
Disciplined Reuse of Aspects

State of the Art & Work Plan

André Restivo

September 4, 2007

Contents

1 Aspect-Oriented Programming 5

1.1 Separation of Concerns . 5

1.2 Object-Oriented Programming Issues 6

1.3 Aspect-Oriented Programming 7

1.4 AOP using AspectJ . 8

1.4.1 Joinpoints . 8

1.4.2 Pointcut designators . 8

1.4.3 Advices . 10

1.4.4 Aspects . 11

1.4.5 Inter-Type Declarations 11

1.4.6 Declare Clauses . 12

1.4.7 Illustrative Example . 12

1.5 Aspect-Oriented Software Development 14

1.5.1 Requirements Analysis . 15

1.5.2 Design . 16

1.5.2.1 Specification . 16

1.5.2.2 Design Patterns 17

1.5.3 Construction . 18

1.5.3.1 Reusability . 18

1.5.3.2 Refactoring . 20

1.5.3.3 Debugging . 20

1.5.3.4 Development Environments 21

1.5.4 Testing and Validation . 21

1.5.5 Code Documentation . 21

1.5.6 AOP Current Issues . 22

2 Conflicts and Interferences 23

2.1 The Anatomy of Aspect Interferences 23

2.1.1 The Interference Point of View 24

2.1.2 The Aspect Point of View 24

1

2.1.3 The Dependency Point of View 24

2.2 Detecting Aspect Interferences 25

2.2.1 Program Slicing . 25

2.2.2 Aspect Integration Contracts 26

2.2.3 Regression Testing . 26

2.2.4 Service-Based Approach 26

2.2.5 Introduction and Hierarchical Changes Interferences . . . 27

2.2.6 Graph-Based Approach 27

2.3 Aspect Interference Resolution 27

2.4 Avoiding Aspect Interferences . 28

2.4.1 Robust Pointcuts . 28

2.4.2 Crosscutting Interfaces . 28

2.4.3 Joinpoint Encapsulation 28

3 Thesis Proposal 29

3.1 Objectives . 29

3.2 Thesis Statement . 30

3.3 Research Strategy . 30

3.4 Proposed Approach . 30

3.4.1 Mapping aspects and interferences to unit tests 32

3.4.2 Using annotations to specify changes to unit tests 33

3.4.3 An example of conflicting aspects 34

3.5 Work Plan . 36

A Resources 40

A.1 Research Groups and People . 40

A.2 Conferences . 43

A.3 Journals . 43

2

List of Figures

1.1 Scattered Cross-Cutting Concern 11

1.2 AspectJ key elements . 12

3.1 Aspects and Unit Tests . 31

3.2 Different types of aspects . 32

3.3 Different types of interferences 33

3.4 Development flow for the proposed approach 37

3.5 Work Plan . 39

3

Introduction

This document describes the work plan and state of the art for the PhD work

of André Restivo started in 2006. Acceptance of this document by a steering

committee is mandatory for the final registration in the Doctoral Programme

in Informatics Engineering (ProDEI) at the Engineering Faculty of University

of Porto.

Chapter 1 contains a brief description of the fundamentals of Aspect-Oriented

Programming. It is intended for readers who are not acquainted with the main

ideas behind this new software development approach.

Chapter 2 introduces the problem of conflicts and interferences between as-

pects and gives a brief idea of the current State of the Art concerning this

particular problem.

Chapter 3 contains the thesis proposal, a description of the work done so

far, and a work plan.

Appendix A lists some of the available research resources that might be

helpful to guide this work to a successful ending. These resources include re-

search groups and people working in the area and also important conferences

and publications.

4

Chapter 1

Aspect-Oriented

Programming

1.1 Separation of Concerns

Software Engineering (SE) is concerned with the theories, methods and tools

needed to develop software with quality. The main goals of SE are to achieve

better maintanability, dependability, efficiency and usability in software appli-

cations [1, 2]. Some of these goals can be attained by increasing software mod-

ularity, thus increasing code reusability, with obvious advantages. Modularity

is all about keeping different concerns separated in contained modules. This

is sometimes referred to as achieving a better Separation of Concerns (SoC).

SoC is also, and according to Dijkstra [3, 4], ”the only available technique for

effective ordering of one’s thoughts”.

Through the years, software engineers have developed a reasonable quantity

of programming paradigms and approaches. If analyzed in the correct perspec-

tive, all of these developments were thought to help developers achieve a better

SoC. For instance, Procedural-Oriented Programming (POP) separates concerns

into different procedures, Object-Oriented Programming (OOP) into classes and

objects and the Model-View-Controller approach (MVC) separates content from

presentation and logic.

Aspect-Oriented Programming, on the other hand, separates concerns into

units of modularity called aspects. In the remaining of this chapter, this new

development approach is presented and explained.

5

1.2 Object-Oriented Programming Issues

OOP is a programming strategy based on encapsulation and information hiding.

It differs from the procedural approach in that it views a software system as a

set of objects, with their own private state and behavior, rather than a set of

functions sharing a global state. Object-oriented systems are easier to maintain

as objects are independent and can be understood as standalone entities [5, 1].

The advent of OOP has been an enormous step in the right direction making

the possibility of achieving a perfect SoC a real possibility. An important set of

principles for OOP has long been established in literature [6]:

Separation of Concerns (SoC). Every important issue (or concern) should

be considered in isolation [3, 4].

Low coupling. Every module should communicate with as few others as pos-

sible [7].

Weak coupling. If two modules communicate at all, they should exchange as

little information as possible [7].

Information Hiding. All information about a component should be private

to a component unless it is specifically declared public [8].

Logical Cohesion. Related components should be grouped together [7].

The Open Closed Principle (OCP). A module should be open for exten-

sion but closed for modification [9].

The Liskov Substitution Principle (LSP). A derived class may substitute

a base class [10].

The Dependency Inversion Principle (DIP). High-level modules should

not depend upon low-level modules. Both should depend upon abstrac-

tions [11].

Stable Dependencies Principle (SDP). A component should only depend

upon components that are more stable than it is [12].

The Interface Segregation Principle (ISP). Many client specific interfaces

are better than one general purpose interface [13].

The Law of Demeter (LoD). Each unit should have knowledge only about

closely related units. The Law of Demeter is a design guideline for devel-

oping software, particularly OO programs. This law states that “objects

should talk only to their immediate friends” [14, 15].

6

Even using OOP and other SE techniques, some concerns are, however, still

inevitably tangled in the source code [16]. These concerns are normally referred

to as crosscutting concerns, as they can spread throughout an entire software

system. A common example of such a concern is the logging module of an

application [17].

The inevitable tangling of crosscutting concerns happens because OOP is a

single abstraction paradigm, meaning that we are forced into organizing the code

following a single perspective (often referred to as the Tyranny of the Dominant

Decomposition [18]). The core concerns of the application force other concerns,

often non-functional, to get scattered throughout the application code. This

tangling of concerns is one of the major contributors to the increased complexity

of large software applications.

The same principles enunciated in the beginning of this section can also be

applied to AOP, with AOP being an important step towards a better application

of them [19].

1.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a recent software development approach

which main objective is the encapsulation of crosscutting concerns in their own

units of modularity, known as aspects. Aspects are later weaved back with the

base modules at compilation, loading or execution time. Among others, AOP

has the following main advantages [20]:

Explicitness. Crosscutting concerns are explicitly captured by aspects.

Reusability. It is possible through a single aspect to describe crosscutting

concerns common to several components.

Modularity. Since aspects are modular units that encapsulate crosscutting

structure and behaviour, AOP improves the overall modularity of an ap-

plication.

Evolution. Evolution becomes easier since implementation changes of crosscut-

ting concerns occur locally within an aspect and save the need to adapt

existing classes.

Stability. Special AOP language support makes it possible to express generic

aspects, which will remain applicable throughout future class evolution.

Pluggability. Since aspects are modular, they can be easily plugged in and

out of an application.

7

1.4 AOP using AspectJ

To better understand how AOP works, some concepts must be explained first.

Joinpoints, pointcut designators, advices and aspects are the pillars of most AOP

languages. In the next sections these concepts are explained using the syntax

of AspectJ, an AOP language based in Java and the current de facto standard

for AOP [21].

1.4.1 Joinpoints

In order to specify where units and aspects should be weaved together, a set

of points in the code where weaving can occur must be defined. These points

are called joinpoints. Each AOP language may define its own set of possible

joinpoints, normally referred as the joinpoint model for the language. AspectJ

defines the following types of joinpoints:

• Method call or execution - call(void Foo.doSomething(int)) or execution(void

Foo.doSomething(int));

• Constructor call and execution - call(Foo.new()) or execution(Foo.new());

• Read/write access to a field - get(int Foo.myField) or set(int Foo.myField);

• Exception handler execution - handler(FooException);

• Object and class initialization execution - initialization(Foo.new()).

This means that we can define a joinpoint as all points in the application

where method doSomething of class Foo is called, or as all points where field

myField of class Foo is changed. It is important to notice that many more

possible joinpoints could have been defined but for one reason or another they

have been left out of the AspectJ specification. For example, joinpoints defined

as references to code line numbers could also have been created, but this would

be an extremely dangerous way of defining joinpoints as code changes would

easily and unexpectedly alter the application behaviour.

