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Abstract Nowadays, millions of people are affected by heart diseases world-
wide, whereas a considerable amount of them could be aided through an elec-
trocardiogram (ECG) trace analysis, which involves the study of arrhythmia
impacts on electrocardiogram patterns. In this work, we carried out the task of
automatic arrhythmia detection in ECG patterns by means of supervised ma-
chine learning techniques, being the main contribution of this paper to intro-
duce the Optimum-Path Forest (OPF) classifier to this context. We compared
six distance metrics, six feature extraction algorithms and three classifiers in
two variations of the same dataset, being the performance of the techniques
compared in terms of effectiveness and efficiency. Although OPF revealed a
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higher skill on generalizing data, the Support Vector Machines (SVM) based
classifier presented the highest accuracy. However, OPF shown to be more
efficient than SVM in terms of the computational time for both training and
test phases.

Keywords ECG heart beats · Electrophysiological signals · Cardiac
dysrhythmia classification · Feature extraction · Pattern recognition ·
Optimum-Path Forest

1 Introduction

The automatic detection and classification of arrhythmias in electrocardiogra-
phy-based signals (ECG) has been widely studied in the last years in order to
aid the diagnose of heart diseases. One way to perform this type of test is to
conduct a long-time recording of the cardiac activity of an individual in his/her
normal routine in order to obtain a reasonable amount of information about
the individual’s heartbeats. However, the posterior task of analysing such data
may be tiresome and more prone to errors when interpreted by human beings,
since there is a huge amount of information to be processed.

In order to cope with such problem, several works have been carried out ar-
rhythmia classification in EEG signals by means of machine learning-oriented
techniques [5, 14, 18, 15, 1]. However, regardless of the classification algorithm
used, some processing steps are crucial to design a reasonable approach to de-
tect arrhythmia. The quality of classification when dealing with ECG signals
is directly dependent on the pre-processing phase, which aims at filtering noise
frequencies that might interfere with ECG signal [20]. After preprocessing, it
is required to detect and segment each heartbeat of the ECG signal. In order
to perform this task, an important step is the detection of the QRS complex
(three deflections from ECG signal), specifically the R wave, since most part of
techniques for the detection and segmentation of heartbeats are based on the
location of such deflection. Because of the steep angular coefficient and ampli-
tude of the R wave, the QRS complex becomes more obvious than any other
part of the ECG signal, being easier to be detected for later segmentation.

The final step is the classification of ECG signals, which is usually accom-
plished in a supervised fashion. Support Vector Machines (SVMs) [29, 27, 32,
7, 1, 8, 12, 6] and Artificial Neural Networks (ANNs) [9, 33, 34, 13, 11, 31,
23, 28, 21, 30] are among the most used machine learning techniques for this
purpose. Other approaches such as Linear Discriminant Analysis [5] and a hy-
bridization of Support Vector Machines and Artificial Neural Networks [10]
are also applied for heartbeat classification. However, one of the main short-
comings related to the aforementioned pattern recognition techniques concerns
with their parameters, which need to be fine-tuned prior to their application
over the unseen samples (test set). SVMs are known due to their good skills
on generalizing over test samples, but with the cost of having a high compu-
tational burden when learning the statistics of the training data, since each
different kernel has its own parameters to be set up. ANNs are usually very fast
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for classifying samples, but its training step may be trapped in local optima,
as well as it is not straightforward to choose a proper neural architecture.

Based on such assumptions, Papa et al. [26, 24] proposed the Optimum-
Path Forest (OPF) classifier, which is a framework for designing classifiers
based on graph partitions, being the samples (feature vectors) encoded by
graph nodes and connected to each other by means of a predefined adjacency
relation. A set of key nodes (prototypes) competes among themselves in order
to conquer the remaining nodes offering to them optimum-path costs. This
competition process generates a set of optimum-path trees rooted at each pro-
totype node, meaning that a sample of a given tree is more strongly connected
to its root than to any other in the forest.

