Reaction-assisted diffusion bonding of Ti-6Al-4V to Al_2O_3

<u>Marcionilo Silva Jr.^{1,2}, A. S. Ramos³, F. Viana^{2,4}, M. T. Vieira⁴, M. F. Vieira^{2,4} and S. Simões^{2,4}</u>

¹ Department of Mechanical Engineering, Federal University of Amazonas, Manaus 69080-005, Brazil. ² CEMMPRE - Centre for Mechanical Engineering, Materials and Processes, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal ³ CEMMPRE- Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra, Portugal ⁴ INEGI - Institute of Science and Innovation in Mechanical and Industrial Engineering, R. Dr. Roberto Frias, 4200-465 Porto, Portugal

Objective

Diffusion bonding is one of the most suitable processes for producing joints with microstructural and mechanical soundness. This work aims at investigating joining of Ti-6Al-4V to Al_2O_3 using Ni/Ti reactive multilayer thin films (alternated Ni and Ti nanolayers) deposited by magnetron sputtering onto the base materials. Due to their exothermic and nanometric character, these multilayers might improve the diffusion bonding process between these dissimilar materials.

Results and Discussion

Without multilayers

Diffusion bonding was carried out at 800° C, 60 min and 5 MPa, without multilayers

Cracks be observed can throughout the interface

Possible the phases at interface : α-Ti and Ti₃Al

Ni/Ti multilayers

Atomic Percent Al

Al-Ti binary phase diagram

Ti-6Al-4V was diffusion bonded to Al_2O_3 at 800° C, 60 min and 5 MPa, using Ni/Ti multilayer thin films

- Interface without pores or cracks
- Possible phases composing the interface: Z1 Ti (α) + Ti (β), Z2 NiTi₂, Z3 NiTi

Conclusions

The main goal of this study is to obtain sound joints between Ti-6Al-4V and Al₂O₃ using the diffusion bonding process assisted by reactive multilayer thin films. The use of Ni/Ti multilayers with 50 nm period improves the quality of the joint interface. However, brittle intermetallic compounds are formed at the interface region.

ACKNOWLEDGEMENTS

This work was financially supported by: Project- PTDC/CTM-CTM/31579/2017—funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES and by the Project UID/EMS/00285/2019