scale (Keyoumu et al., 2004). The membranes used had 

Mw cut-offs of 1, 5, and 15 kDa, and the authors proved that nano and ultrafiltration of black 

liquors appear to be a technically feasible way to remove organic material from the pulp mill 

effluent. More than 40% of the lignin degradation products obtained in the permeate had a Mw less 

than 1 kDa. The results also showed that the lignins isolated from this permeate are highly phenolic 

and have relatively uniform molecular weight distributions.  

 

2.6 THE INTEGRATED PROCESS FOR VANILLIN PRODUCTION 

The general concept of the integrated process for V production includes reaction and 

separation steps for producing V and lignin-based polyurethanes from kraft lignin (Borges da Silva 

et al., 2009). A simplified representation of the integrated process regarding the production and 

recovery of value-added aldehydes from lignin-containing raw materials proposed by the research 

group of LSRE-LCM, working with lignin based biorefining since 90’s, is shown in Figure 6. 

The strategy is to combine reaction engineering and efficient separation processes for 

converting lignin from pulping spent liquors into value-added aldehydes. A portion of the by-

product streams is processed to extract lignin (acidification/precipitation, ultrafiltration or LignoBoost 

process). The subsequent processes are based on three main steps. The first step consists on the 

alkaline lignin oxidation with O2 in a structured bubble column reactor (Araújo et al., 2009). Then, 

the reactor stream follows to an ultrafiltration process leading to the separation of high molecular 

weight fraction of degraded lignin from the lower molecular weight species, which goes 
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preferentially to the permeate. The permeate flows through a packed bed on acid resin in H+ form 

to protonate the phenolates (Zabkova et al., 2007). At the end, there is a refine process using 

crystallization process. 

 

 

Figure 6 – Flow sheet of the integrated process for production of value-added aldehydes and polymers from 
kraft lignin in a biorefinery concept (Borges da Silva et al., 2009). 

 

The production of lignin-based polyurethanes elastomers and foams could be also explored. 

The high molecular weight fraction retained in the ultrafiltration process can be considered as raw-

material for lignin-based polyurethanes. The production of polymers from lignin is undoubtedly an 

attractive approach since it can take advantage of its functional groups and macromolecular 

proprieties. This application has been the topic of intense research and materials with quite 

promising properties were already obtained (Cateto et al., 2009; Cateto et al., 2008). 

This complete process (reaction and separation) is easily integrated in a pulp and paper 

industrial plant, considering the possibility of part of the lignin from side streams (spent liquor) be 

deviated for the production of high added-value chemicals and not only burned to generate energy 

in pulp mills. Moreover, this process perfectly fits into the scope of new emerging lignocellulosic-

based biorefineries to valorize lignin. 
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Characterization and comparative 

evaluation of hardwood lignins 

The production of fuels, added-value chemicals, and materials from lignocellulosic biomass has 

becoming noticeable in the recent years, leading to an intense demand on feedstocks. In this 

perspective, forest and industrial by-products are sustainable sources for exploitation.  

In this chapter, E. globulus lignins produced by mild acidolysis of wood and bark, and industrial 

lignins (kraft and organosolv) were characterized by several NMR techniques, including 13C, 31P 

and 1H NMR. The first goal was to evaluate the impact of the delignification process on the 

structure of E. globulus lignin (functional groups and linkages) and to find the main structural 

features related with the ability to produce phenolic aldehydes, such as vanillin and syringaldehyde, 

as a possible route for lignin valorization. The second goal was to report the structure of lignin from 

E. globulus bark, presenting the comparison with the lignin from the respective wood. The results 

are discussed in a comparative approach, using radar classification, highlighting for each material 

the characteristic features of lignins. 
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3.1 INTRODUCTION 

Eucalyptus species represent the main raw-material for the pulp industry in South America, 

Portugal and Spain. In Portugal, about 7 million m3of debarked Eucalyptus globulus wood per year 

is used in pulp production for high performance paper. The logs are debarked at mill site and the 

bark is mainly used as fuel to energy supply for mill operations. Some chemical aspects of E. 

globulus bark and wood are similar (Miranda et al., 2013; Mota et al., 2012) and suitable for a 

valorization route compatible with the biorefinery concept, integrated in the existing pulp mills. In 

pulp and paper industries, lignin represents a by-product exceeding 50 million tons per year 

(Gosselink et al., 2004). However, most of the lignin produced is used as low-cost fuel to generate 

energy for mill operations (along with pulping chemicals recovery), and only a small fraction, 

approximately 1 million ton per year, is used for commercial applications (Holladay et al., 2007; 

Saito et al., 2014), mostly in lignosulfonate form. The increase demand for platform chemicals 

from renewables feedstocks is one of the driven forces for the creation of lignocellulosic-based 

biorefineries, which are currently emerging all over the world. The economic sustainability of these 

new industries depends on the successful integration of a route for lignin valorization which is 

related with the characteristics of the lignin produced. The source of biomass and the 

delignification process have considerable influence on the structure of this biopolymer (linkages 

and functional groups) and consequently on its reactivity toward a further chemical process (Pinto 

et al., 2011). Hence, the lignin obtained from delignification processes differs from the native one 

as a result of multiple reactions (Pinto et al., 2012), that predominantly involve condensation and 

degradation reactions (Berlin and Balakshin, 2014). This chapter presents a comprehensive and 

comparative analysis of E. globulus lignins, revealing the importance of processing on lignin 

functionality and reactivity as one of the possible tools for the selection of lignins/processes to a 

valorization route within a lignocellulosic-based biorefinery. 

 

3.2 EXPERIMENTAL SECTION: MATERIALS AND METHODS 

 E. globulus lignin samples 

Four lignins resulting from E. globulus were studied: a lignin produced by the organosolv 

process of E. globulus wood (LEgOrg) (kindly supplied by Lignol Innovations, Canada), a lignin 

isolated and further purified from E. globulus industrial kraft liquor (LEgKraft), and lignins 

isolated from wood (LEgwood) and bark (LEgbark) by mild acidolysis using dioxane and hydrogen 

chloride (HCl), as described in the following section.  
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 Lignin isolation by mild acidolysis 

Wood and bark were submitted to mild acidolysis for lignin isolation. About 25 g of dried 

material (fraction 40–60 mesh, pre-extracted with ethanol/toluene) was placed in a 1 L three 

necked flask fitted with a reflux condenser and a nitrogen bubbler. The solvent, 250 mL of 

dioxane/water (9:1, v/v) mixture containing 1.82 g of HCl equivalent to 0.2 M, was slowly added. 

The reaction mixture, under nitrogen, was heated with a heating mantle and refluxed at 90-95 °C 

for a period of 40 min. Then, the mixture was allowed to cool in a nitrogen atmosphere to around 

50 °C. The liquid phase was filtered off and the solid residue was subjected to the next extraction 

with 200 mL of the acidic dioxane/water solution for a period of 30 min, as described above. This 

process was repeated two more times, collecting each liquid phase. The last extraction was 

performed during 30 min with 150 mL of dioxane/water without addition of HCl. Each portion of 

extract was concentrated separately and then the concentrates were combined and lignin was 

precipitated by addition of the dioxane solution in cold water. The isolated lignin was separated by 

centrifugation, washed with water until neutral pH and freeze-dried. 

 

 Kraft lignin purification 

Before characterization, kraft lignin was submitted to further purification by dissolution in 

dioxane. About 30 g of kraft lignin were dissolved in 400 mL of dioxane and left over-night at 

room temperature and moderate stirring. The dioxane non-soluble fraction, enriched in 

contaminants, was removed off and washed thoroughly with dioxane. The dioxane-soluble fraction, 

enriched in lignin, and the washing dioxane was slowly added to cold water for precipitation. The 

precipitate was recovered by centrifugation, washed with water and freeze-dried, giving origin to 

LEgKraft. 

 

 Preliminary analysis of lignins 

3.2.4.1  Inorganics content  

The inorganic content of lignins and residues was gravimetrically quantified; about 100 mg 

of each lignin was placed in a crucible and incinerated in a muffle furnace at 600 ºC during 6.5 h. 

Each determination was made in triplicated. 
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3.2.4.2 Carbohydrate content 

For carbohydrate analysis, lignins were submitted to acid methanolysis. This method assures 

an efficient cleavage of the glycosidic linkages between neutral monosaccharides and uronic acids 

with low degradation. However, acid methanolysis does not promote the complete cleavage of 

cellulose, and for this reason only the quantification of non-cellulosic polysaccharides fraction 

could be achieved (calculated as homopolymer) (Mota et al., 2012). 

 

Lignins (10-15 mg) were submitted to acid methanolysis in 2 mL of 2 M HCl methanolic 

solution, prepared by dilution of a commercial solution of 3 M HCl with anhydrous methanol. The 

methanolysis reaction was performed at 100 ºC, during 4 h. After cooling, 100 μL of pyridine were 

added to the methanolysates to neutralize the remaining HCl, followed by the addition of 1.00 mL 

of sorbitol methanolic solution 0.1 mg/mL (internal standard); the resulting mixture was carefully 

evaporated under reduced pressure. Then, the dried methanolysates were dissolved in 150 μL of 

pyridine, 150 μL of N,O-bis-(trimethylsilyl)-trifluoroacetamide (BSTFA) and 50 μL of 

chlorotrimethylsilane (TMS), maintaining the reaction mixture at 80 °C for 30 min, to convert the 

partially methylated monosaccharides to trimethylsilylated derivatives. The products were 

identified by gas chromatography mass spectrometry (GC-MS) and quantified by gas 

chromatography with flame ionization detector (GC-FID).  

For quantification, the products were analyzed by GC-FID on a DANI GC 1000 

chromatograph, with a capillary column ValcoBond VB1 (30 m × 0.32 mm I.D., 0.25 μm film 

thickness), using the following temperature program: 100-175 ºC at 4 ºC/min and 175-290 ºC at 12 

ºC/min. The temperature of the detector and the injector were kept at 290 ºC and 260 ºC, 

respectively. External calibration was performed with standards for each monosaccharide: 

rhamnose, xylose, galacturonic acid, glucose, galactose, manose, and arabinose; glucuronic acid 

was the standard used for 4-O-methyl-glucuronic acid quantification. The GC-MS analyses were 

performed in a Trace Gas Chromatograph 2000 Series equipped with a Finnigan Trace MS mass 

spectrometer (EI), using helium as carries gas (35 cm/s). The chromatographic conditions, 

including the column, were the same as described for GC-FID with a transfer-line temperature of 

290 ºC and split ratio of 1:100.  

Methanolysis of polysaccharides leads to the cleavage of the glycoside bonds with the 

production of the α- and β-anomers and pyranose and furanose ring forms of the monosaccharides. 

The identification was performed based on the number of glycoside peaks, their relative retention 

time and signal intensity proportion (Bleton et al., 1996; Doco et al., 2001), and mass spectra of 

trimethylsilyl methyl glycoside derivatives using spectral data reported in the literature (Bleton et 

al., 1996; Doco et al., 2001) and standards. 
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3.2.4.3 Elemental analysis 

Carbon (C), hydrogen (H), sulfur (S) and nitrogen (N) contents were determined using a 

Thermo Scientific Flash 2000 Organic Elemental Analyser. The percentage of oxygen (O) was 

calculated by difference, i.e. by subtracting the C, H, S, and N percentages from 100. 

 

 Structural characterization of E. globulus lignins 

3.2.5.1 Nitrobenzene oxidation (NO) 

Analysis by NO provides the yields and types of simple phenolic aldehydes and acids (Hy, 

V, Sy, VA, SA) obtained through the cleavage of linkages between monolignols in the non-

condensed fraction of lignin. G-type units yield V, while S-type units give Sy as major products. H 

units yield Hy. VA and SA are usually minor products from G and S units, respectively. 

 

Lignins were submitted to alkaline NO. About 30 mg of each sample was dissolved in 7.00 

mL of 2 M NaOH aqueous solution in a teflon vessel and, after adding 0.45 mL of nitrobenzene the 

vessel was placed into a stainless steel reactor and heated up to 170 ºC for 4 h. Each oxidation 

experiment was made in triplicate. The oxidized material was then extracted with chloroform in a 

separating funnel (four times, 5 mL each) to remove nitrobenzene and its reduction products. After 

the first extraction, the aqueous phase was acidified (pH 2) with a few drops of H2SO4 solution (12 

M), and then extracted four times with chloroform (5 mL each). The four extracts were combined 

and dried over anhydrous sodium sulfate. The solvent was evaporated under reduce pressure, the 

dried sample was dissolved in methanol and made up to 10 mL with methanol. The solution was 

then filtered and analyzed by high performance liquid chromatography (HPLC) in a Knauer HPLC 

system equipped with a Smartline 5000 online degasser, a Smartline 1000 quaternary pump, and a 

2500 UV detector was used. The analytical column was a ChromSep SS (250 × 3.0 mm, 5 μm) 

with a ChromSpher 5 C18 (Chrompack) guard column. The detection wavelength was set at 280 

nm. Chromatograms were run at room temperature and at 0.4 mL/min. The volume of the injection 

loop was 20 μL. A preliminary study on HPLC operating conditions was carried out to obtain a 

good compromise between retention and run time for the separation of all the compounds.  

The separation was performed using an elution gradient due to the different polarities of the 

compounds. Formic acid (pKa 3.75) was added to ensure a low pH and to prevent the ionization of 

carboxylic groups and, thus, peak tailing. The mobile phase used for analysis was a binary eluent: 

eluent A, 95:5 (v/v) water:methanol containing 0.1% (v/v) formic acid; eluent B, 5:95 (v/v) 

water:methanol with 0.1% (v/v) formic acid. Eluents were filtered through a 0.20 μm pore size 

filter (Millipore). The gradient program was 0-3 min 90% A, 10% B; 7 min 80% A, 20% B; 7-20 
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min 80% A, 20% B; 40 min 40% A, 60% B; 43 min 100% B. Standard solutions and samples were 

filtered before injection using a 0.2 μm disposable filter (Millipore). 

Eight standard solutions were prepared with all seven compounds (V, VA, VO, Sy, SA, SO, 

Hy) dissolved in methanol to an individual final concentration ranging from 0.3 to 4 mg/mL. These 

solutions were diluted to 0.5-20 μg/mL with 95:5 (v/v) water-methanol, containing 0.1% (v/v) 

formic acid, for HPLC calibration. Each standard solution was prepared in triplicate. NO and 

HPLC analysis were performed in duplicated. 

 

3.2.5.2 13C NMR 

13C NMR provides important information about the carbons in different structural and 

chemical environments in lignin structure. The quantitative data from 13C NMR led to the 

calculation of basic parameters which summarizes the main structural characteristics of lignins: β-

O-4 structures content, DC, S/G, and S:G:H ratio (Balakshin et al., 2015; Capanema et al., 2005). 

 

Quantitative 13C NMR spectra were recorded using a Bruker AVANCE III 400 spectrometer 

operating at 400 MHz, at 318 K, during 72 h. About 170 mg of dried lignin was dissolved in 0.5 

mL deuterated dimethyl sulfoxide (DMSO-d6). Quantitative conditions used for 13C NMR signal 

acquisition were: simple 1D pulse sequence, relaxation delay of 12 s, 1400 scans, and 1D sequence 

with power gated coupling using 90º flip angle. 

 

3.2.5.3 31P NMR 

Quantitative 31P NMR method allows determining each type of hydroxyl groups present in 

the lignin structure. The S, G and H free phenolic groups, as well as carboxylic, aliphatic and 

condensed structures carrying free phenolic groups can be quantitatively identified using this 

technique (Argyropoulos et al., 2009; Granata and Argyropoulos, 1995; Heitner et al., 2010; Pu et 

al., 2011). Hydroxyl groups, specifically free phenolic groups, are one of the most important 

structural characteristic that affects physical and chemical properties of lignin. These functional 

groups have a great influence in lignin reactivity concerning the cleavage of inter-unit linkages 

and/or oxidative degradation (Lai and Guo, 1991), and also when it is applied as macro monomer, 

as in the synthesis of compounds, like polyurethanes (Cateto et al., 2008). 

 

The dry lignin was accurately weighted (about 40 mg) in a sample vial, dissolved in 400 μL 

(1.6:1,v/v) of pyridine and deuterated chloroform (CDCl3) and left at room temperature overnight 

with continuous stirring. Cholesterol (200 μL, 19 mg/mL) and chromium (III) acetyl-acetonate (50 
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μL, 11.4 mg/mL) are used as internal standard (IS) and relaxation reagent, respectively, as 

recommended by (Argyropoulos et al., 2009). After 2 h, 100 μL of phosphitylating reagent (2-

chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane) is added and the mixture was transferred into a 

5-mm-OD NMR tube. Before adding the phosphitylating reagent, it was checked that the lignin 

was completely dissolved in the solvent mixture. The phosphitylated lignins were analyzed by 31P 

NMR spectroscopy using a Bruker AVANCE III 400 spectrometer operating at 400 MHz, at 298 

K. The spectrum was acquired during 30 min with 10 s relaxation time, 45º pulse angle, and 4 s 

pulse delay. 

 

3.2.5.4 1H NMR 

Prior to 1H NMR analysis the lignins were acetylated. Lignin samples were subjected to 

acetylation in order to enhance their solubility in organic solvents, used in NMR techniques. This 

reaction implies the substitution of all the hydroxylic functions by new acetyl groups. 

Lignins (20 mg) were dissolved in 0.1 mL of an acetic anhydride/pyridine solution (4.7:4.0, 

v/v) for 24 hours, at 315 K. Then the mixture was diluted with 1.0 mL of methanol and 8.0 mL of 

dichloromethane and left for 30 minutes, after which 5 mL of a HCl 7% solution were added. The 

mixture was poured into a separatory funnel of 50 mL and the aqueous phase of the mixture was 

removed. The addition of 5.0 mL of HCl 7% solution and the removal of the aqueous phase was 

repeated two times. One more wash with distilled water was performed and after that the organic 

phase was removed, dried with sodium sulfate anhydrous, and evaporated under reduced pressure. 

 

The 1H NMR spectrum of acetylated hardwood lignins in CDCl3 solution, with a minimum 

concentration of 5 %w/v, was acquired using a Bruker AVANCE III 400 spectrometer, operating at 

400 MHz, at room temperature. The acquisition parameters used were: 12 μs pulse width (90º), 2 s 

relaxation delay, and 200-250 scans. The acquisition time was about 2 h and CDCl3 was used as 

internal standard. 

 

3.3 COMPOSITION OF E. GLOBULUS LIGNINS 

The inorganics and carbohydrate content of eucalyptus lignins are depicted in Table 4. The 

ash content of all the lignins is lower than 1%, and carbohydrate amount is lower than 3%. In the 

case of kraft lignin, the purification procedure leads to a final product with rather low content of 

ashes and carbohydrates. 
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Table 4 - Ash and carbohydrate contents of lignins, presented in %w/wlignin (dry weight).  

 
lignins  

LEgOrg LEgKraft LEgwood LEgbark 

Inorganic compounds (%w/wlignin) 0.11±0.01 < 0.01 1.0±0.04 0.34±0.01 

Carbohydrates (%w/wlignin) 1.4±0.04 1.0±0.03 1.8±0.05 2.7±0.08 

 

The content of the main sugar residues found in E. globulus lignins is depicted in Table 5. 

Xylose was the main sugar residue found followed by glucose and galactose; minor quantities of 

rhamnose, arabinose, and mannose were also detected.  

 

Table 5 - Detailed composition of carbohydrate fraction (%w/wlignin) of E. globulus lignins. 

 Glc Xyl Ara Gal Rha Man 

LEgOrg 0.20 0.28 0.10 0.12 0.02 0.09 

LEgKraft 0.07 0.21 0.07 0.10 0.01 0.04 

LEgwood 0.19 0.27 0.11 0.14 0.02 0.06 

LEgbark 0.13 0.31 0.15 0.64 0.02 0.01 

*Glc – glucose; Xyl – xylose; Ara – arabinose; Gal – galactose; Rha – rhamnose; Man - mannose. 

 

3.4 STRUCTURAL CHARACTERIZATION OF E. GLOBULUS LIGNINS 

 Analysis by NO 

The NO results for the yields and types of simple phenolic aldehydes obtained for LEgOrg, 

LEgKraft, LEgwood, and LEgbark, are depicted in Table 6. The main products of hardwood lignins 

after NO are V and Sy, derived from G and S units, respectively. NO yields are higher for LEgwood 

and LEgbark lignins, and follow the sequence LEgwood≈ LEgbark> LEgOrg > LEgKraft. 

 

Table 6 - Yields of monomeric phenolic products obtained by NO of lignins. 

lignin 
products, % w/wlignin* 

Hy V Sy VA SA total yield 

LEgOrg 0.52 4.98 18.6 0.13 2.25 26.5 

LEgKraft 0.20 3.67 13.3 0.53 3.31 21.0 

LEgwood 0.04 4.38 24.6 0.46 1.60 31.1 

LEgbark 0.04 4.40 25.6 0.37 2.52 32.9 

* reported to nonvolatile solids weight after deducting ashes and carbohydrates 
 

The results confirm that lignins produced by mild acidolysis have higher content of non-

condensed structures, being probably closer to that of native lignin (Evtuguin et al., 2001; Lin and 

Dence, 1992). On the other hand, kraft and organosolv lignins have a higher content of condensed 
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structures, which are more resistant to degradative oxidation. Among the lignins obtained by 

delignification processes it is visible that LEgKraft present a higher content of these structures than 

LEgOrg. High total yield of NO is indicative of advantageous structural characteristic with high 

relevance for lignin valorization, specifically considering the production of V and Sy. LEgKraft 

showed the highest relative content of VA and SA, which is indicative of a high content of 

structures with carbonyl group at Cα (benzyl carbon) (Gierer et al., 1977) in this lignin, which 

could be a disadvantage in the oxidative reactions aiming to obtain aldehydes. The proportion of H 

structures represents less than 2% of the total yield on oxidation products for all the lignin samples.  

Concerning Sy/V molar ratio, the values found in this work for mild acidolysis lignins (4.9 

and 4.7, for wood and bark respectively) are higher that the values found for E. globulus wood 

growth in China, 3.7 (Xie and Yasuda, 2004) and for other Eucalyptus species (S/G ratio: 2.7-4) 

(Ohra-aho et al., 2013), both obtained by direct analysis of the sawdust. However, Sy/V of this 

work is close to that obtained by other authors for plantation E. globulus wood (4.6) (Evtuguin et 

al., 2001). NO has been applied for characterization purposes of isolated lignin (Erdocia et al., 

2014; Evtuguin et al., 2001; Pinto et al., 2002a) and native lignin (directly in the sawdust) (Ohra-

aho et al., 2013; Xie and Yasuda, 2004) or to estimate the maximum yield on functionalized 

phenolics that is possible to produce by oxidative depolymerization (Pinto et al., 2011; Tarabanko 

and Petukhov, 2003). In this last perspective, it has been suggested that the yield of oxidation with 

O2 in alkaline medium is about 40–50% of NO yield (Pinto et al., 2011; Tarabanko et al., 1995).  

Pinto et al. (2002a) studied the behavior of E. globulus lignins during kraft process. The 

authors reported a decrease of NO yield along the kraft pulping with a final value of 19.8% (about 

36% of initial wood lignin yield), a value close to that found for LEgKraft (21.1%). This decrease 

on yield is related with the increase of condensed structures resulting from the reaction of lignin in 

kraft conditions, which is in accordance with the decrease observed also between LEgwood and 

LEgKraft. In general, hardwood lignins and lignins obtained by processes involving low 

temperature and soft conditions (such as mild acidolysis) led to higher yields toward NO. The low 

impact of mild acidolysis (Lin and Dence, 1992) on native lignin structure allows obtaining a 

reference lignin for comparison with the industrial processed ones. 

 

 13C NMR 

The quantitative 13C NMR spectra of LEgOrg, LEgKraft, LEgwood, and LEgbark lignins with 

the main assignments identified are shown in Figure 7. Figure 8 is an amplification of the 

resonance region corresponding to the aromatic carbons (δ 100–160 ppm), the most important in 

the 13C NMR lignin analysis.  
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Figure 7 - Quantitative 13C NMR spectra of (a) LEgOrg, (b) LEgKraft, (c) LEgwood, and (d) LEgbark (in 
DMSO-d6; * solvent peak (Hugo et al., 1997)). 
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Figure 8 - Expanded δ 165-95 ppm region of quantitative 13C NMR spectrum of (a) LEgOrg, (b) LEgKraft, 
(c) LEgwood, and (d) LEgbark (in DMSO-d6). 

 

The matching of carbon chemical shifts of each functional group present in lignin structure 

was made based on reference spectra and data available on literature (Capanema et al., 2004; 

CAr-H in 
S units 

CAr-H in 
G units Aromatic CAr-C Aromatic CAr-O C4 in H units 

(a) 

(c) 

(d) 

(b) 



Vanillin and syringaldehyde from side streams of pulp and paper industries and biorefineries 

 
46   Chapter 3 

Evtuguin et al., 2001; Landucci, 1985; Lin and Dence, 1992; Xia et al., 2001). The 13C NMR 

results, presented in Table 7, are reported as the ratio of the integral of a given carbon signal to 

one-sixth of the integral of aromatic carbons (Ar). 

 

Table 7 - Assignments and quantification (number per aromatic ring) of the structures/linkages and functional 
groups identified by 13C NMR. 

assignments (spectroscopic range) 
amount (number/Ar) 

LEgOrg LEgKraft LEgwood LEgbark 

Cβ in β-5 and β-β structures (δ 51.0-53.8 ppm) 0.10 0.07 0.06 0.11 

Aromatic OCH3 (δ 54.3-57.3 ppm) 1.40 1.38 1.75 1.53 

Cγ in β-O-4 structures without Cα=O (δ 59.3-60.8 ppm) 0.26 0.10 0.46 0.44 
Cγ in β-5 and β-O-4 structures with Cα=O; Cγ in β-1  

(δ 62.5-63.8 ppm) 
0.07 0.03 0.07 0.08 

Cα in β-O-4 structures; Cγ in pinoresinol/syringaresinol  
and β-β structures (δ 70.0-76.0 ppm) 

0.34 0.17 0.71 0.69 

Cβ in β-O-4 structures; Cα in β-5 and β-β structures 
(δ 80.0-90.0 ppm) 

0.44 0.16 0.82 0.76 

Aromatic CAr-H (δ 103.0–123.0 ppm) 1.95 1.83 2.05 2.06 

Aromatic CAr-C (δ 123.0–137.0 ppm) 1.75 1.86 1.27 1.41 

Aromatic CAr-O (δ 137.0–156.0 ppm) 2.30 2.30 2.68 2.53 

C4 in H units (δ 157.0–162.0 ppm) 0.00 0.00 0.00 0.07 

CHO in benzaldehyde structures (δ 191.0–192.0 ppm) 0.04 0.02 0.03 0.02 

CHO in cinnamaldehyde structures (δ 193.5–194.5 ppm) 0.04 0.02 0.02 0.04 

 

The integral of the δ 103–162 ppm region was set as the reference, assuming that it includes 

six aromatic carbons (Capanema et al., 2004; Lin and Dence, 1992). The aromatic region of the 

lignin 13C NMR spectra is usually used for the quantification of different types of aromatic carbons: 

tertiary (CAr-H), quaternary oxygenated (CAr-O) and non-oxygenated (CAr-C) (Capanema et al., 

2004). Also, the content of S, G and H units can be evaluated from this region, δ 103–162 ppm. 

