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General Abstract 

 The marine catfish, Plotosus lineatus belongs to the family Plotosidae which 

are unique amongst the teleosts in possessing a specialized extra-branchial salt 

secreting dendritic organ (DO) and the ability to produce hyperosmotic urine 

(relative to plasma). Typical marine teleosts use the gill as their primary salt 

secreting organ and are incapable of producing hyperosmotic urine. My thesis 

provides new insights into the ion regulatory mechanisms in P. lineatus and 

compares them to those of teleost fishes revealing more of the fascinating 

physiology of marine catfish which evolved from a freshwater ancestor. My primary 

focus was to provide the first insights into the molecular osmoregulatory 

mechanisms of the DO and assess its ionoregulatory role at different salinities 

[brackishwater (BW) 3‰, seawater (SW) 34‰ or hypersaline water (HSW) 60‰] 

and through DO ligation experiments. In addition I explored the DO’s potential role 

in ammonia excretion, and addressed the potential compensatory roles of the gill, 

kidney and gut in ion/osmo-regulation during DO ligation. I focused on Na+/K+-

ATPase, a key ion transport protein, measuring its activity, protein and transcript 

expression as well as additional key ion transport proteins [Na+:K+:2Clˉ 

cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator 

(CFTR), carbonic anhydrase (CA), H+-ATPase (VHA) and non-erythroid Rhesus 

(Rh) glycoproteins (Rhag)]. Furthermore, molecular characterization of the kidney 

was performed to elucidate the mechanism of production of hyperosmotic urine 

was performed. 

For the first time the molecular osmoregulatory mechanisms of the DO have 

been determined. I found higher DO NKA activity compare to other organs, with 

basolateral colocalization with NKCC1, and apical localization of CFTR to acinar 

gland parenchymal cells. These results are consistent with the previous proposed 

salt secreting function of the DO and the secondary active Cl- secretory 

mechanism common to other vertebrate NaCl secreting epithelia (e.g. shark rectal 

gland, sea bird nasal gland). Thus, supporting the hypothesis of conservation of 

the NaCl secretory mechanism in vertebrates. In response to HSW acclimation, 

NKCC1 increased as did DO mass. Although DO specific NKA specific activity 

actually decreased, the increase in DO mass resulted in significantly higher DO 
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total NKA activity with HSW. Furthermore, proteomic analysis by immunoblotting 

and IHC expression of CA, and H+-ATPase, and quantitative polymerase chain 

reaction (qPCR) expression of slc26a6a (Cl-/HCO3- exchanger) together indicate a 

role in acid-base regulation of marine catfish DO. Ligation of the DO in SW 

acclimated fish, resulted in ionoregulatory impairment as indicated by higher 

plasma Na and Cl concentrations confirming the DO’s role in NaCl secretion. 

Unlike other teleosts, gill NKA activity was low and not responsive to higher salinity 

or DO ligation. IHC indicated few NKA-IR ionocytes which rarely expressed 

NKCC1 and CFTR. These results suggest that the gills of marine catfish are not 

important for active NaCl excretion. The finding of VHA-IR cells opens the 

possibility that acid-base regulation maybe the primary ionoregulatory function of 

the gills. Marine catfish were unable to survive in HSW following DO ligation, and 

higher stress protein Hsp70 was observed in DO indicating a cellular stress in 

HSW acclimated fish. All together the physiological data indicated a stress 

situation and systemic dehydration due to osmotic water lose, resulting in 

problematic disturbances from internal fluid shifts.  

The intestine of marine fishes is important in water uptake to compensate 

osmotic water losses but drinking seawater adds to NaCl loads. The marine catfish 

is no different with apical NKCC2/NCC and basolateral NKA expression. The 

changes in NKA activity, protein and mRNA expression of intestine in P. lineatus 

reveal an important response to ligation regardless of the salinity. Increased NKA 

activity and protein expression of Hsp70 in the posterior intestine indicate a role in 

water absorption as main stress of fish.  

To explain the hyperosmotic urine observed in Protosidae catfishes, I have 

observed that the P.lineatus renal “chloride cells” have high NKA and NKCC1 

expression levels. Kidney NKA activity and NKCC1 protein levels also increase 

with salinity. In contrast, most teleost fish acclimated to higher salinity decrease 

NKA activity. P. lineatus also has an unusual distal tubule with coiling around an 

ampullar region. Although DT is present, the absence of apical absorptive NKCC2 

expression suggests that it is not involved in absorption as is typical of the DT in 

teleost fishes. Taken together, it seems the kidney of marine catfish has a 

physiologically effective role in ion/osmo regulation particularly in HSW 

environment. 
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Finally, I also explored the possibility of the DO being involved in nitrogen 

balance through ammonia excretion. I present for the first time molecular and 

physiological evidence of apical and basolateral expression of Rhag and Rhbg 

ammonia (NH3) transporters, respectively, in DO parenchymal cells by IHC, higher 

mRNA expression of rhcg1 in SW and BW compared to HSW, and that DO ligation 

reduced ammonia efflux rates (JAmm). However, while JAmm of fish increased with 

salinity, these difference do not correlate with protein or mRNA expression levels 

of Rh glycoproteins in gills and DO, respectively. It therefore appears that 

additional ammonia transports such as NHE3 might be involved at higher salinities 

to facilitated NH4+ fluxes rather than NH3 via Rh glycoproteins. 

In summary, this thesis delivers insight into the evolution of salt regulatory 

mechanisms under different conditions by confirming a converge evolution with the 

chondrichthyan and tetrapod salt glands, and establishing the molecular and 

cellular basis for the unusual production of blood-hyperosmotic urine in the kidney 

of this vertebrate. This work also clearly establishes the primacy of the DO in ion 

secretion over the traditional gill ion regulatory role. Although the origin of the DO 

is unknown, given that it is associated with the renal papillae, and DO 

parenchymal cells and renal chloride cells show similarities in morphology and 

transport protein expression, we propose that the DO may have a renal origin 

much like the relationship between the rectal gland and rectal tissue in 

elasmobranch fishes. 

 
 



 
 

 
 

Resumo Geral 

O peixe-gato marinho, Plotosus lineatus pertence à família dos Plotosidae 

que é única entre os teleósteos pois tem um órgão secretor de sal extra branquial 

denominado órgão dendrítico (em inglês denominado dentritic organ, (DO) e 

assim referido ao longo desta tese) e a capacidade de produzir uma urina 

hiperosmótica (em comparação com o plasma). Tipicamente os teleósteos 

marinhos utilizam as branquias como o principal órgão para secreção de sais e 

não produzem uma urina hiperosmótica. Nesta tese apresento novos 

conhecimentos dados acerca dos mecanismos de regulação de iões em P. 

lineatus comparando-os com os semelhantes nos peixes teleósteos, a fim de 

revelar mais acerca da fascinante fisiologia do peixe-gato marinho. Este que terá 

evoluído a partir de um ancestral proveniente de agua doce. O âmbito deste 

trabalho e proporcionar alguns dos primeiros detalhes sobre os mecanismos de 

osmorregulação ao nível molecular no DO e determinar a função deste na 

regulação de iões em diferentes salinidades [água salobra 3‰, salgada a 34‰ e 

em solução hipersalina a 60‰, (em inglês e assim denominado ao longo desta 

tese brackish water (BW), seawater (SW) e hypersaline water (HSW), 

respectively) e através de uma experiencia executando um torniquete no DO. 

Para isso foquei-me na bomba de sódio-potássio (Na+/K+-ATPase) a qual e uma 

proteína com funções fundamentas para o transporte de iões, e medindo nesta a 

sua atividade e expressão ao nível da proteína e do gene assim como outras 

proteínas essenciais ao transporte de iões como e o caso do co transportador 

[Na+:K+:2Clˉ (NKCC), o gene da CFTR (cystic fibrosis transmembrane 

conductance regulator), anidrase carbónica (CA), bomba de protão H+-ATPase 

(VHA) e a glicoproteína de Rhesus (Rh) não eritrócito (Rhag)]. Também se 

procedeu à caracterização do rim ao nível molecular a fim de perceber os 

mecanismos de produção de urina hiperosmótica. 

Pela primeira vez os mecanismos moleculares de osmorregulação no DO 

foram determinados. Elevados níveis de atividade da NKA foram encontrados no 

DO comparando a outros órgãos, e caracterizado pela co-localização de NKCC1 

e localização apical do CFTR na glândula acinar das células parenquimatosas. 

Estes resultados são consistentes com anteriores que propunham uma função de 

secreção de sais ao nível do DO e um mecanismos secundário ativo de secreção 
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de Cl-, comum a outros epitélios onde NaCl e secretado noutros vertebrados (por 

exemplo na glândula retal dos tubarões e nas glândulas do sal das aves 

marinhas). Desta forma os resultados aqui apresentados corroboram com a 

hipótese de conservação dos mecanismos de secreção de NaCl nos vertebrados. 

Em resposta a ambientes HSW, houve um aumento do NKCC1 assim como da 

massa do DO. Todavia, NKA no DO diminuiu mas o aumento da massa do DO 

resultou num aumento da NKA total no DO em HSW. Em acréscimo, analises de 

expressão da CA e H+-ATPase ao nível da proteico por immunomarcação e 

imunohistoquímica e quantificação da expressão do gene slc26a6a (Cl-/HCO3- 

exchanger)  por reação em cadeia da polimerase (qPCR), sugerem uma função 

na regulação do acido-base por parte do DO do peixe-gato marinho. O torniquete 

no DO em peixes aclimatizados em SW resultou na incapacidade de regular 

níveis de iões o que foi demonstrado pelos elevados níveis de Na e Cl no plasma 

e assim confirmando a função do DO na secreção de NaCl. Ao contrario de outros 

teleósteos, a atividade da NKA na brânquia é baixa e não respondeu a meios 

hipersalinos ou ao torniquete no DO. IHC demonstrou poucas células NKA 

imunorreativas que raramente expressaram NKCC1 e CFTR. Estes resultados 

sugerem que a brânquia no caso do peixe-gato marinho não e essencial para a 

secreção ativa de NaCl. A presença de células imunorreativas à VHA por sua vez 

sugerem que a principal função da brânquia nesta espécie será a do equilíbrio 

acido-base. Os peixes-gato marinhos não sobreviveram em HSW apos aplicação 

do torniquete no DO e um aumento das proteínas marcadores de stress Hsp70 foi 

observado neste orgão o que sugere stresse ao nível celular nos peixes 

aclimatizados a HSW. Em suma, a informação ao nível fisiológico indica uma 

situação de stress, desidratação sistémica devido a perda de água por osmose e 

desta forma resultando em perturbações nos fluidos internos.  

O intestino de peixes marinhos tem uma função relevante ao nível da 

captação de agua para assim compensar as perdas de agua por osmose. Todavia 

este mecanismos de ingestão de água em meios marinhos implica um aumento 

da ingestão de NaCl. O peixe-gato marinho não é diferente dos demais, detendo 

NKCC2/NCC na zona apical e expressão basolateral de NKA. As alterações da 

atividade, abundancia de proteína e expressão ao nível do mRNA da NKA no 

intestino de P. lineatus  revela uma resposta o torniquete, independentemente da 



 

viii 
 

salinidade do meio. O aumento de atividade da NKA e aumentos da expressão ao 

nível proteico da Hsp70 no intestino posterior indicam uma função de absorção de 

agua em resposta ao stress sentido pelo peixe. 

 A fim de explicar a presença de uma urina hiperosmótica observada em 

peixes-gato da família Protosidae, reparei que as células do cloro renais de P. 

lineatus tem elevados níveis de expressão de NKA e NKCC1. A atividade da NKA 

no rim e os níveis de proteína referentes à NKCC1 também aumentarem em 

resposta a um aumento da salinidade. Contrariamente, a maioria dos peixes 

teleósteos aclimatizados a meios hipersalinos demonstram uma redução na 

atividade da NKA. Os P. lineatus demonstram ainda um túbulo distal for a do 

comum com um enrolamento em volta da região do ducto. Embora a DT esteja 

presente, a ausência de expressão de NKCC2 na região apical sugere que não 

esteja envolvida no processo de absorção como é típico do DT em teleósteos. No 

geral, o rim do peixe-gato marinho aparenta ter uma função fisiológica ao nível de 

regulação de iões e osmorregulação em especial em HSW. 

Finalmente, também explorei a possibilidade do DO estar envolvido na 

regulação de compostos azotados como excreção de amónia. Aqui é 

demonstrado pela primeira vez do ponto de vista molecular e fisiológico a 

expressão apical e basolateral de transportadores de amónia (NH3) como o Rhag 

e Rhbg, respetivamente, nas células parenquimatosas por método da IHC, 

aumento da expressão de rhcg1 ao nível do mRNA em SW e BW 

comparativamente a HSW e que o torniquete no DO reduz a taxa de fluxo de 

amónia (JAmm). Contudo, enquanto a JAmm dos peixes aumenta com o aumento da 

salinidade do meio, essa diferença não se apresenta correlacionada com a 

expressão ao nível proteico ou do mRNA nas glicoproteínas Rh nas branquias e 

no DO, respetivamente. Desta forma sugere-se que outros mecanismos de 

transporte de amónia como NHE3 possam estar envolvidos em meios 

hipersalinos de forma a facilitar os fluxos de NH4+ em vez de NH3 via 

glicoproteínas Rh. 

Em suma, esta tese apresenta novas informações acerca da evolução dos 

mecanismos de regulação de sais em diversos ambientes e confirmando um 

processo de evolução convergente com as glândulas do sal de condrósteos e 
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tetrápodes e no estabelecimento da base celular e molecular para uma produção 

pouco usual de uma urina hiperosmótica em relação ao sangue no rim deste 

vertebrado. Este trabalho estabelece ainda a elevada importância do DO na 

secreção de iões em relação à tradicional branquia com função de regulação 

iónica. Embora a origem do DO seja desconhecida, dada a sua associação à 

papila renal e o facto das células do cloro e as células do parênquima renal 

demonstram semelhanças morfológicas assim como painel de expressão 

proteico. Desta forma propomos que o DO possa ter uma origem renal à 

semelhança da glândula retal e tecido retal dos peixes elasmobrânquios. 
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ligation experiments to elucidate its importance and compensatory responses of 

gill, kidney and/or intestine, molecular study of uniqe kidney to produce 

hyperosmotic urine, ammonia excretion of marine catfish and the hypothesis of 
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Dissertation organization 

 

The Doctoral Thesis is organized into seven chapters. Chapter one consists 

on a general introduction where mechanisms in seawater and freshwater 

osmoregulation; the rapid response and/or acute transition to changing 

environmental salinity; and background on marine catfish will be provided. 

Specifically, the general biology of the marine catfish; a perspective on marine 

catfish which is unique amongst the teleosts in that they possess the DO, an 

extrabranchial salt secreting organ; a kidney that is unusual in producing a 

hyperosmotic urine; and why do research on marine catfish? Chapter two covers 

general materials and methods that are used in most of the following research 

chapters to avoid repetition. The following four chapters are structured as 

independent research chapters covering salinity effects (CH3), dendritic organ 

ligation (CH4), molecular characterization of the kidney (CH5), and DO as an 

ammonia excretory organ (CH6). The final chapter (CH7) is a synthesis chapter 

that will integrate the results from the research chapters into a general discussion.  
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1. Introduction  

1.1 Osmoregulation  

 As the most basally derived vertebrate group, the fishes are adapted to 

living in both marine and freshwater aquatic environments,  coping with 

osmotic/ionic challenges of various salinities, pH or ion compositions, in contrast 

to terrestrial tetrapod animals. The resulting diverse physiologies of the fishes 

result of natural selection are achieved by adaptation to enormous arranges of 

differences in these aquatic environments providing important useful information 

for elucidating the mysteries of the early evolution of vertebrates. In teleost fishes, 

highly efficient ion/osmoregulatory mechanisms lead to maintenance of body fluid 

homeostasis, which is necessary for the normal operation of cellular 

biochemical/physiological processes (Hwang and Lee, 2007, 2011). 

Marine teleosts actively hypo-osmoregulate to compensate for passive 

water loss and salt gain by osmosis and diffusion, respectively, from seawater 

across their body surfaces (Figure1) (Marshall and Grosell, 2006). They drink 

seawater and in the intestine NaCl uptake is used to osmotically drive water 

absorption in order to address water balance. In addition the kidney produces 

minimal isoosmotic urine and is the main site of Ca+2, Mg+2, and SO4-2 excretion. 

The gill is the main organ involved in the excretion of the NaCl load from passive 

uptake and drinking in teleost fishes via specialize branchial ionocytes called 

chloride cells or seawater type mitochondrion-rich cells (MRC) (Evans et al., 

2005). These cells are rich in mitochondria and have an amplified basolateral 

membrane with high Na+/K+-ATPase and Na+:K+:2Cl- co-transporter (NKCC) 

expression and apical cystic fibrosis transmembrane conductance regulator 

(CFTR) Cl- channel expression. In the current model (Figure 2), Na+/K+-ATPase 

drives the uptake of Cl- from the blood against its electrochemical gradient via 

NKCC1 (basolateral isoform). The intracellular Cl- exits the cell via the apical 

CFTR Cl- channel down its electrochemical gradient. Na+ accumulates in the 

intercellular space, and exits across a leaky tight junction between neighbouring 

chloride and accessory cells following its electrochemical gradient. 
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Fig. 1. Osmotic and ionic regulation in a saltwater fish (modified according 

Beyenbach, 2004)  

 

Fig. 2. Working model for the extrusion of NaCl by the marine teleost gill 

epithelium. The mitochondrion rich cell (MRC) Na+/K+-ATPase (NKA) creates the 

inward Na+ gradient to drive uptake of Na+, K+, and Cl–from the plasma via a 

basolateral Na+:K+:2Cl– cotransporter (NKCC); and K+ is recycled via a K+ 

channel (Kir) that helps maintain the membrane potential. Cl– is extruded across 

the apical membrane via a Cl– channel (CFTR) down its electrochemical gradient. 

The transepithelial electrical potential across the gill epithelium (plasma positive 
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to seawater) drives Na+ across the leaky tight junctions paracellularly between 

the MRC and the accessory cell (AC). (Modified from Evans et al., 2005) 

The rapid response and/or acute transition to changing environmental 

salinity becomes a crucial challenge for avoiding  significant internal osmotic 

disturbances. There are two periods of acclimation for euryhaline teleosts to 

hyperosmotic environments: a) a crisis period (minutes to hours) involving a rapid 

increase in gill-ion fluxes, activating exist proteins, water transport and/or other 

mechanisms (Houston 1959; Wang et al., 2009), and elevated plasma ions and 

osmolality followed by b) a regulatory period (hours to days onward) including 

increases of gill NKA activity accompanied by a proliferation and development of 

MRCs presumably hormonally regulated allowing for increased transport capacity 

(McCormick and Bradshaw, 2006), increasing net Na+ and Cl- efflux and restoring 

plasma ions balance (Evans et al., 2005; Malakpour Kolbadinezhad et al., 2012).  

Fish initiate a drinking response to compensate for the passive osmotic loss 

of water (Marshall and Grosell, 2006). The gastrointestinal tract facilitates survival 

by increasing intestinal Na+/K+-ATPase activity and the expression of ion 

transporters for solute coupled water absorption, increasing the capacity for water 

absorption(see review by Grosell 2011; Gonzalez 2012; Whittamore 2012). The 

excess salt from drinking seawater is excreted by the gill chloride cells (Evans et 

al., 2005). 

The renal response to the need for water conservation is a reduction in 

glomerular filtration rate via reduce the number of filtering glomeruli (Beyenbach 

and Frömter, 1985; McDonald, 2007) referred to as the ‘glomerular intermittency 

effect’ and/or glomerular blood flow (McDonald, 2007) thus lead to the reduction 

of urine production (Marshall and Grosell, 2006). The kidneys become the 

primary route to get rid of Ca2+, Mg2+, and SO42- derived from intestinal uptake 

(McDonald and Grosell, 2006; Hickman and Trump, 1969; McDonald et al., 2002; 

Beyenbach, 2004) . Due to the increased demand for renal MgSO4 excretion and 

the need to maintain urine flow rates survival may be limited in hypersaline 

environments when water loss is critical (see review by Gonzalez 2012). In both 

freshwater and saltwater fishes, secondary ion transporters necessary to 

maintain homeostasis are achieved via kidney NKA activity in a crucial role of 
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provided the driving force (Perry et al., 2003; Marshall and Grosell, 2006).Some 

marine tetrapods and chondrichthyan fishes have specialized salt glands that 

excrete a concentrated NaCl solution (e.g., the nasal salt gland secretes salt in 

marine birds, lachrymal gland in marine turtles, and lingual glands in sea snakes, 

saltwater crocodiles, rectal gland in elasmobranches (Shuttleworth and 

Hildebrandt, 1999). The parachymal cells of these glands have similar 

characteristics (cell structure: large mitochondrion-rich cells with extensive basal 

lateral membrane folding, shallow ‘leaky’ tight junctions, and ion transport protein 

expression: NKA, NKCC1, CFTR and Kir) as teleost branchial chloride cells and 

the mechanism of NaCl excretion is the same (secondary activity Cl- secretion) 

(Marshall and Grosell 2006; Holmgren and Olsson, 2011). The numerous origins 

of this tissue can be assumed to be independent and there are a few hypotheses 

about the processes underlying the convergent evolution of salt glands across 

taxa (Babonis and Evans, 2011).  

1.2 Marine catfish Plotosus lineatus 

The marine catfish, Plotosus lineatus (Thunberg, 1787) belongs to the order 

Siluriformes that includes 35 families (Nelson 2006) and is commonly known as 

the catfish eel, eel-tailed catfish, lined catfish, striped catfish eel, striped eel 

catfish (http://www.fishbase.org). P. lineatus exhibits amphidromous 

characteristics (Pucke and Umminger, 1979) and from an ecological point of view, 

this is the only catfish species which can be found on coral reefs, entering 

estuaries or in tide pools (Myers, 1999; Edelist et al., 2012). The vast majority of 

catfishes are restricted to fresh water and only members of the Ariidae or 

Plotosidae families are found in marine environments (Nelson, 2006). Plotosus 

lineatus belongs to the Plotosidae, a family consisting of 35 largely freshwater 

species in 10 genera that are distributed from the Indian Ocean to the western 

Pacific from Japan to Australia and Fuji (Lanzing, 1967; Nelson, 2006). The 

phylogeny of the Plotosidae has not been resolved so questions about whether 

this family has a marine or freshwater origin remain unanswered (Pinna, 2003). 

Plotosus lineatus can be recognised by their striped colouration pattern, four 

pairs of barbels around the mouth (Golani, 2002), and its body shape which 

tapers to a point posteriorly (http://www.fishbase.org/summary/4706 ). Dorsal and 
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anal fins are continuous with the caudal fin. It eats mainly benthic invertebrates 

and algae with larger individuals sometimes eating small fishes. Small black 

juveniles form dense ball-shaped schools of about 100 fish, while large adults 

that may be less distinctly striped are solitary or occur in smaller groups of around 

20 and are known to hide under ledges during the day 

(http://www.fishbase.org/summary/4706). The species is primarily tropical 

originally with a wide Indo-Pacific distribution but has been recorded down the 

east and west coasts of Australia to Sydney, New South Wales and Esperance, 

Western Australia, respectively (Lanzing, 1967). They are also reported in 

Mediterranean (Golani, 2002), Persian Gulf, Red sea (Ali et al., 2007).  

Plotosus lineatus has invaded the Mediterranean from the Red Sea and was 

included in the list of 100 worst invasive species (Streftaris and Zenetos, 2006) 

in the Mediterranean because of its negative health impact due to its single highly 

venomous serrate spine at the beginning of the first dorsal and at each of the 

pectoral fins, that cause painful injuries and even be fatal in rare cases (Haddad 

et al., 2008). However, no deaths have been reported, so far (Edelist et al., 2007). 

In Taiwan, Hong Kong, and Australia high injury rates have been reported 

(Isbister 2001; Tam et al., 2007). Furthermore, in the aquarium industry P. 

lineatus has a significant commercial value (Scandol and Rowling, 2007). 

1.3 Dendritic organ (DO) 

Unique amongst the teleosts are members of the marine catfish family Plotosidae 

that possess a specialized salt secreting dendritic organ (DO) (Lanzing 1967). 

The DO is a small fleshy external organ situated on the ventral caudal surface of 

the fish, posterior to the urogenital papilla and protected by the pelvic fins (Hirota, 

1895). It is found in both sexes from early life stages (Lanzing 1967; Laurenson 

et al., 1993) and contains glandular acini of parachymal cells morphologically 

similar to salt gland cells suggesting that this organ is also involved in salt 

transport (Van Lennep and Lanzing, 1967; and Van Lennep, 1968). (Figure 3) 

Bloch (1794) provided the first morphological description of the DO and was 

followed in more detail by Brock (1887) and Hirota (1895) who provided more 

details on the vascularization with an unusual development of the venous system, 
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innervation. From its name, the dendritic organ has a symmetrical tree-like 

branching into irregular lobes with an extensive surface area. The Plotosidae is 

a predominantly freshwater family while marine and estuarine species possess a 

DO; however, two species, P. papuensis, Oloplotosus mariae, that have only 

been found in fresh water still possess a DO (Lanzing, 1967).  

 

 

Fig 3. Dendritic organ (DO) of marine catfish P. lineatus (a: Striped Catfish at 

Swansea, New South Wales, 20 February 2011, by Matt Dowse © Matt Dowse; 

b: CIIMAR, Porto, Portugal, November 2013 by Malakpour Kolbadinezhad) 

Van Lennep and Lanzing (1967) made the first detailed electron 

micrographic study of the DO and identified two potential ion transport cells: 

principal cells (PC) and clear cells (CC). The PC are large pear-shaped cells with 

a large ovoid nucleus and have numerous tubular invaginations of the basal and 

to a lesser extent the lateral plasma membranes that are associated with 

numerous elongate mitochondria, running in parallel bundles to the apical 

DO 

b 

a 
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cytoplasm. In contrast, the CC are typically smaller, and angular in shape with an 

irregular nucleus and have an interlacing network tubules that possess a 

remarkably regular arrangement making up a three dimensional (3D) array 

communicating with the intercellular spaces similar to the tubular system of 

teleost chloride cells, and have shorter and fewer mitochondria than PC. Van 

Lennep (1968) demonstrated that these tubules were continuous with the 

extracellular space using the lanthanum technique; however, he was unable to 

demonstrate ATPase activity. Both cell types reach the lumen of the acinus and 

the apical tight junctions have been shown to be shallow (Van Lennep and 

Lanzing, 1967).  

Taken together, the observations of abundant mitochondria, a tubular 

system, and ‘leaky’ apical tight junctions in DO parenchymal cells (Van Lennep 

and Lanzing, 1967; Van Lennep, 1968) suggest structural and morphological 

similarity to the salt secretion organs in other vertebrates (Van Lennep 1968; 

Kirschner 1980). Pucke and Umminger (1979) also demonstrated that DO 

parachymal cells had high Cl- levels detected with the silver technique, similar to 

gill chloride cells. Finally Kowarsky (1973) has provided some additional 

physiologic evidence of the role of the DO in salt regulation in Cnidoglanis 

microcephalus by demonstrating that ligation of the DO impaired plasma ion 

balance and survival. However, direct evidence is still lacking for a role of the DO 

in ion regulation. 

1.4 Kidney 

In SW, hypotonicity of body fluid relative to the environment results in salt 

entering by diffusion and/or osmotic loss of water across body surfaces (Marshall 

and Grosell, 2006). Under these conditions, the kidney is primarily involved in 

conservation/reabsorption of water that is limited to the excretion of excess 

divalent ions (Ca2+, Mg2+ SO42-) in a small volume of isotonic (relative to blood) 

urine (Marshall and Grosell, 2006; Evans, 2008). Conversely in the FW 

environment, fish body fluid is hypertonic to the environment, the main challenge 

of water entering the body via osmosis from permeable body surfaces (gill and 

skin) requires the compensatory production of a large volume of hypoosmotic 
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urine accompanied by ion reabsorption such as Na+ and Cl- from the filtrate 

(Marshall and Grosell, 2006; Evans, 2008). 

The kidney of marine teleosts generally cannot produce urine that has a 

higher salt concentration than the blood because of the lack of Henle’s loop and 

collecting duct system as seen in mammalian kidney or countercurrent tubule 

flow as observed in elasmobranchs and lamprey (McDonald, 2007; Evans, 2008). 

However, there have been reports of hyperosmotic urine (Fleming and Stanley, 

1965; Hickman, 1968; Kowarsky, 1973; Stanley and Fleming, 1964) and 

McDonald and Grosell (2006) measured urine osmolalities that were at times 

greater than those in plasma at a range of environmental salinities in the gulf 

toadfish, Opsanus beta. Strikingly, amongst these examples only the Plotosidae 

catfish Cnidoglanis macrocephalushas been shown to produce hyperosmotic 

urine under steady state conditions (Kowarsky, 1973). A study of kidney 

morphology in P. lineatus (Ogawa, 1959) did not suggest anything particularly 

unusually; however, Hentschel and Elger (1987) noted that the distal tubule has 

an unusual coiled arrangement and that the collecting tubule has renal chloride 

cells suggestive of a salt secreting role. In addition, nothing is known about renal 

ion transport protein expression and thus a molecular investigations of the unique 

marine catfish kidney is warranted to elucidate the underlying mechanisms of 

hyperosmotic urine formation. 

1.5 Intestine 

Drinking is an important component of marine fish osmoregulation to 

compensate for the passive loss of water by osmosis. The gastrointestinal tract 

of marine teleost is involved in osmoregulation through the desalination of 

imbibed seawater by the esophagus accompanied by isosmotic water uptake 

across the intestine (Usher et al., 1991; Gentz et al., 2011). Solute coupled 

localised hypertonicity of the lateral intercellular space is the proposed 

mechanism for intestinal fluid absorption (see reviews by Grosell 2011; 

Whittamore 2012). This mechanism is referred to as "the standing gradient 

model” (Larsen and Møbjerg, 2006) and the osmotic and/or ionic local gradients 

between the gut lumen and the lateral intercellular space are driven by 

basolateral NKA (see review by Grosell 2011) associating with apical NKCC for 
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uptake of NaCl (Gregório et al., 2013). Water follows the movement of ions. 

Increased drinking rate, because of greater fluid loss by diffusion (McDonald and 

Grosell, 2006), more desalination via esophageal or intestine (Madsen et al., 

2014) subsequent more salt loading to the body by ingested SW might be 

expected by exposing to the HSW of the fish. Thus the intestinal ion and water 

absorption becoming more important in the later condition (Guffey et al., 2011; 

McDonald and Grosell, 2006). Since there have not been found any reports of 

the marine catfish intestines (anterior and/or posterior) physiological role in 

osmoregulation, in this thesis various salinities and the potential compensatory 

function in DO ligation period have been addressed.  