1.4.2 Pointcut designators

As crosscutting concerns are normally scattered throughout the application, we

often want to weave an aspect to several different joinpoints. For this purpose,

AspectJ introduced the notion of pointcut designators, which allow the combi-

nation of joinpoints. A pointcut designator refers to several joinpoints that can

be easily combined using the following operators:

8

• a && b - all joinpoints belonging to a and b (with a and b being condi-

tions)

• a || b - all joinpoints belonging to a or b

• !a - all joinpoints not belonging to a

This type of pointcut definition is normally referred as name-based crosscut-

ting, as opposed to property-based crosscutting, that allows the use of several

wildcards thus making pointcut definition easier and more effective:

• Any returning type - call(* Foo.method(int));

• Any method or any method starting by some string - call(* Foo.get*());

• Any number of parameters - call(int Foo.method(..));

Several other primitives have been defined in the AspectJ language, namely:

• Execution code defined in a certain type - within(Foo);

• Execution code defined inside a method with a certain signature - within-

code(int Foo.method());

• Boolean expression evaluates as true - if(booleanexpression);

• Arguments are of a certain type or of the same type of a certain identifier

- args(int) or args(identifier).

Pointcuts must be named by the developer and can take a number of param-

eters. The last primitive just described (args) is also useful to bind arguments

from joinpoint definitions to pointcut parameters. Listing 1.1 shows some ex-

amples of pointcut definitions.

Listing 1.1: Pointcut examples
1 pointcut fooChanged ():
2 call (public void Foo.set *(..));
3

4 pointcut fooAccessedFromBar ():
5 call (public * Foo .*()) && within(Bar);
6

7 pointcut fooIdChanged (int i):
8 call (public void Foo.setId(int)) && args (i);

9

1.4.3 Advices

In AspectJ, the element that defines how an application behaviour is changed

in order to implement a certain aspect is an advice. Advices are nameless code

blocks that execute implicitly whenever a certain joinpoint, belonging to the

pointcut associated to the advice, is reached. AspectJ defines three types of

advices:

• Before advices run before the actual joinpoint code is executed but cannot

prevent the joinpoint from being executed;

• After advices run after the actual joinpoint code is executed. There are

variations for normal exit from a joinpoint (returning) and exit due to an

exception (throwing);

• Around advices have total control over the joinpoint execution. The join-

point is only executed if the keyword proceed is invoked. Around advices

must declare a return value identical to the one declared by the joinpoints

that triggers it.

Pointcuts can capture the context from the associated joinpoints and pass

it to the advices. The args operator described in the previous section is one of

the ways to accomplish this. Other operators allow capturing other parts of the

joinpoint context:

• Capturing the object being called - target(callee);

• Capturing the object currently being executed - this(self);

Combined with call and execution joinpoints, these two operators allow a

great deal of control over the joinpoint context. For example, in a call join-

point, the target operator allows access to the object being called while the this

operator allows access to the object calling the method. On the other hand, in

a execution joinpoint, this refers to the object being executed and not to the

one that called the method.

Listing 1.2 shows an example of an advice capturing the context from a

joinpoint. The first set of instructions defines a pointcut that is activated every

time any public method from the Bar class is called. By adding the Bar field

to the signature of the pointcut (line 1) and adding the this(bar) joinpoint to

the list of those captured by this pointcut (line 2), we are giving the chance for

an advice to access the context of this pointcut. The second set of instructions

(line 4) is an advice that uses this pointcut and has access to the Bar object

being called.

10

Unit

UnitUnit
Unit

Figure 1.1: Scattered Cross-Cutting Concern

Listing 1.2: Advice example
1 pointcut fooAccessedFromBar (Bar bar):
2 call (public * Foo .*()) && this (bar);
3

4 before() : fooAccessedFromBar (Bar bar) {
5 // Do something to the Bar object that
6 // called the method from class Foo
7 }

1.4.4 Aspects

Finally, the last element introduced by AspectJ is the aspect. An aspect com-

bines pointcuts and advices composing a single modular unit that encapsulates

a crosscutting concern. Aspects are very similar to classes as they are defined

within packages, can be extended and can have attributes and methods. On the

other hand, aspects cannot be instantiated using the new operator as classes are.

Instead, aspects are automatically instantiated whenever a joinpoint associated

to it is reached.

By default, aspects are singletons, meaning that there is only one instance of

each aspect for the whole application. This behaviour can be altered with the

use of the perthis or pertarget operators. These operators allow the existence

of an instance for each calling object or for each target object. Another way

of having more than one instance of the same aspect is by using the percflow

operator. This operator creates an instance of the aspect for each flow of control

of the joinpoints picked by the associated pointcut. Figure 1.1 shows a cross-

cutting concern scattered through several units while Figure 1.2 reveals the main

AOP elements in action.

1.4.5 Inter-Type Declarations

Another powerful mechanism of the AspectJ framework are inter-type declara-

tions (also known as static introductions or just introductions). This mechanism

allows the introduction of new methods, fields or constructors into a class by an

advice. The scope of the new class members is the aspect that introduced them

11

Unit

Unit

Unit
Unit

Advice

Pointcut

Cross-cutting Concern

Joinpoint

Aspect

Advice

Figure 1.2: AspectJ key elements

and not the class where they were introduced. This makes it possible to define

the new members as private to the aspect enforcing the modularity of aspects.

1.4.6 Declare Clauses

Some declarations about the advice can be added by developers with the use of

the declare clause. For example, one could declare that a certain pointcut should

never be reached using the declare error or declare warning clauses, allowing

the implementation of system-wide policies. Other uses of the declare clause

include allowing developers to change the class hierarchy. The declare parents

clause can be used to make a class implement additional interfaces or to have a

different super-type. The declare precedence clause allows developers to define

the precedence between aspects.

1.4.7 Illustrative Example

Following is an illustrative example of some of the concepts just explained. The

Observer Pattern is one of the most widely used Design Patterns defined by the

GoF (name usually given to the authors of [22]). This pattern is used to define

one-to-many dependencies between objects so that when one object is changed,

all its dependents are notified automatically [22].

Listing 1.3 shows a simple way of implementing this pattern in a standard

OOP way. The example chosen contains a class Point that notifies its observers

12

(for example the Screen class) when changed. This implementation was not

done exactly as defined by the Observer Pattern, for simplicity reasons.

Listing 1.3: Observer Pattern (OOP)
1 public class Point
2 {
3 private float x;
4 private float y;
5 private Vector <Observer > observers = new Vector ();
6

7 Point (float x, float y)
8 {
9 this .x = x;

10 this .y = y;
11 }
12

13 public void setX (float x){
14 this .x = x;
15 notifyObservers ();
16 }
17

18 public void setY (float y){
19 this .y = y;
20 notifyObservers ();
21 }
22

23 public void addObserver (Observer o){
24 observers .add(o);
25 }
26

27 public void notifyObservers (){
28 Iterator <Observer > itr = observers .iterator

();
29 while (itr.hasNext ())
30 itr.next (). subjectChanged (this);
31 }
32 }

Although Design Patterns, and in particular the Observer Pattern, provide

valuable design solutions for all developers, sometimes they originate other de-

sign problems as the one that can be identified by looking at the code at Listing

1.3. The Point class no longer represents a point, but instead it represents a

point that notifies observers when changed. The representation of a point and

the fact that points should notify dependant objects when their state changes

are two different concerns that became inevitably tangled in the code.

Listing 1.4 shows the AOP version for the same implementation. In this

case, the Point class is left untouched, while the Observer Pattern is completely

contained in one unit of modularity. Inter-type declarations have been used to

add an observers Vector to the Point class, as well as an addObserver method

to the same class, and a pointChanged method to the Screen class. A pointcut

has been defined as the execution of every method of the Point class starting

with “set”. This pointcut also captures the Point object where the method was

executed, from the current running context, to pass it to the associated advice.

13

A single advice has been created that simply iterates over the point observers

(in this case screens) and calls the pointChanged method of each one of them.

As this example shows, AOP can be extremely valuable in helping separating

different concerns.

Listing 1.4: Observer Pattern (AOP)
1 public class Point
2 {
3 private float x;
4 private float y;
5

6 Point (float x, float y)
7 {
8 this .x = x;
9 this .y = y;

10 }
11

12 public void setX (float x){
13 this .x = x;
14 }
15

16 public void setY (float y){
17 this .y = y;
18 }
19 }
20

21 public aspect PointObserver
22 {
23 public Vector Point.observers = new Vector ();
24

25 private void Screen.pointChanged (){
26 updateDisplay ();
27 }
28

29 public void Point.addObserver (Screen s){
30 observers .add(s);
31 }
32

33 protected pointcut pointChanged (Point p) :
34 execution (void Point.set *(..)) && this (p);
35

36 after(Point p) : pointChanged (p){
37 Iterator itr = p.observers .iterator ();
38 while (itr.hasNext ())
39 ((Screen)itr.next ()). pointChanged ();
40 }
41 }

1.5 Aspect-Oriented Software Development

A large number of software development approaches exist. Nevertheless, most

of them follow the same development lifecycle. Aspect-Oriented Software De-

velopment (AOSD), although not a software development methodology per se,

can be used in each of the various activities of the development process. AOSD

adds to the process with the inclusion of new tools and languages, but, at the

14

same time, some activities must be changed in order to accommodate this new

approach. For example, documentation techniques must evolve to cope with the

new concepts and language constructs brought by AOP. The following sections

summarize some of the existing approaches, each focusing a particular phase of

the lifecycle.

