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ABSTRACT 

Background and Objectives: The number of deaths worldwide due to melanoma has risen in recent 

times, in part because melanoma is the most aggressive type of skin cancer. Computational systems 

have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin 

lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin 

lesions. The main objective of this article is to evaluate different ensemble classification models based 

on input feature manipulation to diagnose skin lesions. Methods: Input feature manipulation processes 

are based on feature subset selections from shape properties, colour variation and texture analysis to 

generate diversity for the ensemble models. Three subset selection models are presented here: 1) a 

subset selection model based on specific feature groups, 2) a correlation-based subset selection model, 

and 3) a subset selection model based on feature selection algorithms. Each ensemble classification 

model is generated using an optimum-path forest	 classifier and integrated with a majority voting 

strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-

validation procedure. Results: The best results were obtained by the first ensemble classification 

model that generates a feature subset ensemble based on specific feature groups. The skin lesion 

diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. 

Conclusions:	The input feature manipulation process based on specific feature subsets generated the 

greatest diversity for the ensemble classification model with very promising results. 

Keywords: Image Classification; Feature Extraction; Feature Selection; Ensemble of Classifiers; 

Computational Diagnosis. 
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1. Introduction 

Skin cancer is one of the most common cancers worldwide, and its incidence has increased in recent 

years [1]. Computational diagnosis systems have been developed to assist dermatologists in early 

diagnosis of skin cancer from dermoscopic images. The search for more efficient classifiers for these 

computational systems is a challenging task. Several studies have proposed an ensemble of classifiers, 

commonly known as a multiple classifier system or an ensemble classification model to improve skin 

lesion classifications from dermoscopic images [2-4]. An ensemble of classifiers consists of 

integrating several classification models in order to develop a more robust system that provides more 

accurate results than by using a single classifier [5]. There are different voting methods [6] for 

integration strategies based on the outputs of the input classifiers for ensemble classification models, 

e.g., majority voting that counts the votes for each class of all the input classifiers and then designates 

the class with the majority votes as the classification result. Statistical methods, such as average, sum, 

product and median can also be used for this same purpose [7], as well as for cases of numeric 

predictions. 

One important requisite for constructing ensembles is to ensure diversity between the classification 

models, which can be performed by manipulating the modelling process or the input data. 

Manipulation of the modelling process consists of constructing the classification models by using 

either different learning algorithms or a single learning algorithm but with different parameters. The 

more popular approaches for input data manipulation are to manipulate the training samples and the 

input features. Algorithms used to manipulate the training samples can generate multiple hypotheses, 

in which a learning algorithm is applied to different subsets of the training samples. Bagging and 

boosting algorithms are the traditional ways to manipulate the training samples [5], and their 

hypotheses are integrated by a vote method. The bagging algorithm consists of randomly splitting the 

original dataset in several training subsets of the same size based on sampling with replacement, 

which can be applied to any learning algorithm. Likewise, the boosting algorithm combines the 

classification outputs using the same learning algorithm; however, this type of algorithm is iterative, 

where each new model is based on the result of the previously built one. 

Algorithms for manipulating the input features generate ensembles based on different feature 

subsets available to the learning algorithm. This process can be, for example, the random splitting of a 

set of features into subsets [8], or by using a feature selection algorithm combined with manipulation 

of the training samples [4]. One challenge that affects the performance of classifiers is how to define 

which features are meaningful to describe the patterns of interest. Consequently, feature selection 

algorithms [9] can be used for the ensemble construction in order to achieve superior performance for 

skin lesion classifications. 
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This article presents ensemble classification models based on input feature manipulation to 

improve skin lesion computational diagnosis from dermoscopic images. Two examples of pigmented 

skin lesions in dermoscopic images are shown in Fig. 1. The main contributions of this study are the 

feature subset selection models based on specific feature groups and the feature selection algorithms 

for the input feature manipulation. To the best of our knowledge, few studies based on ensemble 

models and feature manipulation for skin lesion classification have been presented with successful 

results [10, 11]. 

 

Fig. 1 - Two examples of pigmented skin lesions: (a) benign lesion and (b) malignant lesion. 

 

This article is organized as follows: Studies relating to the ensemble methods for skin lesion 

classification are discussed in Section 2. The proposed ensemble classification models based on input 

feature manipulation are presented in Section 3. The experimental results and their discussion, which 

include the evaluation process, feature subset and feature selection evaluations, ensemble 

classification model evaluation and comparison between the classification algorithms used are given 

in Section 4. Finally, the conclusions drawn for the proposed ensemble classification models and 

future works about the skin lesion classification are pointed out in Section 5. 

 

2. Related studies 

An overview of computational methods for pigmented skin lesion classification in images, which 

addresses the feature extraction and selection, and classification steps, is presented in Oliveira, et al. 

[12]. The ensemble of classifiers based on input data manipulation has been recently adopted for skin 

lesion classification to achieve better results than single classifiers. Several algorithms can be used for 

constructing ensembles; e.g., the AdaBoost [13], which is a popular boosting algorithm that maintains 

a set of weighting systems for the training samples according to a computed error rate. In Barata, et al. 

[2], the proposed classification system using AdaBoost obtained the best results by using colour 

features and with combinations of two to five base classifiers for the detection of melanomas and 

nevi. 
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Random forest [14] is another ensemble algorithm used for skin lesion computational diagnosis. 

This algorithm is a variation of the bagging algorithm that is used to create an ensemble of decision 

trees that ensure the diversity by using a random selection of features to split each tree node. Its error 

rates are comparable to AdaBoost, but are more robust with respect to noise. Rastgoo, et al. [15] 

proposed an automatic system to differentiate melanoma from dysplastic nevi by using texture 

features and random forest. Barata, et al. [10] built a system for melanoma detection using the random 

forest algorithm based on the global and local feature fusion of colour and texture properties.  

The random forest algorithm also obtained promising results in a system proposed by Garnavi, et 

al. [16]. The authors developed an optimized selection and integration of features derived from 

texture, border and geometrical properties. Rastgoo, et al. [11] proposed an automatic framework 

based on ensemble methods to differentiate melanoma from dysplastic and benign lesions. This 

framework used a random forest algorithm and a combination of colour and texture features based on 

global features. Maragoudakis and Maglogiannis [17] presented a novel ensemble classification 

algorithm for skin lesion diagnosis. The authors combined random forests with the Markov blanket 

notion to perform an inherent feature selection process in order to obtain more informative features. 