The number of tertiary aromatic carbons of S units (between 1.18/Ar and 1.49/Ar) was estimated in 

the spectrum region of 103–110 ppm, while for G units (in the range of 0.56/Ar–0.77/Ar) the 

integral at δ 110–123 ppm was considered. The amount of H units was estimated from the signal at 

δ 157–162 ppm, assigned to C4 in the corresponding structures (Evtuguin et al., 2001). H units 

were detected for LEgbark while for the other lignins no signal of this type of units was found, 

indicating that its content is negligible. An increase in the number of aromatic carbons CAr-C and a 

slight decrease in the number of aromatic CAr-H were found in the order LEgwood, LEgOrg and 

LEgKraft. This trend is related with the increase of the condensed structures content in the same 

order. The increase of condensation in lignins results mainly from the accumulation of the original 

moieties as well as CAr-CAr and CAr-O-CAr coupling in the delignification or isolation process. 



Characterization and comparative evaluation of hardwood lignins 

 

Chapter 3  47 

Comparatively to wood lignin, LEgOrg and LEgKraft present a higher content of resistant 

structures, more pronounced for the kraft lignin.  

From the integral at δ 80–90 ppm it is possible to estimate the total amount of β-O-4 

structures; however, this region of integration also includes β-5 and β-β structures. The net content 

of β-O-4 structures was calculated by the subtraction of the amount of β-5 and β−β structures (δ 

51.0−53.8 ppm) from the integral of δ 80.0−90.0 ppm (Balakshin et al., 2015; Capanema et al., 

2005). For this structure, values of 0.76/Ar, 0.65/Ar, 0.34/Ar, and 0.09/Ar were obtained for 

LEgwood, LEgbark, LEgOrg, and LEgKraft, respectively. The results indicate that kraft and 

organosolv lignins show a lower content of β-O-4 structures than lignins produced by mild 

acidolysis. The decrease during kraft and organosolv process is a consequence of the cleavage of 

aryl-ether structures, one of the main reactions occurring in the delignification process that led to 

important changes in lignin structure. This phenomenon can be verified in the 13C NMR spectra of 

lignin samples (Figure 7) in the increasing order: mild acidolysis, organosolv and kraft lignin. 

Taking the region of aromatic CAr-O it is possible to observe a decrease of the signal at δ 152 ppm, 

that corresponds to etherified C3 and C5 in S units (mainly in β-O-4 structures), and an increase of 

the signal at δ 148 ppm, due to the resonance of C4 in G units of β-β structures, C3 and C5 in non-

ether S units, C3 in non-ether G units, and C4 in G units with conjugated C=C bonds (Wen et al., 

2013a; Wen et al., 2013b). Also the signal near to δ 138 ppm, that represents C4 in etherified S 

units, shows a considerable decrease in the same order. This observation is also related with the 

degradation of β-O-4 structures, as already stated by Wen et al. (2013b), for kraft and organosolv 

lignins, in higher extension for kraft ones. For lignins produced by kraft process at laboratory scale, 

Pinto and their co-authors (Pinto et al., 2002b) obtained a content of these structures of 0.33/Ar for 

a purified E. globulus kraft lignin, which is rather high comparatively to the value of this work, for 

the industrial kraft lignin (0.10/Ar). For a birch organosolv lignin a content of β-O-4 structures of 

0.42/Ar was found (Wen et al., 2013a), while for an organosolv lignin from E. grandis × E. 

urophyllathe content of β-O-4 structures obtained was 0.29/Ar, representing 39% of the initial 

content (0.75/Ar, based on mild acidolysis lignin) (Wen et al., 2013b). These values are 

considerable higher, than the values the values found in this work, where the final content of β-O-4 

structures represents about 22% of the mild acidolysis lignin.  

The lowest content of OCH3/Ar found for LEgKraft and for LEgOrg comparatively with the 

wood lignin reflects the demethoxylation that occurs during the delignification process, usually 

referred for the kraft one (Pinto et al., 2002a), but already noticed for organosolv process (Wen et 

al., 2013b). OCH3 contents in E. globulus lignin samples are within the values reported in earlier 

studies of other hardwood lignins. Santos and their co-workers found values of OCH3/C9 between 

1.4 and 1.9 for milled wood lignins from ten different hardwood species, among them E. globulus 

milled wood lignin presented the highest content (Santos R.B. et al., 2012). Also Capanema et al. 

(2005) presents values of OCH3/C9 for hardwood milled wood lignins characterized by different 
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authors and the obtained values vary from 1.4 to 1.6. In fact, a particular characteristic of E. 

globulus lignins is the higher OCH3 content found comparatively with those obtained for other 

types of hardwood lignins (Evtuguin et al., 2001; Pinto et al., 2005), due to the higher S/G ratio of 

the former.  

The content of β-O-4 structures with Cα=O is calculated based on the resonance at δ 62.5–

63.8 ppm; however, this region of integration also contains β-5 structures. The contents of this type 

of structures are low for all the lignins (between 0.03/Ar and 0.08/Ar). Similar values of these 

structures were obtained for an E. globulus lignin produced by wood mild acidolysis (0.04/Ar) and 

also for a purified kraft lignin of the same specie (0.08/Ar) (Pinto et al., 2002b). As stated before, 

the content of H units found in LEgwood is negligible, while for LEgbark about 7% of these units were 

found. In accordance, the content of OCH3 in LEgbark is lower comparatively to LEgwood, reflecting 

the presence of the three structural units H, G and S and not only G and S as in wood. LEgbark 

contains higher CAr-C, similar CAr-H and lower CAr-O contents comparatively to wood lignin, 

suggesting that bark lignin has a higher frequency of condensed structures per aromatic ring. For 

the other types and contents of interunit linkages and functional groups obtained from 13C NMR no 

significant differences were found between LEgwood and LEgbark. These statements are in agreement 

with studies already published about the characterization of wood and bark lignins obtained from 

softwood species (Huang et al., 2011; Solár et al., 1988). These authors also confirm the lower 

presence of OCH3 and the higher content of condensed structures in bark lignins. A detailed 

comparison between the lignins produced by wood and bark mild acidolysis provide important 

information in order to optimize the use of bark lignins for the production of aromatic aldehydes by 

oxidation. With the 13C NMR data, and by comparison with lignin obtained by mild acidolysis it is 

possible to notice that the kraft and organosolv lignins are the product of an intense modification 

during the respective delignification process, more pronounced for kraft one. 

 

 31P NMR 

Table 8 summarizes the results of quantitative 31P NMR analysis of phosphitylated lignin 

samples, LEgOrg, LEgKraft, LEgwood, and LEgbark, the respective spectra are shown in Figure 9.  

The concentration of each hydroxyl functional group (in mmol/glignin) was calculated on the 

basis of the content of internal standard, cholesterol (δ 145.2 ppm), and its integrated peak area was 

normalize to 1. 
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Figure 9 - Quantitative 31P NMR spectra (δ 155-130 ppm) of phosphitylated lignins (a) LEgOrg, (b) 
LEgKraft, (c) LEgwood, and (d) LEgbark (in CDCl3). 

 

Internal standard 
(cholesterol) 

Aliphatic OH 

Condensed 
phenolic units 

S phenolic 
units 

G phenolic 
units 

H phenolic 
units 

Carboxylic 
acids 

(a) 

(d) 

(b) 

(c) 



Vanillin and syringaldehyde from side streams of pulp and paper industries and biorefineries 

 
50   Chapter 3 

Table 8 - Assignments and quantification (mmol/glignin) of phenolic, aliphatic, and carboxylic hydroxyl 
groups identified by 31P NMR. 

Assignments  
amount (mmol/glignin) 

LEgOrg LEgKraft LEgwood LEgbark 

Aliphatic OH (δ 146.4-150.8 ppm) 1.39 1.61 3.12 4.12 

Carboxylic acids (δ 135.6-133.6 ppm) 0.02 0.00 0.16 0.24 

Total phenolic units  2.66 7.25 1.60 1.79 

Condensed phenolic units  
(δ 145.8-143.8; 142.2-140.2 ppm) 

0.70 1.29 0.47 0.49 

Non-condensed phenolic units     

S phenolic units (δ 143.8-142.2 ppm) 1.47 4.72 0.72 0.78 

G phenolic units (δ 140.2-137.4 ppm) 0.47 1.24 0.41 0.52 

H phenolic units (δ 137.4-136.9 ppm) 0.00 0.00 0.00 0.00 

 

The content of aliphatic OH groups in LEgOrg and LEgKraft is about 36–46% lower than 

LEgbark and LEgwood. These groups are mainly comprised of primary and secondary OH groups 

located on Cγ and Cα of the phenylpropane side chain of lignin structure (Froass et al., 1998). The 

loss of aliphatic OH groups during the delignification processes is related with the degradation of 

side-chains of ppu, since these lignins were subjected to more drastic conditions than in acidolysis 

(Ibarra et al., 2007).  

Different authors applied 31P NMR to study the chemical transformations of hardwood 

lignins during organosolv and kraft processes with different severity grades, and also found a 

decrease of aliphatic OH groups during de delignification (Pinto et al., 2002b; Wen et al., 2013b). 

This fact could be related with the loss of γ-hydroxymethyl groups, as formaldehyde, and OH 

groups on the side chain of ppu to form β-1 linkages, as previously described by Hallac and co-

workers (Hallac et al., 2010).  
31P NMR comparison between industrial lignins (kraft and organosolv) and mild acidolysis 

lignin also shows that the delignification process causes an increase in phenolic OH units present in 

lignin structure, which is in accordance with the decrease of β-O-4 structures, as well as the 

decrease of etherified structures already discussed for 13C NMR. An increase in free phenolic OH 

units leads to an increase in lignin solubility, what can be advantageous regarding the production 

and recovery of added-value aldehydes from lignin (Pinto et al., 2012). Minor amounts of 

carboxylic OH groups were obtained for mild acidolysis lignins, while for LEgOrg and LEgKraft 

these types of assignments are not detected. For the condensed structures carrying free OH groups 

the total content found was between 0.47/glignin and 1.29/glignin of the total phenolic units content. 

Kraft and organosolv lignins, as well as lignins produced by wood and bark mild acidolysis, 

showed different condensed moieties in their structures, such as 5-5’, β-5 and β-1. However, the 

formation of additional condensed linkages during the pulping process is evident, mainly for kraft 

process, originating a lignin with a higher content of this type of structures (Nanayakkara et al., 

2011). Other authors (Sannigrahi et al., 2009; Wen et al., 2013b) also noticed that both softwood 
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and hardwood organosolv lignins show an increase in condensed phenolic units comparatively to 

the corresponding milled wood lignin, from 0.02/ppu to 0.11/ppu for softwood and from 0.05/ppu 

to 0.09/ppu in the case of hardwood lignins.  

With respect to kraft process, Pinto et al. (2002b) found an increase in the total phenolic OH 

content with the progressive increase of kraft delignification applied to an E. globulus lignin. 

Granata and Argyropoulos (1995) found the same behavior for a softwood kraft lignin; the authors 

also observed that the delignification process increases the content of condensed structures caring 

free phenolic OH groups. Among the OH groups in different structures identified by 31P NMR, 

lignins produced by wood and bark mild acidolysis presented similar results, including the 

distribution of non-condensed phenolic units in H, G and S units. However, a slight difference is 

reported for aliphatic OH content, which is higher for LEgbark than for LEgwood. This difference is 

probably the effect of the higher content of carbohydrate in the bark than in wood lignin (Table 4) 

rather than a structure-related effect.  

From the 31P NMR analysis it is possible to conclude that the main modifications induced by 

organosolv and kraft processes were the decrease in the content of aliphatic OH groups and an 

overall increase of phenolic groups, in particular for units involved in condensed structures, more 

evident for kraft lignin, LEgKraft. 

 

 1H NMR 

1H NMR spectroscopy allowed obtaining additional data about lignin structure. 1H NMR 

spectrum of each E. globulus lignin is presented in Figure 10. 

Semi-quantitative determination of structural elements identified by 1H NMR (Table 9) were 

made by C9 using the resonance of OCH3, at δ 3.5–4.0 ppm, as reference, and the signal 

assignments from the literature (Chen and Robert, 1988; Fukagawa et al., 1991; Lundquist, 1992; 

Nose et al., 1995). The comparison between the results from the different spectroscopy techniques 

was performed assuming that the numbers of structural elements calculated per C6 or C9 are 

similar. This is true if the side chain still contains three carbons; however, for some lignins, mainly 

the kraft ones, this assumption could not be true due to the already described elimination of lateral 

chain. 

The results obtained from 1H NMR are in accordance with the structural features already 

stated for 13C and 31P NMR: kraft and organosolv lignins present a lower content of aliphatic OH 

and more phenolic OH groups, resulting from aryl-ether cleavage (depicted in Table 9 as β-O-4 

structures without Cα=O, at δ 5.9-6.2 ppm), than mild acidolysis lignins. 
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Figure 10 - 1H NMR spectra,  in CDCl3, of acetylated lignins (a) LEgOrg, (b) LEgKraft, (c) LEgwood
 and (d) 

LEgbark. (* CDCl3; ** dichloromethane; *** methanol: contaminants from the acetylation process (Hugo et 
al., 1997)). 
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Table 9 - Assignments and quantification (number per phenylpropane unit) of the linkages and functional 

groups identified by 1H NMR. 

Assignments (spectroscopic range) 
amount (number per ppu) 

LEgOrg LEgKraft LEgwood LEgbark 

- CH2- and -CH3 (δ 1.5-0.7 ppm) 0.44 0.23 0.29 0.44 

Aliphatic OH (δ 2.2-1.7 ppm) 0.61 0.45 1.05 1.15 

Phenolic OH (δ 2.5-2.2 ppm) 0.71 0.78 0.52 0.42 

β-β (δ 3.2-3.0 ppm) 0.23 0.07 0.19 0.17 

Phenylcoumaran (δ 5.7-5.2 ppm) 0.18 0.15 0.22 0.23 

β-O-4 (without Cα=O) and β-1 (δ 6.2-5.9 ppm) 0.25 0.19 0.47 0.42 

H in aromatic ring (δ 8-6.2 ppm) 2.04 2.11 3.20 2.04 

 

The amount of β-β structures, calculated based on the resonance at δ 3.2–3.0 ppm, is lower 

for LEgKraft comparatively to LEgOrg and mild acidolysis lignins due to a more intense 

involvement of the lateral chain in the kraft delignification process. A lower content of aliphatic 

OH was also found for this sample. Aliphatic OH groups decrease along the delignification process 

due to the degradation of the side chain of ppu, as already stated by 31P NMR. The results from 1H 

NMR also show that bark lignin have a higher frequency of free aliphatic OH, CH2 and CH3 groups 

comparatively to wood one. These differences could be due to carbohydrates contamination (as 

stated before for aliphatic OH) and due to the presence of aliphatic extractives of bark, which are 

more abundant in bark than in wood (Freire et al., 2002). Another difference between these lignins 

is the lower content of C-H in aromatic ring for LEgbark comparatively to LEgwood. This fact is 

attributed to a slight higher condensation degree of bark lignin, as previously stated by the higher 

content of CAr-C linkages quantified by 13C NMR. 

 

3.5 EMPIRICAL FORMULA AND MOLECULAR MASS OF PPU 

Based on OCH3 and phenolic groups (OHph) content, calculated by 1H NMR, and elemental 

analysis the empirical formula of lignin samples as well as the molecular mass (M) of ppu were 

calculated and presented in Table 10.  

Besides the content on OHph and OCH3 groups, the formula indicates the average proportion 

of C:H:O in the ppu of each lignin. Elemental analysis results were corrected for the content of 

carbohydrates. Comparing the results obtained for lignins produced by wood and bark mild 

acidolysis, it is possible to observe that LEgwood shows a slight increase in the value of M. This fact 

is related with the higher contents of OCH3 and OHph obtained for this lignin sample, as stated 

before. The results show a low content of H and O per ppu, observed for LEgOrg and LEgKraft, 

which could be related with a high frequency of C-C linkages (condensed structures) formed during 

the delignification process, as noticed in section 3.4.2 (13C NMR results). Lignin samples presented 
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contents of OCH3/ppu between 1.4 and 1.7, and the decrease of OCH3 from wood to organosolv 

and kraft lignins confirm the demethoxylation. 

 

Table 10 - Empirical formula and molecular mass (M) of ppu of E. globulus lignins. 

lignin empirical formula M (g/mol) 

LEgOrg C9H7.9O1.6 (OHph)0.59(OCH3)1.34 193 

LEgKraft C9H7.7O0.9S0.3 (OHph)0.78(OCH3)1.38 196 

LEgwood C9H8.5O2.5 (OHph)0.52(OCH3)1.74 219 

LEgbark C9H9.1O2.3 (OHph)0.31(OCH3)1.53 207 

 

Considering the content of OHph/ppu, LEgKraft presents the highest value indicating an 

extensive cleavage of β-O-4 structures. Organosolv process has a more preserving effect on these 

structures. The molecular mass of a ppu of lignins produced by wood and bark mild acidolysis are 

in the range of 207-219 g/mol, decreasing to 193-196 g/mol after delignification process (Table 

10). Another consideration which can be used to distinguish kraft lignin is the presence of organic 

sulfur in this structure, as thiol groups. Sulfur free lignins are more appealing from the point of 

view of lignin valorization than lignins that present organic sulfur in their structures. 

 

3.6 ASSESSING CORRELATIONS BETWEEN STRUCTURAL FEATURES AND NO 

YIELDS 

 DC, S:G:H ratio and correlations with NO results 

DC includes the lignin moieties with C-C linkages with other lignin units through C2 or C6 

positions of the aromatic ring of S units, C2, C5 or C6 positions of the aromatic ring of G units, and 

in the case of H units also C3 position is available. The most common condensed moieties in lignin 

structure are 5-5’, β-5, and 4-O-5’ structures (Berlin and Balakshin, 2014). 13C NMR results (Table 

7) allow calculating the DC value as well as the relative content of S:G:H. In these calculations it is 

assumed that one aromatic ring (Ar) is equivalent to ppu. To estimate the DC is necessary to 

calculate the theoretical amount of CAr-H atoms from the S:G:H ratio. However, a few ways for the 

estimation of the amounts of G, S and H units have been presented. Some authors (Capanema et al., 

2005; Landucci, 1985) showed that the most accurate method to estimate the G:S:H ratio in lignin 

is based on the content of OCH3/Ar; however this method is not suitable for lignins that suffer 

demethoxylation during the delignification process. For this reason the quantification of each 

structural unit was performed based on the integral of the respective 13C NMR spectrum as 

previously reported (Capanema et al., 2005; Evtuguin et al., 2001): 
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S = Integral 103–110/2 

G = Integral 110–123/3 

H = Integral 157–162 

 

The region of δ 103–123 ppm is attributed to aromatic tertiary carbons (CAr-H). The value 

for CAr-H in non-condensed G units is 3, while for S units that value is 2. In the case of H units 

only two carbons resonate in this region (C3 and C5), and for this reason the value for CAr-H in non-

condensed structures involving H units is 2 (Capanema et al., 2004; Capanema et al., 2005; 

Evtuguin et al., 2001). In this approach, an equal proportion of non-condensed moieties in G and S 

units was considered; however, this assumption leads to an underestimation of G content, since this 

moiety is more frequently involved in condensed structures (CAr-C) than S units, due to the free 

position at C5. In spite of this limitation, the theoretical value of CAr-H was calculated for the four 

lignins (Capanema et al., 2005): 

Theoretical CAr-H = (2S + 3G + 2H) 

 

The difference between the theoretical and the experimental values, corrected for 100, gives 

the percentage of condensed moieties in lignin structure. The DC and S:G:H ratio calculated for 

eucalyptus lignins are depicted in Table 11.  

 

Table 11 – DC (%) and S:G:H ratio calculated for the E. globulus lignins. 

lignin DC (%) S:G:H 

LEgOrg 35 70:30:00 

LEgKraft 43 74:26:00 

LEgwood 15 80:20:00 

LEgbark 16 70:23:07 

 

The S:G:H ratio found for all the samples shows a predominance of S units as expected for 

this type of lignins. Among the studied lignins, LEgKraft presents the highest value of DC, 

reaching to about three times the value of wood lignin produced by mild acidolysis. In the case of 

LEgOrg, a DC value more than twice of LEgwood was found. The higher content of condensed 

structures in kraft than in organosolv lignin demonstrates that lignin undergoes fewer 

transformations in the organosolv process.  

DC is an important parameter for studies about lignin applications since it has a negative 

impact on lignin reactivity. On the other hand, NO has been used to evaluate the yield of phenolic 

aldehydes that would be produced in an oxidative process. The plot of NO yields versus DC values 

show a good correlation (Figure 11), clearly demonstrating that the reactivity of lignin toward NO 
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decreases with the increases of condensed structures content. If lignin structure has a high content 

of condensed structures, lower yield of phenolic aldehydes could be achieved.  

 

 

Figure 11 - Plot of NO yield versus DC values obtained for E. globulus lignins. 

 

The correlation between β-O-4 structures content, from 13CNMR, and DC values is depicted 

in Figure 12. The observed trend gives further support to the suggested relation between the content 

of uncondensed structures and the value of DC obtained for each lignin sample: the higher the total 

of uncondensed structures, lower is the DC.  

 

 

Figure 12 - Plot of β-O-4 content versus DC values obtained for E. globulus lignins. 

 

For lignins produced by mild acidolysis, high yields of monomeric phenolic aldehydes were 

produced by NO and high contents of β-O-4 structures were obtained by 13C NMR. The low DC 

found indicates a low content of condensed moieties in their structure, probably close to the native 

lignin in wood and bark. Lignin reactivity is highly related with these structural alterations. The 

extent of these alterations allows predicting the potential of lignin to produce aldehydes, since it is 

the cleavage of non-condensed structures in the oxidation process that leads to these compounds. 

Based on this indication, it is possible to conclude that LEgwood and LEgbark lignins preserved a 

considerable fraction of its original ether structures (comparing with organosolv and kraft lignins). 

However, delignification process inevitably led to a change on native characteristics mainly due to 
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the cleavage of β-O-4 and α-O-4 linkages and condensation reactions. The extent of condensation 

associated to lignin samples was already studied by other authors. Capanema and co-authors 

(Capanema et al., 2005) presented values of DC between 18 and 50% for three different milled 

wood lignins, from different species of Eucalyptus. However, if the same type treatment is 

considered, but with a different lignin source, in this case softwood, values in the range of 38–56% 

of DC were found (Capanema et al., 2004; Huang et al., 2011). In general, higher values of DC 

were obtained for softwood lignins. Lignins from softwood species have mainly G units, which 

have an aromatic carbon in C5 available to be involved in condensed structures, in opposition to S 

units. When delignification processes were applied, the obtained wood lignins present DC values 

that can reach 73% (Liitiä et al., 2002; Sannigrahi et al., 2009). 

 

 Syringyl/guaiacyl ratio (S/G): comparison between methodologies 

The results obtained by NO, 13C, and 31P NMR allow determining S/G in lignins. In the case 

of NO the S/G ratio only considers S and G units involved in non-condensed structures. On the 

other hand, S and G units determined from 13C NMR are present in both etherified and non-

etherified moieties of lignin structure. For 31P NMR, only S and G units with free phenolic 

hydroxyl groups were quantified. It is important to note, that the results provided by the three 

spectroscopic techniques allow identifying important fractions of lignin structure. By NO, 13C, and 
31P NMR uncondensed structures, free phenolic hydroxyl G and S units, and total amount of S and 

G units can be quantified. The results of S/G ratio calculated are depicted in Table 12. 

 

Table 12 - S/G for each E. globulus lignin obtained by NO, 13C and 31P NMR. 

lignin 
S/G ratio 

NO 13C NMR 31P NMR 

LEgOrg 4.1 2.3 3.0 

LEgKraft 4.0 2.8 3.7 

LEgwood 5.4 4.0 1.8 

LEgbark 5.9 3.0 1.5 

 

The values of S/G obtained from NO results are higher than those from 13C and 31P NMR. 

This is related with the fact that NO only allows the quantification of non-condensed structures. As 

stated before, S units are more involved in this type of structures, since they have two OCH3 groups 

in C3 and C5 of aromatic ring that prevent the formation of other type of linkages. LEgwood and 

LEgbark present high S/G ratio determined from NO yields and 13C NMR. However, the S/G ratio 

determined by 31P NMR is lower for these samples. This behavior is related with the kind of S and 

G units quantified by each technique. As referred before, uncondensed structures are present in 
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higher quantities in mild acidolysis lignins, so, higher values of S units involved in this type of 

structures were determined by NO, and consequently a higher S/G ratio is obtained. When the total 

amount of uncondensed structures, calculated by NO, were plotted against the S/G obtained by 31P 

NMR, a good correlation (Figure 13) was observed, i.e., the higher the total of uncondensed 

structures is, lower is the amount of S relative to G units (both with free OH groups). 

 

 

Figure 13 - Plot of NO yield versus S/G, from 31P NMR, obtained for E. globulus lignins. 

 

A high content of non-condensed structures means that lignin is more preserved and linkages 

in this type of structures were not extensively cleaved during the delignification process. For this 

reason, lower content of S relative to G units, both with free phenolic groups, are reported for kraft 

and organosolv lignins.  

 

3.7 RADAR TOOL FOR LIGNINS EVALUATION 

One of the challenges associated with exploiting lignin is the variability resulting from the 

type of plant and species, the delignification process, and the subsequent processing, all of which 

modifies its structure, making a constant and uniform lignin difficult to obtain. This is one aspect to 

which lignocellulosic processors must pay attention, today and in the future. The evaluation of a 

lignin relative to its suitability as a source of value-added compounds should combine the 

assessment of key characteristics such as H:G:S ratio, condensation, and β-O-4 content, and allow a 

qualitative prediction of the yield expected by oxidative depolymerization under the same range of 

conditions.  

The work presented in this section aims to establish a classification technique for lignins 

based on their major structural characteristics, as a tool for lignins selection in view of V and/or Sy 

production. Radar plots representation allows a direct classification of the different lignins by 

comparison of their key descriptors, reducing the unavoidable complexity of lignin structure to its 

key aspects, while maintaining the scientific basis of the data sets with quantitative information.  
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Content of β-O-4 structures, the number of non-condensed structures (NCS) per 100 ppu 

(determined as 100 - DC), the content of S, and G units, and NO yields on V and Sy (as a 

measurement of the reactivity of non-condensed fractions of lignin) were the selected descriptors 

for radar plots. NCS include lignin moieties not involved in CAr-C and CAr-O linkages; this is an 

important structural feature of lignins resulting from the processing of lignocellulosic materials. 

Native lignins naturally contain condensed structures; however, in the course of delignification, 

new condensed structures are produced (Balakshin et al., 2015; Gierer, 1985; Sjöström, 1993), 

decreasing the NSC content. This decrease depends on the impact of delignification process on a 

particular lignin. 

The values of all the parameters selected as key descriptors for radar plots of E. globulus 

lignins are depicted in Table 13. 

 

Table 13 - Main structural characteristics selected as descriptors for radar plots of E. globulus lignins. 

Lignin β-O-4 structures 
(n/100Ar) 

NCS 
(n/100ppu) S:G:H S/G 

LEgOrg 34 65 70:30:00 2.3 

LEgKraft 9 57 74:26:00 2.8 

LEgwood 76 85 80.20:00 4.0 

LEgbark 65 84 70:23:08 3.0 

 

Radar plots were created using the software Origin Pro 8.6 (OriginLab Corporation, 

Northampton, USA).  