1.5.1 Requirements Analysis

The requirements phase of the software development cycle is one that can benefit

with the introduction of the AOP approach. Grundy [23] states that traditional

requirements capturing techniques are not powerful enough to describe com-

ponent requirements, leading to less reusable components. This study lead to

a new requirements specification methodology named Aspect-Oriented Compo-

nent Requirements Engineering (AOCRE).

Rashid [24] rationalized that SoC issues were a real problem even in the

requirement analysis phase of the software development cycle, leading to an-

other new requirement specification paradigm: Aspect-Oriented Requirements

Engineering (AORE). Using aspects in this early phase of the process, Early

Aspects [25], allow the identification of conflicts between crosscutting concerns

earlier and at the same time it helps achieve a better traceability of system wide

requirements throughout the development process. Using aspects in this phase

also ensures better homogeneity in a aspect-oriented software development pro-

cess. A new extension to the Unified Modeling Language (UML) notation has

also been developed to support these new ideas [26].

Sutton [27] presented Cosmos, a software concern-space modeling schema.

In this proposed schema, the author separates the notions of concerns, relation-

ships and predicates. Concerns are categorized as logical and physical. Logical

concerns are further typed as classifications, classes, instances, properties, and

topics; physical concerns as collections. instances, and attributes. Relationships

are categorized as categorical, interpretive, physical, and mapping. Predicates

apply to concerns and relationships and reflect consistency considerations.

A promising approach has been introduced by Baniassad [28] and Clarke

[29] with their Theme Process. This process is composed by two separate but

related metodologies: Theme/Doc (that allows users to identify aspects in a set

of requirements) and Theme/UML (how to model them in UML style designs).

Araújo [30] proposed an approach to model scenario-based requirements us-

ing aspect-oriented principles. His approach used Interaction Pattern Specifica-

tions (IPSs) to model aspectual scenarios. He also shown how these aspectual

scenarios could be later composed with non-aspectual scenarios and transformed

into executable state machines.

15

1.5.2 Design

The second phase of most software development methodologies is the high level

design phase. The requirements captured in the Requirement Analysis phase

are transformed into modules, classes and their interactions. Once again in this

phase, the shift to AOSD brings some new challenges.

1.5.2.1 Specification

The most obvious problem found in this phase is how to adapt current archi-

tecture specification methodologies to cope with the new elements and ideas

introduced by AOP. Several approaches to this problem exist, and not surpris-

ingly most of them are based in the existing UML extension mechanisms, like

the use of stereotypes.

Suzuki [31] states that crosscutting problems are very often only found in the

construction phase of the development cycle. Developers usually deal with the

problems found by adding aspects manually at that stage. This happens mainly

due to the lack of aspect-oriented tools focused in this phase of the development

cycle. The same author listed some of the advantages of incorporating aspects

earlier, in the design phase:

Documentation and Learning. By visualizing aspects early in the design

phase, developers can better understand how they interact in a more in-

tuitive way. Also, this results in the early documentation of aspect usage.

Reuse of Aspects. The documentation of aspects in the design phase will

allow the reuse of the aspectized components in different projects making

it possible to create aspect libraries.

Round-trip Development. Incremental development is a common develop-

ment strategy, where the various phases of the development process are

repeated in order to fine tune any design flaws encountered during any of

the phases. By adding aspects in the construction phase of the develop-

ment process, developers are compromising the chance of going back to

the design phase and change the system architecture.

In order to allow early aspect-oriented system designs, Suzuki [31] proposed

extensions to the current UML diagrams supporting the design phase of the

development process. In these new extensions, aspects would be represented

as classes with a aspect stereotype. This is an obvious solution as aspects are

much like classes, as they also have methods and attributes. The operation

list compartment of the aspect would then show each weaving of the aspect as

16

operations with the weave stereotype attached and a classifier to show which

classes, methods and variables are affected by it.

There are three types of relationships possible between classes in the UML

notation: Association, Generalization and Dependency. The same author states

that, the kind of relationship between classes and aspects is better suited for a

Dependency relationship, or, more precisely an Abstract Dependency relation-

ship with a realize stereotype attached to it. Woven classes, the virtual classes

that are the result of the weaving process, could then be represented simply as

classes with the woven class stereotype.

Aldawud [32] has a similar, but more simplistic, approach using stereotypes

to mark classes as being aspects, and associations between aspects and classes

as having the control stereotype meaning that an aspect controls in some way

that particular class.

Kande [33] proposed an alternative to this notation, with pointcuts being

represented as new separate elements and adding an advice block to the aspect

elements. New notations to represent AOP features, like the multiplicity of

aspects, have also been proposed. The same author also presented some modi-

fications to the collaborative diagrams of the UML in order to represent when

joinpoints are reached.

Ho [34] has a different approach to the problem by using annotations and

stereotypes as guides to the weaving process. For example, a class that should

be made persistent could be marked as persistent and the weaving process would

know which aspects had to be weaved in order to accomplish this.

Another different approach, using stereotypes to represent crosscutting con-

cerns, advices and introductions (inter-type declarations), has been presented

by Stein [35]. This work also proposes the use of UML interaction diagrams to

represent joinpoints and collaboration diagrams to show how aspects interact

with other units.

The Theme approach [29], already referred in the previous section, also

allows the modeling of aspects in UML style diagrams.

A rather complete semantics for specifying pointcuts in UML diagrams has

also been detailed in [36].

1.5.2.2 Design Patterns

Design Patterns are generic solutions to commonly recurrent problems. Patterns

gained popularity in the software engineering community after the publication

of the famous Design Patterns book by the GoF [22].

The advent of AOP is a great opportunity to redefine patterns in a more

modular form. It has already been shown in Section 1.4.7 how one of those

17

patterns, the Observer Pattern, could be applied using AOP.

Hannemann [37] has shown how Design Patterns could be mapped as as-

pects. The same author has described some of the advantages of using AOP to

implement Design Patterns:

Locality. All code implementing the patterns is local to the pattern itself. None

of the related classes are changed in the process.

Reusability. The pattern code can be reused throughout an application only

by implementing a single concrete aspect (see Listing 1.5).

CompositionTransparency. If a class becomes involved in more than one

Design Pattern (even in patterns of the same kind), each pattern can be

reasoned about independently.

(Un)pluggability. Adding and removing patterns becomes as simple as re-

moving the implementing aspect from the system.

Clarke and Kande [38, 39] have also written about how patterns could be im-

plemented using AOP. Interestingly, both used the UML annotation extensions

for AOP they proposed (see Section 1.5.2.1).

Garcia [40] has made an interesting study, comparing the implementations

of all 23 Patterns proposed by the GoF in both OOP and AOP. This assessment

study has shown that in many cases the AOP version of the Patterns provided

a better SoC, better reusability and needed lesser number of lines of code.

1.5.3 Construction

The construction phase of the development cycle is when the actual code is

written. Has AOP has several implication in this phase, several issues have been

raised, namely: reusability, conflicts between aspects and accidental pointcuts.

1.5.3.1 Reusability

Achieving better reusability has always been one of the major goals of software

engineering. The use of reusable modules reduces the implementation time and

ensures that the used code has already been thoroughly tested and documented.

As has been shown by Garcia [40], AOP allows developers to achieve better

SoC in software applications, therefore better modularity and easier reusability

is attained.

Listing 1.5 shows how the Observer Pattern can be implemented using AOP

aiming for reusability. In this example, a generic Observer Pattern aspect was

created. This aspect, created as an abstract aspect, specifies two new interfaces:

18

Observer and Subject. At this point these interfaces are not implemented by any

class. Notice that this aspect is declared as being perthis(subjectConstructed

(Subject)), meaning that one instance of this aspect exists for each Subject

object. With this, one instance of the observers vector is created for each Sub-

ject. Then, the addObserver and removeObserver methods were created, as well

as the abstract pointcut subjectChanged. An advice connected to this pointcut

was also created. This advice will call the abstract method updateObserver for

each Observer in the observers vector. Notice that the subjectChanged method

captures the context in order to the advice to access the observers of the cor-

rect Subject. As this aspect never refers to the Screen or Point classes, it can

be reused in the same software application or in other systems.

Binding this aspect to the correct classes is done by extending this aspect

into a concrete aspect called PointObserverPattern. This aspect uses the de-

clare clause to specify that the Point class implements the Subject interface

and that the Screen class implements the Observer interface. This aspect de-

fines also the concrete implementations of the subjectChanged pointcut and the

updateObserver method making it possible to describe what events should be

observed and what to do when these events occur. This example shows how

suited AOP is to implement modular and reusable crosscutting concerns.

Listing 1.5: Reusable Observer Pattern (AOP)
1 public abstract aspect ObserverPattern : pertarget (Subject s

)
2 {
3 public interface Observer { }
4 public interface Subject { }
5

6 Vector observers = new Vector ();
7

8 public void addObserver (Observer o)
9 {

10 observers .add(o);
11 }
12

13 abstract protected pointcut subjectChanged (Subject s
);

14

15 after(Subject p) : subjectChanged (p)
16 {
17 Iterator itr = observers .iterator ();
18 while (itr.hasNext ())
19 ((Observer)itr.next). updateObserver

();
20 }
21

22 public abstract void updateObserver (Observer o,
Subject s);

23 }
24

25 public aspect PointObserverPattern extends ObserverPattern
26 {
27 declare parents : Screen implements Observer ;

19

28 declare parents : Point implements Subject ;
29

30 pointcut subjectChanged (Subject s)
31 {
32 call (void Point.set *(..) && target(s));
33 }
34

35 public void updateObserver (Observer o, Subject s)
36 {
37 (Screen(o)).updateDisplay ());
38 }
39 }

Hanenberg [41] introduced some interesting rules on how to use aspects to

achieve reusability:

• Separated pointcut declarations - Whenever a new aspect is created, a

corresponding abstract super-aspect has to be implemented that contains

all pointcuts declarations and definitions needed by the aspect. Advices

in the sub-aspect refer to the pointcuts defined in the super-aspect.