The OPF classifier has gained considerable attention in the last years,
since it has some advantages over traditional classifiers: (i) it is free of hard-
to-calibrate control parameters; (ii) it does not assume any shape/separability
of the feature space; (iii) it runs the training phase usually much faster; and
(iv) it can take decisions based on global criteria. However, to the best of our
knowledge, the OPF classifier has never been employed to aid the diagnosis
of arrhythmias in heart rate by means of ECG signals so far. Therefore, the
main contribution of this paper is to evaluate OPF effectiveness in ECG-based
arrhythmia classification, being its results compared against some state-of-
the-art pattern recognition techniques in terms of accuracy, computational
time, sensitivity and specificity. Finally, another contribution of this work is
to assess the performance of six different feature extraction methods in the
aforementioned context, mainly: the approaches proposed by Chazal et al. [5],
Güler and Übeyli [9], Song et al. [29], Yu and Chen [33], You and Chou [34],
and Ye et al. [32].

2 Methodology

In this section, we describe the methodology employed in this work. Initially,
the MIT-BIH (Massachusetts Institute of Technology - Beth Israel Hospital
Boston) Arrhythmia Database [19] is described addressing considerations of
ANSI/AAMI standard EC57 [3], which standardizes the evaluation of compu-
tational tools for the classification of cardiac arrhythmia datasets. After that,
the feature extraction techniques used to generate the feature vectors are then
described, followed by the description of the statistical parameters used to
evaluate the performance of the classifiers under comparison.

2.1 MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database is composed of signals from electrocardio-
graphy exams, being widely used to evaluate the performance of algorithms
concerning the task of detecting arrhythmias [22]. The data consists of 48
records, 30 minutes-long, taken from 24 hours of ECG acquisition, being the
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samples obtained from two different channels. The signals were acquired from
47 patients between 1975 and 1979 at the Laboratory of Arrhythmia Boston’s

Beth Israel Hospital, which are aged between 23 and 89 years of which 22 fe-
males and 25 males. The analog records were digitized according to a sampling
rate of 360Hz, and the heartbeats marked and manually classified by experts
in 15 classes regarding the type of arrhythmia. The types of arrhythmia iden-
tified in the database are indicated in Table 1.

Table 1 Types of heartbeats presented in the MIT-BIH database grouped according to
AAMI Standard.

AAMI class MIT-BIH original class Type of beat

Normal (N)

N Normal beat
L Left bundle branch block beat
R Right bundle branch block beat
e Atrial escape beat
j Nodal (junctional) escape beat

Supraventricular ectopic beat (S)

A Atrial premature beat
a Aberrated atrial premature beat
J Nodal (junctional) premature beat
S Supraventricular premature beat

Ventricular ectopic beat (V)
V Premature ventricular contraction
E Ventricular escape beat

Fusion beat (F) F Fusion of ventricular and normal beat

Unknown beat (Q)
/ Paced beat
f Fusion of paced and normal beat
Q Unclassifiable beat

Since the detection and segmentation of beats in ECG signals is not the
main goal of this work, we have employed precomputed annotations of R waves
provided by the database in order to accomplish the signal segmentation. In ad-
dition, 4 records derived from patients that make use of pacemakers that were
discarded, following the recommendation of ANSI/AAMI standard EC57 [3],
which also recommends to group the 15 classes reported in the database’s
annotations into 5 classes (Table 1). Figure 1 depicts some ECG signals for
each class, being class Q represented by 10 signals, and the remaining ones
represented by 100 signals. The signals were randomly picked up from the
database.

2.2 Training and Test Set

The database was partitioned into two sets of records in order to separate
the patients in training and testing groups. The composition of both sets
was based on the study of Chazal et al. [5], which proposed to separate the
patients by balancing each heartbeat class, as presented in Table 2. Besides
the division of heartbeats into 5 classes as defined in [3], it was also considered
the classification of heartbeats proposed by Llamedo and Mart́ınez [15], which
divided the 5 classes proposed in [3] into three main classes: N , S and V .
Classes F and Q, which are less significant, were added to class V .
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Fig. 1 MIT-BIH heartbeat signals grouped according to [3].

Table 2 Composition of the training and test sets according to Chazal et al. [5].

Set Records

Training
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124, 201, 203, 205, 207, 208, 209, 215, 220, 223 e 230

Test
100, 103, 105, 11, 113, 117, 121, 123, 200, 202, 210,
212, 213, 214, 219, 221, 222, 228, 231, 232, 233 e 234

2.3 Feature Extraction

Six feature extraction approaches (associated with Dataset A-F) were cho-
sen based on the work of Luz and Menotti [16], which performed a compari-
son among some of the most used approaches for such purpose, mainly: Dis-
crete Wavelet Transform (DWT), Independent Component Analysis (ICA),
Principal Component Analysis (PCA), as well as information about RR
range/interspace, which is the distance between peaks of two successive R
waves in an ECG signal. For each dataset, the following methods were consid-
ered in this work:

– Dataset A - morphology of the signal and RR range [5];
– Dataset B - DWT [9];
– Dataset C - DWT [29];
– Dataset D - DWT, RR range and signal energy [33];
– Dataset E - DWT, ICA and RR range [34] and
– Dataset F - DWT, ICA, PCA and RR range [32].

