
Minimal coupled cell networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 Nonlinearity 20 193

(http://iopscience.iop.org/0951-7715/20/1/012)

Download details:

IP Address: 193.136.31.121

The article was downloaded on 18/10/2012 at 10:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/20/1
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY

Nonlinearity 20 (2007) 193–219 doi:10.1088/0951-7715/20/1/012

Minimal coupled cell networks

Manuela A D Aguiar1,2 and Ana Paula S Dias1,3
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Abstract
It is known that non-isomorphic coupled cell networks can have equivalent
dynamics. Such networks are said to be ODE-equivalent and are related by a
linear algebra condition involving their graph adjacency matrices. A network
in an ODE-equivalence class is said to be minimal if it has a minimum number
of edges. When studying a given network in an ODE-class it can be of great
value to study instead a minimal network in that class. Here we characterize
the minimal networks of an ODE-equivalence class—the canonical normal
forms of the ODE-class. Moreover, we present an algorithm that computes
the canonical normal forms for a given ODE-class. This goes through the
calculation of vectors with minimum length contained in a cone of a lattice
described in terms of the adjacency matrices of any network in the ODE-class.

Mathematics Subject Classification: 34C15, 05C99, 15A36

1. Introduction

Many important real-world networks can be modelled by dynamical systems on a graph and
therefore coupled cell networks. For example, many biological systems can be modelled by
networks of nonlinear dynamical systems. See, for example, Stewart [8] and references therein.
The nodes of the graph represent the cells and the edges represent the couplings, that is, the
interactions between the cells (see figures 1–4).
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FEDER and national fundings.
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Figure 1. Coupled cell network G1 with one cell-type and one edge-type.

Following Stewart et al [9] and Golubitsky et al [7], we associate to each coupled cell
network a class of ordinary differential equations (ODEs) compatible with the structure of the
network—the class of coupled cell systems. A vector field corresponding to the coupled cell
system is called admissible and respects the topology of the network. For a survey of this
formalism see Golubitsky and Stewart [6]. See also an alternative approach of Field [5].

It is possible for two non-isomorphic coupled cell networks to generate the same space
of admissible vector fields, that is to be ODE-equivalent, see [7]. Thus the corresponding
coupled cell systems have equivalent dynamics.

Dias and Stewart [4] prove that two coupled cell networks are ODE-equivalent if and
only if they determine the same space of linear admissible vector fields—they are linearly
equivalent.

As every coupled cell network in a given ODE-equivalence class determines the same
dynamical behaviour we look for the set of coupled cell networks in the ODE-class that are
more amenable to treat. We aim to find a kind of canonical normal forms—a set of networks
such that the number of edges is minimal among all the networks of the ODE-equivalence
class, which we call the minimal subclass.

Using the results of Dias and Stewart [4] on ODE and linear equivalence of networks,
this problem can be posed in terms of the networks adjacency matrices. That is, the problem
of finding all the minimal networks in a given ODE-equivalence class corresponds to find all
the minimal bases (with non-negative integer entries) of the real vector space generated by the
adjacency matrices of the networks in the ODE-class. The minimal bases define the adjacency
matrices of the minimal networks.

For the coupled cell network represented in figure 1 it follows, from theorem 9.3 (see
section 9), that the coupled cell network in figure 2 is the unique minimal network in its
ODE-equivalence class.

The problem of finding the minimal subclass of an ODE-class of networks with more than
one edge-type gets much more complicated and, in general, there is more than one minimal
network. For example, using algorithm 7.1 based on theorem 6.7, the minimal subclass of
the coupled cell network in figure 3 is given by the minimal networks represented in figure 4.
Here, cells representing identical dynamical systems appear with the same symbol in the graph
and identical edges symbolize identical couplings between the cells. In this case, the network
has more than one edge-type and the cells are all isomorphic. Two cells are isomorphic if there
is a bijection between the two sets of edges directed to them that preserves the edge-type. An
adjacency matrix of a network with isomorphic cells is a R-linear combination of the adjacency
matrices of any network in its ODE-class. A graph where all cells are isomorphic is said to
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Figure 2. Minimal network G2 of the ODE-equivalence class of the coupled cell network in
figure 1.
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Figure 3. Coupled cell network with more than one edge type.
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Figure 4. Minimal networks of the ODE-equivalence class of the coupled cell network of figure 3.

be homogeneous. Given an homogeneous graph in an ODE-class, we consider the lattice
consisting of the vectors with integer entries in the real subspace generated by the adjacency
matrices of the graph. The minimal networks are obtained by finding vectors (adjacency
matrices) with shortest length in a cone of that lattice (whose rank grows with the number of
edge-types).

In this paper, we describe the minimal subclass of a given coupled cell network and present
an algorithm that computes it. The minimality of coupled cell networks basically reduces to
the minimality of homogeneous networks, i.e. networks whose cells are all isomorphic. We
address the case of homogeneous networks in theorem 6.7 and algorithm 7.1.
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The rest of the paper is organized in the following way. Section 2 reviews the basic
concepts on coupled cell networks and coupled cell systems. Section 3 relates ODE and linear
equivalence of networks. The definition of minimality of networks appears in section 4. The
minimality of homogeneous networks is addressed in section 5 and answered in section 6. An
algorithm is presented in section 7 and illustrated in section 8. The special case of identical-
edge homogeneous networks is treated in section 9. Finally, in section 10 we solve the general
case using the results of section 6.

2. Coupled cell networks and systems

In this section we review a few definitions and results on the theory of coupled cell networks
introduced by Stewart et al [9] and Golubitsky et al [7]. A coupled cell network can be
represented schematically by a directed graph (see, e.g. Tutte [10]) whose nodes correspond to
cells and whose edges represent couplings. We employ the definition which permits multiple
arrows and self-coupling [7].

Definition 2.1 ([7]). A coupled cell network G consists of:

(a) A finite set C = {1, · · · , n} of nodes or cells.
(b) An equivalence relation ∼C on cells in C. The type or cell label of cell c is the ∼C-

equivalence class [c]C of c.
(c) A finite set E of edges or arrows.
(d) An equivalence relation ∼E on edges in E . The type or coupling label of edge e is the

∼E-equivalence class [e]E of e.
(e) Two maps H : E → C and T : E → C. For e ∈ E we call H(e) the head of e and T (e)

the tail of e.
(f) Equivalent edges have equivalent tails and heads. That is, if e1, e2 ∈ E and e1 ∼E e2, then

H(e1) ∼C H(e2) T (e1) ∼C T (e2).

We write G = (C, E, ∼C, ∼E). ♦

In a graphical representation of a coupled cell network, identical cells and identical edges
are represented, respectively, by the same symbol. Multiple couplings of the same type between
two cells are represented by just one arrow with the number of couplings attached to it.
Figures 1–4 show examples of coupled cell networks of three identical cells, and so with
one ∼C-equivalence class, having self-coupling and multiarrows. The networks of figures 1
and 2 have only one type of edge, and so one ∼E-equivalence class, whereas the networks in
figures 3 and 4 have two types of edges, and so two ∼E-equivalence classes.

Let G = (C, E, ∼C, ∼E) be a coupled cell network as in definition 2.1. To each cell c,
we can associate the set of edges directed to c, called the input set of c and denoted by I (c).
An element of I (c) is called an input edge of c. Two cells c and d in a network are said to
be isomorphic if there is an edge-type preserving isomorphism, β : I (c) → I (d), between
their input sets. Any such bijection β is called an input isomorphism from cell c to cell d.
Denote the set of all those isomorphisms between any two isomorphic cells in the network,⋃̇

c,d ∈ CB(c, d), where
⋃̇

indicates disjoint union, by BG. Observe that a natural product
operation can be defined on BG in the following way: β2 ∈ B(c, d) can be multiplied by
β1 ∈ B(a, b) only when b = c, and in this case β2β1 ∈ B(a, d) is the usual composition of
functions. Because the product of two elements in BG is not always defined, it follows that BG

is a groupoid, which is called the symmetry groupoid of the network, and in general it is not
a group. The structure of a network can thus be described in terms of its symmetry groupoid.



Minimal coupled cell networks 197

Note that for any c ∈ C, the subset B(c, c) is always non-empty. Moreover, it is a group which
is called the vertex group corresponding to c.