• No pointcut for more than one advice - If one pointcut is used for more

than one advice, there is no possibility to adapt the behavior of a single

advice.

• Concrete aspects are always empty - Once an advice is within a concrete

aspect, it becomes lost for any further reuse. In this way, a concrete aspect

should not contain any pointcut definition (besides abstract ones). This

guarantees the possibility to redefine the pointcuts in a concrete aspect.

1.5.3.2 Refactoring

Refactoring is the process of rewriting a computer program or other material to

improve its structure or readability, while explicitly preserving its meaning and

behavior. Several common methods for refactoring have been detailed in [42].

With AOP, new methods allowing the refactoring of existing code into this

new paradigm have been described in [43, 44, 45]. Using these methods, it is

possible to take an original OOP code and untangle it safely, turning it into

AOP code. Unit tests can then be used to allow developers to refactor code

making sure modules still behave correctly [46].

1.5.3.3 Debugging

Debugging has been an issue with AOP. When debugging AOP code, most

frameworks use the result of the weaving process instead of the original aspects

and class implementations. This may make debugging harder for AOP develop-

ers. Tools should improve by showing crosscutting structures, like thread trees

20

that hide generated calls, and giving the ability to set breakpoints on pointcuts.

[47] has an interesting approach both to the problem of debugging as well as to

the related problem of profiling.

1.5.3.4 Development Environments

Before a new paradigm becomes ready for wide use and is accepted by industry

development environments have to emerge. Several of these environments are

already available for AOP. As AspectJ is currently the AOP leader language,

it was expected that the first environments to appear would support this par-

ticular language. AspectJ is an extension of the Java language; Eclipse [48]

is a successful open-source development environment, for that same language,

that already had features like refactoring and unit testing. So, it was no sur-

prise that the first good AOP development environments, AspectJ Development

Tools (AJDT), appeared as extensions to the Eclipse IDE [49].

1.5.4 Testing and Validation

Testing and validation routines are important aspects of the Software Devel-

opment cycle because no development paradigm ensures code correctness per

se.

In AOP the main element is the aspect. Aspects differ significantly from

classes and procedures. Testing AOP should not only test if the aspect performs

as expected, but also if the classes modified by them continue to work correctly

[50].

Zhao [50, 51] proposed three level of testing for aspect-based code:

Intra-module testing. Testing each individual element, such as advices meth-

ods and introductions.

Inter-module testing. Testing a public module along other modules it calls

without considering invocations from other modules outside the aspect or

class.

Intra-aspect testing. Testing the interaction between the aspect and multiple

modules when they are called in a random sequence from outside the

aspect.

1.5.5 Code Documentation

Code documentation is another important step of the development cycle. With

the introduction of the new AOP elements, code documentation must be rethought.

21

AspectJ already offers AOP oriented documentation features such as the ajdoc

documentation tool.

Besides AOP code documentation, another interesting possibility is to in-

corporate the AOP paradigm ideas in the code documentation process. In this

way, documentation snippets could be thought as being documentation aspects

that could be weaved together and, in this way, be composed into a complete

document.

1.5.6 AOP Current Issues

Beyond the richness and potential of AOP, there are still several issues cur-

rently under heavy research. Most of them have already been introduced in the

previous sections:

Specification. The current UML specification is not powerful enough to spec-

ify Aspect-Oriented systems. UML must be enhanced in order to incor-

porate the elements introduced by AOSD, either by using its extension

mechanisms or by adding new features to the notation.

Conflicts. AOP promises greater component reusability but, on the other

hand, aspects can be incompatible with each other which affects the idea

of obliviousness.

Dependency. Aspects can depend on services provided by other aspects. A

mechanism that allows aspects to specify which services are provided and

required is needed to allow features like pluggable aspects.

Debugging. Debugging AOP code can be confusing because the program flow

is not immediately easy to understand. Tools that help the debugging

process must be further developed.

In the next chapter some of the issues that prevent better reusability and

modularity of AOP code are addressed in more detail.

22

Chapter 2

Conflicts and Interferences

Besides providing higher software modularity, AOP also aims for a characteristic

called obliviousness that states that developers should be able to implement

application modules without any knowledge of previously implemented aspects

or any future implementations [52, 53].

Current AOP languages, like AspectJ, are so powerful that obliviousness

sometimes appears to be more of a problem than a solution. This is especially

true when a large number of aspect modules are added into an application, often

changing its behaviour, and thus making some aspect modules incompatible with

each other. This happens because most aspects expect to be weaved into an

application with a certain behavior and, if that behavior has been changed by

a previously weaved aspect, then their own behavior could prove erroneous.

The next section presents a brief roundup of several classification terminolo-

gies found in literature that try to describe the different types of conflicts and

interferences between aspects. Following this section, others describe prior work

regarding how conflicts can be detected, solved and prevented.

2.1 The Anatomy of Aspect Interferences

Understanding a problem is always the first step to solve it. In this particular

case it is important to identify the various kinds of interferences between as-

pects and how they emerge. Several researchers have tried to categorize aspect

interaction according to different perspectives.

In the next sections three different approaches to aspect interference termi-

nology and cataloging are presented. These approaches look at the same prob-

lem from different angles and each one of them has an important perspective

into the problem.

23

2.1.1 The Interference Point of View

The most important work done in this area is probably the classification of

aspect interferences by Tessier [54]. In his work the author points out several

different ways in which aspects can interfere with each other:

Crosscutting Specifications - The use of joinpoints, and specially with ’*’

wildcards, can lead to accidental joinpoints or infinite recursions.

Aspect-Aspect Conflicts - When multiple aspects exist in the same system,

problems like mutual exclusions between aspects, the importance of aspect

ordering, or conditional execution of an aspect by another aspect can

occur.

Base-Aspect Conflicts - Circular dependencies between aspects and basic

classes.

Concern-Concern Conflicts - Aspects changing a functionality needed by

other aspect and composition anomalies normally happening due to sub-

type substitutability.

2.1.2 The Aspect Point of View

According to Katz [55], three types of aspects can be described in respect to how

they affect an application. This classification is important as some interferences

only happen with some types of aspects. The three different aspect types are

the following:

Spectative aspects only gather information about the system to which they

are woven, usually by adding fields and methods, but do not influence the

possible underlying computations;

Regulatory aspects change the flow of control (e.g., which methods are ac-

tivated in which conditions) but do not change the computation done to

existing fields;

Invasive aspects change values of existing fields (but still should not invali-

date desirable properties).

2.1.3 The Dependency Point of View

Kienzle [56] approached the problem from a different point of view by consider-

ing only the relationships of dependency between aspects and the original code.

Three different kinds of aspect dependencies have been identified:

24

Orthogonal aspects provide functionality to an application that is completely

independent from the other functionalities of the application. No data

structures are shared between these aspects and the rest of the application.

This kind of aspects are very uncommon.

Uni-directional aspects depend from some functionality of the application.

These can be further divided as preserving, if the application functional-

ity is maintained or enhanced without any current functionalities being

altered or hidden; or modifying, if the application functionality is altered

or hidden.

Circular aspects are mutually dependent of each other. These kind of aspects

are so tightly coupled that one can argue if they should really be considered

as separate aspects or as one unique aspect.

2.2 Detecting Aspect Interferences

In order to solve the problem posed by the interference of aspects, a second

problem must be solved first: how to detect that an aspect interferes with

another aspect or module? Literature has many different ideas about how to

solve this problem. In the following sections these ideas are explained.

2.2.1 Program Slicing

Balzarotti [57] claims that this problem can be solved by using a technique

proposed in the early 80’s called program slicing. A slice of a program is the set

of statements which affect a given point in an executable program. According

to the author the following holds:

Let A1 and A2 be two aspects and S1 and S2 the corresponding

backward slices obtained by using all the statements defined in A1

and A2 as slicing criteria. A1 does not interfere with A2 if A1∩S2 =

∅;

According to the author, this technique is accurate enough to identify all

interferences introduced by an aspect but some of those are later considered

to be false-positives (i.e. intentional interferences). Furthermore, the existence

of pointcuts that are defined based on dynamic contexts, forces the analysis of

every execution trace increasing the number of these false-positives. However

the approach has the advantage of removing the burden of having to declare

formally the expected behavior of each aspect.

25

2.2.2 Aspect Integration Contracts

Contracts have been introduced by Meyer [58] as a defensive solution against de-

pendency problems in OOP. Some authors claim that contracts can be imported

into the AOP world in order to assist programmers in avoiding interference prob-

lems.

Lagaisse [59] proposed an extension to the Design by Contract (DbC) paradigm

by allowing aspects to define what they expect of the system and how they will

change it. This will allow the detection of interferences by other aspects that

were weaved before, as well as the detection of interferences by aspects that are

bounded to be weaved later in the process. According to the author, for an

Aspect A bound to a component C the following should be defined:

1. The aspect should specify what it requires from component C and possibly

from other software components.