Using 32 features based on border, colour and texture properties, the classification result using a 

dataset of 1041 skin lesion images was increased from 4.5% to 6% in comparison with the traditional 

random forest, support vector machine (SVM) and k-nearest neighbour (KNN) algorithms, which 

were also combined with standard feature reduction techniques, namely, principal component analysis 

(PCA) and singular value decomposition (SVD). 

Other ensemble classification models have also been proposed for skin lesion classification. In 

Abedini, et al. [18], an ensemble model, based on feature random subsets, a linear SVM classifier and 

forward model selection for the ensemble fusion, was proposed. The best results were obtained by 

concatenating the pattern prediction values, which are considered middle-level features. Schaefer, et 

al. [4] proposed a multiple classifier system to deal with imbalanced classes. Such a system consists 

of a random under-sampling method, an SVM using a polynomial kernel, and a neural network for the 

classifier fusion. In addition, a feature selection algorithm is applied to each classifier, and a diversity 

measure is used for pruning a pool of classifiers. The authors used features based on shape, colour and 

texture properties for the melanoma and benign lesion classification. 

The ensemble of classifiers based on model manipulation process has also been adopted for skin 

lesion classification, which consists of constructing the multiple classification models by using 

different learning algorithms, or a single learning algorithm but with different parameters or 

structures. In Sboner, et al. [19], a novel multiple classifier system for the early diagnosis of 

melanoma was proposed based on the combination of different classification algorithms, which 

demonstrated a superior performance relatively to the use of each classifiers alone. The proposed 

system combines three different types of classifiers, namely, linear discriminant analysis (LDA), C4.5 
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decision tree and kNN classifiers, and uses 38 geometric and colourimetric features as input for the 

classifiers, and a voting scheme to combine the outputs of each classifiers. The performance of the 

proposed system was compared against the performances of each classifier when used alone and also 

relatively to the performances of eight dermatologists. The system achieved a performance that was 

significantly higher than the ones achieved by each classifier, and a performance comparable to the 

dermatologists. 

A novel meta-ensemble model based on multiple neural network ensembles was proposed by Xie, 

et al. [20]. The authors used 57 features based on colour and texture properties from two lesion 

regions obtained by a combination of the self-generating neural network (SGNN) method and manual 

interaction followed by Otsu’s threshold. In addition, the authors proposed novel lesion border 

features so that the model would be insensitive to the incompleteness of the lesion regions. The PCA 

technique was used to reduce the feature dimensions and to define the best feature subset. The meta-

ensemble model is composed of three ensembles with different structures and network types. The 

model combines back-propagation (BP) neural networks with fuzzy-neural networks (FNNs) to 

increase individual net diversity. The standard boosting method was used to generate individual nets, 

and the voting and averaging methods were designed to combine the multiple outputs. The authors 

used two dermoscopy datasets to perform the experiments: a dataset that includes 240 images of the 

xanthous race and a dataset with 360 images of the caucasian race. 

3. Description of the proposed ensemble classification models  

In this section, the ensemble classification models based on input feature manipulation for skin lesion 

computational diagnoses, as well as the dermoscopic image dataset used are presented. Fig. 2 gives an 

overview of three different models developed for the input feature manipulation in order to generate 

diversity for the ensembles of classifiers. Given a dataset 𝑇 = 𝒙$, 𝑦$ , with 𝑝 = 1,2… , 𝑛, according 

to the number of images 𝑛, where 𝒙$ is a sample, and 𝑦$ is the class to which it belongs. Each sample 

𝒙$ is composed of a set of features 𝐹$-, where 𝑞 = 1,2… ,𝑚, and 𝑚 is the number of features. An 

ensemble 𝑃 = 𝐶2, 𝐶3, … , 𝐶4 , with 𝑖 = 1,2, … , 𝐸, and 𝐸 is the ensemble size, where 𝐶7	(𝑖 ∈

1,2, … , 𝐸 ) is composed of the classification models obtained with the input feature manipulation, a 

base classifier using optimum-path forest (OPF) [21] and an integration strategy. One classification 

model is obtained in each iteration 𝑖 by a subset of feature 𝑆7	(𝑖 ∈ 1,2, … , 𝐸 ) that is sampled from 

𝐹$- based on specific feature groups or with a feature selection algorithm (Figs. 2a and 2b, 

respectively). The classification models are also obtained by applying several feature selection 

algorithms 𝐴7	(𝑖 ∈ 1,2, … , 𝐸 ) from 𝐹$- (Fig. 2c).  
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Fig. 2: Overview of the proposed ensemble classification models based on input feature manipulation for 
the skin lesion computational diagnosis: (a) feature subset ensemble (SE-OPF), (b) feature subset 
ensemble with a feature selection algorithm (SEFS-OPF), and (c) feature set ensemble with feature 
selection algorithms (FEFS-OPF). 

3.1. Dermoscopic image dataset 

The dermoscopic image dataset used in the experiments is composed of pigmented skin lesions, which 

were collected from the International Skin Imaging Collaboration (ISIC) dataset	[22]. In addition, the 

1279 images are paired with an expert manual that contains the skin lesion diagnoses, as well as the 

ground-truth lesion segmentations in the form of binary masks. In this study, the extracted features 

from the images are based on shape properties, colour variation and texture analysis. The images in 

which the lesion did not fully fit within the image frame (174 images identified in the Appendix) were 

removed from the original dataset, since the shape properties are obtained from the lesion borders. 

Thus, in the end, a total of 1104 images were used from the original dataset. Of these, 916 images 

were benign lesions and 188 images were malignant lesions. The images of the dataset were 

proportionally resized to an average resolution of 400×299 pixels to simplify their processing. 