In seawater fish, the gill is important for acid-base regulation while because 

of much lower urine flow rates than in freshwater teleosts (Marshall and Grosell, 

2005), thus potential very limited renal adjustment of acid-base balance lead to 

less role compare freshwater fish (Claiborne et al., 1994, 2002, Deigweiher et al., 

2008). Generally, the interplay between the intestinal tract and the gills of marine 

teleost and in contrast between the gills and the kidney of freshwater teleost 

maintain acid-base balance (see review by Grosell 2011). In a hyperosmotic 

environment created cellular acid-base disturbances by osmoregulation is unique 

to marine teleost fish. The inter conversion and transportation of the ions involving 

as acid-base equivalents (H+ and HCO3-) in enterocytes are required for 

maintaining pH homeostasis (Taylor et al., 2010).  

1.6 Gills 

The presence of the specialized salt secreting DO now places a question 

mark over the ionoregulatory importance of the gill that dominates in other 

teleosts (Evans et al., 2005). Apart from descriptive morphological studies more 

than 38 years ago (Pucke and Umminger, 1979), nothing is known about the 

molecular machinery of the gills in this species. In marine elasmobranches, which 

also have an extrabranchial salt secreting organ (rectal gland), the gill functions 

primarily in acid-base regulation and not in ion (NaCl excretion) regulation (Evans 

et al., 2005). It is possible that in the marine catfish, a similar partition in function 

is present. This question of the functional role of the gill will be addressed through  

different salinities acclimations and DO ligation.  
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The fish gill is also the site of excess nitrogen excretion, in the form of 

ammonia, and it has been suggested that there is a link of ion regulation to the 

ammonia excretion pathways (Wright and Wood, 2009). Central to ammonia 

excretion is the expression of the non-erythroid Rhesus (Rh) glycoproteins that 

facilitate ammonia transport in fish as NH3 (Nakada et al., 2007; Nawata et al., 

2008; Braun et al., 2009; Wright and Wood 2009, 2012). Furthermore, NKA and 

NKCC may also be important to ammonium ion (NH4+) transport confirmed 

(Evans et al., 2005; Hwang et al., 2015) because of the similarities in the 

hydration radius of NH4+ and K+ allowing substitution at transport sites (Randall 

et al., 1999; Alam and Frankel, 2006). We pose the hypothesis that there is a 

potential additional physiological role for the DO in contributing to ammonia 

excretion. 

1.7 Aims of thesis  

The marine Plotosidae catfishes are unique amongst the teleosts in having 

an extrabranchial salt gland, the dendritic organ. The central hypothesis of the 

thesis is that the dendritic organ is a salt secreting gland. To address this 

hypothesis the following objectives were designed to address the molecular and 

physiological characterization of this organ as well as its impact on the other iono 

regulatory organs: the gills, kidney and intestine. 

1- Molecular, biochemical, morphological and physiological characterization of P. 

lineatus salt regulatory mechanisms (DO, gill, kidney and intestine).  

2- The physiological significance of the DO in ion regulation will be addressed 

through the characterization of the responses of the marine catfish to 

experimental salinity changes (brackishwater to hypersaline water). 

i) Determine salinity challenge response from gene to whole animal level.  

ii) DO ligation experiments to elucidate its importance and compensatory 

responses of gill, kidney and/or intestine. 

These results will also be used to address the hypothesis that the DO has the 

same conserved secondary active Cl- secretory mechanism found in salt 
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secreting organs in other vertebrate groups and that DO has a role in 

ammonia excretion. 

3- RT-PCR based techniques were used to identify P. lineatus ion transport 

protein orthologues and expression quantified by qPCR and protein level 

expression determined using immunoblotting and immunohistochemistry. 

1.8 Organization of the thesis 

The Doctoral Thesis is organized into seven chapters. Chapter one consists 

on a general introduction where mechanisms in seawater and freshwater 

osmoregulation; the rapid response and/or acute transition to changing 

environmental salinity; and background on marine catfish will be provided. 

Specifically, the general biology of the marine catfish; a perspective on marine 

catfish which is unique amongst the teleosts that possess the DO; a kidney that 

is unusual in producing a hyperosmotic urine; and why do research on marine 

catfish? Chapter two covers general materials and methods that are used in most 

of the following research chapters to avoid repetition. The following four chapters 

are structured as independent research chapters covering salinity effects (CH3), 

dendritic organ ligation (CH4), molecular characterization of the kidney (CH5), 

DO as an ammonia excretory organ (CH6). The final chapter (CH7) is a synthesis 

chapter that will integrate the results from the research chapters into a general 

discussion.  

1.8 Novel aspects of the thesis 

 There is a high degree of novelty in the thesis, due to the significance of the 

possession of the DO to develop a link to converge evolution with the tetrapod 

lineage in addition to the unusual production of blood-hyperosmotic urine in the 

kidney of this vertebrate. Non-mammalian vertebrates are generally incapable of 

urinary concentration. Thus, this work was contributed not only to the elucidation 

of the basic mechanisms of salt regulation in marine catfish but will also offer us 

some insight into the evolution of salt regulatory mechanisms under different 

circumstances. This work may also offer us some insight into the evolution of salt 

regulation in vertebrates in general. As consistency in form and function of salt 
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gland have been conserved throughout the evolution of marine vertebrates 

suggesting that the genetic mechanism leading to the development of this tissue 

type may also be conserved (Babonis et al., 2009). Thus, studying this system 

may reveal a mechanism by which these glands have been co-opted from 

unspecialized gland precursors as reported in other analogous salt glands. 
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2. Material and Methods   

This chapter covers the general methods for animal holding, salinity acclimation, 

sampling, and analytical techniques. Analytical techniques, include histological 

analysis, ion quantification,  

2.1. Modulation of salinity status and animals collection 

      Marine catfish Plotosus lineatus (~8-13 g) were purchased from Tropical Marine 

Centre (TMC) Portugal and transported to Laboratory of Ecophysiology CIIMAR (Porto). 

All fish were acclimatized to laboratory conditions in a 100 L tank with seawater (SW) 

34‰, mechanical and biological filtration with aeration and normal photoperiod for three 

weeks prior to the start of the experiment to avoid any confounding effects of handling 

stress on osmoregulation (Biswas et al., 2006). Seawater was made up using Instant 

Ocean® salt. During this period the fish were fed twice daily with diced fish fillets except 

four days before samplings. Salinity, temperature (range at 26-28ºC) and pH (range 7.7–

7.9) were measured and fish behaviour was checked daily. 

 

2.2. Salinity acclimation  

     Three salinity levels were investigated for two weeks [brackishwater (BW) 3‰, 

seawater (SW-control) 34‰, hypersaline water (HSW) 60‰]. Initially, individuals were 

transferred to a 30 L tank, in which salinity was changed in a stepwise fashion, from 34 

(main tank) to 3 and 60‰ (smaller 30L tanks), by 5‰ per day. Saline media were 

made from Instant Ocean® salts prepared from a stock solution of 100‰ and 

diluted to the appropriate salinities. Salinity was reduced by removing water from 

the smaller tanks and adding an appropriate amount of dechlorinated tap water. 

Fish were kept in the same tank to decrease handling stress. In order to 

standardize the water change disturbance between the different groups, a water 

change of the SW-control group was also conducted. The mortality in these was 

monitored and moribund fish removed from the experimental tanks. Fish were 

maintained in the lab and used according to the Portuguese Animal Welfare Law 

(Decreto-Lei no.197/96) and animal protocols were approved by CIIMAR/UP. 

 

2.3. Sampling    

Individual marine catfish were netted and euthanized in a separate smaller 

tank (1L) with an overdose of ethyl-m-amino benzoate-MS-222 (1:5000, pH 7.5 

adjusted with NaHCO3; Pharmaq UK), weighted (±0.01g) and total length (mm) 
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measured. Blood was collected following caudal transaction using a heparinized 

capillary tube and was centrifuged at 13000xg using a hematocrit centrifuge 

(Heraeus Pico 17 Centrifuge, Thermo Scientific) for 5min at room temperature. 

Haematocrit (Hct) was measured in duplicate to the nearest millimeter then 

converted to percentage of total blood volume. The isolated plasma was then 

frozen in liquid nitrogen and kept at -80°C. The following tissues were collected: 

gill, dendritic organ (DO), kidney, anterior and posterior intestine, liver, heart, 

brain, muscle, skin and eye then were immediately frozen in liquid nitrogen and 

stored at -80°C. Gill filaments samples from the second arch on the left side, DO, 

kidney,  and intestine were also excised, immersed in 100μl of ice-cold SEI buffer 

[sucrose (150 mM), EDTA (10 mM), imidazole (50 mM), pH 7·3] and frozen at 

−80°C. An additional piece of deskinned epaxial muscle (~1g) was collected into 

a pre-weighed tube for water and ion analysis. In addition sets of six individuals, 

blood sampling was done as before (see above), and the body cavity opened by 

a ventral incision and immersion fixed in 10% neutral buffered formalin (NBF 

10%) overnight at 4°C. Fixed tissue was then stored in 70% ethanol at 4°C.  

 

2.4. Histology Analysis 

       Gill, DO, kidney, and intestine were excised from the fixed carcass and 

placed into histology cassettes for processing for paraffin embedding. Tissues 

were dehydrated through an ethanol series, cleared with Clear Rite (Richard Allen 

Scientific, Kalamazoo MI) and embedded in paraffin (Type 6; Richard Allen 

Scientific). Sections were cut at 5μm with a Reichert Biocut 2030 microtome and 

stained with hematoxylin-eosin, Alcian blue (pH 2.5) and/or Periodic Acid Schiff 

staining protocols. Micrographs were taken with a Leica DFC300FX digital colour 

camera mounted on a Leica DM 6000 B microscope. Images were imported into 

Photoshop CS3 to resize and adjust brightness and contrast while maintaining 

the integrity of the data. 

 

2.5. Ion quantification   

     One gram of muscle tissue was collected (wet mass) then dried to constant 

mass at 60°C (dried mass) for the determination of muscle water content [MWC= 

(wet.mass -dry.mass)/wet.mass]. 



17 
 

The dried muscle samples were then digested in five volumes of 65% nitric 

acid for 3 days. The Na+ and K+ concentrations were quantified using a flame 

photometer following dilution in milliQ water (model PFP7; Jenway, Felsted, UK) 

and expressed as µmol · g-1 wet mass. Plasma samples were also analysed by 

flame photometery (PinAAcle 900T Atomic Absorption Spectrophotometer; 

Perkin Elmer Waltham MA). Chloride concentration was measured in plasma 

samples by reaction with mercuric thiocyanate to form mercuric chloride and free 

thiocyanate ions. Thiocyanate ions react with ferric ions to form an orange 

complex of ferric thiocyanate, the absorbance of which is proportional to the 

amount of chloride in the specimen, and it was measured at 480 nm (Küffer et 

al., 1975). 

     

2.6. Measurement of Na+/K+-ATPase activity 

     The NKA activity was measured according to the microassay protocol of 

McCormick (1993) with some modifications.  

     The filaments were thawed and homogenized in SEI buffer containing 0·1% 

deoxycholic acid at 5800 RPM for 2x15s in a Precellys 24 homogenizer (Bertin 

Technologies, Montigny-le-Bretonneux, France) and immediately centrifuged at 

15000xg for 5 minutes at 4ºC to remove large debris. For the assay, 10μl of the 

supernatant were added to 200μl of pH 7.5 assay mixture [imidazole buffer (50 

mM), phosphoenolpyruvate (PEP) (2·8 mM), nicotinamide adenine dinucleotide 

(NADH) (0·22 mM), ATP (0·7 mM), lactate dehydrogenase (LDH) (4·0 U) and 

pyruvate kinase (PK) (5·0 U)]including the following salts NaCl (47.2 mM), MgCl2 

(2.6 mM) KCl (21 mM)].Assays were run in two sets of duplicates, one set 

containing the assay mixture and the other assay mixture plus ouabain (1 mM, 

Sigma–Aldrich Chemical Co.;St.Louis MO) to specifically inhibit NKA activity. 

ATPase activity was detected by enzymatic coupling of ATP dephosphorylation 

to NADH oxidation measuring at 340nm with a temperature controlled plate 

reader (Powerwave 340; Biotek, Winooski, VT) and Gen5™ reader control and 

data analysis software for 10-20 min at 25°C. Total protein concentrations were 

determined using the Bradford (1976) dye binding assay with a bovine serum 

albumin (BSA) standard at 600nm and the results are expressed as μmoles ADP 

mg−1 protein h−1. 
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2.7. Immunoblotting  

     The tissue samples were homogenized in 50mM imidazole buffer pH 7.5 for 

2x15s in a Precellys 24 homogenizer (Bertin Technologies) and immediately 

centrifuged at 15.000xg for 5 minutes at 4ºC. An aliquot of the supernatant was 

mixed with an equal volume of 2x Laemmli’s buffer (Laemmli, 1970), heated for 

10 minutes at 70ºC and then stored at 4ºC. Total protein was measured in the 

leftover supernatant using Bradford protein assay method with Coomassie 

Brilliant Blue G-250 (Bradford, 1976) using bovine serum albumin (BSA) as a 

standard. Protein concentration of the heated samples in Laemmli’s buffers was 

adjusted to 1 μg μl-1 using 1x Laemmli’s buffer in order to have uniform loading 

volumes of sample. Samples were loaded at 10-20μg per well onto 1.5mm thick 

mini vertical polyacrylamide gels (10% T resolving gels with 4% T stacking gels) 

using the BioRad MiniProtean III system (BioRad Laboratories; Hercules, CA) 

and was run at 75V for 15 minutes following a 1 hour run at 150V. Gels were then 

equilibrated in transfer buffer (48mM Tris, 39 mM glycine, 0.0375% SDS) and 

bands were transferred to PVDF membranes (HybondTM ECL; GE Healthcare) 

using a semi-dry transfer cell (BioRad Trans-Blot SD) for 30minutes at 13V. 

Membranes were then rinsed in TTBS [0.05% Tween-20 in Tris Buffered Saline 

(20mM Tris, 500mM NaCl) pH 7.4] and blocked with 10% powdered skim milk in 

TTBS (blotto) for 1h. Blotto was tapped off and membranes rinsed with TTBS 

three times for 5 minutes each and were probed with heterologous bovine α-

subunits of NKA (αR1) (1:500, Wilson et al., 2007), mouse monoclonal antibody 

of NKCC1 (T4) (1:200, Tipsmark et al., 2002, Wilson et al., 2004, 2007), a 

heterologous rabbit anti-bovine cytosolic CA polyclonal antibody (1:2000, Abcam 

Cambridge UK, Randall, 2014) , V-ATPase B subunit (B2) (1:200, Wilson et al., 

2007), Rhesus (Rh) proteins (Rhag, Rhbg) (1: 2000, Nakada et al., 2007) and 

Heat shock protein (Hsp70) (1:10000 Sigma-Aldrich) diluted in 1% BSA/TTBS, 

overnight at room temperature in 50 ml falcon tubes using a attached to a 

rotisserie (LabQuake2; Barnstead International, Dubuque, IA). Then membranes 

were rinsed with TTBS and incubated for 1 hour with a goat anti-rabbit or anti-

mouse IgG secondary antibodies conjugated to horseradish peroxidase, diluted 

in TTBS (1:50,000). Membranes were rinsed a final time with TTBS (3x 5min) 

and bands were detected by enhanced chemiluminescence (ECL) using 

Immobilon Western chemiluminescent HRP substrate (Millipore Corporation, 
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Billerica, MA U.S.A.). Images were acquired using a luminescent image analyzer 

Fujifilm LAS-4000 mini and image reader software LAS-4000 version.2.0. 

Intensity of band signals were quantified using an image analysis software 

program Multi Gauge v3.1 (FUJIFILM, Tokyo Japan). Membranes were stripped 

with low pH stripping buffer (25mM Glycine-HCl, 1% SDS, pH 2) for 30 minutes 

on an orbital shaker, rinsed in TTBS, blocked and reprobed with different 

antibodies 

 

2.8. Immunohistochemistry 

   The paraffin serial sections were cut, and collected onto APS (3- 

aminopropyltriethoxysilane; Sigma Aldrich) coated slides , left to air dry 

completely and stored in slide boxes. Slides for immunostaining were dewaxed 

at 58°C for 30min, followed by a series of xylene baths and rehydrated through a 

descending ethanol series. Sections were then dried at 37°C for 10min, circled 

with a hydrophobic barrier, liquid blocker (Super PAP pen; Sigma Aldrich).  

Antigen retrieval was performed on some sections to improve antibody 

immunoreactivity (Shi et al. 2011). Some rehydrated sections in TPBS (0.05% 

tween-20 in  10 mM Na2HPO4, 1.8mM KH2PO4, 2.7mM KCl 137mM NaCl, pH 

7.4) were pretreated with 1% sodium dodecyl sulfate (SDS) in PBS (Brown et al., 

1996) for 5min at room temperature , then in tap water to remove the SDS then 

three times 5min in distilled water (DW) followed by TPBS. Alternatively sections 

were treated with 0.05% citraconic anhydride (pH 7.3) for 30min at 98°C 

(Namimatsu et al., 2005). A combination of these pretreatments was also 

performed on a subset of sections.  

All sections were then blocked with 5% normal goat serum (NGS)/1% 

BSA/0.05 % Tween-20 in PBS (TPBS), pH 7.4, for 20 min, 100µl for each section, 

and incubated with primary antibody α-subunits of NKA (αR1), NKCC1 (T4), 

CFTR (R&D systems), Carbonic anhydrase (CA), V-ATPase (B2), and Rhesus 

(Rh) proteins (Rhag, Rhbg), in 1% BSA/TPBS/0.05% sodium azide, pH 7.3, for 

1–2h at 37°C in humidity chamber. Sections were then rinsed in TPBS for 5, 10 

and 15min following incubation with secondary antibody goat anti-mouse Alexa 

Fluor 568 and/or goat anti-rabbit Alexa Fluor 488-conjugated, both diluted 1:500 

for 1h at 37°C. Sections were rinsed again as mentioned above except that DAPI 

(4',6-diamidino-2-phenylindole) in TPBS diluted 1:25000 was included in second 
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10min rinse step. Coverslips were then mounted with 1:1 glycerol PBS, 0.1% 

NaN3. Sections were viewed on a Leica DM6000B wide field epifluorescence 

microscope and micrographs taken with a digital camera (DFC340FX, Leica 

Microsystems, Wetzlar, Germany) using Leica LAS AF acquisition software. 

Optimal exposure settings were predetermined and all images captured under 

these settings (Reis-Santos et al., 2008).  

 

2.9. Molecular genetics approach 

2.9.1. Isolation and quantification of RNA and synthesis of complementary 

DNA  

Gill, dendritic organ, kidney, and intestine, were excised from marine catfish 

and freeze-clamped in liquid nitrogen. Total RNA was extracted using silica-

based columns (Aurum Total RNA mini kit) according to the manufacturer’s 

recommendations (Bio- Rad, Hercules, CA, USA). The bead mill (Precellys 24; 

Bertin Technologies, Montigny-le- Bretoneux, France) was used for 

homogenization by using 6400 RPM of two cycles for 15 s with 5 s interval. The 

Eppendorf MiniSpin Plus (Hamburg, Germany) was used for centrifuging of 

homogenates for 2 min at 14000 g at room temperature and for all spin column 

steps in the protocol. The DNaseI treatment was performed on-column. A 

Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA) was 

used to assess the total RNA concentration and purity. Only samples with a λ 

260:280 nm ratio between 1.8 and 2.2 were used. Formaldyde gel 

electrophoresis (Bio-Rad) (1% agarose/ 2.2M formaldehyde/ MOPS) was 

performed on denatured 1µg samples stained with GelRed (Biotium, Hayward, 

CA, USA) for determining RNA integrity. Total RNA samples were stored at 

−80°C. For cDNA synthesis 1 μg of total RNA was converted to cDNA  in a 20 µl 

reaction volume (iScript cDNA kit Bio-Rad). Reactions were carried out in a 

Doppio thermocycler (VWR International Ltd, Lisbon, Portugal) at 25°C for 5 min; 

42°C for 30 min; and 85°C for 5 min. Samples were stored at −20°C. 

 

2.9.2. Gene isolation 



21 
 

Consensus primers were designed from a conserved region of β-actin (actb, 

Sparus aurata, Santos et al., 1997), Na+/K+-ATPase  subunit (atp1a, Anguilla 

anguilla, Cutler et al., 1995), Cystic fibrosis transmembrane conductance 

regulator [cftr (abcc7 Fundulus heteroclitus, Petromyzon marinus, Anguilla 

Anguilla,, , Oryzias latipes, Marshall, 2002; Singer et al., 1998; Wilson et al., 

2000b; Ferreira-Martins et al., 2016 Wilson et al., 2007, Hsu et al., 2014, cytosolic 

carbonic anhydrase (ca17; Danio rerio, Ferreira-Martins et al., 2016), putative 

anion transporter Cl-/HCO3- exchanger (slc26a6, Danio rerio, Tetraodon 

nigroviridis, Anguilla anguilla, Xenopus laevis, Homo sapiens, Grosell et al., 

2009), non-erythroid Rhesus C glycoprotein (rhcg; Danio rerio, Ictalurus 

furcatus, Ictalurus punctatus,) by multiple sequence alignment (MultAlin, Corpet, 

1997). Nucleotide sequences and amplicon sizes of these primers are shown in 

Table 2.1. 

 

2.9.3. RT-PCR and RT real-time PCR 

The PCRs were performed using 0.4 µl of sample cDNA, 0.08 mM dNTPs, 

0.4 mM MgCl2, 0.4 µM of each primer and 0.2 U GoTaq® DNA polymerase 

(Promega, Madison, WI, USA) and 1 µl of 5× Green GoTaq® reaction buffer in 

10 µl reaction volumes for actin PCRs and Phusion Flash (Thermo Fisher 

Scientific) master mix for the other interested genes. Primers were designed 

using Primer3 (Rozen and Skaletsky, 2000) and were initially tested for spec-

ificity by RT-PCR.  

GoTaq reactions consisted of an initial denaturation at 95°C for 2min 

followed by 30 cycles of: 95°C for 30 s; annealing at 60°C for 30 s; extension at 

72°C for 5 s; and ending with a final extension for 5 min at 72°C. The Phusion 

Flash reactions consisted of an initial denaturation at 98°C for 10 s followed by 

35 cycles of: 98°C for 1 s; annealing at 56, 58 or 60°C for 5 s; extension at 72°C 

for 5 or 10 s; and ending with a final extension for 1 min at 72°C. The PCR 

products were separated on 2% agarose TBE (Tris-borate-EDTA) gels at 80 V 

to confirm the size of amplicons. All gels were stained with GelRed and images 

acquired using a Fujifilm LAS-4000 Mini luminescent image analyzer (Fujifilm, 

Tokyo, Japan). A DNA ladder 1kB or 100 bp (Bioron GmbH, Ludwigshafen, 

Germany), depending on the amplicon size, was run on every gel to determine 



22 
 

the size of the amplification products. Single bands of the correct predicted size 

for each PCR reaction was cut and cleaned using Illustra GFX PCR DNA and 

Gel Band Purification Kit (GFX column, GE Healthcare, Carnaxide, Portugal) 

and directly sequenced (StabVida, Oeiras, Portugal). The product was 

confirmed using tBLASTx. The alignment was done via BioEdit (Version 7.0.9.0; 

Hall, 1999) and ClustalW was used for sequence assembly. It was not possible 

to isolate CA transcripts from marine catfish using direct sequencing because of 

low yield so after cleaning with the GFX kit, PCR product were cloned using the 

pGEM-T Easy Vector system (Promega) with blue/white colonies inwhich the 

positive (white) were grown in LB broth with ampicillin. Plasmids with the correct 

insert size determined by EcoR1 restriction digest were cleaned using the Illustra 

plasmid kit (GE Healthcare, Carnaxide Portugal) and were sequenced 

(StabVida). Partial sequences of ca17 were isolated. 

Relative levels of mRNAs for sodium/potassium ATPase α1-subunit 

(atp1a1/NKA-a), Cystic fibrosis transmembrane conductance regulator (cftr), 

Carbonic anhydrase (ca17), Putative Anion Transporter Cl-/HCO3- exchanger 

gene (slc26a6), Non-erythroid Rhesus C glycoprotein (rhcg1) genes were 

quantified by real-time RT-PCR analysis using SYBR green with an iQ5 Multicolor 

Real-Time PCR Detection System (Bio-Rad). Each cDNA sample was diluted 25 

times and then 5 µl added to a reaction mix containing 10 µl of 2× iQ SYBR Green 

Supermix (Bio-Rad) and 250 nM of each primer in a total volume of 20 µl. The 

cycle profile was as follows for the given primers pairs: 95°C for 3 min, followed 

by 35 cycles of 95°C for 10 s, 56, 58 or 60°C (see supplemental table 1) for 30 s 

and 72°C for 3-5 s. The generation of a melt curve for every PCR product and 

preparation of a dilution series has been used to confirm the specificity of the 

assays and check the efficiency of the reactions, respectively. The bact, was used 

as the reference gene. The analysing of the expression levels of the genes of 

interest was done based on cycle threshold (CT) values by using the comparative 

CT method (2−ΔΔCT method) (Livak  and Schmittgen, 2001.). Melt curve analysis 

was performed after each run to confirm single products were amplified. In 

addition, a subset of samples were run on 2% agarose TBE (Tris-borate-EDTA) 

gels to confirm the presence of a single amplified product at the predicted correct 

size.  
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anhydrase; slc26a6, Putative Anion Transporter Cl-/HCO3- exchanger gene; rhcg, 

Non-erythroid Rhesus C glycoprotein) 
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Table 2.3 Real time RT-PCR conditions using iQ SYBR green supermix. actb, β-

Actin;atp1a1, Na+/K+-ATPase; cftr, Cystic fibrosis transmembrane conductance 

regulator; ca17, Cytosolic carbonic anhydrase; slc26a6, Putative Anion 

Transporter Cl-/HCO3- exchanger gene; rhcg, Non-erythroid Rhesus C 

glycoprotein). 
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Abstract   

In the present study, we investigated the effect of salinity acclimation 

[brackishwater (BW) 3‰, seawater (SW-control) 34‰ and hypersaline water 

(HSW) 60‰] on the osmoregulatory abilities of marine catfish through 

measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase 

(NKA) activity and ion transporter expression in gills, dendritic organ, kidney and 

intestine using immunoblotting (IB), immunohistochemistry (IHC) and PCR. 

Acclimation to HSW increased plasma osmolality and ions (Na+, Cl-, Ca2+), and 

hematocrit, and decreased MWC indicating an osmoregulatory challenge. DO 

NKA activity and protein were significantly higher than other tissues at all 

salinities; although, NKA activity only increased in kidney and posterior intestine 

with HSW. However, DO mass was higher in HSW, so although specific NKA 

activity was actually lower than in SW, total DO NKA activity was higher, 

indicating higher overall capacity at HSW. BW acclimation resulted in lower NKA 

activity in gill, kidney and DO. Fish were better able to regulate Cl- levels and the 

resulting strong ion ration (SIR) in BW suggests a metabolic acidosis. Elevated 

Hsp70 levels in DO in HSW indicated a cellular stress response. A strong 

NKA/NKCC1 immunolocalization was observed in DO parenchymal cells, which 

was very rare in gills ionocytes. NKCC1 expression was highest in DO at HSW 

but not detectable by immunoblot in other tissues. CFTR did localize apically to 

DO NKA-IR cells although not consistently. Taken together, the demonstration of 

high NKA activity in DO co-expressed with NKCC1 and apical CFTR indicates 

the presence of the conserved secondary active Cl- secretion mechanism found 

in other ion transporting epithelia indicating the convergent evolution of salt 

secreting organs in vertebrates. 

 

3.1. Introduction 

Osmoregulatory organs including the gills, kidney and digestive tract are 

involving in maintenance of body fluid balance as a complex process (Takei and 
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Hwang, 2016). Gills are the first organ to directly sense external osmotic changes 

that leading to active uptake (in freshwater) or excretion (in saltwater) of 

monovalent ions (Na+, K+, and Cl-) to maintain plasma osmolality within a narrow 

range depending on the environmental salinity (Takei and Hwang, 2016). In 

marine teleosts which are hypoosmotic to the environmental salinity, drinking of 

seawater leads to the absorption of ingested seawater via intestine with Na+ and 

Cl- (see review Grosell, 2011); however, the role of intestine is minor in 

osmoregulation of freshwater fishes which are hyperosmotic to the environment 

(Takei and Hwang, 2016). The critical role of marine teleosts kidney for divalent 

ion (Mg2+, Ca2+, and SO42-) secretion has been reported (Beyenbach, 2004), 

while in freshwater fishes a large amount of dilute urine it actively secreted to 

compensate for the large water influx via osmosis across the body surfaces 

(Beyenbach, 2004; Evans et al., 2008).  

In freshwater or seawater, regulation of the osmolality and ion levels of body 

fluids of fishes is done actively (Edwards and Marshall, 2012). In euryhaline 

species from freshwater or marine origin plasma osmolalities varied between 

160-410 or 235-414 mOsm/kg H2O, respectively (Freire and Prodocimo, 2007). 

The effects of changing salinity on plasma osmolality and circulating electrolytes 

has been reported in a number of euryhaline teleosts (Christensen et al., 2012; 

Timsak et al., 2008; Outtara et al., 2009; Sardella et al., 2008; Kang et al., 2008; 

Kato et al., 2005; Bystriansky et al., 2006; Watson et al., 2014; Tait et al., 2017). 

The dendritic organ is a small fleshy external organ situated on the ventral 

caudal surface of P. lineatus, in both sexes from early life stages, very close to 

the urogenital papilla (Hirota, 1895; Lanzing 1967; Laurenson et al., 1993). The 

parenchymal cells of the DO form glandular acini that are covered by a stratified 

squamous epithelium (Van Lennep and Lanzing, 1967; and Van Lennep, 1968). 