We make now precise the connection between coupled cell systems and coupled cell
networks. To each coupled cell c we associate a choice of cell phase space Pc which we assume
is a finite-dimensional real vector space. If cells c and d are in the same ∼C-equivalence class,
we require that Pc = Pd and we identify the two spaces canonically. The total phase space
P of the coupled cell system is the direct product of the cell phase spaces,

∏
c∈C Pc, and we

employ the coordinate system x = (xc)c∈C on P .
Given a network G and a fixed choice of the total phase space P , we describe now the

coupled cell systems that correspond to the class of ODEs Ẋ = F(X), X ∈ P compatible
with the structure of the network. The vector fields F described in terms of the symmetry
groupoid of G are called admissible.

Let D = (d1, . . . , ds) be any finite ordered subset of s cells in C where the same cell can
appear more than once in D. Define PD = Pd1 × · · · × Pds

and write xD = (xd1 , . . . , xds
)

where xdj
∈ Pdj

.
Given c ∈ C, denote by T (I (c)) the ordered set of cells (T (i1), . . . , T (is)) where the

arrows ik run through I (c).
Suppose that c, d are isomorphic and let β be an input isomorphism between I (c) and I (d).

Then for all i ∈ I (c) we have i ∼E β(i), and so T (i) ∼C T (β(i)). Consider now the ordered
sets D1 = T (I (c)) = (T (i1), . . . , T (is)) and D2 = T (I (d)) = (T (β(i1)), . . . , T (β(is))) of
C. We can define the pullback map

β∗ : PD2 → PD1

by

(β∗(z))T (j) = zT (β(j))

for all T (j) ∈ D1 and z ∈ PD2 . Thus xT (I (c)) = (xT (i1), . . . , xT (is )) and β∗(xT (I (d))) =
(xT (β(i1)), . . . , xT (β(is ))).

For a given cell c the internal phase space is Pc and the coupling phase space is
PT (I (c)) = PT (i1) × · · · × PT (is ) where as before T (I (c)) denotes the ordered set of cells
(T (i1), · · · , T (is)).

Definition 2.2 ([7]). A vector field f : P → P is BG-equivariant or G-admissible if:

(a) For all c ∈ C the component fc(x) depends only on the internal phase space variables
xc and the coupling phase space variables xT (I (c)); that is, there exists a smooth function
f̂c : Pc × PT (I (c)) → Pc such that

fc(x) = f̂c(xc, xT (I (c))).

(b) For all c, d ∈ C and β ∈ B(c, d)

f̂d(xd, xT (I (d))) = f̂c(xd, β
∗(xT (I (d))))

for all x ∈ P . ♦

Define the relation ∼I of input-equivalence on C by: c ∼I d if and only if c and d are
isomorphic cells. Observe that ∼I is an equivalence relation.

Theorem 2.3. Let G = (C, E, ∼C, ∼E) be a coupled cell network and BG the corresponding
symmetry groupoid. A vector field f : P → P for a given choice of the Pc is BG-equivariant
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if and only if for each ∼I -equivalence class Q of C, given (any) c ∈ Q:

(a) f̂c is B(c, c)-invariant.

(b) For d ∈ Q such that d �= c, given (any) β ∈ B(c, d), we have

f̂d (xd, xT (I (d))) = f̂c(xd, β
∗(xT (I (d)))).

Proof. This is a generalization of [9, lemma 4.5] and is proved the same way. �

Definition 2.4. Let G be a coupled cell network. For a given choice of the Pc, define FP
G to

consist of all smooth G-admissible vector fields on P which is a vector space over R. Let PP
G

be the subspace of FP
G consisting of the G-admissible polynomial vector fields on P , and let

LP
G be the subspace of PP

G consisting of the G-admissible linear vector fields on P . ♦

Remark 2.5. Let G be a coupled cell network and P a given choice of the total phase space
consistent with G. By theorem 2.3, every smooth equivariant vector field f ∈ FP

G is determined
uniquely by its components fc where c runs through a set of representatives for the ∼I -
equivalence classes. The only constraints on fc are that it depends only on xc, xT (I (c)) and
is invariant under the vertex group B(c, c). Thus every smooth equivariant vector field f is
determined uniquely by a finite set of B(c, c)-invariant functions, where c runs through a set
of representatives of the ∼I -equivalence classes. Moreover, if d ∼I c then fd is related to fc

by a pullback map β∗ for β ∈ B(c, d). In particular, if there is only one ∼I -equivalence class
for BG then each G-admissible vector field is uniquely determined by a single mapping fc at
some node c, which has to be invariant under the vertex group B(c, c). ♦

Example 2.6. We return to the coupled cell network G1 of figure 1. Since all cells c ∈ C1 are
identical, they have the same cell phase space. Suppose that the cell phase space is Rk . Then
the total phase space for G1 is P = Rk × Rk × Rk . Moreover, since all cells are isomorphic
and so input-equivalent, any f = (f1, f2, f3) ∈ FP

G1
is uniquely determined by one of the

components, say f1, which has to be B(1, 1)-invariant, and then we obtain fi , for i = 2, 3,
using a bijection βi ∈ B(1, i). Throughout, denote by (x

(j)

i ) the vector (xi, . . . , xi) where the
variable xi appears j times. Set

xT (I (1)) = (x
(2)
1 , x

(9)
2 , x

(9)
3 ).

The BG1 -equivariance condition implies the B(1, 1)-invariance of f̂1 : P1 × PT (I (1)) → P1.
Thus

f1(x) = f̂1

(
x1, x

(2)
1 , x

(9)
2 , x

(9)
3

)
= f̂1

(
x1, β

∗
(
x

(2)
1 , x

(9)
2 , x

(9)
3

))
for all β ∈ B(1, 1), and so f̂1 is symmetric in the set of the last 20 variables. We show that by
putting a bar over that set:

f1(x) = f̂1

(
x1, x

(2)
1 , x

(9)
2 , x

(9)
3

)
.

By theorem 2.3 any BG1 -equivariant vector field f : P → P takes the form

f (x1, x2, x3) =
(
f̂1

(
x1, x

(2)
1 , x

(9)
2 , x

(9)
3

)
, f̂1

(
x2, x

(12)
1 , x

(2)
2 , x

(6)
3

)
, f̂1

(
x3, x

(15)
1 , x

(5)
3

))
. ♦
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3. ODE-equivalence and linear equivalence

As pointed by Golubitsky et al [7], in the class of coupled cell networks that permits self-
coupling and multiarrows, it is possible for two non-isomorphic coupled cell networks G1 and
G2 to generate the same space of admissible vector fields. This comparison of admissible
vector fields for two coupled cell networks involves identifying cells in the two networks, a
step that it is formalized in general in terms of a bijection between the two sets of cells. We
follow the definition of ODE-equivalent coupled cell networks given by Dias and Stewart [4].

In what follows, given a coupled cell network Gi and a choice of total phase space Pi for
Gi , we denote by Pi,c the cell phase space corresponding to cell c of Ci .

Definition 3.1 ([4]). Two coupled cell networks G1 and G2 are γ -ODE-equivalent if:

(1) There is a bijection γ : C1 → C2 that preserves cell-equivalence and input-equivalence,
such that:

(2) If we choose cell phase spaces Pc �= 0 for G1, and define the corresponding choice of cell
phase spaces for G2 by

P2,γ (c) = P1,c

so that the corresponding total phase spaces are

P1 =
∏
c∈C1

P1,c P2 =
∏
c∈C1

P2,γ (c)

then:
(3) The condition

FP1
G1

= FP2
G2

(3.1)

is satisfied.

Two coupled cell networks G1 and G2 are ODE-equivalent if they are γ -ODE-equivalent
for some bijection γ . ♦

We define now the notion of ‘linear equivalence’ between two networks. In [4] it is shown
that two coupled cell networks are ODE-equivalent if and only if they are linearly equivalent.
Basically, the ODE-equivalence reduces to ‘linear equivalence’, where two networks (with
suitably identified phase spaces) are linearly equivalent if they determine the same space of
linear admissible vector fields. Moreover, when deciding linear equivalence, it can without
loss of generality be assumed that each cell phase space is one-dimensional since if (3.1) holds
for some choice of nonzero cell phase spaces Pc, then it holds for all such choices (that are
consistent with the structure of G).

