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Abstract

In finance, insurance and statistical quality control, among many other areas of appli-

cation, a typical requirement is the estimation of the value-at-risk (VaR) at a small level

q, i.e. a high quantile of probability 1 − q, a value, high enough, so that the chance of

an exceedance of that value is equal to q, small. The semi-parametric estimation of high

quantiles depends strongly on the estimation of the extreme value index (EVI), the primary

∗Research partially supported by COST Action IC1408, and National Funds through FCT—Fundação para

a Ciência e a Tecnologia, project UID/MAT/00006/2013 (CEA/UL)

1



parameter of extreme events. And most semi-parametric VaR-estimators do not enjoy the

adequate behaviour, in the sense that they do not suffer the appropriate linear shift in the

presence of linear transformations of the data. For heavy tails, i.e. for a positive EVI, new

VaR-estimators with such a behaviour, the so-called PORT VaR-estimators, with PORT

standing for peaks over a random threshold, were recently introduced in the literature. Re-

garding EVI-estimation, new classes of PORT-EVI estimators, based on a powerful general-

ization of Hill EVI-estimators related to adequate mean-of-order-p (MOp) EVI-estimators,

were even more recently introduced. In this article, also for heavy tails, we introduce a

new class of PORT-MOp VaR-estimators with the above mentioned behaviour, using the

PORT-MOp class of EVI-estimators. Under convenient but soft restrictions on the underly-

ing model, these estimators are consistent and asymptotically normal. The behaviour of the

PORT-MOp VaR-estimators is studied for finite samples through Monte-Carlo simulation

experiments.

Keywords. Asymptotic behaviour; Heavy tails; High quantiles; Mean-of-order-p estimation;

Monte-Carlo simulation; PORT methodology; Semi-parametric methods; Statistics of extremes;

Value-at-risk.

1 Introduction and scope of the article

In the field of extreme value theory (EVT) it is usually said that a cumulative distribution function

(CDF) F has a heavy right-tail whenever the right tail function, given by F := 1 − F , is a

regularly varying function with a negative index of regular variation α = −1/ξ, i.e. for every

x > 0, limt→∞ F (tx)/F (t) = x−1/ξ, ξ > 0. Then we are in the domain of attraction for maxima

of an extreme value (EV) CDF,

EVξ(x) = exp(−(1 + ξx)−1/ξ), x > −1/ξ, ξ > 0, (1.1)

and we write F ∈ DM(EVξ>0). More generally, we can have ξ ∈ R, i.e. the CDF EVξ(x) =

exp(−(1+ξx)−1/ξ), 1+ξx > 0, if ξ 6= 0, and by continuity the so-called Gumbel CDF, EV0(x) =
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exp(− exp(−x)), x ∈ R, for ξ = 0. The parameter ξ is the extreme value index (EVI), one of the

primary parameters both in probabilistic and statistical EVT.

For heavy tails, and with the notation U(t) := F←(1−1/t), t ≥ 1, F←(y) := inf{x : F (x) ≥ y}

the generalized inverse function of the underlying model F , the positive EVI appears, for every

x > 0, as the limiting value, as t→∞, of the quotient (lnU(tx)− lnU(t))/ lnx (de Haan, 1970).

Indeed, with the usual notation Ra for the class of regularly varying functions with an index of

regular variation a, we can further say that

F ∈ D+
M := DM(EVξ>0) ⇐⇒ F = 1− F ∈ R−1/ξ ⇐⇒ U ∈ Rξ, (1.2)

with the first necessary and sufficient condition given in Gnedenko (1943) and the second one

in de Haan (1984). Heavy-tailed distributions have been accepted as realistic models for various

phenomena in the most diverse areas of application, among which we mention bibliometrics,

biometry, economics, ecology, finance, insurance, molecular biology and statistical quality control.

For small values of a level q, and as usual in the area of statistical EVT, we want to extrap-

olate beyond the sample, estimating the value-at-risk (VaR) at a level q, denoted by VaRq, or

equivalently, a high quantile χ1−q, i.e. a value such that F (χ1−q) = U(1/q) = 1− q, i.e.

VaRq ≡ χ1−q := U(1/q), q = qn → 0, as n→∞. (1.3)

We further often assume that nqn → K as n→∞, K ∈ [0, 1], and base inference on the k + 1

upper order statistics (OSs). As usual in semi-parametric estimation of parameters of extreme

events, we assume that k is an intermediate sequence of integers in [1, n[, i.e.

k = kn →∞ and k/n→ 0, as n→∞. (1.4)

To derive the asymptotic non-degenerate behaviour of estimators of parameters of extreme events

under a semi-parametric framework, it is further convenient to assume a bit more than the first-

order condition, U ∈ Rξ, provided in (1.2). A common condition for heavy tails, also assumed

now, is the second-order condition that guarantees that

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=

 xρ−1
ρ

if ρ < 0,

lnx if ρ = 0,
(1.5)
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being ρ (≤ 0). Note that the limit function in (1.5) is necessarily of the given form and |A| ∈ Rρ

