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Abstract: Ultrasonic guided wave testing (UGWT) is a non-destructive testing (NDT) technique
commonly used in structural health monitoring to perform wide-range inspection from a single
point, thus reducing the time and effort required for NDT. However, the multi-modal and dispersive
nature of guided waves makes the extraction of essential information that leads to defect detection an
extremely challenging task. The purpose of this article is to give an overview of signal processing
techniques used for filtering signals, isolating modes and identifying and localising defects in UGWT.
The techniques are summarised and grouped according to the geometry of the studied structures.
Although the reviewed techniques have led to satisfactory results, the identification of defects through
signal processing remains challenging with space for improvement, particularly by combining signal
processing techniques and integrating machine learning algorithms.

Keywords: signal processing; signal filtering; defects characterisation; non-destructive testing

1. Introduction

Tanks, pressure vessels and pipelines are omnipresent infrastructures in the industry,
where they are used to store and transport products and raw materials to and from factories
and, in many cases, to distribution points and end customers. Over time, due to material
ageing, corrosion reduces the original wall thickness of the infrastructures, which may
compromise their reliable operation and even cause the collapse of assets. In addition to
representing, in many cases, a risk to the environment, health and integrity of workers and
surrounding populations, this type of situation can cause high economic losses, directly
due to unscheduled stops and indirectly due to supply failures. Thus, within the scope
of protection and optimisation of structural resilience of critical assets, it is fundamental
to carry out an inspection of structural integrity to follow the evolution of the structure
condition during its ageing. In this context, ultrasonic guided waves testing (UGWT)
has shown capabilities of surveying large structural components for defects, contrary to
conventional ultrasonic testing (UT) based on punctual measurements, providing more
comprehensive information about the integrity condition of the structure under analysis [1]
(Figure 1).

Guided waves are elastic waves generated directly in the structure under analysis,
which propagate along its length, confined by the geometric limits of its walls. Hence, they
propagate through the structure and are reflected due to variations in the wall cross-section.
The obtained findings may be related to geometric changes and variations in thickness [1].
Using the arrival time of echoes and propagation velocity in the medium, it is possible to
determine the position of these changes. In turn, the amplitude of the signals allows for the
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estimation of defect sizes [2]. Thus, this technique makes it possible to locate internal or
external defects along an in-service pipe at distances of a few tens of meters from a single
excitation point. Moreover, it is possible to evaluate underground and coated or isolated
structures without the need to alter them, providing more comprehensive information
about their integrity condition.

Figure 1. Representation of the conceptual difference between conventional ultrasonic testing (on the
left) and guided wave ultrasonic testing (on the right).

Unlike conventional UT, there are an infinite number of guided wave modes that are
supported by a structure. Depending on the geometry of the structure, these modes follow a
certain classification. For plates, there are two families of modes: the Lamb waves (symmetric
and asymmetric) and the Shear Horizontal waves. On the other hand, for cylindrical geometries,
the modes can be grouped into three families, namely the Torsional, Longitudinal and Flexural
modes. The acoustic properties of wave modes are a function of the wall thickness, the material
and the frequency. Predicting the properties of the wave modes often relies on heavy mathemat-
ical modelling, which is typically presented in graphical plots, which are known as dispersion
curves. Dispersion is the variation of phase and group velocities of the ultrasonic guided signal
and its propagation characteristics with the frequency and the thickness of the material. Thereby,
the dispersion curves represent the velocities for each mode as a function of frequency. Most
wave modes are dispersive, i.e., the velocity varies with the frequency. Dispersion causes the
wave packets to spread out in time as they propagate through a structure. Only Torsional and
Shear Horizontal waves are non-dispersive and, therefore, are preferred for signal generation [3].

In UGWT, the generation and detection of the signals are performed using a transducer
mechanically coupled to the structure under analysis. There are two main technologies for
these transducers: the piezoelectric and the magnetostrictive technologies. For instance,
in pipes, the transducer is a collar consisting of an array of piezoelectric elements, where
the elements are excited equally and simultaneously to generate an axis-symmetric wave [2].
Alternatively, a 360º magnetostrictive ring transducer can be used, and in this case, the axis-
symmetric generation is ensured due to the symmetry of the patch. In both cases, as stated
before, the Torsional waves, in particular their fundamental mode, are commonly used as exci-
tation waves due to their interesting properties. Nevertheless, even generating non-dispersive
waves with axial symmetry, the non-symmetric nature of defects and some construction
features of the structures will cause mode conversion and give rise to dispersive signals.
The presence of dispersive waves in the signals is also seen as coherent noise. Coherent
noise, as its name indicates, cannot be eliminated by averaging as it is not random. On the
other hand, as it coincides in frequency with the signal of interest, it cannot be filtered using
conventional filtering techniques.

The multi-modal and dispersive nature of guided waves makes the signal processing
particularly challenging, which has been the subject of several studies over the years [4–6].
The used techniques are not necessary only for the interpretation of the received ultrasonic
signals but also for procedure automation, which improves the non-destructive testing and
evaluation, along with their reliability and replicability. Some of the issues that stem from this
involve the elimination of dispersive modes, mode separation and defect identification, as well
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as their classification. To enhance and improve the detection and classification of defects,
several techniques have been employed to process the input signal such as time–frequency
representation, including the reassigned spectrogram and the Winger–Ville distribution,
wavelet analysis, Hilbert–Huang transforms and cross-correlation techniques [7–11].

This review is focused on signal processing techniques that have been applied to
ultrasonic guided wave testing, which has been a growing research and technological field
for the last years (Figure 2) due to reasons aforementioned. There are some reviews on
the topic, but to the authors’ knowledge, the current review is the most recent one whose
focus falls on signal processing techniques, an important factor given the growing interest
and number of articles published recently [10,12–14]. Other recent reviews on ultrasonic
guided wave testing seek to give a general overview of the topic, instead of looking into the
techniques necessary to analyse the acquired data. Just last year, over fifteen studies have
been published, introducing new approaches such as the ones based on the integration of
machine learning algorithms, warranting the need for the current review.