Definition 3.2. Two coupled cell networks G1 and G2 are γ -linearly equivalent if there is
a bijection γ : C1 → C2 that preserves cell-equivalence and input-equivalence such that if
item (2) of definition 3.1 is satisfied then:

(3) The condition

LP1
G1

= LP2
G2

(3.2)

is satisfied.

Two coupled cell networks G1 and G2 are linearly equivalent if they are γ -linearly
equivalent for some γ . ♦
Remark 3.3. Note that this definition is independent of the dimensions of the Pc. Moreover,
the cells of G2 can be renumbered so that γ is the identity. ♦
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Throughout, we denote by Mn×n(Z
+
0) the set of the square matrices of order n and non-

negative integer entries, and by In the identity matrix in this set.

Example 3.4. The coupled cell network G2 of figure 2 is an example of a network linearly
equivalent to the network G1 of figure 1. Both graphs have only one cell-equivalence class and
one input-equivalence class. Trivially, the identity function on C1 = {1, 2, 3} preserves both
cell-equivalence and input-equivalence. Moreover, if we take P1 = P2 = R3 then LP1

G1
= LP2

G2

since

LP1
G1

= R{IdR3 , h1} = LP2
G2

= R{IdR3 , h2}, (3.3)

where IR3 denotes the identity function on R3,

h1(x1, x2, x3) = (2x1 + 9x2 + 9x3, 12x1 + 2x2 + 6x3, 15x1 + 5x3)

h2(x1, x2, x3) = (3x2 + 3x3, 4x1 + 2x3, 5x1 + x3)

and (x1, x2, x3) ∈ R3. Note that (3.3) is equivalent to saying

R


Id3,


 2 9 9

12 2 6
15 0 5





 = R


Id3,


0 3 3

4 0 2
5 0 1





 . (3.4)

♦
The next theorem reduces ODE-equivalence to linear equivalence, and says that the cell

phase spaces may be assumed one-dimensional in that context.

Theorem 3.5 ([4]). Let γ : C1 → C2 be a bijection that preserves cell-equivalence and
input-equivalence. Then the following conditions on two networks G1, G2 are equivalent:

(a) G1 and G2 are γ -ODE-equivalent.
(b) G1 and G2 are γ -linearly equivalent.
(c) With the identification γ : C1 → C2, the spaces LP

G1
and LP

G2
are equal when all cell phase

spaces are taken to be R.

Proof. See theorem 7.1 and corollary 7.9 of [4]. �

Example 3.6. We return to example 3.4. Recall (3.3). From the above theorem it follows that
the two coupled cell networks of figures 1 and 2 are ODE-equivalent. ♦

4. Minimality

In this section we compare ODE-equivalent networks in terms of the number of edges.

Definition 4.1. Let G be an n-cell coupled cell network. We denote by [G] the class of
all coupled cell networks that are ODE-equivalent to G. By theorem 3.5 we have that [G]
coincides with the class of all coupled cell networks that are linearly equivalent to G. ♦

Note that for a given n-cell network G = (C, E, ∼C, ∼E), the set

{(C1, E1, ∼C1 , ∼E1) ∈ [G] : card(E1) � card(E)} ⊆ [G],

where card(E) denotes the cardinality of the set of edges E , is finite. In particular, it follows
that the set

{card(E1) : (C1, E1, ∼C1 , ∼E1) ∈ [G]}
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has a minimum. We introduce now some notation:

Definition 4.2. Given an n-cell network G and the corresponding ODE-class [G], let

m[G] = min{card(E1) : (C1, E1, ∼C1 , ∼E1) ∈ [G]}
and

Min[G] = {(C1, E1, ∼C1 , ∼E1) ∈ [G] : card(E1) = m[G]}
We call Min[G] the minimal subclass of [G]. ♦

The minimal subclass Min[G] of [G] is thus the subclass of networks of [G] such that
the number of edges is minimal among all the networks of [G]—the subclass of the canonical
normal forms. In this paper, we describe the minimal subclass Min[G] of [G], given an
n-cell network G. More precisely, we give an algorithm that computes Min[G]. We start
by addressing the question for networks with only one ∼I -equivalence class (sections 5–9).
It follows then as a corollary an algorithm that computes Min[G] for any ODE-class [G]
(section 10).

Example 4.3. Consider the graph G1 of figure 1. For this example we have m[G1] = 18
and Min[G1] = {G2}, where G2 is the coupled cell network of figure 2. See section 9 for
details. ♦

5. Homogeneous networks

In this section we address the minimality of networks in terms of the number of edges for
ODE-classes associated with networks that have only one ∼I -equivalence class.

Definition 5.1. An homogeneous network is a coupled cell network with only one input-
equivalence class. An identical-edge homogeneous cell network is an homogeneous network
in which all edges in E are equivalent. A nonidentical-edge homogeneous cell network is an
homogeneous network with more than one edge-equivalence class. ♦

Note that homogeneous networks have only one cell-equivalence class since these have
only one ∼I -equivalence class and by definition the equivalence relation ∼I refines ∼C .

The graphs of figures 1 and 2 are examples of identical-edge homogeneous coupled cell
networks. Figure 5 shows an example of a non-identical-edge homogeneous network with two
edge-types.

Definition 5.2. Let G = (C, E, ∼C, ∼E) be an homogeneous network with n cells, say
C = {1, . . . , n}, and m edge-types, with [e1]E, . . . , [em]E , the ∼E-equivalence classes. We
define the adjacency matrix of G with respect to [el]E , for l = 1, . . . , m, to be the n×n matrix
M(G,l) with rows and columns indexed by the cells of G in the following way: the (i, j)-entry
of M(G,l) corresponds to the number of edges of type [el]E from cell j to cell i. Thus the sum
of the j th entries of row i of the matrices M(G,l), for l = 1, . . . , m, gives the number of input
edges of cell i with tail cell j . ♦

Example 5.3. The adjacency matrices of the coupled cell network G1 of figure 5 with respect
to the two edge-types are

M(G1,1) =

 2 9 9

12 2 6
15 0 5


 and M(G1,2) =


10 25 10

10 20 15
20 10 15


 .

♦
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Figure 5. An example of a nonidentical-edge homogeneous network G1.

5.1. Linear equivalence of adjacency matrices

We start by relating the adjacency matrices corresponding to linearly equivalent homogeneous
networks. Definition 3.2 of linear equivalence is given by:

Proposition 5.4. Let G1 be an homogeneous network with n cells and m1 edge-types, where
C1 = {1, . . . , n}. Let G2 be an homogeneous network with n cells and m2 edge-types. Denote
by M(G1,l) = [al

ij ]1�i,j�n for l = 1, . . . , m1, and M(G2,k) = [bk
ij ]1�i,j�n for k = 1, . . . , m2,

the adjacency matrices of G1 and G2 with respect to [el]E1 and [ek]E2 , respectively. We have
that G1 and G2 are linearly equivalent if and only if there is a bijection γ : C1 → C2 suc that:

R{In, [a1
ij ]1�i,j�n, · · · , [am1

ij ]1�i,j�n} = R{In, [b1
γ (i)γ (j)]1�i,j�n, . . . , [bm2

γ (i)γ (j)]1�i,j�n} (5.5)

Proof. Since both networks are homogeneous, trivially any bijection γ : C1 → C2 preserves
cell-equivalence and input-equivalence. Thus definition 3.2 of linear equivalence translates to
equation (5.5). �

If necessary, we can relabel the cells of G2 so that C1 = C2 and G2 is γ -linearly equivalent
to G1 where γ is the identity on C1 = {1, . . . , n}. Moreover, since G2 is linearly equivalent to
G1, then by proposition 5.4 it follows that

R{In, [a1
ij ]1�i,j�n, . . . , [am1

ij ]1�i,j�n} = R{In, [b1
ij ]1�i,j�n, . . . , [bm2

ij ]1�i,j�n}. (5.6)

Example 5.5. Using proposition 5.4, the network G1 of figure 5 is linearly equivalent to the
network G2 of figure 6, where γ is the identity on {1, 2, 3}. ♦

Remark 5.6. Let G1 be an homogeneous network with n cells. Let M(G1,1), . . . , M(G1,m1) be
the corresponding adjacency matrices. Then the set of matrices

L = Mn×n(Z) ∩ R{In, M(G1,1), . . . , M(G1,m1)}
with the usual sum of matrices is a lattice [1, chapter 3]: trivially, the set L is a discrete subgroup
of Mn×n(R) ∼= Rn2

. ♦
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Figure 6. An example of a nonidentical-edge homogeneous network G2 linearly equivalent to the
graph of figure 5.