(Geluk and de Haan, 1987). Sometimes, for sake of simplicity and for technical reasons, we

assume to be working in a sub-class of Hall-Welsh class of models (Hall and Welsh, 1985), where

there exist ξ > 0, ρ < 0, C > 0 and β 6= 0, such that, as t→∞,

U(t) = C tξ
(

1 + A(t)
(
1 + o(1)

)
/ρ
)
, with A(t) = ξβtρ. (1.6)

The parameters β and ρ are the so-called generalized scale and shape second-order parameters,

respectively. Typical heavy-tailed models, like the EVξ>0 in (1.1) (ρ = −ξ), the Fréchet CDF,

Φα(x) = exp(−x−α), x ≥ 0, α > 0 (ξ = 1/α, ρ = −1), the generalized Pareto, GPξ>0(x) =

1 + ln EVξ(x), x ≥ 0 (ρ = −ξ), and the well-known Student-tν (ξ = 1/ν, ρ = −2/ν) belong to

such a class. Then, the second-order condition in equation (1.5) holds, with A(t) = ξβtρ, β 6= 0,

ρ < 0, as given in (1.6). Further details on these semi-parametric frameworks can be seen in

Beirlant et al. (2004), de Haan and Ferreira (2006) and Fraga Alves et al. (2007), among others.

Under the validity of condition (1.6), and using the notation a(t) ∼ b(t) if and only if

limt→∞ a(t)/b(t) = 1, we can guarantee that U(t) ∼ Ctξ, as t→∞, and from (1.3), we have

VaRq = U(1/q) ∼ Cq−ξ, as q → 0.

An obvious estimator of VaRq is thus Ĉq−ξ̂, with Ĉ and ξ̂ any consistent estimators of C and

ξ, respectively. Given a sample Xn := (X1, . . . , Xn), let us denote (X1:n ≤ · · · ≤ Xn:n) the set of

associated ascending OSs. A common estimator of C, proposed in Hall (1982), is

Ĉ ≡ Ck,n,ξ̂ := Xn−k:n(k/n)ξ̂ and Qk,q,ξ̂ = Ĉ q−ξ̂ = Xn−k:n
(
k/(nq)

)ξ̂
(1.7)

is the straightforward VaR-estimator at the level q (Weissman, 1978). In classical approaches,

we often consider for ξ̂ the Hill (H) estimator (Hill, 1975), the average of the log-excesses, i.e.

Hk ≡ Hk(Xn) :=
1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) . (1.8)

But the Hill EVI-estimator is the logarithm of the geometric mean (or mean of order 0) of

Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n. (1.9)
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It is thus sensible to consider the mean-of-order-p (MOp) of Uik, 1 ≤ i ≤ k, as done in Brilhante

et al. (2013), for p ≥ 0, and in Gomes and Caeiro (2014) for any p ∈ R. See also, Paulauskas

and Vaičiulis (2013, 2015), Beran et al. (2014), Gomes et al. (2015a, 2016a) and Caeiro et al.

(2016a). We then more generally get the class of MOp EVI-estimators,

Hk(p) = Hk(p; Xn) :=


1
p

(
1− k/

k∑
i=1

Up
ik

)
if p < 1/ξ, p 6= 0,

Hk if p = 0,

(1.10)

with Hk(0) ≡ Hk, given in (1.8), and Uik given in (1.9), 1 ≤ i ≤ k < n. Associated MOp

VaR-estimators, studied asymptotically and for finite samples in Gomes et al. (2015b), are thus

a sensible generalization of the Weissman-Hill VaR-estimators.

The MOp EVI-estimators, in (1.10), depend now on this tuning parameter p ∈ R, are highly

flexible, but, as often desirable, they are not location-invariant, depending strongly on possible

shifts in the underlying data model. Also, most of the semi-parametric VaR-estimators in the

literature, like the ones in Beirlant et al. (2008), Caeiro and Gomes (2008), the MOp VaR-

estimators in Gomes et al. (2015b), as well as in other papers on semi-parametric quantile

estimation prior to 2008 (see also, the functional equation in (1.7), Beirlant et al., 2004, and

de Haan and Ferreira, 2006), do not enjoy the adequate behaviour in the presence of linear

transformations of the data, a behaviour related to the fact that for any high-quantile, VaRq, we

have

VaRq(λ+ δX) = λ+ δVaRq(X) (1.11)

for any model X, real λ and positive δ. Recently, and for ξ > 0, Araújo Santos et al. (2006)

provided VaR-estimators with the linear property in (1.11), based on a sample of excesses over

a random threshold Xns:n, ns := bnsc + 1, 0 ≤ s < 1, where bxc denotes the integer part of x,

being s possibly null only when the underlying parent has a finite left endpoint (see Gomes et

al., 2008b, for further details on this subject). Those VaR-estimators are based on the sample of

size n(s) = n− ns, defined by

X(s)
n :=

(
Xn:n −Xns:n, . . . , Xns+1:n −Xns:n

)
. (1.12)
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Such estimators were named PORT-VaR estimators, with PORT standing for peaks over a ran-

dom threshold, and were based on the PORT-Hill, Hk(X
(s)
n ), k < n− ns, with Hk(Xn) provided

in (1.8). Now, we further suggest for an adequate VaR-estimation, the use of the PORT-MOp

EVI-estimators,

Hk(p, s) := Hk

(
p; X(s)

n

)
, k < n− ns, (1.13)

introduced and studied both theoretically and for finite samples in Gomes et al. (2016c), with

Hk(p; Xn) and X(s)
n respectively provided in (1.10) and (1.12). Such PORT-MOp VaR-estimators

are given by

V̂aRq(k; p, s) := (Xn−k:n −Xns:n)

(
k

nq

)Hk(p,s)

+Xns:n. (1.14)

Under convenient restrictions on the underlying model, this class of VaR-estimators is consistent

and asymptotically normal for adequate k.