3.2. Feature extraction and data pre-processing 

The feature extraction process is based on the intensities of the pixels belonging to the binary masks 

defined by specialists, in which the non-zero pixels belong to the lesion, and the others to the 
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background skin. A combination of features, based on shape properties, colour variation and texture 

analysis using different feature extraction methods, were used in this study. A total of 512 features 

were extracted for each skin lesion image. Of these, 18 features were related to the shape properties, 

72 features to colour variation, and 420 features to the texture analysis. 

a) Shape properties: shape measures are computed based on the geometrical properties, lesion 

asymmetry and border irregularity. To assess the geometrical properties of the lesion, the area, 

perimeter, equivalent diameter, compactness, circularity, solidity, rectangularity, aspect ratio and 

eccentricity [23-25] were computed. To assess the lesion asymmetry, three features were 

computed from the lesion, i.e., the average, variance and standard deviation. These features were 

obtained from the ratios between the shortest and longest distances of each pair of the semi-lines 

that represent the perpendicular lines by overlapping the two sub-regions of the lesion along an 

axis [26]. To assess the border irregularity, a number of peaks, valleys and straight lines of the 

border were computed using the vector product and inflexion point descriptors based on low and 

high irregularities of the border from a one-dimensional border [26]. 

b) Colour variation: the RGB, HSV, CIE Lab and CIE Luv colour spaces [27] were used to analyse 

the colour variation of the skin lesions. The RGB colour space is commonly used and the original 

RGB colour image can be converted to other colour spaces, and several studies have achieved 

good results from this colour space [23, 28]. The HSV, CIE Lab and CIE Luv colour spaces 

represent colours based on human perception. Furthermore, CIE Lab and CIE Luv are 

approximately perceptually uniform colour spaces and can simplify the identification of colour 

properties, as it is easy to maintain colour-difference ratios [29]. Six statistical measures, i.e., 

average, variance, standard deviation, minimum and maximum colours, and colour skewness, are 

computed for each colour channel in the region of the lesion using the aforementioned four-colour 

spaces that correspond to 12 channels. 

c) Texture analysis: three different texture analysis methods were adopted to obtain the best features 

to represent the skin lesion texture based on colour images; namely, fractal dimension analysis 

[30], discrete wavelet transform (DWT) [31] and co-occurrence matrix [32]. The RGB, HSV, CIE 

Lab and CIE Luv colour spaces were also used for the texture analysis. The bi-dimensional fractal 

dimension using a box-counting method [30] is computed individually for each channel of the 

colour spaces. The energy and entropy measures from the coefficients obtained by DWT are 

computed for each of the 10 Haar wavelet sub-bands obtained by a-three-level decomposition, as 

well as for each channel of the colour spaces. Co-occurrence matrices were obtained for each 

channel of the colour spaces, and the intensities of each channel were quantized with 16 intensity 

levels. The distance between each reference pixel and its neighbours was one pixel, and four 

orientations 𝜃 = 0°, 45°, 90°, 135°  were used. A normalized matrix was obtained from the 

matrices corresponding to the four orientations.	From the normalized co-occurrence matrix, 14 
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statistical measures based on Haralick’s texture features [32] were extracted from the image. 

These measures are the angular second moment, contrast, correlation, variance, inverse difference 

moment, sum average, sum variance, sum entropy, entropy, variance difference, entropy 

difference, information measure of correlation 1, information measure of correlation 2, and the 

maximal correlation coefficient. Therefore, 12 features were extracted from the fractal dimension 

analysis, 240 features were extracted from the discrete wavelet transform, and 168 features were 

extracted from the co-occurrence matrix. 

As the values of the dataset obtained by feature extraction contain different ranges they were 

normalized into the same interval [0,1] for the skin lesion classification process. The normalization 

procedure scales all numeric values in the dataset by computing: 

𝑥𝑛$- =
GHIJKLM GHI

KNO GHI JKLM GHI
,                                                                                                                   (1) 

where 𝑝 = 1,2… , 𝑛, 𝑞 = 1,2… ,𝑚, 𝑛 is the number of samples and 𝑚 is the number of features. Thus, 

𝑥$- is the actual value of feature 𝑞 in the sample 𝑝, with the minimum and maximum values of 

features of all the sets of samples, and 𝑥𝑛$- is the normalized value of same feature 𝑞 in the same 

sample 𝑝. In addition, the unbalanced dataset problem is considered in this study, since the dataset is 

composed of 916 samples of benign lesions and 188 samples of malignant lesions. These unbalanced 

datasets concerning the number of samples in each class can decrease the accuracy of the evaluation 

results, since the classification tends to be based on the classes with the largest number of 

occurrences. Different sampling methods [33] have been used to solve such classification problems 

[4, 34]. Here, the resampling procedure was applied to the dataset [5]. This procedure produces a 

random subsample of the dataset using sampling with replacement and the class distribution is made 

into a uniform distribution. 

3.3. Feature selection  

The feature selection process aims to find the best feature subsets to generate the ensembles of 

classifiers. Feature selection algorithms are usually a combination of both search and evaluation 

methods [9]. Search methods can be applied to select a candidate subset from extracted features of 

skin lesions, which is evaluated and compared to the previous best subset until a given stopping 

criterion is reached. In this study, six feature selection algorithms were applied to generate different 

feature subsets for the ensemble of classifiers; namely, Pearson’s correlation coefficient [35], gain 

ratio-based feature selection (GRFS) [5], information gain-based feature selection [35], relief-F [36], 

principal-component analysis (PCA) [37] and correlation-based feature selection (CFS) [38]. These 

algorithms have been commonly used for skin lesion feature selections [12] since they have several 

advantages, such as computationally efficiency, are simple and fast algorithms, independent 

evaluation criteria, and have the ability to overcome over-fitting. 
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All feature selection algorithms mentioned earlier are single-feature evaluators, with the exception 

of CFS that is a feature subset evaluator. The single-feature evaluators are used with a ranking 

method, where the features are ranked individually, according to their evaluation, i.e., the most 

relevant. The number of features to be maintained is previously defined. The feature subset evaluators 

measure a subset of features and they return a value that is used in the search [5]. In this study, both 

the greedy stepwise and best first search methods were adopted.  

The greedy stepwise method searches feature subsets in either the forward or backward directions 

in a greedy way. The selection process must stop when the addition or removal of any feature occurs 

that worsens the outcome of the best-found subset until that moment. The best first method searches 

the feature subsets by greedy hill-climbing, and the search direction can be forward, backward or bi-

direction. The forward selection process starts with an empty set, and the best features are gradually 

added to the set, according to the performance obtained from the evaluation method, whereas the 

backward selection process starts with all features and the worst features are removed at each 

iteration. The bi-direction selection combines both the forward and backward searches. 