The next lemma shows that the networks of the ODE-class [G1] have adjacency matrices
lying in the cone L ∩ Mn×n(Z

+
0).

Lemma 5.7. Let G1 be an homogeneous network with n cells, say C1 = {1, . . . , n}, and m1

edge-types. Let M(G1,l) = [al
ij ]1�i,j�n for l = 1, . . . , m1 be the corresponding adjacency

matrices. Then M = [mij ]1�i,j�n ∈ Mn×n(Z
+
0) is an adjacency matrix of a network G (of n

cells) linearly equivalent to G1 if and only if

M ∈ L ∩ Mn×n(Z
+
0). (5.7)

Proof. Note that each M(G1,l) has the following properties:

M(G1,l) ∈ Mn×n(Z
+
0); (5.8)

n∑
j=1

al
ij =

n∑
j=1

al
kj for all i, k. (5.9)

By proposition 5.4 we have that if M = [mij ]1�i,j�n ∈ Mn×n(Z
+
0) is an adjacency matrix

of a network G (of n cells) linearly equivalent to G1 then condition (5.7) follows.
Suppose now that M = [mij ]1�i,j�n ∈ Mn×n(Z

+
0) satisfies (5.7). In particular, since G is

homogeneous, it follows that

n∑
j=1

mij =
n∑

j=1

mkj for all i, k. �

5.2. Minimality

Given an homogeneous network G, we aim to describe the minimal subclass Min[G] of [G].
Recall definition 4.2. Using the above discussion on ODE-equivalence and linear equivalence,
we can describe the graphs of Min[G] by computing the corresponding adjacency matrices.
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Moreover, we have:

Lemma 5.8. Let G1 be an homogeneous network with n cells. Let [G1] the corresponding
ODE-class and M(G1,l), for l = 1, . . . , m1, the adjacency matrices of G1. Let

m = dim R{In, M(G1,1), . . . , M(G1,m1)} − 1. (5.10)

Then the homogeneous networks of the minimal class Min[G1] have m edge types.

Proof. Let G2 ∈ Min[G1] and suppose that G2 has m2 edge types. Trivially, m2 � m since

R{In, M(G1,1), . . . , M(G1,m1)} = R{In, M(G2,1), . . . , M(G2,m2)}
and so

m2 + 1 � dim R{In, M(G2,1), . . . , M(G2,m2)} = dim R{In, M(G1,1), . . . , M(G1,m1)} = m + 1.

If m2 > m then

R{In, M(G2,1), . . . , M(G2,m2)} = R{In, M(G2,i1), . . . , M(G2,ik)}
for some set {i1, . . . , ik} ⊂ {1, . . . , m2} and G2 �∈ Min[G1], a contradiction.
Thus m2 = m. �

Remark 5.9. Let m be as defined in (5.10). Since dim R{In, M(G,1), . . . , M(G,m1)} equals m+1
we have that L is a lattice of rank m + 1. ♦

Definition 5.10. Given M = [mij ]1�i,j�n ∈ Mn×n(Z
+
0) denote by

l(M) =
n∑

i=1

n∑
j=1

mij .

More generally, for u = (u1, . . . , uk) ∈ (Z+
0)

k we call the length of u the non-negative integer
l(u) defined by

l(u) =
k∑

i=1

ui.

Note that if w1, . . . , wm ∈ (Z+
0)

k then

l

(
m∑

i=1

wi

)
=

m∑
i=1

l(wi).

Given a set of vectors {w1, . . . , wr} ⊂ (Z+
0)

k we denote

l({w1, . . . , wr}) =
r∑

j=1

l(wj ). ♦

We find the minimal subclass Min[G] in the following way:

Proposition 5.11. Let G be an homogeneous network of n cells and [G] the corresponding
ODE-class. Suppose that M(G,1), . . . , M(G,m1) are the adjacency matrices of G. Let

m = dim R{In, M(G,1), . . . , M(G,m1)} − 1.
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An homogeneous network of the minimal class Min[G] has adjacency matrices M1, . . . , Mm

defined by:

(i) {In, M1, . . . , Mm} ⊂ Mn×n(Z
+
0);

(ii) {In, M1, . . . , Mm} is a basis of the real vector space Rt{In, M(G,1), . . . , M(G,m1)};
(iii)

∑m
k=1 l(Mk) = m[G].

Proof. By lemma 5.8 any graph G2 ∈ Min[G] has m edge types. Item (i) follows by the
definition of adjacency matrix of a network. Moreover, by lemma 5.7 and proposition 5.4 we
have (ii). Condition (iii) follows from definition 4.2 of Min[G]. �

Remark 5.12. Note that if M ∈ Mn×n(Z
+
0) is an adjacency matrix of an homogeneous network,

then l(M) � n and so l(M) � l(In). Denote by M0 = b0 = In. Assume the conditions of
proposition 5.11 and denote S = R{In, M(G,1), . . . , M(G,m1)}. A set {M1, . . . , Mm} satisfies
(i)–(iii) if and only if it satisfies

(i) {M0, M1, . . . , Mm} ⊂ Mn×n(Z
+
0);

(ii) {M0, M1, . . . , Mm} is a basis of S;
(iii)

∑m
k=0 l(Mk) = min

{∑m
k=0 l(bk) : {b0, b1, . . . , bm} ⊂ Mn×n(Z

+
0) is a basis of S

}
. ♦

6. Minimal bases

By proposition 5.11 and remark 5.12 we have that the minimal subclass Min[G] of [G] where G

is an homogeneous coupled cell network can be computed by describing the set of all possible
adjacency matrices satisfying a minimality condition in terms of the length of those matrices.
We abstract the problem in the following way.

Given a set of vectors w1, . . . , wp ∈ (Z+
0)

k , denote by

S = R{w1, . . . , wp}
the real vector subspace of Rk generated by the vectors w1, . . . , wp. Suppose that

dim S = r,

with r � p. We choose any r linearly independent vectors from w1, . . . , wp, say w1, . . . , wr .
Thus w1, . . . , wr form a basis of S. Denote by

s = l({w1, . . . , wr})
Let

B = {b : b = {b1, . . . , br} ⊂ (Z+
0)

k is a basis of S}.
Lemma 6.1. The set {l(b) : b ∈ B} has a minimum.

Proof. As {w1, . . . , wr} ⊂ (Z+
0)

k is a basis of S and l({w1, . . . , wr}) = s, it follows that the
minimum of {l(b) : b ∈ B is at most s. Thus,

r � min{l(b) : b ∈ B} � s.

Moreover,

min{l(b) : b ∈ B} = min{l(b) : b ∈ B, r � l(b) � s},
and {b ∈ B : r � l(b) � s} is a finite set. �
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Definition 6.2. We call a basis b ∈ B of S such that

l(b) = min{l(b) : b ∈ B}
a minimal basis. ♦

In this section we describe the set of all minimal bases b ∈ B of S. Moreover, we present
an algorithm that computes this set.

6.1. Sketch of the procedure

The method we follow for finding the minimal bases of S relies mostly on two steps:

(1) Find the set C defined by

C = {
w ∈ S ∩ (Z+

0)
k : 0 < l(w) � s − r + 1

}
.

(2) Find all the minimal bases b ∈ BC of S where

BC = {b ∈ B : b ⊆ C}.
Remarks 6.3.

(a) If b = {b1, . . . , br} ⊂ (Z+
0)

k is a basis of S and r � l(b) � s then b ⊆ C. Moreover,
BC ⊆ B and

min{l(b) : b ∈ B} = min{l(b) : b ∈ BC}.
Thus the minimal bases b = {b1, . . . , br} of S are contained in C.

(b) Note that the set C depends on the chosen basis {w1, . . . , wr} of S which determines
the length s = l({w1, . . . , wr}). We show in theorem 6.7 that the minimal bases do not
depend on the chosen set of the vectors wi that form a basis of S, nor on another choice
of vectors (with non-negative integers coordinates) generating S. ♦

6.2. Finding C.

Let W be the k × r matrix with non-negative integer entries with columns given by the vectors
w1, . . . , wr that we assume linearly independent and generating S. In notation

W = (w1| · · · |wr).