2. The aspect also needs to specify in which way it affects the component C

and the functionality it provides (if applicable).

3. The specification of component C must express which interference is per-

mitted from certain (types of) aspects.

This approach has the disadvantage of forcing the programmer to verbosely

specify all requirements and modifications for each aspect as well as permitted

interferences. On the other hand, the formal specification of behaviors has

proven to be a valuable tool in Software Engineering.

2.2.3 Regression Testing

Katz [55] proposed the use of regression testing and regression verification as

tools that could help identifying harmful aspects. The idea behind this technique

is to use regression testing as normally and then weave each aspect into the

system and rerun all regression tests to see if they still pass. If an error is

found, either the error is corrected or the failing tests have to be replaced by

new ones specific for that particular aspect.

2.2.4 Service-Based Approach

It has been noticed by Kienzle [56] that aspects can be defined as entities that

require services from a system, provide new services to that same system and

removes others. If there is some way of explicitly describing what services are

required by each aspect it would be possible to detect interferences (for example,

an aspect that removes a service needed by another aspect) and to choose better

weaving orders.

26

2.2.5 Introduction and Hierarchical Changes Interferences

Störzer [60] developed a technique to detect interferences caused by two different,

but related, properties of AOP languages. He claims that the possibility of

aspects introducing members in other classes can lead to undesired behaviors as

it can result in changes of dynamic lookup if the introduced method redefines a

method of a superclass. He calls this type of interference binding interference.

The other problem Störzer refers to is the possibility of aspects changing the

inheritance hierarchy of a set of classes. He claims that this type of changes

can also give place to binding interferences as well as some unexpected behavior

caused by the fact that instanceof predicates will no longer give the same results

as before.

To detect this kind of conflicts the author proposes an analysis based on the

lookup changes introduced by aspects.

Kessler [61] also studied how structural interferences could be detected.

However, his approach is based in a logic engine where programmers can spec-

ify rules (ordering, visibility, dependencies, ...). He also described the differ-

ent types of interferences that are possible with introductions and hierarchical

changes and proposes solutions for each one of them.

2.2.6 Graph-Based Approach

Havinga [62] proposed a method based on modeling programs as graphs and

aspect introductions as graph transformation rules. Using these two models it

is then possible to detect conflicts caused by aspect introductions. Both graphs,

representing programs, and transformation rules, representing introductions,

can be automatically generated from source code.

Although interesting, this approach suffers the same problem of other auto-

matic approaches to this problem as intentional interferences cannot be differ-

entiated from unintentional ones.

2.3 Aspect Interference Resolution

Douence [63] [64] proposed a framework that allowed programmers to solve

aspect interferences by using a dedicated composition language. The idea behind

this language is to allow an explicit composition of aspects at the same execution

point. The interferences solved by this approach are those that occur when the

same crosscut is used by two different aspects.

27

2.4 Avoiding Aspect Interferences

The powerfulness of current AOP languages has been the target of several re-

searchers that claim that without any control mechanisms, interferences will

always be a big problem in the AOP world. In the next few sections some of

the approaches that follow this path are described.

2.4.1 Robust Pointcuts

Recently, Braem [65] proposed a method based on Inductive Logic Programming

in order to automatically discover intensional pattern-based pointcuts. This

method aims at solving the fragile pointcut problem, that states that pointcuts

defined by enumeration do not cope well with program evolution and that the use

of wildcards to solve this problem can cause interferences by means of accidental

joinpoints.

2.4.2 Crosscutting Interfaces

Crosscutting Programing Interfaces, or XPIs, have been introduced by Gris-

wold [66] as a form of making AOP programming easier. By using abstract

interfaces to expose pointcut designators, this approach decouples aspect code

from the unstable details of advised code without compromising the expressive-

ness of existing AO languages or requiring new ones. The author expects that

integrated-development-environment support could aid programmers by show-

ing the scope of an XPI applicability.

2.4.3 Joinpoint Encapsulation

The reason why AOP is so powerful and at the same time so easily misused is

that joinpoints are available for weaving without any knowledge of the program-

mer that originally developed the code. On one hand, this allows the developers

to be oblivious about what code is going to be weaved in their code, but on the

other hand is the source of interferences and conflicts. Larochelle [67] proposed

the idea of adding joinpoint encapsulation by introducing a new kind of advice:

join point encapsulation advice, or restriction advice. Restriction advice serves

to encapsulate the join points selected by a pointcut against modification by

other aspects thus enabling the modular representation of the encapsulation of

crosscutting sets of join points.

28

Chapter 3

Thesis Proposal

In the previous chapters we have introduced AOP, a recent programming ap-

proach that promises a better SoC throughout all the development phases. The

state of the art concerning AOP has been discussed with special emphasis on

the problem of conflicts and interferences between aspects and base code.

Conflicts and interferences are one of the main issues preventing AOP from

becoming a mainstream development approach. Obliviousness, the capability

of developing aspects without having to reason about other concerns of the

problem at the same time, has been tagged as the culprit of this problem.

Several ways of tackling this issue have been proposed in literature but none

has proven sufficiently effective or even widely accepted by the community.

3.1 Objectives

Having in mind the difficulties of achieving modularity with Aspect-Oriented

Programming, the proposed work has the following objectives:

1. To describe, formally, the different types of conflicts and interferences in

order to better understand the scope of the problem.

2. To develop a test driven approach to allow the specification of incompat-

ibilities and dependencies between aspects.

3. To develop a supporting tool, integrated into an existing development

platform, to aid in the development of aspects by ensuring compatibility

between them.

All these objectives aim to prosecute a more fundamental goal that is to

improve the usability of AOP languages making obliviousness, when desired, a

reality.

29

3.2 Thesis Statement

We believe that most – if not all – conflicts that arise between aspects, can

be described as dependency problems. Aspects fail to interact correctly when

behaviors that were expected to be implemented into the base system have been

removed or altered by other aspects.

Behaviors can be specified, although incompletely, by tests in a test driven

development. By allowing developers to specify which behaviors each aspect

adds or removes and also those behaviors that each aspect requires it should be

possible to detect conflicts and help developers determine what must be changed

to correct such conflicts. Therefore, the thesis statement can be formulated as:

A development approach (model, process and tools) enabling devel-

opers to specify the behaviors that each aspect adds, removes and

requires would help on detecting possible conflicts between them.

This statement will be further detailed, explored, and validated during the

doctoral work of this proposal.

3.3 Research Strategy

While the choice of the most adequate research method to use for software

engineering is still a subject of debate, it is consensual that research methods

can be grouped in four general categories: scientific, engineering, empirical and

analytical [68, 69]. It is not in the scope of this document to discuss these

methods, however, they will coexist in different phases of this work plan, and it

can be briefly stated that:

• scientific methods will be applied for deriving theoretical models from

real-world observations;

• engineering methods will be applied for developing concrete software so-

lutions;

• empirical methods will be used mainly in the final part of the research to

validate some parts of the achieved results.

3.4 Proposed Approach

Unit testing is used to informally prove the correctness of modules. Each module

has its own set of unit tests. By running these tests one can verify if changes

to a module have changed its tested external behavior. Unit tests can be seen

30

Base Classes

A

BC

Unit Test

Add Test

Require Test

Suppress Test

A Aspect

Figure 3.1: Aspects and Unit Tests

as a specification of the desired behavior of a module. With the introduction of

aspects these specifications and their respective implementations can be easily

changed by external entities, so units may no longer behave as expected. When

an aspect is weaved into the code of an application, other aspects might have

been weaved before and changed the expected behavior of the affected unit in

a way that interferes with the new aspect being weaved.

In this way, it should be possible to specify which unit tests have to be valid

for an aspect to be correctly weaved into the system. In the same way, it should

be possible for an aspect to determine which tests it expects to break.

Many times aspects depend on each other. This happens when one aspect

needs some behavior to be present in the system to work properly and this

behavior is introduced by another aspect. It should also be possible for aspects

to introduce new unit tests into the system specifying which new behaviors are

being introduced by them.

It might also happen that an aspect needs a certain behavior to be present

in the system but the unit providing this behavior does not have a specific unit

test for this particular behavior. Aspects should be able to add new unit tests

to code already in the application.

Figure 3.1 shows a possible notation illustrating an example where aspects

add, remove and depend from unit tests. In this figure the dark square boxes

are unit tests. The arrowed lines identify which unit or aspect created the unit

test. The circled lines identify a dependency relationship, while lines with a

diamond represent an invalidation of an unit test by an aspect (the big circles).

From this explanation we can see that the base classes already provided several

unit tests. Aspect ”A” depends on two of those unit tests and adds another

one. Aspect ”B” depends on the unit test created by Aspect ”A” and at the

same time suppresses one of the initial unit tests. And finally, Aspect ”C” also

depends on the unit test created by Aspect A.

31

Base Class

A

Base Class

B

spectative regulatory or invasive

Figure 3.2: Different types of aspects

From this simple example we can already extract some conclusions: Aspect

”A” is probably a spectative aspect (as defined by Katz) that simply added

some new fields and methods to the unit; Aspect ”B”, on the other hand,

has probably changed the behavior of the original code. We can also easily

conjecture a possible order for the weaving process (e.g. ”A” followed by ”B”

followed by ”C”).