 

 Radar classification of E. globulus lignins from different delignification 

processes 

The driving force of Eucalyptus globulus wood lignins comparison is to state the effect of 

different delignification processes on the same hardwood species and to qualify the lignins 

produced. In a wide scope, this approach allows the evaluation of the consequences of the chosen 

delignification process or conditions for the same process and, in a last instance, tailoring the 

process taking into account the lignin produced and the route of valorization.  

Radar classification of eucalyptus wood lignins, LEgOrg, LEgKraft and LEgwood, are 

presented in Figure 14. This representation allows a direct classification of different lignins by 

comparison of the key descriptors. 
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Figure 14 - Radar classification for eucalyptus wood lignins produced by different processes. 

 

Lignin from mild acidolysis, LEgwood, has the highest values for all descriptors. The best 

ranking of this lignin as a source of phenolic aldehydes is a consequence of the low impact that the 

mild acidolysis process has on the native lignin structure. Although this process is limited to 

laboratory scale because of solvent and conditions used, it is widely used for detailed 

characterization purposes.  

The area defined by β-O-4 and NCS (hereafter designated as triangle Δ) in each radar plot 

provides the first illustration of the amount of lignin degradation effected by processing as 

compared with lignin isolated by mild acidolysis. The lower area of triangle Δ found for LEgKraft 

is caused by the kraft process which promotes a higher depolymerization of lignin in bulk and in 

liquid phase than pulping by organosolv. The differences in the radar plots for lignins from 

organosolv and kraft processes clearly indicate that the former is a more preserved lignin. The 

organosolv process stands out as a better choice for wood delignification from the perspective of 

lignin valorization by means of oxidation to produce Sy and V. 
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 Radar classification of lignins from different morphologic parts of E. globulus 

Mild acidolysis lignins from wood and bark of eucalyptus trees were characterized in the 

previous sections, concluding that the lignins of these two morphologic parts showed few 

differences. In accordance, radar plots depicted in Figure 15 show only slightly lower intensity of 

descriptors for β-O-4 and S in the case of LEgbark, as reflected by the radar area. In spite of these 

differences, radar plots allow ranking these lignins as having equivalent potential for oxidation. 

The S units descriptor, comparing bark and wood, denotes a less reactive lignin toward oxidation, 

which suggests that it would require different conditions in oxidation with O2. 

 

 

Figure 15 - Radar classification for acidolysis lignins obtained from wood and bark of eucalyptus. 

 

3.8 CONCLUSIONS 

The characterization of the different E. globulus lignins, allow identifying and quantifying 

several functional groups and interunit linkages that would be related with the ability to produce 

functionalized aldehydes. The structural alterations during processing have particular impact on its 

reactivity and it allows predicting its potential to produce aldehydes by oxidation, namely V and 

Sy. LEgKraft and LEgOrg have a low content of β-O-4 structures and a high amount of phenolic 

OH groups, since during kraft and organosolv process β-aryl ether bonds are predominantly 

cleaved. Another remarkable difference between mild acidolysis (close to native lignins) and the 

industrial lignins (kraft and organosolv) is the higher DC and the lower NO yield found in the last. 

Organosolv lignin is the product of fewer transformations as compared to kraft lignin. The DC 

value of each E. globulus lignin proved to have a good correlation with NO yield and total β-aryl 

ether content (from 13C NMR), and the NO yield was also successful correlated with S/G (with free 

phenolic groups, from 31P NMR). LEgbark contains higher CAr-C, similar CAr-H, and lower CAr-O 

contents comparatively to LEgwood, allow concluding that bark lignin has a higher frequency of 
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condensed structures. H units were exclusively found in bark lignin. However, LEgwood and LEgbark 

do not show noteworthy differences for the other types and contents of interunit linkages and 

functional groups, demonstrating that E. globulus lignins structure from wood and bark are similar.  

The overall results showed that organosolv or a mild delignification process would be a 

preferable process to obtain lignin from E. globulus wood or bark when the objective is the 

valorization toward production of functionalized aldehydes. However, the delignification process 

within a biorefinery should be selected based on the criteria balance between the polysaccharide 

fraction, the quality of pulp and the lignin characteristics to achieve a complete and sustainable 

valorization of all components of the lignocellulosic biomass. 
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Characterization and comparative 

evaluation of industrial crops 

lignins 

Lignins from industrial crops could be converted into valuable chemicals in the context of a 

second generation biorefinery, but prior understanding of their structure is required. This chapter is 

focused on the characterization of in situ and mild acidolysis lignins from stalks and roots of corn, 

cotton, sugarcane and tobacco. All the materials and the isolated lignins were subjected to alkaline 

NO. The isolated lignins were also analyzed by 13C, 31P, and HSQC NMR and FTIR spectroscopy. 

With the obtained data, the structural differences between the residues, stalks and roots, and isolated 

lignins are discussed in a comparative approach, highlighting for each material the characteristic 

features of its lignin. The knowledge of the composition and structure of corn, cotton, sugarcane, 

and tobacco lignins would help to maximize the exploitation of these important crops as a feedstock 

for the production of added-value products, such as V and Sy, in the perspective of a second 

generation biorefinery. 

 

 

 

 

 

____________________________________ 
This chapter is based on the following publications: 

- Costa, C.A.E., Coleman, W., Dube, M., Rodrigues, A.E., Pinto, P.C.R. Assessment of key features of lignin from 
lignocellulosic crops: Stalks and roots of corn, cotton, sugarcane, and tobacco. Ind. Crop. Prod. 2016, 92, 136-148. 

- Costa, C.A.E.; Pinto, P.C.R.; Rodrigues, A.E. Radar tool for lignin classification on the perspective of its valorization. 
Ind. Eng. Chem. Res. 2015, 54, 7580–7590.  
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4.1 INTRODUCTION 

Lignocellulosic materials resulting from the exploitation of agro-forest resources offer many 

advantages as feedstock to produce new value-added products in the context of a second generation 

biorefinery (Kleinert and Barth, 2008; Ragauskas et al., 2014). Besides the wide availability and 

associated low cost, some agricultural residues, such as cereal straws, contain comparable amounts 

of the major constituents common to wood species. Some of the major residues resulting from the 

production of corn (Kaparaju and Felby, 2010; Saliba et al., 2002), sugarcane (Guimarães et al., 

2009; Maziero et al., 2012), wheat (del Río et al., 2012; Zikeli et al., 2014), rice (Salanti et al., 

2010; Xiao et al., 2001), and flax (Buranov et al., 2010; Ross and Mazza, 2010) have been reported 

in the literature. Works focused in these agricultural residues have as a first challenge to 

accomplish specific structural information about their main components (cellulose, hemicellulose 

and lignin) followed by the study of their fractionation and afterwards, conversion into added-value 

products.  

The amounts of the chemical components (cellulose, hemicellulose and lignin) of 

lignocellulosic biomass would be expected to vary depending on the morphological part of plant. 

For a profitable utilization and conversion of the agricultural crops into valuable products, an 

efficient extraction and detailed chemical characterization of their constituents is required. Lignin, 

making up to 5-30% of herbaceous crop’s weight (Buranov and Mazza, 2008), plays an important 

role as raw material for the production of byproducts and biofuels (Azadi et al., 2013; Ragauskas et 

al., 2014). Due to its heterogeneity, prior characterization of the agricultural materials is essential 

and might allow an estimation of the feasibility for a specific application as well as selection of the 

better lignin source for a particular product. 

 

4.2 EXPERIMENTAL SECTION: MATERIALS AND METHODS 

 Industrial crops and lignins: samples description 

Stalks and roots of tobacco and corn were obtained from farms in North Carolina, sugarcane 

stalks and roots in Georgia, and cotton stalks and roots in South Carolina. Stalks and roots were 

harvested from the field and washed to remove debris and sand. Then, all samples were dried in a 

Sargent tray dryer at 333 K, 6 hours for the roots (9.6 %wt moisture) and 2.5 hours for the stalks 

(10.6 %wt moisture), chipped, milled and sieved to obtain a 40-60 mesh fraction. 

Lignins were isolated from stalks and roots of corn, cotton, sugarcane, and tobacco by mild 

acidolysis, following the method described in section 3.2.2 (Chapter 3). 

The designation of each material referenced in this work is summarized in Table 14. 
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Table 14 - Residues, morphological part, and designation of each material. 

  Residue Isolated lignin 

Corn 
stalks Cornstalk LCornstalk 

roots Cornroot LCornroot 

Cotton 
stalks Cottonstalk LCottonstalk 

roots Cottonroot LCottonroot 

Sugarcane 
stalks SCanestalk LSCanestalk 

roots SCaneroot LSCaneroot 

Tobacco 
stalks Tobstalk LTobstalk 

roots Tobroot LTobroot 

 

 Lignin content  

Klason lignin was estimated as the solid material obtained after H2SO4 hydrolysis of the 

residue, corrected for moisture content, based on the method described in the literature (Lin and 

Dence, 1992). 

A solution of 72% (w/w) H2SO4 was added to 1.0 g of residue and the mixture was left at 

room temperature for 2.5 hours. The mixture was diluted with water and hydrolyzed for 2 h under 

reflux. The resulting material was then submitted to vacuum filtration and washed with water until 

neutral pH, dried and weighted. For acid-soluble lignin quantification, a sample of 20.0 mL was 

taken from the resultant filtrate, pH was adjusted to 9.0 with NaOH 9M and then 50 mg of sodium 

borohydride (NaBH4) were added and left stirring for 20 minutes. After that, the solution was 

acidified to pH 2 with H2SO4 9M and diluted, and the absorbance was measured at 280 nm, using 

as a reference a solution of 1.8 % (w/w) H2SO4. 

 

 Inorganic and carbohydrates content 

The inorganic and carbohydrates content in the residues of corn, cotton, sugarcane and 

tobacco and the respective isolated lignins was determined using the methods and techniques 

already described in section 3.2.4.1 and 3.2.4.2 (Chapter 3). 

 

 Nitrobenzene oxidation 

All the isolated lignins and the stalks and roots of corn, cotton, sugarcane, and tobacco were 

submitted to alkaline NO as described in section 3.2.5.1 (Chapter 3) 
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 2D-NMR spectral analysis: HSQC spectra 

2D-NMR spectra of the isolated lignins were recorded at 298 K on a Bruker AVANCE III 

600 HD spectrometer operating at 600.13 MHz for 1H, equipped with 5 mm CryoProbe Prodigy 

and pulse gradient units, capable of producing magnetic field pulsed gradients in the z-direction of 

50 G/cm.  

About 50 mg of lignin was dissolved in 0.75 mL of DMSO-d6, and 2D-NMR spectra were 

recorded for HSQC. The central solvent peak was used as the internal reference (DMSO-d6, δC/δH 

40.0/2.5). The spectral widths were 5000 and 25000 Hz for the 1H and 13C dimensions, 

respectively. The number of collected complex points was 2048 for the 1H dimension with a 

recycle delay of 5 s. The number of transients was 64, and 256 time increments were always 

recorded in the 13C dimension. The 1JC-H used was 145 Hz. The J-coupling evolution delay was set 

to 3.2 ms. Squared cosine-bell apodization function was applied in both dimensions. Prior to 

Fourier transform the data matrices were zero filled to 1024 points in the 13C dimension. 

 

 FTIR  

FTIR spectra were recorded using a Bomem MB-Series spectrometer. The isolated lignins 

were analyzed in the form of potassium bromide (KBr) discs, which were prepared with about 1 

mg of lignin plus 100 mg of KBr and pressed under vacuum.  

The spectra were recorded in the range of 4000-600 cm-1. 

 

4.3 STRUCTURAL CHARACTERIZATION OF STALKS, ROOTS AND ISOLATED 

LIGNINS 

 Composition of stalks, roots and isolated lignins 

The chemical composition of corn, cotton, sugarcane, and tobacco stalks and roots is 

depicted in Table 15. For isolated lignins this information is depicted in Table 16, as component 

weight per 100 g of dried material.  

Non-cellulosic carbohydrates represent about 12.5-28.2% of the materials weight. The main 

sugar residues found are xylose and glucose; minor quantities of rhamnose, arabinose, and 

mannose were also detected. Inorganic content is quite low, between 1.9 and 7.1%, with exception 

of SCaneroot, which contains 31.8%. The data analysis also reveals that SCanestalk presents the 

lowest content of lignin (9.2%), while non-cellulosic polysaccharides content (28.2%) is the 

highest. In contrast, Cottonstalk has the lowest content of non-cellulosic polysaccharides (12.5%, 

detailed composition is depicted in Table 17) and the highest content of lignin (24.6%). 
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Table 15 - Composition (ash, carbohydrates, and lignin, dry weight) of stalks and roots. 

Residue  
Inorganic compounds 

(%w/w) 
Carbohydrates 

(%w/w) 
Lignin content 

(%w/w) 

Corn 
stalk 4.7 ± 0.1 21.3 ± 1.0 15.3 

root 5.3 ± 0.1 16.8 ± 0.8 19.8 

Cotton 
stalk 2.8 ± 0.2 12.5 ± 0.6 24.6 

root 3.1 ± 0.2 15.7 ± 0.8 18.9 

Sugarcane 
stalk 1.9 ± 0.01 28.2 ± 1.4 9.2 

root 31.8 ± 1.8 16.9 ± 0.8 17.6 

Tobacco 
stalk 7.1 ± 0.3 16.8 ± 0.7 17.7 

root 2.1 ± 0.1 17.4 ± 0.8 15.0 

 

Table 16 - Ash and carbohydrates contents as contaminants in isolated lignins (dry weight). 

Lignins  
Inorganic compounds 

(%w/wlignin) 
Carbohydrates 

(%w/wlignin) 

LCorn 
stalk < 0.01 6.2 ± 0.3 

root 1.1 ± 0.04 6.7 ± 0.3 

LCotton 
stalk 0.46 ± 0.03 5.1 ± 0.2 

root 2.6 ± 0.2 7.2 ± 0.3 

LSCane 
stalk 1.5 ± 0.1 5.4 ± 0.2 

root 0.65 ± 0.1 3.2 ± 0.1 

LTob 
stalk 0.43 ± 0.02 6.9 ± 0.3 

root 0.91 ± 0.02 7.5 ± 0.3 

 

The lignin content in residues (between 9.2 and 24.6 %) is in agreement with the data 

reported in the literature. Some authors studied the structural characterization of different residues 

of herbaceous plants (wheat straw, corn residue, triticale straw, and flax shives) and found lignin 

contents (Klason plus acid-soluble lignin) in the range 5 to 25% (del Río et al., 2012; Guimarães et 

al., 2009; Monteil-Rivera et al., 2013). 

 

For isolated lignins (Table 16) a maximum of 2.6% of ash was found, while the content of 

co-extracted carbohydrates was between 3.2 and 7.5% accounting for a maximum of 10% of 

identified contaminants. The degree of contamination found for the studied lignins is in agreement 

with the values reported for other herbaceous lignins (Monteil-Rivera et al., 2013), but it is higher 

than the level of contamination found in acidolysis lignin from woody materials (Costa et al., 2014; 

Jääskeläinen et al., 2003). Moreover, other contaminants could be present, such as protein. Further 

analysis of lignins will clarify this assumption. 
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Table 17 - Composition of carbohydrate fraction (%w/w) of lignocellulosic materials and respective isolated 
lignins. 

 Glc Xyl Ara Gal Rha Man 

Cornstalk 6.68 10.52 1.19 0.54 0.14 0.56 

LCornstalk 1.07 1.92 1.22 0.04 0.12 0.24 

Cornroot 2.05 9.97 1.33 0.98 0.18 0.48 

LCornroot 0.81 1.97 1.31 0.12 0.10 0.09 

Cottonstalk 4.82 4.22 0.55 0.67 0.53 0.48 

LCottonstalk 1.35 1.63 0.71 0.13 0.24 0.12 

Cottonroot 3.10 3.78 0.47 0.57 0.45 0.51 

LCottonroot 1.18 1.22 0.72 0.12 0.18 0.11 

SCanestalk 19.67 5.58 0.43 0.26 0.03 0.46 

LSCanestalk 1.42 0.94 0.99 0.02 0.08 0.11 

SCaneroot 3.28 8.41 1.68 1.02 0.21 0.48 

LSCaneroot 0.62 1.08 0.68 0.10 0.11 0.07 

Tobstalk 1.10 10.49 0.55 0.58 0.61 0.75 

LTobstalk 0.43 3.77 0.19 0.20 0.40 0.26 

Tobroot 0.97 9.23 0.48 0.51 0.54 0.66 

LTobroot 2.49 2.78 0.06 0.18 0.25 0.02 

*Glc – glucose; Xyl – xylose; Ara – arabinose; Gal – galactose; Rha – rhamnose; Man - mannose. 

 

 Analysis by NO 

NO was applied directly to stalks and roots and to the respective acidolysis lignins. NO 

results are reported on lignin content (data from Table 15 and Table 16) for stalks/roots and lignins. 

The yields of NO products are depicted in Figure 16 (detailed information is depicted in Table 18). 

For in situ lignins, NO total yields are in the range 32-46%, in accordance with other raw 

materials analyzed by this method (Agrupis et al., 2000; Nishimura et al., 2002; Pinto et al., 2015). 

Since in situ lignins are not subjected to delignification and/or isolation, they do not suffer 

structural changes induced by these processes, in particular in the non-condensed fraction (Costa et 

al., 2014; Costa et al., 2015). As such, these values present a real perspective of the unmodified 

structure of lignin. NO yields are lower for SCaneroot and Cottonroot, indicating that these two 

materials contain the highest proportion of condensed structures. 

All the lignins have V and Sy as main products that together with relatively fewer Hy 

content revealed that all the lignins can be denoted as S:G:H lignins. V and Sy contents vary 

between 15.2-21.1% and 6.4-18.8%, respectively. For Hy, lower contents were obtained (Figure 

16); however, also in considerable amounts for Cornstalk (6.6%), Cornroot (7.2%), and SCanestalk 

(7.8%).  
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There are no major differences between the product profiles of stalks and roots for corn, 

cotton, and tobacco (direct analysis on materials). However, for sugarcane the two morphological 

parts present a difference of 27% between their total yields. This difference is mainly observed for 

Hy and Sy. 

 

Figure 16 - Yields of monomeric phenolic products obtained by NO of stalks (S) and roots (R) and the 
respective isolated lignins (L) from corn, cotton, sugarcane, and tobacco, reported on lignin basis. 

 

Table 18 - Yields of monomeric phenolic products obtained by NO of stalks, roots and isolated lignins. 

lignin 
products, % w/wlignin* 

Hy VA SA V Sy total yield 

Cornstalk 6.57 0.42 1.83 17.4 18.8 45.0 

LCornstalk 6.41 0.51 1.44 11.0 15.0 34.3 

Cornroot 7.24 0.50 1.67 15.4 16.7 41.5 

LCornroot 6.95 0.36 0.98 8.54 12.8 29.7 

Cottonstalk 0.25 0.79 1.11 17.6 15.8 35.6 

LCottonstalk 0.21 0.35 1.02 12.1 12.9 26.6 

Cottonroot 0.48 0.51 0.98 15.2 14.9 32.1 

LCottonroot 0.15 0.75 0.78 8.75 9.06 19.5 

SCanestalk 7.76 0.17 1.81 19.2 16.7 45.6 

LSCanestalk 7.47 0.91 1.24 9.98 15.3 34.9 

SCaneroot 3.71 1.26 0.86 20.9 6.38 33.1 

LSCaneroot 1.70 0.47 0.44 7.64 3.58 13.8 

Tobstalk 1.15 0.51 1.26 20.4 18.1 41.4 

LTobstalk 0.39 0.71 0.84 12.8 11.0 25.7 

Tobroot 1.72 1.13 1.33 21.1 16.2 41.5 

LTobroot 1.07 1.04 0.96 14.7 11.8 29.6 

* reported to nonvolatile solids weight after deducting ashes and carbohydrates. 
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The NO yields of isolated lignins present a decrease of 25-40% of the total yields found for 

in situ lignins, a consequence of some structural modifications induced by mild acidolysis process, 

namely condensation reactions. LSCaneroot shows a relative decrease of 60% of the NO yield 

comparatively to the respective initial material, indicating that the structural changes for this lignin 

were more severe. Isolated lignins also have V and Sy as major products with significant amounts 

of Hy for LCornstalk, LCornroot and LSCanestalk, which is in accordance with the analysis of in situ 

lignins. The S/G ratio, obtained from NO, is higher for isolated lignins, between 0.50 and 1.55, 

than for the corresponding in situ lignins, in the range 0.33-1.16. This suggests that G units were 

more involved in condensed structures, which is plausible due to its additional free position in 

aromatic C5 as compared with S units. The profile of products presents higher differences between 

species than between morphological parts. Roots lignins are more affected by the isolation process 

than stalks, except for tobacco. The observed variations in NO yields demonstrate that existing 

structural differences between lignins are important to explore. 

 

 13C NMR 

Isolated lignins were analyzed by quantitative 13C NMR and the spectra with the main 

assignments identified are shown in Figure 17 and Figure 18 for stalks and roots lignins, 

respectively. The assignments and the quantification of the structures/linkages and functional 

groups of lignin structure was made based on reference spectra and data available in the literature 

(Balakshin et al., 2015; Capanema et al., 2004; Pinto et al., 2002; Robert, 1992). The 13C NMR 

results are depicted in Table 19 and Table 20 for isolated lignin from stalks and roots, respectively. 

The 13C NMR spectra of isolated lignins shown typical tertiary carbon resonances from S 

units (aromatic carbon C2 and C6) between 102.0 and 110.0 ppm, G units (aromatic carbon C2, C5 

and C6) between 110.0 and 123.0 ppm, and relatively fewer quaternary carbon resonances from H 

units (aromatic carbon C4) at 157.0-163.0 ppm. Moreover, due to the higher complexity of non-

wood lignins structure comparatively to wood ones, it is also important to consider the contribution 

of conjugated acid derivatives, such as ferrulates (FA), coumarates (CA) and p-hydroxy benzoic 

acids (PHBA), into the resonances of G-(FA) and H-units (CA and PHBA) (Balakshin and 

Capanema, 2015). For this reason, the quantification of G- and H-units should be corrected for the 

contribution of the characteristic signals of FA and CA types. The presence of FA and CA moieties 

was identified in the mild acidolysis lignins spectra by the assignment of the carbons in their 

carboxyl and ester groups, by the resonances centered at 166 and 168 ppm, respectively (Balakshin 

and Capanema, 2015; Oliveira et al., 2006). From the quantification of the conjugated acid 

derivatives, FA and CA, values between 0.1-0.4 /Ar were obtained.  
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Figure 17 - Quantitative 13C NMR spectra of (a) LCornstalk, (b) LCottonstalk, (c) LSCanestalk, and (d) LTobstalk 
(in DMSO-d6; * solvent peak (Hugo et al., 1997); C - carbohydrates contamination). 
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Figure 18 - Quantitative 13C NMR spectra (a) LCornroot, (b) LCottonroot, (c) LSCaneroot, and (d) LTobroot (in 
DMSO-d6; * solvent peak (Hugo et al., 1997); C - carbohydrates contamination). 
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Table 19 - Assignments and quantification (number per aromatic ring) of the structures/linkages and 
functional groups identified by 13C NMR in lignins from stalks of corn, cotton, sugarcane, and tobacco. 

Assignments 
amount (number/Ar) 

LCornstalk LCottonstalk LSCanestalk LTobstalk 

Cβ in β-5 and β-β structures (δ 51.0-53.8 ppm) 0.15 0.20 0.07 0.21 

Aromatic OCH3 (δ 54.3-57.3 ppm) 1.20 1.47 0.99 1.37 

Cγ in β-O-4 structures without Cα=O (δ 59.3-60.8 ppm) 0.21 0.37 0.16 0.36 

Cγ in β-5 and β-O-4 structures with Cα=O;  
Cγ in β-1 structures (δ 62.5-63.8 ppm) 0.19 0.15 0.16 0.15 

Cα in β-O-4 structures; Cγ in pinoresinol/syringaresinol 
and β-β structures (δ 70.0-76.0 ppm) 0.68 0.87 0.47 1.09 

Cβ in β-O-4 structures; Cα in β-5 and β-β structures  
(δ 80.0-90.0 ppm) 0.45 0.64 0.36 0.74 

Aromatic CAr-H (δ 103.0-123.0 ppm) 2.37 2.37 2.37 2.19 

C4 in H units (δ 157.0–162.0 ppm) 0.15 0.06 0.08 0.18 

CHO in benzaldehyde structures (δ 191.0-192.0 ppm) 0.02 0.05 0.04 0.03 

a Carbohydrates also contribute to these regions, especially to the region of 70–76 ppm by C3and C4 of aromatic ring. 
b The region of aromatic CAr-H was corrected for the contribution of Cβ conjugated present in CA and FA. 

 

Table 20 - Assignments and quantification (number per aromatic ring) of the structures/linkages and 
functional groups identified by 13C NMR in lignins from stalks of corn, cotton, sugarcane, and tobacco. 

Assignments 
amount (number/Ar) 

LCornroot LCottonroot LSCaneroot LTobroot 

Cβ in β-5 and β-β structures (δ 51.0-53.8 ppm) 0.13 0.14 0.19 0.20 

Aromatic OCH3 (δ 54.3-57.3 ppm) 1.04 0.99 0.86 1.35 

Cγ in β-O-4 structures without Cα=O (δ 59.3-60.8 ppm) 0.17 0.26 0.18 0.34 

Cγ in β-5 and β-O-4 structures with Cα=O;  
Cγ in β-1 structures (δ 62.5-63.8 ppm) 0.17 0.11 0.12 0.15 

Cα in β-O-4 structures; Cγ in pinoresinol/syringaresinol 
and β-β structures (δ 70.0-76.0 ppm) 0.55 0.76 0.49 1.08 

Cβ in β-O-4 structures; Cα in β-5 and β-β structures  
(δ 80.0-90.0 ppm) 0.35 0.37 0.38 0.64 

Aromatic CAr-H (δ 103.0-123.0 ppm) 2.35 2.31 2.44 2.26 

C4 in H units (δ 157.0–162.0 ppm) 0.08 0.06 0.14 0.17 

CHO in benzaldehyde structures (δ 191.0-192.0 ppm) 0.03 0.05 0.04 0.03 

a Carbohydrates also contribute to these regions, especially to the region of 70–76 ppm by C3and C4 of aromatic ring. 
b The region of aromatic CAr-H was corrected for the contribution of Cβ conjugated present in CA and FA. 
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The 13C NMR data also indicate that the isolated lignins are mainly composed by β-O-4 

structures, identified through their side chain carbons (Cα, Cβ and Cγ) and quantified by the 

subtraction of the amount of β-5 and β-β structures (δ 51.0-53.8 ppm) from the integral of δ 82.5-

90.0 ppm (Capanema et al., 2005; Costa et al., 2014). Moreover, small amounts of β-β, β-5 and β-1 

linkages were also found in the NMR spectra. 

The mild acidolysis lignins exhibit characteristic signals in the aliphatic region of the 13C 

NMR spectra (10-35 ppm); these signals are usually considered as impurities from extractives like 

fatty acids (Abdelkafi et al., 2011; Oliveira et al., 2006). In previous works, it was suggested that 

these aliphatic moieties could belongs to suberin-like substances, that are chemically linked to the 

lignin of the primary cell wall in certain tissues of annual plants by ester linkages via FA (Bernards, 

2002; Clemente et al., 2013; Oliveira et al., 2009). The same feature may be suggested for the 

lignins of stalks and roots studied in this work. In the literature, it is assumed that FA moieties are 

responsible for cell wall cross-linking in several annual plants, like grasses (Hatfield et al., 1999).  