Denote by MW the set of all r×r matrices formed by r rows of W and with nonzero determinant
and take

δ = gcd{det(M) : M ∈ MW }.
Lemma 6.4. If w ∈ S∩(Z+

0)
k then there are rational numbers x1, . . . , xr whose denominators

divide δ such that

w = x1w1 + · · · + xrwr .

Proof. By hypothesis {w1, . . . , wr} is a basis of S. Thus given w ∈ S ∩ (Z+
0)

k , there are
real numbers x1, . . . , xr ∈ R such that w = x1w1 + · · · + xrwr . Moreover, we have that w

has integer components. Given M ∈ MW , if we consider the linear system in the variables
x1, . . . , xr obtained from x1w1 + · · · + xrwr = w by keeping the rows corresponding to M , by
Cramer’s rule we have that the unique x1, . . . , xr are rational whose denominator divide the
(nonzero) determinant of M . �
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By the above lemma, we have that C is the set of linear combinations of w1, . . . , wr , say
x1w1 + · · · + xrwr ∈ (Z+

0)
k , with rational coefficients x1, . . . , xr whose denominators divide δ

and such that

0 < l(x1w1 + · · · + xrwr) � s − r + 1.

Thus xi = pi/qi where pi, qi ∈ Z, qi �= 0 and δ = niqi for some ni ∈ Z. It follows then that

(n1p1)w1 + · · · + (nrpr)wr ≡ 0 (mod δ).

We describe C in the following way:

C =




1

δ

r∑
j=1

yjwj ∈ (Z+
0)

k :




r∑
j=1

yjwj ≡ 0 (mod δ)

0 <
1

δ
l


 r∑

j=1

yjwj


 � s − r + 1




.

Remarks 6.5.

(a) Note that w1, . . . , wr ∈ C since δwi ≡ 0 (mod δ) and for i = 1, . . . , r we have
0 < l(wi) � s − r + 1.

(b) The set C is finite since it is a subset of the finite set formed by the vectors w ∈ (Z+
0)

k

such that 0 < l(w) � s − r + 1. ♦

6.3. Finding the minimal bases

In order to find the bases b = {b1, . . . , br} ⊆ C of S such that

l(b) = min{l(b) : b ∈ BC}
we partition the set C by the length of its vectors:

C = C1 ∪̇ C2 ∪̇ · · · ∪̇ Ct,

where given u, v ∈ C{
l(u) = l(v) ⇔ u, v ∈ Ci for some i,

l(u) < l(v) ⇔ u ∈ Ci, v ∈ Cj , with i < j.

As {w1, . . . , wr} is a basis of S and w1, . . . , wr ∈ C, it follows that the real subspace of
Rk generated by C is S.

Definition 6.6. Let S1, S2 be real subspaces of Rk . We denote

S1 + S2 = {u + v : u ∈ S1, v ∈ S2}. ♦

Denote by Si , i = 1, . . . , t , the subspace of S generated by Ci . Thus

S1 + · · · + St = S.

Moreover, there is q such that 1 � q � t and

dim(S1 + · · · + Sq) = r, dim(S1 + · · · + Sq−1) < r. (6.11)

Thus we have

S1 + · · · + Sq = S.

We show below that the minimal bases of S are contained in

C1 ∪̇ · · · ∪̇ Cq.
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Denote by li the common length of any vector u ∈ Ci , for i = 1, . . . , q. Let

d1 = dim S1,

di = dim


 i∑

j=1

Sj


 − dim


 i−1∑

j=1

Sj


 , 2 � i � q.

Let U1 ⊆ C1 be a set of d1 linearly independent vectors. For i = 2, . . . , q, let Ui ⊆ Ci be a
set of di vectors such that U1 ∪ · · · ∪ Ui is free.

Theorem 6.7. The minimum of the set

{l(b) : b ∈ B}
is

m =
q∑

j=1

lj dj . (6.12)

The minimal bases b ∈ B of S are the bases obtained by taking all the possible unions
U1 ∪ · · · ∪ Uq .

Proof. By lemma 6.1 the set {l(b) : b ∈ B} has a minimum, say m.
Any set U1 ∪ · · · ∪ Uq = {b1, . . . , br} obtained as above is free and has r vectors by

construction. (Recall that by assumption dim(S1 + · · · + Sq) = r .) Thus it is a basis of S and

l({b1, . . . , br}) =
q∑

j=1

lj dj .

We prove now that the minimum m of the set {l(b) : b ∈ B} is
q∑

j=1

lj dj

and that any minimal basis b ∈ B is the union U1 ∪ · · · ∪ Uq of sets Ui constructed as above.
In particular, it follows that b ⊆ C.

Starting with a different set of basis vectors wi of S, the set C varies if the total length
of the chosen basis, say s∗, differs from s. However, in this case, the new set, say C∗, would
contain C if s∗ > s, and would be contained in C if s∗ < s. (Recall that C∗ would be formed
by the non-null vectors in S ∩ (Z+

0)
k with length lower or equal to s∗ − r + 1.) In both cases,

we have (C1 ∪ · · · ∪ Cq) ⊆ C∗ since (C1 ∪ · · · ∪ Cq) ⊆ S and generates S. Note that in the
second case, where C∗ would be contained in C, if C1 ∪ · · · ∪ Cq �⊆ C∗, then we would have
C∗ = C1 ∪ · · · ∪ Cs where s < q and so S1 + · · · + Ss = S, which cannot happen by the
definition of q (recall (6.11)).

Suppose by contradiction that there is a basis b = {b1, . . . , br} ∈ BC such that b is not a
union U1 ∪ · · · ∪ Uq of sets Ui constructed as above and that

l(b) = m.

We have two cases to consider:

(i) b �⊆ C1 ∪ · · · ∪ Cq . Then b does not contain r linearly independent vectors of
C1 ∪ · · · ∪ Cq . But C1 ∪ · · · ∪ Cq contains r linearly independent vectors since by
hypothesis dim(S1 + · · · + Sq) = r . Thus we can choose a vector u ∈ C1 ∪ · · · ∪ Cq such
that u �∈ b and such that u and the vectors of b ∩ (C1 ∪ · · · ∪Cq) are linearly independent.
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But u ∈ S and b is a basis of S. Then we can write u as a linear combination of the
vectors bi and such that at least one of the nonzero coefficients is of a vector in b that do
not belong to C1 ∪ · · · ∪ Cq . Say bi . It follows then that l(bi) > l(u) and so the basis
obtained from b by substituting bi by u, {b1, . . . , bi−1, u, bi+1, . . . , br} is such that

l({b1, . . . , bi−1, u, bi+1, . . . , br}) < m.

A contradiction.
(ii) b ⊆ C1 ∪ · · · ∪ Cq and there is j between 1 and q such that the number of vectors of b

with length lower or equal to lj is (strictly) lower than dim(S1 + · · · + Sj ). Then there
is u ∈ C1 ∪ · · · ∪ Cj such that u and the vectors of b ∩ (C1 ∪ · · · ∪ Cj) are linearly
independent. Again, u is a linear combination of the vectors bi , and at least one nonzero
coefficient corresponds to a vector, say bk , such that l(bk) > lj . The basis obtained from
b by substituting bk by u has total length strictly lower than m. Again a contradiction.

It follows then that any basis b = {b1, . . . , br} ⊆ ((Z+
0)

k ∩ C) of the space S such that
l({b1, . . . , br}) = m is contained in C1 ∪ · · · ∪ Cq and the number of vectors of b with length
lower or equal to lj is equal to dim(S1 + · · · + Sj ), for j = 1, . . . , q. Thus b = U1 ∪ · · · ∪ Uq

where the Uj are any sets as constructed above. Moreover, we have the equality (6.12). �

7. Algorithm

Let G be an homogeneous network with n cells and p−1 edge-types. Let M(G,l) = [al
ij ]1�i,j�n,

for l = 1, . . . , p − 1, be the adjacency matrices associated with G and let M(G,p) = In. For
l = 1, . . . , p, let wl be the vector wl = (al

11, . . . , a
l
1n, a

l
21, . . . , a

l
2n, . . . , a

l
n1, . . . , a

l
nn). Let

k = n2 and S the real vector subspace of Rk generated by the p vectors w1, . . . , wp of (Z+
0)

k .
By theorem 6.7 the following algorithm finds all the minimal bases of S in (Z+

0)
k .