This article is organised according to the following structure: the next section describes
the search employed in the review, and then, the signal processing techniques section is
divided into three sections based on the type of the structure under testing, each presenting
the main achieved results, advantages and limitations of the reviewed techniques. The final
section provides the main conclusions of this study.

2. Searching Method

A systematic review was performed in the SCOPUS database using the following
keywords: “signal processing” and “ultrasonic guided wave testing”, yielding 251 unique
results. Based on an analysis of the title and abstract, 177 works were excluded for not
meeting the following inclusion criteria: using signal processing techniques and being
suitable for ultrasonic guided wave testing. Of the selected results, conference proceedings
and book chapters were excluded, as well as 3 literature reviews. Further analysis of the
body of text of the remainder articles was conducted, which led to 51 full-text original
studies that propose signal processing techniques for ultrasonic guided wave testing in
metallic structures. The PRISMA diagram of the performed systematic search can be seen
in (Figure 3).

Figure 2. Articles published in the last 20 years, which were gathered using the keywords “guided
wave ultrasonic testing, signal processing”.
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Figure 3. PRISMA study flow diagram of the performed systematic literature review.

3. Signal Processing Techniques

As aforementioned, the processing of the guided wave signals resulting from the
interference of the multiple modes supported by the structure under analysis to gather
information about its integrity is still an important challenge in UGWT. Over the last
decade, several techniques have been developed and tested for distinct purposes. Various
articles are focused on signal filtering, particularly for the removal of dispersive modes
in order to improve the signal-to-noise ratio (SNR) and, consequently, increase the sen-
sitivity for defect detection [15–18]. Furthermore, filtering dispersive modes improves
the accuracy of damage localisation by increasing the spatial resolution, as Moll et al.
demonstrated by employing a time-varying inverse filter to convert them into broadband
high-resolution signals [19]. However, removing these modes can also imply the loss of
relevant information, i.e., these modes carry relevant details regarding the nature of the
defects, for example, about their angular position and if they are external or internal [20].
Thereby, the ability to separate modes rather than eliminate the dispersive ones is quite
appealing [6,21]. Beyond signal enhancement and wave mode isolation, the identification
and localisation of the defects are also critical factors in UGWT. Damage identification
and classification have also been explored in several works [22–26], not only to roughly
locate the defects, but also to assess their dimensions and to discern between their type.
At last, a new tendency that has been growing is the use of machine learning algorithms,
which, when combined with techniques of signal processing, allows for improved methods
specifically for damage identification and classification [13,27]. It is important to note that
the application of the signal processing techniques is highly dependent on the geometry
of the structure under analysis as well as their advantages and limitations. An overview
is presented in the next section, where the main used techniques are described. Table 1
presents an overview of the main techniques that have been commonly used, including
their applications and limitations.
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Table 1. Overview of the signal processing techniques that have been commonly used in ultrasonic guided wave testing.

Technique Summary Application Advantages Limitations Ref

Adaptive filtering

Functions as a linear filter
with a transfer function

controlled by parameters and
an optimisation technique for
adjusting those parameters in

each iteration.

Enhances the SNR of
Torsional waves generated by

defects by reducing the
impact of dispersive modes.

Effectively removes noise,
such as noise whose power

spectrum changes over time.

For lower-order Flexural
waves that have closer wave
speeds to Torsional waves,
the noise is not cancelled.

[28]

Split spectrum

Determines distinct
interferograms for spectral

sub-bands, allowing the
ionospheric and

non-dispersive phase terms
to be separated.

Improves SNR by eliminating
dispersive modes.

Enables the detection of flaws
within coherent noise levels.

Accuracy is achieved when
the appropriate filter bank

parameters are chosen, as the
technique is sensitive to

their selection.

[29,30]

Wavelet transforms

Projects a signal into a set of
basis functions named
wavelets, which offer

localisation in the
frequency domain.

Pattern recognition, damage
detection and classification.

Better performance than the
Fourier based filters,
with little to no loss

of information.

Improper selection of the
mother wavelet significantly

affects its usefulness in
extracting defect information.

[4,10,17,22,31–36]

Hilbert–Huang transform

Decomposes a signal into
so-called intrinsic mode

functions along with a trend
with empirical mode
decomposition (EMD)

and obtains instantaneous
frequency data using the

Hilbert transform.

Defect identification.

Preserves the characteristics
of the varying frequency, it is

effective in extracting the
low-frequency oscillations,

and it can be applied to
transient data without zero or

mean references.

Poorly suited for separating
signals when their

frequencies are too close.
[4,10,11,35]
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Table 1. Cont.

Technique Summary Application Advantages Limitations Ref

Matching pursuit

Sparse approximation
algorithm that finds a

sub-optimal solution to the
problem of an adaptive

approximation of a signal in a
redundant set, i.e., dictionary,

of functions.

Damage classification. Good results obtained for
wave separation.

Construction of the
dictionaries can be not

straightforward, the results
are highly dependent upon
the quality of the dictionary

used, and it has high
computational complexity.

[6,19,25,26,37]

Winger-Ville distribution

Computes the Fourier
transform of the ambiguity
function, which provides a

high-resolution
representation in both time

and frequency for
non-stationary signals.

Time–frequency signal
analysis leading to high

calculation accuracy of the
frequency and duration of

the modes.

High spectral resolution can
be achieved, and it does not
suffer from leakage effects.

Can be applied to pipes
and plates.

Cross-term interference can
make it difficult to interpret

the signal properties.
[8,9,21,38]

Reconstruction algorithm for
the probabilistic inspection of

damage (RAPID)

By comparing the signal
difference coefficient of data
acquired either before and

after damage, or at low and
high excitation amplitude,

a damage presence
probability map can

be obtained.