LCornstalk, LTobstalk, LCottonroot, and LTobroot show the typical signals assigned to carbons of 

carbohydrates (labelled as C, Figure 17 and Figure 18) that resonate between 70-80 ppm and 90-

103 ppm, suggesting the presence of LCC (Buranov and Mazza, 2008; Ghaffar and Fan, 2013).  

 

4.3.3.1.1 Lignin purification with dioxane 

In order to study the effect of purification process on lignin structure two isolated lignins 

were selected and submitted to a nondegradative method of purification with dioxane. The selected 

lignins, LCottonstalk and LSCaneroot, were dissolved in dioxane and precipitated in cold water. The 

purified lignin was separated by centrifugation and freeze-dried. 

The co-precipitated water soluble contaminants are easily eliminated by dissolution of lignin 

in dioxane and reprecipitation in water. However, if the contaminants are chemical linked to lignin, 

more severe conditions should be used but the core of lignin will be modified. 

 

LCottonstalk lignin was used as reference lignin to verify the impact of purification process. 

This lignin does not show carbohydrates contamination and, as such, any structural change is 

caused by the purification itself. LSCaneroot was the sample with contamination that was subjected 

to the same process. Figure 19 and Figure 20 show the 13C NMR spectra of the lignins before and 

after the purification; the results are depicted in Table 21 and Table 22. 

For both lignins it is possible to observe that the purification with dioxane led to a lignin 

with different content of β-O-4 structures and H units. For LSCaneroot (the contaminated one) there 

is a slight decrease of the signals attributed to carbohydrates. It can be concluded that the 

purification process leads to modifications in the representativeness of lignins, invalidating the 

comparison between them. 
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For lignins characterization it is important to reach a compromise between the presence and 

the identification of the contaminants and the decision about a purification process. Considering 

these samples, it could be concluded that the changes induced in lignin by the purification process 

are more unfavorable than the presence of the contaminants. 

 

 

Figure 19 - Quantitative 13C NMR spectra of LCottonstalk before (a) and after (b) purification (in DMSO-d6; * 
solvent peak (Hugo et al., 1997)). 

 

 

Figure 20 - Quantitative 13C NMR spectra of LSCaneroot before (a) and after (b) purification (in DMSO-d6; * 
solvent peak (Hugo et al., 1997); C - carbohydrates contamination). 
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Table 21 - 13C NMR assignments and quantification (number per aromatic ring) of the structures/linkages 
and functional groups identified in mild acidolysis lignins of cotton stalks and sugarcane roots before and 

after the dioxane purification. 

assignments (spectroscopic range) 
amount (number/Ar) 

LCottonstalk 
LCottonstalk 
purified 

LSCaneroot 
LSCaneroot 
purified 

Cβ in β-5 and β-β structures (δ 51.0-53.8 ppm) 0.19 0.14 0.19 0.12 

Aromatic OCH3 (δ 54.3-57.3 ppm) 1.41 1.07 0.85 0.82 

Cγ in β-O-4 structures without Cα=O (δ 59.3-60.8 ppm) 0.35 0.23 0.18 0.16 
Cγ in β-5 and β-O-4 structures with Cα=O; Cγ in β-1  

(δ 62.5-63.8 ppm) 
0.14 0.11 0.12 0.12 

Cα in β-O-4 structures; Cγ in pinoresinol/syringaresinol  
and β-β structures (δ 70.0-76.0 ppm) 

0.84 0.60 0.49 0.52 

Cβ in β-O-4 structures; Cα in β-5 and β-β structures 
(δ 80.0-90.0 ppm) 

0.82 0.58 0.52 0.60 

Aromatic CAr-H (δ 103.0-123.0 ppm) 2.20 2.20 2.40 2.29 
Aromatic CAr-C (δ 123.0-137.0 ppm) 1.36 1.53 1.44 1.48 

C4 in H units (δ 157.0-162.0 ppm) 0.06 0.05 0.20 0.26 

CHO in benzaldehyde structures (δ 191.0-192.0 ppm) 0.04 0.02 0.04 0.03 
CHO in cinnamaldehyde structures (δ 193.5-194.5 ppm) 0.05 0.02 0.04 0.03 

 

Table 22 - β-O-4 structures content (number per 100 aromatic rings), S:G:H ratio, and DC calculated for mild 
acidolysis lignins of cotton stalks and sugarcane roots before and after the dioxane purification. 

lignin β-O-4 structures 
(number/100Ar) 

DC (%) S:G:H 

LCottonstalk 63 26 48:45:07 

LCottonstalk purified 45 29 46:49:05 

LSCaneroot 33 22 28:62:10 

LSCaneroot purified 48 25 22:54:24 

 

 HSQC spectra of corn stalks lignin 

The isolated lignin from corn stalks was analyzed by 2D-NMR. In the HSQC NMR 

spectrum, displayed in Figure 21, two important regions could be considered that corresponding to 

side-chain (∂C/∂H 50-90/2.5-5.5 ppm) and the aromatic/unsaturated (∂C/∂H 90-160/6.0-8.0 ppm) 13C-
1H correlations in several lignin moieties.  
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Figure 21 - Side-chain (∂C/∂H 50-90/2.5-5.5) and aromatic/unsaturated (∂C/∂H 90-160/6.0-8.0) regions in the 
HSQC NMR spectrum of corn stalks lignin (see Table 23 for signal assignments). 

 

The assignments of the main lignin cross-signals assigned in the HSQC spectrum, depicted 

in Table 23, were identified by comparison with the correlations signals reported in the literature 

(Balakshin et al., 2011; del Río et al., 2012; Fernández-Costas et al., 2014; Rencoret et al., 2015).  
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Table 23 - The NMR assignments of major components in the HSQC spectrum of the corn stalks lignin. 

Label 
Chemical shift (ppm) 

Assignments 13C 1H 

Si
de

-c
ha

in
 r

eg
io

n 

Cβ 53.1 3.46 Cβ–Hβ in phenylcoumaran substructures 

Bβ 54.0 3.05 Cβ–Hβ in β–β (resinol) substructures 

OCH3 56.0 3.70 C–H in methoxyls 

Aγ 59.9 3.40 and 3.70 Cγ–Hγ in β-O-4 substructures 

Fγ 62.0 4.10 Cγ–Hγ in p-hydroxycinnamyl alcohol 

Aα 72.0 4.85 Cα–Hα in β-O-4 unit 

BEα 81.3 4.62 Cα–Hα in benzyl ether LCC 

Aβ(G/H) 83.9 4.40 Cβ–Hβ in β-O-4 linked to G/H units 

Bα 85.5 4.66 Cα–Hα in β–β (resinol) substructures 

Aβ(S) 86.4 4.10 Cβ–Hβ in β-O-4 linked to S units 

Cα 87.6 5.45 Cα–Hα in phenylcoumaran substructures 

A
ro

m
at

ic
 r

eg
io

n 

S2,6 103.9 6.69 C2,6–H2,6 in syringyl units 

S′2,6 106.5 7.28 C2,6–H2,6 in oxidized (Cߙ=O) S units 

FA2 111.0 7.35 C2–H2 in ferulate 

G2 111.5 6.99 C2–H2 in guaiacyl units 

pCAβ/FAβ 113.9 6.27 Cߚ–Hߚ in p-coumarate and ferulate 

G5 115.5 6.75 C5–H5 in guaiacyl units 

pCA3,5 115.8 6.93 C3,5–H3,5 in p-coumarate 

G6 118.8 6.81 C6–H6 in guaiacyl units 

FA6 123.1 7.17 C6–H6 in ferulate 

Fβ 128.2 6.15 Cβ–Hβ in p-hydroxycinnamyl alcohol 

Fα 128.2 6.30 Cα–Hα in p-hydroxycinnamyl alcohol 

H2,6 128.5 7.19 C2,6–H2,6 in H units 

pCA2,6 130.5 7.48 C2,6–H2,6 in p-coumarate  

pCAα/FAα 144.8 7.45 Cα–Hα in p-coumarate and ferulate 

 

The correlation ∂C/∂H 50-90/2.5-5.5 ppm refers to inter-unit linkages and terminal structures 

in lignin, and also LCC. Important correlations such as those from substructures of β-aryl structures 

(β-O-4, A), resinol (β-β, B), and phenylcoumaran (β-5, C) can be assigned in this region. The most 

prominent cross-signals represent OCH3 groups and side-chains in β-O-4 substructures. Cγ–Hγ 

correlations in β-O-4 substructures were clearly observed at 59.9/3.4 and 59.9/3.7 ppm, while at 

72.0/4.85 ppm it is possible to identify weaker signals that correspond to Cα–Hα correlations. 

Similarly, Cβ–Hβ correlations corresponding to β-O-4 structures linked to G, S, and H units were 

also identified in the spectrum, as well the signals corresponding to Cα–Hα and Cβ–Hβ correlations 

of phenylcoumaran (Cα and Cβ) and resinol (Bα and Bβ) substructures.  
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In the side-chain region of HSQC spectrum important information about the presence of 

LCC linkages can also be found. According to the literature (Balakshin et al., 2011; Wen et al., 

2012) the corresponding signals of phenyl glycoside and esters linkages can be detect in the 2D 

NMR spectra of lignins; in the case of benzyl ether LCC structures signals are clearly attributed to: 

(a) C1-linkages between the α-position of lignin and primary OH groups of carbohydrates and (b) 

C2-linkages between the α-position of lignin and secondary OH groups of carbohydrates. For corn 

stalks lignin only the signals of C1-linkages between the α-position of lignin and primary OH 

groups of carbohydrates (BEα) were identified by a cross-peak at 81.2/4.62 ppm. Moreover, in the 

side-chain region strong signals from C2-H2, C3-H3, C4-H4, and C5–H5 correlations assigned to 

carbohydrate moieties (X2, X3, X4, and X5) were also clearly identified at ∂C/∂H 73.0/3.10, 

74.0/3.36, 77.2/3.52, and 63.5/3.15 and 3.90 ppm, respectively (Fernández-Costas et al., 2014; Wen 

et al., 2012). The referred signals associated to LCC are frequently identified by 2D NMR analysis 

of lignins, and were already found in annual, hardwood and softwood lignins (Balakshin et al., 

2011; del Río et al., 2012; Fernández-Costas et al., 2014; Wen et al., 2012). 

The 13C-1H correlations ∂C/∂H 90-160/6.0-8.0 ppm correspond to the aromatic rings and 

unsaturated side chains of the H, G, and S lignin units and pCA and FA moieties that are associated 

with the lignin. The S units present a strong signal that corresponds to C2,6–H2,6 correlation (S2,6), 

while G units were identified by different correlation signals for C2–H2, C5–H5, and C6–H6 (G2, G5 

and G6, respectively). For H units cross-signals corresponding to C2,6–H2,6 were observed (H2,6). In 

literature it is stated that the signal of H units could be partially overlapped in the spectra by a cross 

signal at ∂C/∂H 128.5/7.24 ppm from protein (as lignin contaminant), hindering H assessment 

(Rencoret et al., 2015; Santos J.I. et al., 2015), which was not the case. Cross-signals corresponding 

to C2,6–H2,6 and C3,5–H3,5 correlations of pCA aromatic ring were also identified, the later 

overlapping with G5 signals from guaiacyl units in corn stalks lignin. The unsaturated Cα–Hα and 

Cβ–Hβ correlations of pCA were also noted in this region and are highly consistent with the 

reported NMR data for pCA units (del Río et al., 2012; Wen et al., 2012). In addition to the signals 

of pCA units, minor signals of FA were also identified. The signals of C2–H2 (FA2) and C6–H6 

(FA6) confirm the presence of these moieties, while their signals of unsaturated Cα–Hα and Cβ–Hβ 

correlations are overlapped with those of pCA units.  

The overall results from HSQC analysis provided additional information on the interunit 

linkages as well as about the composition of the isolated lignin from corn stalks lignin, clarifying 

the presence of contaminants. 
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 31P NMR 

Quantitative 31P NMR analysis of the isolated lignins from stalks of corn, cotton, sugarcane, 

and tobacco was performed. The 31P NMR spectra of the phosphitylated lignins are shown in 

Figure 22. Quantification of the different hydroxyl groups is presented in Table 24. 

 

Table 24 - Assignments and quantification of phenolic and aliphatic hydroxyl groups and carboxylic acids in 
lignins by 31P NMR. 

Assignments  
amount (mmol/g lignin) 

LCornstalk LCottonstalk LSCanestalk LTobstalk 

Aliphatic OH  3.33 3.40 2.56 4.02 

Carboxylic acids  0.06 0.25 0.22 0.19 

Total phenolic units  2.73 1.82 2.48 1.60 

5-substituted phenolic units 0.72 1.10 0.94 0.93 

Non-condensed phenolic units     

G phenolic units 1.93 0.71 1.51 0.67 

H phenolic units 0.08 0.01 0.02 0.00 

 

The overall content of phenolic OH in lignins varies between 1.6 and 2.7 mmol/glignin. 

Lignins from stalks of corn and sugarcane (LCornstalk and LSCanestalk) showed the highest content 

of total phenolic OH groups (2.7 and 2.5 mmol/glignin, respectively) comparatively to cotton and 

tobacco stalks (1.8 and 1.6 mmol/glignin, respectively). 

The set of signals in the region between 146.0 and 145.5 ppm are associated to carbohydrates 

(Jääskeläinen et al., 2003). The presence of these signals may explain some of the differences 

found in the aliphatic hydroxyl group content for the stalks lignins. LTobstalk was found to have the 

highest content of free aliphatic hydroxyls groups (4 mmol/glignin) and also of carbohydrates (7 

%w/wlignin); this is related with the phosphorylation of hydroxyls of carbohydrates that are 

quantified by 31P NMR as aliphatic OH groups, as also verified in the literature (Zikeli et al., 2014). 

Consequently, the aliphatic hydroxyl content is strongly dependent on carbohydrates and for this 

reason it was not accounted for in the total phenolic OH.  

The overall of 31P NMR data reveals that the content of phenolic hydroxyl groups is 

dependent on the species since significant differences between the OH groups distribution were 

found in the isolated lignins. The content of OH groups is an important structural parameter in 

lignins characterization since it affects some lignin applications.  
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Figure 22 - Quantitative 31P NMR spectra (δ 155-130 ppm) of phosphitylated lignins: (a) LCornstalk, (b) 
LCottonstalk, (c) LSCanestalk, and (d) LTobstalk (in CDCl3). 
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 FTIR 

The FTIR spectra of mild acidolysis lignins are presented in Figure 23 for stalks and roots 

lignins. In FTIR spectra the peak positions of the major absorption bands assigned to the 

corresponding functional groups were identified according to the literature (Faix, 1991; Hoareau et 

al., 2004; Monteil-Rivera et al., 2013; Singh et al., 2005). 

 

 

Figure 23 - FTIR absorption spectra of (a) LCornstalk, (b) LCottonstalk, (c) LSCanestalk, (d) LTobstalk, (e) 
LCornroot, (f) LCottonroot, (g) LSCaneroot, and (h) LTobroot. 

 

The fingerprint region of lignins is from 700 cm-1 to 1600 cm-1 while typical stretching of 

chemical groups was observed at 2800 cm-1 to 3500 cm-1. In general, the positions of the absorption 

bands in all the spectra are rather similar, except for a minor shifting of some peaks. All the spectra 

present important bands at 1600, 1510 and 1425 cm-1 assigned to the aromatic skeletal vibration, 

which is a fundamental structure of lignin. A dominating peak near to 1125 cm-1 is attributed to 

guaiacyl-syringyl (G-S) lignins (Faix, 1991). S ring absorption is observed at 1330 cm-1, while G 

ring appears only as a small shoulder at 1260 cm-1. For H units an absorption band is observed at 

834 cm-1. The presence of both absorption bands at 1260 and 834 cm-1 is typical of S:G:H lignins 

(Faix, 1991). The bands at 1717 cm−1 is attributed to unconjugated C=O stretching (vibration of 

unconjugated ketones, ester or carboxylic groups), and the band near 1660 cm−1 can be assigned to 

conjugated carbonyl present in typical lignin groups. This latter one is frequently overlapped by a 

large band at 1657 cm-1 attributed to proteins (Duarte et al., 2000; Singh et al., 2005).  

In FTIR spectra of LCornstalk, LCornroot, LSCanestalk, and LSCaneroot a noticeable interference 

of proteins was observed in the region near to 1650 cm-1. On the other hand, the residual content of 

sugars in lignins was also visible in the spectra, revealed by different bands between 1030 and 1150 

(a) 

(c) 

(b) 

(d) 
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cm−1 (at 1115 and 1030 cm−1), that are assigned to: (1) C–O stretching vibration characteristic of 

cellulose, hemicellulose, and lignin, and (2) C–O–C ether linkage of the skeletal vibration of both 

pentose and hexose unit (Santos J.I. et al., 2015; Wen et al., 2012). Furthermore, the band at 900 

cm-1 originating from the β-glycosidic linkages between the monosaccharide units (Wen et al., 

2012) denotes the presence of, at least, oligosaccharides.  

Contaminants, such as carbohydrates, could be removed from lignins through a purification 

process, depending on the conditions; however, as already confirmed in section 4.3.3.1.1, the 

purification leads to modifications in the representativeness of lignins, invalidating the comparison 

between them. However, contaminants comprising long-chain aliphatic compounds found in 

cuticular waxes, cutin, and suberin are more difficult to remove due to its higher resistance, 

probably due to their strong linkages with lignin (Clemente et al., 2013). This type of associations 

were already studied by Oliveira and co-workers (Oliveira et al., 2006); the authors have proved 

that the purification of dioxane lignins from leafs and stalk fractions of a banana plant did not 

remove all the aliphatic impurities, indicating that they are strongly bond or even chemically linked 

to lignin. Considering this, the FTIR spectra of all the lignins contain high amounts of aliphatic 

moieties of non-lignin origin. These contaminations belong to fatty substances identified from the 

absorptions at 2940-2830 cm−1, assigned to C-H stretching in aliphatic moieties, and 1700-1710 

cm−1, corresponding to C=O stretching of carboxylic acids (Oliveira et al., 2009). This statement 

was corroborated with the 13C NMR spectra (Figure 17 and Figure 18), which revealed the 

characteristic resonances between 10 and 35 ppm, assigned to -CH- and -CH2- moieties in aliphatic 

chains, as already stated before in section 4.3.4. 

 

4.4 STRUCTURAL CHARACTERIZATION OF TOBACCO LIGNINS 

In this section, lignins from stalks of Nicotiana tabacum produced by butanol and ethanol 

organosolv, steam explosion, and mild acidolysis were characterized. Data from 13C NMR and NO 

led to the main structural features of these lignins for the impact evaluation of each process on 

lignin structure. This comparative study was performed for the first time. 

 

 N. tabacum lignins: description and composition 

From tobacco stalks, four lignins were considered: lignin produced by organosolv process 

using butanol (LTobObut) and ethanol (LTobOethan), lignin produced by a steam explosion process 

(LTobSE), and another one isolated by mild acidolysis (LTobstalk). 
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LTobObut was produced by pulping with butanol-water 50/50 v/v, at 451 K, 30-60 min (with 

H2SO4); LTobOethan was produced in standard autocatalyzed conditions at 468 K for 90 min, and 

LTobSE was produced at 478 K, 10 min residence time, with 15% caustic loading.  

 

The content of inorganics and carbohydrates of tobacco lignins is depicted in Table 25 as 

component weight per 100 g of lignin.  

 

Table 25 - Inorganic compounds and carbohydrate contents of lignins. 

 
lignins  

LTobObut LTobOethan LTobSE LTobstalk 

Inorganic compounds (%w/wlignin) 3.1 ± 0.2 0.38 ± 0.01 1.2 ± 0.06 0.43 ± 0.02 

Carbohydrates (%w/wlignin) 2.3 ± 0.1 1.1 ± 0.05 0.66 ± 0.02 6.9 ± 0.29 

 

The maximum amount of contaminants measured (inorganics and carbohydrates) in lignins 

from tobacco stalks is 7.2% for LTobOstalk, which is in agreement with the degree of contamination 

found for other lignins from herbaceous plants (Buranov and Mazza, 2008; Ghaffar and Fan, 2013).  

 

The content of the main sugar residues found in the carbohydrate fraction of tobacco lignins 

is detailed in Table 26. 

 

Table 26 - Detailed composition of carbohydrate fraction (%w/wlignin) of tobacco lignins. 

 Glc Xyl Ara Gal Rha Man 

LTobObut 0.79 0.54 0.17 0.12 0.11 0.17 

LTobOethan 0.30 0.40 0.12 0.01 0.09 0.01 

LTobSE 0.15 0.25 0.05 0.05 0.06 0.01 

LTobstalk 0.43 3.77 0.19 0.20 0.40 0.26 

*Glc – glucose; Xyl – xylose; Ara – arabinose; Gal – galactose; Rha – rhamnose; Man - mannose. 

 

The main sugar residue obtained for all the tobacco lignins was xylose, except for LTobObut, 

followed by glucose. Compared to wood species (softwood and hardwood), lignins from 

herbaceous plants usually contain higher levels of carbohydrates, due to the presence of LCC 

(Buranov and Mazza, 2008). Additionally, compared to values found for acidolysis lignins and 

pulping liquor lignins from hardwoods, presented in this thesis, the overall results are similar. 
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 Analysis by NO  

V, Sy, Hy, VA, and SA are the main monomeric phenolics that result from the oxidation of 

the noncondensed fraction of lignin by NO. The quantification is reported in Table 27.  

 

Table 27 - Yields of monomeric phenolic products obtained by NO of lignins from tobacco stalks. 

lignin 
products, % w/wlignin*  

Hy VA SA V Sy total yield 

LTobObut 0.42 0.88 0.79 2.8 2.5 7.4 

LTobOethan  0.33 0.63 0.47 7.2 4.8 13.5 

LTobSE 0.37 0.77 0.26 5.2 3.2 9.8 

LTobstalk  0.39 0.71 0.84 12.8 10.9 25.7 

* reported to nonvolatile solids weight after deducting ashes and carbohydrates. 
 

V and Sy are the main products, accounting for 72−93% of the total phenolic monomers 

identified. Minor contents of their corresponding aromatic acids (SA and VA) and Hy were also 

obtained. The NO yield of lignins follows the sequence LTobstalk > LTobOethan > LTobSE > 

LTobObut, indicating that the delignification process, organosolv (in particular with butanol) and 

steam explosion, have induced an increase in the number of condensed linkages. NO has been one 

of the approaches for the evaluation of the potential for lignin to produce V and Sy by oxidative 

depolymerization. In the literature it is suggested that the yield from oxidation with O2 can reach 

50% of the NO yield (Tarabanko et al., 1995), while in other studies with diverse lignins lower 

relative yields (19−36%) were obtained (Pinto et al., 2011). 

 

 13C NMR  

The structures, linkages and functional groups of tobacco lignins were assessed by 13C NMR 

based on acquisition conditions and assignments referred in the literature (Capanema et al., 2004; 

Capanema et al., 2005; Costa et al., 2014). The assignments and the corresponding chemical shifts, 

as well as the resulting content (number/Ar) are presented in Table 28. The spectra of tobacco 

lignins with the main assignments identified are shown in Figure 24. 

In addition to H units, p-coumaric and ferulic esters can be found in lignins of annual plants. 

However, these phenolic moieties should not represent a noteworthy interference on 13C NMR 

spectra (Heitner et al., 2010) due to the usually low percentage in lignins (Rencoret et al., 2015), in 

particular, in those resulting from extensive delignification processes due to the cleavage of the 

ester linkages. For tobacco stalks lignins, no information about the content of this structure has 

been reported in the literature. In the delignification process resulting from organosolv and steam 
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explosion, this ether linkage is cleaved, liberating phenolic and aliphatic OH groups, improving the 

lignin solubility in the medium. The extent of the cleavage depends on the process and conditions.  

 

Table 28 - Assignments and quantification (number per aromatic ring) of the structures/linkages and 
functional groups identified by 13C NMR for tobacco lignins.  

assignments (spectroscopic range) 
amount (number/Ar) 

LTobObut LTobOethan LTobSE LTobstalk 

Cβ in β-5 and β-β structures (δ 51.0-53.8 ppm) 0.29 0.19 0.23 0.20 

Aromatic OCH3 (δ 54.3-57.3 ppm) 0.91 0.97 0.84 1.31 

Cγ in β-O-4 structures without Cα=O (δ 59.3-60.8 ppm) 0.31 0.26 0.19 0.34 
Cγ in β-5 and β-O-4 structures with Cα=O; Cγ in β-1  

(δ 62.5-63.8 ppm) 
0.20 0.11 0.11 0.15 

Cα in β-O-4 structures; Cγ in pinoresinol/syringaresinol  
and β-β structures (δ 70.0-76.0 ppm) 

0.53 0.44 0.53 1.04 

Cβ in β-O-4 structures; Cα in β-5 and β-β structures 
(δ 80.0-90.0 ppm) 

0.45 0.51 0.65 0.91 

Aromatic CAr-H (δ 103.0-123.0 ppm) 1.93 2.07 1.99 2.04 
Aromatic CAr-C (δ 123.0-137.0 ppm) 1.67 1.74 1.82 1.44 

C4 in H units (δ 157.0-162.0 ppm) 0.16 0.13 0.18 0.15 

CHO in benzaldehyde structures (δ 191.0-192.0 ppm) 0.05 0.06 0.06 0.03 
CHO in cinnamaldehyde structures (δ 193.5-194.5 ppm) 0.05 0.07 0.07 0.03 

 

The values for β-O-4 structures are 0.16, 0.32, 0.42, and 0.71 for LTobObut, LTobOethan, 

LTobSE, and LTobstalk, respectively (results summarized in Table 28). The considerably lower 

amount of β-O-4 structures in lignins resulting from organosolv and steam explosion processes 

compared to lignin from mild acidolysis is the result of the extensive depolymerization in the 

formers. The β-O-4 cleavage was also reported in the literature (Agrupis et al., 2000; Xu et al., 

2008) as result of other processes, such as kraft delignification of perennial grasses (Pinto et al., 

2015). Organosolv process with butanol of tobacco stalks has led to a lignin with the lowest content 

of β-O-4 structures. Other frequent carbon-carbon linkages, such as β-5, found in 

phenylcoumarans, and β−β, found in resinols, depicted in Table 28, were also found in high 

amounts in tobacco lignins, compared to lignins from other species (Pinto et al., 2015).  

Another observation can be drawn from the NMR data: processing induces changes in 

methoxyl content (decrease from LTobstalk to LTobObut, being more accentuated for LTobSE) 

mainly due to demethoxylation reactions but also due to degradation of S units and/or topochemical 

effects of delignification. The lower methoxyl content found in processed lignins (organosolv and 

steam explosion) due to the demethoxylation reactions was already noticed by other authors (Li et 

al., 2009; Sun et al., 2004; Wen et al., 2013). This could be pointed out as one of the reasons for the 
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lower value of methoxyl found by 13C NMR (δ 54.3-57.3 ppm) than the methoxyl content 

calculated from the S:G:H ratio.  

 

Figure 24 - Quantitative 13C NMR spectra of (a) LTobObut, (b) LTobOethan, (c) LTobSE, and (d) LTobstalk 
(DMSO-d6; * solvent peak (Hugo et al., 1997)). 

 

* 
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4.5  RADAR CLASSIFICATION OF INDUSTRIAL CROPS LIGNINS  

The proposed methodology for radar classification was applied to industrial crops lignins. 

Radar representation allows a direct classification of the different stalks and roots lignins by 

comparison of their key descriptors. 

