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Abstract 

 

Using realistic constitutive models for artificially cemented soils is advantageous in design. 

However, the price of that increased realism is often a more elaborate model, which is difficult to 

calibrate. A database of high quality triaxial tests on compacted cemented silty sand is used to 

calibrate and validate a generalized critical state bonded soil model. The exercise highlights the 

staged calibration procedure that is convenient in this kind of application. The calibration results 

have shown a direct relation between added yield strength and a well-established soil-cement 

mixture ratio, which facilitates the application of the model in design. It is shown that such 

relation can be also deduced from the analysis of unconfined compressive strength tests. 

 



Introduction 

 

Artificially cemented soils are extensively used in a variety of geotechnical engineering 

applications. Cement improved soils are generally stronger and stiffer but more brittle than the 

parent soil. The effects of stress level and strain history on stiffness and strength are modified by 

the presence of cement. Broadly speaking, strain-hardening soils are transformed into strain-

softening materials. Densification, which is generally positive for non-cemented soils, might 

become undesirable after treatment. 

Accurate modelling of the mechanical behaviour of improved soil is important, either because 

they directly have some structural role (e.g. soil-cement columns beneath an embankment) or 

because mechanical integrity is a prerequisite for its function (e.g. an isolating barrier for a 

contaminated zone). Many practical rules and approximate solutions are available for design of 

structures incorporating improved soils (e.g. [1]). However, when some circumstance makes those 

rules inapplicable or uneconomical, numerical analysis will be typically required. 

How to represent the mechanical behaviour of the improved soil in numerical analysis is subject 

to some debate. Treated soils are intermediate materials between soils and rocks and several 

analogies are possible. For instance, elasto-plastic Mohr-Coulomb models incorporating residual 

strength such as those used for rocks (e.g. [2]) have been applied to model cement treated clay 

([3]). Similarly, and because improved soils have analogies with concrete, cemented soils have 

been represented adapting models originally developed for concrete [4]. Taking a different 

perspective, a number of researchers have successfully extended elasto-plastic models for soils of 

the critical state tradition to represent artificially cemented clays [5] and silts [6]. This approach is 

directly inspired by a long line of constitutive models originally developed for naturally structured 

soils and soft rocks ([7], [8] , [9], [10]) 

Despite all those developments it is fair to say that simplified, elastic perfectly plastic models (with 

either a Mohr-Coulomb or Tresca failure criterion) still dominate numerical applications (e.g. [11], 

[12]). It is accepted that this type of model may neglect many important features of cemented soil 

behaviour, but it appears easy to calibrate. Alternative material models, which may represent 

with more accuracy the target behaviour, are perceived as difficult to calibrate, particularly when 

the practical constraints of treated soil investigation are noted (limited “in situ” testing; 

dominance of simple tests like UCS -Unconfined Compressive Strength). 

Indeed, if calibration procedures remain difficult, there will be very limited use of advanced 

constitutive models in practice. That may be disadvantageous, because several examples ([5], [3]) 

show that structure-scale responses predicted numerically are strongly dependent on the 

constitutive model and that elastic-perfectly plastic models may not capture all relevant failure 

modes. 

To address this problem, models that are not just accurate but also as simple to calibrate as 

possible are necessary. The purpose of this work is to contribute to that goal of simplified 

calibration. A bonded elasto-plastic constitutive model, previously used to simulate cemented 

Bangkok clay [5] behaviour, is here used for a very different cemented soil, namely compacted 

cemented silty sand. While the Bangkok clay case was representative of products obtained by 



deep mixing “in situ”, the case presented here is representative of the cemented soils used within 

engineered fills. In what follows, after introducing the constitutive model and the target material, 

the calibration process is described, extracting general lessons that will facilitate further 

application of bonded elasto-plastic models. 

Case description 

Constitutive model 

The constitutive model formulation is based on the original model for clays and sands (CASM) 

developed by [13]. CASM is an elasto-plastic single surface model of the critical state tradition that 

has been used as a starting point to develop more advanced soil models by several researchers 

([6], [14] and [15]). The model applied in this work, called herein “Cemented CASM” (C-CASM) is 

part of a suite of advanced models based on CASM that are described in [16]. This model has 

already been successfully applied to clays, both naturally structured ([17] and [18]), and artificially 

cemented [5]. However, it is the first time a cemented granular soil is calibrated with this model. 