Defect imaging

Construction of an energy
pattern that allows

identifying the dimension of
the failure.

Advanced RAPID
tomographic techniques are

required to improve the
resolution and accuracy of
the obtained images with
respect to the operating

surroundings. Not practical
for field evaluation taking

into account that two
measurements are required.

[39]
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3.1. Pipes

Non-destructive testing and evaluation have become crucial to reduce losses and save
inspection time, specifically in pipelines, which are prevalent in many industries as part of
transportation and distribution networks [40]. Pipes are usually modelled as hollow cylin-
ders, where the axial propagation consists of Torsional and Longitudinal modes. In these
structures, three types of modes are admitted: Torsional, T(0, m), Longitudinal axisym-
metric, L(0, m), and Flexural asymmetrical, F(n, m), modes, where n is the circumferential
order, and m is a variable used to distinguish the modes of a given n order [41]. Some of
the most prominent issues that the signal processing techniques aim to solve when it comes
to the structural health of pipelines include the improvement of the signal-to-noise ratio
through the cancellation of dispersive modes, isolation of modes and imaging of defects,
as well as the characterisation of symmetric and asymmetric defects.

As stated before, dispersive modes decrease the SNR and the spatial resolution, thus
decreasing the sensitivity of the solution to detect defects and hindering the ability to
distinguish between defects close to each other or close to a construction feature of the
structure under analysis, such as welding and bolts. The elimination or filtering of these
specific modes is of great relevance in terms of signal processing, which can be achieved
with the use of techniques such as dispersion compensation, compressed pulse analysis
and split spectrum processing. Adaptive filtering was first introduced by Widrow et al.
as a way to estimate signals distorted by noise or interference [42]. By making use of a
primary input that contains the corrupted signal and a “reference” input that contains
noise correlated to the latter, the reference input is adaptively filtered and subtracted
from the primary input. Mahal et al. proposed a new method to eliminate Flexural wave
modes, instead of extracting noise from the single time-domain signal by using adaptive
filtering. This technique, as mentioned before, is often used as an adaptive noise canceller
and increases the SNR. Different adaption techniques can be applied, but in this specific
case, the authors have employed leaky normalised least mean square (NLMS), which is
more suited for guided wave applications with time-varying noise because it decreases the
amplification of gradient noise and also provides a fast convergence rate. The application
of a leakage factor allows for a faster adaption of the filter weights to the existing noise of
each iteration [28]. The optimal parameter selection is a trade-off between maximum gain
and stable amplification of the SNR of smaller defects.

Furthermore, other techniques that have conventionally been explored for UT can be
adapted to UGWT. Split spectrum processing was first applied to surface search radar oper-
ations [43], having later been adapted to ultrasonic testing [44]. This technique, also known
as signal sub-band decomposition, consists of five major steps. First, the signal is converted
from the time domain to frequency domain, which is followed by the implementation of
a bank of band-pass filters that splits the signal into a set of sub-bands at different centre
frequencies. The results are then converted back to the time-domain, where each element is
normalised by a weighting factor and finally assembled through a recombination algorithm
to yield the output filtered signal. The various frequency ultrasound signals are generated
by dividing the frequency spectrum of the received signal, rather than transmitting at
different frequencies, as is the case in radar applications, and are not correlated with each
other. As a result, when these diverse frequency signals are composited using various
techniques, the SNR can be improved. However, the success of this approach is dependent
on the selection of the filter bank parameters. Good results have been previously achieved
for UT testing, but the same values were not found to be appropriate for UGWT due to the
existence of a combination of modes that operates in the kHz range with different veloci-
ties [29]. Using a brute force search algorithm to manage parameter definition, Pedram et al.
enhance the SNR and spatial resolution of ultrasonic guided wave signals by removing
dispersive wave modes, a technique that since then has been improved as a post-processing
approach on coated pipes to reduce attenuation effects [30].

Mahal et al. introduced a novel statistical approach to identify defect signals corrupted
by coherent noise by using the full potential of the tool-set array of conventional guided wave
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inspection devices. This technique demonstrates the capability of detecting defects using all of
the individual transducers rather than a single signal obtained after the general process. Three
different methods were tested: the first, where the threshold value is static and defined by the
inspector, produced the worst results; in the second, the assigned threshold to each iteration
is a percentage taken from the summation of the amplitude of all of the transducers signals
as the time-domain signal generated by the normal propagation routine; and in the third one,
the number of transducers with the same phase over the total number of transducers, subtracted
by an offset determines the percentage value, which yielded similar results to the second method,
but the threshold value can be set automatically, providing a great benefit in one-off inspections.
This technique also allows the possibility of developing narrowband transducers, as opposed to
the currently used wideband transducers, which have a more focused transfer function and
stronger excitation power [45].

However, increasing the SNR of a signal may have a downside since dispersive
modes carry important information regarding the characteristics of the existing damage.
Preserving this type of information through the isolation and separation of modes, instead
of its filtering, becomes then an attractive approach. This can be achieved through several
techniques, such as applying a wavelet transform (WT), which decomposes a function
into a set of wavelets, allowing the extraction of local spectral and temporal information
simultaneously [4,22]. This concept was first developed by Haar, and since then, has
been extensively studied [46]. Nevertheless, the improper selection of the mother wavelet
significantly affects the usefulness of this technique in extracting defect information from
the reflected signals. It has also been shown not to be suitable for the reduction in coherent
noise, as it removes the smaller amplitudes regardless of whether they are signal or noise,
an issue also found in the application of cross-correlation techniques. Chen J. further
proposed the use of the tone-burst wavelet as the mother wavelet to denoise the signal,
which was found to be effective in extracting defect-related signals and able to achieve
better results than the ones based on the conventional Morlet wavelet when comparing the
temporal waveforms of the normal pipe with those of the corroded pipe [34].