The distribution of heartbeats by class and feature extraction approach
considering the division of classes proposed by [3] is shown in Table 3, while Ta-
ble 4 displays the same information considering the distribution into 3 classes
proposed by [15]. In this Table Tb and nf stand for the number of heartbeats of
the set and the number of features extracted by each technique, respectively.
One can noticed the variation in the number of beats among the methods
concerns with the feature extraction techniques, that usually do not allow us-
ing the entire database. Samples located at the extremities of the signal, for
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instance, do not contain enough neighboring samples/segments to perform the
proper feature extraction.

Table 3 Description of the experimental datasets according to AAMI classes [3].

Hearbeat class

Dataset Feature extraction nf N S V F Q Tb

Training

A [5] 155 45,747 940 3,777 415 8 50,887
B [9] 19 45,845 943 3,788 415 8 50,999
C [29] 21 45,825 943 3,788 414 8 50,978
D [33] 13 45,844 943 3,788 415 8 50,998
E [34] 31 45,511 929 3,770 412 8 50,630
F [32] 100 45,844 943 3788 415 8 50,998

Test

A [5] 155 44,181 1786 3,218 388 7 49580
B [9] 19 44,238 1836 3221 388 7 49690
C [29] 21 44,218 1836 3219 388 7 49,668
D [33] 13 44,238 1836 3221 388 7 49,690
E [34] 31 43,905 1823 3197 388 7 49,320
F [32] 100 44238 1836 3221 388 7 49,690

Table 4 Description of the experimental datasets according to [15].

Heartbeat class

Dataset Method nf N SV EB V EB Tb

Train

A [5] 155 45,747 940 4,200 50,887
B [9] 19 45,845 943 4211 50,999
C [29] 21 45,825 943 4,210 50,978
D [33] 13 45,844 943 42,11 50,998
E [34] 31 45,511 929 4,190 50,630
F [32] 100 45,844 943 4,211 50,998

Test

A [5] 155 44,181 1786 3,613 49580
B [9] 19 44,238 1,836 3616 49,690
C [29] 21 4,4218 1,836 3614 49,668
D [33] 13 44,238 1,836 3616 49,690
E [34] 31 43,905 1,823 3592 49,320
F [32] 100 44,238 1836 3,616 49,690

2.4 Optimum Path Forest classifier

Let’s D = D1∪D2 be a λ-labeled dataset, where D1 and D2 denote the training
and test sets, respectively. Let’s S ⊂ D1 be a set of prototypes of all classes
(i.e., the key samples that best represent each samples class). The complete
graph (D1, A) is composed of nodes that represent samples in D1, and any
pair of samples defines an edge in A = D1 × D1 (Figure 2a)1. Additionally,
let’s πs =< s1, s2, . . . , sn, s > be a path with terminus at node s ∈ D1.

Roughly speaking, the OPF classifier contains two distinct phases, being
the first one employed for training purposes, and the latter used to assess the
robustness of the classifier designed in the previous phase. The training phase
aims at building the optimum-path forest, and the test step classifies each

1 The edges are weighted by the distance between their corresponding samples/nodes.
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Fig. 2 (a) In the training step the training set is modeled as a complete graph, (b) a
minimum spanning tree over the training set is computed (prototypes are highlighted), (c)
optimum-path forest over the training set, (d) classification process of a test sample (in
green), and (e) test sample classification.

test node individually, i.e. ,they are added to the training set for classification
purposes only, and further removed.

2.4.1 Training step

S∗ is an optimum set of prototypes when the OPF algorithm minimizes the
classification errors for every s ∈ D1. Such set S∗ can be found by the theoreti-
cal association between the minimum-spanning tree (MST) and the optimum-
path tree for fmax [2]. Briefly, the training is the process of finding the S∗

and an OPF classifier rooted at S∗. The MST in the complete graph (D1, A)
(Figure 2b) is represented by a connected acyclic graph whose nodes are all
samples of D1, and the edges are undirected and weighted by the distances d
between two adjacent samples. Every pair of samples is connected by a single
path, which is minimum according to fmax. Hence, the minimum-spanning
tree contains one optimum-path tree for any selected root node.