The selected parameters as descriptors for radar classification of corn, cotton, sugarcane, and 

tobacco lignins are depicted in Table 29 and presented as radar plots in Figure 25 and Figure 26 for 

stalks and roots, respectively. The selected parameters were β-O-4 linkages content, the number of 

NCS, the content of S, G, and H units, and the yield of V and Sy (obtained by NO).  

 

Table 29 - Main structural characteristics of lignins from stalks and roots of tobacco, corn, cotton, and 
sugarcane. 

Lignin  β-O-4 structures 
(n/100Ar) 

NCS 
(n/100ppu) S:G:H S/G 

LCorn 
stalk 30 92 43:44:13 0.96 

root 22 84 41:51:08 0.79 

LCotton 
stalk 44 92 49:45:06 1.09 

root 23 87 50:43:07 1.17 

LSCane 
stalk 29 86 41:51:08 0.81 

root 19 85 27:59:14 0.46 

LTob 
stalk 53 73 37:46:17 0.80 

root 45 77 34:49:17 0.69 

 

Herbaceous plants usually present higher contents of H units than woody materials (Pinto et 

al., 2015), which is in accordance with the S:G:H ratio found for isolated lignins from corn, cotton, 

sugarcane, and tobacco (Table 29). However, the content of V and Sy precursors in herbaceous 

lignins are naturally lower in comparison to woody biomasses. 

α- and β-ether linkages are one of the most important linkages type in lignin structure, which 

are mostly preserved in the isolation by acidolysis lignins. LCottonstalk, LTobstalk and LTobroot have 

the highest content of β-O-4 linkages; at the same time, LTobstalk and LTobroot have the highest 

values of DC (lowest NCS). These two characteristics together, point out LTobstalk and LTobroot as 

lignins having high frequency of inter-linkages between ppu thus revealing a complex 

tridimensional structure.  

The S:G:H ratios calculated for the different lignins indicated a predominance of G over S 

units for roots and stalks of corn, sugarcane and tobacco, with a S/G ratio in the range of 0.44-0.90 

(Table 29). For cotton lignins higher values of S than G units were found. Among all, LTobroot and 

LSCaneroot have the most favorable S/G considering vanillin production in a possible valorization 

route, i.e. for these lignins a higher content of G units than S units was found (Figure 26). 
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The main differences between lignins isolated from stalks and roots of each species are the 

lower content of β-aryl structures (β-O-4) and, in general, the lower S/G ratio in the later. For 

LSCane and LTob the DC is similar for roots and for stalks but in the case of LCorn and LCotton 

there a change on the frequency of condensed linkages. The differences found between species 

exceeded the differences between lignins from the two morphologic parts of the same plant, 

confirming the lignin specificity of each species, but there is high similarity between corn and 

sugarcane lignins. 

 

 

Figure 25 - Radar classification for stalks lignins from corn, cotton, sugarcane, and tobacco. 
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Figure 26 - Radar classification for roots lignins from corn, cotton, sugarcane, and tobacco. 

 

4.6 RADAR CLASSIFICATION OF TOBACCO LIGNINS  

The values of all the parameters for tobacco lignins are depicted in Table 30 and presented as 

radar plots in Figure 27. This representation allows a direct classification of tobacco lignins by 

comparison of the key descriptors. 

 

Table 30 - Main structural characteristics of tobacco lignins. 

Lignin β-O-4 structures 
(n/100Ar) 

NCS 
(n/100ppu) S:G:H S/G 

LTobObut 16 45 38:48:18 0.79 

LTobethan 32 58 38:49:13 0.77 

LTobSE 42 49 31:50:19 0.62 
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Figure 27 - Radar classification for tobacco lignins produced by different processes. 
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and V data resulting from NO. Among the tobacco lignins, S and G did not show noteworthy 

differences. However, Sy and V descriptors showed that LTobObut is the least reactive lignin, 

followed by LTobSE.  

Among all the tobacco stalks lignins, the lowest value of NCS was found for LTobObut 

(Table 30), followed by LTobSE, and finally LTobOethan, which presented a similar value to that of 

mild acidolysis lignin. This observation has led to the conclusion that organosolv process with 

ethanol was the industrial process imparting fewer modifications to tobacco stalks lignin. 

In this study, the ranking of lignins was performed using constant weighting factors for each 

descriptor. As such, and based on the classification, the ascending order of lignins according to the 

prospective yield for V and Sy by oxidation with O2 in alkaline medium under the same conditions 

(pH, temperature, O2 partial pressure) is LTobObut < LTobSE < LTobOethan< LTobstalk.  

 

4.7 CONCLUSIONS 

The characterization of in situ and mild acidolysis lignins from two morphological parts 

(stalks and roots) of corn, cotton, sugarcane, and tobacco shows that the differences found between 

species exceeded the differences between morphological parts confirming the lignin specificity of 

each species.  

LCornstalk and LSCanestalk are the closest lignins, having similar frequency of β-aryl inter 

linkages (the lowest among all stalks lignin, 30/100Ar, 29/100Ar). These two lignins also present 

the highest content of phenolic hydroxyl groups, in particular in non-condensed G units (2.7 and 

2.5 mmol/glignin, respectively) comparatively to cotton and tobacco stalks (1.8 and 1.6 mmol/glignin, 

respectively). Among all the lignins, LTobroot and LSCaneroot have the most favorable S/G 

considering vanillin production in a possible valorization route. 

The structural data obtained for tobacco lignins demonstrated once again the effect of 

processing evidenced by the drastic changes induced in the lignin structure by organosolv pulping 

with butanol, ranking this lignins as the less promising for the production of V and Sy by oxidation 

with O2 in alkaline medium. 

Data generated in this study is an important tool for the design of processes to convert these 

agro-industrial waste materials into lignin-based high added-value products. Moreover, the 

understanding of agricultural crops will contribute to the diversification of the biomass feedstock 

supply for bio-based products and for the design of effective deconstruction strategies for 

biorefinery purposes. 
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Lignins oxidation in alkaline 

medium 

Lignin is one of the main components of pulping liquors and a potential source of high-added 

value chemicals. One of the aims of this chapter is to evaluate the potential of industrial Eucalyptus 

globulus sulfite liquor and kraft liquors (collected at different stages of processing before the 

recovery boiler) for the production of V and Sy by oxidation with O2 in alkaline medium. 

Oxidations were performed in a jacketed reactor with controlled temperature and pressure by direct 

reaction of pulping liquors and reaction of kraft lignins isolated from liquors. 

An ethanol organosolv lignin from tobacco stalks was also submitted to oxidation and the effect 

of the reaction conditions (initial lignin concentration, temperature and partial pressure of O2) was 

studied in order to achieve the best conditions to reach the maximum yields of phenolic monomers. 

The kinetic study of products formation from this lignin was also performed and the results led to 

the evaluation of its potential as source of V and Sy.  

The experimental validation of the radar classification developed previously is also an objective 

of this chapter. Butanol and ethanol organosolv lignins from tobacco stalks were depolymerized by 

oxidation with O2 in alkaline medium and the results allow validating the assumptions from radar 

classification. 
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- Pinto, P.C.R.; Costa, C.E.; Rodrigues, A.E. Oxidation of lignin from Eucalyptus globulus pulping liquors to produce 
syringaldehyde and vanillin. Ind. Eng. Chem. Res. 2013, 52, 4421-4428.  
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5.1 INTRODUCTION 

The aim of the pulping processes is to delignify the wood matrix by promoting the lignin 

dissolution in pulping liquor, liberating the cellulose and a fraction of the original hemicelluloses. 

The world dominant process to produce pulp for papermaking is kraft pulping, whereas the sulfite 

process accounts for about 5% of the world chemical pulp production (Sixta et al., 2008). Acid 

sulfite pulping of Eucalyptus globulus wood has significance in South Africa, Portugal, and Spain 

for production of total chlorine free bleached dissolving pulps and pulps for papermaking.  

Pulping operations are highly integrated and dependent on pulping liquor, which is 

concentrated and burned in the recovery boiler, supplying energy to the pulp mill operations with 

simultaneously recovery of pulping chemicals (Krotschek and Sixta, 2008). In some mills, part of 

liquor/lignin produced is diverted to increase the pulp production capacity (situations where 

recovery furnace is limited) or to upgrade its organic components, mainly lignin. The largest 

volume of lignin produced worldwide comes from wood pulping; the lignin generated is known as 

lignosulfonates or as kraft lignin depending on the process used, sulfite or kraft pulping, 

respectively. Moreover, the emerging biorefining activity is also producing side streams containing 

lignin that claims for valorization due to environmental and economic issues. 

The aim of the work presented in this section is to contribute to the evaluation of the 

potential of E. globulus lignin as source of Sy and V. Lignins from two pulping processes (kraft 

and sulfite), three kraft liquor processing stages (at the outlet of digester, after evaporation and after 

heat treatment), and isolated kraft lignins are studied by oxidation with O2 in alkaline medium. For 

each, the profiles of Sy, V, and other minor products are established, as well as the yields, 

selectivity, time to maximum, temperature profile, and oxygen uptake during the reaction. 

 

5.2 EXPERIMENTAL SECTION: MATERIALS AND METHODS 

 Sulfite and kraft liquors and lignins: description 

Liquors from two pulping processes (kraft and sulfite), three kraft liquor processing stages 

(at the outlet of digester, after evaporation and after heat treatment) and the isolated lignins from 

kraft liquors are studied by oxidation with O2 in alkaline medium 

 

Eucalyptus globulus kraft liquors were collected at different stages of a Portuguese bleached 

kraft pulp plant: at the outlet of kraft digester (thin kraft liquor, hereby referred as KL, dry solids, 

21.6% w/wliquor), after the evaporation stage (EKL, dry solids, 79.4% w/wliquor), and after heat 

treatment (HTKL, dry solids, 83.9% w/wliquor), just before the recovery furnace. Industrial spent 

liquor from magnesium-based acidic sulfite pulping of E. globulus was collected after the 
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evaporation step in a Portuguese sulfite pulp mill and it is hereby referred as sulfite liquor (SL, dry 

solids, 68.0% w/wliquor). 

 

 Lignins isolation 

Kraft lignins were isolated from respective liquors by slow acidification with 5 M H2SO4 

(95-97%), until pH 5. The mixture was maintained under agitation at low temperature (283 K) 

during acidification. The precipitated lignin was recovered by centrifugation, washed two times 

with distilled water, and freeze-dried.  

Lignins isolated from kraft liquors were designated as KLlig, EKLlig, and HTKLlig. The 

yields on lignin recovered from this isolation procedure were 45% for KLlig, 24% for EKLlig, and 

16% for HTKLlig, calculated with reference to the total dissolved solids on the respective liquors. 

 

 Characterization of pulping liquors and lignins 

5.2.3.1 Total dissolved solids and ash content 

For the determination of total dissolved solids (TDS) 20.0 mL of KL was added to prior 

dried crucibles containing calcinated and sieved sand. For the other pulping liquors, a weighted 

portion of liquor was diluted with water to 20.00 mL. The solution was added to crucibles with 

sand as described for KL. The dilution with water was performed for the high viscous liquors 

(EKL, HTEKL, and SL) to ensure the wetting of the sand by the liquid avoiding projection of the 

material during the heating period and consequent losses. The crucibles with liquors were dried at 

105 °C to constant weight. After that, the crucibles were submitted to incineration at 550 °C for 8 h 

for ash quantification.  

Ashes of isolated lignins were also gravimetrically quantified as already described in section 

3.2.4.1 (Chapter 3). 

 

5.2.3.2 Carbohydrate content 

For carbohydrate content analysis, freeze-dried sulfite and kraft liquors, and isolated lignins 

were submitted to acid methanolysis as previously described in section 3.2.4.2 (experimental 

section of Chapter 3). 
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5.2.3.3 Nitrobenzene oxidation 

Freeze-dried pulping liquors and isolated lignins were submitted to alkaline NO as already 

described in section 3.2.5.1 (Chapter 3) concerning reaction conditions and products analysis.  

 

 Oxidation experiments  

Oxidations with O2 in alkaline medium were performed in a Büchi AG laboratory autoclave 

with a capacity of 1 L (model BEP280 type II, Switzerland). The heating and control of the reactor 

temperature was assured by a Haake thermostatic bath (model N2-B, Karlsruhe, Germany). The 

temperature inside the reactor was measured using thermocouples type K, and a pressure transducer 

(Kulite model XYME-190 M G, Leonia, USA) was used to assess total pressure. The flow rate of 

O2 was measured by means a mass flow meter EL FLOW (Bronkhorst High-Tech B.V.) model F-

201C-FAC-11-V and expressed as a standard cubic centimeter per minute (sccpm). Reaction 

mixture samples were collected at preset time intervals by means an electro valve (Asco 

Netherlands) and a universal fractions collector Eldex. The signals of the thermocouple, flowmeter, 

and pressure transducer were recorded by means an acquisition board and a LabView program. The 

experimental setup for batch oxidation of lignin is presented in Figure 28. 

 

 

Figure 28 - Experimental setup for batch oxidation of lignins and pulping liquors. 

 

For each oxidation essay, about 30 g of lignin or the corresponding weight of total dissolved 

solids for sulfite liquor were dissolved in 300 mL of an alkaline solution containing 40 g of NaOH. 

For kraft liquors (which are already alkaline), the weight corresponding to a total 30 g of 

nonvolatile solids was diluted to 300 mL with water, and the pH was measured. Since the values 



Lignins oxidation in alkaline medium 

 

Chapter 5  107 

found were in the range of 11-13, NaOH was added (between 10 and 20 g) to reach pH values 

higher than 13.8. The resulting mixture was diluted to 500 mL and introduced into the preheated 

reactor. Pressurization of the reactor was done with nitrogen until 6.8 bar. The reaction time started 

when the initial temperature reached 393 K. At this time, O2 was introduced starting the data 

acquisition. The total pressure in the reactor was kept at 9.8 bar with a partial pressure of O2 of 3.0 

bar by continuous supply of O2 along the time. At each sampling time, the electro valve was first 

opened to clean the sampling line and immediately after that 2 mL of the reaction mixture was 

collected in a clean tube. This operation was repeated until the end of the reaction.  

The extraction and analysis of the oxidation products was performed by the procedure and 

the equipment and conditions as described in the following section. 

 

 Extraction and analysis of the oxidation products  

The low molecular weight phenolic compounds produced by lignin oxidation were extracted 

by solid phase extraction (SPE) and analyzed by HPLC. 

For the SPE procedure, LiChrolut EN (40-120 μm) 500 mg, 6 mL (Merck) SPE cartridges 

were used. First, 7 mL of methanol was applied on the column for the sorbent bed solvation; prior 

to sample loading, 12 mL of 95:5 (v/v) water:methanol with 0.1% (v/v) formic acid was used for 

SPE column equilibration. The samples were diluted with distilled water (1:1), acidified to pH 2 

with H2SO4 solution (6 M), and loaded on the prepared cartridge. The cartridge was then washed 

with 12 mL of solution 95:5 (v/v) water:methanol with 0.1% (v/v) formic acid for interference 

elution. Finally, the phenolic compounds were eluted using 7 mL of 5:95 (v/v) water:methanol with 

0.1% (v/v) formic acid. The volume was collected to a volumetric flask and brought up to 10.00 

mL in volume with the same solution. The analysis of the extracted products was performed using 

the equipment and the conditions as previously described in section 3.2.5.1 (Chapter 3).  

 

5.3 OXIDATION OF LIGNIN FROM EUCALYPTUS PULPING LIQUORS 

 Composition of pulping liquors and lignins 

Pulping liquor contains dissolved organic material (removed from the wood during pulping), 

namely degradation products of lignin, carbohydrates, and extractives and the residual inorganic 

pulping chemicals. In kraft liquor, colloidal fragments of lignin are stabilized by ionized phenolic 

and carboxylic acid groups (stability is pH dependent), whereas carbohydrates (mainly from 

hemicelluloses) are present as oligosaccharides (Lisboa et al., 2005) and as saccharinic acids. In 

general, lignin from sulfite liquor has high molecular weight than kraft lignin, and it is present as 
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sulfonation products (Sixta et al., 2008). Table 31 presents inorganic and carbohydrate contents in 

the pulping liquors and in the isolated lignins.  

 

Table 31 - Inorganic and carbohydrate contents of E. globulus sulfite and kraft liquors and isolated lignins. 

 sample 
Inorganic compounds 

(%w/wTDS) 
Carbohydrates 

(%w/wTDS) 

liquors 

KL 45.7±1.5 6.44±0.2 

EKL 49.8±1.9 4.35±0.2 

HTKL 49.7±1.8 4.26±0.1 

SL 8.49±0.3 9.84±0.4 

lignins 

KLlig 12.6±0.5 5.63±0.2 

EKLlig 8.51±0.3 6.84±0.3 

HTKLlig 1.72±0.06 12.2±0.5 

 

Inorganic content is significantly lower in sulfite liquor comparatively to kraft ones. From 

the technological point of view this could be an advantage if the utilization of liquor as raw 

material for oxidation is envisaged, due the lower probability of formation of incrustations in the 

reactor and tubing. However, for this liquor (as for isolated lignins) 40 g of NaOH must be added 

per 60 g of solids to achieve the pH for enolization of phenolic groups (necessary for the oxidation 

to occur).  

Besides inorganics, sugar and lignosulfonates, other components such as pyrogallol, gallic 

acid, and β-sitosterol were previous reported in SL in very low percentage (Marques et al., 2009). 

In black liquors (Krotschek and Sixta, 2008), and particularly in kraft liquor from E. globulus 

(Pascoal et al., 1999), the solids are also composed by aliphatic carboxylic acids, some of those 

volatile (acetic acid, for example) and, therefore, not accounting for solids as quantified in this 

work. Comparatively to original kraft liquors, the isolated lignins reveal a lower content of 

inorganic material, in particular HTKLlig. However, for carbohydrate content the same trend is not 

observed. 

Two remarks can be drawn from the results on carbohydrate content: first, a considerable 

carbohydrates fraction of kraft liquor remains with isolated lignins, which could be attributed to a 

coprecipitation of the liquor polysaccharides, already reported in the literature (Lisboa et al., 2005). 

Second, the carbohydrate contribution for precipitated material (isolated lignins) increases about 

twice with liquor heat treatment (Table 31, HTKLlig). The aim of the heat treatment is the viscosity 

reduction of the evaporated liquor (around 80% dry solids) by partially disrupting the lignin 

structure, enhancing the rheological proprieties of the liquor at the recovery furnace (Ryham, 

1990). Therefore, smaller fragments of lignin are certainly generated, increasing its solubility in 

water and promoting its removal during the precipitated lignin washing (at the isolation procedure). 

In accordance, the yield of HTKLlig was the lowest of the three (about 16%). However, the 
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carbohydrate content of this material is about twice that of KLlig and EKLlig, suggesting that a 

resistant fraction of carbohydrates remains coprecipitated or even linked with lignin. In accordance, 

carbon-carbon linkage between sugars and lignin promoted by alkali was previously reported in 

literature (Gierer and Wännström, 1984). 

 

 Characterization of liquors and lignins by NO 

The results of analytical NO of pulping liquors and isolated lignins are depicted in Figure 29. 

NO analysis is based on the yields and types of simple phenolic aldehydes and acids produced. 

Results for Hy, V, VA, Sy, and SA are reported to total dissolved solids weight after deducting 

ashes and carbohydrates, hereafter designated as “lignin”. 

 

 

Figure 29 – Yields of monomeric phenolic products obtained by NO of pulping liquors (A) and lignins (B). 

 

Among pulping liquors, KL presents the highest Sy yield followed by SL. However, KL also 

gives a higher relative content of SA. This result is probably related with a higher content of 

carbonyl group at Cα (benzyl carbon) of lignin which leads to the corresponding carboxylic acid 

(Gierer et al., 1977). It may be suggested that, in the case of SL, there is a lower probability of this 

occurrence due to the sulfonation of Cα of ppu of lignins during pulping (one of the main reactions 

of sulfite pulping) (Sixta et al., 2008). The ratio Sy/SA is near 9 for SL, whereas for all other 

liquors and lignins the value is between 3.1 and 4.2. High yield and high aldehyde/acid ratio are 
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advantages in the perspective of this route of lignin valorization. As far as NO could anticipate the 

results on oxidation with O2 in alkaline medium, from the point of view of selectivity for 

aldehydes, the SL is advantageous over kraft liquors and isolated lignins. 

After the evaporation process of KL, the content of aldehydes markedly decreases, while 

acids remain nearly constant for liquors and respective lignins (Figure 29). The highest decrease on 

NO yield occurs from KL to EKL and KLlig to EKLlig confirming that lignin condensation was 

promoted during evaporation process, whereas no change was noticed with the heat treatment 

(HTKL and HTKLlig). This observation suggests that the resulting splitting of lignin occurring 

during liquor heat treatment would balance any eventual heat-promoted increase on condensation. 

Small differences on total yields were noticed between each kraft liquor and its respective isolated 

lignin. From the overall results, carbohydrate and ashes fraction in pulping liquors and isolated 

lignins does not seem to affect the conversion by NO. 

 

 Oxidation of liquors and isolated lignins with O2 in alkaline medium 

As referred in the experimental section, the oxidation of pulping liquors and lignins were 

carried out in 2 M NaOH or the equivalent to pH ≥13.8 in the case of pulping liquors. All of the 

oxidation experiments began at 393 K and pO2 of 3 bar (total pressure of 9.8 bar) with constant 

oxygen supply along the reaction time. The time evolution of products yields (weight of compound 

per 100 g of lignin after deducing ashes and carbohydrates) and pH for E. globulus liquors and 

lignins are presented in Figure 30 and Figure 31, respectively. 

The main phenolic products identified in the oxidation mixture were Sy, V, and the 

respective carboxylic acids, SA and VA, all arisen from the splitting of Cα-Cβ of lignin S and G 

units, respectively (Gierer et al., 1977). Moreover, the products from Cβ-Cγ cleavage, VO and SO 

(Tarabanko et al., 2004) were also identified, as well as Hy, in minor quantity. The progress of the 

products yield with reaction time does not significantly differ among the liquors and lignins: during 

oxidation Sy reaches to a maximum yield at reaction time between 15 and 20 min followed by a 

decrease for longer reaction times. For V, the time to maximum is higher in general and, after the 

maximum, a smooth drop occurs when compared with Sy. These observations are in accordance 

with the different reactivity of syringyl and guaiacyl nuclei already stated in literature (Tsutsumi et 

al., 1995) and confirmed for other lignins (Pinto et al., 2011). The oxidation yield obtained for each 

product is the net result of its production and degradation. 

Data depicted in Figure 32 show time evolution of temperature and O2 input in the oxidation 

of liquors and lignins. As a general trend, the maximum temperature and O2 uptake during 

oxidation is higher for isolated lignins than for the respective liquors, probably due to the higher 

extent of lignin reaction in the formers, revealed in the yield (as depicted in Figure 33). Concerning 
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the temperature profile, it is clear that the maximum is coincident with those of phenolics 

production rate in both liquors and lignins. However, a lower input of O2 is observed in the direct 

oxidation of kraft liquors, which could be a consequence of its high content on inorganic 

compounds (Table 31). 
 

 

Figure 30 – Time evolution of monomeric products (V, VA, VO, Hy, Sy, SA, and SO) and pH of reaction 
medium during the oxidation of E. globulus pulping liquors KL (A and B), EKL (C and D), HTKL (E and F), 

and SL (G and H). General conditions: solids concentration 60 g/L, pH ≥13.8, pO2 = 3 bar, Ptotal = 9.8 bar,  
Ti = 393 K. 
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Figure 31 - Time evolution of monomeric products (V, VA, VO, Hy, Sy, SA, and SO) and pH of reaction 
medium during the oxidation of isolated lignins KLlig (A and B), EKLlig (C and D), HTKLlig (E and F) 

from E. globulus kraft liquors. General conditions: solids concentration 60 g/L, pH ≥13.8, pO2 = 3 bar, Ptotal = 
9.8 bar, Tinitial = 393 K. 

 

Inorganic components of kraft liquors are mainly NaOH, NaHS, Na2CO3, K2CO3, and 

Na2SO4, contributing to high ionic strength of the solution, thus decreasing the solubility of O2 in 

the reaction medium (Millero and Huang, 2003; Tromans, 1998) and finally reducing the 

consumption during oxidation and limiting, by this way, the products formation. In the 

corresponding isolated lignins, ashes content is considerably lower: 4, 6, and 29 times for KLlig, 

EKLlig, and HTKLlig, respectively. Moreover, it is quite probable that low molecular weight 

organic compounds, including lignin derivatives (always present in pulping liquors, but certainly at 

very lower level in isolated lignins) quickly undergo degradation in alkaline media with the 

concomitant CO2 production. This would contribute to the total pressure of the system, hindering 

the introduction of additional O2 and, finally, lowering the O2 uptake (Figure 32).  
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Figure 32 – Time evolution of temperature and O2 uptake during the oxidation of liquors and lignins: KL (A), 
KLlig (B), EKL (C), EKLlig (D), HTKL (E), HTKLlig (F), and SL (G). General conditions: lignin 

concentration 60 g/L, pH ≥13.8, pO2 = 3 bar, Ptotal = 9.8 bar, Tinitial = 120 °C.  

 

During oxidation it is likely that carbohydrates undergo degradation reactions, consuming 

alkali and O2 and thus leading to low molecular aliphatic compounds and CO2 contributing to the 

total pressure. Additionally, carbohydrates can react with benzaldehyde structures via alkali-

promoted reaction (Gierer and Wännström, 1984). These facts lead us to postulate that the 

carbohydrate presence is unfavorable to the process. However, the results suggest that other factors 

(such the already mentioned inorganic content and also lignin structure) seem to overcome the 
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eventual impairment of lignin oxidation to aldehydes caused by carbohydrates, since no effect of 

these compounds were noticed (as already stated for NO, section 5.3.2).  

In the oxidation conditions of this work no visible effect was noticed due to alkali competing 

reactions (such as the abovementioned carbohydrate reactions) on pH along the reaction: the 

profiles were similar for liquors and respective lignins. However, for HTKL and the respective 

lignin, after 50 min of reaction an intense decline is observed reaching a final value of 10 (graphs E 

and F in Figure 30 and Figure 31), whereas final pH for the other materials is within 12 and 14. 

More than the carbohydrate and inorganic contents, in conditions where alkali and O2 are not 

limiting factors, the lignin structure is undoubtedly the main factor for the final yield. NO results 

have demonstrated that KL has lower content on condensed structures and more potential for 

aldehyde production. In spite of the different reaction mechanisms involved in NO and oxidation 

with O2, NO is frequently considered as an “evaluator” of lignins, representing the maximum yields 

that could be achieved in oxidation. Usually, yield of O2 oxidation is about 30-50% of NO. The 

amount of Sy and V produced from SL by oxidation with O2 is considerable higher than for the 

other materials, reaching 29% and 60% of the NO value, respectively. The most probable reason 

for this is the structure of the noncondensed fraction of lignosulfonate: the most reactive structures 

toward oxidation with O2 are those carrying conjugated double bonds (at lateral chain); under 

alkaline conditions, these structures are promptly produced by the elimination of the sulfonic group 

at Cα in SL lignin. Kraft lignin also contains these unsaturated structures as well as the precursors; 

however, due to the more intensive lignin fragmentation in kraft pulping than in sulfite pulping, the 

availability of these reactive structures in the noncondensed fraction is probably lower in kraft 

lignins. In short, within all tested materials, SL was those with better overall performance 

considering yields, selectivity (ratio aldehydes/acids) and O2 uptake, in spite of its contents in 

inorganic and carbohydrates. 