C-CASM extends CASM introducing a new basic state variable, b, to represent the intact amount 

of intergranular bonding as defined by [19]. The shape of the yield surface is assumed to be the 

same in uncemented and cemented conditions. Bonding (b) modifies the yield surface, enlarging it 

with increasing amount of cementation. The way the yield surface is affected by bonding (b) is 

expressed using two separate intermediate or derived state variables, p’c and p’t, which control 

respectively the isotropic compression yield and the tensile yield of the soil (Figure 1). These 

intermediate variables are: 

 1
c s

p p b    (1) 

t s
p p b   (2) 

where p’s is the equivalent preconsolidation pressure, and  is a model parameter, controlling the 

tensile strength derived from cementation (see Figure 1). 



 

Figure 1 Compression plane including reference lines (Isotropic Compression Line, ICL; Critical State Line, 
CSL) and yield surface on the triaxial plane. 

 

The yield surface is given by equation (3), 
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(3) 

where M is the stress-ratio (q/p’) at critical state. Several flow rules can be implemented in C-

CASM. Rowe stress-dilatancy relationship is used here, 
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Where p

v
 is the incremental plastic volumetric strain and p

q
  the incremental plastic shear strain.  

The equivalent preconsolidation pressure evolves following the classical critical state hardening 

rule, 
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λ and κ are compressibility parameters of the reference material (Figure 1). 

 Following [19] bonding b is degraded exponentially with accumulated plastic damage h, 
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where b0 is the initial bonding and h1 and h2 are two material parameters. The elastic stiffness for 

cemented materials is made dependent on bonding [15], 
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The model requires specification of 10 parameters, seven of which describe the reference 

uncemented material, and initialization of two state variables, apart from effective stress. 

 

A version of C-CASM valid for general stress paths and requiring no further parameters was coded 

into the finite element code PLAXIS, which has a facility to implement user-defined (UD) soil 

models. Further details can be found in [16].  

Compacted cemented silty sand 

Several cemented granular materials were created by mixing cement, water and a silty sand, 

weathering product of Porto granite. This is a well characterized soil and extensive geotechnical 

data has been gathered both for the parent soil alone [20] and for its mixtures with cement ([21], 

[22], [23] and [24]). 

The calibration presented here uses a series of 38 triaxial tests on soil-cement mixtures The series 

includes isotropic, undrained and drained triaxial compression tests performed on soil-cement 

mixtures obtained using percentages of Portland cement (CEM I 52.5 R) between 0% and 7% of 

the soil dry weight. Two separate ranges of isotropic confining pressures were applied: in the low 

pressures 30, 80, 100 and 250 kPa were used while for the high pressures the specimens were 

submitted to 10 and 20 MPa. Specimens for testing were obtained by static compaction 

immediately after mixing covering a range of initial void ratios between 0.58 and 0.78. Initial void 

ratio and cement content were selected so that mixture ratio parameter (n/Civ
0.21) values were 

clustered in two groups, around 30 and 40. The test conditions of every test are tabulated within 

the supplementary material to this paper; more detail on the experimental procedures and results 

can be found in [21]. Here it is just recalled that two different laboratories were involved, (one for 

low pressure tests, another for high pressure tests), and that all cemented samples showed clear 

signs of shear localization after dismounting.  

 

 



Calibration process  

Introduction 

Because of the relatively large database that is available here different strategies for calibration 

may be adopted. A staged approach is applied, as follows: 

1. Definition of a procedure for initialization of the CASM state variable, p’s  

2. Calibration of the basic CASM parameters for the uncemented, reference material (  

κ, N,  and M) 

3. Calibration of the advanced CASM parameters for the uncemented, reference 

material.  These are the two parameters controlling the shape of yield surface (r and 

n ) 

4. Definition of a procedure for initialization of the “bond” state variable, b, introduced in 

C-CASM for cemented materials 

5. Calibration of the parameters that are exclusive of cemented materials in C-CASM (h1, 

h2 and α) 

The idea behind this sequential procedure is to keep separate different tasks that may require 

each a different amount and type of data. This may enable potential users of the model, perhaps 

dealing with a more limited database, to easily judge which stages of the present procedure they 

may follow and which they may eventually skip, by adopting some default assumption. 