In Section 2 of this paper, and following closely Henriques-Rodrigues and Gomes (2009),

Gomes and Henriques-Rodrigues (2016) and Gomes et al. (2016c), we present a few introductory

technical details and asymptotic results associated with the PORT methodology. A few comments

on the asymptotic behaviour of the PORT-classes of VaR-estimators under study will be provided

in Section 3. In Section 4, through the use of Monte-Carlo simulation techniques, we shall exhibit

the performance of the PORT-MOp VaR-estimators in (1.14), comparatively to the classical

Weissman-Hill, MOp and a PORT version of the most simple reduced-bias (RB) VaR-estimators

in Gomes and Pestana (2007). In Section 5, we refer possible methods for the adaptive choice

of the tuning parameters (k, p, s), either based on the bootstrap or on heuristic methodologies,

and provide some concluding remarks.

2 The PORT methodology: technical details

First note that if there is a shift λ ∈ R in the model, i.e. if the CDF F (x) = Fλ(x) = F0(x− λ),

the EVI does not change with λ. Indeed, if a shift λ is induced in data associated with a random

variable (RV) X, i.e. if we consider Y = X + λ, Uλ(t) ≡ U
Y

(t) = U
X

(t) + λ. Consequently, and
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due to the fact that F ∈ DM(EVξ) if and only if there exists a function a(·) such that

U(tx)− U(t)

a(t)
−→
t→∞

xξ − 1

ξ
(de Haan, 1984),

the EVI, ξ, does not depend on any shift λ. However, the same does not happen to the second-

order parameters. Indeed, condition (1.5) can be rewritten as

lim
t→∞

lnUλ(tx)− lnUλ(t)− ξ lnx

Aλ(t)
=
xρλ − 1

ρλ
, (2.1)

for all x > 0, with |Aλ| ∈ Rρλ , and for λ 6= 0,

ρλ =

 ρ0 if ρ0 > −ξ,

−ξ if ρ0 ≤ −ξ.

Furthermore, and again for λ 6= 0, the function Aλ(t) in (2.1) can be chosen as

Aλ(t) :=


− ξ λ
U0(t)

if ρ0 < −ξ,

A0(t)− ξ λ
U0(t)

if ρ0 = −ξ,

A0(t) if ρ0 > −ξ.

(2.2)

Under the validity of (1.6), we can thus consider the parameterization Aλ(t) = ξβλt
ρλ . Further

details on the influence of such a shift in
(
β0, ρ0, A0(·)

)
and on the estimation of generalized shape

and scale second-order parameters can be found in Henriques-Rodrigues et al. (2014, 2015).

2.1 Asymptotic behaviour of the PORT EVI-estimators

In this section we present, under the validity of the second-order condition in (1.5), the asymptotic

distributional representations of the PORT-MOp EVI-estimators, Hk(p, s), in (1.13). Generaliz-

ing the results of Theorem 2.1 in Araújo Santos et al. (2006), and on the basis of the asymptotic

behaviour of the MOp EVI-estimators derived in Brilhante et al. (2013), Gomes et al. (2016c),

proved the following theorem:

Theorem 2.1 (Gomes et al., 2016c). If the second order condition (1.5) holds, k = kn is an

intermediate sequence of positive integers, i.e. (1.4) holds, for any real s, 0 ≤ s < 1, with
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χs := F←(s), finite, we have for Hk(p, s), in (1.13), an asymptotic distributional representation

of the type,

Hk(p, s)
d
= ξ +

σ
H(p)

P
H(p)
k√
k

+

(
b

H(p)
A0(n/k) +

c
H(p)

χs

U0(n/k)

)
(1 + op(1)), (2.3)

where P
H(p)
k is a sequence of asymptotically standard normal RVs,

σ
H(p)

:=
ξ(1− pξ)√

1− 2pξ
, b

H(p)
:=

1− pξ
1− pξ − ρ

, c
H(p)

:=
ξ(1− pξ)

1− (p− 1)ξ
. (2.4)

3 Asymptotic behavior of the PORT VaR-estimators

Assuming that we are working with data from Fλ(x) = F0(x− λ), i.e. an underlying model with

location parameter λ ∈ R, we first present the following result on the asymptotic behaviour of

intermediate OSs, proved in Ferreira et al. (2003).