Finally, minor compounds detected and quantified in the oxidation mixture for all of the 

pulping liquors and lignins were Hy (<0.2%), VO (0.1-0.2%), and SO (0.4-1%). As stated before, 

acetoderivatives are products of the Cβ-Cγ cleavage competing with cleavage of Cα-Cβ (leading to 

Sy, V, SA, and VA).  

Figure 33 summarizes the results on the main products identified as oxidation products of 

pulping liquors and all isolated lignins. The yields, on lignin basis, are higher for isolated kraft 

lignins than for kraft liquors. 
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Figure 33 - Yields of Sy, SA, V, and VA produced in the oxidation of pulping liquors and lignins with O2 in 
alkaline medium (lignin concentration 60 g/L, pH ≥13.8, pO2 = 3 bar, Ptotal = 9.8 bar, Tinitial = 120 °C). 

 

Data depicted in Figure 33 show that SA and VA content is higher for kraft liquors and 

respective lignins than for SL. The ratios Sy/SA and V/VA are a measure of process selectivity for 

aldehydes. Sy/SA ratio for SL is about 10 times higher than the average of the other materials. 

These ratios slightly decrease with liquor processing (from KL/KLlig to EKL/EKLlig, and to 

HTKL/HTKLlig) denoting a decrease on selectivity, but are higher in the isolated lignins than in 

the respective liquors. This last observation suggests that the lab isolation (with its washing 

process) remove a fraction of lignin that would contribute for the acids production. Rather than 

being a product of further oxidation of corresponding aldehydes, the acids are more likely a 

byproduct of oxidation related with the content of some particular lignin structures, namely those 

carrying a carbonyl group at Cα (Gierer et al., 1977). Oxidation mechanisms in complex mixtures 

are difficult to rationalize, and therefore, the real source of VA and SA remains not clearly 

assigned. The knowledge about these mechanisms at high temperature and pressure would be 

important from the point of view of process control, aiming to improve selectivity and yield on 

aldehydes. 

 

 Conclusions  

Among all of the studied materials, SL clearly stands out as the raw-material with highest 

potential for Sy and V production: in the conditions of this study, SL produces about 33 kg of Sy 

and 15 kg of V per ton of lignin by direct oxidation of the liquor. These values represent about 20% 

more than the yield obtained by oxidation of the KLlig. 

The Sy and V values obtained for both liquor and lignins were converted for the basis of 

kraft liquor total dissolved solids, as presented in Table 32. From the technological point of view it 
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is important to understand the benefit of lignin isolation on product yields, considering that the 

pulping liquors could be directly oxidized. 

 

Table 32 - Sy and V yields per ton of total dissolved solids. 

 sample 
kg of product per ton of solids 

Sy V 

liquors 

KL 8.6 3.5 

EKL 6.4 3.3 

HTKL 6.9 2.5 

lignins 

KLlig 10.3 4.4 

EKLlig 4.1 1.6 

HTKLlig 2.8 1.3 

 

The results depicted in Table 32 show that the isolation of lignin is advantageous only in the 

case of the KL, leading to an increase of about 20% for Sy and 25% for V. Also, the selectivity is 

higher due to the lower proportion of SA and VA produced from isolated lignins (Figure 33). By 

comparing the yields for EKL with EKLlig and HTKL with HTKLlig (Table 32), it is possible to 

conclude that the additional yield accomplished by oxidizing the isolated lignins is not enough to 

overcome the low recovery yield of lignin in the preceding isolation process (yields of isolation 

24% and 16% for EKL and HTKL, respectively; see section 5.2.2). Therefore, the productivity by 

ton of solids is rather lower than the values found for direct oxidation of kraft liquors. In the case of 

KL, the balance between the cost of isolation and the extra value obtained from the higher yields 

should be decisive if this route for lignin valorization is envisaged. 

 

5.4 OXIDATION OF ETHANOL ORGANOSOLV LIGNIN FROM TOBACCO STALKS 

Since the goal of alkaline oxidation is to achieve the maximum conversion into phenolic 

compounds, mainly V and Sy, several studies are focused in the discussion of the effect of reaction 

conditions in products yields obtained from lignin or spent liquors oxidation (Araújo, 2008; Araújo 

et al., 2010; Dardelet et al., 1985; Fargues et al., 1996; Mathias, 1993; Mathias and Rodrigues, 

1995; Pacek et al., 2013; Sales et al., 2006; Santos S.G. et al., 2011). 

In this section, an ethanol organosolv lignin from tobacco stalks (LTobOethan) was submitted 

to oxidation with O2 in alkaline medium, using the equipment already described in section 5.2.4, 

and the effect of selected reaction conditions was studied. The starting operating parameters were 

defined based on previous works (typically pO2=3 bar, Tinitial=393 K, 60 g/l of lignin, and 2M of 

NaOH) (Fargues et al., 1996; Mathias and Rodrigues, 1995). However, lignins have different 

reactivity towards oxidation and the final yields and selectivity is the result of the reactions leading 
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to aldehydes production, degradation, and competing reactions. For these reasons, the oxidation 

conditions should be carefully studied to maximize the aldehydes production and minimize 

degradation reactions (Kim and Pan, 2010; Pinto et al., 2012).  

Figure 34 to Figure 36 show the concentration profiles of the main phenolic products 

identified in the resulting mixture of LTobOethan oxidation in aqueous NaOH with molecular 

oxygen considering the variation of pO2, initial concentration of lignin, and initial temperature. The 

reaction conditions were selected in order to obtain the maximum yields of the phenolic products 

V, Sy, VA, SA, VO, SO, and Hy. Moderated partial pressures of oxygen and short reaction times 

must be employed in order to avoid the degradation of the oxidation products. 

 

 Influence of oxidation conditions on the phenolics products yield 

5.4.1.1 Lignin initial concentration  

To understand the effect of lignin concentration on the phenolics products yield obtained 

through oxidation in alkaline medium at constant initial temperature (393 K) and constant pO2 (3 

bar), the initial concentration of LTobOethan was changed between 15, 30, and 60 g/L. The Figure 

34 shows the monomeric products profile obtained for each experiment. 

 

The maximum yield of V and Sy was obtained for the oxidation with an initial lignin 

concentration of 30 and 15 g/L, respectively (Table 33). For the oxidation reaction with a lignin 

concentration of 30 g/L, the maximum yield of V reached 1.51 % w/wlignin, after 27 minutes of 

reaction; after that time a decrease in its concentration is observed. For the oxidation reaction with 

an initial lignin concentration of 15 g/L, the maximum yield of Sy was 1.80 % w/wlignin, after 18 

minutes of reaction. 

 

Table 33 - Comparison between the maximum yield (η max.) and the respective reaction time to maximum (tη 

max.) obtained for V and Sy during the oxidation with different initial concentrations of LTobOethan. 

[lignin], g/L 
η max. (% w/wlignin)*  t η max. (min.) 

Tmax. (K) 
V Sy V Sy 

15 1.31 1.80  25 16 399 

30 1.51 1.09  27 18 403 

60 1.21 0.94  55 35 407 

* reported to lignin weight after deducting ashes and carbohydrates. 

 

The effect of lignin initial concentration on the V production was already studied by other 

authors. Fargues and co-workers studied the V production from the oxidation of a softwood lignin 
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in a batch reactor at 393 K and with pO2 of about 3 bar. The author found that the maximum yield 

of V on lignin basis (% w/wlignin) decreases with the lignin concentration: 10%, 8.3%, and 3.0% for 

an initial concentration of 30 g/L, 60 g/L and 120 g/L, respectively, concluding that a lignin 

concentration of 120 g/L does not lead to a higher production yield of V (Mathias, 1993). A similar 

decrease in the phenolics yields with the decrease of lignin concentration was also found by Fisher 

and Marshall (Fisher and Marshall, 1951); these authors compared the oxidation yields of a waste 

sulfite liquor before and after its dilution in an alkaline solution. 

 

 

Figure 34 – Time evolution of monomeric products (V, VA, VO, Hy, Sy, SA, and SO) and pH of reaction 
medium during the oxidation reaction with different initial concentrations of LTobOethan: 15 g/L (A and B), 
30 g/L (C and D), and 60 g/L (E and F). General conditions: Tinicial = 393 K, pH ≥13.8, Ptotal = 9.8 bar, and 

pO2=3 bar. 

 

For the experiments with and LTobOethan initial concentration of 15 and 30 g/L the pH value 

during the reaction does not show the same profile as compared with the reaction with 60 g/L. This 

change could be related with the low degradation rate of V found for these experiments. After 160 
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min of reaction only about 30% of V suffer degradation in the experiments with lower values of 

initial lignin concentration, comparatively to about 50% found for the reaction performed with 60 

g/L.  

The data from Table 33 also show that there is a difference of 14, 10, and 6 K between the 

initial temperature and the maximum value of temperature reached during the reaction with 

LTobOethan initial concentration of 60, 30, and 15 g/L, respectively. The concentration of the 

phenolic aldehydes and their respective acids increases continuously until a maximum value which 

is coincident with the maximum temperature. In fact, the oxidation with O2 is an exothermic 

reaction, and after the maximum the temperature as well as the concentration of products decreases 

continuously, in the last case due to the dominance of degradation over the production reactions. In 

the literature, values of 13 and 9 K were reported for the difference between the initial temperature 

and the maximum value reached during the oxidation of a hardwood organosolv lignin and a 

softwood kraft lignin, respectively (Pinto et al., 2011). For a commercial ktaft lignin, Indulin AT, 

differences in the same order (10-15 K) were found (Araújo et al., 2010). However, the heat of an 

oxidation differs between lignins and reaction conditions. 

 

5.4.1.2 Partial pressure of O2 

The effect of pO2 in the range 2-4 bar was tested for LTobOethan oxidation with an initial 

concentration of 60g/L, an initial temperature of 393 K, and a total pressure (N2 and O2 plus water 

vapor) of about 9.8 bar. The time evolution of oxidation products is presented in Figure 35 for each 

experiment performed with a different pO2. 

The results demonstrate that the main effect of pO2 was on the rate of products formation, 

shortening the time to maximum (Table 34). Among the experiments with a pO2 of 3 and 4 bar 

only a slight difference in the maximum yields of V and Sy is observed. However, the reaction time 

to reach the maximum is higher for the oxidation that starts with 2 bar of oxygen pressure. Mathias 

studied the oxidation of a softwood kraft lignin and also found similar V yields for reactions with 

different initial pO2, although obtained in different reaction times (Mathias, 1993). 

 

Table 34 - Comparison between the maximum yield (η max.) and the respective reaction time to maximum (t η 

max.) obtained for V and Sy during the oxidation of LTobOethan with different values of pO2. 

pO2 (bar) 
η max. (% w/wlignin)*  t η max. (min.) 

Tmax. (K) 
V Sy V Sy 

2 1.01 0.84  75 55 400 

3 1.21 0.94  55 35 407 

4 1.15 0.83  35 16 410 

* reported to lignin weight after deducting ashes and carbohydrates. 
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In the oxidation reaction with a pO2 of 2 bar an insufficient amount of oxygen could be the 

reason for the low yield of phenolic compounds found comparatively with the other experiments. 

In the literature, it was referred that a value of oxygen pressure below 2 bar was not enough to fulfil 

the condition of the pseudoconstant oxygen concentration during the oxidation of a sulfonated 

lignin, due to the insufficient amount of oxygen in the reactor (Santos S.G. et al., 2011). 

 

 

Figure 35 – Time evolution of monomeric products (V, VA, VO, Hy, Sy, SA, and SO) and pH of reaction 
medium during the oxidation of LTobOethan with different partial pressures of oxygen: 2 bar (A and B), 3 bar 
(C and D), and 4 bar (E and F). General conditions: lignin concentration 60 g/L, Tinicial = 393 K, pH ≥13.8, 

and Ptotal = 9.8 bar. 

 

5.4.1.3 Initial temperature 

The effect of the initial temperature in the products yield from oxidation of LTobOethan was 

also studied and is shown in Figure 36. The reaction was performed with 60 g/L of lignin, in 2 M 

NaOH solution, with 3 bar of pO2, a total pressure of about 9.8 bar, and at three different initial 

temperatures: 393 K, 413 K, and 433 K.  
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Figure 36 – Time evolution of monomeric products (V, VA, VO, Hy, Sy, SA, and SO) and pH of reaction 
medium during the oxidation of LTobOethan with different initial temperatures of reaction: 393 K (A and B), 

413 K (C and D), and 433 K (E and F). General conditions: lignin concentration 60 g/L, pH ≥13.8, Ptotal = 9.8 
bar, pO2=3 bar. 

 

The overall results (Table 35) demonstrate that with an initial temperature of 413 K higher 

yields of phenolic products were obtained, 1.32 % w/wlignin for V and 1.11 % w/wlignin for Sy, after 

35 minutes of reaction; after that time a decrease in products concentration, due to their 

degradation, is observed. A higher initial temperature (433 K) led to shorter reaction times, since 

the maximum yield of V and Sy were obtained after 25 and 16 minutes, respectively; however, its 

degradation is also higher. In fact, the temperature has an important effect on the rate of oxidation 

products degradation: at 433 K after 45 minutes of reaction about 69% of the maximum yield of 

products was consumed while at 413 K the decrease was only about 10%. This effect is even more 

clear for long reaction times. The faster degradation found for V is also related with the higher 

reduction of the pH in the experiment with an initial temperature of 433 K.  
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Table 35 - Comparison between the maximum yield (η max.) and the respective reaction time to maximum (t η 

max.) obtained for V and Sy during the oxidation of LTobOethan with different initial temperatures of reaction. 

Tinitial (K) 
η max. (% w/wlignin)*  t η max. (min.) 

Tmax. (K) 
V Sy V Sy 

393 1.21 0.94  55 35 407 

413 1.32 1.11  35 35 427 

433 0.97 0.82  25 16 440 

* reported to lignin weight after deducting ashes and carbohydrates. 

 

As already referred, the alkaline oxidation with O2 is an exothermic reaction, and 

considering the experiment with an initial temperature of 433 K it is possible to observe that there 

is a difference of 7 K between the initial temperature and the maximum value reached during the 

reaction; while for the other experiments, this value reaches 14 K. The high initial temperature is 

probably the responsible for the low yield on phenolic compounds, due to the higher rate of 

degradation. It is well known that the oxidation yield of each aromatic product is the result of its 

formation and its consequent degradation in the reaction medium (Pinto et al., 2012).  

The profiles of VA and SA are very close to the corresponding aldehydes, usually with a 

maximum at the same reaction time, followed by an equivalent decline. If the total content of 

oxidation products from S units is take into account (Sy, SA and, SO) (Figure 36), it is possible to 

observe a higher relative percentage of SA and SO for the oxidation with an initial temperature of 

433 K. The same behavior is obtained for G units, considering VA and VO. This ascertains that an 

initial temperature of 433 K leads to more co-products.  

Moreover, it is important to highlight that the general trend of the oxidation profiles depends 

strongly on the lignin sources. According to Araujo et al. (2010) experiments using a high-

molecular weight lignin showed a lower conversion to phenolic products when compared with 

oxidation reactions of a low-molecular weight lignin.  

 

5.5 KINETICS OF PHENOLICS PRODUCTION FROM TOBACCO LIGNIN OXIDATION 

The kinetic study of LTobOethan oxidation has two main objectives: (1) to analyze the effect 

of process parameters (temperature, pO2 and lignin initial concentration) on the yield of V and Sy 

and (2) to evaluate the kinetic parameters of the lignin oxidation process to produce V and Sy.  

Under the selected reaction conditions of temperature, pO2, and initial lignin concentration 

the kinetics of the LTobOethan oxidation was studied. As referred in the previous section, all the 

oxidation experiments were performed in alkaline medium (2 M NaOH solution), with a total 

pressure of about 9.8 bar, and a constant oxygen supply along the reaction time. The effect of the 

initial lignin concentration was studied in the range 393-433 K, with a pO2 of 3 bar, and with 60 
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g/L of lignin initial concentration. The effect of pO2 (value at the beginning of the reaction) 

between 2 and 4 bar was also tested, with an initial lignin concentration of 60 g/L, and an initial 

temperature of 393 K. To study the effect of the initial concentration of LTobOethan experiments 

with 15, 30, and 60 g/L of lignin, an initial temperature of 393 K, and a pO2 of 3 bar was used. 

In this study it was assumed that the effect of the NaOH concentration on V and Sy yield 

would be negligible due to its very high concentration and the fact that the pH was higher than 12 

during the oxidation experiments, as already assumed by other authors (Fargues et al., 1996; Pacek 

et al., 2013; Pinto et al., 2013). Moreover, Fargues and co-workers (Fargues et al., 1996) studied 

the kinetics of V oxidation and referred that at least 2M in NaOH is required to achieve the 

favourable conditions to preserve the produced vanillin.  

An effective understanding of the reaction mechanisms is essential for the development of 

kinetic models. However, for this study it is sufficient to quantify the global reaction rate by 

identifying the major oxidation pathways. The oxidation comprises the depolymerization of lignin, 

in alkaline medium, which promotes the lignin solubilization by the hydroxyl anions (Fargues et 

al., 1996; Tarabanko et al., 2001). It is also well known that the reaction mechanism of the lignin 

oxidation leads to the production of a great variety of intermediate products. In a general way, it is 

considered that the oxidation proceeds in two or more steps, where lignin is depolymerized into 

fragments producing aromatic aldehydes, other products of lower molecular weight, and smaller 

molecules such as carbon dioxide and water (Fargues et al., 1996; Tarabanko and Petukhov, 2003). 

The reaction scheme for the global mechanism proposed for V and Sy production from lignin (L) 

oxidation with O2 in alkaline medium can be represented as:  

 

 Initiation LH + O2 → L∙+ HOO∙  

 Propagation L∙ + O2 → LOO∙ 
 
LOO∙ + LH → LOOH + L∙ 

 

 Termination LOO∙ + LOO∙ → Products 
 

 

The radical LOO∙ will further suffer several types of reactions during oxidation, leading 

mainly to V and Sy (Fargues et al., 1996; Tarabanko et al., 2001). 

In this work the experimental kinetic study was entirely based on the concentration of V and 

Sy as a function of reaction time, since it was not possible to measure the concentration of lignin or 

all the oxidation products during the reaction (Fargues et al., 1996; Mathias, 1993).  
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 Kinetic study of LTobOethan oxidation 

As already referred, for the kinetic study of phenolics production from LTobOethan oxidation 

three initial temperatures were tested: 393, 413, and 433 K, using a pO2 of 3 bar and an initial 

lignin concentration of 60 g/L.  

The effect of pO2 in the range 2.0-4.0 bar was also tested; these experiments were performed 

with an initial lignin concentration of 60 g/L and an initial temperature 393 K.  

For the study of the effect of the initial LTobOethan concentration three different concentrations 

were studied (15, 30, 60 g/L) all of these oxidations have been initiated with a temperature of 393 

K and a pO2 of 3 bar. 

All the oxidation reactions were performed in alkaline medium, with 2M NaOH, and the total 

pressure in the reactor was kept at 9.8 bar (Table 36). 

 

Table 36 - Experimental conditions for the kinetic study of LTobOethan oxidation. 

Reaction conditions 

Temperature, K 393 / 413 / 433 

[lignin], g/L 15 / 30 / 60 

pO2, bar 2 / 3 / 4 

Total pressure, bar ≈ 9.8 

[NaOH], M 2 

Mixture volume, L 0.5 

 

 Effect of initial lignin concentration 

The kinetics of the LTobOethan oxidation can be studied using a simple equation that relates 

the initial reaction rate of products formation to the concentration of lignin and the pO2 at the time 

that the reaction begins: 

 roxid=koxid [lignin]n pO2
m (1) 

where roxid is the initial reaction rate of phenolics production from LTobOethan oxidation, koxid is the 

oxidation rate constant, and n and m are the reaction orders with respect to [lignin] and pO2, 

respectively.  

The order of the reaction considering V and Sy production with respect to the initial lignin 

concentration was studied. V and Sy profile for each oxidation with an initial lignin concentration 

of 15, 30, and 60 g/L are shown in Figure 37.  
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In this approach it will be considered that there is no degradation of the V and Sy in the 

beginning of the reaction. Considering temperature and pO2, as these parameters undergo some 

variations during the oxidation, only the initial values were considered. 

The plot of V and Sy conversion (product concentration, g/L) against reaction time 

(considering tmax as the value where the maximum yield of products was obtained) enables the 

determination of the initial rate of production (roxid) for each experiment. 

 

 

Figure 37 – Effect of initial LTobOethan concentration (15, 30, 60 g/L) on V and Sy concentration during 
oxidation. General conditions: Tinitial = 393 K, pHinitial ≥13.8, Ptotal = 9.8 bar, pO2=3 bar. 

 

The logarithmic representation of the roxid found for each reaction as a function of the lignin 

initial concentration for V and Sy (Figure 38) leads to the calculation of the reaction order n stated 

in the equation (1).  

 

 

Figure 38 – Initial reaction rate of V and Sy production as a function of initial LTobOethan concentration. 

 

A straight line with slope equal to 0.55 for V and 0.31 in the case of Sy was obtained. This 

value determines the reaction order of V and Sy production with respect to initial concentration of 
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lignin. According to Tarabanko and co-workers the half kinetic orders are characteristic for the 

radical chain oxidation (Tarabanko et al., 2001). 

Considering LTobOethan oxidation in alkaline medium, under the reported conditions, the 

following kinetic laws were obtained for V (equation (2)) and Sy (equation (3)): 

 rV = kV ሾlignin]0.55 pO2
m  (2) 

 rSy = kSy ሾlignin]0.31 pO2
m  (3) 

Fargues and co-workers studied the production of V from the oxidation of a Pinus spp. kraft 

lignin in alkaline medium and they also found that the maximum yield of V (wt%) decreases with 

the initial concentration of lignin (Fargues et al., 1996). Moreover, a reaction order of 1 with 

respect to lignin concentration was obtained by these authors.  

 

 Effect of oxygen partial pressure 

For the study of the pO2 effect on the reaction rate of V and Sy production three experiments 

with values between 2 and 4 bar were performed. The initial concentration of lignin (60 g/L), the 

initial temperature (393 K), and the total pressure (~9.8 bar) were kept constant. In a similar way as 

the determination of the reaction order with respect to initial lignin concentration, from the 

relationship between the initial reaction rate and the initial pO2 it is possible to find the reaction 

order m in equation (1). The representation of V and Sy concentration (g/L) as function of reaction 

time (min) for the oxidation with different initial pO2 is shown in Figure 39.  

 

 

Figure 39 - Effect of partial pressure of O2 (2, 3, 4 bar) on V and Sy concentration during LTobOethan 
oxidation. General conditions: lignin concentration 60 g/L, Tinitial = 393 K, pHinitial ≥13.8, Ptotal = 9.8 bar. 
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It is possible to observe that as the partial pressure increased, the oxidation rate of lignin 

increased, but the maximum of products yield does not follow the same trend. However, the 

increase in pO2 also led to an increase in the products degradation after the maximum yield was 

reached. This increase means that, at higher partial pressures, the products yield becomes more 

sensitive to degradation. This trend was also noted by Pacek and co-workers in the kinetic study of 

a sodium lignosulfonate oxidation to produce V (Pacek et al., 2013). The authors referred that the 

maximum value of V concentration was independent of the pO2; as the partial pressure increased, 

the oxidation rate of lignin to V also increased, but the maximum V yield remained constant. 

However, the increase in pO2 also led to an increased V oxidation rate after the maximum V 

concentration was reached. This increase means that, at higher pO2, the V yield becomes more 

sensitive to the residence time and the control of the process might be more difficult. 

From the log-log representation of the roxid as a function of the initial pO2, a straight line was 

obtained (Figure 40). 

 

 

Figure 40 - Initial reaction rate of V and Sy production as a function of partial pressure of O2. 

 

The slope value is 1.7 and 1.4 for V and Sy, respectively, and represents the reaction order m 

with respect to oxygen concentration (equation (4) and (6)).  

 rV = kV ڿlignin0.55ۀ pO2
1.7 (4) 

 

 rSy = kSy ڿlignin0.31ۀ pO2
1.4 (5) 

The reaction order found for the pO2 is in agreement with the literature, where values between 

0.6 and 1.75 have been reported. Tarabanko and their co-authors  reported a m=0.56 for the 

oxidation of a aspen wood with an oxygen working pressure between 2 and 13 bar, at pH 11.6., and 

with an initial temperature of 383 K (Tarabanko et al., 2001). Santos et al. found a m=1 for the 

oxidation of a eucalyptus lignosulfonate lignin in a pure oxygen atmosphere for pressures 2.0-10 

bar, at a temperatures of 413 K, while Fargues et al. reports a m=1.75 for the oxidation of a Pinus 

spp. kraft lignin at pH>11.5 (Fargues et al., 1996; Santos S.G. et al., 2011). 
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 Effect of initial temperature  

The effect of temperature in the reaction rate and yield of phenolic products from LTobOethan 

lignin oxidation was studied in the range 393-433 K, and the results are shown in Figure 41. 

 

 

Figure 41 - Effect of initial temperature (393, 413, 433 K) on V and Sy concentration during LTobOethan 
oxidation. General conditions: lignin concentration 60 g/L, pHinitial ≥13.8, Ptotal = 9.8 bar, pO2=3 bar. 

 

Taking into account the equation (1), koxid can be related to temperature using Arrhenius 

equation to give the initial reaction rate as a function of the initial concentration of lignin, pO2, and 

temperature: 

 roxid = A exp ൬-
Ea

RT
൰ [lignin]n  pO2

m (6) 

In contrast to the effect of pO2, the reaction temperature not only increases the reaction rate 

but also affects the competitive reactions of lignin oxidation, resulting in the variation of phenolics 

products yield.  

The energy of activation (Ea) and the constant, A, in the Arrhenius equation for V and Sy 

production were estimated from the slope and the intercept, respectively, of the linear regression of 

ln k versus 1/T (Figure 42). The Ea calculated from the experimental data was 18.3 and 10.2 kJ/mol 

for V and Sy, respectively. Thus, the kinetics of LTobOethan oxidation for the production of V and 

Sy can be related to the initial concentration, pO2, and temperature by: 

 rV = 4.8579 exp ൬-
18272

RT
൰ [lignin]0.55  pO2

1.7 (7) 

 

 rSy = 0.4895 exp ൬-
10386

RT
൰ [lignin]0.31  pO2

1.4 (8) 
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Figure 42 - Initial reaction rate of V and Sy production as a function initial temperature. 

 

The value of Ea found for Sy is lower than for V; in fact, the S units have higher reactivity 

than G counterparts in alkaline medium and under O2 oxidation conditions. Thus, the oxidation of 

S units is faster than G units for both production and degradation of aldehydes. Santos and co-

workers (Santos S.G. et al., 2011) also found a lower value of Ea for Sy (62.6 kJ/mol) than for V 

(70.5 kJ/mol), in the oxidation kinetic of a lignosulfonate from acidic magnesium-based sulfite 

pulping of eucalyptus wood with O2 under alkaline conditions. 

The Ea found in this work is lower than the values reported for the oxidation of different 

lignins to aromatic aldehydes under similar conditions. Fargues and co-workers (Fargues et al., 

1996) calculated the Ea for the V production from a softwood kraft lignin oxidation and they found 

a value of 29.1 kJ/mol. Other authors also reported the kinetics and the Ea of V and Sy production 

from hardwood lignins and values of Ea in the range 48.0-70.5 kJ/mol were obtained (Santos S.G. 

et al., 2011; Tarabanko et al., 2001). The larger the Ea, the more temperature-sensitive is the rate of 

reaction.  