Descriptive morphological studies in the gills and DO of P. lineatus suggested 

similarity to the gills and rectal gland of elasmobranchs, respectively (Pucke and 

Umminger, 1979; Doyle and Gorecki, 1961; Van Lennep and Lanzing, 1967; and 

Van Lennep, 1968). In addition, the similarity of rectal glands from elasmobranchs 

and specialized salt glands from marine tetrapods (e.g., the nasal salt gland of 

marine birds, lachrymal gland of marine turtles, and lingual glands in sea snakes, 
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saltwater crocodiles) to excrete a concentrated NaCl solution has been reported 

(Shuttleworth and Hildebrandt, 1999). The characteristics of parenchymal cells of 

these glands and the mechanism of NaCl excretion is similar as teleost gill 

chloride cells (secondary activity Cl- secretion) (Marshall and Grosell, 2006; 

Holmgren and Olsson, 2011). The numerous independent origins of these salt 

glands leads to the hypothesis of a convergent evolution of salt glands across 

taxa (Babonis and Evans, 2011). 

Since the molecular machinery of the osmoregulatory organs (gill, DO, 

kidney, intestine) in P. lineatus are unknown, for the first time in present study we 

addressed their molecular mechanisms using a combination of enzymatic 

analysis, immunohistochemistry, immunoblotting and PCR together with 

standard osmoregulatory end points in fish acclimated to different salinities. In 

doing so we also addressed the possibly of a conservation of mechanisms for ion 

transport in secretory cell similar to other vertebrate salt glands with respect to 

co-option events. 

3.2. Material and Methods   

3.2.1. Animals 

      The purchased marine catfish Plotosus lineatus (~8-13 g) from Tropical Marine 

Centre (TMC) Portugal were transported to Laboratory of Ecophysiology CIIMAR (Porto). 

All fish were acclimatized to laboratory conditions in a 100 L tank with seawater (SW) 

34‰, mechanical and biological filtration with aeration and normal photoperiod for three 

weeks prior to the start of the experiment to avoid any confounding effects of handling 

stress on osmoregulation (Biswas et al., 2006). For more details regarding the conditions 

of holding of fish see Chapter 2. 

 

3.2.2. Salinity acclimation  

     Three salinity levels were investigated for two weeks [brackishwater (BW) 3‰, 

seawater (SW-control) 34‰, hypersaline water (HSW) 60‰]. Initially, individuals were 

transferred to a 30 L tank, in which salinity was changed in a stepwise fashion, from 34 

(main tank) to 3 and 60‰ (smaller 30L tanks), by 5‰ per day. Saline media were made 



 

30 

 

from Instant Ocean® salts prepared from a stock solution of 100‰ and diluted to the 

appropriate salinities. Fish were maintained in the lab and used according to the 

Portuguese Animal Welfare Law (Decreto-Lei no.197/96) and animal protocols were 

approved by CIIMAR/UP. For more details, see Chapter 2. 

 

3.2.3. Sampling    

Individual of marine catfish were netted then euthanized in a separate smaller tank 

(1L) with ethyl-m-amino benzoate-MS-222 (an overdose 1:5000, pH 7.5 adjusted with 

NaHCO3; Pharmaq UK), weighted (±0.01g) and total length (mm) measured. Blood was 

collected then centrifuged at 13000xg for 5min at room temperature (Heraeus Pico 17 

Centrifuge, Thermo Scientific). Hematocrit (Hct) was measured then converted to 

percentage of total blood volume. The isolated plasma was then frozen in liquid nitrogen 

and kept at -80°C. The following tissues were collected: gill, dendritic organ (DO), kidney, 

anterior and posterior intestine, liver, heart, brain, muscle, skin and eye then were 

immediately stored at -80°C. Gill filaments samples from the second arch on the left side, 

DO, kidney, and intestine were also excised, immersed in 100μl of ice-cold SEI buffer 

and frozen at -80°C. An additional piece of deskinned epaxial muscle (~1g) was collected 

into a pre-weighed tube for water and ion analysis. In addition sets of six individuals the 

body cavity opened then immersion fixed in 10% neutral buffered formalin (NBF 10%) 

then stored in 70% ethanol at 4°C.  

 

3.2.4. Histological Analysis 

       Gill, DO, kidney, and intestine were excised from the fixed carcass were dehydrated 

through an ethanol series and embedded in paraffin (Type 6; Richard Allen Scientific). 

Sections were cut at 5μm (Reichert Biocut 2030 microtome) and stained with 

hematoxylin-eosin, Alcian blue (pH 2.5) and/or Periodic Acid Schiff staining protocols. 

Using a Leica DFC300FX digital colour camera mounted on a Leica DM 6000 B 

microscope micrographs were taken then were imported into Photoshop CS3. 

 

3.2.5. Ion quantification   

     One gram of muscle tissue was collected then dried at 60°C for the determination of 

muscle water content (MWC). The dried muscle samples were digested in 65% nitric 
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acid for 3 days. The Na+ and K+ concentrations were quantified using a flame photometer 

(model PFP7; Jenway, Felsted, UK) and expressed as µmol · g-1 wet mass. Plasma 

samples were also analysed by flame photometery (PinAAcle 900T Atomic Absorption 

Spectrophotometer; Perkin Elmer Waltham MA). Chloride concentration was measured 

in plasma samples was measured at 480 nm (Küffer et al., 1975). 

     

3.2.6. Measurement of Na+/K+-ATPase activity 

     The NKA activity was measured according to McCormick (1993), Wilson et al. 

(2007b). After thawing stored samples in 300 μl SEI buffer, final concentration of 

0.1% of sodium deoxycholate was added. Fully disintegrated homogenizing done 

by a motorized pestle homogenizer then were centrifuged (3,200 x g for 30 s at 

4°C) and finally samples of 10 μl of supernatant were run in two duplicate sets 

for the ATPase assay at 340nm with a temperature controlled plate reader 

(Powerwave 340; Biotek, Winooski, VT) and Gen5™ reader control and data 

analysis software for 10-20 min at 25°C. One set containing the assay mixture 

and the other assay mixture plus ouabain (1 mM, Sigma–Aldrich Chemical 

Co.;St.Louis MO) to specifically inhibit NKA activity. Total protein were 

determined in the remaining supernatant using the Bradford (1976) at 600nm and 

the results are expressed as μmoles ADP mg−1 protein h−1. 

 

3.2.7. Immunoblotting  

     The tissue samples were homogenized in imidazole buffer (2x15s in Precellys 24 

homogenizer, Bertin Technologies) then immediately centrifuged at 15.000xg for 5 

minutes at 4ºC. The supernatant was mixed with an equal volume of 2x Laemmli’s buffer 

(Laemmli, 1970), heated for 10 minutes at 70ºC and then stored at 4ºC. Protein 

concentration was adjusted to 1 μg μl-1 using 1x Laemmli’s buffer. Immunoblotting was 

performed as described in Wilson et al. (2007b) and Reis-Santos et al. (2008). Blots were 

probed with heterologous bovine α-subunits of NKA (αR1) (1:500), mouse monoclonal 

antibody of NKCC1 (T4) (1:200), a heterologous rabbit anti-bovine cytosolic CA 

polyclonal antibody (1:2000, Abcam), V-ATPase B subunit (B2) (1:200) and Heat shock 

protein (Hsp70) (1:10000 Sigma-Aldrich). Then membranes were incubated for 1 hour 

with a goat anti-rabbit or anti-mouse IgG secondary antibodies conjugated to horseradish 

peroxidase (HRP) and the signal were detected by enhanced chemiluminescence (ECL) 

using Immobilon Western chemiluminescent HRP substrate (Millipore Corporation, 
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Billerica, MA U.S.A.). Images were acquired using a luminescent image analyzer Fujifilm 

LAS-4000 mini and image reader software LAS-4000 version.2.0. Intensity of band 

signals were quantified using an image analysis software program Multi Gauge v3.1 

(FUJIFILM, Tokyo Japan). 

 

3.2.8. Immunohistochemistry 

Immunofluorescence localization were performed according to Wilson et al. 

(2007a) and (Reis-Santos et al., 2008. In summary, the paraffin serial sections were cut 

and dewaxed followed by a series of xylene baths and rehydrated through a descending 

ethanol series. Antigen retrieval was performed on some sections (Shi et al. 2011) by 

pretreated with 1% sodium dodecyl sulfate (SDS) in PBS (Brown et al., 1996) then 

treated with 0.05% citraconic anhydride (pH 7.3) for 30min at 98°C (Namimatsu et al., 

2005). All sections were then blocked with 5% normal goat serum (NGS) then incubated 

with primary antibody α-subunits of NKA (αR1), NKCC1 (T4), CFTR (R&D systems), 

Carbonic anhydrase (CA) and V-ATPase (B2) following incubation with secondary 

antibody goat anti-mouse Alexa Fluor 568 and/or goat anti-rabbit Alexa Fluor 488-

conjugated. Sections were rinsed DAPI (4',6-diamidino-2-phenylindole) and viewed on a 

Leica DM6000B wide field epifluorescence microscope and micrographs taken with a 

digital camera (DFC340FX, Leica Microsystems, Wetzlar, Germany) using Leica LAS AF 

acquisition software.  

 

3.2.9. Molecular genetics approach 

2.9.1. Isolation and quantification of RNA and synthesis of complementary DNA  

Gill, dendritic organ, kidney, and intestine were excised from marine catfish and 

freeze-clamped in liquid nitrogen. Silica-based columns (Aurum Total RNA mini kit, (Bio-

Rad, Hercules, CA, USA) and Nanodrop spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA) were used for extracting and assessing of total RNA concentration 

(or purity ), respectively then were used then were stored at −80°C. The cDNA synthesis 

was done by converting 1 μg of total RNA was converted to cDNA (iScript cDNA kit Bio-

Rad). Samples were stored at -20°C. 

 

3.2.9.2. Gene isolation 
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Consensus primers were designed from a conserved region of β-actin (actb, 

Sparus aurata, Santos et al., 1997), Na+/K+-ATPase  subunit (atp1a, Anguilla anguilla, 

Cutler et al., 1995), Cystic fibrosis transmembrane conductance regulator [cftr (abcc7 

Fundulus heteroclitus, Petromyzon marinus, Anguilla Anguilla, Oryzias latipes, Marshall, 

2002; Singer et al., 1998; Wilson et al., 2000b; Ferreira-Martins et al., 2016 Wilson et al., 

2007, Hsu et al., 2014, cytosolic carbonic anhydrase (ca17; Danio rerio, Ferreira-Martins 

et al., 2016), putative anion transporter Cl-/HCO3
- exchanger (slc26a6, Danio rerio, 

Tetraodon nigroviridis, Anguilla anguilla, Xenopus laevis, Homo sapiens, Grosell et al., 

2009) by multiple sequence alignment (MultAlin, Corpet, 1997). Nucleotide sequences 

and amplicon sizes of these primers are shown in Table 2.1 Chapter 2. Pgem-t easy 

Promega, StabVida, Oeiras, Portugal and BLAST, ClustalX were used for cloning, 

sequencing and analyzed for sequence similarity, respectively of the correct size of 

amplification products. The specific primer for Marine catfish were designed by Primer3 

(Rozen and Skaletsky, 2000) specifically for 5’ and 3’ amplification then were initially 

tested for specificity by RT-PCR (Table 2.2 see Chapter 2). Nucleotide sequences and 

amplicon sizes are shown in Table 2.1 of Chapter 2. 

 

3.2.9.3. RT-PCR and RT real-time PCR 

The PCRs were performed using GoTaq® DNA polymerase (Promega, Madison, 

WI, USA) and Phusion Flash (Thermo Fisher Scientific) for actin PCRs and other 

interested genes, respectively (see more details in Chapter 2). Primers were designed 

using Primer3 (Rozen and Skaletsky, 2000) and were initially tested for specificity by RT-

PCR.  

The real-time PCR (RT PCR) was done by transcript quantification using SYBR 

green with an iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad). A melt curve 

for every PCR product to confirm the specificity of the assays was generated.  Checking 

the efficiency of the reactions has been done by preparation of a dilution series and the 

β-Actin was consider as housekeeping gene. The expression levels of the interest genes 

was analysed based on cycle threshold (CT) values using the comparative CT method 

(2−ΔΔCT method) (Table 2.3 Chapter 2). 

 

3.2.10 Statistics 
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Data are presented as means ± standard deviation (S.D.) or 95% confidence 

interval. Statistical differences of protein, mRNA expression between groups were 

determined using one-way ANOVA analysis of variance (ANOVA) followed by the post 

hoc Student-Newman-Keuls (SNK) test (SigmaPlot 11.0 Systat Software, Inc.) in 

juveniles exposed to different salinities. Data were square root or log transformed in the 

case of a failed normality test, Fiducial limit was set at 0.05. 

 

3.3 Results:    

3.2.1 Osmoregulatory indicators 

Plasma and muscle osmoregulatory indicators are presented in the Table 

3.3. Plasma Na+ concentrations correlated positively across the range of 

acclimation salinity while plasma Cl- and Ca2+ concentrations and osmolality were 

significantly higher in HSW compared with SW and BW acclimated animals. 

Plasma osmolality was more than 50% higher in HSW acclimated fish. The 

resulting plasma strong ion ratio (SIR) was significantly lower in BW fish 

compared to SW and HSW acclimation. Hematocrit showed a positive correlation 

with salinity with BW values half of HSW. Acclimation salinity had no effect on 

plasma K+ concentrations.  

Muscle water content was significantly lower in HSW acclimated fishes 

indicating dehydration but was unaffected by BW acclimation. Muscle potassium 

concentration followed the opposite trend being significantly higher in HSW fish. 

Muscle sodium content did not differ with salinity, which is reflected in a lower 

Na+: K+ ratio in HSW fish. During acclimation, there was mortality (36%) only with 

HSW acclimation but not in other salinity groups.  

3.2.2 NKA activity  

In SW marine catfish, specific NKA activity is lowest in gill and posterior 

intestine, more than three times higher in kidney and anterior intestine and twenty 

times higher in dendritic organ (Fig. 3.1f). In response to salinity acclimation, 

similar patterns of NKA activity were detecting in gill and DO with significantly 
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higher activity in SW acclimated fish compare to both BW and HSW salinities 

(Fig. 3.1a,e). In both kidney and posterior intestine, NKA activity was significantly 

higher in HSW, with no differences between SW and BW (Fig. 3.1b,c). No salinity 

effects were observed in anterior intestine (Fig. 3.1c).  

The mass of the DO of SW-control salinity acclimated fish expressed as a 

percentage of fish body mass was significantly lower compared to BW and HSW 

salinity. However, in HSW salinity acclimated fish DO mass was greatest at 213% 

and 243 % of BW and SW-control, respectively (Fig. 3.2a, Table 3.1). The 

expression of DO NKA activity relative to fish body mass shows that in HSW fish 

DO NKA was 1.6 and 2.1 fold higher than in SW and BW fishes, respectively. 

3.2.3 Western blot  

We used antibodies crossreactive with α-subunits of NKA, NKCC1, 

cytosolic carbonic anhydrase, V-ATPase B subunit and heat shock protein 

(Hsp70) to determine how salinity affected the abundance of these important 

transport and stress related proteins in key osmoregualtory organs: gill, kidney, 

DO, and anterior and posterior intestine.  

 NKA α subunit expression was detected in all organs of interest as a single 

band of approximately 100kDa. The relative expression of the NKA α subunit 

protein was not salinity responsive in gill, intestine or DO (Fig. 3a,c,d,e), but in 

kidney significantly higher expression was found with HSW (Fig. 3b). NKCC 

expression was detected only in DO with a pair of prominent immunoreactive 

bands of 140-260 kDa with some additional higher molecular mass sometimes 

present as discrete bands. Higher NKCC expression in the HSW salinity 

acclimated fish relative to BW fish (Fig. 3f). The expression intensities of these 

bands were approximately 3,6 and 1,9 time greater in HSW acclimated 

individuals compare to BW and SW-control, respectively.  

Regarding use of CFTR antibody the expression was in the predicted 

molecular mass range as a single band of 160 kDa; however, blots were not 

clean, and multiple smaller cross-reactive bands were detected, which made 



 

36 

 

semi-quantification problematic. Because of these difficulties in detecting cross-

reactive bands, the antibody was not use in other tissues or for quantification. 

 Ca17 was detected as an approximately 30 kDa band in all tissues (Fig. 

3.4). Relative Ca17 protein expression was significantly lower with HSW in gill 

and anterior intestine relative to the SW control but not to BW. In contrast, in the 

DO Ca17 was also significantly lower in HSW but versus BW, with SW values 

being intermediate (Fig. 3.4e). No detectable differences were found in either 

kidney or posterior intestine (Fig. 3.4b, f).  

The V-ATPase B subunit was found expressed as a ~56 kDa band in gill, 

kidney, dendritic organ and posterior intestine but not anterior intestine (Fig. 3.5). 

Three different tissue dependent salinity responsive patterns of expression were 

observed. The relative protein expression in gill was highest in HSW (Fig. 5a), 

while in posterior intestine the highest expression was found in BW (Fig. 3.5c). In 

DO, SW-control showed lower expression than both BW and HSW (Fig. 5d). No 

detectable change was found in kidney (Fig. 3.5b)  

 Heat shock protein 70 (Hsp70) protein was found in all of the tissues of 

interest in our work as a single 70 kDa immunoreactive band (Fig. 3.6). Hsp70 

showed significantly higher levels with HSW only in DO relative the BW with 

intermediate SW levels (Fig. 3.6e). In BW lower expression of Hsp70 was 

detected in the gills (relative to SW) and kidney (relative to SW and HSW) (Fig. 

3.6a,b). In the anterior intestine, lower expression was found in HSW relative to 

SW, while no differences with salinity were found in posterior intestine (Fig. 3.6c, 

d). 

3.2.4 Gene expression of atp1a1, ca17, cftr, slc26a6a 

Using a PCR based approach we identified orthologues of atp1a1, cftr 

(abcc7), ca17, and slc26a6 in P.lineatus from partial sequences. Percentage 

amino acid identities for each gene compared to channel catfish (Ictalurus 

punctatus), rainbow trout (O.mykiss) and zebrafish (D.rerio) show a high degree 

of similarity (Table 3.2). Phylogentic trees for P. lineatus atp1a1 show that it is 

found in the atp1a1 clade (Appendix Fig X).  
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Significant effects of salinity were seen in NKA α subunit atp1a1 mRNA 

expression levels in DO with a negative correlation with salinity (higher 

expression in BW compared to HSW) (Table 3.3). No salinity dependent effects 

were observed in any other tissue. 

The HSW acclimated fish had higher cftr mRNA expression in anterior 

intestine but a decrease in DO relative to SW fish (Table 3.3). In kidney, BW 

acclimation was associated with significantly higher mRNA levels whereas in all 

other tissue BW was not associated with any significant difference from SW. 

There were no salinity dependent effects in gill or posterior intestine. 

The ca17 mRNA expression showed higher levels with HSW in the kidney 

in contrast to lower levels in DO (Table 3.3). In BW the gill showed higher 

expression but lower expression was detected in DO compares to SW. There 

were no salinity dependent effects in either anterior or posterior intestine. 

The slc26a6a was found expressed in all tissues studied. Only in DO did, 

HSW acclimation show higher slc26a6a mRNA expression whereas in the kidney 

BW acclimation resulted in higher expression (Table 3.3). There were no other 

salinity dependent effects in gill or intestine.  

 

3.2.5 Immunohistochemistry 

3.2.5.1 Gill 

The gills of marine catfish have a typical teleost gill organization of filaments 

with lamellae. In the branchial epithelium strong NKA immunoreactivity (IR) was 

detected in large isolated ovoid cells throughout the cytoplasm with the exception 

of the apical region (Fig 3.7). This NKA cellular staining pattern is typical of teleost 

fish chloride cell or ionocyte tubular system. There were relatively few of these 

branchial NKA-IR cells which were present in a heterogeneous distribution limited 

to a few interlamellar regions over the leading edge of the filament and were 

absent from the lamella. Experimental salinities did not alter the NKA-IR cell 
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distribution pattern. The secretory Na+:K+:2Cl– cotransporter (NKCC1) 

expression in gill was rarely detected despite the use of antigen retrieval 

techniques and positive immunoreactivity in other tissues (DO, kidney and 

intestine) indicating that species specific immunoreactivity problems were not an 

issue. The colocalization of NKCC1 in more weakly NKA-IR cells in BW and SW 

fish are shown in Fig 3.7a,d. Ovoid cells deeper within the filament epithelium 

showing only NKCC1 staining were observed in HSW (Fig 3.7g).The apical 

localization of CFTR was detected in some NKA-IR cells with no apparent salinity 

dependent differences (Fig. 3.7b,e,h). The V-ATPase H+-pump was localized in 

a similar cytoplasmic staining pattern as NKA; however, in separate cells from 

NKA-IR cells under all acclimation conditions (Fig. 7c,f,i). 

3.2.5.2 Dendritic Organ 

The DO of marine catfish are external and have branching irregular lobes 

that are well vascularized. The large parenchynal cells form acini covered by a 

squamous stratified layer of epithelial cells. The large ovoid to pear-shaped 

parenchymal cells of the DO generally showed strong NKA and NKCC1 

immunoreactivity throughout the cytoplasm indicative of basolateral tubular 

system staining (Fig. 3.8a,d,g). However, there is a smaller subpopulation of 

parenchymal cells that are more angular in shape that have noticeably stronger 

NKA-IR and lack NKCC-IR. Salinity dependent differences in staining were not 

observed; The apical chloride channel CFTR was only observed once in a SW-

control fish and was generally not detectable despite the use of antigen retrieval 

techniques and positive immunoreactivity in other tissues (gill) indicating that 

species specific immunoreactivity problems were not an issue (Fig 3.8e). V-

ATPase-IR showed rather similar cytosolic localization in of parenchymal cells of 

the DO ionocytes without salinity dependent differences (Fig. 3.8c,f,i).  

3.2.5.3 Intestine 

Immunolabeling of NKA in the anterior and posterior intestine of marine 

catfish acclimated to BW, SW-control or HSW revealed intense staining in the 

basolateral regions of the intestinal epithelium (Fig. 3.9, 3.10 a,c,f). NKCC2 or 
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NCC immunoreactivity was detected in apical brushborder of the epithelium in 

the anterior and/or posterior intestine in all salinity experiments. However, a basal 

sating was detected in anterior intestine of BW (Fig. 3.9a). CFTR 

immunoreactivity was detected apically in isolated spindle shaped columnar cells 

in the epithelium of the anterior and posterior intestine in all of salinity experiment 

(Fig. 3.9-3.10b,d,g). However, in the posterior intestine a diffuse staining pattern 

in HSW was also observed (Fig. 3.10h).  

In the anterior intestine, V-type H+-ATPase is found weakly staining the  

subapical region of columnar epithelial cells at all salinities although much weaker 

in HSW (Fig 3.9c,f,i). Staining was not observed in the brush border. Stronger 

staining is also observed in isolated basal cells in the epithelium and in the lamina 

propria. In the posterior intestine, apical/subapical expression of V-ATPase pump 

in SW has been observed while basal cells in the lamina propria of HSW fish and 

not detected in BW (Fig. 3.10c,f,i). 

3.2.6 Histology (goblet cells) 

Alcian blue and Periodic Acid Schiff (AB/PAS) staining showed neutral 

(magenta color) PAS staining, acidic mucin rich (blue) and purple cells indicating 

combination neutral and acidic glycoconjugates in gill, DO and intestine 

mucocytes (Fig 3.11, 12).  

In the gills neutral, acidic mucin rich (blue) and acidic-neutral (purple) 

staining goblet cells located at the edge and interlamelar region of filament were 

detected in all salinities; however, relative abundance varied with salinity. In HSW 

the distribution of cells was lower compare to other salinities and no acidic mucin 

rich cells were found while the opposite was observed in BW.  

The luminal openings of the glands of the DO ranged from almost 

completely closed in BW fish to clearly open in HSW fish with a rather unclear 

border between neighboring cells in the former compare to the latter was 

detected. In SW acclimated fish, neutral, mixed neutral-acidic mucin cells and 

apical acidic mucin staining of the cells was more than in HSW and/or BW 

acclimated fish. Two types of goblet cells in DO at HSW, neutral PAS staining 
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apically and throughout the cell (presumably type I) and a few cells with no neutral 

staining in the cell (presumably type II) were detected. . 

In anterior and posterior intestine all three types of mucous cells were found inthe 

intestinal epithelium. In anterior intestine distribution of neutral-acidic mucin 

containing cells was higher while it was acidic mucin cells that dominated in 

posterior intestine in all of salinities. At HSW, a decreased in the number of 

mucous cells was found in the intestine. 
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Table 3.1. Plasma Na+, Cl-, K+, and Ca2+ concentrations and osmolality, 
hematocrit, strong ion ratio (SIR; Na+:Cl-) and muscle water content (MWC%), 
Na+ and K+ concentrations, and Na+/K+ ratio of P. lineatus acclimated to [brackish 
water (BW) 3‰, seawater (SW-control) 34‰, and hypersaline water (HSW) 
60‰]. Salinity difference within a given parameter that do not share the same 
letter(s) are significantly different from one another. 

Plasma BW (3ppt) SW-Control 

(34ppt) 

HSW (60ppt) 

Na+  (mmol l-1) 119.75 ± 16.1a 152.62 ± 14.71 b 186.15 ± 40 c 

Cl-     (mmol l-1) 125.5 ±11.8 a 127.8 ± 10.9 a 148.7 ± 20.2 b 

K+    (mmol l-1) 4.64 ± 1.70 5.08 ± 0.97 5.05 ± 0.96 

Ca2+ (mmol l-1) 2.60 ± 0.62 a 2.96 ± 0.39 a 3.80 ± 1.10 b 

Osmolality(mOsm) 391.2 ± 112.8 a 374.4 ± 20.6 a 588.0 ± 108.3 b 

Haematocrit (%) 15.3 ± 4.2 a 23.3 ± 6.3 b 29.2 ± 5.4 c 

SIR (Na+:Cl- ratio) 0.96 ± 0.14 a 1.20 ± 0.16 b 1.2414 ± 0.26 b 

    

Muscle    

MWC (%) 86.6 ± 4.5 a 87.5 ± 3.7 a 77.4± 0.9 b 

Na+  (mmol kg-1) 66.9 ± 23.5  64.2 ± 10.7  67.4± 15.5  

K+  (mmol kg-1) 138.5 ± 25.5 a 138.6 ± 19.2 a 204.0 ± 26.5  b 

Na+:K+ ratio  0.48 ± 0.92 a 0.46 ± 0.56 a 0.33 ± 0.58 b 
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Table 3.2. Comparisons of the amino acid sequence identities of Plotosus lineatus Atp1a1, Cftr, Ca17 and Slc26a6 partial 
sequences with respective orthologues from channel catfish (I. punctatus), zebrafish (D.rerio) and rainbow trout (O.mykiss).  
 

Atp1a1 (198 aa) Cftr (43 aa) Ca17 (111 aa) Slc26a6 (166 aa) 

I. punctatus 0.949 XP_017312769.1 0.883  XP_017321934.1 0.855 XP_017322776.1  0.801  XP_017323671.1  

D. rerio 0.949 Q9DGL6 0.813  NP_001038348.1 0.747 F1R454 0.710  XP_001344243.4 

O. Mykiss 0.924 Q6VYM6 0.720  XP_021432274.1 0.756 Q6R4A2 0.536  XP_021422617.1 
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Table 3.3. Relative mRNA expression of atp1a1, Na+/K+-ATPase; cftr, cystic 

fibrosis transmembrane conductance regulator; ca17, cytosolic carbonic 

anhydrase; and slc26a6, putative anion transporter Cl-/HCO3- exchanger gene in 

the gill, DO, kidney, anterior and posterior intestine tissues of marine catfish P. 

lineatus acclimated to [brackishwater (BW) 3‰, seawater (SW-control) 34‰, 

hypersaline water (HSW) 60‰]. Data are means ± S.D. (n=3-4). The amounts of 

mRNAs are normalized to the corresponding b-actin abundance from the same 

sample and the expressed relative to the SW-control group. Different letter 

indicates a significant difference between salinities, one-way analysis of variance 

(ANOVA) (P < 0.05; see text for details). 

Tissue  Genes BW (3‰) SW (34‰) HSW (60‰) 

Gill atp1a1 1.61 ± 0.80 1.00 ± 0.23  0.66 ± 0.10  

 cftr 0.97 ±0.80  1.00 ± 0.66  0.50 ± 0.17  

 ca17 1.58 ± 0.15a 1.00 ± 0.23 b 1.19 ± 0.37 ab 

 slc26a6 1.04 ± 1.30 1.00 ± 0.58  1.47 ± 1.25  

Kidney atp1a1 1.57 ± 0.89 1.00 ± 0.81  1.62 ± 0.97  

 cftr 14.02 ±12.83 a 1.00 ± 0.8 b 0.42 ± 0.32 b 

 ca17 1.60 ± 0.86a 1.00 ± 0.61 a 3.00 ± 0.38b 

 slc26a6 6.19 ± 4.42a 1.00 ± 0.44 b 1.89 ± 2.02 b 

Ant int atp1a1 0.84 ± 0.12 1.00 ± 0.64  0.77 ± 0.29  

 cftr 1.45 ± 0.55 ab 1.00 ± 0.57 a 2.93 ± 1.23 b 

 ca17 0.70 ± 0.44 1.00 ± 0.65  0.88 ± 0.24  

 slc26a6 1.13 ± 0.20 1.00 ± 0.83  1.46 ± 0.36  

Post int atp1a1 1.44 ± 0.63 1.00 ± 0.40  1.71 ± 0.14  

 cftr 0.78 ± 0.42  1.00 ± 0.24  0.84 ± 1.00  

 ca17 0.77 ± 0.26 1.00 ± 0.60  0.81 ± 0.55  

 slc26a6 0.95 ± 0.78 1.00 ± 0.14  1.20 ± 0.87  

DO atp1a1 1.6 ± 0.80a 1.00 ± 0.22 ab 0.65 ± 0.10 b 

 cftr 1.37 ±0.40 a 1.00 ± 0.11 a 0.30 ± 0.09 b 

 ca17 0.65 ± 0.15a 1.00 ± 0.19 b 0.44 ± 0.08 c 

 slc26a6 1.47 ± 0.83a 1.00 ± 0.29 b 15.12 ± 2.93 c 
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Figure 3.1. Na+/K+-ATP activity in the gill (a), kidney (b), anterior (c) and posterior 

intestine (d), and dendritic organ (e) of [brackishwater (BW) 3‰, seawater (SW-

control) 34‰, and hypersaline water (HSW) 60‰] acclimated marine catfish P. 

lineatus. A comparison of all tissues in SW acclimated fish is shown in (f). Values 

are means ± S.D. (n=5-6). Different lower case letters indicate a significant 

difference with salinity within each tissue (a-e) or between tissues (f). (P < 0.05; 

see text for details). 
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Figure 3.2. The dendritic organ (DO) mass as a percentage of  fish wet body 

mass (a), and the relative expression of DO Na+/K+-ATPase activity corrected for 

tissue mass (b) of [brackishwater (BW) 3‰, seawater (SW-control) 34‰, and 

hypersaline water (HSW) 60‰] acclimated marine catfish P. lineatus. Values are 

means ± S.D. (n=5-9). Different letter indicates a significant difference between 

salinities (P < 0.05). 
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Figure 3.3. Western blot relative expression of NKA α subunit (αR1 antibody) in 

the gill (a), kidney (b), anterior and posterior intestine (c,d) and dendritic organ 

(DO) (e) and NKCC protein (T4 antibody) in DO (f) of marine catfish P. lineatus 

acclimated to [brackishwater (BW) 3‰, seawater (SW-control) 34‰, and 

hypersaline water (HSW) 60‰]. Representative western blots images are shown 

with the estimated molecular masses of NKA α subunit (~100 kDa) and NKCC1 

(~ 140-260 kDa). Values are presented as means ± S.D of protein abundance 

(n=5-6). Different letters indicate a significant difference between salinities, one-

way analysis of variance (ANOVA) and SNK (P < 0.05; see text for details). 
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Figure 3.4. Relative expression of cytosolic carbonic anhydrase (Ca17) in the gill 

(a), kidney (b), anterior and posterior intestine (c,d) and dendritic organ (e) of 

marine catfish P. lineatus acclimated to [brackishwater (BW) 3‰, seawater (SW-

control) 34‰, hypersaline water (HSW) 60‰] determined by immunoblotting. 