Proposition 3.1 (Ferreira et al., 2003). Under the second-order framework in (2.1) and for

intermediate sequences of positive integers k, i.e. if (1.4) holds,

Xn−k:n
d
= Uλ(n/k)

(
1 +

ξ Bk√
k

+ op(Aλ(n/k))
)

with Uλ(t) = λ + U0(t), Aλ(t) given in (2.2), and where Bk is asymptotically standard normal.

Moreover, for i < j, Cov(Bi, Bj) =
√
i j (1− j/n)/(j − 1).

Straightforward generalizations of Theorem 3.1 in Araújo Santos et al. (2006) and Theorem

4.1 in Henriques-Rodrigues and Gomes (2009), enable us to state the following theorem.

Theorem 3.1. Let us assume that the second-order condition in (2.1) holds, with Aλ(t) = ξβλt
ρλ,

that k is an intermediate sequence of integers, i.e. (1.4) holds, and that ln(nq)/
√
k → 0, as

n→∞, with q = qn given in (1.3). Let us further use the notation rn := k/(nq). Then, for any
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real s, 0 ≤ s < 1, χs = F←(s), finite, and the PORT-quantile estimator in (1.14),

√
k

ln rn

(
V̂aRq(k; p, s)

VaRq

− 1

)
d
= σ

H(p)
P

H(p)
k

+
√
k
(
b

H(p)
A0(n/k) + c

H(p)
ξχs/U0(n/k)

)
(1 + op(1)), (3.1)

with
(
σ

H(p)
, b

H(p)
, c

H(p)

)
given in (2.4), and where P

H(p)
k is asymptotically standard normal.

Proof. The PORT-quantile estimator in (1.14) can be written as

V̂aRq(k; p, s) := Xn−k:n

{(
1− Xns:n

Xn−k:n

)
rHk(p,s)
n +

Xns:n

Xn−k:n

}
,

with the notation rn := k/(nq). Therefore,

V̂aRq(k; p, s)− VaRq

Xn−k:n
=

(
1− Xns:n

Xn−k:n

)
rHk(p,s)
n +

Xns:n

Xn−k:n
− VaRq

Xn−k:n
.

The use of the delta method enables us to write

rHk(p,s)
n

d
= rξn

(
1 + ln rn

(
Hk(p, s)− ξ

)(
1 + op(1)

))
.

Since VaRq = Uλ(1/q), the second-order condition in (2.1) and the result in Proposition 2.1

enable us to write

VaRq

Xn−k:n
=

Uλ
(
n
k
rn
)

Uλ
(
n
k

) ×
Uλ
(
n
k

)
Xn−k:n

d
= rξn

(
1 − ξ Bk√

k
− Aλ(n/k)

ρλ
(1 + op(1))

)
,

Therefore, as Xns:n/Xn−k:n = op(1),

√
k

ln rn

(
V̂aRq(k; p, s)− VaRq

VaRq

)
=
√
k
(
Hk(p, s)− ξ

)
+
ξBk

ln rn
+Op

(√
kAλ(n/k)

ln rn

)
.

From (2.3), the result in (3.1) follows.

Corollary 3.1. Under the conditions of Theorem 3.1, with N (µ, σ2) denoting a normal RV with

mean value µ and variance σ2,
(
σ

H(p)
, b

H(p)
, c

H(p)

)
given in (2.4), and P

H(p)
k an asymptotically

standard normal RV, the following results hold:
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• For values of ξ + ρ0 < 0 and χs 6= 0,

√
k
(

V̂aRq(k; p, s)− VaRq

)
/
(

ln rnVaRq

) d
= σ

H(p)
P

H(p)
k +

√
k
(
c

H(p)

χs
U0(n/k)

)
(1 + op(1)).

If
√
k/U0(n/k)→ λ

U
finite, then

√
k
(

V̂aRq(k; p, s)− VaRq

)
/
(

ln rnVaRq

) d−→
n→∞

N (λ
U
c

H(p)
χs, σ

2
H(p)

).

• For values of ξ + ρ0 > 0 or ξ + ρ0 ≤ 0 and χs = 0,

√
k
(

V̂aRq(k; p, s)− VaRq

)
/
(

ln rnVaRq

) d
= σ

H(p)
P

H(p)
k +

√
k
(
b

H(p)
A0(n/k)

)
(1 + op(1)).

If
√
kA0(n/k)→ λ

A
finite, then

√
k
(

V̂aRq(k; p, s)− VaRq

)
/
(

ln rnVaRq

) d−→
n→∞

N (λ
A
b

H(p)
, σ2

H(p)
).

• For values of ξ + ρ0 = 0 and χs 6= 0,

√
k
(

V̂aRq(k; p, s)− VaRq

)
/
(

ln rnVaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
b

H(p)
A0(n/k) + c

H(p)

χs
U0(n/k)

)
(1 + op(1)).

If
√
k/U0(n/k)→ λ

U
and
√
kA0(n/k)→ λ

A
, with λ

U
and λ

A
both finite, then

√
k
(

V̂aRq(k; p, s)− VaRq

)
/
(

ln rnVaRq

) d−→
n→∞

N (λ
U
c

H(p)
χs + λ

A
b

H(p)
, σ2

H(p)
).