The optimum prototypes are the closest nodes of the MST with different
labels in D1 (i.e., samples that fall in the frontier of the classes, as highlighted
in Figure 2b). Removing the edges between different classes, their adjacent
nodes become prototypes in S∗. The OPF algorithm can define an optimum-
path forest with minimum classification errors in D1 (Figure 2c).

Soon after finding prototypes, the OPF algorithm is used, which essentially
aims at minimizing the cost of every training sample. Such cost is computed
using the fmax path-cost function, given by:



8 Victor Hugo C. de Albuquerque et al.

fmax(〈s〉) =

{

0 if s ∈ S

+∞ otherwise,

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}, (1)

where 〈s〉 is a trivial path, 〈s, t〉 is the arc between the adjacent nodes s and
t such that s, t ∈ D1, d(s, t) denotes the distance between nodes s and t, and
πs · 〈s, t〉, is the concatenation of path πs with the arc 〈s, t〉. One can note
that fmax(πs) computes the maximum distance between adjacent samples in
πs when πs is not a trivial path. Roughly speaking, the OPF algorithm aims
at minimizing fmax(πt), ∀t ∈ D1.

2.4.2 Classification step

For any node t ∈ D2, we consider all edges connecting t with samples s ∈ D1, as
though t were part of the training graph (Figure 2d). Considering all possible
paths from S∗ to t, OPF finds the optimum path P ∗(t) from S∗ and labels
t with the class λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗

(Fig. 2e). This path can be identified incrementally evaluating the optimum
cost C(t):

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ D1. (2)

Let the node s∗ ∈ D1 be the one that satisfies Equation 2 (i.e., the P (t)
in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the classification
simply assigns L(s∗) as the class of t. An error occurs when L(s∗) 6= λ(t).

3 Results and Discussion

In this section, we present the experimental results concerning the effectiveness
and efficiency of each pair classifier/feature extraction technique employed in
this work. First of all, the OPF classifier is evaluated considering six distance
metrics: Euclidean, Chi-Square, Manhattan, Chi-Squared and Squared Bray-
Curtis. After that, a comparison among OPF with the best metrics, Support
Vector Machines with Radial Basis Function (SVM-RBF) and a Bayesian clas-
sifier (BC) is then presented.

3.1 Experimental Analysis of Optimum-Path Forest

In this section, we evaluate the performance and the computational time of
the OPF classifier using six distance metrics2. The evaluation is performed
considering the classification according to five [3] and three classes [15].

2 For such purpose, we used the LibOPF library [25].
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3.1.1 Five-class Problem

Here, we present the results considering the experimental dataset divided into
five classes. Table 5 displays the recognition rates obtained by OPF using each
distance metric3 in the datasets defined by each feature extraction approach.

Table 5 OPF accuracy considering 5 classes. (The most accurate result is indicated in
bold.)

Distance metric

Dataset Euclidean Chi-Square Manhattan
[%] [%] [%]

A 80.68 83.26 77.57
B 79.63 88.80 79.43
C 81.25 87.60 84.46
D 90.70 89.12 91.21

E 86.54 89.05 86.47
F 89.12 85.28 90.39

Distance metric

Set Canberra Squared Chi-Squared Bray-Curtis
[%] [%] [%]

A 77.93 76.14 79.81
B 80.51 80.61 87.69
C 84.90 82.63 76.55
D 90.88 90.75 88.90
E 86.53 86.62 81.79
F 86.60 85.70 78.41

We can observe that OPF with Manhattan distance obtained the best
recognition rate with dataset D (91.21%), and that is approximately 0.35%
higher than the second best result obtained with the Canberra distance metric
(90.88%), as well as 0.5% higher than the result obtained with the Squared
Chi-Squared metric (90.75%). Additionally, the results using dataset D were
the best for all employed distances, suggesting that the method proposed by
Yu and Chen [33] might be a good feature extractor to be used together with
OPF. In addition to the recognition rate, we also computed the sensitivity (Se)
and specificity (Sp), as well as the harmonic mean (H) of these two parameters
(Table 6).