Matching pursuit is a technique often used to separate overlapped modes, which
finds the best match for a signal from an over-complete and redundant dictionary and
has the advantage of being applicable to any type of structure, given the proper dictio-
nary. Matching pursuit decomposition is commonly used to find discrete echoes in a
signal, but it can also be thought of as providing distinctive wavelets that reflect areas
of the signal where energy is concentrated in complex signals [47]. The main limitation
of this technique comes down to the construction of the dictionaries, as it is difficult and
time-consuming to collect extensive data for that end. This technique has been combined
with others to enhance damage detection. A differential evolution algorithm has been
employed to improve parameter searching efficiency, and cross-term free time–frequency
distribution is achieved by superimposing the Wigner–Ville distribution of each matching
atom decomposed [26]. Gaussian modulated functions were chosen as matching atoms
because their time–frequency characteristics match ultrasonic guided-wave signals effec-
tively. The effectiveness of parameter searches can be considerably improved by using the
differential evolution technique, and flaws can be distinguished from echo signals using
time–frequency distribution characteristic comparison. The Wigner–Ville distribution func-
tion was proposed by Eugene Wigner when making calculations of the quantum corrections
to classical statistical mechanics and was later derived as a quadratic representation of the
local time–frequency energy of a signal by J. Ville [48]. Rostami J. et al. expanded upon it by
proposing sparse representation with dispersion-based matching pursuit (SDMP), which
takes dispersion into account, increasing the sparsity of the final representation [6]. This
technique consists of a two-stage algorithm designed with a dictionary based on actual
waves obtained from finite element simulations to represent guided wave signals with
the maximum sparsity. In the first stage, a signal is approximated, and in the second,
the sparsity is further increased based on the frequency components of the excitation signal.
Thus, undesired components of guided wave signals are filtered, and at the end, a very
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clean signal with meaningfully decomposed components remains for further analysis. This
method can be extended to any plate-like structure made from different materials such as
plastic pipes, aluminium and composite plates, steel strands and rails, on the condition that
a new dictionary is built with reference to the geometry of the structure and its material.

To detect and determine the localisation of defects, Mahal H. et al. proposed a
condition-based comparison of the power spectrum achieved from a sliding moving win-
dow for the received signal. The algorithm consists of several steps, the first being its
initialisation, which initialises the excitation sequence to extract the necessary features for
analysis. Then, the main loop uses the advancing window and carries out the pre- and
post-processing of the conditions. Finally, the spectrum of each iteration is compared with
the one achieved from the excitation sequence. In each iteration, the signal is normalised,
and its corresponding power spectrum is generated to detect the Torsional wave. However,
due to significant changes in the excitation sequences, it is not recommended to use this
algorithm with frequencies higher than 42 kHz [5].

With the growth of the machine learning field, new signal processing methods have
been integrated with techniques of signal processing. Artificial neural networks, for ex-
ample, are very appealing due to their ability of generalisation and for not requiring any
physical fault model. Cau et al. made use of traditional feed-forward multi-layer perceptron
networks to obtain information on the size and location of notches. The study employs
Torsional waves as excitation waves, and the finite element method is used to model pipes
and defects in order to obtain several echoes containing damage information. The obtained
signals are then processed to reduce the dimension and extract relevant features. Prelimi-
nary results show that the return time of the received signals is linearly dependent on the
defect position while independent of the entity of the fault, so the notch position can be,
therefore, determined with accuracy [27]. On the other hand, the correlation between the
variation in time–frequency spectra and the shift in predominant modes with the spread of
corrosion can be obtained from the deduction in the dispersion curves. To track the mode
conversions as corrosion progressed, a new time–frequency spectrum was built. By em-
ploying the k-means clustering method, indices are used to quantify the change in signal
intensity with the progress of corrosion along with a modified S-transform. The subjectivity
of contact type monitoring paradigms to contact pressure is a common source of uncertainty.
The proposed method addressed this issue by processing time–frequency-based signals,
with the key components based on propagating modes rather than signal amplitudes [49].
A summary of the techniques employed in pipes can be found in Table 2.

Table 2. Works found addressing signal processing techniques applied to pipes.

Author Year Technique Summary and Results

Liu S. [4] 2021
Wavelet transform (WT) and

empirical mode
decomposition (EMD)

The decomposed signal in WT can better preserve defect
information and reduce the interference of noise signals,

but the signal processed by the EMD is better than that of
the WT.

Chen J. [34] 2017 Tone-burst wavelet

Results show that the location of the corroded areas of the
pipes could be accurately detected using the calculated

group velocity of the guided wave. Comparing the temporal
waveforms of the normal pipe with those of the corrosion,

flaws were easily observed and detected.

Rostami J. [6] 2017
Sparse representation with

dispersion-based
matching pursuit

The SDMP with a dispersive dictionary has greatly
enhanced the performance of the matching pursuit and

guarantees the maximum sparsity. Although the presented
SDMP for signal interpretation addresses the inspection of

steel pipes, it can be applied to any plate.
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Table 2. Cont.

Author Year Technique Summary and Results

Mahal H. [5] 2019 Sliding moving window

Three different pipes with defects sizes of 4, 3 and 2%
cross-sectional area (CSA) material loss were evaluated.
Results demonstrate the capability of this algorithm in

detecting Torsional waves with low SNR without requiring
any change in the excitation sequence.

Pedram S. [29] 2018 Split-spectrum processing

Both techniques achieved the greatest SNR without
distorting the relative amplitudes of the signal of interest,

where an improvement of up to 38.9 dB was observed. SSP
shows good potential to increase the inspection range from a

single test location as it significantly reduces the level of
coherent noise.

Pedram S. [30] 2020 Split-spectrum processing

SSP algorithm is shown to have great potential to decrease
the background noise entirely by minimising the effect of

undesired wave modes throughout the signal’s trace,
whereas the traditional method was not able to achieve this.

Good results were obtained for coated pipes.