CASM: Initialization of ps 

For a given specimen or soil element p’s0 is the initial value of the equivalent preconsolidation 

pressure obtained from the intersection of ICL of the uncemented soil and the swelling line that 

passes by the point defining initial state (e0; p’0). Formally this is given by equation (9),  
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(9) 

For compacted soils the initial void ratio value, e0, is well known. For cemented soils that are not 

cured under stress, such as those in this database, there is more difficulty on judging which is the 

relevant effective pressure at origin, p’0 . During specimen formation the soil is unsaturated, but 

suction is then relaxed by saturation before triaxial testing. As curing occurs in an ‘unloaded’ state, 

the approach followed here is to use as p’0 the same reference pressure value that gives N on the 

ICL (i.e. p’0 = p’ref = 1 kPa). 

Basic CASM parameters 

Basic CASM parameters are those shared with classical critical state models such as Cam-clay. 

These include, M, the stress ratio (q/p’) at critical state;  λ, slope of the ICL (or NCL, or CSL) on the 

compression plane; κ, slope of the swelling line; N, the specific volume on the ICL at the reference 

pressure (pref = 1 kPa) and ν, the Poisson ratio.  Values of λ, k and N were obtained fitting an 

isotropic compression test on uncemented material [21].  



Critical state friction M was obtained as the value of zero dilatancy on a stress-dilatancy plot 

(Figure 2) of triaxial results on uncemented specimens. The same plot suggested that the Rowe 

dilatancy formulation shows a good adjustment to the results. Poisson ratio was estimated as 0.3. 

All the values selected for these basic parameters are summarized in Table 1. 

 

 

Figure 2 Stress-dilatancy results from drained triaxial tests performed on the uncemented specimens and Rowe 
formulation 

 

 Table 1 CASM basic (critical state) parameter set for Porto silty sand 

κ λ N M υ 

0.0097 0.112 2.35 1.4 0.3 

 

Advanced CASM parameters: yield locus shape 

Here are called advanced CASM parameters those that are not shared with Cam-clay models i.e. 

parameters (r and n ) controlling the yield surface shape. Yield points were identified by joint 

inspection of volumetric and axial deformation response in drained tests or, with more difficulty, 

of pore pressure and axial deformation in undrained tests (see examples in Figure 4 and Figure 5). 

Yield stresses were normalized by the equivalent preconsolidation pressure of each specimen. In 

this normalized space (Figure 3) a qualitative indication of yield surface shape is also given by 

undrained stress paths after yielding. 

Table 2 presents the equivalent preconsolidation pressure p’s0 estimated for the uncemented 

compacted specimens using equation (9). The initial void ratios were slightly variable across 

specimens; to simplify two representative values (0.75 and 0.60) have been selected. Results from 

an uncompacted specimen, isotropically compressed to 10 MPa and then sheared undrained 

were also available.  As indicated in Table 2 this specimen is assumed normally consolidated. 



Table 2 Model state variables and initial values for triaxial tests – uncemented specimens 

Name Type e0 p’s0 (kPa) p’ (kPa) p’ / p’s0 

CV(0)_30 drained 0.75 359.5 30 0.08 

CIU(0)_30 drained 0.75 359.5 30 0.08 

CV(0)_80 drained 0.75 359.5 80 0.22 

CIU(0)_250 undrained 0.75 359.5 250 0.70 

CV90(0)_30 drained 0.6 1558 30 0.02 

CIU90(0)_30 drained 0.6 1558 30 0.02 

CV90(0)_100 drained 0.6 1558 100 0.06 

HCIU(0)_1000 undrained 1.21* 10000  10000 1 

 * Uncompacted specimen. Void ratio value before isotropic compression 

 

Figure 3 illustrates that most of the data available here clustered on the “dry” side. Such data 

leaves relatively unconstrained the shape parameter n , with several values giving an adequate 

fit, as illustrated. It was only after inspecting the scarce results from undrained tests at high 

pressures that a value ( n  = 2.2) was finally selected. Published calibrations on CASM-based 

models for other soils ([5], [6], [13] and [17]) suggest a range for n  between 1 and 3 and for r 

between 1 and 3. 