4 A Monte-Carlo simulation study

Monte-Carlo multi-sample simulation experiments, of size 5000 × 20, have been implemented

for the classes of MOp and PORT-MOp VaR-estimators associated with p = p` = 2`/(5ξ),

` = 0, 1, 2. Apart from the MOp and PORT-MOp VaR-estimators, we have further considered

in the VaR-estimator in (1.7), the replacement of the estimator ξ̂ ≡ ξ̂k by one of the most simple

classes of corrected-Hill (CH) EVI-estimators in Caeiro et al. (2005). Such a class is defined as

CHk ≡ CHk(β̂, ρ̂) := Hk

(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
. (4.1)
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The estimators in (4.1) can be second-order minimum-variance reduced-bias (MVRB) EVI-

estimators, for adequate levels k and an adequate external estimation of the vector of second-

order parameters, (β, ρ), introduced in (1.6), i.e. the use of CHk can enable us to eliminate the

dominant component of bias of the Hill estimator, Hk, keeping its asymptotic variance. Indeed,

from the results in Caeiro et al. (2005), we know that it is possible to adequately estimate the

second-order parameters β and ρ, so that we get

√
k (CHk − ξ)

d
= N

(
0, ξ2

)
+ op

(√
k(n/k)ρ

)
,

i.e. CHk overpasses Hk for all k. Overviews on reduced-bias estimation can be found in Chapter

6 of Reiss and Thomas, 2007, Gomes et al. (2008a), Beirlant et al. (2012) and Gomes and

Guillou (2015). For the estimation of the vector of second-order parameters (β, ρ), and just as in

the aforementioned review articles, we propose an algorithm of the type of the ones presented in

Gomes and Pestana (2007), where the authors used the β-estimator in Gomes and Martins (2002)

and the simplest ρ-estimator in Fraga Alves et al. (2003), both computed at a level k1 = bn0.999c.

For updated references of recent β and ρ estimators, see Caeiro et al. (2016a).

It is well-known that the PORT methodology works efficiently only when the left endpoint

of the underlying parent is negative, and q = 0 does not work when the left endpoint is infinite,

like happens with the Student model (see Araújo Santos et al., 2006, Gomes et al., 2008b, 2011,

2016c, Caeiro et al., 2016b, and Gomes and Henriques-Rodrigues, 2016, for further details related

to the topic of PORT estimation). Consequently, only models with this characteristic have been

considered, the EVξ, in (1.1) and the Student-tν (ξ = 1/ν, ρ = −2/ν). The values s = 0 (for the

EVξ parents), the value of s associated with the best performance of the PORT methodology

for these models, and s = 0.1 (for the Student parents) were the ones used for illustration of the

results. Sample sizes from n = 100(100)500 and n = 1000(1000)5000 were simulated from the

aforementioned underlying models, for different values of ξ.
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4.1 Mean values and mean square error patterns as k-functionals

For each value of n and for each of the aforementioned models, we have first simulated, on the

basis of the initial 5000 runs, the mean value (E) and the root mean square error (RMSE) of

the scale normalized VaR-estimators, i.e. the Var-estimators over VaRq, as functions of k. For

the EVI-estimation, apart from Hp, in (1.10), p = 0
(
H0 ≡ H

)
and p = p` = 2`/(5ξ), ` =

1 (for which asymptotic normality holds), and ` = 2 (where only consistency was proved), and

the MVRB (CH) EVI-estimators, in (4.1), we have also included their PORT versions, for the

above mentioned values of s, using the notation •|s, where • refers to the acronymous of the

EVI-estimator.

The results are illustrated in Figure 1, for samples of size n = 1000 from an EVξ underlying

parent, with ξ = 0.1 and s = 0. In this case, and for all k, there is a clear reduction in RMSE,

as well as in bias, with the obtention of estimates closer to the target value ξ, particularly when

we consider the PORT-version associated with Hp1 . Further note that, at optimal levels, in the

sense of minimal RMSE, even the Hp2 beat the PORT-MVRB VaR-estimators.
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Figure 1: Mean values (left) and RMSEs (right) of the normalized H, CH, and Hp, p = p` = 2`/(5ξ), ` =

1, 2 VaR-estimators for q = 1/n, together with their PORT versions, associated with s = 0 and generally

denoted •|0, for EV0.1 underlying parents and sample size n = 1000

Similar patterns were obtained for all other simulated models.
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4.2 Mean values at optimal levels

Table 1 is also related to the EVξ model, with ξ = 0.1. We there present, for different sample sizes

n, the simulated mean values at optimal levels (levels where RMSEs are minima as functions of

k) of some of the normalized VaR-estimators, under consideration in this study. Information on

95% confidence intervals are also given. Among the estimators considered, and distinguishing 2

regions, a first one with (H, CH, Hp1 ,Hp2), and a second one with the associated PORT versions,

(H|0, CH|0, Hp1|0,Hp2|0), the one providing the smallest squared bias is written in bold whenever

there is an out-performance of the behaviour achieved in the previous regions.

Table 1: Simulated mean values of normalized VaR-estimators at their optimal levels for EV0.1 parents.