Mahal H. [45] 2018 Axisymmetric wave
detection algorithm

An axisymmetric wave detection algorithm was designed,
which was validated by laboratory trials on real-pipe data

with two defects at different locations with varying
CSA sizes.

Mahal H. [28] 2019 Adaptive leaky NLMS filter

The results demonstrated the capability of this algorithm for
enhancing the SNR of the defect. The results proved that the

model parameters can be chosen using a finite element
method model, but it will not result in the maximum gain.

Majhi S. [49] 2019 Modified S-Transform

A novel time–frequency spectrum was developed to
monitor the mode conversions in relation to the progress of

corrosion. K-means clustering is used to quantify the
variation in signal strengths with the progress of corrosion.
The proposed technique was able to obtain the variation in

the distribution of the spectral contribution from
higher-order to lower-order modes.

3.2. Plates

The planar geometry of plates differs from cylindrical pipes, and thus, different approaches
are required. Usually, planar-based ultrasonic-guided wave transducers are used for pressure
vessels, tank bottom plates and wall inspection. Guided waves in plates depend on reflections
from the upper and lower surfaces of the plates to travel long distances on the plate parallel
to these surfaces. The profile and the velocity of each guided wave mode in plates depend
uniquely on their frequency and thickness of the structure; hence, thinner plates may support
guided waves with higher frequencies than thicker plates. There are two families of wave
modes for plates: the Lamb Waves and the Shear Horizontal (SH) Waves. In the Lamb waves,
the particle direction is parallel (longitudinal direction) to the wave propagation direction and
normal to the plate, and there are two different sub-families of modes: symmetrical (S) and
asymmetrical (A) modes. For the SH modes, the particle displacement is perpendicular to the
wave propagation direction. The notation used for these modes is An, Sn and SHn, where n
represents the order of the mode.

In terms of filtering dispersive modes and improving the SNR, techniques such as
wavelet transform-based noise processing and compressed sensing methods can be employed.
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Ianni et al. accomplished the minimisation of the number of scan point locations over
the surface of an inspected structure by using compressed sensing of full wavefield data.
This method asserts that thanks to sparsity: a signal can be acquired and recovered from a
limited number of linear measurements without loss of information, being the reconstruction
performance influenced at large by the choice of a suitable decomposition basis to exploit
such sparsity [50]. Furthermore, wavelet transforms have also been previously mentioned
and studied with the purpose of denoising; for example, Da et al. proposed two approaches
to this issue based on time and wavenumber domains, allowing for a successful inverse
reconstruction of flaws by reflected signals with a signal–noise ratio as high as −5 dB [32].

When it comes to dispersion compensation, a MUSIC-based multichannel technique
was employed by Zabbal et al. to extract dispersion curves from experimental data [51].
When compared to single vector decomposition techniques, this technique enhances weak
modes and displays a low noise level and a high wavenumber resolution, which allows
the characterisation of multi-layered structures of different materials. Xu et al. carried out
dispersion compensation as well for both single-mode and multi-mode guided waves by
using the dispersion curves of the guided wave modes to sparsely decompose the recorded
dispersive guided waves [52].

The use of the estimation of signal parameters via the rotation invariant technique
(ESPRIT) and particle optimisation algorithm has been employed by Chen et al., resulting
in root mean squared errors between the estimated and theoretical dispersion curves calcu-
lated by the inversed model parameters for simulation, steel, aluminium and composite
experiments equal to 0.027, 0.032, 0.033 and 0.102 rad/m [53]. The ESPRIT-based dispersion
curves extraction strategy offers a sharp objective function in the parameter space, whereas
the used particle swarm optimization (PSO) algorithm can be easily implemented with few
parameters to be tuned. The spatio-temporal sparse wavenumber analysis implemented by
Sabeti et al. achieved good results as well for the extraction of dispersion curves, with re-
sults indicating the possibility of accurate reconstruction (correlation coefficient around
0.9) for sampling rates above 60% of the spatio-temporal Nyquist critical sampling rate.
ST-SWA takes a temporally and spatially under-sampled guided wave data matrix as input
and retrieves the sparse representation of the wavefield in the frequency-wavenumber
domain using the two-dimensional model and two-dimensional sparse recovery technique.
The generated representation can then be fed into a forward problem by the model to
rebuild the original fully sampled wavefield [54]. The results indicate that as long as
overfitting is avoided, minor improvements in reconstruction accuracies can be observed
at greater sparsities.

Time–frequency methods allow for an analysis of acoustic signals with multiple prop-
agation modes, as well as the measurement of group velocity dispersion. The dispersion
of several Lamb modes over a wide frequency range can be calculated from a single
measurement by combining a time–frequency analysis with a broadband acoustic excita-
tion source [8]. As opposed to the Wigner–Ville distribution, the smoothed Wigner–Ville
distribution offers a better representation of individual modes and can localise multiple
closely-spaced modes in both time and frequency [9]. Wu et al. was able to success-
fully isolate guided wave modes with a signal decomposition algorithm, combining the
Smoothed Pseudo Wigner–Ville distribution to obtain the time–frequency distribution and
Vold–Kalman filter order tracking to isolate modes. The location of defects can be obtained
from the decomposition results. First, the Smoothed Pseudo Wigner–Ville Distribution
processes the signal to obtain the corresponding time–frequency distribution, followed
by the extraction and separation of the different modes. The Vold–Kalman Filter Order
Tracking is then applied to filter specific mode waveforms. A peak-track algorithm is then
conducted in the significant areas, and finally, to minimise the error, a corresponding filter
is built in the time domain [21]. This technique can also be used in analogue NDT and NDE
based on ultrasonic guided waves.