In what follows, if M1 and M2 are matrices of order m × n and m × p, respectively, we
denote by (M1|M2) the matrix of order m× (n + p) whose first n columns are those of M1 and
the last p columns are those of M2.

Algorithm 7.1. Given p vectors w1, . . . , wp of (Z+
0)

k that generate a real vector subspace S

of Rk , this algorithm finds all the minimal bases of S in (Z+
0)

k .

(1) [Initial base] Let r be the rank of the matrix (w1| . . . |wp). For each wi , i = 1, . . . , p do
the following: set si = ∑k

j=1(wi)j and then sort the vectors wi by ascending order of

the si . Let v1, . . . , vr be the ‘first’ r linearly independent vectors. Set s = ∑k
j=1(vr)j .

(2) [Compute gcd δ] Let W be the matrix (v1| . . . |vr). Compute the set MW of all the r × r

matrices formed by r rows of W and with nonzero determinant. Let δ be the greatest
common divisor of the determinants of the matrices in MW .

(3) [Solve linear system of congruences] Apply HNF (Hermite Normal Form), algorithm A.3,

to the matrix (W |δIk), and let U =
(

U1 U2

U3 U4

)
be a unimodular matrix and H the

HNF matrix such that (W |δIk)U = (0|H). Here U1 is a r × r square matrix. We can
discard U2, U3 and U4. Let HB be the HNF matrix of the matrix (U1|δIr ) obtained from
algorithm A.3. The matrix HB is invertible because it has rank r .

(4) [Compute set C] Let W ∗ be a matrix in MW . Determine the set

A =
{

(W ∗HB)−1(δ c1, δ c2, . . . , δ cr)
� :

{
c1, c2, . . . , cr ∈ Z+

0

0 < c1 + c2 + · · · + cr � s

}
∩ Zr .
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Determine

C =
{

1

δ
WHB(x1, . . . , xr)

� : (x1, . . . , xr)
� ∈ A

}
∩

{w ∈ (Z/(s + 1)Z)k : 0 < l(w) � s}.
For i = 1 until s, set Ci = ∅. For each w in C do the following: set Cl(w) = Cl(w) ∪ {w}.

(5) [Compute minimum sum] Let j be the least i such that Ci �= ∅. Set m = 0, i = j and
d = 0. While i � s and d < r do the following: if Ci �= ∅, let di be the dimension of
the real subspace generated by Cj ∪ · · · ∪ Ci minus the dimension of the real subspace
generated by Cj ∪· · ·∪Ci−1 and set d = d +di , m = m+ idi , else set di = 0; set i = i +1.

(6) [All subsets of C with minimum sum] Set E = ∅, q = 0 and Sj−1 = {0}. For n = j until
i − 1 do the following: if dn �= 0, set In = {w ∈ Cn : w /∈ Sj + · · · + Sn−1} and let En be
the set of all the subsets of In with dn linearly independent vectors and set E = E × En

and q = q + 1.
(7) [All minimal bases] Set U = ∅. For each (U1, . . . , Uq) in E do the following: if the

dimension of the subspace generated by U1 ∪ · · · ∪ Uq is r (that is, U1 ∪ · · · ∪ Uq is a
minimal base of S in (Z+

0)
k) then set U = U ∪ {{U1 ∪ · · · ∪ Uq}}.

The set U contains all the minimal bases of S in (Z+
0)

k . Output U and m and terminate
algorithm. ♦

Item (3) of algorithm 7.1 for solving homogeneous linear systems of congruences is based
on Cohen [3, algorithm 4.1.22].

Each basis B = {b1, . . . , br} ∈ U , computed by algorithm 7.1, corresponds to a minimal
network with r − 1 edge-types in the following way: Each bi ∈ (Z+

0)
k defines an n × n

matrix Mi . Specifically, if bi = (bi1, . . . , bin) where bij ∈ (Z+
0)

n then the j th row of Mi is bij .
Each matrix Mi �= In corresponds to an adjacency matrix of the minimal network with respect
to an edge-type.

8. Examples

In this section we apply algorithm 7.1 to two examples of homogeneous coupled cell networks
G obtaining the adjacency matrices corresponding to the minimal networks of the subclasses
Min[G] of [G].

Example 8.1. Consider the homogeneous network G of three cells of figure 7. Thus the
adjacency matrices are

M(G,1) =

4 0 6

8 0 2
3 2 5


 , M(G,2) =


 4 8 4

8 4 4
10 4 2


 .

Note that

dim R{I3, M(G,1), M(G,2)} = 3

and recall that the adjacency matrices of the networks in Min[G] satisfy the three properties
of remark 5.12. Thus, our aim is to find all the possible matrices M1, M2 ∈ M3×3(Z

+
0) such

that R{M0 = I3, M1, M2} = R{I3, M(G,1), M(G,2)} and
2∑

k=0

l(Mk) = min

{ 2∑
k=0

l(bk) : {b0 = I3, b1, b2} ⊂ M3×3(Z
+
0)

is a basis of R{I3, M(G,1), M(G,2)}
}
.
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Figure 7. Homogeneous coupled cell network of example 8.1.

For that we apply algorithm 7.1. We consider

w1 = (1, 0, 0, 0, 1, 0, 0, 0, 1)�, w2 = (4, 0, 6, 8, 0, 2, 3, 2, 5)�,

w3 = (4, 8, 4, 8, 4, 4, 10, 4, 2)�

in (Z+
0)

9 and S the real subspace of R9 generated by these linearly independent vectors:

S = R{w1, w2, w3}.
Note that

s = max{l(w1), l(w2), l(w3)} = l(w3) = 48

and the matrix

W� =

1 0 0 0 1 0 0 0 1

4 0 6 8 0 2 3 2 5
4 8 4 8 4 4 10 4 2




has rank 3. The greatest common divisor of the determinants of all 3 × 3 matrices formed
by 3 rows of W and with nonzero determinant is δ = 8. Applying the HNF algorithm A.3 to
the matrix (W |8I9) we obtain matrices U and H , the HNF of (W |8I9), such that (W |8I9)U =
(0|H), where

U =

U1 U2 U3

U4 U5 U6

U7 U8 U9




with

U1 =

 −8 44 −16

0 −10 4
0 3 −2


 , U3 =


 8 −5 1

−2 1 0
1 0 0


 ,

U�
4 =


 1 0 0 0 1 0

−2 −3 6 7 −7 1
1 2 −2 −2 3 0


 ,
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U�
6 =


0 −1 1 1 −1 0

1 0 0 −1 1 0
0 0 0 0 0 0


 , H =




8 0 0 0 0 0 4 7 1
0 8 0 0 0 0 0 0 0
0 0 8 0 0 0 0 6 0
0 0 0 8 0 0 0 0 0
0 0 0 0 8 0 4 3 1
0 0 0 0 0 8 0 2 0
0 0 0 0 0 0 4 3 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1




,

U�
7 = I3, U5 = I6, and U2, U8 and U9 are zero matrices.

Using algorithm A.3 to compute HB , the HNF of the matrix (U1|8I3), we obtain

HB =

8 0 4

0 8 2
0 0 1


 and (WHB)� =


 8 0 0 0 8 0 0 0 8

32 0 48 64 0 16 24 16 40
16 8 16 24 8 8 16 8 16




and so

C =







x1 + 4x2 + 2x3

x3

6x2 + 2x3

8x2 + 3x3

x1 + x3

2x2 + x3

3x2 + 2x3

2x2 + x3

x1 + 5x2 + 2x3




∈ (Z+
0)

9 : x1, x2, x3 ∈ Z, 0 < x1 + 10x2 + 5x3 � 16




.

In particular, it follows that for

w = (x1 + 4x2 + 2x3, x3, 6x2 + 2x3, 8x2 + 3x3, x1 + x3, 2x2 + x3, 3x2 + 2x3,

2x2 + x3, x1 + 5x2 + 2x3)
� ∈ C

we have l(w) � 3x3 and x3 � 0. Easy computations show that

C3 =







1
0
0
0
1
0
0
0
1







, C6 =







2
0
0
0
2
0
0
0
2







, C9 =







3
0
0
0
3
0
0
0
3







, C12 =







4
0
0
0
4
0
0
0
4




,




1
1
2
3
0
1
2
1
1




,




1
3
0
1
2
1
3
1
0







.