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.089± 0.0048 1.073± 0.0042 1.061± 0.0031 1.058± 0.0030 1.053± 0.0018

CH 0.905± 0.0081 0.930± 0.0049 0.983± 0.0073 1.056± 0.0035 1.052± 0.0025

Hp1 0.885± 0.0014 0.901± 0.0056 0.910± 0.0029 0.915± 0.0022 0.918± 0.0006

Hp2 0.865± 0.0014 0.889± 0.0012 0.912± 0.0006 0.924± 0.0008 0.926± 0.0065

H|0 1.078± 0.0037 1.069± 0.0033 1.063± 0.0037 1.060± 0.0032 1.057± 0.0027

CH|0 0.922± 0.0036 0.945± 0.0038 1.025± 0.0006 1.116± 0.0005 1.060± 0.0021

Hp1 |0 0.887± 0.0037 0.898± 0.0031 0.893± 0.0009 0.915± 0.0005 0.998± 0.0002

Hp2 |0 0.889± 0.0014 0.909± 0.0012 0.920± 0.0070 0.926± 0.0050 0.928± 0.0006

Tables 2, 3, 4 and 5 are similar to Table 1, but respectively associated with EV0.25, EV0.5,

Student-t4 and t2 underlying parents.

Note that contrarily to what happens with the non-PORT and PORT EVI-estimation, where

the values associated with p2 have a minimum squared bias smaller than the ones associated

with p1, things work the other way round for the VaR-estimation.

4.3 RMSEs and relative efficiency indicators at optimal levels

We have further computed the Weissman-Hill VaR-estimator, i.e. the VaR-estimator Qk,q,ξ̂, in

(1.7), with ξ̂ replaced by the H EVI-estimator, in (1.8), at the simulated optimal k in the sense

13



Table 2: Simulated mean values of normalized VaR-estimators at their optimal levels for EV0.25 parents.

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.143± 0.0068 1.125± 0.0070 1.108± 0.0048 1.106± 0.0052 1.094± 0.0034

CH 0.848± 0.0092 0.874± 0.0041 0.925± 0.0027 1.036± 0.0041 1.094± 0.0036

Hp1 0.862± 0.0023 0.912± 0.0014 0.993± 0.0013 1.083± 0.0038 1.049± 0.0014

Hp2 0.854± 0.0046 0.848± 0.0014 0.868± 0.0043 0.869± 0.0035 0.881± 0.0024

H|0 1.133± 0.0059 1.109± 0.0052 1.104± 0.0047 1.101± 0.0048 1.088± 0.0012

CH|0 0.878± 0.0004 0.906± 0.0031 0.941± 0.0020 0.965± 0.0018 1.063± 0.0004

Hp1 |0 0.983± 0.0017 1.060± 0.0022 1.048± 0.0021 1.055± 0.0022 1.064± 0.0017

Hp2 |0 0.848± 0.0050 0.859± 0.0034 0.867± 0.0025 0.872± 0.0023 0.851± 0.0009

Table 3: Simulated mean values of semi-parametric normalized VaR-estimators at their optimal levels

for underlying EV0.5 parents.

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.298± 0.0156 1.245± 0.0100 1.211± 0.0088 1.189± 0.0077 1.157± 0.0055

CH 0.905± 0.1764 0.800± 0.0108 0.842± 0.0040 0.874± 0.0026 0.997± 0.0022

Hp1 1.117± 0.0069 1.077± 0.0059 1.086± 0.0069 1.102± 0.0045 1.131± 0.0037

Hp2 |0 0.780± 0.0030 0.771± 0.0015 0.784± 0.0008 0.812± 0.0010 0.898± 0.0007

H|0 1.233± 0.0109 1.203± 0.0075 1.171± 0.0062 1.157± 0.0062 1.118± 0.0042

CH|0 0.789± 0.0051 0.825± 0.0041 0.865± 0.0033 0.892± 0.0030 0.944± 0.0016

Hp1 |0 1.084± 0.0088 1.092± 0.0054 1.110± 0.0052 1.124± 0.0041 1.116± 0.0032

Hp2 0.778± 0.0042 0.783± 0.0033 0.788± 0.0027 0.772± 0.0013 0.817± 0.0007

of minimum RMSE. Such an estimator is denoted by Q00. For any of the VaR-estimators under

study, generally denoted Qk, we have also computed Q0, the estimator Qk computed at the

simulated value of k0|Q := arg mink RMSE
(
Qk

)
. The simulated indicators are

REFFQ|0 :=
RMSE (Q00)

RMSE (Q0)
. (4.2)

Remark 4.1. Note that, as usual, an indicator higher than one means a better performance

than the Weissman-Hill VaR-estimator. Consequently, the higher the indicators in (4.2) are, the

better the associated VaR-estimators perform, comparatively to Q00.