Finding a possible weaving order in which dependencies between aspects are

assured can probably be accomplished by using a simple Breadth-First Search

(BFS) or using the A* algorithm (as this is a typical path finding in a graph

problem). If such an ordering cannot be found then we are facing a conflict

between aspects. In this case, an error message should be presented stating

which aspects failed to weave, which unit tests are missing for these aspects,

and which aspects removed them (if any).

The next section explains how this approach relates to Tessier and Katz

classification of aspect interferences and conflicts.

3.4.1 Mapping aspects and interferences to unit tests

As we have seen in Section 2.1, aspects can be classified as being spectative,

regulatory or invasive. Using the notation introduced in Section 3.4 we can

depict these different type of aspects with relation to the unit tests they add,

depend on, or suppress.

In Figure 3.2 there are two different aspects. Aspect ”A” is probably a

spectative aspect as it doesn’t suppress any existing unit tests. It could also be

an invasive aspect that happened to be ”lucky” enough to change something

the original developer wasn’t expecting to be changed and didn’t include in his

unit tests. Aspect ”B”, on the other hand, is clearly a regulatory or invasive

aspect as it suppresses some of the original unit tests that would fail after it

had been weaved into the system.

In Figure 3.3, three types of interferences or conflicts are depicted. In the

32

Base Class

A

Base Class

C

B

D

Base Class

E

F

circular dependency conflict dependency

Figure 3.3: Different types of interferences

first one, aspects ”A” and ”B” are creating a circular dependency problem.

The middle diagram depicts a conflict between two concerns, where aspect ”C”

is changing some functionality needed by aspect ”D”. The rightmost diagram

shows aspects that need to be weaved in the correct order to function properly

and at the same time a dependency between aspect ”F” and ”E”.

This shows that if unit tests are correctly used they can help detecting most

of the conflicts that aspects can introduce and have been plaguing AOP. The

following sections show how these conflicts can be tackled with our proposed

methodology with the help of a short example.

3.4.2 Using annotations to specify changes to unit tests

As has been stated before, breaking an unit test is not a clear sign of an aspect

misbehaving. Due to their own nature, aspects are bound to change the func-

tionality of other units of code and hence break their unit tests. In this way,

aspects must have a way of announcing what unit tests they expect to break.

Very often, aspects are also depending on some functionality to be present

into the system. This functionality can be delivered by the system base code

or by other aspects. Conflicts between aspects are often caused by one aspect

removing a functionality needed by another aspect, and dependency problems

are commonly caused by one aspect expecting another aspect to deliver some

functionality, which somehow is not effectively delivered.

Therefore, we claim that there is a clear need for aspects to be able to

announce which aspects they are expected to break, which aspects they depend

on, and which they are adding to the overall system. In this work we propose

that aspects should be able to make this announcements using Java annotations.

An example will now be introduced to explain how this could be attainable.

33

3.4.3 An example of conflicting aspects

Imagine a simple class depicting an User. This class would have fields like its

username and password. It would also have setters and getters for those fields

and a verifyPassword method. Listing 3.1 shows some simple unit tests that

could have been used to ensure that the class was working properly.

Listing 3.1: User Class Unit Tests
1

2 public void testSetGetPassword () {
3 user . setPassword ("foo");
4 assertEquals ("foo", user .getPassword ());
5 }
6

7 public void testVerifyPassword () {
8 user . setPassword ("foo");
9 assertEquals (true , user .verifyPassword ("foo"));

10 assertEquals (false , user .verifyPassword ("bar"));
11 }

It is also common that, for security reasons, passwords do not get stored in

clear text. It is a common practice to store them using some hash function.

However, to achieve a clear separation of concerns between the user data model

and the security concern, this feature should be coded as a separate aspect.

Listing 3.2 shows how this aspect could have been coded. By introducing these

aspects some of the unit tests shown in Listing 3.1 get broken.

Listing 3.2: Encrypted Password Aspect
1

2 @SupressTest ("user .UserTest . testSetGetPassword ")
3 privileged aspect EncryptedPassword {
4 protected pointcut
5 passwordChanged (User user , String password):
6 target(user) && args (password)
7 && call (void setPassword (String));
8

9 protected pointcut
10 verifyPassword (User user , String password):
11 target(user) && args (password)
12 && call (boolean verifyPassword (String));
13

14 void around(User user , String password)
15 : passwordChanged (user , password)
16 {
17 // ... calculates md5 hash
18 user .password = md5hash ;
19 }
20

21 boolean around(User user , String password)
22 : verifyPassword (user , password)
23 {
24 // ... calculates md5 hash
25 return (user .password .equals(md5hash);
26 }
27 }

34

After introducing the aspect into the system, the developer should be warned

that his aspect broke some unit tests. This could be easily computed by com-

piling and testing the system with and without the aspect. The developer could

then inspect the broken unit test and decide if that would be an expected result

from his aspect. In this case he would decide that it was because the getter

and setter methods of the User class would not work as expected so he could

just add a notation expressing that. The first line of Listing 3.2 shows how that

notation could look like.

It is also common to prevent users from using passwords that are easily

retrievable using brute force attacks. One way of doing it is to prevent them

from using passwords that are too small. Once again, preventing this should

be considered a separate aspect from the user data model and could be coded

as seen in Listing 3.3. Notice that this aspect could have been coded in a

much better fashion but for demonstration purposes it has been coded in a way

that it needed the getter and setter methods of the original user class to work

as originally intended. The developer should then announce that this aspect

depends on the testSetGetPassword unit test. He could easily do so by adding

a single line stating that in the beginning of the aspect.

Listing 3.3: Minimum Password Size Aspect
1

2 @RequiresTest ("user .UserTest . testSetGetPassword ")
3 @SupressesTest ("user . UserTest . testVerifyPassword ")
4 @AddsTest ("user .UserTest .testVerifyPasswordML ")
5 public aspect MinimumLengthPassword {
6 protected pointcut
7 setPassword (User user , String password)
8 : target(user) && args (password)
9 && call (void setPassword (String))

10 && !within(MinimumLengthPassword);
11

12 after(User user , String password)
13 : setPassword (user , password)
14 {
15 if (user .getPassword ().length () <6) {
16 user .setPassword (password);
17 throw new RuntimeException ();
18 }
19 }
20 }

However, after introducing the aspect into the system, the developer would

be warned that another aspect has suppressed that unit test. Besides that, this

aspect would break the testVerifyPassword unit test. This is a typical case of a

conflict between aspects. To solve this problem the aspect has to be rewritten

in a different way and the broken unit test must be suppressed, and, perhaps,

a new unit test should be added to verify if everything is still working.

35

This example shows how unit tests, if correctly used, can help detecting

conflicts between aspects. It has also shown that the developer of each different

concern did not have to know about other aspects being weaved into the system,

at least until conflicts occurred, thus promoting obliviousness.

Figure 3.4 depicts the expected development flow when using our proposed

approach. In this diagram we can see how desired behavioral modifications and

accidental conflicts are treated in different ways. The diagram also shows how

to reach a conclusion that the original requirements are the base of the conflict,

in which case it would be impossible to correct the problem without changing

them.

3.5 Work Plan

The plan devised for this research work encompasses seven main phases and

will make use of diverse research methods and experimental approaches. These

phases are:

1. State of the Art Review - This task aims at gathering information about

the several topics relevant for the considered problem, namely: Aspect-

Oriented Programming, Formal Methods (in particular Design by Con-

tract) and Regression Testing (in particular Unit Testing).

2. Exploratory Projects Development - The development of one or several

small projects using AOP in order to better understand the interference

problems existing in the field and how they can be tackled.

3. Hypothesis and Problem Definition - The precise definition of the research

questions and the formulation of a hypothesis will be the main result of

this task. Furthermore, it comprises the definition of the parameters that

will be used for validating and assessing the approach.

4. Conceptual Framework Development - Development of the conceptual

framework that will allow the detection of interferences and conflicts be-

tween aspects.

5. Development of Supporting Tools - Development of a supporting tool,

integrated into an existing development platform, to aid developing as-

pects using formal methods or regression testing to ensure compatibility

between them.

6. Participation in Conferences:

AOSD 2007 Paper already accepted and presented in the SPLAT work-

shop [70].

36

Creating a

New Aspect

Create additional

required unit tests

Are there unit tests for all the

required functionaties?

Create new unit

tests

no

yes

Add require

annotations

yes

yes

no

Aspect

Created

Successfully

Requirement

Conflict

Is it possible to change the

aspect, other aspects or base

classes in order for unit tests no

to get broken?

no

no

yes

Add supress

annotations

Add unit tests

provided by

aspect

Add provide

annotations

Add Aspect

behavior

Did any previous unit tests

break?

Where those unit tests supposed

to break?

Figure 3.4: Development flow for the proposed approach

37

OOPSLA 2007 Possibility of a paper describing further work develop-

ments. To be presented in a relevant workshop.

AOSD 2008 Possibility of a research paper describing the work done so

far including some results. Probable deadline: September 2007.

OOPSLA 2008 Probable Deadline: March 2008.

TAOSD LNCS Transactions on Aspect-Oriented Software Development

7. Result Consolidation - This phase starts after the definition of validation

criteria in the scope of the Hypothesis Definition, and gains momentum

after a first version of the approach can be validated experimentally.