Representative images showing band size, intensity and relative molecular mass 

(~ 30 kDa) of Ca17. Values are means ± S.D of protein abundance (n=5-6). 

Different letters indicate a significant difference between salinities, one-way 

analysis of variance (ANOVA) and SNK (P < 0.05; see text for details). 
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Figure 3.5. Relative western blotting expression of V-ATPase B subunit (B2 

antibody) in the gill (a), kidney (b), posterior intestine (c), and dendritic organ (d) 

of marine catfish P. lineatus acclimated to [brackishwater (BW) 3‰, seawater 

(SW-control) 34‰, and hypersaline water (HSW) 60‰]. Representative images 

showing band size, intensity and relative molecular mass (~ 56 kDa) of V-ATPase 

B subunit. Values are means ± S.D of protein abundance (n=5-6). Different letter 

indicates a significant difference between salinities, one-way analysis of variance 

(ANOVA) (P < 0.05; see text for details). 
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Figure 3.6. Immunoblotting relative expression of heat shock protein 70 (Hsp70) 

in the gill (a), kidney (b), anterior and posterior intestine (c,d) and dendritic organ 

(e) of marine catfish P. lineatus acclimated to [brackishwater (BW) 3‰, seawater 

(SW-control) 34‰, hypersaline water (HSW) 60‰]. Images of western blots from 

single individuals are chosen to represent band size and intensity. Numbers to 

the right of the western blot image represent molecular mass (kDa) of Heat shock 

protein (HSP70) ~ 70. Values are means ± S.D of protein abundance (n=5-6). 

Different letter indicates a significant difference between salinities, one-way 

ANOVA and SNK (P < 0.05; see text for details). 
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Figure 3.7. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h) with NKCC1 (T4, red a, d, g) and CFTR (red, b, e, h) or 

Na+/K+-ATPase (α5, red c, f, i) with V-ATPase (B2, green c, f, i). Sections were 

counter stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) images in the gills of marine catfish P. lineatus 

acclimated in brackish water (BW) 3‰ (a-c), seawater (SW-control) 34‰ (d-f) 

and hypersaline water (HSW) 60‰ (g-i). Scale bar 100 µm in upper panel. See 

text for details. 
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Figure 3.8. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, d, e, g, h) with NKCC1 (T4, red a, d, g) and CFTR (red, b, e) or Na+/K+-

ATPase (α5, red c, f, i) with V-ATPase (B2, green c, f, i). Sections were counter 

stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) images in the DO of marine catfish P. lineatus 

acclimated in brackish water (BW) 3‰ (a-c), seawater (SW-control) 34‰ (d-f) 

and hypersaline water (HSW) 60‰ (g-i). Scale bar 100 µm in upper panel. See 

text for details. 
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Figure 3.9. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h) with NKCC1 (T4, red a, d, g) and CFTR (red, b, e, h) or 

Na+/K+-ATPase (α5, red c, f, i) with V-ATPase (B2, green c, f, i). Sections were 

counter stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) images in the anterior intestine of marine catfish P. 

lineatus acclimated in brackish water (BW) 3‰ (a-c), seawater (SW-control) 34‰ 

(d-f) and hypersaline water (HSW) 60‰ (g-i). Scale bar 100 µm in upper panel. 

See text for details. 
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Figure 3.10. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h) with NKCC1 (T4, red a, d, g) and CFTR (red, b, e, h) or 

Na+/K+-ATPase (α5, red c, f, i) with V-ATPase (B2, green c, f, i). Sections were 

counter stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) images in the posterior intestine of marine catfish P. 

lineatus acclimated in brackish water (BW) 3‰ (a-c), seawater (SW-control) 34‰ 

(d-f) and hypersaline water (HSW) 60‰ (g-i). Scale bar 100 µm in upper panel. 

See text for details. 
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Figure 3.11. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus gills (a, c, e) and DO (b, d, f) acclimated in (a, b) 

brackish water (BW) 3‰, (c, d) seawater (SW 35‰) and (e, f) hypersaline water 

(HSW 60‰). The neutral (magenta, short arrow), acid rich (blue, arrowhead) and 

purple cells (long arrow) are indicating combination neutral and acidic 

glycoconjugates. Scale bar 100 µm. See text for details. No neutral staining in 

cytoplasm (*). 
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Figure 3.12. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus anterior intestine (a, c, e) and posterior intestine (b, d, 

f) acclimated in (a, b) brackish water (BW) 3‰, (c, d) seawater (SW 35‰) and 

(e, f) hypersaline water (HSW 60‰). The neutral (magenta, short arrow), acid 
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rich (blue, arrowhead) and purple cells (long arrow) are indicating combination 

neutral and acidic glycoconjugates. Scale bar 100 µm. See text for details. 
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3.4 Discussion 

The marine catfish can osmoregulate across a wide range of salinities (3-

60‰) although in HSW some impairment was observed. The dendritic organ of 

the marine catfish has the molecular machinery for active NaCl secretion using 

the conserved mechanism of secondary activity Cl- transport with NKA, NKCC 

and likely CFTR at its core. The gill clearly has a secondary role in ion regulation 

with few ionocytes and low overall NKA expression. The intestine shows typical 

attributes of marine teleosts while kidney displays some unique feature that will 

be explored in more depth in Chapter 5. 

3.4.1 Osmo and iono regulatory responses to salinity acclimation 

The observed plasma ion concentrations were in the range of other teleost 

fish species (see review Whittamore et al., 2012, Table 1). However, in 

comparison to other studies in Plotosidae, the plasma Na+, Cl- and K+ of P. 

lineatus in SW-control were less than P. lineatus (Pucke and Umminger, 1979) 

while, Na+ was not very different from Cnidoglanis macrocephalus (Kowarsky, 

1973). In both of these studies osmolality was also higher. These observed 

differences might be due to a number of differences between the studies 

(sampling and analytical methods, acclimation temperatures 26-28ºC versus 19-

20ºC, species differences). Salinity challenges typically alter plasma osmolality 

and electrolytes levels in euryhaline teleosts with an initial crisis stage followed 

by a regulatory stage (Tipsmark et al., 2008; Sardella et al., 2008; Kang et al., 

2008; Outtara et al., 2009; Christensen et al., 2012; Watson et al., 2014; Tait et 

al., 2017). P. lineatus acclimated to HSW had higher plasma osmolality and ions 

(except K+), and hematocrit, and decreased muscle water content (MWC). 

Together these data indicate a systemic dehydration due to water lose by 

osmosis, and elevated plasma osmolality representing disturbances from internal 

fluid shift, which may be problematic resulting in a stress situation. There are 

reports from various salinity tolerant species which show gradual increases of 

plasma ion levels to about 70-75 ppt, then increasing in a more or less linear form 

at higher salinities (see review Gonzalez 2012).  
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Plotosus lineatus challenged with BW, or hypoosmotic conditions are able 

to maintain plasma osmolality and Cl- levels but not Na+. Plotosus were better 

able to regulate Cl- levels than Ariid catfish, which does not have DO and have 

higher serum Cl- levels (Sulya et al., 1960; Pucke and Umminger, 1979). The 

decrease in plasma Na and hematocrit suggest a hemodilution but muscle water 

and ions were stable. Reports regarding the effect of lower salinity on MWC from 

different species vary from showing no effect (Kang et al., 2008; Woo and Chung, 

1995) to increased MWC (Jensen et al., 1998; Kelly and Woo, 1999; Kelly et al., 

1999; Sinha et al., 2015). 

Due to the dominance of the strong ions Na+ and Cl- in blood, changes in 

the Na+/Cl- ratio (SIR) has been recommended for indicating acid-base 

imbalances (Jensen et al., 1998; Sinha et al., 2015). In the present study, the 

direct measurements of plasma acid-base balance were not done due to the small 

size of the fish; however, calculations of SIR revealed changes in the plasma 

levels of weak anions (e.g. HCO3-) and thus acid-base balance. The BW SIR 

indicates a metabolic acidosis which has also been observed in European sea 

bass D. labrax, reared in lower salinity (Sinha et al., 2015). However, this 

contrasts with work by Jensen et al. (1998) who have reported a markedly 

increased plasma SIR following transfer to FW and slight decrease in HSW in D. 

labrax. In P.lineatus, HSW had no effect on SIR suggesting no alteration in acid-

base status. 

3.4.2 Evidence for role of gills in salt secretion? 

The gill is typically linked to active ion regulation in teleost fishes (Evans et 

al. 2005). This is reflected in high levels of NKA, a central driver of ion transport, 

with dependency of gill NKA to environmental salinity that may be altered by life 

history stage, species and experimental conditions in some cases (Evans et al. 

2005; Varsamos et al. 2001; Malakpour Kolbadinezhad et al., 2012). However, 

branchial NKA activity of P. lineatus was the lowest of the osmoregulatory tissues 

test, unresponsive to levels of salinity, and an order of magnitude lower than 

levels in the DO irrespective of salinity. A similar pattern has been reported in the 

sharks Carcharhinus leucas (Pillans et al. 2005) and Chiloscyllium punctatum 

(Cramp et al., 2015) and ray Dasyatis sabina (Piermarini and Evans 2000) which 
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possess the extra-branchial salt secreting organ the rectal gland. In 

elasmobranchs, the gills have a secondary function in osmoregulation (Burger 

and Hess, 1960; Wilson et al., 2002). Our results confirm a similarity between 

gills of P. lineatus and elasmobranchs (Doyle and Gorecki, 1961; Pucke and 

Umminger, 1979) and underline the potential role of DO in salt excretion (Van 

Lennep, 1968).  

The IHC result of few branchial NKA-IR cells was consistent with NKA 

activity levels and in contrast to observations in most marine teleost fishes (e.g. 

alewife Alosa pseudoharengus Christensen et al., 2012; tilapia Sarotherodon 

melanotheron Ouattara et al., 2009). The few NKA-IR cells were restricted to the 

filament epithelium, leaving the lamella unimpeded for gas exchange (Evans et 

al., 2005; Henriksson et al. 2008). Also, it was very rare to find NKA-IR cells that 

co-expressed NKCC1, although apical CFTR staining was observed in NKA-IR 

cells. NKCC1 is a key component of the mechanism of secondary active Cl 

secretion and is abundantly expressed in seawater type gill ionocytes in teleost 

fishes (see review Hiroi and McCormick, 2012). In elasmobranchs, the cDNA 

expression of NKCC in the gills of spiny dogfish S. acanthias (Xu et al 1994); 

however, in the branchial epithelium of C. punctatum NKCC1 could not be 

localized (Cramp et al., 2015). This contrasts with the freshwater stingray 

Himantura signifer where NKCC1 is co-expressed in gill NKA-IR cells following 

BW (20ppt) acclimation (Ip et al., 2013). However, the rectal gland is absent in 

this species. The observation of ovoid cells deep within the filament epithelium 

which show only NKCC1-IR at HSW are unusual and their potential role has not 

been determined. 

Elasmobranch gills also possess a VHA rich cell that is involved in acid base 

regulation (Wilson et al. 1997; Piermarini et al. 2001; Tresguerres et al. 2006). 

Based on our IHC results, this cell type also appears in P. lineatus, and under 

HSW conditions IB results indicated a higher expression level. In killifish, 

basolateral VHA has also be found in ionocytes (Katoh et al. 2003). Thus if the 

gills of P. lineatus have taken on the primary role in acid-base regulation, these 

cells maybe involved. 

3.4.3 Evidence for the role of the dentritic organ in salt secretion? 
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The higher NKA activity of DO than other ion regulatory organs, notably gills, 

strongly indicates a role for this organ in NaCl secretion. This is also seen 

elasmobranchs with higher rectal gland NKA activity compared to gills (Piermarini 

and Evans 2000; Pillans et al., 2005; Cramp et al.2015). . It has been 

demonstrated in euryhaline elasmobranchs that rectal gland NKA specific activity 

is higher in SW compared to FW acclimated animals but the opposite was 

observed in P. lineatus which was counter intuitive. To explain this discrepancy, 

if we took into consideration the the DO mass which is higher in HSW so that the 

total DO NKA activity was also higher at HSW suggesting an increase in overall 

capacity. Larger rectal glands of D. sabina captured in SW than FW have been 

reported by Piermarini and Evans (1998) although no mass difference of rectal 

gland in C. leucas from FW or estuarine-captured were reported by Pillans and 

Franklin (2004). Also no changes in specific NKA activity of rectal gland has 

reported in a few other elasmobranches acclimated in various salinities (Dowd et 

al., 2010; Cramp et al., 2015) in. Observation of slightly albeit significantly higher 

DO/body weight percentage at BW rather than SW-control might indicate to the 

high capacity of marine catfish to move easily between different salinities, 

however, this was not sufficient to increase DO total NKA activity. Since the tissue 

sampling for the NKA activity measurement had been done after 10 days of 

acclimation, it seems working on time course sampling might be helpful to have 

a comprehensive view regarding NKA activity of DO in marine catfish.  

Strong immunoreactivity of NKA and NKCC1 in parenchymal cells of the DO 

result in proposing that T4 is for secretory isoform in the DO promoting ion 

secretion in hypo-osmoregulating of marine catfish. The basolateral distribution 

of NKA and NKCC in other vertebrate salt secreting tissues has demonstrated 

(Hazard, 1999; Evans, 2009; Babonis et al., 2009, 2011). Salt secreting function 

of DO has proposed physiologically (Kowarsky, 1973), ecologically (Lanzing, 

1967) and ultrastructurally (Van Lennep, 1968). Our molecular observation 

involving either striking high NKA activity or localization of NKA and/or NKCC1 in 

DO follow the previous hypothesis suggests conservation of rather similar 

mechanism of ion transporting in secretory cell of vertebrate (Babonis et al., 

2011).  
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Immunoblot (IB) results for NKA α subunit and NKCC (T4) were consistent 

in molecular weight compared to other vertebrates (Blanco and Mercer, 1998; 

Lytle et al., 1995, respectively). Finding multiple bands of NKCC might be the 

result of higher NKCC1 expression and immunoreactivity with either NKCC2 or 

NCC, reported in different species (Hiroi et al., 2008; Inokuchi et al., 2008; Lorin-

Nebel et al., 2006; Christensen et al., 2012; Chew et al., 2015). Alternatively, the 

lipophilic nature of the NKCC migration through SDS-PAGE gels for IB analysis, 

or possibly the glycosylated monomer variability and/or different degrees of 

glycosylation could explain the banding patterns observed (Pelis et al., 2001; 

Tipsmark et al., 2002; Wu et al., 2003, Kang et al., 2010; Christensen et al., 2012; 

Kang et al., 2012; Chew et a., 2015). In BW, detection of NKCC suggest that 

maintaining a proportion of active NKCC for acid-base and/or cell volume 

regulation is important (Gamba 2005) or it may be present as an inactive non-

phosphorylated pool to be quickly activated for an acute response to higher 

salinity (Flemmer et al., 2010; Christensen et al., 2012). Regarding the expected 

increasing of salt loading as a result of increased drinking and passive uptake 

(see review Grosell 2011) under HSW conditions, we detected significantly higher 

protein expression of DO NKCC representing an adaptation to increased salt 

excretion capacity. 

IHC result of CFTR may reveal the possibility of a different isoform which 

cannot be consistently recognized by the monoclonal antibody which is raised 

against a specific epitope of CFTR (Li et al., 2014). Pucke and Umminger (1979) 

detected accumulation of chloride ions in DO epithelium then proposed highly 

functional in salt secretion. The presence of CFTR in salt glands of birds, 

elasmobranchs and reptiles have confirmed (Shuttleworth and Hildebrandt, 1999) 

although the antibody used in the present study does not show crossreactivity 

with elasmobranch (J.M. Wilson personal observations), or sea snake (Babonins 

et al., 2011) salt glands or salmonid (S.D. McCormick personal observations) gill 

CFTRs either. Cftr transcript was detected in DO but predicted salinity dependent 

expression differences were not observed. Obviously, identifying the putative 

apical Cl- channel in marine catfish DO in future work would confirm the presence 

of typical iono-secretory cell of vertebrate salt glands.  
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The inconsistent results of mRNA expression for atp1a1, and cftr may be 

related to post-transcriptional (Reilly et al., 2011), post-translational processing 

or modulation of the NKA kinetic properties by FXYD proteins interacting (Garty 

and Karlish, 2006; Mahmmoud et al., 2000, 2003, 2005; Wang et al., 2008; 

Tipsmark et al., 2010). Moreover, the quaternary structure of NKA, effecting of 

shifting in isoform composition and/or phosphorylation state on kinetic of the 

enzyme pool (McDonough et al., 1990; Hauck et al., 2009; Christensen et al., 

2012) might be involved. Obviously, further investigation would be necessary to 

determine the effect of different salinities (FW to hypersaline) on various isoforms 

of NKA, their mRNA abundance and likely change with salinities that might be 

helpful to interpret of the osmoregulatory function of DO. The changes in V-

ATPase, CA (protein and mRNA expression) in DO of marine catfish together 

with the PAT1 mRNA (slc26a6a) suggest the possible contribution of the DO to 

acid-base regulation in the marine catfish.  

Neutral and acidic mucin staining is found in the DO and there is the 

possibility of a role for mucus in ion regulation (Handy et al., 1989; Roberts and 

Powell, 2003; Powel, 2007). In Atlantic salmon Salmo salar the greater net efflux 

of Cl- compare to either Na+ or K+ has been found (Roberts and Powell, 2003) 

which may due to differing ion permeability mechanisms (see review Zadunaisky 

1984). The highly polyanionic gel of the mucus (Verdugo, 1984) may cause a 

greater diffusive potential for anions (Cl-) while the cations such as Na+ or K+ may 

have the potential to be bound by the mucous layer (Zuchelkowski et al., 1985). 

It seems there is likely a connection between mucous secretion of marine catfish 

DO and Cl- transport. 

 

3.4.4 Role of the Kidney 

Kidney NKA activity is typically responsive to environmental salinity (e.g. 

Venturini et al., 1992; Kelly and Woo, 1999 Herrera et al., 2009, Tang et al., 2012) 

although in some species no changes are observed (Fuentes et al., 2005; Laiz-

Carrion, Sangiao- Alvarellos et al., 2005; Arjona et al., 2007). In the case of P. 

lineatus kidney NKA activity there was a positive relationship with environmental 

salinity, whereas in many euryhaline fishes the opposite is observed (Epstein et 
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al., 1969; Madsen et al., 1994; Kelly and Woo, 1999; Lin et al., 2004; Nebel et al. 

2005; Tang et al., 2010, 2012; Yang et al. 2016). This higher NKA activity at lower 

salinities has been associated with increased urine production and the need to 

increase ion reabsorption which is driven by NKA (MacDonald 2007) whereas in 

the case of P. lineatus and a few other marine teleosts (Deane and Woo 2004; 

Herrera et al., 2009; Yang et al 2016) the increased NKA activity could potentially 

augment active ion secretion. In the case of marine catfish, hyperosmotic urine 

production has been reported although in the other species this is unknown but 

well worth investigating further. 

In BW higher mRNA expression of cftr and slc26a6a suggest a functional role of 

the marine catfish kidney in a regulatory role in Cl- and HCO3- transport that may 

be important for addressing the acid-base disturbance indicated by the lower 

strong ion difference (Jensen et al. 1998). Based on a lack of changes in either 

CA or VHA, we cannot confirm their involvement. 

 

3.4.5 Role of the intestine 

The gastrointestinal tract of marine teleost is involved in osmoregulation 

through desalination of the imbibed seawater in the esophagus accompanied by 

NaCl coupled water uptake (Usher et al., 1991; see review Grosell 2011). 

Drinking rates were not measured in this study although there is ample evidence 

that shows a positive correlation with salinity (Whittamore 2012). The anterior 

intestine has higher NKA activity that the posterior intestine but it is only the 

posterior intestine that is responsive to HSW. In Gulf toadfish Opsanus beta 

higher NKA activity in anterior than posterior intestine was also observed (Guffey 

et al., 2011). Ruiz-Jarabo et al (2015) have also found significant increasing of 

NKA activity in posterior region rather than anterior in common galaxias Galaxias 

maculates at hypersalinity. The intestine has been shown to respond the 

increased drinking rate by increasing intestine NKA activity and expression, in 

addition to a number of key transporters and/or enzymes to coupled water 

absorption by intestinal epithelium as reported in different species (see review 

Grosell 2011; Whittamore 2012). There are also reports of variation between 

anterior or posterior intestine in water absorption and/or ion secretion of marine 
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teleosts (Gregório et al., 2013; Madsen et al., 2014; Raldúa et al., 2008; Aoki et 

al., 2003; Kim et al., 2008; 2006; Grosell, 2011).  

It seems the ions absorption via NKCC/NCC might be occurring in all of 

intestine regions as demonstrated by IHC and in agreement with a number of 

other studies (e.g. Wilson and Castro 2010; Kalujnaia et al., 2007; Esbaugh and 

Cutler 2016). It has been demonstrated that because of reduced luminal Na+, 

and, therefore, Cl- concentration along intestine from anterior to posterior 

(Marshall and Grosell, 2005), the cotransport function of NKCC may be limited 

so might rely more on Cl-/HCO3- exchange to aid water reabsorption through 

alkalinization of the gut and divalent cation precipitation (Taylor et al., 2010; 

Grosell et al., 2009a; Grosell, 2011). In support, observations were made of 

yellow-whitish precipitates, particularly in the posterior intestine of fish acclimated 

either in SW-Control or HSW presumably made of Ca2+ and Mg2+ carbonates 

(Grosell, 2011; Madsen et al., 2014). The precipitation of carbonates decreases 

the osmotic gradient supporting water absorption (Whittamore et al., 2012; 

Grosell 2011). Finding absolute rates of water absorption in anterior and posterior 

intestine of marine catfish acclimated in different salinities would help address the 

relative roles of the two regions to water absorption.  

Observation of CFTR in the apical membrane of spindle shaped columnar 

cells may be address the responsibility of subpopulation of enterocytes for ion 

(and fluid) secretion as has been reported in Atlantic killifish (Marshall 2002). In 

sea bream S. aurata apical region of the anterior intestinal epithelium showed 

diffuse staining pattern of CFTR while it was more in the rectum of high salinity 

fish (Gregório et al., 2013). There are some other studies which did not observe 

ion or fluid secretion by the intestine (Field et al., 1980; Loretz, 1987a,b, 1995). 

On the other hand, the observation of higher mRNA expression of cftr in the 

anterior intestine at HSW fish suggests a role in the recycling Cl- in parallel with 

the apical Cl-/HCO3- exchanger to increase HCO3- excretion (Grosell and Taylor, 

2007; Taylor et al., 2010). The presumable Cl-/HCO3- exchanger is possibly 

slc26a6a (PAT1). Its mRNA expression was detected in intestine but it was not 

responsive to salinity.  
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Regarding the localization of V-ATPase at intestine regardless salinity it was 

generally more obvious in anterior than posterior intestine. It seems the proton 

pump might have different roles presumably in acid-base regulation and/or 

involving ion and water transport in marine catfish. In gulf toad fish acclimated in 

either SW or HSW, H+-ATPase showed apical and basolateral of intestine 

enterocyte plasma membranes (Guffey et al., 2011). Moreover, the apical 

localization of vacuolar-type (V) H-ATPase in the epithelium of intestine has been 

reported in different species has also been proposed to aid in carbonate 

precipitation to maintain water absorption rates (Grosell et al., 2009b; Guffey et 

al., 2011; Grosell et al., 2007; Grosell et al., 2009a; Gregório et al., 2013; 

Esbaugh and Cutler, 2016; Cooper et al., 2010). 

3.4.6 Cellular stress and salinity 

The heat shock proteins (Hsps), which are commonly named stress 

proteins, are expressed in cells and are involved in maintaining a number of vital 

cellular processes as part of the cellular stress response (Hightower, 1991; 

Morimoto and Santoro, 1998; Iwama et al., 2006; Basu et al., 2002). Deane and 

Woo, (2004; 2011) have shown that salinity can induce a cellular stress reponse. 

In DO Hsp70 levels are highest at HSW indicating a cellular stress requiring the 

activation of stress protein mechanisms to protective action against stress 

situation (for more details, see review Deane and Woo, 2011). However, given 

the lower Hsp70 levels in gills, anterior intestine and kidney at one or both salinity 

extremes suggests less of a stress compare to the DO or a different threshold of 

salt tolerance. 
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Chapter 4: 

Effect of dendritic organ ligation on marine catfish 

Plotosus lineatus osmoregulation 
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Abstract 

Unique amongst the teleost, the Plotosidae catfish Plotosus lineatus possesses 

a dendritic organ (DO) which is purported to function as a salt secreting organ, 

whereas other marine teleosts rely on their gill ionocytes for active NaCl excretion. To 

address the role of the DO in ionregulation, ligation experiments were conducted in 

brackishwater (BW) 3‰ and seawater (SW) 34‰ acclimated P. lineatus and 

compared to sham operated fish. Ligation in SW resulted in an osmoregulatory 

impairment in blood (elevated osmolality and ions, lower hematocrit) and muscle 

(dehydration). However, SW ligation did not alter gill or kidney Na+/K+-ATPase (NKA) 

activity and/or protein expression while a decrease in anterior intestine and increased 

in posterior intestine were observed but this was not reflected at the protein level. 

Following ligation in SW, protein levels of carbonic anhydrase (CA) and V-ATPase B 

subunit (VHAB) were higher in kidney but either lower (CA) or unchanged (VHAB) in 

other tissues. Heat shock protein (Hsp70) levels were higher with BW ligation but 

decreased only in posterior intestine. BW-L decreased plasma K+ and Na+/Cl- ratio 

(SIR) expressed metabolic acidosis and only lowered gill NKA activity or expression 

while increased NKA expression in intestine. IB showed increased in interaction 

between BW and BW-L of CA and Hsp70 or decreased in V-ATPase only in posterior 

intestine. Immunohistochemistry (IHC) results of NKA α subunit, Na+:K+:2Cl– 

cotransporter (NKCC1), CA, V-ATPase B subunit moreover gene expression of 

atp1a1, ca17, cystic fibrosis transmembrane conductance regulator (cftr) and 

slc26a6a (Cl-/HCO3- exchanger) were detected in all of tissues. Histology results 

showed more distribution of blue (acidic) mucus cells in gill filament, collecting tubule 

(CT) of kidney and posterior intestine in SW-CL fish. Taken together, SW-CL fish 

representing problematic resulting in osmotic disturbance thereby indicating to main 

role of DO as salt secreting and elucidate no compensatory responses of gill, kidney 

and/or intestine NKA. 
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4.1. Introduction  

The gill is the central ionregulatory organ in teleost fishes with supporting roles 

played by the kidney and intestine (Marshall and Grosell 2006; Evans et al. 2005). 

Branchial mitochondria rich cells (MRCs) or chloride cells, known as ionocytes, are 

well characterized (Evans et al., 2005; Hwang et al., 2007; Wilson 2011) and function 

in freshwater and saltwater via actively take up and excretion of monovalent ions (Na+, 

K+, and Cl-) respectively, to maintain plasma osmolality (Takei and Hwang, 2016). In 

contrast, in the Plotosidae marine catfishes there is ultrastructural (Van Lennep and 

Lanzing, 1967), histochemical (Van Lennep 1968) and physiological (Kowarsky, 1973) 

evidence suggesting that their unique dendritic organ is responsible for salt excretion. 

Kowarsky (1973) has found a significant reduced survival of DO ligated catfish 

Cnidoglanism acrocephalus and increase in plasma Na+ concentration in 

hyperosmotic salinities. High Cl- levels have been demonstrated in DO parachymal 

cells, similar to gill chloride cells (Pucke and Umminger, 1979). The anatomy of this 

organ was described first by Bloch (1794) then was followed by Brock (1887) and 

Hirota (1895). It is a small fleshy external organ situated very close, to the urogenital 

papilla on the ventral surface of the fish.  

This chapter investigated the effect of ligation of the DO on the osmotic and/or 

ionic regulatory ability and survival of the catfish, P. lineatus to elucidate its role in ion 

regulation and the compensatory responses of the gill, kidney or intestine. 

 

4.2. Material and Methods   

4.2.1. Modulation of salinity status and Animals collection 

The marine catfish Plotosus lineatus (~8-13 g) were purchased from TMC 

Portugal and transported to Laboratory of Ecophysiology CIIMAR (Porto). Prior to the 

start of the experiment due to avoid any confounding effects of handling stress on 

osmoregulation (Biswas et al., 2006), a 100 L tank with seawater (SW) 34‰ and 

normal photoperiod was used for acclimation of the fish to laboratory conditions for 

three weeks. Seawater was made up using Instant Ocean® salt.  Fish were fed twice 

daily by the diced fish fillets during this period not fed 4 days before samplings. Fish 
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behavior, temperature (range at 26-28 ºC), pH (range 7.7–7.9) and salinity were 

checked daily. 