 

 Conclusions 

The kinetic study of V and Sy production from alkaline oxidation with O2 of tobacco 

organosolv lignin was carried out in order to analyze the effect of process parameters (temperature, 

pO2 and lignin initial concentration) on the yield of V and Sy as well as to evaluate the kinetic 

parameters of the lignin oxidation process to produce these phenolic monomers.  

From the experiments under different oxygen partial pressures the reaction order found was 

1.7 for V and 1.4 in the case of Sy. With respect to initial concentration of lignin the reaction order 

obtained for V and Sy production was 0.55 and 0.31, respectively. From the experiments with 

different values of initial temperature the Ea calculated was 18.3 kJ/mol for V and 10.2 kJ/mol for 

Sy, demonstrating that S units have higher reactivity than G counterparts in alkaline medium and 

under O2 oxidation conditions. 
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5.6 EXPERIMENTAL VALIDATION OF THE RADAR CLASSIFICATION OF TOBACCO 

LIGNINS  

Experimental validation of the radar classification of tobacco lignins was accomplished 

using the two organosolv lignins from tobacco stalks, LTobObut and LTobOethan. The radar plots 

made with the key descriptors of these lignins are presented in Figure 43. 

 

 

Figure 43 - Radar classification for LTobObut and LTobOethan lignins. 

 

Batch oxidation in alkaline medium with O2 of LTobObut and LTobOethan lignins was 

performed under the conditions described in section 5.2.4. The products profile for each lignin is 

presented in Figure 44, disclosing the maximum yields obtained for V and Sy.  

LTobOethan lignin produces 1.2% of V and 0.94% of Sy, while for LTobObut lower maximum 

values were obtained (0.74% of V and 0.34% of Sy), which is in accordance with the prediction 

provided by the radar classification using the selected descriptors (see section 4.6). Based on the 

radar classification, the ascending order of lignins according to the prospective yield for V and Sy 

by oxidation with O2 in alkaline medium under the same conditions (pH, temperature, pO2) were 

LTobObut < LTobOethan. 

Other phenolic compounds were also identified in the oxidation mixture in lower 

percentages: Hy, SA, VA, SO, and VO. Considering G-derivatives, the yield of VA and VO 

represent 49% to 55% and 16% to 20% of the maximum yield obtained for V, respectively. The 

proportion of SA and SO relative to the maximum yield of Sy was between 43% and 45% for SA 

and 16% and 20% for SO. The different reactivity of S and G units influences the time to 

maximum yield of Sy and V, and is lower for S-derivatives. These observations are in accordance 

with product profiles obtained by alkaline oxidation with O2 of other lignins from different species 

and delignification processes (Pinto et al., 2011). 
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Figure 44 – Time evolution of monomeric products (V, VA, VO, Hy, Sy, SA, and SO) during the oxidation 
of LTobOethan (C and D) and LTobObut (A and B). General conditions: 60 g/L of lignin, 2 M NaOH, pO2 = 3 

bar, Ptotal = 9.8 bar, Tinitial = 393 K. 

 

Oxidation with O2 in alkaline medium of LTobObut and LTobOethan under the same conditions 

has confirmed the qualitative differences of yields predicted by the radar classification. The radar 

classification of lignins can be adapted to include different or additional descriptors according to 

the application planned for the lignin being a useful predictive tool for product and process design.  
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Lignin fractionation by 

ultrafiltration 

The aim of this chapter was to study the fractionation of E. globulus industrial kraft liquor by 

ultrafiltration. Ultrafiltration allows the separation of different lignin fractions with a specific 

molecular weight from the kraft liquor. Tubular membranes with nominal cut-offs of 50, 15 and 5 

kDa were used. In the first step, the black liquor was filtered with the 50 kDa membrane. Permeate 

of this filtration was additionally fractionated with the 15 kDa membrane. In the last step, the 

permeated of the 15 kDa membrane was fractionated with the 5 kDa membrane. The differences 

between the composition of each resulting fraction were assessed by nitrobenzene oxidation and 13C 

and 31P NMR. In addition, the lignins in ultrafiltration fractions have been isolated by acid 

precipitation and studied by means of the same analytical techniques, being able to establish the 

differences in their composition and structural characteristics and subsequently their more adequate 

commercial application as high added-value products (chemical reactants, resins and 

biocomposites, antioxidants agents, etc.).  
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6.1 INTRODUCTION 

Lignin is actually considered a product with potentially attractive applications from an 

economic and ecological point of view. However, its high structural diversity and also broad 

molecular weight distribution makes its commercial use a difficult task. Molecular mass is a key 

parameter affecting the reactivity and thermo-mechanical behavior of lignin; the molecular weight 

of lignin molecules can vary between 1,000 Da and 300,000 Da within a same sample (Tolbert et 

al., 2014; Toledano et al., 2010a). Fractionation has become one of the most effective methods to 

obtain relatively homogeneous lignin fractions, which makes possible to understand more easily its 

composition, structure, and its use as source of phenolic compounds (Cui et al., 2014). 

In the literature, there are three main methods applied for lignin fractionation, which include 

sequential organic solvent extraction, selective precipitation, and membrane ultrafiltration (Cui et 

al., 2014; Toledano et al., 2010a). The membrane separation processes have been widely studied in 

the last years because its implementation is of great interest in several fields such as food, 

chemical, biological and pharmaceutical industries. These processes have all the necessary qualities 

to be key separation units in biorefineries because of their excellent fractionation capability, low 

chemical consumption and low energy requirement (Jönsson et al., 2008). Membrane technology 

can be used to extract diverse components from black liquor (Arkell et al., 2014). However, the 

extent or effectiveness of membrane technology depends on several operation conditions as the 

type of membrane used and the cut-off or particle size that it can retain as also the feed 

concentration and the flux (Humpert et al., 2016; Jönsson et al., 2008; Satyanarayana et al., 2000). 

Ultrafiltration allows obtaining lignin fractions with defined molecular weight distributions that 

vary in composition, chemical structure, and properties. In literature, it is demonstrated that lignin 

fractions obtained from membranes are less contaminated, since ultrafiltration allow removing 

carbohydrates and inorganic material, and show different amounts of phenolic hydroxyl groups, α-

oxidized aromatics and carboxylic groups (Keyoumu et al., 2004; Sevastyanova et al., 2014). The 

obtained ultrafiltration lignin fractions with different molecular weight, composition and structural 

characteristics could be used for specific industrial applications as value-added products.  

 

6.2 EXPERIMENTAL SECTION: MATERIALS AND METHODS 

 Kraft liquor 

The industrial Eucalyptus globulus kraft liquor (KL) used in the ultrafiltration process was 

collected in a Portuguese pulp mill. The weak black liquor was taken before the evaporation unit 

and there was no liquor prefiltration before the ultrafiltration experiments.  
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 Ultrafiltration equipment and experimental set-up 

The experimental set-up used for the ultrafiltration experiments is shown in Figure 45. The 

cross flow ultrafiltration was carried out in a tubular membrane unit from Orelis, France, with a 

direct drive rotary vane pump (model PA1011, Fluid-O-Tech, Italy), a frequency invertor (MC07, 

Movitrac®B, Sew Eurodrive, Germany), an inlet and outlet pressure gauges filled with glycerin 

(Genebre, Spain), a feed tank, and a rotameter (Flowtech, China). The pump used is of positive 

displacement that operates maintaining the flowrate constant throughout the process. 

 

 

Figure 45 - Experimental set-up for cross-flow ultrafiltration in concentration mode: 1) feed tube, 2) direct 
drive rotary vane pump, 3) inlet pressure gauge, 4) outlet pressure gauge, 5) tubular membrane, 6) circulating 

valve; 7) rotameter, and 8) permeate collector tube.  

 

The ultrafiltration unit withstands maximum operating pressure and temperature of 7 bar and 

80 ºC, respectively, and a maximum differential pressure of 4 bar. The permeate chamber holds a 

volume of 17 mL and the collector tube of permeate about 4 mL. Since the permeate side is open to 

the atmosphere there is no back pressure. 

Three tubular ceramic membranes with molecular weight cut-off (molecular weight at which 

the membrane rejects 90% of solute molecules (Zabkova et al., 2007)) of 5, 15 and 50 kDa were 

used for the ultrafiltration experiments. All the membranes have 1 channel, 400 mm length, inside 

and external diameters of 6 and 10 mm, respectively, and a total effective area of 0.008 m2. 

Membranes with a cut-off of 50 and 15 kDa have a zirconium dioxide (ZrO2) active layer on a 

ceramic support composed with titanium dioxide-aluminium oxide (TiO2-Al2O3) and were 

manufactured by CTI, Céramiques Techniques Industrielles (France) while the 5 kDa membrane 

(FiltaniumTM) has an active layer in TiO2 on a patented ATZ (alumina-titania-zirconia) support 

composed with TiO2-Al2O3-ZrO2 and was manufactured by TAMI Industries (France). These 

membranes are suitable for the filtration of strong alkaline solutions with pH values until 14 at high 

pressures (maximum of 10 bar) and high temperatures.  
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All the experiments were carried out with a total recirculation of the feed solution. The feed 

solutions had a temperature in the range 18-30 ºC during the ultrafiltration and the transmembrane 

pressure (TMP) was in the range 1.4-4.0 bar. The performance of each membrane before and after 

the experiments of was evaluated in this study. All the generated lignin fractions were stored in the 

fridge prior to analyses and lignin isolation. 

 

 Composition of fractions and isolated lignins 

The four fractions generated, retentates from 50, 15 and 5 kDa membranes (R50kDa, R15kDa and 

R5kDa) and permeate of 5 kDa membrane (P5kDa), in addition to the rough black liquor were 

characterized concerning density, TDS, inorganic matter, carbohydrates and lignin content. 

Each fraction was submitted to acidification with 5 M H2SO4 until pH 5 (see experimental 

procedure already described in section 5.2.2, Chapter 5) in order to isolate the corresponding lignin. 

The isolation process resulted in four hardwood kraft lignins (LR50kDa, LR15kDa, LR5kDa, and LP5kDa) 

in addition to the unfractionated lignin isolated directly from the kraft liquor (LKL). 

The analyses of TDS, inorganic mater (ashes) and carbohydrates content were performed 

using the methods and conditions already described in section 5.2.3 (Chapter 5).  

 

 Nitrobenzene oxidation  

Freeze-dried liquor and fractions and isolated lignins were submitted to alkaline NO as 

already described in section 3.2.5.1 (Chapter 3) concerning reaction conditions and products 

analysis.  

 

 NMR analysis 

Sample preparation, conditions and equipment parameters used in 13C and 31P NMR analyses 

were the same as already described in a previous section of this thesis - section 3.2.5 (Chapter 3). 

 

 Gel permeation chromatography (GPC)  

Molar mass analyses have been performed on a HPLC system, previously described in 

section 3.2.5.1 (Chapter 3), using UV detection set to 268 nm. Two Agilent gel columns placed in 

series were used: an OligoPore column 300x7.5 mm with nominal particle size of 6 µm that 

measures molecular weights up to 4,500 g.mol-1 and a MesoPore column 300x7.5 mm with 

nominal particle size of 3 µm that measures molecular weights up to 25,000 g.mol-1. A guard 
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column Oligopore 50x7.5 mm was assembled prior to the columns. GPC analyses were performed 

at 70 ºC with a flowrate of 0.8 mL.min-1 and employing an isocratic mobile phase of 

dimethylformamide (DMF) with 0.5% w/v of lithium chloride (LiCl). The system was calibrated 

with 10 polystyrene molecular weight standards ranging from 162 to 4910 g.mol-1. For GPC 

analyses about 5 mg.mL-1 of each polystyrene standard and isolated lignin were dissolved in the 

mobile phase solvent; lignins were stirred and filtered through a 0.2 µm syringe filter before 

injection.  

 

6.3 ULTRAFILTRATION PROCESS 

 Water membrane permeability 

Water permeability of each membrane was obtained by measuring deionized water permeate 

flowrate for different values of TMP (Pa). The TMP was adjusted by the circulating valve of the 

system (Figure 45) and corresponds to the average of membrane inlet and outlet pressure. 

The permeate flux, J ( m3.s-1.m-2), for each TMP is calculated as following: 

 J = 
Qp

Am
 (9) 

where Qp (m3.s-1) is the permeate flowrate measured for a certain TMP and Am is the effective 

membrane surface area (0.008 m2). Temperature was monitored and the permeate flowrate 

corrected for 25 ºC. Assays were performed with a feed flowrate of 210 L.h-1. 

 

Water permeate flux (Jw) was determined using new membranes allowing to obtain the 

membrane hydraulic resistance coefficient (Rm, m-1) by applying the Darcy´s law: 

 Jw = 
TMP

μ0Rm
 (10) 

where μ0 (Pa.s) is the viscosity of water at 25 ºC. 

 

Membrane permeability coefficient (Lp, m3.s-1.m2.Pa-1) to water is obtained from the slope of 

the graphical representation of Jw vs. TMP. It represents the amount of feed crossing the membrane 

per time unit, per membrane area unit and TMP unit. This coefficient will be used to determine the 

initial membrane permeability recovery through each cleaning cycle. 

The variation of the water permeate flux, calculated from equation (10), for each TMP is 

represented in Figure 46 considering 5, 15 and 50 kDa membranes before the ultrafiltration 

process.  
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Figure 46 - Water permeate fluxes through the ceramic membranes for different TMP at 25 ºC, flowrate set to 
210 L.h-1 and a membrane surface area of 0.008 m2. 

 

It is possible to observe that the water permeate flux increased with the increase of TMP for 

all the membranes. The membranes with higher cut-off show higher values of water permeability 

than lower cut-off membranes. 

 

 Permeate flux 

Kraft liquor was submitted to ultrafiltration sequence with three different tubular ceramic 

membranes with cut-offs of 50, 15 and 5 kDa, as shown in Figure 47.  

During the fractionation sequence in concentration mode the kraft liquor was filtered 

successively increasing the membrane cut-off. A starting volume of 9.5 L of hardwood 

(E.globulus) weak black liquor was processed. At the end, four different lignin fractions were 

obtained in addition to the original weak black liquor: R50kDa, R15kDa, R5kDa, and P5kDa.  

For all the experiments the retentate flowrate was initially fixed between 210 and 280 L.h-1, 

the TMP was in the range 1.4-4.0 bar and the operating temperature were 26 ± 4 ºC except for 15 

kDa membrane that have an initial processing temperature lower than 20 ºC. 

 

In the first step, KL was processed with the highest membrane cut-off, 50 kDa, which 

resulted in a volume reduction (VR, permeate volume divided by initial feed volume) of 0.63, 

which means that the kraft liquor volume was reduced so that about 37% remained as retentate, and 

a volume concentration factor (VCF) of 2.7 (initial feed volume divided by the retentate volume). 

In the second stage, the resulting permeate stream from the first step (P50kDa) was further 

fractionated using the 15 kDa cut-off membrane, which resulted in a VR of 0.72 corresponding to a 

VCF of 3.6. Finally, the permeate from the second step (P15kDa) was further fractionated with a 

membrane having a 5 kDa cut-off, which resulted in a VR of about 0.44 and a VRF of 1.8. 
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Figure 47 – Schematic representation of the sequential fractionation of the kraft liquor performed with 5, 15 
and 50 kDa membranes. 

 

The permeate flux behavior with time observed during the ultrafiltration sequence for each 

membrane was graphically represented in Figure 48. For 50 and 5 kDa membrane stages the flux 

decreased during processing time. Moreover, the performance of the 5 kDa membrane presents a 

sharp decrease of the initial flux during the first 2 hours of operation reaching a final permeate flux 

of 6.46 L.m-2.h-1 after 36 hours of processing. This rapid initial decline of flux was caused by the 

fast membrane pore blocking followed by the formation and growth of a cake layer, adsorption and 

concentration polarization (Humpert et al., 2016). In the case of 50 kDa membrane, through Figure 

48C, it was observed a slight decrease of the initial permeate flux that could be related with the 

high molecular weight fraction present in black liquor that also form a cake layer at the membrane 

surface, causing a flux reduction. Dafinov et al. studied the filterability of rough black liquor via 

ceramic ultrafiltration membranes with molecular weight cut-off of 1, 5 and 15kDa; they also 

observed a strong flux decrease due to the formation of a gel layer on the membrane surface 

(Dafinov et al., 2005).  

In processing with 15 kDa membrane it was observed a slight increase in their flux in the 

first hour of processing that represents a different performance to that observed for the other two 

membranes. This is a consequence of the feed solution (P5kDa) temperature in the beginning of the 

processing that was lower than 20 ºC; the consequent increase of the temperature with the 

processing time caused a slight increase in the flux. The relation between the operating temperature 

and the flux was already stated in the literature. Arkell et al. studied lignin separation process from 

softwood black liquor by membrane filtration and found that ceramic membranes exhibited lower 
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retention when the ultrafiltration proceed at high temperatures since it leads to a better diffusion of 

the feed solution through the membrane and consequently higher fluxes (Arkell et al., 2014). 

 

 

Figure 48 - Permeate flux behavior with operating time obtained for the processing with the 5 kDa (A), 15 
kDa (B) and 50 kDa (C) membranes. 

 

The permeate flux, calculated from equation (9), in the beginning and at the end of the 

processing with each membrane is presented in Table 37.  

 

Table 37 - Initial and final fluxes of 50, 15 and 5 kDa membranes. 

Membrane 
cut-off 

Initial flux 
(L.m-2.h-1) 

Final flux 
(L.m-2.h-1) 

50 kDa 15.5 6.36 

15 kDa 26.0 30.7 

5 kDa 40.2 6.46 

 

The initial flux was higher when concentrating ultrafiltration permeates from 50 kDa and 15 

kDa membranes than when concentrating the untreated black liquor. The initial flux was 15.5 L.m-

2.h-1 when using 50 kDa membrane for the concentrating of rough black liquor. For the lower cut-

offs membranes, 15 and 5 kDa, the initial flux was about 26 and 40 L.m-2.h-1, respectively. 

The higher initial flux obtained when processing with the 5 kDa membrane (40.2 L.m-2.h-1) 

could be related to the fact that higher molecules had already been removed from the black liquor 
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by the ultrafiltration with 50 and 15 kDa membranes, showing the importance of a membrane 

sequence in the process productivity. Jönsson and their co-workers also found, in a work about 

concentration and purification of lignin in hardwood kraft liquor by ultrafiltration and 

nanofiltration, that a high dry solids content of the feed solution resulted in low flux (Jönsson et al., 

2008).  

 

 Membrane fouling and cleaning 

Membrane fouling is defined as an irreversible formation of deposits on the active surface of 

a membrane, causing a decline flux and a loss of performance (Satyanarayana et al., 2000). The 

filtration of black liquor is prone to fouling and this becomes a significant factor in the context of 

industrial processes. Therefore, effective cleaning strategies are necessary to reduce the rate of 

fouling and prolong the life of membranes. In this work the cleaning of ceramic membranes after 

filtration of black liquor and permeates was carried out by using NaOH solutions of 0.1 M and 

0.2M at 40 ºC for about 1 hour followed by rinsing with deionized water until neutral pH. The 

water fluxes before and after the filtration using the 50, 15 and 5 kDa membranes are depicted in 

Table 38. The water flux is seen as a measure of the efficiency of the cleaning process. 

 

Table 38 - Water permeability obtained after and before the ultrafiltration using the 5, 15 and 50 kDa cut-off 
membranes, at 25 ºC and flowrate set to 210 L.h-1. 

Membrane cut-off Lp before (L.h-1.m-2) Lp after (L.h-1.m-2) 

50 kDa 89.7 76.2  

15 kDa 74.5 70.3 

5 kDa 39.4 34.7 

 

The water permeability recovery (expressed in %) was determined for each membrane 

following the equation: 

 R(%) = 
Lp.after

Lp.before
×100 (11) 

where Lp,after (L.m-2.h-1.bar-1) corresponds to the water permeability of the membrane after the 

processing and the cleaning process and Lp,before (L.m-2.h-1.bar-1) corresponds to the initial 

permeability of the membrane.  

For 15 kDa membrane, the water flux was restored to 94% of the initial value, while for 50 

and 5 kDa membranes the cleaning was restored for 85 and 88% of the pure water flux, 

respectively. According to Satyanarayana et al. an irreversible fouling depends on feed solution-

membrane interaction and also on the extent of washing (Satyanarayana et al., 2000). Moreover, 
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they confirm that a very efficient cleaning protocol may restore the original permeability of the 

membrane, if the feed solution-membrane interaction is very weak (Satyanarayana et al., 2000).  

 

6.4 COMPOSITION AND STRUCTURE OF FRACTIONS AND ISOLATED LIGNINS 

This study is focused on the correlation between the molecular weight cut-off of membranes 

and the molecular weight of lignin fractions, their composition, structure, and properties. It is well 

known that along with the molecular weight characteristics of lignin, its purity and structure are 

key factors that determine their utilization in different value-added applications. In this work, 

carbohydrate and inorganic material content were determined in order to evaluate the purity of the 

lignin fractions and isolated lignins. NO and NMR analyses were also performed on isolated 

lignins. The kraft liquor and the corresponding isolated lignin were also characterized for 

comparison. 

 

 Composition of ultrafiltration fractions 

The composition with respect to TDS, density, carbohydrates, and inorganics of the different 

fractions obtained from the ultrafiltration of kraft liquor are shown in Table 39. The inorganics and 

carbohydrates contents were determined in the freeze-dried fractions and liquor. 

 

Table 39 - Composition of the kraft liquor and the different fractions (retentates and permeate) obtained from 
the ultrafiltration process; values presented in %w/w. 

 
kraft 
liquor 

lignin fraction 

R50kDa R15kDa R5kDa P5kDa 

pH 12.7 12.4 12.1 11.5 11.4 

Density (kg/m3) 1.09 1.10 1.09 1.09 1.07 

Total dissolved solids (TDS) 17.6 20.9 16.5 15.7 12.1 

Inorganic matter (%w/w)* 49.1 42.5 51.8 55.2 64.6 

Carbohydrates (%w/w)* 4.02 8.37 1.27 1.24 0.69 

Lignin (%w/w)* 46.9 49.1 46.9 43.6 34.7 

* Inorganic matter, carbohydrates and lignin contents referred to TDS. 

 

A graphic representation of the composition of each fraction as well as the kraft liquor 

considering the percentage of inorganic material, carbohydrates and lignin (all referred to TDS) is 

shown in Figure 49.  
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Figure 49 – Composition of lignin fractions obtained from the processing of kraft liquor with 50, 15 and 
5kDa ceramic membranes. 

 

As expected, the percentage of TDS decreased as the cut-off was smaller. Density data also 

corroborate this observation. On the other hand, the content of inorganics referred to the TDS 

increases along with the decrease of the membrane cut-off. This is related with the high fraction of 

inorganics of low molecular weight that pass through the membranes of lower cut-offs. It is also 

possible to observe that in general, the percentage of inorganic matter in lignin fractions and kraft 

liquor was higher than the organic matter (lignin content). According to the literature, the high 

content of inorganics is related with cooking chemicals accumulated during the pulping process 

(Toledano et al., 2010a; Zinovyev et al., 2016). From pH it can be seen that all the fractions are 

alkaline mainly due to kraft process conditions. It is also observed a slightly decrease in the pH 

with the liquor processing. 

For lignin content, similar percentages were obtained in R50kDa, R15kDa and R5kDa fractions and 

also in kraft liquor (KL), in the range 44-49 %w/wsolids. Permeate from 5 kDa membrane presents 

the lowest lignin content (35 %w/wsolids) confirming that there is a preferential retention of lignin in 

this membrane.  

Carbohydrates presented a similar behavior to that found for TDS, with a decrease of the 

total sugar content in the fractions obtained from the lower membrane cut-off, membrane of 5 kDa. 

On the other hand, the fraction R50kDa presents the highest content of carbohydrates. This is 

supported by literature where some authors referred that the carbohydrates are linked to highest 

molecular mass fraction of the kraft lignin (Brodin et al., 2009). All of these observations confirm 

that ultrafiltration is not only a fractionation process and could be also used as purification process. 
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 Composition of isolated lignins 

Lignins were isolated directly from ultrafiltration fractions as well as from rough kraft liquor 

by acid precipitation with yields of 66, 92, 64, 29, and 7.5% for LKL, LR50kDa, LR15kDa, LR5kDa, and 

LP5kDa, respectively. The isolation yields were calculated with reference to the TDS on the 

respective fractions and liquor. 

Despite the isolation process, all the isolated lignins include contaminants, mainly inorganic 

compounds and carbohydrates. The contaminants contribution, in %w/wisolated material, found for each 

lignin (LKL, LR50kDa, LR15kDa, LR5kDa, and LP5kDa) is depicted in Table 40. 

 

Table 40 – Contaminants content of isolated lignins, presented as %w/w wisolated material (dry weight). 

 
isolated lignins  

LKL LR50kDa LR15kDa LR5kDa LP5kDa 

Inorganic matter (%w/wisolated material) 37.5 44.5 20.1 18.7 11.8 

Carbohydrates (%w/wisolated material) 3.51 8.20 0.32 0.29 0.20 

 

The evaluation and comparison of lignins content in each fraction and in the correspondent 

isolated material is shown in Figure 50.  
 

 

Figure 50 - Composition of fractions, in %w/wTDS, and isolated lignins, referred to %w/wisolated material, 
obtained from the ultrafiltration process of kraft liquor. 

 

The resulting material from the isolation process of R15kDa, R5kDa and P5kDa are almost 

composed by lignin (80−88%), but in the case of R50kDa and even KL this value is about 47% of the 

isolated material.  
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The results show that lignin content increased with the cut-off decrease reaching a maximum 

of 88% in LP5kDa. Moreover, it is possible to observe that the isolation process leads to a final 

material with lower content of inorganics and carbohydrates than the ultrafiltration fractions, 

except for LR50kDa. This lignin shows a similar content of contaminants in the isolated lignin and in 

the corresponding fraction before isolation. The difference between lignin and inorganics content in 

isolated lignins and in the corresponding fractions is related with the molecular weight of the 

contaminants. In the lower molecular weight fractions the contaminants are dissolved and removed 

with the supernatant during the isolation process and only the high molecular weight 

fragments/compounds precipitated along with lignin. As expected, low molecular weight lignin 

fractions result in less contaminated lignins. This is in accordance with previous studies (Helander 

et al., 2013; Sevastyanova et al., 2014). It is also reasonable to infer that the carbohydrates found in 

LR50kDa could be part of LCC that are large size complexes and consequently are retained in lower 

cut-off membranes. Considering the isolated lignins from R15kDa, R5kDa and P5kDa there is no 

significant differences between their carbohydrates content.  

 

 Nitrobenzene oxidation of isolated lignins 

The aim of NO is to evaluate the relative proportion between the aromatic moieties H, G and S 

in the non-condensed fraction of lignin. Results are based on the yields and types of simple 

phenolic aldehydes and acids produced in the oxidation. Condensation degree is inversely 

correlated with NO total yield because aryl–aryl covalent linkages are resistant to the 

depolymerization induced by NO. The evaluation of this parameter is important since the frequency 

of C-C linkages is also inversely related with lignin reactivity.  

The yield of NO products, Hy, V, Sy, VA, and SA, are reported on total lignin weight free of 

ashes and carbohydrates, as depicted in Table 41. Therefore, the results refer to lignin and allow a 

direct comparison and evaluation of ultrafiltration process. 