3.4. Base classifier and integration strategy  

In this study, the focus is on homogeneous ensemble methods that are built with only one base 

classifier through input feature manipulation, and the classification model results are combined by an 

integration strategy. The number of base classifiers used defines the ensemble size. An OPF classifier 

[21] based on input feature manipulation for a set of training data was used to generate the ensemble 

classification models in this work.   

The OPF classifier has been applied to address pattern recognition problems as a graph based on 

prototypes to represent each class by one or more optimum-path trees, considering some key samples. 

The training samples are nodes of a complete graph; whose arcs are the links of all pairs of nodes. The 

arcs are weighted by the distances between the feature vectors of their corresponding nodes. The 

Euclidean 𝐷4(𝑖, 𝑗), Chebyshev 𝐷R(𝑖, 𝑗) and Manhattan 𝐷S(𝑖, 𝑗) distance functions [5] were used to 

measure the distances between the feature vectors: 

𝐷4(𝑖, 𝑗) = 𝑥7- − 𝑥U-
3V

-W2 ,                                                                                                             (2) 

𝐷R(𝑖, 𝑗) = 𝑥7- − 𝑥U-V
-W2 ,                                                                                                                  (3) 

𝐷S(𝑖, 𝑗) = max
-W 2,3,..,V

𝑥7- − 𝑥U- ,                                                                                                           (4) 

where 𝑥7- is the feature value of a sample 𝑖, 𝑥U- is the feature value of a sample 𝑗, 𝑞 = 1,2… ,𝑚, and 

𝑚 is the number of features. 
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The classification of a new sample is defined according to the strong connectivity of the path 

between the sample and the prototype. Therefore, the path with minimum-cost, among all paths, is 

considered the optimum one. The OPF classifier shows some interesting properties, such as speed, 

simplicity, ability to deal with multiclass classifications and overlapping between classes, parameter 

independence and no assumption is based on the shape of the classes. Ensembles of OPF classifiers 

for reducing the size of the training set using under-sampling were proposed by Ponti Jr and Rossi 

[39]. The Weka library based on LibOPF was used to set up the OPF classifier [21] as proposed by 

Amorim, et al. [40]. 

Applying a good integration method is also important for the performance of the ensemble model. 

The challenge is how to integrate the results produced by the base classifiers. Here, the majority 

voting method [6] combines the classification results to generate an ensemble model. This method 

analyses which class receives the majority votes based on the results of all base classifiers and 

therefore the ensemble model must have an odd number of classifiers. 

3.5. Input feature manipulation for the ensemble classification models 

The input feature manipulation process aims to generate diversity for an ensemble classification 

model with the combination of the best feature subsets for the base classifier. In this section, three 

different models for the feature manipulation of skin lesions are presented. These models are based on 

specific feature groups and feature selection algorithms in order to create different feature subsets. 

3.5.1.  Feature subset selection model based on specific feature groups 

The feature type and feature extraction algorithm were taken into account in order to establish the 

feature subset groups to be analysed. Hence, the extracted features were divided into: shape (18 

features), colour (72 features) and texture (420 features) subsets. Also, the texture feature extraction 

algorithms based on all colour spaces, i.e., fractal texture (12 features), wavelet texture (240 features) 

and Haralick’s texture (168 features), were studied independently. Moreover, the combination of the 

shape and colour subsets (90 features), the shape and texture subsets (438 features), and the colour 

and texture subsets (492 features) were evaluated. In addition, the colour feature extraction algorithms 

for each colour space alone, i.e., RGB colour (18 features), HSV colour (18 features), LAB colour (18 

features), and LUV colour (18 features) subsets, and the texture feature extraction algorithms for each 

colour space individually, i.e., RGB texture (105 features), HSV texture (105 features), LAB texture 

(105 features), and LUV texture (105 features) subsets, were explored. 

The combination of the colour and texture feature extraction algorithms were also taken into account 

for each colour space alone, i.e., RGB features (123 features), HSV features (123 features), LAB 

features (123 features), and LUV features (123 features) subsets. The colour and texture feature 

subsets were also combined with the shape subset for each colour space individually, i.e., shape + 

RGB features (141 features), shape + HSV features (141 features), shape + LAB features (141 
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features), and shape + LUV features (141 features) were analysed. Therefore, the specific feature 

subset groups built for feature manipulation were: 

• Group 1: shape, colour, and texture (3 subsets); 

• Group 2: fractal texture, wavelet texture, and Haralick’s texture (3 subsets); 

• Group 3: shape + colour, shape + texture, and colour + texture (3 subsets); 

• Group 4: RGB colour, HSV colour, LAB colour, and LUV colour (4 subsets); 

• Group 5: RGB texture, HSV texture, LAB texture, and LUV texture (4 subsets); 

• Group 6: shape + RGB features, shape + HSV features, shape + LAB features, and shape + LUV 

features (4 subsets); and 

• Group 7: RGB algorithms, HSV algorithms, LAB algorithms, and LUV algorithms (4 subsets). 

The effectiveness of the feature groups is also evaluated individually in the experimental results 

section. The feature subset selection model generates a feature subset ensemble (SE-OPF). Algorithm 

1 describes the procedure to set up this ensemble classification model, which was used for the input 

feature manipulation based on the feature subset groups and was also used by the OPF classifier [21] 

and majority voting [6]. 

  

3.5.2.  Correlation-based feature subset selection model 

The correlation-based feature subsets were set up using the feature subset groups discussed in the 

previous section and the CFS algorithm for the feature selection. The CFS algorithm [38] tries to find 

a set of features that are highly correlated with the class and have low inter-correlation between them. 

The degree of correlation between the features is computed by a symmetrical uncertainty, which is a 

modified version of the information gain measure. Such an algorithm is adopted for this subset 

selection model, since experimental results using the OPF classifier [21] showed that this algorithm 

improved the classification performance more than the other feature selection algorithms.  

Algorithm 1 SE-OPF 
Require: 
       Ensemble size 𝐸,  training sample set 𝑇, feature set 𝐹, group-based feature subsets 𝑆7\ from the  
       feature set 𝐹  

Procedure: 
1. for 𝑖 = 1 to 𝐸 do 
2.       Select one feature subset 𝑆7 from 𝑆7\ 
3.       Train the OPF classifier 𝐶7 using 𝑇 with the selected feature subset 𝑆7 
4. end for 
5. for each new sample do 
6.       Compute the majority voting 𝑉 of all classification models of the ensemble 𝐶7 
7. end for 
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The correlation-based subset selection model generates a feature subset ensemble with a feature 

selection algorithm (SEFS-OPF). Algorithm 2 describes the procedure to set up this ensemble model, 

which was used for feature input manipulation based on feature subset groups and the CFS algorithm, 

as well as the OPF classifier [21] and majority voting [6]. 