As previously stated, mode separation is quite an appealing approach to signal pro-
cessing since it preserves the information contained in dispersive modes. Ratassepp et al.
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was able to perform this with a technique based on the guided wave mode orthogonality,
which is used to separate the multi-modal signal into individual time-domain Lamb and SH
mode components at the plate edge with successful results. In comparison to the standard
spatial fast Fourier transform, the orthogonality-relation-based technique reduces the num-
ber of monitoring points and eliminates the need for additional mode filtering operations
because obtaining the amplitudes of the modes is simple. Although the through-thickness
displacements and stress field components must be measured, the orthogonality-relation at
the plate edge is simplified because the stresses are null. As a result, only displacement
components must be measured at a plate edge, making the method practicable [55].

Identifying distances and depth of damage is also a prevalent topic, and recent studies
search to integrate machine learning to achieve better results. Rizvi et al. used an autore-
gressive model based on Burg’s maximum entropy method to modify the kernel of the
discrete Wigner–Ville distribution with an uncertainty of 5% [38]. The conventional Burg
algorithm determines the reflection coefficient by minimising the backward and forward
prediction error of a single sequence or segment, but the Wael and Broersen algorithm is
highly efficient in estimating the prediction error of all the segments taken together; hence,
a single model can be exploited for all the kernel sequences at a time. This model is more
robust and stable, less biased, and more computationally efficient. The proposed technique
can also be applied to pipes. It is important to mention that this study used supervised
machine learning to model the other dimensions of the crack under analysis. In a realistic
case, these parameters would be unknown and would significantly affect the damage signal.
Artificial neural networks have also been employed, where features extracted are fed to
the network, enabling the classification of defects with a success rate > 75 % [56]. Defect
identification can also be performed by using baseline methods, processing the signals and
extracting the time parameters of the wave packets in mode conversion signals [37,57,58].
Algortihms of deep learning have also been employed to this end [59].

Another approach commonly implemented makes use of image reconstruction to
identify defects in the structure under analysis. He et al. proposed a multi-mode damage
imaging technique, which combines a reverse-time migration algorithm with a 3D wave
propagation simulator with the potential to simultaneously determine damage type, size
and location. Even though it was not possible to obtain detailed information on different
modes, good results were achieved for damage location and defect size characterisation [60].
Furthermore, a reconstruction algorithm for probabilistic inspection of damage (RAPID)
was used for tomography [61], with a more accurate quantitative visualisation obtained
using the dominant mode, identified through frequency shifting and short-time Fourier
transform [39]. Images constructed from the correlation coefficients between the scatter-
ing signal and the atoms of the dictionary using a weighted sparse reconstruction-based
anomaly imaging method yield accurate weights [62]. By using the appropriate weights
applied to the objective function, the proposed method can achieve anomaly imaging
with fewer artefacts, making its success limited to the selection of a suitable dictionary.
Zhang et al. developed a processing technique to separate modes to effectively remove
artefacts resulting from the multi-mode interference in the imaging process, which is able
to properly measure multi-site faults with geometry, size, and depth information. Green’s
function is used to back-propagate the scattering Lamb signals in the frequency-domain,
allowing the monitored area’s back-propagated acoustic field information to be collected.
A reverse-time migration method is then applied to reconstruct the damage, by the cross-
correlation between the incident acoustic field and the back-propagated acoustic field [63].
Numerical results show that mode separation pre-processing aids in effectively removing
artefacts caused by multi-mode interference in the imaging process. The full waveform
inversion algorithm is also an interesting guided wave tomography method, which makes
use of a numerical forward model to predict the waveform of guided waves when propagat-
ing through corrosion defects and an inverse model to reconstruct the thickness map from
the ultrasonic signals acquired by transducers around the defect. The results of Rao et al.
show that it is affected by the shape of the defect [64]. The abrupt change in the wall
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thickness was shown to decrease the reconstruction error of small defects compared to the
smoothly varying thickness.

Lugovtsova Y. et al. studied several wavenumber mapping techniques applied to
composite-overwrapped pressure vessels. The study proposes the pre-processing of the
wavefield so that only one mode at one frequency is left before wavenumber mapping,
followed by the application of instantaneous and local wavenumber techniques. This
method presents an excellent defect sensitivity and suitable defect quantification perfor-
mance. The main limitation of this approach is that it is not possible to quantify every
delamination between CFRP plies caused by the impact, as is the case for conventional
UT. Only some parts of the impact damage are visible in the wavenumber and thickness
maps. Another limitation is that the relation between wavenumber and effective thickness
is non-monotonous due to the complexity of the layup of the composite plate used in
experiments and its anisotropy [65].

Wind turbines are often subject to guided wave testing since they are subjected to
significant mechanical loads, requiring an appropriate maintenance strategy to ensure
cost-effective power generation while minimising life cycle expenses. Several studies have
thus been conducted where pattern recognition is carried out using techniques such as
supervised learning classifiers, Wigner–Ville distribution, and filtered signal by Hilbert
Transform [31,66]. The approach taken by Arcos et al. filters the dataset by wavelet
transform, and the dimension of the signal is reduced by feature extraction and selection,
followed by pattern recognition with supervised learning classifiers [36]. It is noteworthy
that although good results have been achieved, the cost and time-consuming process
of acquiring the necessary data for model training needs to be taken into consideration
when employing this method. Table 3 presents a summary of the techniques employed in
plate-like structures [67].

Table 3. Works found addressing signal processing techniques applied to plates.

Author Year Technique Summary and Results

Da Y. [32] 2017 Wavelet transform in time and
wavenumber domains

Wavenumber-domain WT operation gives a better denoising
effect than direct time-domain WT denoising. Using the former,

one can perform the inverse flaw reconstruction by reflected
signals with an SNR as high as −5 dB.

Xu C. [67] 2018
Dispersion compensation

method based on
compressed sensing

The method can compensate both single-mode and multi-mode
dispersive guided waves effectively, based on the accurate
dispersion curves and every dispersive wave packet to the

waveform of the excitation as well, and achieve better
performance than the time-distance mapping method.