4.2.2. Salinity acclimation  

Two salinity levels were investigated [brackishwater (BW), brackishwater ligated 

(BW-L) 3‰, seawater (SW-control), seawater ligated (SW-CL) 34‰] salinity. Initially, 

individuals were transferred to a 22 L tank (small tank). The salinity was changed by 

removing water and adding an appropriate amount of dechlorinated tap water in a 

stepwise fashion from 34 (main tank) to 3, 5‰ per day salinity. Keeping the fish in the 

same tank was used due to decrease the handling stress and a water change of SW-

control group was also conducted in order to standardize fish stress at each salinity 

change between the different groups. Fish has been checked and dead fish removed 

from the experimental tanks. Maintaining of fish in the lab was according to the 

Portuguese Animal Welfare Law (Decreto-Lei no.197/96) and were approved by 

CIIMAR/UP animal protocols. 
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Figure. 4.1 The anal region of C. macrocephalus, showing the position of the dendritic 

organ and ligature in relation to other structures. The pelvic fins are folded anteriorly. 

a, Anus; u, urogenital papilla; L, ligature; d, dendritic organ leaflets. Kowarskey (1973). 

 

4.2.3. Sampling    

Marine catfish were anaesthetized with an overdose of MS-222 (1:5000, pH 7.5 

adjusted with NaHCO3). Blood was collected by using a heparinized capillary tube 

following caudal transaction, centrifuged at 13000g for 5min (hematocrit centrifuge, 

Heraeus Pico 17 Centrifuge, Thermo Scientific) at room temperature. The hematocrit 

(Hct) was measured in duplicate (nearest millimetre) then converted to percentage of 

total blood volume. The isolated plasma and collected tissues including gill, kidney, 
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anterior and posterior intestine were then frozen in liquid nitrogen and kept at -80 ºC. 

Blood sampling was done in addition sets of six individuals then the body cavity 

opened by a ventral incision and 10% neutral buffered formalin (NBF 10%) was used 

for immersion fixed then stored in 70% ethanol at 4 °C.  

4.2.4. Histology staining 

Following fixation, tissues were dehydrated through an ethanol series, and 

embedded in paraffin (Type 6; Richard Allen Scientific). The microtome (Reichert 

Biocut 2030) was used for sectioning (cut at 5μm) and Periodic Acid Schiff (PAS)/ 

Alcian blue (pH 2.5) was used as staining protocols. The serial tissue regions were 

imaged with a digital colour camera (Leica DFC300FX) mounted on a Leica 

microscope (DM 6000 B). The taken Images resizing, brightness and/or contrast 

adjustment were done by Photoshop CS3 while maintaining the integrity of the data. 

4.2.5. Ion quantification   

Wet weight (one gram of muscle tissue) was collected. For obtaining dried weight 

collected tissue was dried to constant mass at 60 °C then water content (MWC)   

determined. Nitric acid (65%) five volumes were used for digestion of the dried muscle 

samples for 3 days. Using a flame photometer (model PFP7; Jenway, Felsted, UK) 

the Na+ and K+ concentrations were quantified by flame photometery (PinAAcle 900T 

Atomic Absorption Spectrophotometer; Perkin Elmer Waltham MA). Chloride 

concentration of plasma was measured by mercuric thiocyanate reaction formig 

mercuric chloride and free thiocyanate ions. The latter react with ferric ions to form an 

orange complex of ferric thiocyanate then the absorbance was measured at 480 nm 

(Küffer et al.,1975). Plasma samples were also analysed (mOsm kg−1) using freezing-

point depression (Melting Point Osmometer, N 961003, Roebling Co.; www.melting-

point.buchi.com). 

4.2.6. Measurement of Na+/K+-ATPase  

The NKA activity was measured according to the microassay protocol of Wilson 

et al. (2007b). Gill filament samples from the second arch on left side and other tissues 

were cut off from the anasthetized fish immersed in 100μl of SEI buffer and frozen at 

−80 °C. The tissues were thawed then homogenized (Precellysis 24 homogenizer 

Bertin Technologies at 5800 RPM for 2x15s) in SEI buffer containing 0·1% deoxycholic 
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acid. Then immediately were centrifuged at 15.000g (5 minutes at 4 ºC) to remove 

large debris. 10μl of the supernatant were added to 200μl of assay mixture (see 

appendix) while the assay were run in two sets of duplicate, one set containing the 

assay mixture and the other assay mixture plus a specific inhibit NKA activity, ouabain 

(1 mM, Sigma–Aldrich Chemical Co.; www.sigmaaldrich.com). ATPase activity was 

measuring with a temperature controlled plate reader (Thermomax, Molecular 

Devices) at 340nm for 10-20 min at 25 °C. Total protein concentrations were 

determined with a bovine serum albumin (BSA) standard by Bradford (1976) dye 

binding assay at 600nm. The results were expressed as μmoles ADP mg−1 protein h−1. 

 4.2.7. Immunoblotting  

The tissue samples were homogenized by a Precellysis 24 homogenizer, Bertin 

Technologies) in Imidazole buffer pH 7.5 for 2x15s and immediately centrifuged at 

15.000g for 5 minutes at 4 ºC. The supernatant was mixed with 2x Laemmli’s buffer 

(Laemmli, 1970) with equal volume of, heated (10 minutes at 70ºC) and then stored at 

4ºC. Leftovers from supernatant were used for protein assays using Bradford method 

(Bradford, 1976) using BSA as a standard and Coomassie Brilliant Blue G-250. 10-

20μg of sample per well was (protein concentration was adjusted to 1 μg μl-1 using 1x 

Laemmli’s buffer) loaded onto 1.5mm thick mini vertical polyacrylamide gels was run. 

Gels were then equilibrated in transfer buffer and bands were transferred to 

nitrocelulose membranes (GE Healthcare Amersham TM Hybond TM ECL). 

Membranes were then rinsed in TTBS and blocked with 10% powdered skim milk in 

TTBS for 1h. Blotto were probed with heterologous bovine α-subunits of NKA (αR1), 

NKCC1 (T4), Carbonic anhydrase (CA), V-ATPase (B2), and Heat shock protein 

(Hsp70), overnight at room temperature in 50 ml falcon tubes using a attached to a 

rotisserie (LabQuake2). Then membranes were rinsed with TTBS and incubated for 1 

hour with a goat anti-rabbit or anti-mouse IgG secondary antibodies conjugated to 

horseradish peroxidase, diluted in TTBS (1:50000). Membranes were rinsed a final 

time with TTBS and signal were obtained by enhanced chemiluminescence (ECL) 

Millipore Immobilon Western chemiluminescent HRP substrate (Millipore Corporation 

Billerica, MA 01821 U.S.A.). Images were acquired using Fujifilm LAS-4000 mini and 

image reader software LAS-4000 version.2.0. Intensity of bands signal were quantified 

using Multi Gauge v3.1 (FUJIFILM).  

4.2.8. Immunohistochemistry 



73 
 

The paraffin serial sections were cut and collected onto APS (3- 

aminopropyltriethoxysilane; Sigma)-coated slides (Reis-Santos et al., 2008), 

completely dried, dewaxed then rehydrated. Dried Sections were circled with a liquid 

hydrophobic blocker (DakoPen, Dako DK) following by rinsing in 1% sodium dodecyl 

sulfate (SDS)/PBS, in tap water then distilled water (DW). The sections were blocked 

with 5% normal goat serum (NGS) and incubated with primary antibodies α-subunits 

of NKA (αR1), NKCC1 (T4), Carbonic anhydrase (CA) and V-ATPase (B2) for 1-2h at 

37°C in humidity chamber. Sections were then rinsed in TPBS following by incubation 

with secondary antibody goat anti-mouse Alexa Fluor 568 and/or goat anti-rabbit Alexa 

Fluor 488-conjugated for 1h at 37°C. Following rinsing as mentioned above except 

rinsing with DAPI/TPBS diluted 1:25000 in 10min step. Following coverslips were 

mounted with (DAKO fluorescent mounting media S3023). Sections were viewed on a 

Leica DM6000 B wide field epifluorescence microscope with a digital camera 

(DFC340FX, Leica Microsystems, Wetzlar, Germany).  

4.2.9. Molecular genetics approach 

4.2.9.1. Isolation and quantification of RNA and synthesis of complementary 

DNA  

Gill, kidney, and intestine were excised from marine catfish and freeze-clamped 

in liquid nitrogen. Total RNA was extracted using silica-based columns (Aurum Total 

RNA mini kit, (Bio-Rad, Hercules, CA, USA). The Nanodrop spectrophotometer 

(Thermo Scientific, Wilmington, DE, USA) was used for assessing of total RNA 

concentration and purity then were stored at −80°C. 1 μg of total RNA was converted 

to cDNA (iScript cDNA kit Bio-Rad). Samples were stored at -20°C. 

4.2.9.2. Gene isolation 

Consensus primers were designed from a conserved region of β-actin, Na+/K+-

ATPase  subunit, Cystic fibrosis transmembrane conductance regulator (cftr), 

Carbonic anhydrase (ca), Putative Anion Transporter Cl-/HCO3- exchanger (PAT 

slc26a6) by multiple sequence alignment (MultAlin, Corpet, 1997). Nucleotide 

sequences and amplicon sizes of these primers are shown in Table 2.1 Chapter 2. 

PCR amplification products of the correct size were cloned (Pgem-t easy Promega), 

sequenced (StabVida, Oeiras, Portugal) then analyzed for sequence similarity 

(BLAST, ClustalX). Primer3 (Rozen and Skaletsky, 2000) was used for Marine catfish 
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specific primers designing specifically for 5’ and 3’ amplification then were initially 

tested for specificity by RT-PCR (Table 2.2). Nucleotide sequences and amplicon 

sizes are shown in Table 2.1 Chapter 2. 

4.2.9.3. RT-PCR and RT real-time PCR 

The real-time PCR (RT PCR) was done by transcript quantification using SYBR green 

with an iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad). The generation of 

a melt curve for every PCR product (confirm the specificity of the assays) and 

preparation of a dilution series to check the efficiency of the reactions has been used. 

The β-Actin, was used as the housekeeping gene. Analyzing of the expression levels 

of the interest genes was done based on cycle threshold (CT) values using the 

comparative CT method (2−ΔΔCT method) (Table 2.3 Chapter 2). 

4.2.10 Statistics 

Means ± standard deviation (S.D.) or 95% confidence interval was used for 

presenting of the data. Statistical differences of mRNA expression, protein and 

interaction of salinity and ligation between groups were determined using one-way 

ANOVA and two-way analysis of variance (ANOVA), respectively followed by the post 

hoc Student-Newman-Keuls (SNK) test (SigmaPlot 11.0 Systat Software, Inc.) in 

juveniles exposed to different salinities. Data were log transformed or square root in 

the case of a failed normality test. Fiducial limit was set at 0.05. 

 

4.3 Results: 

4.3.1 Osmoregulatory indicators 

During acclimation, there was mortality (50%) in SW acclimation ligated fish (48h) but 

not in sham or BW groups. Attempts at ligation in HSW acclimated fish resulted in 

100% mortality so experiments were not pursued further in this group of fishes.  

Plasma and muscle osmoregulatory indicators are presented in the Table 1. The 

seawater ligation [(SW-CL) 34‰] resulted in higher  plasma ion concentration 

including Na+, Cl- and Ca2+, osmolality, hematocrit and muscle Na+ and K+ 

concentrations. Plasma osmolality was more than 70 and 100% higher in 24h48h SW 

ligated, respectively. The resulting plasma strong ion ratio was significantly lower in 
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BW fish compared to SW and SW-CL fish. Hematocrit showed a positive correlation 

with salinity with BW values half of SW-CL (48h). Acclimation salinity had no effect on 

plasma K+ concentrations.  

Muscle water content was significantly lower in SW-CL (48h) acclimated fishes 

indicating dehydration but was unaffected by BW acclimation or BW-L ligation. Muscle 

sodium and potassium concentrations followed the opposite trend being significantly 

higher in SW ligated fish which is reflected in a respectively higher and lower Na+: K+ 

ratio in muscle of ligated fish.  On the other hand, brackish water ligation (BW-L), only 

resulted in lower plasma K+ concentrations (Table 1). The [Na+] and Na+/Cl- ratio of 

plasma and haematocrit showed a significant decrease in BW compare to the SW-

control of acclimated fish.  

4.3.2 NKA activity  

In SW marine catfish, specific NKA activity was lowest in gill and posterior 

intestine, and more than three times higher in kidney and anterior intestine (Fig. 4.1). 

In response to SW-CL no significant difference in NKA activity were detecting in gill, 

or kidney (Fig. 4.1a,b,c) while anterior and posterior intestine NKA activity was 2x 

lower and 2x higher, respectively than their respective SW sham controls  (Fig. 1d). 

Kidney showed significantly higher NKA activity in SW versus BW acclimated fish, but 

no ligation effect (Fig. 4.1b). In BW-L NKA activity only increased in the gill (Fig. 4.1a) 

while sham BW gill was also lower than the corresponding SW sham group (Fig. 4.1a).  

4.3.3 Western blot  

We used antibodies cross reactive with NKA α-subunits, NKCC1, cytosolic 

carbonic anhydrase, V-ATPase B subunit and heat shock protein (Hsp70) to determine 

how DO ligation and salinity affected the abundance of these important gill, kidney, 

anterior and posterior intestine ion transporters and possible compensatory response 

of them. 

NKA α subunit expression was detected in all organs of interest as a single band 

of approximately 100kDa. The relative expression of the NKA α subunit protein was 

not salinity responsive in gill and kidney (data not showed), but in anterior and posterior 

intestine expression levels were dependent on both salinity and ligation (Fig. 4.2a,b). 

In anterior intestine, NKA α subunit expression was significantly lower in BW 
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acclimated fish compared to SW. In SW acclimated fish, both intestinal regions had 

significantly lower expression following ligation. In contrast the opposite effect of 

ligation was observed in BW fish following ligation (significantly higher expression). In 

both regions, the highest levels of expression were present in BW ligated fish. NKCC 

(T4) expression was not detected in any of the tissues in current experiment (data not 

showed).  

Regarding use of CFTR antibody, a single band of predicted molecular mass 

range as 160 kDa was expressed; however, multiple smaller cross-reactive bands 

were also observed thus making it difficult to specifically detect the band of interest, 

which made semi-quantification problematic. Therefore, the antibody was not use in 

other tissues or for quantification. 

Ca17 was detected as an approximately 30kDa band and interactions between 

salinity and ligation were detected in all tissues examined (Fig. 4.3).In gill and anterior 

intestine Ca17 was lower in BW versus SW sham fish but not in kidney or posterior 

intestine.  Relative Ca17 protein expression was significantly lower in gill, anterior and 

posterior intestine of following ligation in SW fish (Fig. 4.3 a, c, d) while higher 

expression was found in kidney (Fig. 4.3 b). In BW ligation, significantly higher Ca17 

was found only in posterior intestine relative to the BW sham group and no differences 

in the other tissues (Fig. 4.3 d).  

The V-ATPase B subunit (VHAB) was found expressed as a ~56 kDa band in 

gill, kidney and posterior intestine but not anterior intestine (Fig. 4.4). In gill, VHAB 

levels were significantly higher in ligated versus non-ligated fish irrespective of 

acclimation salinity (Fig. 4.4a). In kidney and posterior intestine there were interactions 

between salinity and ligation. In kidney, ligation resulted in significantly higher VHAB 

compared to both SW-control and BW-L (Fig. 4.4b). In posterior intestine, the BW 

sham group had higher VHAB compared to both BW-L and SW controls (Fig 4.4c). 

Heat shock protein 70 (Hsp70) protein was found in all of the tissues of interest 

in our work as a single 70 kDa immunoreactive band (Fig. 4.5). In all tissues Hsp70 

were highest in SW versus BW fish (Fig. 4.5a,b). However, in anterior intestine ligation 

was associated with significantly lower Hsp70 levels but without an interaction with 

salinity (Fig. 4.5c). An interaction between salinity and ligation was found only in the 

posterior intestine (Fig. 4.5d). In SW fish, ligation was associated with lower Hsp70 
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levels whereas the opposite was observed in BW with significantly higher ligation 

associated expression. SW sham control Hsp70 levels were higher than respective 

BW shams.  

4.3.4 Gene expression of atp1a1, ca17, cftr, slc26a6a 

Significant differences in NKA α subunit atp1a1 mRNA expression levels was 

only found in kidney. Ligation in SW fish was associated with significantly 

higherexpression levels compared to SW controls and BW-L. (Fig. 4.7a).  

The cftr mRNA expression in gills was not affected by ligation in SW fish, 

however, BW ligation resulted in significantly higher mRNA levels compared to the BW 

sham and SW-L group. (Fig. 4.6b). In kidney there was an interaction between salinity 

and ligation (Fig. 4.7c). BW sham fish had higher cftr levels than BW ligated and SW 

control sham fish. Ligation had no effect in SW fish. Only in anterior intestine difference 

between BW was higher compare to SW-control (data not shown).IF YOU DON’T 

SHOW DATA as tables or figures SHOULD PROVIDE SOME NUMBERS HERE. 

The ca17 mRNA levels in gill were significantly lower in SW fish and ligation was 

also associated with lower levels (Fig. 4.6a). In contrast in kidney, ca17 levels were 

higher with ligation independent of salinity (Fig. 4.7b).  

The slc26a6a mRNA levels was found expressed in all tissues studied. However, 

only in kidney were significant treatment effects observed. There was an interaction 

between salinity and ligation. BW sham fish has higher mRNA compared to ligated 

and SW sham control fish (Fig. 4.7d). 

4.3.5 Immunohistochemistry  

IHC staining pattern of BW-L and SW-L fish in different tissues of the present 

experiment were similar to the BW and SW-control acclimated fish; however, a few 

changes were noted which will be presented in the following section.  

4.3.5.1 Gill 

The gills of marine catfish have a typical teleost gill organization of filaments with 

lamellae. In the branchial epithelium strong NKA immunoreactivity (IR) was detected 

in large isolated ovoid cells throughout the cytoplasm with the exception of the apical 
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region (Fig 4.8). This NKA cellular staining pattern is typical of teleost fish chloride cell 

or ionocyte tubular system. There were relatively few of these branchial NKA-IR cells 

which were present in a heterogeneous distribution limited to a few interlamellar 

regions over the leading edge of the filament and were absent from the lamella. 

Experimental salinities and ligation did not alter the NKA-IR cell distribution pattern. 

The secretory Na+:K+:2Cl– cotransporter (NKCC1) expression in gill was rarely 

detected despite the use of antigen retrieval techniques and positive immunoreactivity 

in other tissues (kidney and intestine) indicating that species specific immunoreactivity 

problems were not an issue. The colocalization of NKCC1 in more weakly NKA-IR 

cells in BW, SW fish are shown in Fig 4.8a, g. Ovoid cells in filament epithelium 

showing only NKCC1 staining were observed in BW-L and SW-CL (Fig 4.8d,j). The 

apical localization of CFTR was detected in some NKA-IR cells with no apparent 

salinity and/or ligation dependent differences (Fig 4.8b, e, h, k). The V-ATPase H+-

pump (VHA) was localized in a similar cytoplasmic staining pattern as NKA; however, 

in separate cells from NKA-IR cells under all acclimation conditions (Fig. 4.8c, f, I, l). 

Only once was colocalization VHA with NKA-IR ionocytes observed in BW-L (Fig 4.8f) 

4.3.5.2 Intestine 

Immunolabeling of NKA in the anterior and posterior intestine of marine catfish 

acclimated to BW or SW with or without DO ligation revealed intense staining in the 

basolateral regions of the intestinal epithelium (Fig 4.9, 4.10). However, in posterior 

intestine of BW-L less staining compared to other groups of fish was observed (Fig 

4.10d, e). NKCC2 or NCC immunoreactivity was detected in apical brushborder of the 

epithelium in the anterior and/or posterior intestine in all salinity experiments. 

However, basal staining in ligated SW fish posterior intestine of fish was observed (Fig 

4.10j). CFTR immunoreactivity was detected apically in isolated spindle shaped 

columnar cells in epithelium of anterior and posterior intestine in all of salinity 

experiment (Fig 4.10b, e, h, k). However, in posterior intestine a higher staining pattern 

in SW ligated fish was also observed (Fig 4.10k).  

Apical orsubapical localization of V-ATPase in columnar epithelial cells of SW 

ligated fish was observed in anterior intestine (Fig 4.9). In the posterior intestine, apical 

expression at SW and BW ligated and SW control fish was observed (Fig 4.10j, d, g) 

while it was not observed at BW in posterior intestine (Fig 4.10c). 
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4.3.6 Histology (AB-PAS) 

Gill Combination of Alcian Blue and PAS (AB/PAS) staining showed a higher 

number distribution of blue (acidic) mucus cells in interlamellar regions of the gill 

filament in BW-L individual compare to other groups (Fig. 4.11). 

Anterior intestine apical neutral, acid rich (blue) and purple cells indicating 

combination neutral and acidic glycoconjugates in enterocytes (Fig. 4.12, 4.13) 

however no differences in distribution of cells have observed. On the other hand in 

posterior intestine higher number distribution of blue (acidic) mucus cells in ligated fish 

of brakish water and saltwater have observed (Fig. 4.13) 

 

 

Table 4.1. Plasma Na+, Cl-, K+, Ca2+, osmolality concentrations, hematocrit, and strong 

ion ratio (SIR; Na+:Cl-) and muscle water content (MWC) and muscle Na+ and K+ 

concentrations, and muscle Na+/K+ ratio of P. lineatus acclimated to [brackishwater 

(BW), brackishwater ligated (BW-L) 3‰, seawater (SW-control), seawater ligated 

(SW-CL) 34‰] salinity). Means within a given parameter across treatement groups 

which do not share the same letter are significantly different from one another (one-

way ANOVA, SNK). 

Plasma BW (3ppt) BW-L 

(3ppt) 

SW-

Control 

(34ppt) 

SW-

CL24h 

(34ppt) 

SW-CL48h 

(34ppt) 

Na+  (mmol l-1) 119.75 ± 
16.1 a 

118.65 ± 
10.3 a 

152.62 ± 

14.71 b 

 171.1 ± 

20.1 c 

Cl-     (mmol l-1) 125.5 

±11.8 a 

118.1 ± 

7.8 a 

127.8 ± 

10.9 a 

 147.7 ± 9.5 

b 

K+    (mmol l-1) 5.52 ± 

0.82 a 

3.20 ± 

1.10 b 

5.08 ± 0.97 

ac 

 4.01 ± 0.90 

bc 

Ca2+ (mmol l-1) 2.60 ± 

0.62 a 

2.30 ± 

0.7 a 

2.96 ± 0.39 

a 

 3.50 ± 1.20 

b 
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Osmolality 

(mosm kg-1) 

391.2 ± 

112.8 a 

395.0 ± 

67.3 a 

374.4 ± 

20.57 a 

549.3 ± 

72.1 b 

772.3 ± 

165.1 c 

Haematocrit (%) 15.3 ± 4.2 

a 

16.6 ± 
7.1 a 

23.3 ± 6.3 c 17.6± 4.7 

abc 

33.7 ± 6.9 d 

SIR  0.96 ± 

0.14 a 

11.9 ± 
3.2 b 

1.20 ± 0.16 
b 

 35.3± 7 a 

      

Muscle      

Water content 

(%) 

86.6 ± 4.5 

a 
89.7 ± 
4.7 a 

87.5 ± 3.7 a 87.5 ± 3.3 

a 

79.0 ± 3.2 b 

Na+  (mmol kg-1) 66.9 ± 
23.5 a 

58.2 ± 
19.7 a 

64.2 ± 10.7 

a 
97.0 ± 

21.3 b 

74.4± 15.8 

a 

K+  (mmol kg-1) 138.5 ± 
25.5 a 

121.2 ± 
29.4 a 

138.6 ± 
19.2 ab 

148.0 ± 

39.1 ab 

174.8± 

26.5 b 

Na+/K+ ratio  0.48 ± 
0.27 a 

0.48 ± 
0.15 a 

0.46 ± 0.56 
a 

0.76 ± 
0.21 b 

0.43 ± 0.17 
a 

      

 

   

 

                                           

                                         

                        

 

  

 

 

 

 

  

a                                   b 

 

 

 

c                                   d 
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Figure 4.1. Na+/K+-ATP activity in the gill (a), kidney (b), anterior and and 

posterior intestine (c-d) of marine catfish P. lineatus acclimated to [brackishwater 

(BW), brackishwater ligated (BW-L) 3‰, seawater (SW-control), seawater ligated 

(SW-CL) 34‰] salinity. Values are means ± S.D. (n=5-6). The asterisks indicate 

a significant difference between the groups where there was an interaction of 

salinity and ligation, two-way analysis of variance (ANOVA). Differences between 

BW and SW, and non-ligation (nL) and ligation (L) are also indicated.  (P < 0.05; 

see text for details). 

 

 

 

 

 

 

 

     

                                  

 

 

 

 

Figure 4.2. Relative expression of NKA αR1 protein in the anterior and posterior 

intestine (a-b) of marine catfish P. lineatus acclimated to [brackishwater (BW), 

brackishwater ligated (BW-L) 3‰, seawater (SW-control), seawater ligated (SW-

CL) 34‰] salinity. Values are presented as means ± S.D of protein abundance 

(n=5-6). The asterisks indicate a significant difference between the groups where 

 
 
a                                    b 
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there was an interaction of salinity and ligation, two-way analysis of variance 

(ANOVA). (P < 0.05; see text for details). 
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Figure 4.3. Relative expression of cytosolic carbonic anhydrase (CA) protein in 

the gill (a), kidney (b), anterior and posterior intestine (c-d) of marine catfish P. 

lineatus acclimated to [brackishwater (BW), brackishwater ligated (BW-L) 3‰, 

seawater (SW-control), seawater ligated (SW-CL) 34‰] salinity. Values are 

presented as means ± S.D of protein abundance (n=5-6). The asterisks indicate 

a significant difference between the groups where there was an interaction of 

salinity and ligation, two-way analysis of variance (ANOVA). Differences between 

BW and SW, and non-ligation (nL) and ligation (L) are also indicated. (2-way 

ANOVA, SNK). (P < 0.05; see text for details). 

  

 a                               b 

 

 

c                               d 
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Figure 4.4. Relative western blotting expression of V-ATPase B subunit (B2 

antibody) in the gill (a), kidney (b) and posterior intestine (c) of marine catfish P. 

lineatus acclimated to [brackishwater (BW), brackishwater ligated (BW-L) 3‰, 

seawater (SW-control), seawater ligated (SW-CL) 34‰] salinity. Values are 

presented as means ± S.D of protein abundance (n=5-6). The asterisks indicate 

a significant difference between the groups where there was an interaction of 

salinity and ligation, two-way analysis of variance (ANOVA). Differences between 

BW and SW, and non-ligation (nL) and ligation (L) are also indicated. (P < 0.05; 

see text for details). 

  

 a                               b 

 

 

c                               d 
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Figure 4.5.  Relative expression of heat shock protein 70 (Hsp70) in the gill (a), 

kidney (b), anterior and posterior intestine (c,d) of marine catfish P. lineatus 

acclimated to [brackishwater (BW), brackishwater ligated (BW-L) 3‰, seawater 

(SW-control), seawater ligated (SW-CL) 34‰] salinity. Values are presented as 

means ± S.D of protein abundance (n=5-6). The asterisks indicate a significant 

difference between the groups where there was an interaction of salinity and 

ligation, two-way analysis of variance (ANOVA). Differences between BW and 

SW, and non-ligation (nL) and ligation (L) are also indicated. (P < 0.05; see text 

for details). 
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Figure 4.6. Relative mRNA expression of gill ca17 (a) and cftr (b) of marine 

catfish P. lineatus acclimated to [brackishwater (BW), brackishwater ligated (BW-

L) 3‰, seawater (SW-control), seawater ligated (SW-CL) 34‰] salinity. Data are 

means ± S.D. (n=3-4). The mRNAs expression was normalized to the 

corresponding bactin abundance from the same sample and the expressed 

relative to the SW-control. The asterisks indicate a significant difference between 

the groups where there was an interaction of salinity and ligation, two-way 

analysis of variance (ANOVA). Differences between BW and SW, and non-

ligation (nL) and ligation (L) are also indicated. (P < 0.05; see text for details). 

  

a                                 b 
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Figure 4.7. Relative mRNA expression of kidney atp1a1 (a), ca17 (b), cftr (c) and 
slc26a6a (d) of marine catfish P. lineatus acclimated to [brackishwater (BW), 
brackishwater ligated (BW-L) 3‰, seawater (SW-control), seawater ligated (SW-
CL) 34‰] salinity. Data are means ± S.D. (n=3-4). The mRNAs expression was 
normalized to the corresponding bactin abundance from the same sample and 
the expressed relative to the SW-control. The asterisks indicate a significant 
difference between the groups where there was an interaction of salinity and 
ligation, two-way analysis of variance (ANOVA). Differences between BW and 
SW, and non-ligation (nL) and ligation (L) are also indicated. (P < 0.05; see text 
for details). 
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Figure 4.8. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h, j, k) with NKCC1 (T4, red a, d, g, j) and CFTR (red, b, e, 

h, k) or Na+/K+-ATPase (α5, red c, f, i, l) with V-ATPase (B2, green c, f, i). 

Sections were counter stained with DAPI nuclear staining (blue) and overlaid with 

the differential interference contrast (DIC) images in the gills of marine catfish P. 

lineatus acclimated in brackish water (BW) 3‰ (a-c), brackish water ligated (BW-

L) 3‰ (d-f), seawater (SW-control) 34‰ (g-i) and seawater (SW-control) ligated 

(SW-CL) 34‰ (j-l). Scale bar 100 µm in upper panel. See text for details.  
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Figure 4.9. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h, j, k) with NKCC1 (T4, red a, d, g, j) and CFTR (red, b, e, 

h, k) or Na+/K+-ATPase (α5, red c, f, i, l) with V-ATPase (B2, green c, f, i). 

Sections were counter stained with DAPI nuclear staining (blue) and overlaid with 

the differential interference contrast (DIC) images in the anterior intestine of 

marine catfish P. lineatus acclimated in brackish water (BW) 3‰ (a-c), brackish 

water ligated (BW-L) 3‰ (d-f), seawater (SW-control) 34‰ (g-i) and seawater 

(SW-control) ligated (SW-CL) 34‰ (j-l). Scale bar 100 µm in upper panel. See 

text for details. 
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Figure 4.10. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h, j, k) with NKCC1 (T4, red a, d, g, j) and CFTR (red, b, e, 

h, k) or Na+/K+-ATPase (α5, red c, f, i, l) with V-ATPase (B2, green c, f, i). 