  

3.5.3. Subset selection model based on feature selection algorithms 

All features discussed in the previous sections were used to generate the feature subsets. The diversity 

for an ensemble classification model is obtained by using different feature selection algorithms; 

namely, correlation coefficient [35], GRFS [5], information gain [35], relief-F [36], PCA [37] and 

CFS [38]. This subset selection model generates a feature set ensemble with feature selection 

algorithms (FEFS-OPF). Algorithm 3 describes the procedure to set up this ensemble model, which 

was used for the input feature manipulation based on the feature selection algorithms 𝐴7	(𝑖 ∈

1,2, … , 𝐸 ), and with the OPF classifier [21] and majority voting [6]. 

Algorithm 3 FEFS-OPF 
Require: 
       Ensemble size 𝐸, training sample set 𝑇, feature set 𝐹 

Procedure: 
1. for 𝑖 = 1 to 𝐸 do 
2.       𝐹𝑆 ←	Selected features from 𝐹 by using a feature selection algorithm 𝐴7        
3.       Train the OPF classifier 𝐶7 using 𝑇 with the selected features 𝐹𝑆 
4. end for 
5. for each new sample do 
6.       Compute the majority voting 𝑉 of all classification models of the ensemble 𝐶7 
7. end for 

 

4. Experimental results 

Algorithm 2 SEFS-OPF 
Require: 
       Ensemble size 𝐸,  training sample set 𝑇, feature set 𝐹, group-based feature subsets 𝑆7\ from the  
       feature set 𝐹  

Procedure: 
1. for 𝑖 = 1 to 𝐸 do 
2.       Select one feature subset 𝑆7 from 𝑆7\ 
3.       𝐹𝑆 ←	Selected features from 𝑆7 using the CFS algorithm 
4.       Train the OPF classifier 𝐶7 by using 𝑇 with the selected features 𝐹𝑆 
5. end for 
6. for each new sample do 
7.       Compute the majority voting 𝑉 of all classification models of the ensemble 𝐶7 
8. end for 
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In this section, the classification results are described. In order to evaluate the effectiveness of the 

ensemble models for the classification of benign and malignant skin lesions, three experiments were 

performed. First, the experiments for the feature subset and feature selection evaluations; second, the 

experiments for the ensemble classification model evaluation; and finally, the experiments to compare 

the results with the classification methods reported in the literature. In addition, the evaluation process 

used to evaluate the results is introduced. 

4.1. Evaluation process 

The performance of the ensemble classification models based on the input feature manipulation as 

described in the previous section was evaluated by using a stratified k-fold cross-validation procedure 

[5]. This kind of procedure consists of splitting the training set in k subsets of equal size; the 

procedure being repeated k times. In each procedure, one subset is used as a test set while the others 

are used as the training set. The best model based on its performance is chosen. Performance is the 

average accuracy obtained from each trial. The k-fold cross-validation procedure can be applied to 

avoid over-fitting while testing the capacity of the classifier to generalize. In addition, it has shown 

good results compared with other procedures [41]. 

The measures used to evaluate the performance of the classification are accuracy (ACC), 

sensitivity (SE) and specificity (SP), which are based on outcomes of the ensemble of classifiers, 

according to the majority voting. These outcomes represent the number of correct and incorrect 

classifications for each class, positive (benign) and negative (malignant). These measures are 

commonly used [12] and they are defined as: SE is the percentage of correctly classified positive 

samples with respect to all positive samples, SP is the percentage of correctly classified negative 

samples with respect to all negative samples, and ACC is the percentage of correctly classified 

positive and negative samples based on all samples. 

A cost function 𝐶 adopted from Barata, et al. [2] is used to deal with the trade-off between SE and 

SP, which is defined as: 

𝐶 = _`a 2Jb4 c_a` 2Jbd
_`ac_a`

,                                                                                                                        (5) 

where 𝑐2f is the cost of an incorrectly classified benign lesion (FN), and 𝑐f2 is the cost of an 

incorrectly classified malignant lesion (FP). The costs used to evaluate the classification were 𝑐2f = 1 

and 𝑐f2 = 1.5, since an incorrect classification of a malignant lesion is more critical. The lower the 

value of cost 𝐶, the better the classification is. 

4.2. Evaluation of the feature subset and feature selection 

In order to define the best feature subsets for the ensemble classification models, several subsets 

based on specific feature groups discussed in the previous section were evaluated. Table 1 shows the 
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results for each feature subset using the OPF classifier. Three distance functions, i.e., Euclidean, 

Chebyshev and Manhattan were compared using this classifier, in order to find the distances between 

the feature vectors. The Euclidean distance was the best distance function for this classifier, according 

to the experiments using all features, which achieved an ACC of 92.3%. Consequently, this distance 

function was used for all other experiments in this study.  

Table 1 - Performance results for the feature subsets compared to different feature groups (best result for 
each group is in bold). 

Group Feature subset ACC 

1 
Shape 89.1% 
Colour 91.0% 
Texture 91.6% 

2 
Fractal texture 89.9% 
Wavelet texture 90.7% 
Haralick's texture 88.3% 

3 
Shape and colour 90.5% 
Shape and texture 91.3% 
Colour and texture 91.7% 

4 

RGB colour 90.6% 
HSV colour 92.0% 
LAB colour 90.3% 
LUV colour 90.3% 

5 

RGB texture 91.8% 
HSV texture 91.1% 
LAB texture 91.2% 
LUV texture 90.8% 

6 

Shape and RGB features 91.6% 
Shape and HSV features 93.0% 
Shape and LAB features 92.7% 
Shape and LUV features 91.7% 

7 

RGB features 90.8% 
HSV features 91.2% 
LAB features 92.5% 
LUV features 91.4% 

 

The results in Table 1 indicate that there is diversity between the feature subsets. The three best 

feature subsets were the shape combined with the HSV features, the LAB features, and the HSV 

colour. The shape, colour and texture features provided an improvement to the classification when 

they were combined. The texture features, i.e., the fractal, wavelet and Haralick’s features, achieved 

better results when the features were combined than when they were used individually. The feature 

extraction algorithms for each colour space provided better results when combined with the shape 

features. 