8. Writing of the Thesis - This task will accompany the considered phases

for the research work as the respective milestones contribute for its com-

pletion.

Figure 3.5 shows the expected time frames for the execution of each of these

tasks. Red milestones mark possible article submission deadlines to the confer-

ences described in point 6.

38

Exploratory Projects

Supporting Tools

Writing of Thesis

S O N D J F M A M J J A S O N D J F M A M J J A

State of the Art

Hypothesis

Result Consolidation

2006 2007 2008

Figure 3.5: Work Plan

39

Appendix A

Resources

A.1 Research Groups and People

Following are listed some of the most prominent AOP and AOSD research

groups, as well as some of the researchers currently working in AOP problems.

University of British Columbia

• Gregor Kiczales (http://www.cs.ubc.ca/˜gregor/)

University of California

• Cristina Lopes (http://www.ics.uci.edu/˜lopes/)

Twente Research and Education on Software Engineering

(TRESE)

Software Engineering Group at the Department of Computer Science in the

Faculty of Electrical Engineering, Mathematics and Computer Science at the

University of Twente. Since 1988, the TRESE group has developed the aspect-

oriented language Sina, which according to them was the first AOP language to

be developed, and that later evolved into Composition Filters.

• Mehmet Aksit (http://wwwhome.cs.utwente.nl/˜aksit/)

• Lodewijk Bergmans (http://wwwhome.cs.utwente.nl/˜bergmans/)

40

AOSD Research Interest Group of Universidade Nova de

Lisboa

Devoted to develop systematic processes and mechanisms for the use of aspect

orientation from business modelling to implementation.

• Ana Moreira (http://ctp.di.fct.unl.pt/˜amm/)

• João Araújo (http://www-ctp.di.fct.unl.pt/˜ja/)

• Miguel Pessoa Monteiro (http://www-ctp.di.fct.unl.pt/˜mpm/)

Aspect-Oriented Software Engineering Group of Lancaster

University

The Aspect-Oriented Software Engineering Group aims to develop systematic

means for the identification, modularisation, representation and composition of

crosscutting concerns (the aspects) throughout the software life cycle.

• Awais Rashid

Bedarra Research Labs

BRL is a private industrial research lab whose mission is to explore applications

of next generation computing and communication technologies.

• Brian Barry (http://www.eclipsecon.org/2004/bios.htm#Barry)

IBM Research

• Adrian Colyer (http://www.aspectprogrammer.org/blogs/adrian/)

• Harold Ossher (http://www.research.ibm.com/people/o/ossher/)

• Peri Tarr (http://www.research.ibm.com/people/t/tarr/)

Technion - Israel Institute of Technology

• Shmuel Katz (http://www.cs.technion.ac.il/ katz/)

Concurrent Programming Research Group - Illinois Insti-

tute of Technology

• Tzilla Elrad (http://www.iit.edu/˜elrad/)

41

Research Institute for Advanced Computer Science

The Research Institute for Advanced Computer Science (RIACS) was created

in 1983 under a cooperative agreement between the Universities Space Research

Association (USRA) and the NASA Ames Research Center.

• Robert E. Filman (http://ic.arc.nasa.gov/people/filman/)

Demeter Research Team

A center dedicated to software related research and development in the areas of

Adaptive, Object-Oriented, Aspect-Oriented, and Component-Based Program-

ming. The Center is well known for the Law of Demeter and for an early

definition of AOP without using the AOP terminology

• Karl Lieberherr (http://www.ccs.neu.edu/home/lieber/)

• David H. Lorenz (http://www.ccs.neu.edu/home/lorenz/)

Programming Principles and Practices Group

Programming Principles and Practices (PPP) is a group of researchers at Grad-

uate School of Arts and Sciences, University of Tokyo.

• Hidehiko Masuhara (http://www.graco.c.u-tokyo.ac.jp/˜masuhara/)

Darmstadt University of Technology - Software Technology

Group

• Mira Mezini (http://www.st.informatik.tu-darmstadt.de/staff/Mezini/)

University of British Columbia - Software Practices Lab

• Gail Murphy (http://www.cs.ubc.ca/˜murphy/)

Carnegie Mellon - Software Engineering Institute

• Linda Northrop (http://www.sei.cmu.edu/staff/lmn/)

Trinity College Dublin - Distributed Systems Group

• Siobhán Clarke (https://www.cs.tcd.ie/Siobhan.Clarke/)

University of Victoria - The MOD(ularity) Squad

• Yvonne Coady (http://www.cs.uvic.ca/˜ycoady/)

42

Concordia University - AOSD Interest Group

• Constantinos Constantinides (http://www.cs.concordia.ca/˜cc/)

Ecole des Mines de Nantes - OBASCO Research Group

• Remi Douence (http://www.emn.fr/x-info/douence/)

A.2 Conferences

The most important conferences concerning AOP and AOSD are the following:

• Aspect-Oriented Software Development Conference (AOSD)

• Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA)

• European Conference on Object-Oriented Programming (ECOOP)

Besides these conferences, there are others that share some of the ideas

behind this work, like:

• Automated Software Engineering (ASE)

• Fundamental Approaches to Software Engineering (FASE)

• International Conference on Software Engineering (ICSE)

• European Software Engineering Conference (ESEC)

• Conference on Advanced Information Systems Engineering (CAISE)

• Conference on Model Driven Engineering Languages and Systems (Mod-

els)

• International Requirements Engineering conference (RE)

A.3 Journals

Some of the most important publications concerning AOP and AOSD are the

following:

• LNCS Transactions on Aspect-Oriented Software Development

• IEEE Transactions on Software Engineering

• ACM Transactions on Software Engineering and Methodology

43

Bibliography

[1] Sommerville, I.: Software Engineering. 5th edn. Addison-Wesley (1995)

[2] Ross, D., Goodenough, J., Irvine, C.: Software engineering: Process, prin-

ciples, and goals. Computer 8(5) (May 1975) 17–27

[3] Dijkstra, E.W.: On the role of scientific thought (1974)

[4] Dijkstra, E.W. In: A Discipline of Programming. Prentice-Hall (1976)

[5] Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA 67 : common base

language. Norsk Regnesentral (1968)

[6] Martin, R.C.: Design principles and design patterns. Technical report,

Object Mentor (2000)

[7] Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a

Discipline of Computer Program and Systems Design. Prentice Hall (1979)

[8] Parnas, D.L.: On the criteria to be used in decomposing systems into

modules. Commun. ACM 15(12) (1972) 1053–1058

[9] Meyer, B.: Object Oriented Software Construction. Prentice Hall (1988)

[10] Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans.

Program. Lang. Syst. 16(6) (1994) 1811–1841

[11] Martin, R.C.: The dependency inversion principle. C++ Report 8 (May

1996)

[12] Martin, R.C.: Stability. C++ Report (February 1997)

[13] Martin, R.C.: The interface segregation principle. C++ Report (August

1996)

[14] Lieberherr, K.J., Holland, I., Riel, A.J.: Object-oriented programming:

An objective sense of style. In Meyrowitz, N.K., ed.: Proceedings of ACM

conference on Object-oriented programming, systems, languages, and ap-

plications (OOPSLA 1988), San Diego, CA (September 1988) 323–334

44

[15] Lieberherr, K.J., Holland, I.: Assuring good style for object-oriented pro-

grams. IEEE - Software (September 1989) 38–48

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,

J.M., Irwin, J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S.,

eds.: 11th Europeen Conf. Object-Oriented Programming. Volume 1241 of

LNCS., Springer Verlag (1997) 220–242

[17] Harrison, W., Ossher, H., Tarr., P.: The beginnings of a graphical envi-

ronment for subject-oriented programming. In Lopes, C., Mens, K., Tekin-

erdogan, B., Kiczales, G., eds.: Proceedings of the Aspect-Oriented Pro-

gramming Workshop at ECOOP’97. (1997) 65–66

[18] Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N degrees of sepa-

ration: Multi-dimensional separation of concerns. In: Proceedings of the

21st International Conference on Software Engineering (ICSE 1999), IEEE

Computer Society Press (May 1999) 107 – 119

[19] Chavez, C., Lucena, C.: Guidelines for aspect-oriented design. In: First

Brazilian Workshop on Aspect-Oriented Software Development (WASP)

(SBES). (2004)

[20] Balzer, S., Eugster, P.T., Meyer, B.: Can Aspects Implement Contracts?

In: Proceedings of RISE 2006 (Rapid Implementation of Engineering Tech-

niques). (2006)

[21] AspectJ: AspectJ project home page (June 2006)

http://www.eclipse.org/aspectj/.

[22] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns.

Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1994)

[23] Grundy, J.: Aspect-oriented requirements engineering for component-based

software systems. In: 4th IEEE International Symposium on Requirements

Engineering, IEEE Computer Society (1999) 84–91

[24] Rashid, A., Moreira, A., Araújo, J.: Modularization and composition of

aspectual requirements. In: Proc. 2nd Int’ Conf. on Aspect-Oriented Soft-

ware Development (AOSD 2003). (2003)

[25] Rashid, A., Moreira, A., Araujo, J., Clements, P., Baniassad, E., Tekiner-

dogan, B.: Early aspects home page (2006) http://www.early-aspects.net/.