Wu J. [21] 2017
Smoothed Pseudo Wigner–Ville
distribution and Vold–Kalman

filter order tracking

The results of the simulation signal and the experimental signal
reveal that the presented algorithm succeeds in decomposing the
multi-component signal into mono components. Further research

needs to be undertaken to validate the feasibility of locating
defects by the algorithm.

Chen Q. [53] 2021

Estimation of signal parameters
via rotation invariant technique

(ESPRIT) and particle swarm
optimisation algorithm

The root mean squared errors between the estimated and
theoretical dispersion curves calculated by the inversed model

parameters for simulation, steel, aluminium and composite
experiments are: 0.027, 0.032, 0.033 and 0.102 rad/m.

Sabeti S. [54] 2020 Spatio-temporal sparse
wavenumber analysis

The results indicate the possibility of accurate reconstruction
(correlation coefficient of around 0.9) for sampling rates above

60% of the spatio-temporal Nyquist critical sampling rate.
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Table 3. Cont.

Author Year Technique Summary and Results

Rizvi S. [38] 2021

Autoregressive model based on
Burg’s maximum entropy

method to modify the
kernel of the discrete

Wigner–Ville distribution

The proposed method precisely estimated the distance between
two closely spaced notches in a metallic plate from different
simulated noisy signals with a maximum uncertainty of 5%.

Bagheri A. [56] 2016 Artificial neural network
The non-contact inspection system and the signal processing
technique enable the classification of the plate health with a

success rate of > 75 %.

Wang G. [37] 2019 Matching pursuit algorithm of
Gabor function

The first iterative compensation of the proposed method can
achieve compensation within the temperature range greater than
7 ◦C, and the compensation within the temperature range greater

than 18 ◦C can be achieved after three iterations.

Jia H. [57] 2020
Baseline-free method based on
the mode conversion and the

reciprocity principle

In the case of 1.0 mm depth, which performed with a strong
mode conversion ability, four obvious wave packets were

observed. The result shows that the method could accurately
localise both defects.

Douglass
A. [58] 2018

Temperature compensation
method based on dynamic time

warping

For frequencies above 200 kHz and temperature differences
above 25 ◦C, the correlation coefficients were consistently greater

than 0.75, while the scale transform showed correlation
coefficients below 0.35. Correlation coefficients are consistent
above 0.75, while the scale transform’s correlation coefficient

dropped to 0.45 with as little as 0.4 ms of data.

He J. [60] 2019 Reverse-time migration
(RTM) imaging

A reverse-time migration (RTM) imaging algorithm was
combined with a numerical simulator: the three-dimensional
elastodynamic finite integration technique (EFIT), in order to

provide multi-mode damage imaging. The results represent the
damage location and size but do not provide detailed information

on different modes.

Lee Y. [39] 2021
Reconstruction algorithm for

probabilistic inspection of
damage (RAPID)

Location possibility was confirmed through the application of the
anti-symmetric mode, and that quantitative imaging was very

difficult in the bending stress dominant mode. The more accurate
quantitative visualisation of defects was achieved when imaging

was performed through this mode.

Xu C. [62] 2019
Weighted sparse

reconstruction-based anomaly
imaging method

Results for carbon fiber-reinforced polymer (CFRP) plate with an
additional mass show that the weights constructed from the
correlation coefficients between the scattering signal and the

atoms of the dictionary are appropriate and accurate.

Zhang H. [63] 2018 Reverse time migration method
Numerical results demonstrate that the pre-processing of mode

separation helps to effectively remove the artefacts resulting from
the multi-mode interference in the imaging process.

Lugovtsova
Y. [65] 2021 Wavenumber mapping

The approaches used deliver an accurate estimate of the in-plane
size of the large delamination at the interface but only a rough

estimate of its depth. None of the wavenumber mapping
techniques used in the study can quantify every delamination

between CFRP plies caused by the impact, which is the case for
conventional UT. This may be solved by using higher frequencies

or more advanced signal processing techniques.
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Table 3. Cont.

Author Year Technique Summary and Results

Arcos Jiménez
A. [36] 2019 Wavelet transform and

supervised learning classifiers

Results show that the combination of the k-nearest neighbours
algorithm with the principal component analysis technique

provides the best results for the detection and diagnosis of mud
in the developed experiments. The classifier that detects and

identifies mud in all cases is the ensemble subspace discriminant
model for E-1. Fuzzy k-nearest neighbours is the

best classifier for E-2.

Tiwari K. [66] 2018 Wavelet transform

The discrete wavelet transform, along with the amplitude
detection technique, was applied on experimental B-scans to

locate and size the defects with a significant accuracy: the
percentage error was less than 12%.

Gómez Muñoz
C. [31] 2018 Wavelet transforms

The envelope of the filtered signal from wavelet transforms is
completed based on the Hilbert Transform, and the pattern
recognition is achieved by autocorrelations of the Hilbert

transform. The approach detects the ISO 12494 cases of un-frozen,
frozen without ice, and frozen with ice in wind turbines.

Tiwari K. [35] 2017 Wavelet transform,
Hilbert–Huang transform

The size of defects having diameters of 15 and 25 mm at the −3
dB threshold level was measured as 9 mm with a percentage error
of 40% and 34.5 mm with a percentage error of 38%. The location

of defects at the −3 dB threshold level from the start point of
scanning was also calculated as 29 mm (for the defect of 15 mm),
with a percentage error of 37.5%, and 405.5 mm (for the defect of

25 mm) with an error of 2%.

3.3. Other Structures

Even though this review is focused on pipes and plate-like structures, it is important
to point out certain methods that have been developed for other elements and geometries
far more complex, thus, presenting new challenges. For example, seven-wire strands, when
considered individually, resemble a hollow cylinder, but altogether, the structure becomes
complex and presents new complications.