Moreover, if Si denotes the real subspace of S generated by Ci , we have that

dim S3 = dim(S3 + S6) = dim(S3 + S6 + S9) = 1, dim(S3 + S6 + S9 + S12) = dim S = 3
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Figure 8. Minimal network of the ODE-equivalence class of the homogeneous coupled cell network
of example 8.1.

By theorem 6.7, there is a unique minimal basis of S which is





1
0
0
0
1
0
0
0
1




,




1
1
2
3
0
1
2
1
1




,




1
3
0
1
2
1
3
1
0







.

Thus, by proposition 5.11 and remark 5.12, Min[G] contains only one minimal network
with adjacency matrices given by

M1 =

1 1 2

3 0 1
2 1 1


 , M2 =


1 3 0

1 2 1
3 1 0


 .

See figure 8. ♦

Example 8.2. Consider the homogeneous network G of figure 3 in section 1. The adjacency
matrices of G are

M(G,1) =

1 1 2

2 1 1
3 0 1


 , M(G,2) =


1 3 0

0 1 3
1 2 1


 , and dim R{I3, M(G,1), M(G,2)} = 3.

We aim to find all the possible matrices M1, M2 ∈ M3×3(Z
+
0) such that R{M0 = I3, M1, M2} =

R{I3, M(G,1), M(G,2)} and such that

2∑
k=0

l(Mk) = min

{ 2∑
k=0

l(bk) : {b0 = I3, b1, b2} ⊂ M3×3(Z
+
0)

is a basis of R{I3, M(G,1), M(G,2)}
}
.
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Again, we apply algorithm 7.1 to the vectors

w1 = (1, 0, 0, 0, 1, 0, 0, 0, 1)�, w2 = (1, 1, 2, 2, 1, 1, 3, 0, 1)�,

w3 = (1, 3, 0, 0, 1, 3, 1, 2, 1)�

in (Z+
0)

9. Note that s = l(w3) = 12. Easy computations show that

C =







x1 + x2 + x3

x2 + 2x3

2x2 + x3

2x2 + x3

x1 + x2 + x3

x2 + 2x3

3x2 + 2x3

x3

x1 + x2 + x3




∈ (Z+
0)

9 : x1, x2, x3 ∈ Z, 0 < x1 + 4x2 + 4x3 � 4




.

Moreover,

C3 =







1
0
0
0
1
0
0
0
1







, C6 =







2
0
0
0
2
0
0
0
2







, C9 =







3
0
0
0
3
0
0
0
3




,




0
2
1
1
0
2
2
1
0




,




0
1
2
2
0
1
3
0
0




,




0
3
0
0
0
3
1
2
0







.

If Si denotes the real subspace of S generated by Ci , we have that

dim S3 = dim(S3 + S6) = 1, dim(S3 + S6 + S9) = dim S = 3.

Thus, by proposition 5.11 and remark 5.12, Min[G] contains three minimal networks with
adjacency matrices given, respectively, by
M1 =


0 2 1

1 0 2
2 1 0


 , M2 =


0 1 2

2 0 1
3 0 0





 ,


M1 =


0 2 1

1 0 2
2 1 0


 , M2 =


0 3 0

0 0 3
1 2 0







and 
M1 =


0 1 2

2 0 1
3 0 0


 , M2 =


0 3 0

0 0 3
1 2 0





 .

See figure 4 in section 1. ♦
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9. Identical-edge homogeneous networks

In the special class of identical-edge homogeneous cell networks, the application of
algorithm 7.1 simplifies. Recall that an identical-edge homogeneous cell network is an
homogeneous network in which all edges in E are equivalent. We prove below (theorem 9.3)
that, if G is an identical-edge homogeneous network with n cells, with adjacency matrix
M(G,1) = [aij ]1�i,j�n, and [G] the corresponding ODE-class, then Min[G] has a unique graph
with adjacency matrix M defined by

M = 1

δ
(M(G,1) − m In),

where δ = gcd{aij : i, j = 1, . . . , n; j �= i} and m = min{aii : i = 1, . . . , n}. Direct
application of algorithm 7.1 gives the same result. See remark 9.5. Here, we consider only
networks G such that there is at least one edge e ∈ E satisfying H(e) �= T (e), and so M(G,1)

is not a scalar multiple of the identity matrix.

Example 9.1. The graphs G1 and G2 of figures 1 and 2 in section 1, respectively, are
examples of identical-edge homogeneous coupled cell networks. The corresponding adjacency
matrices are

M(G1,1) =

 2 9 9

12 2 6
15 0 5


 , M(G2,1) =


0 3 3

4 0 2
5 0 1




We show below that the minimal subclass of [G1] is Min[G1] = {G2}. ♦

9.1. Linear equivalence and adjacency matrices

Definition 3.2 of linear equivalence for identical-edge homogeneous networks in terms of
the adjacency matrices is now a special case of proposition 5.4. More precisely, if G1 and
G2 are two identical-edge homogeneous networks with n cells, where C1 = {1, . . . , n}, and
M(G1,1) = [aij ]1�i,j�n and M(G2,2) = [bij ]1�i,j�n are the corresponding adjacency matrices,
then G1 and G2 are linearly equivalent if and only if there is a bijection γ : C1 → C2 such that:

R{Idn, [aij ]1�i,j�n} = R{Idn, [bγ (i)γ (j)]1�i,j�n}. (9.13)

Example 9.2. Consider the identical-edge homogeneous networks of figures 1 and 2 in
section 1, and recall example 3.4. Trivially, the identity function on {1, 2, 3} is a bijection that
preserves cell-equivalence and input-equivalence (like any bijection on {1, 2, 3}). Moreover,
equation (3.4) of example 3.4 on the corresponding adjacency matrices is equivalent to the
linear equivalence of the networks. ♦

9.2. Minimality

We prove now that the minimal subclass Min[G] of an ODE-class [G] where G is an identical-
edge homogeneous network contains a unique graph. We then describe an algorithm that
computes this minimal graph in Min[G].

Theorem 9.3. Let G be an identical-edge homogeneous network of n cells, say C = {1, . . . , n},
and [G] the corresponding ODE-class. Let M(G,1) = [aij ]1�i,j�n be the adjacency matrix of
G and assume that it is not a scalar multiple of the identity matrix. Let

δ = gcd{aij : i, j = 1, . . . , n; j �= i},
m = min{aii : i = 1, . . . , n}.
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Then

Min[G] = {G2},
where G2 is the network with adjacency matrix

M(G2,1) = 1

δ
(M(G,1) − m In).

Proof. The proof consists in showing that G2 as described above is linearly equivalent to G,
and that if G1 is linearly equivalent to G2 and G1 �= G2 then card(E2) < card(E1).

As M(G2,1) = (1/δ)(M(G,1)−mIn) it follows that the identical-edge homogeneous network
with adjacency matrix M(G2,1) is linearly equivalent to G and the entries of M(G2,1) are non-
negative integers as we show now. Let M(G2,1) = [bij ]1�i,j�n, then

bii = aii − m

δ
, i = 1, . . . , n (9.14)

bij = aij

δ
, i, j = 1, . . . , n; j �= i · (9.15)

Since G is an identical-edge homogeneous network it follows that M(G,1) satisfies for any
i, k ∈ {1, . . . , n}

n∑
j=1

aij =
n∑

j=1

akj

and thus

aii − akk =
∑
j �=k

akj −
∑
j �=i

aij .

Let k be such that m = akk . Then akk � aii, ∀i and
∑

j �=k akj �
∑

j �=i aij . Moreover, δ is a
divisor of

∑
j �=k akj − ∑

j �=i aij and thus of aii − akk .
Let G1 be a network linearly equivalent to G2 (and so to G) with adjacency matrix M(G1,1).

It follows then that

M(G1,1) = 1

β
(M(G2,1) − αIn),

for some α ∈ Q and β ∈ Q+. Since there is i such that bii = 0 we have that α ∈ Z−
0 . If

card(E1) � card(E2) then β � 1. Since the greatest common divisor of the entries bij is 1,
then β = 1. If α = 0 then G1 = G2. Otherwise, card(E1) > card(E2). �

Example 9.4. Recall the graphs G1 and G2 of figures 1 and 2 in section 1. By theorem 9.3 it
follows that MinG1 = {G2}. Note that δ = 3 and m = 2. ♦

If we denote the rows of a k × r matrix M by M1, . . . , Mk , then M∗ represents the column
vector (M1, . . . , Mk)

�.