Sections were counter stained with DAPI nuclear staining (blue) and overlaid with 

the differential interference contrast (DIC) images in the posterior intestine of 

marine catfish P. lineatus acclimated in brackish water (BW) 3‰ (a-c), brackish 

water ligated (BW-L) 3‰ (d-f), seawater (SW-control) 34‰ (g-i) and seawater 

(SW-control) ligated (SW-CL) 34‰ (j-l). Scale bar 100 µm in upper panel. See 

text for details. 
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Figure 4.11. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus gill acclimated in (a) brackish water (BW) 3‰, brackish 

water ligated (BW-L) 3‰ (b), seawater (SW 34‰) (c) and seawater ligated 

(SW_CL 34‰). The neutral (magenta, short arrow), acid rich (blue, arrowhead) 

and purple cells (long arrow) are indicating combination neutral and acidic 

glycoconjugates. Scale bar 100 µm. See text for details. 
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Figure 4.12. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus anterior intestine acclimated in (a) brackish water (BW) 

3‰, brackish water ligated (BW-L) 3‰ (b), seawater (SW 34‰) (c) and seawater 

ligated (SW_CL 34‰). The neutral (magenta, short arrow), acid rich (blue, 

arrowhead) and purple cells (long arrow) are indicating combination neutral and 

acidic glycoconjugates. Scale bar 100 µm. See text for details. 
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Figure 4.13. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus posterior intestine acclimated in (a) brackish water 

(BW) 3‰, brackish water ligated (BW-L) 3‰ (b), seawater (SW 34‰) (c) and 

seawater ligated (SW_CL 35‰). The neutral (magenta, short arrow), acid rich 

(blue, arrowhead) and purple cells (long arrow) are indicating combination neutral 

and acidic glycoconjugates. Scale bar 100 µm. See text for details. 
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4.4. Discussion   

4.4.1 Ions and osmolality and acid-base status 

Plasma osmolalities of euryhaline species from marine and freshwater 

origin varied between 160-410 and 235-414 mOsm/kg H2O, respectively (Freire 

and Prodocimo, 2007). The observed plasma ions concentrations were in the 

range of other teleost fish species (see review Whittamore et al., 2012, Table 1). 

In SW-CL, increase of plasma ions concentration except K+, osmolality and 

hematocrit but not Na+/Cl- ratio (SIR) and decreased muscle water content 

(MWC) was observed. The value of Na+ was lower compare to C. macrocephalus 

while osmolality was higher after 48h ligation (Kowarsky, 1973). The latter might 

be contributed to different conditions of the experiments, or temperature (26-

28ºC) from Kowarsky (1973, 20ºC). Furthermore, increased plasma Ca2+ 

concentration in SW-CL fish may represent the role of DO in Ca2+ regulation 

however needs more molecular evidences.  

In our work, SW-CL ligation cause decreased survival, which was similar to 

Kowarsky (1973). The ligation or excision of rectal gland, for prolonged periods 

(1 month), in Squalus acanthias showed no significant effect on plasma 

electrolytes in compare to the normal conditions in SW (Burger, 1965; Evans et 

al., 1982; Evans, 1993; Wilson et al., 2002) or dilute sea water (Burger, 1965). 

However, regression of the rectal gland tissue in FW adapted sharks compare to 

SW adapted has been reported by Oguri (1964). Similarity of DO in P. lineatus 

and rectal gland of elasmobranchs has been proposed (Van Lennep and Lanzing, 

1967; Van Lennep, 1968; Pucke and Umminger, 1979) however, observation of 

such instability of SW-CL fish in current study and Kowarsky (1973) may suggest 

the possibility of existence other approaches in maintenance of ionic-osmotic 

balance.  

4.4.2 Hematocrit, muscle water content and ions  

Decreased hematocrit in SW-CL 24h L accompany increased osmolality 

may lead to obliged water movement then reduction blood hematocrit 

accordingly. However, considering increased hematocrit at SW-CL 48h L might 



95 
 

be contributed to the stress due to losing of DO and activity to maintenance of 

ion regulatory status.  

Effect of the ligation on MWC may express possible role of DO in water 

transport directly and/or indirectly. The absence of zonulae occludentes in DO 

(Van Lennep, 1968) may lead to propose potentially free passage for water or 

ions from intercellular space to lumen and vice versa. Furthermore, ligation may 

affect on drinking rate of fish to reduce loaded salt inside the body to avoid of 

more stresses regarding to salt excretion thereby changing of MWC.  

Observation of increased muscle Na+ and Na+/K+ ratio at 24h L followed by 

a reduction in 48h L where K+ was however, higher in SW-CL may due to the 

primary stress of ligation and a compensatory response of fish muscle. The buffer 

acting of muscle even for short a time has been reported for salt loading of rectal 

gland ectomised lip shark Hemiscyllium plagiosum via showing a significant 

accumulation of Na+ (Chan et al., 1967). A slightly higher but not significant 

muscle Na+ than sham operated glandless S. acanthias has been reported by 

Wilson et al (2002). Totally, increased muscle ions in SW-CL might be an 

adaptation strategy in dealing with salt loading in the absence of DO as main salt 

excretion tissue. However, it seems the latter was not working sufficiently to 

compensate DO ligation since gradually death of the fish has been observed.     

Plotosus lineatus challenged with BW-L,  

In BW-L, observation decreased plasma K+ concentration may be represent 

role of DO on plasma K+ regulation, occurring a reduced uptake, rather than 

increased loss of K+ presumably via gill (Partridge and Lymbery, 2008; Malakpour 

Kolbadinezhad et al., 2012). In C. macrocephalus (Kowarsky, 1973) BW ligated 

fish showed a depression in plasma Na+ levels and no significant change on 

osmolality however Na+ was higher compare to the present study while osmolality 

was lower which may be because of different temperature and/or experimental 

conditions.  

Taken together, it seems due to DO ligation, observed elevated amount of 

plasma ions and osmolality or hematocrit and in contrary declined MWC thus 

water lose by osmosis, a systemic dehydration in SW-CL fish representing may 
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be problematic resulting in a stress situation thus osmotic disturbance thereby 

indicating to main role of DO in salt excretion.  

4.4.3 Metabolic acidosis and alkalosis by ions regulation  

Changes in Na+/Cl- ratio (SIR) of blood plasma has been recommended for 

indicating acid-base imbalances (Jensen et al., 1998; Sinha et al., 2015). Since 

the direct measurements of plasma acid-base balance were not done in current 

study due to the small size of the fish however calculated, SIR might revealed 

changes in the plasma level of weak anions (e.g. HCO3-) and thus acid-base 

balance. Observation stability of plasma Cl- concentration in BW and/or BW-L of 

fish while SIR was lower compare to other groups express a metabolic acidosis, 

better regulation of the Cl- compare to Na+ in ligated fish thus indirectly represents 

DO function as Na+ excretion.  

The occurring of “metabolic alkalosis” because of NaCl uptake by 

gastrointestinal track, after feeding (postprandial period), result in elevated 

plasma Na+ (Claiborne, 1997) and thereby elevated intestinal HCO3- secretion 

rates (Taylor and Grosell, 2006) has been suggested in some fish species such 

as elasmobranch (Wood et al., 2005) and FW trout (Bucking and Wood, 2008; 

Cooper and Wilson, 2008). Accordingly, detecting increased plasma Na+ 

concentration (comparable with Cl-) and SIR of SW-CL fish compare to BW and 

BW-L may suggest a metabolic alkalosis. On the other hands, observed declined 

protein expression of Rhag and/or Rhbg in gill of SW-CL fish may express lower 

amount of accumulated ammonia inside body presumably blood plasma or less 

excretion ammonia rate (JAmm) from body to the outside.  

4.4.5 Evidence for role of gills in salt secretion? 

As previously confirmed, DO but not gill is main organ of ion regulation in 

marine catfish similar the correlation of gill and rectal gland of elasmobranches 

(Piermarini and Evans, 2000; Pillans et al., 2005; Malakpour Kolbadinezhad et al 

in press). The observation of elevated NKA at BW-L compare to BW fish may 

express ion regulation without changing in ions concentration such as Na+ and 

Cl- or acid-base regulatory function because of the observation of similar trend in 

V-ATPase protein expression. Observation of the discrepancies between α 
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subunit protein, atp1a1 expression and NKA activity of gills might be related to 

post translational and/or post-transcriptional modification. It seems ligation has 

no effect on heterogeneously distribution of detected a few NKA-IR cells in gills 

filament epithelia. Removing of rectal gland showed no significant change in 

branchial NKA activity, ionocytes number or ultrastrucutre in spiny dogfish 

(Wilson et al., 2002) while change of branchial ionocytes of striped dogfish 

Poroderma africanum, has been reported by Haywood (1975). The lamella role 

to gas exchange has predictable due to the localization of NKA-IR cells only in 

filament epithelia (Evans et al., 2005).  

The basolateral localization of NKCC1 in gills ionocytes is being used as 

secondary Cl- secreting (see review Hiroi and McCormick, 2007, 2012). Finding 

very rare of NKA-IR cells that co-expressed NKCC1, although apical CFTR 

staining was observed in NKA-IR cells may lead to salt secreting function even 

somehow as the compensatory mechanisms in the absent of the DO.  Secondary 

function of elasmobranchs gill in osmoregulation (Burger and Hess, 1960; Wilson 

et al., 2002) due to possessing of rectal gland and similarity between gills of P. 

lineatus and elasmobranchs has confirmed (Doyle and Gorecki, 1961; Pucke and 

Umminger, 1979, our previous molecular study see Chapter 3).  

In SW-CL, it seems a negative correlation between mRNA expression of cftr 

and elevated plasma Cl-. In spiny dogfish observation negatively correlated of gill 

ionocytes numbers with plasma Cl- levels, suggested a role in regulating plasma 

levels as Cl- elimination (Wilson et al., 2002). Bentley et al (1976) have suggested 

role of dogfish gill ionocytes in the active Cl- transport. On the other hand, in BW-

L observed higher mRNA expression of cftr as seen in anterior intestine might 

lead to more Cl- secretion through gill accompanied the elevated NKA activity 

however, since plasma Cl- level showed more or less stability in BW-L it seems 

another regulatory mechanism also could affect on regulation of plasma Cl- level. 

Considering proposed potential role of DO in Cl- regulation (see more details in 

Chapter 3) thus gill may reveal a compensatory role, even partly, in Cl- regulation. 

Moreover, observation of anion exchanger slc26a6a mRNA expression however 

not effected by ligation, a potential correlation of expressing apical CFTR 

regarding to facilitated Cl-/HCO3- exchange or HCO3- secretion (Grosell et al., 



98 
 

2009b), may be contributed to acid-base regulation in proposed metabolic 

acidosis and/or ion regulation. However, it needs more evidences. 

V-ATPase  

Increase trend of V-ATPase protein expression in both BW-L and SW-CL 

might be a regulatory activity to compensate of ligation. IHC results in SW-CL 

may indicate V-ATPase is present in only a subpopulation of ionocytes on 

filament and lack of consistent colocalization with NKA-IR cells which has 

reported in different species (Catches et al., 2006; Uchiyama et al., 2012; Cramp 

et al., 2015) and not involving of gills V-ATPase in acid excretion. However, 

observed colocalization V-ATPase in rare NKA-IR/MR cells in BW-L, which 

represented increased NKA activity, was similar to the result of Katoh et al., 2003 

in F. heterclitus where showed higher NKA activities in response to hyposmotic 

medium. Furthermore, detecting partial sequence of slc26a6a may imply the 

possibility of bicarbonate excretion in gills presenting one of MRCs subpopulation 

serving as has reported in elasmobranchs (Piermarini et al. 2001; Cramp et al., 

2015).  

CA  

The reversible dehydration or hydration reactions of CO2 as a crucial 

catalyzing role of carbonic anhydrase (CA) (see review Marshall and Grosell, 

2006; Gilmour and Perry, 2009) and obvious role in ion regulation (Evans et al., 

2005; Tresguerres et al., 2006a) has been discussed. Decreased protein 

expression of CA in SW-CL fish and rather less NKA may serve as a conservation 

mechanism regarding to the saving of the energy in ligation period. On the other 

hands, increased mRNA expression of ca17 in BW-L accompanied elevated NKA 

activity and higher mRNA expression of cftr may be contributed to Cl- secretion 

or CO2 excretion through the gill regarding to proposed metabolic acidosis thus 

acid-base regulatory process. Observed colocalization of CA and NKA-IR cells 

showed no alter effect of ligation and/or salinity. 

Furthermore, Alcian Blue and PAS (AB/PAS) staining showed a higher 

distribution of acidic mucus cells in interlamellar regions of the gill filament in BW-

L fish which may be attributed to compensate the proposed metabolic acidosis of 

marine catfish at BW-L. Generally, since the potential role of the DO in acid base 
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regulation has been suggested in our previous study, thus in the absence of DO, 

it seem gills and other tissues try to compensate the ligation. 

4.4.6 Role of the intestine: 

The observation higher NKA activity in anterior intestine compare to 

posterior in SW-control and reversely posterior intestine in SW-CL might be 

attributed to more functional role of former and latter in steady state and ligated 

conditions, respectively. Furthermore, lower NKA activity in anterior intestine and 

decreased protein expression of NKA α subunit, CA in intestine of SW-CL 

generally may be contributed to less energy consuming in ligation period as 

adaptation mechanisms.  

In SW-CL, observed apical localization of NKCC, V-ATPase on entrocyte 

cells of posterior intestine compare to SW-control fish may be attributed to Na+ 

uptake involving of NHE3 as metabolon and facilitating either drinking rate or 

coupled water absorption (for more details see review Grosell 2011). Moreover, 

basolateral localization of NKCC accompanied elevated NKA activity, and more 

distribution of CFTR compare to SW may represent salt secreting beside of 

absorbing thus might be result of increasing luminal fluid concentration before 

reach to kidney. Since, decrease concentration of different ions in lumen fluid 

from anterior to posterior intestine has been reported in different fish species 

(Marshall and Grosell, 2006), may be posterior intestine in SW-CL, fish may has 

role in ion regulation while anterior intestine which showed more expression of V-

ATPase via IHC has acid-base regulation. Moreover, AB/PAS staining showed 

more distribution of acidic mucus cells in posterior intestine of SW-CL fish, which 

may express compensatory response to absence of the DO.  

In BW-L, generally increased of NKA α subunit protein expression has 

observed in intestine. However, since posterior intestine showed higher protein 

expression of CA and Hsp70 compare to anterior intestine thus it seems has more 

active role in BW-L. Furthermore, observations of V-ATPase protein expression 

only in posterior intestine, which decreased in BW-L, may be contributed to acid-

base regulation represent or indirectly represent another source for H+ 

presumably NHE.  

IHC results of BW-L showed less NKA α subunit expression compares to 

BW in posterior intestine while NKA activity and/or mRNA expression showed no 
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significant change thus might express presence of another subunit of NKA or less 

energy consuming duration the ligation. Observation of apical and/or basolateral 

localization of NKCC in anterior intestine in BW while BW-L fish showed only 

apical expression may express an adaptation mechanism in ligation period to salt 

absorption. Furthermore, apical expression of V-ATPase in BW-L while it was not 

observed in BW may express acid secretion as compensatory response to 

metabolic acidosis. 

 However, observation higher mRNA expression of cftr in anterior intestine 

of BW-L fish may suggest more important role in Cl- (and fluid) secretion which 

may increase mucosal Cl- concentration (Grosell and Taylor, 2007; Taylor et al., 

2010) and presumably effect of reducing HCO3– secretion rates. The similar trend 

has also observed in gill in BW-L. Thus, anterior intestine may reveal a 

compensatory role, even partly, in Cl- regulation as seen in the gill. Moreover, 

slc26a6a mRNA expression showed no difference in various groups which might 

work to regulation of generated HCO3- by CAs. Regarding the observed 

dependency of HCO3- secretion to exist of CFTR (Garcia et al., 2009) and 

potential correlation of CFTR regarding to Cl-/HCO3- (Grosell et al., 2009b) more 

research works would be interested in future.   

Furthermore, AB/PAS staining showed more distribution of blue acidic 

mucus cells in posterior intestine of BW-L (similar to SW-CL individuals), which 

may express the compensatory response to the absence of DO. Taken together 

it seems in intestine of marine catfish has important role in ligated fish in either 

BW-L or SW-CL.  

Taken together, In BW-L, it seems more distribution of blue acidic mucus 

cells in interlamellar regions of gills filament, CT of kidney and posterior intestine 

would be consider as compensatory response to metabolic acidosis.  

Heat shock protein (Hsp 70) 

Involving of stress proteins named as Heat shock proteins (Hsps) in vital 

cellular processes has been reported (Morimoto and Santoro, 1998; Iwama et al., 

1998, 2006; Basu et al., 2002; Deane and Woo, 2011). In SW-CL, observation 

less protein expression of Hsp70 in kidney, anterior and posterior intestine may 

express different threshold of salt tolerance. The observation inverse interaction 

of SW-control and BW with the ligation groups in posterior intestine may reveal 

functional role in ligated fish.  
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Marine Catfish adaptation in SW-CL 

It would be logic if fish do the energy conservation in stress conditions.  

Thus, decreased trend of NKA activity in examined tissues except posterior 

intestine, decreased protein expression of NKA α subunit particularly in intestine 

may lead to using less energy thereby production of the ATP and glucose, total 

O2 consuming (metabolic rate) thus production of CO2 thereby required CA which 

all together may result in energy saving. Since, fasted period was around 14 days 

in present study, possibly of affecting on energy stores of body such as liver 

glycogen and/or lipid might be predictable. Stress caused by DO ligation, losing 

the main organ of ion regulation, and potentially less production of ATP and/or 

glucose may have synergetic effect thus result in energy store depletion. The 

latter may cause an anaerobic metabolism as energy fueling in osmotic 

adaptation (for more details see review Tseng and Hwang, 2008). 

Furthermore, observation of inverse interaction of salinity and ligation in 

protein expression of CA in gill and/or intestine compare to kidney, observed 

compatibility of NKA activity and protein expression of CA in gill and anterior 

intestine while posterior intestine and rather kidney showed incompatibility might 

reveal various roles of tissues in ligation period. It seems kidney of ligated fish 

may have a role in acid-base regulation due to express increased protein of CA 

and V-ATPase. On the other hand, observed higher NKA activity in posterior 

intestine might be related to have more functional role in water absorption.  

However, since the survival of fish was affected by ligation thus quality of 

mentioned changes in various organs required more evidences to evaluate. 

Taken together it seems the compensatory responses of gills, kidney and 

intestine in SW-CL could work for short period however, they were not sufficient 

for keeping survival of fish while it was inverse in BW-L.  
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Abstract 

The kidneys of Plotosidae marine catfishes are unusual in their ability to produce 

hyperosmotic urine compared to other marine teleost fishes. In the present study, 

the effects of different salinities including brackishwater (BW) 3‰, seawater (SW-

control) 34‰ and hypersaline water (HSW) 60‰ on Plotosus lineatus kidney 

morphology and distribution of key ion transporters using immunohistochemistry 

was investigated. Immunohistochemical (IHC) localization of NKA α-subunit 

shows relatively weak basolateral staining in the proximal tubule I (PTI), distal 

tubule (DT) and DT ampulla (DTa), and stronger staining in PTII. The collecting 

tubule (CT) and collecting duct (CD) have very large ovoid cells with 

colocalization of NKA α-subunit and Na+:K+:2Cl– cotransporter (NKCC1) 

throughout the cytoplasm. These cells are also strongly eosinophilic. This NKA-

NKCC1 staining pattern of renal “chloride cells” indicates a secretory cell type 

and are attributed to production of unusual hyperosmotic urine. These cells are 

present at all acclimation salinities. Goblet cells with acidic and neutral mucins 

are present in the CT/CD and HSW results in the disappearance of neutral 

mucins. The absorptive NKCC2/NCC were localized apically to cells in both PTI 

and PTII indicating and absorptive function. Staining was reduced in HSW fish. 

CFTR was localized apical to PT segments and basolaterally in CT/CD. Carbonic 

anhydrase was found to weakly staining in all nephron regions while V-type H+-

ATPase was localized to PTI subapically and PAT1 (Slc26a6) to non-“chloride 

cells” in the CT. These cells presumable function in acid-base and SO42- 

regulation. Taken together, the kidney of marine catfish has the molecular 

mechanisms in place for an effective role in ion/osmo regulation particularly in 

HSW environment.   
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5.1. Introduction 

The primary role of the kidney in marine teleost fishes is the excretion of 

divalent ions (.eg., Mg2+ and SO42-) in the face of a continual excess of divalent 

ions permeating across body surfaces (Hickman, 1968). Furthermore, water 

conservation is a conflicting demand in this dehydrating environment and thus 

the kidneys produce small volume of of generally isotonic urine containing excess 

divalent ions (Marshall and Grosell, 2006; Evans, 2008). Teleost kidney, 

generally cannot produce hyperosmotic urine because of the lack of zonation and 

the  loop of Henle as seen in mammalian kidney or countercurrent tubules flow 

as observed in elasmobranchs and/or lamprey (McDonald, 2007; Evans, 2008). 

Although there have been a few reports of hyperosmotic urine formation in marine 

teleosts (Fleming and Stanley, 1965; Hickman, 1968; Stanley and Fleming, 1964; 

Kowarsky, 1973; McDonald and Grosell, 2006). Significantly amongst these 

examples only the marine catfish Cnidoglanis macrocephalus has been shown to 

produce hyperosmotic urine under steady state conditions (Kowarsky, 1973) 

which make it an intrigue subject for study. 

The Plotosidade kidney belongs to the type II according anatomical classes 

defined by Ogawa (Ogawa, 1961a; Hickman and Trump, 1969). The nephron 

segments of marine catfish kidney are similar to FW teleosts including the 

glomerulus (G), neck (N), proximal tubule I (PTI), proximal tubule II (PTII), distal 

tubule (DT) and collecting tubule/duct (CT/CD) (Ogawa, 1959; Hentschel and 

Elger, 1987). The distal tubule of the marine catfish kidney is also unusual in 

having an ampullar region, enlarged of the tubule just proximal to the start of the 

CT (Fig 5.1). The distal tubule wraps around the ampullar region. The collecting 

duct is also populated with large cells similar in morphology to branchial 

mitochondria-rich cells with a tubular system. These renal ‘chloride cells’ are 

found in other catfish species as well as lamprey (Hentschel and Elger 1987). 

Although the morphology of the marine catfish kidney has been characterized, 

the molecular information of their kidney is unknown which would be necessary 

to explain their unusual ability to produce blood-hyperosmotic urine. To this end, 

histological and immunohistology approaches were taken to address ion 

transporter distributions in the kidney of marine catfish acclimated to different 
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salinities. DO ligation was used to help assess the compensatory response of the 

kidney. 

 

Figure 5.1. Illustration of the Plotosus lineatus kidney nephron modified from 

Hentschel and Elger (1987). Glomerulus (G), neck (N), proximal tubule I and II 

(PTI, PTII), distal tubule (DT), distal tubule ampual (DTa) and initial collecting 

tubule (iCT) and collecting tubule (CT) and duct (CD).  

 

5.2 Materials and Methods 

5.2.1 Animals 

Adult Plotosus lineatus were acclimated to three different salinities [brackishwater 

(BW) 3‰, seawater (SW-control) 34‰, hypersaline water (HSW) 60‰] for two weeks. 

Additional sets of P. lineatus acclimated to either BW or SW had their dendritic organs 

ligated or sham operated and sampled after 48h. Animals were sampled as described in 

Chapter 2.3. 

5.2.2 Histology  
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       Kidneys were excised, and immersion fixed in neutral buffered formalin, dehydrated 

through an ethanol series, and embedded in paraffin (see Chapter 2.4 for additional 

details). A Reichert Biocut 2030 microtome was used for cutting sections (5μm).  The 

section were stained with H&E, AB-PAS staining protocols. Micrographs were taken with 

a Leica DFC300FX digital colour camera mounted on a Leica DM 6000 B microscope. 

Images while maintaining the integrity of the data were imported into Photoshop CS3 to 

resize and adjust brightness and contrast. 

5.2.3 Immunohistochemistry 

The paraffin serial sections were cut and collected onto APS (3- 

aminopropyltriethoxysilane; Sigma) coated slides (Reis-Santos et al., 2008), completely 

dried, dewaxed then rehydrated. Antigen retrieval using 0.05% citraconic anhydride and 

1% sodium dodecyl sulfate (SDS)/PBS was performed on sections. Sections were then 

blocked with 5% normal goat serum (NGS) and incubated with α-subunits of NKA (αR1, 

α5), NKCC1 (T4), Carbonic anhydrase (CA) and V-ATPase (B2) primary and secondary 

goat anti-mouse and/or anti-rabbit Alexa fluorophore conjugated antibodies. DAPI was 

used for nuclei staining. Sections were viewed on a Leica DM6000 B with a digital 

camera (DFC340FX, Leica Microsystems, Wetzlar, Germany). See Chapter 2.8 for 

additional details. 
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5.3 Results 

5.3.1 Histology 

The kidney of P. lineatus does not show zonation. Using the Hematoxylin 

and Eosin (H&E) staining of marine catfish P. lineatus kidney acclimated in 

seawater (SW 34‰) indicated eosinophilic staining in proximal tubule I (PTI), PTII 

and collecting tubule/collecting duct (CT/CD) except in distal tubule (DT). In 

CT/CD large ovoid strongly eosinophilic staining cells were observed (Fig. 5.2). 

Periodic Acid Schiff (PAS) - Alcian blue (pH 2.5) (AB/PAS) double staining 

showed strong neck (N) apical acidic mucin staining. Apical PAS staining 

indicative of brush border was more obvious in PTI than PTII whereas in DT and 

DT ampullae very weak PAS staining and no AB staining were observed. In the 

CT/CD strong PAS staining  (magenta) glycoconjugates (GCs), Alcian blue acid 

rich (blue), and purple goblet cells were observed. The latter indicates the 

presence of combination neutral and acidic mucins (Fig. 5.3). Only HSW 

acclimation elucided change in goblet cell staining with the absence of neutral 

mucin staining (only acidic goblet cells remained). See more details in Appendix 

2 Table 2. 

The effects of DO ligation on kidney histology reveal a larger nephric space 

of Bowman’s capsule around the glomerular capillaries in BW-L individuals 

compare to the other treatments observed (Fig. 5.4). With ligation in SW, a 

smaller lumen size of in ampulla-like end portion of DT (DTa) was observed (Fig. 

5.5) compared to sham groups while we observed a larger lumen size with BW-

L. The combination of Alcian Blue and PAS (AB/PAS) staining showed a greater 

distribution of acidic mucin goblet cells in CT/CD with BW-L individuals (Fig. 5.4) 

while SW-CL showed a reduced distribution of both neutral (magenta) and acidic 

mucin goblet cell types (Fig. 5.5). 

5.2.2 Immunohistochemistry  

PTI showed apical NKCC2/NCC localization in BW and SW-control but not 

HSW (Fig. 5.6, 5.11). Apical and subapical localization of V-ATPase and the 

cytosolic localization of CA accompanied the basolateral expression of NKA in 

PTI in BW, and SW-control (Fig. 5.6, 5.9). Apical CFTR staining was observed in 

some cells in PTI as well as PTII (Fig 5.8). BW acclimation was associated with 

the absence of this staining (Fig. 5.12). In HSW the localization of CA was similar 
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to other salinities while basolateral localization of V-ATPase has been observed 

HSW fish (Fig. 5.11). The PTII showed stronger basolateral expression of NKA 

than PTI, but weaker apical NKCC2/NCC staining and cytosolic CA staining.   

The DT and DTa of BW, SW-control or HSW showed weak basolateral 

immunoreactivity with NKA but without co-localization with any of the other ion 

transporters of interest. (Fig. 5.12). 

In the CT, robust NKCC1 staining was present throughout the cytoplasm of 

tubular cells colocalizing with NKA (Fig. 5.6). This staining pattern is consistent 

with the presence of a basolateral tubular system in these cells. There was also 

a weak basolateral localization of CFTR, and PAT1 observed in CT/CD in SW-

control (Fig. 5.7, 5.10). However, the PAT1 cells were distinct from the NKCC1-

NKA IR cells. BW and HSW acclimation did not alter CT/CD staining patterns. 

Generally, the IHC staining in ligated BW and SW acclimated fish kidney 

was more or less similar to other group of fish (BW and SW sham groups). See 

more details in Chapter 3. Only CFTR in PTI of BW and BW ligated acclimated 

has not been observed (Fig. 5.13b, e, h, k). 
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Figure 5.2. Hematoxylin and Eosin (H&E) staining of marine catfish P. lineatus 

kidney acclimated in seawater (SW 34‰). Scale bar 100 µm. See text for details. 

Glomerulus (*), neck (N), proximal tubule I and II (PTI, PTII), distal tubule (DT), 

distal tubule ampual (DTa) and initial collecting tubule (iCT). Line drawing 

modified from Hentschel and Elger (1987).  
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Figure 5.3. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus acclimated kidney seawater (SW 34‰). The neutral 

(magenta), acid rich (blue) and purple cells are indicating combination neutral 

and acidic glycoconjugates. Scale bar 100 µm. See text for details. Glomerulus 

(*), neck (N), proximal tubule I and II (PTI, PTII), distal tubule (DT), distal tubule 

ampual (DTa) and initial collecting tubule (iCT). Line drawing modified from 

Hentschel and Elger (1987). 
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Figure 5.4. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus kidney acclimated in (a) brackish water (BW) 3‰, 

brackish water ligated (BW-L) 3‰ (b). The neutral (magenta), acid rich (blue) 

and purple cells are indicating combination neutral and acidic glycoconjugates. 