The diversity for an ensemble classification model is also obtained by using different feature 

selection algorithms. Such algorithms were used to find the best features for the classification process. 

The single-feature evaluators use a ranking method, i.e., the correlation coefficient, GRFS, 

information gain, relief-F and PCA, and a set of retained number of features is empirically defined by 
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𝑁 = 25, 50, 75 , with the exception of PCA that chooses a sufficient number of eigenvalues to rank 

the new transformed features. The maximum number of features 𝐹 = 5 was used to include the 

transformed features, and the proportion of variance 𝑉 = 0.95 was used to retain a sufficient number 

of PC features. Accordingly, 31 eigenvalues were selected by the PCA algorithm to represent the 

vector with the new features. The feature estimation defined the number of nearest neighbours 𝑘 = 10 

for the relief-F.  

In the case of the feature subset evaluator, i.e., CFS, the greedy stepwise search method, in either 

forward or backward directions, is applied until the addition or removal of any feature produces a 

decrease in evaluation. Consequently, 37 features were selected in the forward direction and 50 in the 

backward direction. The best first search method was also carried out until five consecutive non-

improving features, in the directions: forward (37 features), backward (50 features) or bi-direction (37 

features) were found. However, experimental results, using the OPF classifier as discussed in the 

previous section, showed that this method did not improve the classification when applied with the 

stepwise search method. Therefore, only the stepwise search method was used with CFS and 

compared with the other feature selection algorithms. 

Table 2 shows the best classification results using the feature selection algorithms. Although all 

the feature selection algorithms obtained good results, the OPF classifier using the features selected 

by the CFS algorithm achieved the best results. These algorithms were applied to generate the feature 

subsets for the ensemble classification models. 

Table 2 - Comparing several feature selection algorithms (best result is in bold). 

Feature selection Features ACC 
Correlation coefficient 75 89.6% 
GRFS 25 91.1% 
Information gain 75 90.8% 
Relief-F 75 91.0% 
PCA 31 91.0% 
CFS 50 91.6% 

4.3. Evaluation of the ensemble classification models 

The performance of the three ensemble classification models based on the input feature manipulation, 

OPF classifier and majority voting; namely, the SE-OPF, SEFS-OPF, FEFS-OPF algorithms, were 

evaluated using ten-fold cross-validation. Four ensembles of classifiers were generated for each 

algorithm, where 𝐸 = 3,5,7,9  describes the ensemble size, i.e., the number of base classifiers. 

Several subsets based on the combination of the specific feature groups were performed for the 

feature manipulation using the SE-OPF algorithm. The best subsets of the specific feature groups 

were performed for the feature manipulation based on the SEFS-OPF algorithm using the CFS 

algorithm for each ensemble. In addition, all extracted features were performed using different feature 

selection algorithms for the feature manipulation based on the FEFS-OPF algorithm. Table 3 shows 
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the combination of the subsets and feature selection algorithms for each ensemble that achieved the 

best classification results. 

Table 3 - Combination of the subsets and feature selection algorithms for each ensemble. 

Ensemble 
classification 

model 

Number of 
classifier Feature subsets 

SE-OPF 
 

3 Shape, colour and texture 
5 Shape, RGB features, HSV features, LAB features and LUV features 
7 Shape, colour, texture, shape + RGB features, shape + HSV features, shape + 

LAB features and shape + LUV features 
9 Shape, RGB colour, HSV colour, LAB colour, LUV colour, RGB texture, HSV 

texture, LAB texture and LUV texture 
SEFS-OPF 3 Shape + CFS, colour + CFS and texture + CFS 

5 Shape + CFS, RGB features + CFS, HSV features + CFS, LAB features + CFS 
and LUV features + CFS 

7 Shape + CFS, colour + CFS, texture + CFS, shape + RGB features + CFS, shape 
+ HSV features + CFS, shape + LAB features + CFS and shape + LUV features + 
CFS 

9 Shape + CFS, RGB colour + CFS, HSV colour + CFS, LAB colour + CFS, LUV 
colour + CFS, RGB texture + CFS, HSV texture + CFS, LAB texture + CFS and 
LUV texture  + CFS 

FEFS-OPF 3 All features + PCA, all features + CFS and all features + GRFS 
5 All features + PCA, all features + correlation coefficient, all features + GRFS, 

all features + information gain and all features + relief-F 
7 All features + PCA, all features + correlation coefficient, all features + GRFS, 

all features + information gain, all features + relief-F, all features + CFS (best 
first) and all features + CFS (stepwise) 

9 All features + PCA + OPF (ED), all features + CFS + OPF (ED), all features + 
GRFS + OPF (ED), all features + PCA + OPF (CD), all features + CFS + OPF 
(CD), all features + GRFS + OPF (CD), all features + PCA + OPF (MD), all 
features + CFS + OPF (MD) and all features + GRFS + OPF (MD) 

ED: Euclidean distance, CD: Chebyshev distance and MD: Manhattan distance 

Table 4 shows the best classification results for each ensemble model. The SE-OPF algorithm 

achieved its best classification results using 𝐸 = 9. Likewise, 9 classifiers for the ensemble yielded 

the best results for the SEFS-OPF algorithm, whereas the FEFS-OPF algorithm obtained its best 

results using 𝐸 = 3. Although the SE-OPF algorithm did not have all the best classification measures, 

it resulted in a more balanced classification between the benign and malignant classes, i.e., with a 

lower classification cost. The classification results are presented in more detail in Fig. 3, which shows 

the variation of the accuracy, sensitivity and specificity measures, according to the ensemble size 

defined for each ensemble classification model.  

Table 4 - Classification results for the ensemble classification models (best results are in bold). 

Ensemble classification model ACC SE SP C 
SE-OPF (feature subsets + OPF) 94.3% 91.8% 96.7% 0.053 
SEFS-OPF (feature subsets + CFS + OPF) 93.9% 91.8% 96.0% 0.057 
FEFS-OPF (all features + FS + OPF) 93.7% 90.4% 96.9% 0.057 
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Fig. 3: Variation of the classification measures, according to the ensemble size established for each 
ensemble classification model: (a) accuracy, (b) sensitivity and (c) specificity. 