[26] Araújo, J., Moreira, A., Brito, I., Rashid, A.: Aspect-oriented requirements

with UML. In Kandé, M., Aldawud, O., Booch, G., Harrison, B., eds.:

45

Second International Workshop on Aspect-Oriented Modeling with UML

(UML 2002). (2002)

[27] Stanley M. Sutton, J., Rouvellou, I.: Modeling of software concerns in

cosmos. In: AOSD ’02: Proceedings of the 1st international conference on

Aspect-oriented software development, New York, NY, USA, ACM Press

(2002) 127–133

[28] Baniassad, E., Clarke, S.: Finding aspects in requirements with theme/-

doc. In Tekinerdoğan, B., Moreira, A., Araújo, J., Clements, P., eds.: In

Proceedings of Early Aspects 2004 Workshop. (March 2004)

[29] Clarke, S., Baniassad, E. In: Aspect-Oriented Analysis and Design: The

Theme Approach. Addison Wesley Professional (October 2005)

[30] Araújo, J., Whittle, J., Kim, D.K.: Modeling and composing scenario-

based requirements with aspects. In: Proceedings of the Requirements

Engineering Conference, 12th IEEE International (RE’04), Washington,

DC, USA, IEEE Computer Society (2004) 58–67

[31] Suzuki, J., Yamamoto, Y.: Extending UML with aspects: Aspect support

in the design phase. In: ECOOP Workshops. (1999) 299–300

[32] Aldawud, O., Elrad, T., Bader, A.: A UML profile for aspect oriented

modeling. In De Volder, K., Glandrup, M., Clarke, S., Filman, R., eds.:

Workshop on Advanced Separation of Concerns in Object-Oriented Sys-

tems (OOPSLA 2001). (2001)

[33] Kandé, M.M., Kienzle, J., Strohmeier, A.: From AOP to UML: Towards an

Aspect-Oriented Architectural Modeling Approach. In: the Second Interna-

tional Workshop on Aspect-Oriented Modeling with UML, in conjunction

with the Fifth International Conference on the Unified Modeling Language

- the Language and its Applications (UML2002), September 30 - Octo-

ber 4, 2002, Dresden, Germany. (2002) Also available as Technical Report

IC/2002/58, Ecole Polytechnique Fédérale de Lausanne (EPFL), School of

Computer and Communication Sciences.

[34] Ho, W.M., Pennaneac’h, F., Jézéquel, J.M., Plouzeau, N.: Aspect-oriented

design with the UML. In Tarr, P., Finkelstein, A., Harrison, W., Nuseibeh,

B., Ossher, H., Perry, D., eds.: Workshop on Multi-Dimensional Separation

of Concerns in Software Engineering (ICSE 2000). (2000)

[35] Stein, D., Hanenberg, S., Unland, R.: Designing aspect-oriented crosscut-

ting in UML. In Aldawud, O., Booch, G., Clarke, S., Elrad, T., Harrison,

46

B., Kandi, M., Strohmeier, A., eds.: Workshop on Aspect-Oriented Mod-

eling with UML (AOSD-2002). (2002)

[36] Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L.,

Martelli, L.: A UML notation for aspect-oriented software design. In

Aldawud, O., Booch, G., Clarke, S., Elrad, T., Harrison, B., Kandi, M.,

Strohmeier, A., eds.: Workshop on Aspect-Oriented Modeling with UML

(AOSD-2002). (2002)

[37] Hannemann, J., Kiczales, G.: Design pattern implementation in Java and

AspectJ. In: Proceedings of the 17th ACM conference on Object-oriented

programming, systems, languages, and applications, ACM Press (2002)

161–173

[38] Clarke, S., Walker, R.J.: Composition patterns: An approach to designing

reusable aspects. In: Proc. 23rd Int’l Conf. Software Engineering (ICSE).

(May 2001) 5–14

[39] Kande, M., Crettaz, V.: Towards patterns for concern-oriented software

architecture. In Aldawud, O., Kandé, M., Booch, G., Harrison, B., Stein,

D., Gray, J., Clarke, S., Santeon, A.Z., Tarr, P., Akkawi, F., eds.: Workshop

on Aspect-Oriented Modeling with UML (AOSD-2003). (2003)

[40] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von

Staa, A.: Modularizing design patterns with aspects: A quantitative study.

In: AOSD 05. (2005) 3–14

[41] Hanenberg, S., Unland, R.: Using and reusing aspects in AspectJ. In

De Volder, K., Glandrup, M., Clarke, S., Filman, R., eds.: Workshop on

Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA

2001). (2001)

[42] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:

Improving the design of existing code. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA (1999)

[43] Monteiro, M.P.: Refactorings to Evolve Object-Oriented Systems with

Aspect-Oriented Concepts. PhD thesis, Departamento de Informática, Uni-

versidade do Minho, Portugal (2005)

[44] Monteiro, M.P., Fernandes, J.M.: The search for aspect-oriented refactor-

ings must go on. In Tourwé, T., Kellens, A., Ceccato, M., Shepherd, D.,

eds.: Linking Aspect Technology and Evolution. (2005)

47

[45] Monteiro, M., Fernandes, J.M.: Towards a catalog of aspect-oriented refac-

torings. In Tarr, P., ed.: Proc. 4rd Int’ Conf. on Aspect-Oriented Software

Development (AOSD-2005). (2005) 111–122

[46] Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and

Tools (The Addison-Wesley Object Technology Series). Addison-Wesley

Professional (October 1999)

[47] Mehner, K., Rashid, A.: Towards a standard interface for runtime inspec-

tion in AOP environments. In Chu-Carroll, M.C., Murphy, G.C., Clarke, S.,

Estublier, J., Finkelstein, A., Harrison, B., Newman, E., eds.: Workshop on

Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA

2002). (2002)

[48] Eclipse: Eclipse home page (June 2006) http://www.eclipse.org/.

[49] Ajdt: Aspectj development tools (ajdt) home page (June 2006)

http://www.eclipse.org/ajdt/.

[50] Zhao, J.: Tool support for unit testing of aspect-oriented software. In

Chu-Carroll, M.C., Murphy, G.C., Clarke, S., Estublier, J., Finkelstein,

A., Harrison, B., Newman, E., eds.: Workshop on Advanced Separation of

Concerns in Object-Oriented Systems (OOPSLA 2001). (2002)

[51] Zhao, J.: Unit testing for aspect-oriented programs. Technical Report

SE-141-6, Information Processing Society of Japan (IPSJ) (May 2003)

[52] Filman, R., Friedman, D.: Aspect-oriented programming is quantification

and obliviousness (2000)

[53] Filman, R.: What is aspect-oriented programming, revisited (2001)

[54] Tessier, F., Badri, M., Badri, L.: A model-based detection of conflicts be-

tween crosscutting concerns: Towards a formal approach. In: International

Workshop on Aspect-Oriented Software Development. (2004)

[55] Katz, S.: Diagnosis of harmful aspects using regression verification (2004)

[56] Kienzle, J., Yu, Y., Xiong, J.: On composition and reuse of aspects.

In: Software engineering Properties of Languages for Aspect Technologies.

(2003)

[57] Balzarotti, D., Monga, M.: Using program slicing to analyze aspect-

oriented composition (2004)

[58] Meyer, B.: Applying ”design by contract”. IEEE - Computer 25(10) (1992)

40–51

48

[59] Lagaisse, B., Joosen, W., De Win, B.: Managing semantic interference

with aspect integration contracts. In: Software Engineering Properties of

Languages and Aspect Technologies. (2004)

[60] Störzer, M., Krinke, J.: Interference analysis for AspectJ. In: Foundations

of Aspect-Oriented Languages (FOAL). (2003)

[61] Kessler, B., Tanter, É.: Analyzing interactions of structural aspects.

ECOOP Workshop on Aspects, Dependencies and Interactions (ADI)

(2006)

[62] Havinga, W., Nagy, I., Bergmans, L., Aksit, M.: A graph-based approach

to modeling and detecting composition conflicts related to introductions.

In: AOSD ’07: Proceedings of the 6th international conference on Aspect-

oriented software development, New York, NY, USA, ACM Press (2007)

85–95

[63] Douence, R., Fradet, P., Südholt, M.: Detection and resolution of aspect

interactions. Technical Report RR-4435, INRIA (April 2002)

[64] Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction

analysis of stateful aspects. In: Proceedings of the 3rd International Confer-

ence on Aspect-Oriented Software Development (AOSD). (2004) 141–150

[65] Braem, M., Gybels, K., Kellens, A., Vanderperren, W.: Inducing evolution-

robust pointcuts. ERCIM Evolution Workshop (2006)

[66] Griswold, W.G., Shonle, M., Sullivan, K., Song, Y., Tewari, N., Cai, Y.,

Rajan, H.: Modular Software Design with Crosscutting Interfaces. IEEE -

Software 23(1) (January/February 2006) 51–60

[67] Larochelle, D., Scheidt, K., Sullivan, K.: Join point encapsulation. In:

Software Engineering Properties of Languages and Aspect Technologies.

(2003)

[68] Tichy, W. F., H.N., Prechelt, L.: Summary of the dagstuhl workshop

on future directions in software engineering. ACM SIGSOFT Software

Engineering Notes 18(1) (1993) 35–48

[69] Zelkowitz, M.V., Wallace, D.R.: Experimental models for validating tech-

nology. IEEE Computer 31(5) (1998) 23–31

[70] Restivo, A., Aguiar, A.: Towards detecting and solving aspect conflicts

and interferences using unit tests. In: Software Engineering Properties of

Languages and Aspect Technologies. (2007)

49