Again as an illustration of the obtained results, we present Tables 6–10. In the first row,
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Table 4: Simulated mean values of normalized VaR-estimators at their optimal levels for Student t4

parents (ξ = 0.25)

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.114± 0.0056 1.099± 0.0043 1.089± 0.0037 1.085± 0.0037 1.077± 0.0037

CH 0.903± 0.0292 0.903± 0.0053 0.922± 0.0030 0.978± 0.0028 1.056± 0.0015

Hp1 0.932± 0.0014 1.009± 0.0019 1.035± 0.0023 1.032± 0.0019 1.054± 0.0017

Hp2 0.875± 0.0062 0.882± 0.0029 0.886± 0.0022 0.889± 0.0020 0.877± 0.0005

H |0.1 1.095± 0.0063 1.081± 0.0027 1.070± 0.0027 1.061± 0.0020 1.035± 0.0015

CH |0.1 0.890± 0.0030 0.950± 0.0031 0.980± 0.0020 0.990± 0.0012 0.998± 0.0006

Hp1 |0.1 1.056± 0.0027 1.055± 0.0023 1.057± 0.0019 1.056± 0.0023 1.041± 0.0012

Hp2 |0.1 0.876± 0.0011 0.904± 0.0008 0.953± 0.0005 0.982± 0.0005 0.998± 0.0002

Table 5: Simulated mean values of normalized VaR-estimators at their optimal levels for Student t2

parents (ξ = 0.5)

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.236± 0.0090 1.198± 0.0107 1.168± 0.0043 1.145± 0.0038 1.106± 0.0038

CH 1.115± 0.1919 0.809± 0.0072 0.825± 0.0053 0.848± 0.0030 0.848± 0.0043

Hp1 1.094± 0.0073 1.082± 0.0048 1.084± 0.0031 1.080± 0.0040 1.062± 0.0021

Hp2 0.803± 0.0036 0.796± 0.0026 0.795± 0.0012 0.813± 0.0008 0.873± 0.0005

H |0.1 1.163± 0.0056 1.121± 0.0048 1.077± 0.0030 1.049± 0.0027 1.007± 0.0021

CH |0.1 0.793± 0.0053 0.813± 0.0048 0.828± 0.0036 0.840± 0.0038 0.864± 0.0028

Hp1 |0.1 1.098± 0.0058 1.087± 0.0034 1.072± 0.0033 1.051± 0.0023 1.010± 0.0017

Hp2 |0.1 0.836± 0.0014 0.868± 0.0013 0.915± 0.0008 0.949± 0.0007 1.065± 0.0004

we provide RMSE0, the RMSE of Q00, so that we can easily recover the RMSE of all other

estimators. The following rows provide the REFF-indicators for the different VaR-estimators

under study. A similar mark (bold) is used for the highest REFF indicator, again considering

the aforementioned two regions and q = 1/n.

For a better visualization of the results presented in some of the tables above, we further

present Figure 2, associated with an EV0.1 underlying parent.
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Table 6: Simulated RMSE0 (first row) and of REFF•|0 indicators, for EV0.1 parents.

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.329± 0.1224 0.273± 0.1209 0.225± 0.1059 0.200± 0.0754 0.157± 0.0324

CH 1.287± 0.0154 1.323± 0.0147 1.252± 0.0123 1.202± 0.0083 1.073± 0.0041

Hp1 1.566± 0.0174 1.505± 0.0129 1.460± 0.0103 1.440± 0.0093 1.545± 0.0113

Hp2 1.450± 0.0177 1.379± 0.0117 1.316± 0.0084 1.279± 0.0086 1.189± 0.0063

H|0 1.132± 0.0093 1.121± 0.0060 1.118± 0.0049 1.122± 0.0049 1.136± 0.0057

CH|0 1.659± 0.0196 1.833± 0.0179 1.548± 0.0202 1.373± 0.0110 1.202± 0.0077

Hp1 |0 1.695± 0.0190 1.626± 0.0149 1.614± 0.0128 1.874± 0.0160 4.988± 0.0340

Hp2 |0 1.529± 0.0184 1.440± 0.0113 1.359± 0.0082 1.323± 0.0097 1.240± 0.0066

Table 7: Simulated RMSE0 (first row) and of REFF•|0 indicators, for EV0.25 parents.

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.469± 0.1207 0.394± 0.1350 0.329± 0.1453 0.294± 0.1498 0.231± 0.1538

CH 1.393± 0.0144 1.431± 0.0155 1.681± 0.0215 1.908± 0.0257 1.197± 0.0045

Hp1 2.132± 0.0218 2.522± 0.0233 3.802± 0.0333 3.866± 0.0248 3.108± 0.0229

Hp2 1.771± 0.0148 1.658± 0.0154 1.540± 0.0118 1.464± 0.0118 1.283± 0.095

H|0 1.178± 0.0081 1.174± 0.0101 1.185± 0.0053 1.206± 0.0060 1.245± 0.0043

CH|0 1.837± 0.0164 1.907± 0.0206 2.215± 0.0222 2.678± 0.0251 2.681± 0.0180

Hp1 |0 3.527± 0.0300 2.754± 0.0221 1.703± 0.0135 1.584± 0.0128 1.443± 0.0102

Hp2 |0 1.896± 0.0176 1.757± 0.0162 1.614± 0.0144 1.526± 0.0131 1.338± 0.0110

Table 8: Simulated RMSE0 (first row) and of REFF•|0 indicators, for underlying EV0.5 parents.