4.4. Comparison between classification algorithms 

The classification results achieved by the best ensemble model proposed here, based on the input 

feature manipulation as previously discussed, were compared against the ones obtained using three 

different ensemble algorithms. These algorithms are commonly used in the literature; namely, 
bagging [6], AdaBoost [13] and random forest [14]. The proposed ensemble model was also 

compared to the individual OPF classifier [21] to analyse the effectiveness of the ensemble 

algorithms. In addition, this classifier was adopted as a base classifier for the bagging and AdaBoost 
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algorithms, since these algorithms can be used with any learning algorithm. The classification 

algorithms were applied with and without feature selection based on all the extracted features. The 

CFS algorithm was used in these experiments, since it improved the classification more than the other 

feature selection algorithms, as mentioned previously. Table 5 shows the results using different 

classification methods, as well as the results of the proposed model; the best results for each measure 

are shown in bold. 

Table 5 - Comparative results between classification algorithms (best results are in bold).  

Classification algorithms ACC SE SP C 
OPF 92.3% 87.5% 97.1% 0.067 
OPF (CFS) 91.6% 87.0% 96.2% 0.075 
Bagging (OPF) 89.7% 85.9% 93.5% 0.095 
Bagging (CFS + OPF) 91.8% 88.4% 95.3% 0.075 
AdaBoostM1 (OPF) 92.3% 92.3% 92.3% 0.077 
AdaBoostM1 (CFS + OPF) 91.6% 87.0% 96.2% 0.075 
Random forest 93.9% 91.3% 96.6% 0.055 
Random forest (CFS) 93.7% 90.4% 96.9% 0.057 
Proposed model (SE + OPF) 94.3% 91.8% 96.7% 0.053 

The results in Table 5 indicate that only the bagging and AdaBoostM1 algorithms achieved better 

results by using the features selected by the CFS algorithm rather than without the feature selection. 

Although the AdaBoostM1 algorithm without the feature selection yielded a better accuracy and 

achieved an average distinction between the benign and malignant classes, the cost was higher 

because the specificity was not very expressive. On the other hand, the random forest algorithm was 

more effective without the feature selection, since it obtained a better accuracy and a lower cost 

between the sensitivity and specificity. In addition, this algorithm obtained better classification results 

than the bagging and AdaBoostM1 algorithms. Likewise, the individual OPF classifier without the 

feature selection achieved better results than the bagging and AdaBoostM1 algorithms. Nevertheless, 

the accuracy obtained by the OPF classifier was not better than the random forest algorithm and the 

proposed model. Moreover, the classification cost was higher between the sensitivity and specificity. 

The proposed model showed good generalization between the benign and malignant classes. 

Furthermore, this model achieved a better accuracy and lower cost compared to other classification 

algorithms used in the literature.  

5. Discussion 

The main objective of this study was to develop and evaluate different classification models based 

on ensemble methods using input feature manipulation in order to improve the classification results 

for early image based diagnosis of skin cancer. The best proposed ensemble classification model 

achieved ACC = 94.3%, SE = 91.8% and SP = 96.7% in a dataset of 1104 dermoscopic images. This 

model was built by using the feature subset selection based on the combination of the specific feature 
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subset groups for input feature manipulation, the OPF as base classifier, and the majority voting 

strategy to integrate several classification models. The classification results from the proposed model 

were more accurate than when the OPF classifier was used alone, and also more accurate than the 

standard ensemble algorithms, which are commonly found in the literature. Since this study did not 

use all the images from the original dataset, as mentioned previously, the results cannot be directly 

compared with the results obtained in the works that used the same dataset and the ground-truth lesion 

segmentation masks presented in Gutman, et al. [22]. These works used the full set of images from the 

data set which consisted of 1279 images and they divided them into test and training sets. The best 

results were achieved by Lequan, et al. [42] using the whole dataset, obtaining ACC = 0.855, SE = 

0.547 and SP = 0.931. These latter authors proposed a novel method for melanoma recognition by 

leveraging very deep convolutional neural networks.  

Several automatic diagnosis systems based on ensemble methods have been proposed in the 

literature for the skin lesion classification as described in the previous section about related studies. 

The results obtained from the proposed model are in line with those of other studies found in the 

literature, which also proposed ensemble methods to improve the classification of skin lesions and 

achieved high values of accuracy, sensitivity and specificity. In contrast, the studies presented in the 

literature usually computed the SE measure to represent the number, or percentage, of correctly 

classified malignant lesions, and the SP measure to represent the number, or percentage, of correctly 

classified benign lesions. For example, Barata, et al. [2] proposed a classification system using the 

AdaBoost algorithm that achieved SE = 96% and SP = 80% in a dataset of 176 dermoscopic images. 

Rastgoo, et al. [15] developed an automatic system based on texture features and random forest 

algorithm, which achieved SE = 98% and SP = 70% in a dataset of 180 dermoscopic images. Barata, 

et al. [10] built a classification system based on the fusion of global and local features using the 

random forest algorithm, which obtained SE = 98% and SP = 90% in a dataset of 200 dermoscopic 

images, and SE = 83% and SP = 76% in a dataset of 482 images. Rastgoo, et al. [11] proposed an 

automatic framework that used a random forest algorithm and a combination of colour and texture 

features based on global features, which obtained SE = 94% and SP = 92% in a dataset of 193 

dermoscopic images. Abedini, et al. [18] developed an ensemble model based on feature random 

subsets, a linear SVM classifier and forward model selection for the ensemble fusion, which achieved 

ACC = 91%, SE = 97% and SP = 65% in a dataset of 200 dermoscopic images. Schaefer, et al. [4] 

proposed a multiple classifier system that consists of a random under-sampling method, an SVM with 

a polynomial kernel, and a neural network for the ensemble fusion, which obtained ACC = 93.83%, 

SE = 93.76% and SP = 93.84% in a dataset of 564 dermoscopic images. Xie, et al. [20] developed a 

novel meta-ensemble model based on multiple neural network ensembles, which achieved ACC = 

94.17%, SE = 95% and SP = 93.75% in a dataset of 240 dermoscopic images of the xanthous race, 
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and ACC = 91.11%, SE = 83.33% and SP = 95% in a dataset of 360 dermoscopic images of the 

caucasian race.  