Scale bar 100 µm. See text for details. Glomerulus (white *), neck (N), proximal 

tubule I and II (PTI, PTII), distal tubule (DT), distal tubule ampula (DTa) and initial 

collecting tubule (iCT). Scale bar 100 µm. See text for details. 
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Figure 5.5. Periodic Acid Schiff (PAS)/Alcian blue (pH 2.5) AB/PAS staining of 

marine catfish P. lineatus kidney acclimated in (a) seawater (SW 34‰) (b) and 

seawater ligated (SW_CL 34‰). The neutral (magenta), acid rich (blue) and 

purple cells are indicating combination neutral and acidic glycoconjugates. Scale 

bar 100 µm. See text for details. Glomerulus (white *), neck (N), proximal tubule I 

and II (PTI, PTII), distal tubule (DT), distal tubule ampula (DTa) and initial 

collecting tubule (iCT). Scale bar 100 µm. See text for details. 
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Figure 5.6. Double immunofluorescence localization of Na+/K+-ATPase (a-e; 

αR1, green) with NKCC1 (a´-e´; T4, red) in the nephron of Plotosus lineatus 

acclimated in seawater (SW-control) 34‰. Sections were counter stained with 

DAPI nuclear staining (blue) and overlaid with the differential interference 

contrast (DIC) images (a´´-e´´). Scale bar 25µm in upper panel. See text for 

details.  
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Figure 5.7. Double immunofluorescence localization of Na+/K+-ATPase (a-e; α5, 

red) with VHA (a´-e´; VHAB green) in the nephron of Plotosus lineatus acclimated 

in seawater (SW-control) 34‰. Sections were counter stained with DAPI nuclear 

staining (blue) and overlaid with the differential interference contrast (DIC; a´´-

e´´) images. Scale bar 25µm in upper panel. See text for details. 
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Figure 5.8. Double immunofluorescence localization of Na+/K+-ATPase (a-e; 

αR1, green) with CFTR (a´-e´; red) in the nephron of Plotosus lineatus acclimated 

in seawater (SW-control) 34‰. Sections were counter stained with DAPI nuclear 

staining (blue) and overlaid with the differential interference contrast (DIC; a´´-

e´´) images. Scale bar 25µm in upper panel. See text for details. 
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Figure 5.9. Double immunofluorescence localization of Na+/K+-ATPase (a-d; α5 

red) with Ca17 (a´-d´; green) in the nephron of Plotosus lineatus acclimated in 

seawater (SW-control) 34‰. Sections were counter stained with DAPI nuclear 

staining (blue) and overlaid with the differential interference contrast (DIC; a´´-

d´´) images. Scale bar 25µm in upper panel. See text for details. 
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Figure 5.10. Double immunofluorescence localization of Na+/K+-ATPase (α5, 

red) with PAT1 (green) in the nephron of Plotosus lineatus acclimated in seawater 

(SW-control) 34‰. Sections were counter stained with DAPI nuclear staining 

(blue) and overlaid with the differential interference contrast (DIC) images. Scale 

bar 25µm in upper panel. See text for details. 
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Figure 5.11. Double immunofluorescence localization of Na+/K+-ATPase (a-b; 

αR1, green) with NKCC1 (a´-b´; T4, red) or Na+/K+-ATPase (c-d; α5, red) with 

Ca17 (c´; green) or VHA (d´; VHAB green) in the nephron of Plotosus lineatus 

acclimated in hypersaline water (HSW) 60‰. Sections were counter stained with 

DAPI nuclear staining (blue) and overlaid with the differential interference 

contrast (DIC) images (a´´-d´´). Scale bar 25µm in upper panel. See text for 

details. 
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Figure 5.12. Double immunofluorescence localization of Na+/K+-ATPase (a-c; 

αR1, green) with CFTR (a´-c´; red) in the nephron of Plotosus lineatus acclimated 

in brakish water (BW) 3‰, seawater (SW-control) 34‰ and hypersaline water 

(HSW) 60‰. Sections were counter stained with DAPI nuclear staining (blue) and 

overlaid with the differential interference contrast (DIC) images (a´´-c´´). Scale 

bar 25µm in upper panel. See text for details. 
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Figure 5.13. Double immunofluorescence localization of Na+/K+-ATPase (αR1, 

green a, b, d, e, g, h, j, k) with NKCC1 (T4, red a, d, g, j) and CFTR (red, b, e, 

h, k) or Na+/K+-ATPase (α5, red c, f, i, l) with V-ATPase (B2, green c, f, i). 

Sections were counter stained with DAPI nuclear staining (blue) and overlaid with 

the differential interference contrast (DIC) images in the kidney of marine catfish 

P. lineatus acclimated in brackish water (BW) 3‰ (a), brackish water ligated (BW-

L) 3‰ (b), seawater (SW-control) 34‰ (c) and seawater (SW-control) ligated 

(SW-CL) 34‰ (d). Scale bar 100 µm in upper panel. See text for details. 
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5.4 Discussion 

5.4.1 Proximal tubule I 

In our work, apical localization of NKCC in PTI of BW and SW-control fish 

indicates the expression of NKCC2/NCC, absorptive isoforms ion absorbing 

function of the PTI. Apical staining was absent in HSW acclimated fish. The 

typical absorptive role of PTI regarding to NaCl (actively) and water (passively) 

has been reported (McDonald, 2007; Evans, 2008; Nishimura and Imai, 1982; 

Marshall and Grosell, 2006). The apical and/or basolateral localized NKCC in 

kidney tubules has been reported in dogfish (Biemesderfer et al., 1996), 

Dicentrarchus labrax (Lorin-Nebel et al., 2006), Fundulus heteroclitus, 

Oncorhynchus mykiss (Katoh et al., 2008) and Anguilla japonica (Teranishi et al., 

2013). However, the identification the mRNA expression of different isoforms of 

NKCC might be interesting in future work as has been reported in various other 

species (Cutler and Cramb., 2002; Tipsmark et al., 2002; Gagnon et al., 2002; 

Scott et al., 2004; Katoh et al., 2008; Hiroi et al., 2005a; Teranishi et al., 2013). 

The apical localization of CFTR indicates a role of the secondary Cl- secreting for 

PTI accompanied by absorptive ions function. Regarding the absorptive function 

of PTI, detecting the pinocytotic invaginations and/or acid phosphatase activity in 

the apical portion of the epithelial cells (Endo and Kimura, 1984), various number 

of large granules in PTI epithelial cells (Ogawa, 1959), facilitating the absorption 

of various materials by possessing the larger lumen diameter than carp and 

yellowtails which may allow production of slow urine flow (Endo and Kimura, 

1984) has been reported. The apical localization of NHE3 in proximal tubule of 

the rainbow trout suggests an ion absorptive role of proximal tubule (Ivanis et al., 
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2008). This may be similar in marine catfish thus the study of localization, protein 

and mRNA expression of the NHE3 in future work would be interesting. We were 

unable to find a suitable antibody for the present work. 

In PTI, the observation of apical/subapical localization of V-ATPase, 

apical/cytosolic localization of CA accompanied the basolateral localization of 

NKA has been observed in PTI of fish kidney at SW and BW potentially HSW 

may reveal possible role of PTI in acid-base regulation even in different salinity 

environments. The localization of CA to the cytosol and brush border membranes 

of proximal tubules in trout and flounder has been reported (Pelis and Renfro, 

2004; Georgalis et al., 2006a). The proximal tubule of the teleost fish is thought 

to be the predominant site for renal acid secretion and/or bicarbonate 

reabsorption. At least two mechanisms including electroneutral exchanger NHE3 

(Hirata et al., 2003; Ivanis et al., 2008a) and V-ATPase pumping (Perry and Fryer, 

1997; Perry et al., 2003a; Hirata et al., 2003) have been proposed for acid 

secretion to the filtrate (Perry and Gilmour, 2006).   

Following HSW acclimation ion transport protein protein localization was 

more or less similar to the SW-control groups. However, the absent of apical 

localization of NKCC and V-ATPase may reveal a reduced role of the PTI in ion 

reabsorption and acid-base regulation at HSW as the main challenge to the 

marine catfish is salt secretion. The latter may also be related to the observed 

higher NKA activity in HSW.  Taken together it seems the PTI of the nephron is 

working as either absorptive or secretory segment.        

5.4.2 PTII 
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The PTII of marine catfish kidney nephron shows basolateral localization of 

NKA, cytosolic CA and apical/subapical CFTR and some NKCC1/NCC. The 

distribution of basolateral NKA was obviously higher than PTI. The basolateral 

localization of NKCC has also reported in proximal tubule of European eel (Cutler 

and Cramb, 2008), and PTII of killifish kidney (Katoh et al., 2008). Moreover, it 

has been suggested that the driving force for Na+, Cl-, and water secretion can 

be active transepithelial secretion of Mg2+ specially in marine SW acclimated 

teleosts (Beyenbach and Liu, 1996). So the suggested pathway of salt secretion 

may occur accompanying Mg2+ secretion thus facilitating water secretion because 

of the production of a reverse osmotic gradient (Beyenbach, 2004). However, we 

should note the decreased urine rate and/volume in SW fish in comparison with 

FW fish (McDonald, 2007; Evans, 2008). The abundance of mitochondria in 

basolateral region of epithelial cell in PTII of the nephron in marine catfish kidney 

has been confirm by Ogawa (1959) which was also observed in H&E staining 

work. Furthermore, detecting citric acid cycle enzymes (Hestschel and Meyer, 

1982) attributed to the secretion of divalent ions which in marine fish kidney is 

assumed to be one of main function for ion regulation (Hickman and Trump, 

1969). The observation of CA may express the functional role of the PTII in acid-

base regulation of marine catfish kidney via H+, HCO3- transportation. 

Furthermore, the observation of greater expression of CA in PTII than PTI of 

marine catfish kidney suggests a more important role of the PTII in acid-base 

regulation.  

5.4.3 Distal tubule (DT): 
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The DT is present in FW teleosts as a diluting segment (Hickman and 

Trump, 1969; Beyenbach, 2004) and is thus absent in the majority of truly marine 

species (Hickman and Trump, 1969). However, trout (Nishimura and Imai, 1982), 

Anguillidae (Ogawa, 1968a) and marine catfish Plotosidae (Ogawa, 1959) has 

been reported to retain the DT. The DT of P. lineatus has an unique coiling or 

wrapping of the early portion, around the ampulla like end portion of DT 

(Hentschel and Mayer, 1987) which seems to insulate the last portion of the DT 

from the sinuses of the portal system. The DT ampulla does not have a single 

cilia project into the tubular lumen. The role of renal portal system is to allow the 

continuation of tubular function when glomerular blood flow is reduced (in SW) 

particularly in aglomerular species, and may result in reduced urine 

production/urine flow rate (potentially via the effect of catecholamine hormone 

system, McDonald, 2007). Because of this insulation the tubular function of the 

end of DT is questionable. The absence of the basolateral interdigitation, 

detected as short infoldings of the lateral/basal cell membranes which were 

greatly reduced in the ampulla-shaped end portion of the DT and the observation 

very shallow apicobasal zonula occludens (Hentschel and Mayer, 1987) maybe 

express permeability to water that results in the increase of the concentration of 

the urine. 

According to our result, apart from weak basolateral expression of NKA in 

DT, no other transporter was detected in appreciable amounts. The lack of apical 

NKCC2/NCC localization would argue against the typical role of the DT as a 

diluting segment (Hickman and Trump, 1969; Evans, 2008). There are some 

result of IHC in DT of other species such as in killifish and trout, basolateral and 

apical localization of NKA and NKCC2, respectively (Katoh et al., 2008), 
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pufferfish, apical NaCl cotransporter (NCC; Katoh et al., 2011), and tilapia, 

basolateral kidney specific Cl- channels, OmClC-K (Miyazaki et al., 2002).  

The apical fingerprint-like microridges of DT which may be suspected to 

improve mucus adherence and spread (reviewed by Abaurrea-Esquisoaín and 

Ostos-Garrido, 1996a) and also an adaptation owing to reduce of surface area 

(Endo and Kimura, 1984) has also been reported. Furthermore, the apical part of 

DTa showed the faint blue staining of AB/PAS which maybe the presence of 

acidic mucin potentially aiding sulphate secretion. If the latter is true the marine 

catfish reveals a unique feature of divalent ion secretion to urine may result to 

help to form hyperosmotic urine. However, we need more physiological and 

molecular evidence. Taken together, it seems that the DT of marine catfish may 

does not appear to be involved in an absorptive function typical of the DT in other 

teleosts. 

The histological observation in our study showed two morphological 

changes in the unique ampulla like end portion of DT (DTa) (Hentschel and Elger, 

1987). In SW-CL, a smaller lumen size of DTa compare to other groups was 

observed while it was larger in BW-L. Respectively they may be contributed less 

and more volume of water transport leading to formation of hyperosmotic and 

hypoosmotic urine, respectively. Kowarsky (1973) found lower concentrations of 

urine Na+ and osmolality following BW-L (4ppt) and formation hypoosmotic urine 

in C. macrocephalus. 

5.4.4 CT/CD: 
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The existence of renal chloride cells in both FW and SW catfish has been 

reported (Komuro and Yamamoto, 1975; Hentschel and Meyer, 1982; Hentschel 

and Elger, 1983). In our work, detecting high protein expression (IB) and/or 

colocalization of NKA α-subunits and NKCC throughout the cytoplasm of CT in 

the kidney of marine catfish individuals in all of salinities by IHC might be 

attributed to the production of the unusual hyperosmotic urine in the marine 

catfish. However, we did not detect significant changes in the protein expression 

of α-subunits of NKA by IB which might be attributed to post-transcriptional 

regulation of protein expression and/or protein stability (Lee et al., 2016). 

The typically shared model of the reabsorptive function of the DT and CT 

regarding the Na+, Cl- , and K+ has been proposed within several groups of teleost 

species (Hickman and Trump, 1969). The apical localization of NKCC in CT of 

both killifish and trout (Katoh et al., 2008) and apical localization of NCC in eel 

(Teranshi et al., 2013) has been reported. However, in P. lineatus the IHC result 

do not indicate apical expression of NKCC rather strong basolateral localization.  

According to the Diamond theory, 1960s (occurring locally occluded area 

which can attract water locally) it has been proposed potentially two ways of water 

movement from inside the cell by possessing the invagination of plasma 

membrane or between the cells by paracellular space. The former may occur in 

the epithelial which has MRCs. Furthermore, the possessing a large amount of 

MRCs in the gills (Evans, 2005), DO cells and CT of the marine catfish kidney 

has also been confirmed in our works thus can make them a potential site of the 

water movement against an osmotic gradient. Considering the structurally study 

in nephron of marine catfish kidney by Hentschel and Elger (1987) which showed 
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that CT possess different types of cells including ionocytes, pavement, basal and 

the goblet cells moreover moderately deep zonula occludens and zonula 

adherens have also been observed in the ionocytes and the IHC result of our 

work may reveal the role of the CT epithelium in water absorbing from the filtered 

urine tend to create an hyperosmotic urine. The high osmotic gradient of the 

produced urine can be result in the absorption of higher amount of water to the 

urine, in spite of the necessity of keeping vital water inside the body of the fish. 

On the other hand, since water conservation is critical in SW teleosts, the 

observation of high basolateral expression CFTR may create a ‘local occluded 

area’ between the epithelial cells as a compensatory mechanism and/or a 

physiological adaptation in marine catfish. In Atlantic salmon different types of TJ 

proteins have been detected in the gills, intestine and kidney. The latter showed 

an increase in two types of the TJ proteins (tricellium and claudin-3) during SW 

acclimation (Tipsmark and Madsen, 2012). However, the latter interpretation 

needs to be confirmed molecularly, with the study on possible existence of 

various types of TJ and AQPs proteins, their expression and localization in 

different tissues of the marine catfish in future work. The reabsorption of 

monovalent ions by apical NKCC accompany by basolateral NKA and Cl- channel 

may work together leading to firstly an increase in divalent ions concentration in 

the produced urine, secondly creating locally high osmotic area between the cells 

to absorb the water.         

The PAT1 slc26a1 and slc26a6a has been identified in renal tubule of 

rainbow trout and pufferfish acclimated in SW (Katoh et al., 2006, 2009), and 

Slc26a1 localized to the basolateral membrane localization in proximal tubule of 

eel kidney (Nakada et al., 2005; Watanabe and Takei, 2011b). The dual 
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expression of Slc26a6a either in apical or basolateral of CT and also in a separate 

cell which show only the Slc26a6a expression in SW-control of marine catfish 

may express the role of the CT in Cl- and HCO3- (SO42-) regulation. The apical 

membrane of localized Slc26a6a may secrete SO42- into the lumen of renal 

tubule, in exchange for Cl-, as has been shown in the eel kidney in SW (Watanabe 

and Takei, 2011a). It has been proposed that in SW eels SO42- fluxed into the 

body could be excreted by the different tissues including the gills, skin and 

digestive tracts as mucus. Furthermore, using AB/PAS staining has shown 

positive staining throughout the cytoplasm and somewhat apical acidic mucin 

staining of epithelial cells of CT which indicates  mucopolysaccharid and acidic 

(potentially sulphate) mucus secretion by the CT. Moreover, the sparsely 

distribution of a few purple and blue goblet cells, representing combinations 

neutral and acidic mucins, respectively has been observed in CT/CD of marine 

catfish in different salinities. However, the observation of only acidic mucocytes 

in CT in HSW acclimated marine catfish suggests a role of the kidney CT in 

bicarbonate and/or sulphate secretion. However, the latter needs more details to 

be confirmed. We didnot test the protein expression and/or localization of 

Slc26a6a in BW or HSW thus it seems the proposed test would be interesting in 

future work.    

AB/PAS staining identified more large acidic mucous cells in CT/CD of BW-

L fish suggesting the need to secrete  more acidic mucus in BW-L. The possible 

acid mucus secreting (presumably involving SO42-) to produce the hyperosmotic 

urine has been proposed in SW-control or HSW fish in Chapter 3, which is in 

constrast with formation of hypoosmotic urine in BW-L observed by Kowarsky 

(1973). However, the possibility of greater water transporting due to the 
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observation of larger lumen of Bowman’s capsule around the glomerular 

capillaries and/or larger lumen size of DTa in BW-L fish might compensate for the 

divalent ion secretion and finally diluted urine to a hypoosmotic excretion. 

However, the latter hypothesis will require additional molecular evidence to be 

confirmed.  

5.4.5 Summary of characteristics of the nephron of marine catfish kidney 

that might be involved in the formation of hyperosmotic urine 

i) Presence of renal “chloride cells” in the CT which can have main role in salt 

secretion as indicated by strong NKA and NKCC1 location thus contributing to 

the formation of hyperposmotic urine. The latter needs to be confirmed by 

measurement of the urine formation in future work. 

ii) Presence of the unique DT feature by showing the coiling of the early portion 

around the ampulla like end portion of DT. Moreover, the absence of the 

basolateral interdigitation, detecting short infoldings of the lateral/basal cell 

membranes which were greatly reduced in the ampulla-shaped end portion of the 

DT (Hentschel and Mayer, 1987), all together may express permeability to the 

water leading to increase the concentration of the urine. In addition the absence 

of apical NKCC2/NCC suggests lack of the traditional DT function in reabsorption. 

iii) Presence of light apical acidic mucus staining in DT and more obviously in CT 

by AB/PAS. Furthermore, representing Alcian blue positive mucous cells 

particularly in HSW which may express the acidic (potentially sulphate) mucus 

secretion. 
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Regarding the production of hyperosmotic urine compare to the blood which 

observed in Cnidoglanis, Hickman and Trump, 1969 proposed an explanation 

which could be involved a) the secretion of divalent ion, b) reduced volume of 

glomerular filtrate, c) high tubular impermeability to water and d) possibility of 

sodium secretion into the tubules. In our work, the apical localization of slc26a6a 

in CT and also acidic mucous cells with the possible role in SO42- secretion might 

agree with a). Regarding b), possibly reduced glomerular filtration decreases the 

urine volume might be homogenous processes. Unique structural features of DT 

in Plotosus explained by Hentschel and Elgar (1987) or the observation of 

abundant secretory renal chloride cells in CT/CD and their potential role in 

producing local osmotic area (see above) and moreover proposed in salt 

secretion might be related to the suggestion c) or d), respectively.  

Measurement of urine sodium and osmolality in BW or SW of Cnidoglanis 

by Kowaresky, (1973) showed that at salinities of 4 and 11‰ both urine sodium 

and osmoality were lower than plasma however when they exceed salinity over 

20‰ the concentration of sodium and osmolality was higher than plasma. The 

latter suggests that by increasing salinity higher amounts of sodium and other 

ions, possibly divalent, could be found in marine catfish urine. It seems 

measurement of different ions concentration such as Na+, Cl-, K+, Ca2+, Mg2+ and 

SO42- in urine can be interested in future work to have more clear interpretation 

of producing hyperosmotic urine by marine catfish. This was not done in the 

present study because of the small size of the animals. 
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Chapter 6: 

The dendritic organ of marine catfish Plotosus 

lineatus as an ammonia excretory organ 
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Abstract   

In the present study, we investigated the potential role of the marine catfish 

dentritic organ (DO) in ammonia excretion by examining the effect of salinity 

[brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 

60‰)] and DO ligation on ammonia excretion and ammonia transporter 

expression. In gill, immunohistochemistry (IHC) showed an apical localization of 

Rhesus-associated glycoprotein (Rhag) in some NKA immunoreactivity (IR) cells 

limited to a few interlamellar regions of the filament and both apical and 

basolateral membranes of pillar cells in all salinities or with DO ligation. In DO, 

apical and subapical localization of Rhag and Rhbg were found in the 

parenchymal cells of the acini. In the kidney an apical localization of Rhag in 

proximal tubule I (PTI), basolateral in proximal tubule II (PTII) except HSW and 

throughout the cytoplasm of collecting tubule (CT) cell were observed all 

salinities. DO ligation in BW fish resulted in kidney lacking apical and/or 

basolateral localization of Rhag in PTI and/or PTII, respectively. Apical staining 

of Rhag at SW-CL of posterior intestine was observed but unresponsive to salinity 

or ligation. Immunoblotting (IB) of Rhag and Rhbg was found only in the gills with 

levels were inversely correlated with salinity. Ligation was associated with the 

lowest Rhag levels in SW fish gill. The expression of rhcg1 mRNA was detected 

only in gills and DO. HSW was associated with the lowest expression and ligation 

was without effect on expression levels. Ammonia flux rates (JAmm) were 

significantly lower in BW acclimated fish but were not affected by ligation. 

However, SW ligated fish has significantly lower JAmm. Taken together these 

results indicate that the DO potentially has a physiological role in ammonia 

excretion in addition to salt secretion. The salinity depend effects indicate Rh 

glycoproteins, a NH3 transport mechanism dominates at lower salinities while a 

yet to be defined NH4+ transport mechanism (e.g. NHE3) is important at higher 

salinities. 
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6.1. Introduction 

The gills of the fish are proposed as the main organ of ammonia excretion 

in both of FW and SW environments and are linked with ion regulation (Wright 

and Wood, 2009). The non-erythroid Rhesus glycoproteins have been found to 

function as NH3 channels to facilitated ammonia excretion in fishes and other 

vertebrates (Wright and Wood 2009). In the proposed model of ammonia 

excretion Rhag localized in red blood cell and pillar cell membranes facilitating 

the movement of ammonia to the gill epithelium where it diffuses through a 

basolateral Rhbg and finally apical membrane Rhcg1and/or Rhcg2 to cross into 

the environment (for more details see review Wright and Wood, 2009, 2012). 

 Recently, in the gills of A. testudineus a transport mechanism in active NH4+ 

and Na+ excretion in fresh water and seawater, respectively has been reported 

including Na+/K+-ATPase (NKA), Na+:K+:2Cl- cotransporter 1a (Nkcc1a) and 

cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) (Ip et 

al., 2012a; Loong et al., 2011; Ip et al., 2012b). Because of the similarities in the 

hydration radius of NH4+ and K+ allowing substitution at transport sites (Randall 

et al., 1999; Alam and Frankel, 2006) thus NKA and NKCC may also be important 

to ammonium ion (NH4+) transport (Evans et al., 2005; Hwang et al., 2015). 

Alternatively, the Na+/K+ exchanger (NHE) has been shown to function as a 

Na+/NH4+ in zebrafish (Ito et al. 2014) providing another avenue for ammonia 

transport. 

In the present study initial observations of Rhag and Rhbg expression in DO 

lead us to propose the hypothesis that there is a potential additional physiological 

role of this organ in ammonia excretion. We investigated the effects of salinity 

and DO ligation on ammonia excretion rates and transporter expression levels 

using immunohistochemical, immunoblotting and PCR based approaches. 

 

6.2 Materials and Methods 

6.2.1 Experiments 

6.2.1.1 Salinity experiment 
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Plotosus lineatus were acclimate for two weeks in their respective salinity 

tanks [brackishwater (BW) 3‰, seawater (SW-control) 34‰, hypersaline water 

(HSW) 60‰] where they were fed twice daily with diced fish fillets. Ammonia flux 

measurements were done as described in section 6.2.1.3 and terminally 

sampled.  

6.2.1.2 Ligation experiment 

Fish were fasted for 4 days and then anaesthetized with 1:10 000 MS222. 

The dendritic organ was ligated using suture thread in BW and SW acclimated 

fish as described by Kowarsky (1973) in Cnidoglanis macrocephalus. In 

preliminary experiments, ligated P. lineatus in HSW did not survive and ligations 

were not pursued. Control fish were anaesthetized and sham ligated. Ammonia 

flux measurements were done as described in section 6.2.1.3 and terminally 

sampled.  

6.2.1.3 Ammonia flux measurements  

Food was withheld for 4 days prior to the start of ammonia flux 

measurements where six fish were transferred to individual 2 L glass aquaria 

(water volume set to 1 L) with the salinity matching the acclimation salinity. The 

experimental aquaria were shielded with black plastic to minimize visual 

disturbance and fitted with individual air-stones for aeration. To measure 

ammonia excretion rates, initial water samples (duplicate 2 mL) were taken 

followed by 0, 1, 2, 3, 6, 9, 12 h and final water sample collection after 24 h. For 

ammonia analysis, water samples were acidified with concentrated HNO3 (2 µl 

per 1 ml water sample converting all ammonia to NH4+ to avoid NH3 loss through 

volatilization) and immediately frozen (-30 ºC) for later analysis of total ammonia 

concentration. 

6.2.2 Sampling 

Fish were killed with an overdose of MS-222 (1:5000), and gill, kidney, 

intestine and DO were excised and either fixed in 10%neutral buffered formalin 

for 24h and stored in 70% ethanol, or frozen in liquid nitrogen and stored at -

80ºC. 
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6.2.3 Analysis 

6.2.3.1 Immunohistochemistry 

Fix tissue was processed for immunohistochemistry as described in Wilson 

et al. (2007). Sections of paraffin embedded tissue will probed with Rh 

glycoprotein antibodies developed against fugu Rhcg1, Rhcg2, Rhbg, and Rhag 

(Nakada et al. 2007) using indirect immunofluorescence. Sections were double 

labeled with the mouse monoclonal NKA antibody α5 (ref). Secondary antibodies 

used were goat anti-rabbit Alexa 488 (Invitrogen). Slides were viewed with a 

Leica DM6000B photomicroscope. 

6.2.3.2 Western blotting 

Frozen tissue was thawed in SEI buffer and homogenized with a bead 

homogenizer (Precellys24) and prepared for immunoblotting as described in 

Wilson et al. (2007) using a BioRad mini-protean 3 setup and semi-dry transfer 

apparatus. Protein was measured using the Bradford method. PVDF membranes 

were probed with Rh glycoprotein antibodies described in section 6.2.3.1 and 

detected by ECL using a FuijiFilm LASmini documentation system. 

6.2.3.3 PCR and phylogenetic analysis 

RNA was isolated from tissue using BioRad Arum columns, and converted 

to cDNA using an iScript kit using 1ug of total RNA (BioRad). PCR reactions were 

conducted using PhusionFlash master mix (Thermo Scientific) and a VWR 

thermal cycler (Table 2.X; 2.X). Isolated PCR products were sequenced 

(Stabvida) and bioinformatic analysis performed (tblastx, clustalx). A neighbor-

joining tree was constructed using MEGA 7. Quantitative PCR was performed. 

6.2.3.4 Ammonia 

Water total ammonia nitrogen (TAN) concentrations were measured 

colourimetrically using a quantitative microplate technique using the salicylate–

hypochlorite method, modified from Verdouw et al. (1978) (for details see 

Moreira-Silva et al., 2009). Ammonia excretion rates JAmm were calculated from 

the change in ammonia concentration over the initial 6 h of the flux period, which 

was found to be linear, and expressed in μmol TAN/g/h. 
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6.2.3 Statistics 

Data are presented as means ± standard deviation (S.D.) or 95% 

confidence interval. Statistical differences of protein, mRNA expression and 

interaction of salinity and ligation between groups were determined using one-

way ANOVA and two-way analysis of variance (ANOVA), respectively followed 

by the post hoc Student-Newman-Keuls (SNK) test (SigmaPlot 11.0 Systat 

Software, Inc.) in juveniles exposed to different salinities. In the case of a failed 

normality test, data were square root or log transformed. Fiducial limit was set at 

0.05. 

 

6.3 Results: 

6.3.1 Immunohistochemistry 

In the gills there was an apical localization of Rhag detected in some NKA-

IR cells. These NKA-IR cells were present in a heterogeneous distribution limited 

to a few interlamellar regions over the trailing edge of the filament and were 

absent from the lamella (Fig. 6.1). There were no apparent salinity dependent 

difference in Rhag localization or NKA-IR distribution. Rhag protein was also 

found in both apical and basolateral membranes of pillar cells and red blood cells 

(RBCs)  in all salinity.   

In the dendritic organ, there was an apical localization of Rhag in the 

parenchymal cells of the acini (Fig. 6.2), while Rhbg had a subapical localization 

in these cells. The parenchymal cells possess strong NKA immunostaining 

throughout the cell indicative of tubular system basolateral localization which was 

observed in different salinities. 

In the kidney segments, there was an apical localization of Rhag in PTI at 

all salinities (Fig. 6.3), basolateral in PTII except HSW and throughout the 

cytoplasm of CT. In the gill, the distribution of IR-NKA cells with apical localization 

of Rhag showed no salinity and/or ligation dependency in gills while the apical 

and/or basolateral localization of Rhag in PTI and/or PTII, respectively was not 

detected at BW-L fish (Fig. 6.3d). In the posterior intestine, there was an apical 
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localization of apical Rhag expression in entrocytes of posterior intestine at SW-

CL fish (Fig. 6.4). 

6.3.2 Western blot  

Heterologous antibodies immunoreactive with fugu Rhesus (Rh) proteins 

Rhag, and Rhbg were used to determine how salinity and/or ligation affected the 

abundance of these proteins in key osmoregualtory organs: gill, kidney, DO, and 

anterior and posterior intestine. Immunoreactive with fugu Rhcg1 and Rhcg2 

antibodies was not observed in P.lineatus tissues. 

 The Rhesus glycoprotein ammonia transporters Rhag and Rhbg were 

found only in gill as ~47.5 kDa bands (Fig. 6.5). Expression of both Rhag and 

Rhbg proteins was significantly lower with HSW acclimation; however, with BW 

acclimation Rhag was significantly higher (Fig. 6.5a). No difference between BW 

and SW Rhbg was observed (Fig. 6.5b). In the ligation experiment, an interaction 

between salinity and ligation was detected in Rhag but not Rhbg levels (Fig. 6.6). 