 

Figure 3 Normalized plot for the yield stress points of drained and undrained tests of uncemented specimens 

Performance of CASM for uncemented specimens 

At this stage, as summarized in Table 3, all the CASM model parameters had been selected. An 

example of its performance for drained and undrained tests is presented in Figure 4 and Figure 5, 

respectively. In general, the model adjusted reasonably to the test results. Perhaps the larger 



discrepancy was in the pre-yield stress paths of some undrained specimens, an aspect that is 

difficult to reproduce (see e.g. [6]) and that may be improved by a more complex elastic model 

(anisotropic).  

Table 3 CASM full parameter set for Porto silty sand 
κ λ N M υ r 

n  

0.0097 0.112 2.35 1.4 0.3 3.7 2.2 

 

 

Figure 4 Performance of the calibrated CASM model on drained triaxial tests on uncemented specimens. 
Circles indicate estimated yield point. 

 

  

Figure 5 Performance of the calibrated CASM model on undrained triaxial tests on uncemented specimens. 
Squares indicate estimated yield point. 



C-CASM: Initialization of b 

The extension of CASM to cemented materials is based in the introduction of bonding (b) which is 

related to two different variables, p’c and p’t, controlling the isotropic compression yield and the 

tensile yield of the soil, respectively. This state variable should be related to a mixture ratio to 

ease initialization. This is done here using the results from isotropic compression paths. 

Experimental yielding points on isotropic compression tests provided p’c0. Independently, the 

initial void ratio, e0, provided a value of p’s0 using equation (9) as described previously. From 

these independent measurements, all the initial state values could be established as collected 

in Table 4. 

Several relations between the initial state variables and different mixture ratios were explored. 

The best correlation (Figure 6) was obtained between ps0b0 , the initial excess isotropic strength 

induced by cementation and the [21] mixture ratio (n/Civ
0.21) in the form of a potential relation, 

 
20 .2 1

0 0 1

c

s iv
p b c n C                           (10) 

with c1=9.95e9 kPa and c2=-4.265. This correlation was used to identify the initial level of bonding 

for all the other numerical simulations in this work.  

 

Figure 6 Relationship between the enlargement of the yield surface due to bonding and the mixing ratio 

Table 4 Model state variables and initial values – Isotropic tests on cemented specimens 

Test e0 %C n/Civ0.21 

[-] 
p’0 

[kPa] 
p’s0 

[kPa] 
p’c0 

[kPa] 
b0 

[-] 
h1 
[-] 

ISO(2) 0.71 2 40 1 517 2065 3.00 7 

ISO(4) 0.78 4 39 1 274 1850 5.75 9 

ISO(5) 0.64 5 32 1 1044 4383 3.20 3 

ISO(7) 0.70 7 32 1 596 4500 6.55 7 

CIU(5)_10000 0.60 5 31 1 1558 5842.5 2.75 1 

CIU(5)_20000 0.60 5 31 1 1558 5842.5 2.75 1 

CIU(7)_10000 0.65 7 30 1 955 5252.5 4.50 3 

CIU(7)_20000 0.65 7 30 1 955 5252.5 4.50 3 



Calibration of bonded-soil C-CASM parameters 

The remaining task was to calibrate the model parameters specific to C-CASM: h1, h2 and α. As 

shown by eq. (8) h1 controls the influence of volumetric plastic strain in bonding damage. The post 

peak response of the isotropic compression paths was used to calibrate this parameter for which 

a value h1 = 8 was able to produce an adequate fit in most cases. In Figure 7 an example is 

provided. 

It is also shown in Figure 7 how a better fit to the experimental curves could be obtained if the 

parameter h1 is freely adjusted in each test. It was more surprising to find that this variation in the 

adjusted h1 values was not random. Indeed, it was observed that the best fitting h1 values were 

strongly correlated with the initial void ratio e0 (Figure 8). For higher initial void ratios a higher h1 is 

needed in order to better capture the post yielding behaviour. This linear relationship between 

the initial void ratio and h1 was used in all the following numerical tests.  