Usually, the automatic computational systems, like the ones proposed in the above-mentioned 

studies, include the segmentation of the skin lesions. Segmentation is an important step that allows the 

extraction of the regions of interest (ROIs) from an input image. Previous studies have shown that 

computational methods for image segmentation can provide suitable results for the identification of 

skin lesions in images [43, 44]. The classification results obtained can depend on the segmentation 

method used, since the features are extracted from the segmented ROIs. Thus, segmentation methods 

that obtain suitable ROIs may facilitate the classification process and lead to better classification 

results. The lack of a lesion segmentation process can be seen as a limitation of the present study; 

however, one should note that ground-truth lesion segmentation masks were used in order to obtain 

trustworthy classification results and conclusions. A possible skin lesion segmentation approach to be 

combined with the proposed ensemble classification model can be the one presented in Ma and 

Tavares [45], which is based on a level-set model and colour models and it has obtained very 

promising results. 

Although the ensemble algorithms improve accuracy by combining the different classification 

models, these algorithms can present a high computational complexity	and are rather hard to analyse 

[5]. Comprehensible models [46], which can be used to solve such problems, aim to produce a single 

classification model from an ensemble model without losing too much accuracy compared to using 

the integrated hypothesis model.  

The proposed ensemble classification model based on input feature manipulation was developed 

using: 1) Visual Studio Express 2012 environment, C/C++ and OpenCV 2.4.9 library for the feature 

extraction algorithms; and 2) Eclipse IDE 4.6.1 environment, JavaSE-1.8, and Weka 3.8 library for 

the classification algorithms. The feature extraction times for all the images from the binary masks 

were: shape - 10.26 min; colour - 10.12 min; fractal texture - 26.79 min; wavelet texture - 34.37 min; 

and Haralick’s texture - 29.48 min. Finally, the best ensemble classification model required a total of 

60.09 s to process all the samples.	These values show that the feature extraction step was the most 

time-consuming; however, the computation time required by this step can be considerably decreased 

using optimized C/C++ implementations. All algorithms were performed on an Intel(R) Core(TM) i5 

CPU 650 @ 3.20 GHz with 8 GB of RAM, running Microsoft Windows 7 Professional 64-bits. 

6. Conclusion and future works 

In this article, three ensemble classification models based on input feature manipulation from the 

shape properties, colour variation and texture analysis, were presented; namely, the SE-OPF, SEFS-

OPF and FEFS-OPF algorithms. The first model manipulates the features by using different subsets 

based on specific feature groups. The second model manipulates the features by using the CFS 
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algorithm for the feature selection from the subsets defined in the first model. Finally, the third model 

manipulates the features by using different feature selection algorithms, i.e., correlation coefficient, 

GRFS, information gain, relief-F, PCA and CFS, from all extracted features. Each ensemble model 

was generated by using the OPF base classifier and integrated with the majority voting strategy. The 

effectiveness of the feature groups and feature selection algorithms used were individually evaluated 

to find the best features for the classification process, as well as to generate diversity for the ensemble 

classification models. 

Promising results were achieved with the proposed ensemble classification models. The best 

classification results were obtained by the feature subset selection model based on feature groups (SE-

OPF algorithm). Nine base classifiers were used for this model based on shape, RGB colour, HSV 

colour, LAB colour, LUV colour, RGB texture, HSV texture, LAB texture and LUV texture subsets, 

which yielded the following results: ACC = 94.3%, SE = 91.8% and SP = 96.7%. The feature 

manipulation process based on these specific feature subsets also provided an excellent generation of 

diversity for the ensemble classification model.  

Future studies for pigmented skin lesion classification from dermoscopic images should search for 

new methods to develop more efficient and effective systems. In order to approach other challenges of 
dermoscopy image diagnoses, the proposed ensemble classification models should be taken into 

account in future works to identify the presence of global and local patterns. Discriminating between 

benign and malignant skin lesions is a challenging task for pattern analysis [47]. Essentially, the 

classification results can be improved by using deep learning architectures [48], since these 

architectures have revealed their capacity to learn from large amounts of data. Therefore, deep 

learning architectures should be taken into account in future works concerning skin lesion 

classification in dermoscopic images. 
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APPENDIX 

The International Skin Imaging Collaboration (ISIC) image dataset	 [22] was used in the 

experiments presented in this article. This dataset is composed of 1279 images, however, 175 lesions 

did not fully fit into the image and were therefore excluded from this study; the excluded images were 
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the XXXXX with XXXXX equal to: 00004, 00160, 00183, 00187, 00188, 00189, 00195, 00202, 

00207, 00204, 00205, 00207, 00208, 00209, 00212, 00215, 00217, 00224, 00230, 00233, 00235, 

00258, 00259, 00282, 00285, 00288, 00289, 00290, 00292, 00293, 00294, 00295, 00299, 00300, 

00301, 00302, 00303, 00307, 00310, 00311, 00321, 00359, 00368, 00371, 00390, 00408, 00415, 

00426, 00433, 00481, 00517, 00519, 01142, 09896, 09897, 09904, 09121, 09928, 09934, 09962, 

09970, 09980, 09983, 09988, 09990, 09995, 10000, 10005, 10022, 10029, 10035, 10037, 10038, 

10041, 10051, 10056, 10057, 10062, 10063, 10065, 10068, 10071, 10073, 10075, 10078, 10093, 

10169, 10189, 10190, 10194, 10202, 10204, 10213, 10222, 10228, 10231, 10232, 10235, 10238, 

10239, 10242, 10252, 10257, 10267, 10320, 10322, 10323, 10324, 10329, 10331, 10334, 10335, 

10342, 10348, 10349, 10369, 10382, 10448, 10454, 10455, 10457, 10459, 10477, 10492, 10495, 

10497, 10572, 10588, 10589, 10596, 10603, 10604, 10605, 10847, 10857, 11079, 11088, 11104, 

11105, 11109, 11112, 11120, 11121, 11122, 11126, 11128, 11139, 11149, 11151, 11156, 11158, 

11159, 11167, 11175, 11203, 11212, 11229, 11229, 11300, 11322, 11327, 11329, 11334, 11347, 

11348, 11349, 11350, 11356, 11360, 11361, 11373, 11374, 11387, 11390, 11402. 
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