In steel strands, He et al. used the lowest Longitudinal mode L(0, 1) as the excitation
mode so that the received signal could be denoised with multi-level discrete wavelet de-
composition and a single branch reconstruction method [33]. Multi-level discrete wavelet
decomposition is based on wavelet analysis, which produces a group of organised de-
compositions. By iterating the decomposition process, a signal is broken down into many
lower-resolution components. To perform dispersion compensation, Legg et al. used disper-
sion curve data to characterise the wave propagation using a broadband maximum length
sequence (MLS) excitation signal and spectrograms in overhead transmission cables [68].
Only the first set of echoes could be resolved without dispersion compensation, whereas
with dispersion compensation and some filtering, individual echoes could be recognised for
at least five sets of echoes from the end of the cable. While the study used an ACSR cable,
the method can be applied to increase the inspection range for other structures, such as
plates, pipes, and other types of cables. Ji et al. later applied singular value decomposition
and the support vector regression model to evaluate the stress level in strands, employing
the theoretical and the finite element method to solve the dispersion curves of single wire
and steel strands under various boundary conditions [69]. Despite simulated and experi-
mental results showing the effectiveness and potential of the proposed technique, it is not
always the best for visualisation. On the other hand, the reliability can be enhanced by
adding more samples.
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Due to the intricate nature of these structures, machine learning techniques have
been applied to further the interpretation of the acquired signals, for example, by using a
deep convolutional neural network (DCNN) with a VGG-like architecture-based regression
model for detecting and estimating the looseness in bolted joints using a laser ultrasonic
technique [70]. First, the signals are measured at each impinging point and then the
imaging process is performed to produce full-field ultrasonic datasets. These datasets are
then submitted to signal processing techniques, and a model evaluation process is used
for choosing the best performance. At last, the DCNN model is generated to estimate
the looseness value of bolted joints. The ultrasonic receiver needs to be set up manually
and can be applied in the straight-line area only. For beams, Liew C. introduced a multi-
layer perceptron for pattern recognition, operating with one hidden layer of neurons,
and progressively trained using a backpropagation algorithm with the integration of a
weight-range selection (WRS) technique that was dependent on the test pattern to achieve
good results for damage location and depth [71].

Attention has also been given on methods that can monitor practical structures with
arbitrary complexity. Recently, Ju et al. proposed a new nonlinear guided wave technique to
non-destructively determine the presence of microstructural defects in a large-area structure
with complex geometry. When the multi-mode guided waves diffusely propagate through
any physically-connected structure with arbitrarily complex geometry, all available guided
wave modes in any interrogated zone of the structure are automatically down-selected by
the medium through attenuation, dispersion, or filtering. Such remaining modes efficiently
transfer energy, for example, to their second harmonic modes, when they encounter micro-
cracks even in the case of irregular geometries [72]. A summary of the techniques employed
in these different structures can be found in Table 4.

Table 4. Works found addressing signal processing techniques applied to other structures.

Author Year Technique Summary and Results

He C. [33] 2008
Multi-level discrete wavelet
decomposition and single

branch reconstruction

The Daubechies wavelet of order 40 is used as the mother
wavelet for the decomposition. This wavelet denoise

method improves the SNR.

Legg M. [68] 2015 Dispersion curve
compensation

Attenuation and dispersion compensation was then
performed for a broadband maximum length sequence
(MLS) excitation signal. It was found that an increase in

terms of SNR between 4 and 8 dB was observed relative to
the dispersed signal. The main benefit was the increased

ability to resolve the individual echoes from closely spaced
structures: the end of the cable and an adjacent cut.

Ji Q. [69] 2021 Singular value decomposition
and support vector regression

Results show that the fundamental mode dispersion curve
offset on the high-frequency part and cut-off frequency

increases as the boundary constraints enhance,
demonstrating the capability of the proposed support vector

regression method for evaluating the stress level in
the strands.

Tran D. [70] 2020 Discrete convolutional
neural network

The DCNN and wave propagation imaging produced the
highest R2 score and lowest MSE score:

0.91 and 1.55, respectively.

Liew C. [71] 2008
Series combined network
with the integration of a
weight-range selection

The system was able to achieve average predictions accurate
to 2.5 and 7.8% of the original training range sizes for the

damage location and depth, while the WRS provided up to
13.9% improvement compared to equivalent conventional

neural networks.
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Table 4. Cont.

Author Year Technique Summary and Results

Ju. T. [72] 2022
Nonlinear response of

multi-mode guided wave
ultrasonic signals

Experimental results are consistent with numerical
simulations, indicating that the proposed method can be

implemented for semi-quantitative detection or early
warning indication of microstructural defects in complex,

large-area structures.

4. Conclusions

Ultrasonic guided wave testing is a dominant field in structural health monitoring and
non-destructive testing, serving as an effective long-range inspection method. Nonethe-
less, the multi-modal and dispersive nature of guided waves makes signal processing a
particularly difficult task. This review aimed to present an overview of signal processing
techniques applied to guided waves. Numerical methods to improve the SNR, isolate and
separate modes, and identify and classify defects were discussed in terms of effectiveness
and limitations, along with machine learning techniques that can be integrated with them,
which is an approach that has shown promising results in the field. New lines of research
can be brought to light with the understanding of the aforementioned issues in terms of
ultrasonic guided waves. The solution seeks to improve the capacity of UGWT to detect
damage in all sorts of structures in a more informed and reliable manner.
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The following abbreviations are used in this article:

UGWT Ultrasonic guided wave testing
NDT Non-destructive testing
SHM Structural health monitoring
SNR Signal-to-noise ratio
EMD Empirical mode decomposition
RAPID Reconstruction algorithm for the probabilistic inspection of damage
WT Wavelet transform
SSP Split spectrum
NLMS Normalised least mean square
SDMP Dispersion based matching pursuit
CSA Cross-sectional area
ESPRIT Estimation of signal parameters via rotational variant technique
CFRP Carbon fibre reinforced polymer
MLS Maximum length sequence
DCNN Deep convolutional neural network
WRS Weight-range selection
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