  
Figure 7 Isotropic test paths and model fit 

 

Figure 8 Dependency of best-fit parameter h1 on initial void ratio 

Clearly, it would be preferable to have all model parameters independent of initial state. 

Therefore, the finding that h1, the parameter controlling volumetric damage, increases with initial 



void ratio, points to a shortcoming in the model formulation. It suggests that a more complex 

state equation than (7) above, perhaps including the other state variable, ps should control 

bonding degradation. Micromechanical studies or multiscale modelling approaches such as those 

presented by [10] and [25] respectively, are likely to be useful in this respect. 

Estimates of the parameter (α) controlling tensile strength can be easily obtained from a drained 

triaxial compression test. Peak strengths values are easily identified in this kind of test. Within the 

model that peak corresponds to the onset of yielding. Following the effective stress path of a 

drained triaxial test it is possible to write that: 
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And when yielding occurs f=0, hence: 
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From this analytical expression, given the CASM parameter values (M, n , r) and the initial state 

(ps0, b0) of the specimen a value of α can be obtained for each test. This procedure was applied to 

all the drained triaxial tests on the database–except those used below for validation purposes. 

The α values deduced showed some variability, but there was no correlation with void ratio or any 

other state variable. Discarding outliers (i.e. values exceeding by more than 2 standard deviations 

the initial mean value) a mean value of 0.27 was assigned to the tensile strength parameter (α). 

 

Figure 9 Initial void ratio vs estimated values of α parameter (empty symbol: outlier) 

 

The final parameter to be calibrated was h2, which controls the shear induced degradation of 

bonding. That was calibrated using the results of two undrained triaxial shear tests at large 

pressure. Several hypotheses were explored. [26] indicated that for structured clays h1  ≈ 3 h2; 



a rule also applied by [18] using C-CASM. On the other hand, various researchers (e.g. [6]) 

assume that the contribution of shear and volumetric plastic strain to bond damage is equal. In 

this model that would mean h1  = h2. The simulations performed in this case (Figure 10) 

indicated that neither of these simplifying rules was of application here: h1 ≈ 3 h2 performed 

poorly on test CIU(5), whereas h1 = h2 was not adequate for test CIU (7). It was observed that 

the best join fit was obtained when h2 was assumed as a constant equal to 1, independently of 

the void-ratio dependent value of h1. In Table 5 the final set of adjusted parameters is 

reported. 

 

   
 a )  

 

   
 b )  

Figure 10 Calibration of parameter h2 on high pressure undrained triaxial tests. Red-discontinuous line: 
discarded adjustment. Black-continuous line: final fit. (a) Specimens with cement content C = 5% and moulding 

void ratio e0 = 0.60; b) specimens with cement content C = 7%  and moulding void ratio e0 = 0.65  

 

Table 5 C-CASM full parameter set for Porto silty sand 
κ λ N M υ r 

n  
αt h1 h2 

0.0097 0.112 2.35 1.4 0.3 3.7 2.2 0.27 (45 e0 – 26)* 1 

* from Figure 8 



Validation of the calibrated C-CASM  

The calibrated model is now validated by simulating several drained and undrained low 

confinement pressure triaxial compression tests (Figure 11). Parameters and initial conditions of 

these tests are reported in Table 6. The tests selected for validation, covering both the high and 

low mixture ratios, were different from those previously used for parameter adjustment.  For the 

two drained simulations, the stress-strain response is presented, while for the two undrained 

simulations, the excess water pressure and the stress path in the triaxial plane are also shown. 

Discrepancies with the undrained response have several sources. As before, lack of elastic 

anisotropy in the model is important pre-yield. Post-yield, brittle localization of the experimental 

specimens was not simulated: this experimental response is quite sensitive to small sample 

imperfection and localized pore pressure response [21]. Despite these limitations the comparison 

indicates that C-CASM model correctly reproduces the treated soil behaviour. This is particularly 

so for the post-peak softening in drained response, a feature that is important in progressive 

failure of geotechnical structures beyond the capabilities of the frequently used Mohr-Coulomb 

model. 