Remark 9.5. Direct application of algorithm 7.1 gives the result of theorem 9.3 as we
now show. Suppose G is an identical-edge homogeneous network with adjacency matrix
M(G,1) = [aij ]1�i,j�n. Assume M(G,1) is not a scalar multiple of the identity matrix. Using the
same procedure as in section 6 we have the following: we take the n2 ×2 matrix W = (w1|w2)

where w1 = I∗n and w2 = M∗
(G,1); the greatest common divisor δ of the set of all 2 ×2 matrices

formed by 2 rows of W and with nonzero determinant is the greatest common divisor of the
set {aij : i �= j} ∪ {aii − akk : i �= k}. From the proof of theorem 9.3, it follows that δ is the
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greatest common divisor of the set {aij : i �= j}. We aim to find the finite set C and so to find
y1, y2 ∈ Z such that

y1w1 + y2w2 = δw

for some w with non-negative integer entries and such that 0 < l(w) � l(w2). Note that

l(w) = 1

δ
(y1n + y2l(w2))

and

δw(k−1)n+k = y1 + y2akk (k = 1, . . . , n),

δw(k−1)n+i = y2aki (i, k = 1, . . . , n; i �= k).

Thus y2 � 1. Trivially, the minimum l(w) is obtained by taking y2 = 1 and y1 = −m where

m = min{akk : k = 1, . . . , n}
and so there is a unique minimal basis of R{w1, w2} corresponding to the minimal network
with adjacency matrix

M(G2,1) = 1

δ
(M(G,1) − mIn). ♦

Algorithm 9.6. Given the adjacency matrix M(G,1) = [aij ]1�i,j�n, with M(G,1) �= αIn, of
an identical-edge homogeneous network G, this algorithm computes the adjacency matrix
M(G2,1) = [bij ]1�i,j�n corresponding to the unique network in Min[G].

(1) [Compute gcd δ and minimum m] Set m = min{aii : i = 1, . . . , n} and
δ = gcd{aij : i, j = 1, . . . , n; j �= i}.

(2) [Compute M(G2,1)] For i, j = 1, · · · , n do the following: if j �= i then set bij = aij /δ

else set bii = (aii − m)/δ. Output M(G2,1) = [bij ]1�i,j�n. ♦

10. Minimality for coupled cell networks

Let G be a coupled cell network. From theorem 2.3 (recall also remark 2.5) the space of
BG-equivariant maps has a natural decomposition according to the connected components
(the ∼I -equivalence classes) of the groupoid BG, and this decomposition is inherited by the
polynomial and linear vector fields:

Definition 10.1. Let Q ⊆ C be an ∼I -equivalence class. Define

FP
G(Q) = {f ∈ FP

G : fs(x) = 0, ∀s �∈ Q},
PP

G(Q) = {f ∈ PP
G : fs(x) = 0, ∀s �∈ Q},

LP
G(Q) = {f ∈ LP

G : fs(x) = 0, ∀s �∈ Q}.
We say that vector fields in FP

G(Q), PP
G(Q), and LP

G(Q) are supported on Q. ♦

Remark 10.2. From theorem 2.3, there are direct sum decompositions

FP
G =

⊕
Q

FP
G(Q) PP

G =
⊕

Q
PP

G(Q) LP
G =

⊕
Q

LP
G(Q),

where Q runs over the ∼I -equivalence classes of G. ♦

For detailed proofs see [9], end of section 4, especially proposition 4.6.
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By theorem 3.5, two coupled cell networks G1 and G2 are ODE-equivalent if and
only if they are linearly equivalent. That is, there exists some bijection γ between the
corresponding sets of cells Ci , preserving cell-equivalence and input-equivalence, such that
with the identification γ : C1 → C2, the vector spaces LP

G1
and LP

G2
are equal. By the above

discussion, this is equivalent to have LP
G1

(Q) = LP
G2

(Q), for each connected component Q.
Moreover, all cell phase spaces may be assumed to be R in this context.

We look now for Min[G] where G is an n-cell network. Suppose that G has connected
components (∼I -equivalence classes) Q1, . . . , Ql . For i = 1, . . . , l define the subnetworks
Gi in the following way:

Gi = {C, Ei , ∼C, ∼Ei
),

where

Ei = {e ∈ E : H(e) ∈ Qi} and ∀e1, e2 ∈ Ei , e1 ∼Ei
e2 ⇔ e1 ∼E e2.

We can apply algorithm 7.1 to the graphs Gi , for i = 1, . . . , l, computing Min[G1], . . . ,

Min[Gl ]. The minimal class Min[G] is then obtained by considering all possible graphs that
can be formed by junction of one graph of each class Min[G1], . . . , Min[Gl ].

11. Summary

Non-isomorphic coupled cell networks with the same number of cells can generate the same
dynamical behaviour and are called ODE-equivalent. Given an arbitrary number k of cells,
we can partition the set of the k-cell networks into ODE-equivalence classes.

Given an ODE-class, we can ask for the network, or the networks, in the class with minimal
number of edges. We start by addressing the case where the networks are homogeneous, that is,
where all the cells are isomorphic. We prove that, in the special case of an ODE-class including
an identical-edge homogenous network, there is a unique minimal network (theorem 9.3) which
can be obtained using algorithm 9.6.

For general homogeneous networks, there can be more than one minimal network
(theorem 6.7) which can be computed using algorithm 7.1. In section 8, we illustrate the
application of the algorithm with two examples.

We end by remarking that the minimality of a non-homogeneous network reduces to the
minimality of certain homogeneous subnetworks.

Appendix A. Algorithms

In this section we present an algorithm given by Cohen [2] to calculate the Hermite normal
form of a matrix with integer coefficients. We use the following definition:

Definition A.1 ([2], definition 2.4.2). We say that an m × n matrix M = [mij ] with integer
coefficients is in Hermite normal form (abbreviated HNF) if there exists r � n and a strictly
increasing map f from [r + 1, n] to [1, m] satisfying the following properties:

(1) For r + 1 � j � n, mf (j)j � 1, mij = 0 if i > f (j) and 0 � mf (k)j < mf (k)k if k < j .
(2) The first r columns of M are equal to 0. ♦

We have the following result:

Theorem A.2 ([2], theorem 2.4.3). Let A be an m × n matrix with coefficients in Z. Then
there exists a unique m × n matrix B = [bij ] in HNF of the form B = AU with U ∈ GLn(Z),
where GLn(Z) is the group of matrices with integer coefficients which are invertible, that is,
whose determinant is equal to ±1.
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Although B is unique, the matrix U is not unique. The matrix W formed by the nonzero
columns of B is called the Hermite normal form of the matrix A.

Algorithm A.3 ([2], algorithm 2.4.4). (Hermite normal form). Given an m×n matrix A with
integer coefficients [aij ] this algorithm finds the Hermite normal form H of A and a n × n

unimodular matrix U such that AU = (0|H). We write hij for the coefficients of H , Ai (resp.
Hi, Ui) for the columns of A (resp. H, U ).

(1) [Initialize] Set i = m, k = n and U = In. If m � n then set l = 1 else set l = m − n + 1.
(2) [Row finished?] If all the aij with j < k are zero, then if aik < 0 replace column Ak by

−Ak , replace column Uk by −Uk and go to step 5.
(3) [Choose non-zero entry] Pick among the non-zero aij , with j � k, one with the smallest

absolute value, say aij0 . Then if j0 < k, exchange column Ak with column Aj0 and
exchange column Uk with column Uj0 . In addition, if aik < 0 replace column Ak by −Ak

and replace column Uk by −Uk . Set b = aik .
(4) [Reduce] For j = 1, . . . , k − 1 do the following: set q = �aik/b�, and Aj = Aj − qAk ,

Uj = Uj − qUk . Then go to step 2.
(5) [Final reductions] Set b = aik . If b = 0, set k = k + 1 and go to step 6. Otherwise, for

j > k do the following: set q = �aik/b�, and Aj = Aj − qAk , Uj = Uj − qUk .
(6) [Finished?] If i = l then for j = 1, . . . , n − k + 1 set Hj = Aj+k−1 and terminate the

algorithm, else set i = i − 1, k = k − 1 and go to step 2. ♦
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