 

Table 41 - Yields of monomeric phenolic products obtained by NO of isolated lignins from ultrafiltration 
fractions. 

lignin 
products, % w/wlignin*  

Hy VA SA V Sy total yield 

LKL 0.13 0.34 2.79 2.58 10.5 16.3 

LR50kDa  0.18 0.34 2.60 2.30 8.84 14.3 

LR15kDa 0.10 0.35 3.14 2.42 10.2 16.2 

LR5kDa 0.10 0.40 3.24 2.42 10.3 16.4 

LP5kDa  0.13 0.40 3.26 2.62 11.0 17.4 

* reported to nonvolatile solids weight after deducting ashes and carbohydrates. 
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The main oxidation products are Sy and SA proving that all the lignins show a predominance 

of S units. Total yields on lignin basis are in the range 14.3–17.4% for isolated lignins. LP5kDa 

present a lower fraction of condensed structures and consequently a higher NO yield than the other 

isolated lignins. LR15kDa and LR5kDa show the closest values among all the lignins; LR50kDa denotes 

the lowest NO yield, confirming the presence of the highest content of high molecular weight 

condensed lignin fragments in this fraction.  

 

 NMR analysis of isolated lignins 

6.4.4.1 13C NMR 

NMR was carried out in order to obtain important information about the chemical structure 

of the isolated lignins from ultrafiltration fractions. Lignins were analysed by 13C NMR, following 

the approach and calculations already detailed in section 3.4.2 (Chapter 3) concerning the 

application of these spectroscopic methods to E. globulus lignins. 

 

The main functional groups, linkages and structures identified and quantified in isolated 

lignins are depicted in Table 42. The 13C NMR spectrum of each lignin is shown in Figure 51. 

 

Table 42 - Assignments and quantification (number per aromatic ring) of the structures/linkages and 
functional groups identified by 13C NMR for isolated lignins from ultrafiltration fractions. 

assignments (spectroscopic range) 
amount (number per aromatic ring) 

LKL LR50kDa LR15kDa LR5kDa LP5kDa 

Cβ in β-5 and β-β structures (δ 51.0-53.8 ppm) 0.12 0.19 0.13 0.11 0.14 

Aromatic OCH3 (δ 54.3-57.3 ppm) 1.29 1.06 1.42 1.43 1.55 

Cγ in β-O-4 structures without Cα=O (δ 59.3-60.8 ppm) 0.14 0.16 0.13 0.11 0.13 
Cγ in β-5 and β-O-4 structures with Cα=O; Cγ in β-1  

(δ 62.5-63.8 ppm) 
0.12 0.11 0.06 0.05 0.06 

Cα in β-O-4 structures; Cγ in pinoresinol/syringaresinol  
and β-β structures (δ 70.0-76.0 ppm) 

0.65 0.65 0.35 0.29 0.36 

Cβ in β-O-4 structures; Cα in β-5 and β-β structures 
(δ 80.0-90.0 ppm) 

0.38 0.37 0.32 0.29 0.37 

Aromatic CAr-H (δ 103.0-123.0 ppm) 1.93 1.85 1.92 1.95 1.93 
Aromatic CAr-C (δ 123.0-137.0 ppm) 1.64 1.86 1.76 1.81 1.67 

C4 in H units (δ 157.0-162.0 ppm) 0.06 0.06 0.05 0.03 0.06 

CHO in benzaldehyde structures (δ 191.0-192.0 ppm) 0.02 0.05 0.02 0.03 0.01 
CHO in cinnamaldehyde structures (δ 193.5-194.5 ppm) 0.02 0.05 0.02 0.03 0.03 
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Figure 51 - Quantitative 13C NMR spectra of (a) LKL, (b) LR50kDa, (c) LR15kDa, (d) LR5kDa, and (e) LP5kDa (in 
DMSO-d6; * solvent peak (Hugo et al., 1997)). 
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The quantitative data from 13C NMR also enables the determination of the main structural 

characteristics of each lignin (Table 43): content of β-O-4 structures (number per 100 aromatic 

rings), DC (degree of condensation in percentage) and S:G:H ratio. 

 

Table 43 - β-O-4 structures content (number per 100 aromatic rings), DC and S:G:H ratio found for isolated 
lignins. 

Lignins 
β-O-4 

structures 
DC (%) S:G:H 

LKL 26 35 65:29:06 

LR50kDa 18 49 59:34:07 

LR15kDa 20 34 67:27:06 

LR5kDa 17 33 69.28:03 

LP5kDa 23 31 69:25:06 

 

It can be noted that the isolated lignins from ultrafiltration fractions as well as from kraft 

liquor have higher content of S units than G units. The proportion of S structures and the ratio S/G 

of the isolated lignins slightly increase with cut-off decrease suggesting that the relative contents of 

S and G units in the different lignin fractions varied proportionally to lignin molecular weight.  

In lignins, the number of C–C bonds between units could also have relation with the lignin 

molecular weight, mainly to the structures involving C5 in the aromatic ring. G-type units are able 

to form this type of bonds, but this is not possible in S-type units as they have both C3 and C5 

positions substituted by methoxyl groups (Alriols et al., 2010; Toledano et al., 2010a). As 

consequence, lignins mostly composed by G units and consequently with lower S/G ratio are 

expected to show high fractions of high molecular weight than those presenting high contents of S 

units. From 13C NMR results it can be seen that LR50kda, the lignin with higher fractions of high 

molecular weight, shows the lowest content of S units and lowest S/G ratio, in opposition to the 

lignin with lower molecular weight, LP5kDa. Aromatic OCH3 content also confirms the decrease 

trend of lignins S/G ratio with the molecular weight: LP5kDa > LR5kDa ≈ LR15kDa > LKL > LR50kDa.  

In the side-chain region, different signals could be observed in the ultrafiltration fractions 

spectra that corresponds to classical lignin substructures such as β-O-4 and β-5; however, β-O-4 are 

the main linkage identified, although chemical shift in NMR spectra attributed to Cα, Cβ or Cγ in 

these structures have always interference of carbons from other environments. The content of β-O-

4 structures found for the ultrafiltration fractions as well as the kraft liquor is between 17 and 26 

per 100 ppu, denoting that the cleavage of these linkages is one of the main reactions in the 

delignification process. However, there is not a clear trend between β-O-4 content and the different 

cut-off membranes.  

As already confirmed by NO total yields (Table 41) the lignin isolated from P5kDa shows the 

highest content of uncondensed structures; 13C NMR results also confirm this conclusion since this 
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lignin shows the lowest content of condensed structures, achieved by the low value of CAr-C 

structures, and DC. On the other hand, it can be concluded that LR50kDa is the lignin with more 

condensed structures, noted by the highest DC value that is in accordance with the highest value of 

CAr-C linkages and also the lowest fraction of noncondensed structures evaluated by the low NO 

total yield of this lignin. 

 

6.4.4.2 31P NMR 

Detailed quantitative 31P NMR data of isolated lignins are shown in Table 44; identification 

and quantification was performed as described in section 3.4.3 (Chapter 3). The spectrum of each 

lignin is presented in Figure 52. It was not possible to perform the 31P NMR analysis of the sample 

LR50kDa; the high amount of inorganics in this lignin did not allow its dissolution in the NMR 

solvents.  

From the data presented in Table 44 it is possible to conclude that high molecular weight 

lignins (LR15kDa and LR5kDa) contain larger amounts of phenolic structural units. Aliphatic, 

condensed and non-condensed phenolic units decrease as the membrane cut-off is smaller and 

consequently as the molecular weight lignin was lower.  

 

Table 44 - Assignments and quantification of phenolic and aliphatic hydroxyl groups and carboxylic acids in 
lignins by 31P NMR. 

Assignments  
amount (mmol/g lignin) 

LKL LR15kDa LR5kDa LP5kDa 
Aliphatic OH  3.59 4.11 2.38 1.35 

Carboxylic acids  2.34 3.33 0.46 0.59 

Total phenolic units  7.72 18.9 14.1 6.56 

Condensed phenolic units 2.05 3.75 2.38 0.99 

Non-condensed phenolic units     

S phenolic units 4.59 11.8 9.85 4.51 

G phenolic units 1.04 3.25 1.77 1.05 

H phenolic units 0.04 0.12 0.05 0.01 

 

The results show that the high molecular weight lignin fractions (R15kDa and R5kDa) have the 

highest content of total and aliphatic phenolic units, proving that these types of OH units are 

present in the structures and/or fragments with high molecular weight mainly retained in these 

fractions. The low molecular weight lignin fractions, on the other hand, probably preserved less 

side chains and more β-O-4 linkages, and hence exhibit less free phenolic groups and aliphatic 

hydroxyls. LP5kDa also shows the lowest content of condensed phenolic units what is in accordance 

with the highest yield of monomeric phenolic products in the non-condensed fraction of this lignin, 

found by NO. The content of carboxylic groups was also affected by the fractionation. Isolated 
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lignins obtained from the lowest cut-off membrane (R5kDa and P5kDa) were found to contain small 

amounts of these functional groups.  
 

 

Figure 52 - Quantitative 31P NMR spectra (δ 155-130 ppm) of phosphitylated lignins: (a) LKL, (b) LR15kDa, 
(c) LR5kDa, and (d) LP5kDa (in CDCl3). 
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Data from 31P NMR clearly demonstrate that there was a direct relation between the obtained 

isolated lignins from ultrafiltration fractions and its functionality. Moreover, high functionality 

implies high reactivity of obtained lignin fractions; a significant number of phenolic groups in kraft 

lignins provides high reactivity and thus makes the lignin an attractive product for utilization in 

various applications (Sevastyanova et al., 2014). 

 

 Molecular weight distribution of isolated lignins by GPC  

The molecular weight distribution of the lignins isolated from the ultrafiltration fractions and 

the black liquor was determined using GPC. In Figure 53 GPC chromatograms of lignins were 

normalized to unity and overlaid. Weight-average (Mw) and number-average (Mn) molecular 

weight and also the polydispersity index (Mw/Mn) of each lignin are shown in Table 45.  

 

 
Figure 53 – Normalization of molecular weight distribution curves obtained by GPC analyses of isolated 
lignins; analyses were performed at 70 ºC and a flow rate of 0.8 mL.min-1 using DMF with LiCl 0.5%. 

 

In this work the obtained values are relative to polystyrene standards. It is important to point 

out that without suitable standards for GPC calibration the analysis of lignins only provides relative 

molecular weight values. Moreover, structural differences between linear polymer standards and 

branched lignin macromolecules are a known source of error in the determination of molecular 

weight (Ringena et al., 2006). The lack of standardization and the difficulties associated with 

accurate lignin molar weight determination were already stated in previous studies in literature 

(Baumberger et al., 2007; Constant et al., 2016; Lin and Dence, 1992; Sevastyanova et al., 2014). 

The determination of the molecular weight by GPC strongly depends on the experimental set-up 

used, including the type of column and eluent, as well as on the calibration standards, lignin 

pretreatment, and methods applied for molecular weight determination, including peak integration 

approach and chromatogram corrections (Constant et al., 2016; Sevastyanova et al., 2014).  
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Figure 53 shows that the chromatographic profiles of isolated lignins progressively shift 

from low elution volumes to higher ones upon successive decrease of membranes cut-off. From the 

data presented in Table 45 it is possible to observe a clear trend of the decrease of the Mw and Mn 

values of the isolated lignins as the membranes cut-off used was smaller. Furthermore, it is also 

observed a decrease of the polydispersity with the pore-size.  

 

Table 45 - Weight-average (Mw) and number-average (Mn) molecular weight and polydispersity (Mw/Mn) 
of isolated lignins analised by GPC. 

Lignins Mw (g.mol-1) Mn (g.mol-1) Mw/Mn 

LKL 10323 8768 1.19 

LR50kDa 12029 9577 1.26 

LR15kDa 9576 8335 1.15 

LR5kDa 9641 8552 1.13 

LP5kDa 8879 8030 1.11 

 

Polydispersity of isolated fractions was reduced as a result of fractionation, indicating that 

ultrafiltration results in more homogeneous materials with narrower molecular weight distributions, 

as already found by other authors (Brodin et al., 2009; Toledano et al., 2010a). According to 

Toledano and their co-workers the polydispersity could also be related with the content of G units 

of lignins; the authors found that if the G content increases the polydispersity follows the same 

behavior (Toledano et al., 2010a). As already found through 13C NMR results (section 6.4.4.1), the 

S/G ratio in the different isolated lignins decrease as the cut-off and consequently the lignin 

molecular weight was greater (Figure 54).  

 

 

Figure 54 - Plot of Mw (g.mol-1) versus S/G ratio, from 13C NMR, obtained for ultrafiltration fractions and 
kraft liquor. 
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LR50kDa shows the lowest S/G ratio and the highest value of polydispersity, what is coherent 

with the presence of higher fractions of high molecular weight in this lignin. 

The molecular weight distribution curve for LR5kDa lignin (Figure 53) shows a peak in the 

low molecular weight region that corresponds to a high elution time. The same peak was found in 

the LP5kDa lignin, with lower intensity. The presence of these similar lignin fragments in both 

samples, albeit in different intensities, indicated that small amounts of low molecular weight 

fragments are present in these lignin fractions. On the other hand, in LKL and LR50kDa 

chromatograms is observed a peak in a very high molecular weight region. This peak could 

correspond to LCC, since these lignins have the highest amount of carbohydrates, as shown in 

Table 40 and discussed in section 6.4.2. The presence of these peaks is in accordance with lignins 

molecular weight distribution obtained by other authors (Humpert et al., 2016; Sevastyanova et al., 

2014; Toledano et al., 2010a). However, it is difficult to compare the obtained Mn and Mw values 

with the data available in the literature since the molecular weight distribution of kraft lignins is 

strongly dependent upon the isolation procedure, the nature of the lignin samples and the 

uncertainties related to the GCP analysis itself, as already stated in this section.  

As referred previously, the reactivity of lignins with high fractions of low molecular weight 

have different applications than those with high molecular weight due to the different reactivity. In 

literature it has been reported that lignins with high fraction of low molecular weight are suitable to 

be used as an extender or as component of phenol-formaldehyde resins because of their high 

reactivity, in comparison with lignins with high percentages of high molecular weight molecules 

(Ahvazi et al., 2016; Toledano et al., 2010a; Toledano et al., 2010b). 

 

6.5 RADAR CLASSIFICATION OF ISOLATED LIGNINS FROM ULTRAFILTRATION 

FRACTIONS 

The values of the key parameters selected for radar representation of isolated lignins were 

depicted in Table 41 and Table 43. The radar plots of isolated lignins are presented in Figure 55. 

 

Radar plots confirm the structural differences found in the previous sections for the isolated 

lignins. The representation of isolated lignin key descriptors allows to observe that the permeate 

obtained from the membrane cut-off of 5 kDa benefits from its higher intensity of β-O-4 linkages 

and NCS when compared with the other lignins. The high content of these types of structures leads 

to a higher reactivity of this lignin; consequently, LP5kDa stands out as a better choice for oxidative 

depolymerization, since it shows the higher aptitude to produce phenolic aldehydes, as V and Sy. 

On the other hand, LR50kDa stands out as the lignin with lower potential to produce phenolic 

monomers, mainly due to its high content of condensed structures. 
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Figure 55 - Radar classification for lignins isolated from fractions obtained from the ultrafiltration of E. 
globulus kraft liquor. 

 

6.6 CONCLUSIONS 

Ultrafiltration showed to be an effective technique for lignin fractionation and allowed to 

find that kraft lignin in black liquor is nonhomogeneous not only with respect to its molecular 
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membrane, the weight-average molecular weight could be controlled as confirmed by the data 
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liquor, especially the lowest molecular weight fraction, suggesting that the ultrafiltration process 

led to more homogeneous materials with narrower molecular weight distributions. The lignins 

isolated from 5 and 15 kDa membranes fractions were less contaminated with carbohydrates and 

inorganic content. Furthermore, the lignins from permeate and retentate of 5 kDa membrane 

present a fraction of low molecular weight that is not visible in the other isolated lignins. The R50kDa 

fraction is a highly contaminated fraction, with a high amount of inorganic material and also higher 

content of carbohydrates. The isolated lignin from this fraction shows a similar tendency, being the 
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lignin with lower purity. The different retention observed between lignin and carbohydrates also 

provides a mean of separating these two components by ultrafiltration. It was also found that 

increasing molecular size, the different lignin fractions tend to exhibit an increasing number of total 

phenolic and aliphatic hydroxyl groups. By NO it was found that LP5kDa shows the highest content 

of uncondensed structures; 13C NMR results also confirm this conclusion since this lignin shows 

the lowest content of condensed structures and DC percentage.  

The ultrafiltration lignin fractions with different molecular weight and structural 

characteristics could be used for specific industrial applications as value-added products. Lignins 

with higher molecular weight and more contaminated could be considered for usage as dispersant 

or as chelating agent. Lignin fractions with lower molecular weight could be used as adhesives 

where low molecular weight and purity are important factors to take into account. This type of 

lignins could also represent an important source of phenolic monomers, as V and Sy, through 

oxidative depolymerization. 
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7.1 FINAL CONCLUSIONS 

The lignins characterization accomplished in this thesis led to the identification and 

quantification of different functional groups and interunit linkages that would be related with the 

ability to produce functionalized aldehydes. Several lignins from different species, morphological 

parts of the same species and subjected to different delignification processes were studied through 

their composition in inorganic material and sugars and characterized by NO, NMR, and FTIR 

spectroscopy. 

The structural characterization of industrial E. globulus lignins from kraft and organosolv 

process showed a higher DC and a lower NO yield than mild acidolysis lignin, demonstrating that 

the delignification process induces significant structural transformations in lignins. The structural 

transformations are more accentuated in lignin from kraft process; kraft pulping increases 

degradation reactions and consequently reduces lignin potential to produce phenolic monomers. 

Lignin from wood and bark of E. globulus were also studied. These two lignins do not show 

noteworthy differences for the main types and contents of interunit linkages and functional groups, 

demonstrating that E. globulus lignins structure from wood and bark are similar. The overall results 

showed that organosolv process would be a preferable process to obtain lignin from E. globulus 

wood or bark when the objective is the valorization towards production of functionalized 

aldehydes.  

The characterization of in situ and mild acidolysis lignins from two morphological parts 

(stalks and roots) of corn, cotton, sugarcane, and tobacco showed that the differences found 

between species exceeded the differences between morphological parts confirming the lignin 

specificity of each species. These results have an important contribution to the diversification of the 

biomass feedstock supply for bio-based products and for the design of effective deconstruction 

strategies for biorefinery purposes. 

Taking advantage of all the results about lignins structural characterization, a radar 

classification tool was established for screening industrial or pre-industrial lignins for their 

potential as sources of Sy and V. Radars are an important tool for the design of processes to 

convert the agro-industrial waste materials into lignin-based high added-value products, since they 

are developed from key descriptors that may demystify the complexity of lignin and direct process 

variable selection to achieve maximum valorization of lignin.  

The evaluation of the potential of E. globulus lignin as source of Sy and V was also studied 

through the oxidation with O2 in alkaline medium of lignins from two pulping processes (kraft and 

sulfite) and three kraft liquor processing stages. The results showed that sulfite liquor is the raw-

material with better performance toward oxidation considering the production of Sy and V. Among 

kraft liquors, weak kraft liquor shows higher potential than the concentrated kraft liquors. 
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However, using isolated lignin from this liquor as the raw material for oxidation, an increment in 

Sy and V yields were achieved. Oxidation with O2 in alkaline medium was also performed in two 

tobacco lignins from butanol and ethanol organosolv under the same conditions and the results 

confirmed the qualitative differences of yields predicted by the radar classification. Based on the 

radar classification, the tobacco lignin from ethanol organosolv process showed higher production 

of V and Sy. 

A kinetic study of V and Sy production from alkaline oxidation with O2 of tobacco 

organosolv lignin was also carried out. The effect of process parameters (temperature, pO2, lignin 

initial concentration) on the yield of V and Sy was evaluated; moreover, the kinetic parameters of 

the lignin oxidation process to produce these phenolic monomers were also achieved. 

The ultrafiltration showed to be an effective technique for lignin fractionation and has 

demonstrated that kraft lignin in black liquor is nonhomogeneous not only with respect to its 

molecular weight, but also with respect to the quantity of functional groups. As the molecular size 

increase, the different lignin fractions tend to exhibit an increasing number of total phenolic and 

aliphatic hydroxyl groups. Membranes with lower cut-off led to lignin fractions with lower content 

of contaminants and also lower polydispersity. The set of results from ultrafiltration studies are 

particularly important in the field of lignin valorization since the lignin fractions obtained, with 

different molecular weight and structural characteristics, once optimized, could be used for specific 

industrial applications as added-value products. 

Finally, the results presented in this thesis together with the on-going activities of different 

research groups worldwide will contribute to the better knowledge about lignin and the 

development of economical viable lignin valorization routes for the production of value-added 

chemicals and products. 

 

7.2 SUGGESTIONS FOR FUTURE WORK 

As already stated all over this thesis, lignin is one of the main constituents in lignocellulosic 

biomass and is nowadays available in large quantities as a pulp and paper industries by-product. 

Lignin polymer has valuable properties for numerous potential applications that could represent 

several economic and environmental benefits. However, lignin complex and highly non-uniform 

structure is a huge challenge for its efficient valorization. Adding to its inherent complexity, the 

structure of native lignin depends strongly on the plant species and could present local and seasonal 

variations; moreover, the pretreatment or pulping process performed on lignocellulosic material 

also causes considerable changes in the native lignin structure. Considering all these variation 

sources the ideal compromise is to select a lignin type and an isolation process adapted to the best 

lignin structure and properties required for a particular application.  
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 Lignin as a polymer component 

Currently, the majority of lignin is valorized in energy recovery streams by burning the black 

liquors in the pulp production industry, and only a small amount is isolated from spent pulping 

liquor and commercialized (about 2%), despite the existence of a great number of potential 

applications of high added-value. The application of lignin in biomaterials has been long 

considered for manufacturing of polymers, phenol formaldehyde resins, rubber compounds, carbon 

fibers, and a variety of chemicals, all currently sourced from petroleum (Figure 56). 

 

 

Figure 56 - Potential applications of lignin as renewable resource from biomass (DMSO - dimethyl sulfoxide; 
DMS - dimethyl sulfide; BTX - benzene, toluene, xylene) (Lange et al., 2013)  

 

Particularly, lignin is a promising compound to be used in polymers due to its phenolic base 

structure, which could lead to an improvement of the mechanical properties when incorporated in a 

plastic. Lignin derivatives could be used to functionalize different polymers which have different 

applications in a variety of fields such as films and coatings formation, adhesive resin, plastic and 

rigid foam formation. However, lignin incorporation in polymers is not limited only by the 

reactivity of its various chemical, composition and functional groups but rather by other complex 

factors such as solubility, molecular weight, rheology, dispersity, and morphology (Ahvazi et al., 

2016).  

The control of lignin functionality appears to be one of the most important challenges for the 

development of this type of value-added materials. Detailed and precise knowledge of the 

macromolecular structure of lignin and their initial functional groups content will be the key to 

study their reactivity.  
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The incorporation of lignin into polymers has been intensively investigated in order to 

improve the mechanical properties of copolymers or environmental behavior of formulations 

(Cateto et al., 2008; Faruk and Sain, 2015; Laurichesse and Avérous, 2014; Mahmood et al., 2016). 

Several studies have revealed that rigid polyurethane foams obtained from lignin-based polyols 

present insulating properties, dimensional stability, and accelerated aging properties very similar to 

those prepared with commercial counterparts. Moreover, it was also proved that the natural 

properties of lignin will also contribute to an improvement of moisture and flame resistance (Cateto 

et al., 2009).  

Some applications in polymers synthesis can afford a direct use of lignin, without any need 

for chemical modifications. In these cases, lignin could be directly incorporated into polymers 

formulations due to the presence of aliphatic and aromatic hydroxyl groups in the structure as the 

reactive sites. However, native lignin has much lower reactivity not only because it has less 

reactive sites, but also because the reactive positions of the macromolecule of lignin or its 

fragments have lesser accessibility due to the steric hindrance (Mahmood et al., 2016). While some 

potential applications can afford a direct use of lignin without any need for chemical modifications, 

many polymer applications require a previous functionalization of the lignin macromolecule in 

order to improve their reactivity. The reactivity of lignin is evaluated based on distinct structural 

features: the presence of free ortho position on the phenolic ring, the presence of multiple OH 

groups, and their ability for various chemical modifications (Duval and Lawoko, 2014). An 

effective way to improve lignin’s reactivity is through depolymerization into oligomeric products 

with reduced molecular weight and increased content of hydroxyl groups, facilitating their 

utilization in bio-polymers preparation (Duval and Lawoko, 2014). 

A study conducted by Mahmood and co-workers evaluated the effect of process parameters 

on the overall yield and molecular weight of lignin fragments obtained by depolymerization via 

hydrolysis (Mahmood et al., 2013). The effect on the mechanical and thermal characteristics of the 

polymeric materials with the incorporation of lignin before and after the depolymerization was also 

studied by these authors. The authors have verified that the direct incorporation of kraft lignin in 

polyurethane foams improves the mechanical characteristics of rigid polyurethane foams. However, 

the lignin percentage increase to above 30% had a negative effect on the foam rigidity. The authors 

also found that the percentage of bioreplacement in polyurethane foams could be improved if lignin 

was previously depolymerized, that results in the production of bio-polymers with lower Mw and 

better reactivity. Depolymerized products were effectively utilized for the preparation of rigid bio-

based polyurethane foams without any modification achieving 50% of polymers replacements. The 

resulting foams showed good mechanical and thermal characteristics with improved physical and 

thermal stability compared with commercial foams (Mahmood et al., 2013). These results are quite 
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motivating, providing emphasis to the need for further research in this field allowing lignin 

valorization through its incorporation into polymeric materials. 

 

 Future research lines 

A starting point for a future research line will include a study of an efficient process of 

depolymerization of a selected lignin in order to achieve specific lignin fragments to be used and 

valorized as precursors on polymeric materials. The lignin depolymerization process selected will 

be the oxidation with O2 in alkaline medium, taking advantage of all the experience and work 

accomplished during this thesis in this field. Lignin oxidation will be conducted with controlled 

reaction conditions (temperature, pressure, alkaline charge) in order to obtain fragments of 

molecular weight within specified intervals with suitable characteristics that could be used 

according to the final applications. The ultrafiltration process will be worked up for the separation 

of the different oxidation products. It is well known that many polymer properties such as glass 

transition temperature, modulus and tensile strength are directly dependent upon their molecular 

weights. It is also important to differentiate between the aliphatic (primary or secondary) and the 

phenolic hydroxyls (condensed or non-condensed) content present in the lignin macromolecules 

resulting from oxidation, since these functional groups have direct influence in their reactivity. 

Moreover, a complete and comprehensive chemical and physical characterization of lignins and the 

resulting oxidation products should be attained.  

A next step will be focused in the improvement of lignin depolymerization through catalytic 

oxidation. The use of catalysts, mainly transition metal salts, has been referred to increase the 

yields of the oxidation products. However, in this case the effect of the catalytic oxidation of lignin 

in the reactivity and functionality of the resulting macromolecules should be also studied; this 

promising research field was not explored so far.  

All of these research lines could be considered important evaluators of lignin physical and 

chemical structural characteristics aimed to identify the better properties in view of partial and/or 

complete substitution of petroleum-based polymers during the production of biomaterials. Value-

added utilization of lignins is critical for the accelerated development and deployment of the 

biorefinery.  
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