Table 6 Model state variables and initial values of the cemented specimens selected for calibration 

Test e0 %c n/Civ0.21 

[-] 
p’0 

[kPa] 
ps0b0 
[kPa] 

ps0 

[kPa] 
b0 

[-] 
h1(e0) 

[-] 

CV(2)_30 0.61 2 37 1 2039 1413 1.4 1.7 

CV(5) - 250 0.58 5 30 1 4988 1894 2.6 0.3 

CIU(2)-250 0.60 2 37 1 2039 1558 1.3 1.0 

CIU(5)-250 0.58 5 30 1 4988 1894 2.6 0.6 

 

  
a) CV(5)_250 b) CV(2)_250 



  
c) CIU(5)_250 

  

d ) CIU(2)_250 
Figure 11 Triaxial test results and model predictions for drained and undrained triaxial tests: a) Drained test on 

specimen with cement content C = 5% and moulding void ratio e0 = 0.58; b) Drained test on specimen with 
cement content C = 2% and moulding void ratio e0 = 0.61;  c) Undrained test on specimen with cement content 

C = 5% and moulding void ratio e0 = 0.58; d) Undrained test on specimens with cement content C = 2% and 
moulding void ratio e0 = 0.60;  

 

Discussion 

 

Initialization of the bonding state, b is a key element for the application of this model. Here, a 

function linking initial bonding to the mixture ratio (n/Civ
0.21) was obtained by inspection of 

yielding points on isotropic compression, some of them at relatively large stresses. Reproducing 

that procedure for other material would be costly and a simpler procedure is desirable.  

[5], working with cemented Bangkok clay, obtained a similar relationship between extra initial 

isotropic strength (p’s0b0) and the relevant mixture ratio for that material. The relation was there 

exponential instead of potential as it is here and the controlling mixture ratio was different 

(e0t/Aw).  Generalizing it can be said the kind of relation sought can be described by a generic 

function F of a mixture ratio, X, 



 s
p b F X   (13) 

[5] went on to show that the function F that was obtained using isotropic yield, could be also 

deduced from much cheaper UCS results, with a relation, A, that was given by some model 

parameters and was only slightly dependent on b, 
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(14) 

Using the parameters M, n , r and αt reported in Table 5, A was re-evaluated for this work and its 

was concluded that for the relevant range of initial b values, A ≈ 0.42. 

If F(X) in equation (15) is replaced by equation (10), this will imply that a good fit to the UCS data 

for this material should be obtained using, 
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(15) 

Indeed, this expression is very close to the optimal fit between UCS and the mixture ratio (n/Civ
0.21) 

previously obtained from laboratory data [21].  This suggests that, at least for preliminary 

purposes, the relation necessary for bonding initialization can be advantageously deduced from a 

suite of UCS tests. 

Some triaxial testing of the cemented soil would still be necessary to adjust the bonded soil 

parameters, h1, h2 and α. Ideally, this shall include one isotropic or oedometric test, plus one 

undrained and one drained triaxial test. This testing suite does not need to be replicated at 

different mixture ratios.  

Conclusions 

 

The main conclusions of the work presented are: 

1. The C-CASM model did reproduce correctly the mechanical behaviour of compacted 

cemented Porto silty sand, thus showing that a model previously applied for cemented 

clays is also suitable for compacted sands. 

2. The two state variables that, apart from effective stress, control material behaviour in 

C-CASM can be initialized knowing porosity and cement content. The relation between 

these physical measures and bonding, as represented in the model, can be deduced 

from a suite of UCS tests. Empirical examination of that kind of tests should be also 

enough to identify the controlling mixture ratio for the material.  

3. 7 out of 10 parameters in C-CASM should be determined on the target untreated soil. 

They do not need high quality samples, because reference behaviour is unstructured.  

The remaining three parameters would require a moderate amount of triaxial testing 

on a single mixture. 



It is hoped that the work exemplified here will encourage a more widespread application of 

advanced soil models in numerical assessment of cemented-soil structures. 
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