In the case of Rhag from the ligation experiment, BW levels were again 

significantly higher than in SW controls, and at both salinities, ligation was 

associated with lower Rhag levels. 

6.3.3 Gene expression of rhcg1 

Using a PCR based approach we were able to isolate a partial sequence of 

an Rhcg orthologue from P. lineatus gill which was 504 bp (168 aa). The 

construction of a phylogenetic tree using the Neighbor-joining method reveals 

that this sequence clusters with Rhcg1 orthologues from other teleosts (Fig 6.6). 

P. lineatus Rhcg1 has sequence homology of 86.3%, 76.9% and 78.1% with 

Ictalurus punctatus Rhcg (XP_017341435.1), Danio rerio Rhcg1 (AAM90586.1), 

and Oncorhynchus mykiss Rhcg1a (ABD92924.1), respectively. The expression 

of rhcg1 mRNA was detected in the gill and DO only. However, there were no 

significant change with salinity in gill; although, in DO lower expression was found 

in both BW and HSW acclimated fish (Table 1). There were no significant change 

with salinity and ligation in gill in the DO ligation experiment (Table 1). 

6.3.4 Ammonia flux data 
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In control Plotosus lineatus in seawater, the net total ammonia excretion 

(JAmm) was 368 µmol kg-1 h-1 (Fig. 6.8). Ammonia flux rates were significantly 

lower in BW acclimated fish but were not affected by HSW. In the ligation 

experiment there was a significant interaction between acclimation salinity (BW 

and SW) and treatment (control, sham, and ligation) (Fig 6.9). In SW fish, JAmm 

was significantly higher in sham operated fish, with ligated fish having significantly 

lower JAmm compared to SW control fish. There were no significant treatment 

difference in BW fish. In comparisons between BW and SW fish within each 

treatment group, JAmm was significantly higher in SW control and sham operated 

fish but not ligated fish. 
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Table 1. Real-time PCR expression of rhcg, non-erythroid Rhesus C glycoprotein 

in the gill and DO tissues of marine catfish P. lineatus acclimated to different 

salinities [Salinity Exp: brackishwater (BW) 3‰, seawater (SW-control) 34‰, 

hypersaline water (HSW) 60‰] or ligated in BW and SW [Ligation Experiment]. 

Data are means ± s.d. (n=3-4). The amounts of mRNAs are normalized to the 

corresponding b-actin abundance from the same sample and the expressed 

relative to the SW-control group. Different letter indicates a significant difference 

between salinities, one-way analysis of variance (ANOVA) (P < 0.05; see text for 

details). 

 

Salinity Exp BW  SW-Control  HSW  

Gill 1.06 ± 0.35 1.00 ± 0.27 1.04 ± 0.56 

DO 0.28 ± 0.10a 1.00 ± 0.25 a 0.04 ± 0.01 b 

     

LigationExp. BW  BW-L  SW-Control  SW-CL48h  

Gill 1.06 ± 0.35 0.85 ± 0.06 1.00 ± 0.27 0.31 ± 0.31 
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 Figures 

 

 

 

Figure 6.1. Double immunofluorescence localization of Na+/K+-ATPase (α5, red) 

with Rhag (green) the gills of marine catfish P. lineatus acclimated in seawater 

(SW-control) 34‰. Sections were counter stained with DAPI nuclear staining 

(blue) and overlaid with the differential interference contrast (DIC). Arrowheads 

indicate to apical and basolateral membranes of pillar cells. Scale bar 100 µm. 

The inset picture is 4X. 
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Figure 6.2. Double immunofluorescence localization of Na+/K+-ATPase (α5, red 

a-f) with Rhag (green a, c, e) and Rhbg (green, b, d, f) in dendritic organ of marine 

catfish P. lineatus acclimated in brackish water (BW) 3‰ (a-b), seawater (SW-

control) 34‰ (c-d) and hypersaline water (HSW) 60‰ (e-f). Sections were 

counter stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) images. Scale bar 100 µm.  
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Figure 6.3. Double immunofluorescence localization of Na+/K+-ATPase (α5, red) 

with Rhag (green) in kidney of P. lineatus acclimated in brackish water (BW) 3‰, 

(a), seawater (SW-control) 34‰ (b) and hypersaline water (HSW) 60‰ (c). 

Sections from BW ligated fish are also included (d). Sections were counter 

stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) image. Abbreviations: PT proximal tubule, N neck, CT 

collecting tubule. Scale bar 100 µm. 
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Figure 6.4. Double immunofluorescence localization of Na+/K+-ATPase (α5, red) 

with Rhag (green) in posterior intestine of P. lineatus acclimated in seawater (SW-

control) 34‰ (a) and (SW-control) ligated SW-CL ligated fish. Sections were 

counter stained with DAPI nuclear staining (blue) and overlaid with the differential 

interference contrast (DIC) image. Scale bar 100 µm.  
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Figure 6.5 Relative expression of Rhesus (Rh) protein Rhag (a) and Rhbg (b) in 

the gill tissue of marine catfish P. lineatus acclimated to [brackishwater (BW) 3‰, 

seawater (SW-control) 34‰, and hypersaline water (HSW) 60‰]. Representative 

images showing band size, intensity and relative molecular mass (~ 47.5 kDa) of 

Rhag and Rhbg. Values are means ± S.D of protein abundance (n=5-6). Different 

letter indicates a significant difference between salinities, one-way analysis of 

variance (ANOVA) and SNK (P < 0.05; see text for details). 

  

a                                   b 
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Figure 6.6. Relative expression of Rhag (a) and Rhbg (b) proteins in the gill of 

marine catfish P. lineatus acclimated to [brackishwater (BW), brackishwater 

ligated (BW-L) 3‰, seawater (SW-control), seawater ligated (SW-CL) 34‰] 

salinity. Values are presented as means ± S.D of protein abundance (n=5-6). The 

asterisks indicate a significant difference between the groups where there was 

an interaction of salinity and ligation, two-way analysis of variance (ANOVA). (P 

< 0.05; see text for details). 

a                                   b 
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Figure 6.7. Rooted phylogenetic tree of Rh glycoprotein homolog sequences. The tree was constructed with the neighbor-joining 

method with 1000 bootstap trials. The optimal tree with the sum of branch length = 1.95154907  is shown. The tree is drawn to scale, 

with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary 

distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site. 

The analysis involved 14 amino acid sequences with Genbank accession number provided. All positions containing gaps and missing 

data were eliminated. There were a total of 145 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [4].  
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Figure 6.8. Net ammonia excretion rates (µmol TAN kg-1 h-1) of marine catfish P. 

lineatus acclimated to [brackish water (BW) 3‰, seawater (SW-control) 34‰, 

hypersaline water (HSW) 60‰]. Data are means ± s.d. (n=5-6). Different letters 

indicate a significant difference between salinities. One-way ANOVA and SNK (P 

< 0.05; see text for details).   
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Figure 6.9. Ammonia excretion rates (µmol TAN kg-1 h-1) of marine catfish P. 

lineatus acclimated to seawater (SW) or brackish water (BW), and either sham 

operated (Sham) or had the dendritic organ ligated (Ligation). Data are means ± 

s.d. (n=5-6). Different letter indicates a significant difference between groups. 

Two-way analysis of variance (ANOVA) with SNK post-hoc test (P < 0.05; see 

text for details). 
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6.4 Discussion 

From our original observations of respective apical and basolateral Rhag 

and Rhbg localization in the DO parenchymal cells, we proposed the hypothesis 

that the DO has a probable physiological role in ammonia excretion. According 

to the proposed model for ammonia excretion in fish gill, ammonia diffuse into the 

epithelial cell via basolateral Rhbg and out across the apical membrane via 

Rhcg1and/or Rhcg2 (see review Wright and Wood, 2009). The observation of 

apical localization of Rhag in DO NKA-IR cells in the present study is not very 

usual, and there are a growing number of reports of this localization pattern 

(Claiborne et al., 2008; Braun et al., 2009; Chen et al., 2017). Ammonia 

excretions rates positive correlate with salinity in P. linateus. Unexpectedly, 

salinity effects on ammonia excretion rates do not correlate with Rh glycoprotein 

expression levels. In fact an inverse relationship is observed suggesting other 

ammonia transporters are likely involved. However, in supported of this additional 

function of the DO in nitrogen balance, we find that DO ligation decreases 

ammonia excretion.  

Interestingly Rh glycoproteins were detected through IHC, but not IB in DO. 

However, we were able to observe expression of rhcg1 mRNA in DO that was 

higher in  SW and/or BW compare to HSW thus all together presenting a 

hypothesis of an extra physiological role for DO in ammonia excretion besides 

solely salt secreting. Recently, mRNA expression of rhbg has been found in rectal 

gland and gill of spiny dogfish shark; however, the cellular distribution of ammonia 

transporters is of yet still to be determined (Nawata et al., 2015a).  

In has been proposed that the substitution of NH4+ and K+ at transport sites 

because of similarity in the hydration radius raises the possibility of NKA being 

involving in ammonia excretion (Randall et al., 1999; Alam and Frankel, 2006; 

Nawata et al., 2010a). With this in mind, the observation of high expression of 

NKA α-subunits and NKCC1 in DO in our previous experiment (Chapter 3) makes 

the DO as probable tissue, which has a potential capacity for ammonia excretion. 

The observed apical localization of Rhag and considering NH4+/Na+ model 

(see review Wright and Wood, 2009), the presence of an apical V-ATPase pump 

or Na+/H+ exchanger (NHE3) is required to maintain the NH3 gradient to drive 
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ammonia efflux. The absence of the detection of apical V-ATPase in gill or DO 

(see Chapter 3) suggests the alternate mechanism of NHE3 is likely present 

(Wright and Wood, 2009; Ip and Chew 2010). To date, we have been unable to 

confirm this by IHC. On the other hand, the role of CFTR in anion (HCO3-,Cl-) 

excretion in gill ionocytes of Anabas testudineus but not NHE3 has been 

proposed (Ip et al., 2012b; Chen et al., 2017). Observations of CFTR/cftr in P. 

lineatus gills and DO (see Chapter 3) thus presents the possibility of this 

mechanism being involved in a similar process. However, functional evidence is 

required to substantiate this hypothesis. 

Furthermore, Rh glycoproteins were identified also in CO2 movement (Perry 

et al., 2010). The possible dual role in Rhag expression of erythrocytes 

responding differentially to high CO2 and ammonia has been suggested (Nawata 

and Wood, 2008; Nawata et al., 2010). Rhag expression is present in red blood 

cells and lamellar pillar cells in P. lineatus and other fishes (Nakada et al., 2007b; 

Wood et al., 2013) contributing to the facilitated diffusion of NH3 and/or CO2. 

Observations of Rhag protein in epithelial cells of kidney tubules including 

PTI, PTII and CT in all of salinities may represent renal tubule involvement in 

ammonia regulation in marine catfish. Recently expression of Rh glycoproteins 

have been shown in kidney of zebrafish, Danio rerio (Nakada et al., 2007), 

mangrove rivulus, Kryptolebias marmoratus (Cooper et al., 2013) and common 

carp, Cyprinus carpio (Wright et al., 2014). Apical localization of Rhag and CFTR 

(see Chapter 3) in PTI in contrast to the basolateral localization of both in PTII 

and/or CT, and the detection of mRNA expression of cftr and slc26a6a (see 

chapter 3) all together suggest the involvement of kidney renal tubules in ion 

secreting and/or absorption, acid-base and ammonia regulatory (see more details 

in Chapter 3).  

The results of ligation experiment in both salinities regarding the interaction 

between acclimation salinity and ligation reveals the effect on Jamm particularly in 

SW thus confirmed proposed role of DO in ammonia excretion. Considering SW, 

the observed higher Jamm in sham operated fish at SW-CL  may be due to 

recovery times of fish that could be affected by the stress of ligation, temperature 

differences of anesthesia and recovery water (Aguiar et al., 2002; Stehly and 

Gingerich, 1999) or drug dosage (Hseu et al., 1997, 1998; Ross, 2001).  
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Salinity dependence of ammonia excretion appears species dependent as 

trout, catfish and goldfish showed lower Jamm with higher salinity while the 

opposite is observed in sturgeon and striped bass (Altinok and Grizzle, 2004; 

Medeiros et al., 2015). Although Wood and Nawata (2011) have observed the 

inverse relationship in trout (SW>FW). However, significant relationships 

between salinity and toxicity have not been observed in fishes (Randall and Tsui, 

2002; Wood, 1993).  In our experimental observations there was lower JAmm of 

fish in BW accompanied paradoxically by higher Rh glycoprotein expression in 

gills. The decrease and increase permeability of NH4+ and NH3, respectively has 

been reported in toad fish acclimated to low salinity (5‰) compared to SW (Evans 

et al., 1989). Thus Rh glycoproteins that function as NH3 may have a more 

dominate role at lower ionic strengths whereas NH4+ transport, possibly linked by 

NHE3 (Ito et al. 2014) dominated at higher salinities. In addition, there is likely an 

accumulation of ammonia (TAmm) inside the body presuming in blood plasma 

indicating a metabolic acidosis. Similar results of low ammonia excretion rates 

and plasma ammonia accumulation have been reported in European sea bass at 

BW (Sinha et al., 2015).  Conversely in HSW higher Jamm versus the observed 

lower protein or mRNA expression of Rh glycoproteins in gills and DO, 

respectively might further reflected the dominance of NH4+ (NHE3) versus NH3 

(Rh glycoproteins) transport mechanisms.  

Observing higher Rhag protein expression in gill at BW or BW-L may 

express associated role of Na+ uptake via the gill, according Na+/NH4+ exchange 

complex model via NHE3 (Tsui et al., 2009; Wright and Wood, 2009). According 

to the ionoregulatory hypothesis (Zimmer et al., 2014) ontogeny of branchial Na+ 

uptake has been proposed which can occur as ammonium excretion potentially 

in trout to eliminate of lethal metabolic ammonia. Furthermore, increased mRNA 

expression either in cftr or ca at BW-L in our previous experiment, may thus 

indicate a role of CFTR in anion (HCO3-,Cl-) excretion (Ip et al., 2012b; Chen et 

al., 2017). However, the distribution of IR-NKA cells with apical localization of 

Rhag showed no salinity and/or ligation dependency in gills. The in vivo 

investigation of JAmm separately in gill, kidney and intestine would be interested in 

future works (Zimmer et al., 2014). 
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Lack of apical and/or basolateral localization of Rhag in PTI and/or PTII, 

respectively at BW-L fish, which was converse to other groups, may express 

effect of the ligation on ammonia excretion capacity of kidney that needs more 

details regarding the involving of kidney in ammonia excretion particularly in 

ligated fish. Furthermore, the observed apical Rhag expression in entrocytes of 

posterior intestine at SW-CL fish may be attributed to the Na+ uptake of intestine 

according Na+/NH4+ exchange complex model as a metabolon (Tsui et al., 2009; 

Wright and Wood, 2009) and reveal involvement of the intestine in ammonia 

excretion in ligated fish as a compensatory response. Furthermore, possibility of 

intestine involving in ammonia excretion has reported (Chew et al., 2009, 2010; 

Wilson et al., 2013).  
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7. General Discussion: 

Overall, the work presented in this thesis reveals more of the fascinating biology 

and physiology of marine catfish of the Plotosidae family that is unique amongst the 

teleosts in possessing the DO, with particular focus on osmoregulation. The studies 

presented here address the effect of different salinities on marine catfish osmoregulation 

(CH3); effect of dendritic organ ligation and interaction with different salinities (CH4); 

molecular characterization of the unique kidney (CH5); and address the potential role of 

the DO of marine catfish as an ammonia excretory organ (CH6).  

7.1 The dentritic organ and ion regulation 

The gill is known to be the main site of ionoregulation in fishes; however, the 

presentation of  our molecular observations including higher DO NKA activity compare 

to other tissues, basolateral colocalization of NKA and NKCC1, and the apical 

localization of CFTR confirm previous hypothesis that the DO has a salt secreting 

function based on indirect physiological, ecological and ultrastructural evidence 

(Kowarsky, 1973; Lanzing, 1967; Van Lennep, 1968, Pucke and Umminger, 1979). Our 

results also support the hypothesis of a conservation of rather similar mechanism of 

secondary active Cl- ion transport in secretory cell of vertebrates (Hazard, 1999; Evans, 

2009; Babonis et al., 2009, 2011). We found two types of parenchymal cells one large 

ovoid to pear-shaped showed strong NKA and/or NKCC1 immunoreactivity throughout 

the cytoplasm, and a second smaller subpopulation of cells that are more angular in 

shape and have noticeably stronger NKA-IR and lack NKCC-IR which confirmed 

characterization of two types of glandular cells, the principal cell (PC) and clear cell (CC), 

respectively reported by Van Lennep and Lanzing (1967) based on TEM observations. 

However, interpretation of the special role of clear cell needs more work. Furthermore, 

the finding of protein and IHC expression of carbonic anhydrase, V-ATPase, and mRNA 

expression of slc26a6a suggest that  the DO may also be involved in acid-base 

regulation. However, more work is needed to clarify this role of the DO. 
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Plotosidae marine catfish can be found in a wide range of saline environments from 

hypersaline to brackish water throughout the Indo-Pacific (Lanzing 1967). At HSW, 

elevated plasma osmolality and/or ions, decreased survival of the fish and muscle 

dehydration all together indicate a systemic dehydration due to water lose by osmosis, 

and disturbances from internal fluid shift. This is problematic for the fish, resulting in a 

stress situation particularly in DO as indicated by elevated stress protein Hsp70 levels. 

Furthermore, the data of DO mass and/or expression of NKA activity relative to fish body 

mass suggest increasing of overall capacity to overcome the ionoregulatory challenge of 

hypersalinity.  

However, BW acclimation represents the plasticity/capacity of marine catfish to 

easily movement between various salinities as euryhaline species in the lower end of the 

salinity spectrum. We found indirectly that fish had experience of metabolic acidosis 

predicted from a lower Na+/Cl- ratio (SIR) (Cameron and Iwama 1989) as has been 

observed in European sea bass D. labrax, reared in lower salinity (Sinha et al., 2014). 

However, this contrasts with work by Jensen et al. (1998) who have reported a markedly 

increased plasma SIR following transfer to FW and slight decrease in HSW in D. labrax 

indicative of metabolic alkalosis and acidosis, respectively. 

The shifting to a secondary role of the gills of P. lineatus in osmoregulation due to 

the presence of the DO as the primary salt secreting organ represents similar relationship 

between the gills and rectal salt gland of elasmobranches (Burger and Hess, 1960; 

Kirschner 1980; Wilson et al., 2002). Furthermore, branchial ionocytes that are present 

may be primarily involved in acid-base regulation similar to elasmobranches gill, 

presented by two subpopulations of MRCs serving in base (bicarbonate) and acid 

excretion in the gills have reported in sharks (Piermarini et al. 2001; Choe et al. 2005; 

Tresguerres et al. 2007; Cramp et al., 2015). In the case of P.lineatus basolateral VHA 

rich ionocytes have been identified which may possess an apical Cl-/HCO3
- exchanger 

for base secretion as in elasmobranchs.  
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Since the DO is external organ, ligation was an effective non-invasive way to 

examine loss of function. It provided valuable evidence about the importance of the DO 

as well as the compensatory responses of the other osmoregulatory organs (gill, kidney 

and intestine). We found that the ligation of SW acclimated fish increased ions and 

omsolality of plasma while it has negative effect on survival, MWC and generally 

osmoregulatory capacity of fish. Notably fish could not survive without the DO in HSW. 

From the loss of the DO through ligation, a compensatory response from the other 

osmoregulatory organs was predicted. However, ligation in SW did not alter gill or kidney 

NKA expression while, a decrease and increase were observed in anterior or posterior 

intestine, respectively. In general, the intestine was also the most responsive in ion 

transporter expression indicators but the patterns of change indicated a complex 

response that will require measurements of drink rates and ion and water flux rates to 

interpret properly. Taken together, it seems due to DO ligation, is problematic resulting 

in a stress situation thus osmotic disturbance thereby indicating to main role of DO in 

salt secreting and the compensatory responses of gills, kidney and/or intestine in SW-

CL could work for short period however, they were not sufficient for continued survival of 

fish while, in BW where the demands for osmoregulation differed, survival was not 

negatively impacted. It follows that the species of Plotosidae catfishes without a DO are 

more commonly associated with freshwater (Lanzing 1967).  

7.2 Renal mechanisms for hyperosmotic urine formation 

Earlier observations by Kowarsky (1973) demonstrated that the Plotosidae catfish 

could produce hyperosmotic urine in contrast to typical marine teleost fishes (MacDonald 

2007) although the mechanism has not been addressed. The finding of renal chloride 

cells in the collecting tubule (CT) and collecting duct (CD) that highly express NKA and 

NKCC1 indicate a strong NaCl secretory function in this segment. Our result, showed in 

HSW kidney NKA activity and relative protein expression increased which might indicate 

to providing much driving force to increase water reabsorption thus a decrease in urine 
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production and/or to ion transport. IB result showed no detectable change in CA and V-

ATPase while ca mRNA expression showed an increase. In BW, marine catfish can be 

involved in Cl- and HCO3
- regulation due to observation of increased level of cftr and 

slc26a6a mRNA expression.  

According IHC results PTI of nephron worked as either ions absorptive or secretory 

segment while it was only ion secreting in PTII. Interestingly, DT might not be involved 

in ion absorption as diluting segment which has reported in various species (Marshall 

and Grosell, 2006; Evan, 2008). Detecting high protein expression (IB) and/or 

colocalization of NKA α-subunits and NKCC1 throughout the cytoplasm of CT/ CD in all 

of salinities might be attributed to produce unusual hyperosmotic urine. The potential role 

of kidney segments in acid-base regulation except DT may be predictable. Taken 

together, it seems the kidney of marine catfish has a physiological effective role in 

ion/osmo regulation particularly in HSW environment. In addition, nephron glomerulus 

space and DTa lumen size increased in BW-L suggesting higher glomerular filtration 

rates and in SW-CL the opposite changes all together indicating water transport 

adaptation of ligated fish.  

Characteristics of nephron in marine catfish kidney, which might be involved in formation 

of hyperosmotic urine: 

i) Possessing confirmed MRCs throughout the cytoplasm of CT which can have main 

role in salt secreting thus result in formation of hyperposmotic urine. The latter needs to 

be confirmed by measurement of the urine formation activity in future work. 

ii) Possessing unique DT feature by showing DTa which, showed basolateral localization 

of NKA and/or NKCC. The latter is according the accepted model of salt secreting 

epithelial cells. Moreover, the absence of the basolateral interdigitation, detecting short 

infoldings of the lateral/basal cell membranes which were greatly reduced in the DTa 

(Hentschel and Mayer, 1987), all together may express permeability to the water leading 
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to increase the concentration of the urine. In summary, function of salt secreting instead 

being diluting segment as evidenced in other teleosts (Beyenbach, 2004). 

iii) AB-PAS Showed light apical blue staining (acidic mucus) in DTa and more obvious in 

CT. Furthermore, representing blue mucus cells particularly in HSW which may express 

the acidic (potentially sulphate) mucus secreting. 

iv) (Endo, 1989) reported a specific glomerular vasculature of P. lineatus by showing a 

thick afferent arteriole that may has role as a filtration barrier and in contrary 

exceptionally two thin efferent arterioles. Former and the latter can cause the high 

filtration pressure in glomerulus of the capillaries (Guyton, 1986) which may serve as 

reduced glomerular filtration thus possibly decrease urine volume in SW and/or HSW 

thereby if the divalent ion secretion and/or water reabsorption occur in the different 

segments of the marine catfish kidney nephron all together may be involve in formation 

of hyperosmotic urine.  

Regarding the production of hyperosmotic urine compare to the blood which observed in 

Cnidoglanis, Hickman and Trump (1969) proposed an explanation which might be 

involved (i) “secretion of divalent ions” thus apical and basolateral expression of slc26a6a 

in CT and also in a separate cell in SW-control of marine catfish may express role of the 

CT in Cl- and HCO3
- (SO4

2-) regulation in our study and also blue mucus cells probably 

role in SO4
2- secretion might be accordingly. (ii) “Reduced volume of glomerular filtrate” 

which possible reduced glomerular filtration due to a specific glomerular vasculature of 

P. lineatus (Endo, 1989) thus decrease urine volume might be homogenous processes. 

(iii) “High tubular impermeability to water” which can be confirmed via unique structural 

feature of DT and DTa in Plotosus (Hentschel and Elgar, 1987) and our molecular 

observation results. (iv) “possibility of Na+ secretion into the tubules” which confirmed via 

structural observation of high MRCs in CT (Hentschel and Elgar, 1987) and potential role 

in producing local osmotic area (Perry, 2011) to water absorption, moreover our 
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molecular observation proposing salt secreting of CT due to high protein expression and 

localization of NKA and/or NKCC.  

Measurement urine Na+ and osmolality in BW or SW of Cnidoglanis by Kowaresky 

(1973) showed at 4 and 11‰ both urine Na+ and osmoality were lower than plasma 

however by the exceed salinity over 20 ‰ the concentration of Na+ and osmolality was 

higher. The latter means by increasing of salinity higher amount of Na+ and other ions 

possibly divalent could be found in marine catfish urine. It seems measurement of urine 

different ions concentration such as Na+, Cl-, K+, Ca2+, Mg2+ and SO4
2- can be interested 

in future work to have more clear interpretation of producing hyperosmotic urine by 

marine catfish. 

7.3 Role of the DO in ammonia excretion? 

Gills are accepted as the main site of ammonia excretion in fishes (Wright and 

Wood, 2009); however, in the present work we demonstrated that DO of marine catfish 

P. lineatus may have an extra physiological role in ammonia excretion. The latter 

hypothesis was supported by the observation of apical and subapical expression of the 

ammonia transporters Rhag and Rhbg, respectively in DO parenchymal acini by IHC, 

expression of rhcg1 mRNA. Although Rhag is generally associated with RBCs and 

endothelial (pillar) cells, the observation of an apical localization of Rhag in NKA-IR cells 

is observed in the gills of P. lineatus as well as other species (Chen et al. 2016) does not 

make this localization in DO too surprizing. Apical or basolateral localization of Rhag in 

PTI and II, respectively except HSW and BW-L, moreover throughout the cytoplasm of 

CT in kidney nephron in all of salinities and apical staining of Rhag in posterior intestine 

at SW-CL fish all together presented the involving of kidney and posterior intestine in 

ammonia regulation even in ligated fish. IB of Rhag and Rhbg was found only in the gills 

with less vs high expression at HSW and BW, respectively not for Rhbg. The interaction 

between salinity and ligation was detected in Rhag associated with lower Rhag levels it 
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may reveal adaptation mechanism to handle the eliminating of excess ammonia. The 

expression of rhcg1 mRNA was detected only in the gills and DO via lower expression 

with salinity changing in the latter while no dependency to salinity and/or ligation 

interaction was found in gills. Heterologous Rhcg antibodies did not work in P. lineatus 

so for future work species specific antibodies need to be develop. 

7.4. Origin of the dendritic organ 

Overall, this thesis contributes not only to an increase our knowledge regarding 

basic osmo and/or salt regulation mechanism in the unique marine catfish but will also 

offer us some insight into the evolution of salt regulatory mechanisms under different 

circumstances. Thus, it can also be applied to develop a link to converge evolution with 

the tetrapod lineage in addition to the unusual production of blood-hyperosmotic urine in 

the kidney of this vertebrate. Conserved form and function of salt gland throughout the 

evolution of marine vertebrates suggesting the conservation of the genetic mechanism 

leading to the development of this tissue type (Babonis et al., 2009). Thus, co-option 

from unspecialized gland precursors as reported in other analogous salt glands may 

have been revealed by studying this system 

Compared to the salt secreting organs of other vertebrates, the dendritic organ is 

different because it is external and it is unknown what gland or organ may have been 

coopted. The DO is juxtaposed to the urogenital papilla so it might therefore have arisen 

from skin, the digestive tract (rectal tissue), urinary system or reproductive system. The 

latter seems unlikely even though glandular tissue may be present because the DO is 

present in both males and females. Skin is a possibility because cutaneous ionocytes 

have similar characteristics of DO parenchymal cells (high NKA, NKCC, CFTR) (Cooper 

et al. 2013; Hiroi et al. 2008). Teleost digestive tract is aglandular with the exception of 

the stomach (Wilson and Castro 2010) which differs from the chondrichthyan fishes from 

which the rectal gland is derived (Loretz 1987). It is also tempting to speculate that the 
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renal system may have given rise to the DO since renal chloride cells show striking 

similarities to DO parenchymal cells (Henteschel and Elger 1987; Chapter 5). 

7.5. Final statements and future directions 

Marine catfish have a specialized salt secreting organ, the DO, that is marked by 

profound differences in their morphology and physiology that evolved independently from 

other teleost lineages. The studies in this thesis illustrate how these mechanisms 

respond during salinity acclimation and/or DO ligation, although the control mechanisms 

that regulate various osmoregulatory responses, allowing movement between 

environments has not been address and clearly research needs to be done in this area. 

The DO is also present in Plotosidae that are found only in fresh water (Lazing 1967). It 

would enlightening to explore the function of the DO in these fishes where ion secretion 

is not necessary. Is it a vestigial organ like the rectal gland is in some freshwater 

elasmobranch fishes (Ballantyne and Robinson 2010)? Might it have taken up a 

secondary function like ammonia excretion? 

In order to better understand the mechanisms that promote these changes, future 

studies are needed to assess endocrine control of marine catfish osmoregulatory 

mechanisms and to better understand the potential role of NKCC/NCC, CA, V-ATPase, 

Na+/H+ exchanger, Cl- /HCO3
- exchanger, Na+/HCO3

- cotransporter (NBC) proteins in ion 

and acid-base regulation between salinities. The work on the marine catfish juveniles 

allowed the first insights into the osmoregulatory challenges and mechanisms inherent 

to adaptation. The nervous system control of secretion and abundant neurotransmitter 

vasoactive intestinal peptide (VIP) in salt gland of crocodilians, birds and 

elasmobranches rectal gland have been proposed (Cramp et al., 2007; Hildebrandt, 

2001). Detecting such neurotransmitters and the phosphorylation state of CFTR, NKA 

and NKCC proteins (Babonins et al., 2011) in DO of marine catfish at different salinities 

would be interesting in future work. Furthermore, the measurement of urine ions and 

osmolality in different salinities, the molecular responses of marine catfish gills, DO, 
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kidney and/or intestine to acid-base perturbation, respiratory acidosis (hypercapnia 

1%CO2) and/or hypoxia in order to elucidate regulatory function are also needed. 
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