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.811± 0.1588 0.664± 0.1728 0.539± 0.1793 0.467± 0.1810 0.341± 0.1782

CH 1.376± 0.2291 1.564± 0.0183 1.702± 0.0217 1.871± 0.0167 3.047± 0.0223

Hp1 2.179± 0.0278 1.650± 0.0185 1.343± 0.0160 1.201± 0.0204 1.044± 0.0135

Hp2 2.439± 0.0361 2.137± 0.0277 1.843± 0.0194 1.677± 0.0153 1.560± 0.0133

H|0 1.262± 0.0106 1.255± 0.0119 1.289± 0.0119 1.319± 0.0093 1.387± 0.0068

CH|0 2.192± 0.0308 2.082± 0.0248 2.093± 0.0206 2.166± 0.0173 2.560±±0.0226

Hp1 |0 1.890± 0.0258 1.586± 0.0224 1.404± 0.0261 1.340± 0.0317 1.344± 0.0150

Hp2 |0 2.595± 0.0418 2.259± 0.0309 2.081± 0.0218 2.063± 0.0186 2.389± 0.0203
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Table 9: Simulated RMSE0 (first row) and of REFF•|0 indicators, for Student t4 parents (ξ = 0.25)

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.378± 0.1445 0.320± 0.1507 0.270± 0.1556 0.240± 0.1572 0.185± 0.1554

CH 1.217± 0.1176 1.310± 0.0129 1.480± 0.0134 1.881± 0.0114 1.531± 0.0095

Hp1 2.143± 0.0187 2.483± 0.0209 1.821± 0.0148 1.422± 0.0100 1.151± 0.0088

Hp2 1.713± 0.0167 1.631± 0.0152 1.518± 0.0122 1.427± 0.0066 1.270± 0.0069

H |0.1 1.243± 0.0105 1.273± 0.0081 1.359± 0.0066 1.457± 0.0064 1.808± 0.0069

CH |0.1 1.773± 0.0160 2.038± 0.0181 2.599± 0.0252 3.082± 0.0198 4.431± 0.0269

Hp1 |0.1 1.640± 0.0119 1.516± 0.0138 1.463± 0.0161 1.477± 0.0206 1.664± 0.0240

Hp2 |0.1 2.080± 0.0205 2.288± 0.0238 3.045± 0.0248 4.026± 0.0291 6.345± 0.0502

Table 10: Simulated RMSE0 (first row) and of REFF•|0 indicators, for underlying Student t2 parents

(ξ = 0.5)

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.675± 0.1735 0.559± 0.1793 0.449± 0.1804 0.379± 0.1789 0.255± 0.1684

CH 0.684± 0.3593 1.359± 0.0145 1.388± 0.0099 1.371± 0.0080 1.449± 0.0343

Hp1 1.728± 0.0148 1.468± 0.0116 1.308± 0.0085 1.240± 0.0047 1.209± 0.051

Hp2 2.271± 0.0214 1.992± 0.0179 1.766± 0.0126 1.665± 0.0151 1.691± 0.0124

H |0.1 1.318± 0.0097 1.382± 0.0099 1.532± 0.0117 1.667± 0.0079 2.110± 0.0132

CH |0.1 1.969± 0.0160 1.786± 0.0150 1.573± 0.0103 1.419± 0.0091 1.123± 0.0065

Hp1 |0.1 1.609± 0.0149 1.516± 0.0116 1.560± 0.0109 1.647± 0.0072 2.037± 0.0108

Hp2 |0.1 2.810± 0.0276 2.821± 0.0287 3.116± 0.0227 3.547± 0.0280 2.848± 0.0169

5 CONCLUSIONS

The new PORT-MOp VaR-estimators, defined in (1.14), generalize the Weissman-Hill PORT-

quantile estimator studied in Araújo Santos et al. (2006). Consequently, both asymptotically

and for finite sample sizes, we were expecting a much better behaviour of this new VaR-estimator.

The gain in efficiency of the PORT-MOp VaR-estimators is, in most cases, greater than the one

obtained with the MVRB and PORT-MVRB VaR-estimators. The simulated mean values of the

normalized PORT-MOp VaR-estimators are always better, for moderate to large values of n, in

the Student-tν parents. For the EVξ-parents, we have different behaviours accordingly to the
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Figure 2: Mean values (left) and REFF-indicators (right) at optimal levels of the different nor-

malized VaR-estimators under study, for q = 1/n, an underlying EV0.1 parent and sample sizes

n = 100(100)500(500)5000

size of the sample but there is a general out-performance of the PORT-MOp VaR-estimators.

And indeed, for an adequate choice of k, p and s, the PORT-MOp VaR–estimators are able to

outperform the MVRB and even the PORT-MVRB VaR-estimators, in most cases. The choice of

(k, p, s) can be done through heuristic sample-path stability algorithms, like the ones in Gomes

et al. (2013) or through a bootstrap algorithm of the type of the ones presented in Caeiro and

Gomes (2015a) and in Gomes et al. (2016b), where R-scripts are provided.
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