The best values of H considering class N were obtained using Canberra
(0.78) and Squared Chi-Squared (0.78) distances and feature extractor C. The
combination of Squared Chi-Squared metric and extractor C resulted in the
best value of H for class S (0.60). In regard to classes V and F , Euclidean

3 The recognition rates were computed using the standard formula, i.e., the ratio of the
number of correct classifications by the number of database samples and H the harmonic
mean between sensitivity and specificity.
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Table 6 Specificity, sensitivity and their harmonic mean considering the OPF classifier and
the AAMI five-classes categorization. (The best values for the harmonic mean are indicated
in bold.) Notice the H, Se and Sp values are not divided by 100 due to the lack of space.

Heartbeat classes

N S V F Q

Metrics Dataset H — Se — Sp H — Se — Sp H — Se — Sp H — Se — Sp H — Se — Sp

Euclidean

A 066 — 085 — 054 002 — 001 — 097 084 — 078 — 091 055 — 038 — 097 000 — 000 — 100
B 050 — 086 — 035 005 — 002 — 097 056 — 041 — 090 001 — 001 — 098 000 — 000 — 100
C 074 — 085 — 066 031 — 018 — 095 084 — 078 — 091 014 — 007 — 097 000 — 000 — 100
D 073 — 096 — 059 030 — 018 — 099 084 — 075 — 097 007 — 004 — 099 000 — 000 — 100
E 065 — 092 — 050 006 — 003 — 098 076 — 062 — 097 029 — 017 — 097 000 — 000 — 100
F 074 — 093 — 062 022 — 012 — 099 091 — 086 — 097 031 — 018 — 097 000 — 000 — 100

Chi-Square

A 017 — 093 — 009 003 — 001 — 099 015 — 008 — 095 005 — 002 — 099 000 — 000 — 100
B 002 — 100 — 001 000 — 000 — 100 000 — 000 — 100 001 — 001 — 100 000 — 000 — 100
C 015 — 098 — 008 002 — 001 — 100 017 — 009 — 098 000 — 000 — 100 000 — 000 — 100
D 004 — 100 — 002 000 — 000 — 100 004 — 002 — 100 000 — 000 — 100 000 — 000 — 100
E 004 — 100 — 002 000 — 000 — 100 004 — 002 — 100 000 — 000 — 100 000 — 000 — 100
F 012 — 095 — 006 002 — 001 — 099 011 — 006 — 097 001 — 001 — 100 000 — 000 — 100

Manhattan

A 066 — 081 — 056 003 — 002 — 095 086 — 082 — 090 051 — 035 — 096 000 — 000 — 100
B 046 — 087 — 031 006 — 003 — 097 051 — 035 — 090 001 — 000 — 099 000 — 000 — 100
C 076 — 088 — 066 031 — 018 — 097 085 — 078 — 093 013 — 007 — 098 000 — 000 — 100
D 071 — 096 — 056 023 — 013 — 099 085 — 075 — 098 008 — 004 — 099 000 — 000 — 100
E 064 — 092 — 048 006 — 003 — 098 075 — 061 — 097 023 — 013 — 097 000 — 000 — 100
F 072 — 095 — 058 010 — 006 — 099 090 — 083 — 098 034 — 021 — 098 000 — 000 — 100

Canberra

A 071 — 081 — 063 047 — 031 — 098 080 — 073 — 087 025 — 015 — 096 000 — 000 — 100
B 042 — 088 — 028 005 — 003 — 098 045 — 029 — 091 002 — 001 — 099 000 — 000 — 100
C 078 — 088 — 071 056 — 039 — 096 084 — 077 — 093 016 — 009 — 099 000 — 000 — 100
D 071 — 096 — 057 026 — 015 — 099 085 — 075 — 098 011 — 006 — 099 000 — 000 — 100
E 064 — 092 — 049 007 — 004 — 098 076 — 062 — 097 024 — 014 — 097 000 — 000 — 100
F 064 — 092 — 049 007 — 004 — 099 083 — 071 — 098 009 — 005 — 095 000 — 000 — 100

Squared
Chi-Sq.

A 065 — 080 — 056 006 — 003 — 097 081 — 076 — 086 037 — 023 — 097 000 — 000 — 100
B 048 — 088 — 033 004 — 002 — 098 053 — 037 — 091 001 — 001 — 098 000 — 000 — 100
C 078 — 085 — 072 060 — 044 — 095 085 — 078 — 093 022 — 012 — 097 000 — 000 — 100
D 073 — 096 — 060 032 — 019 — 099 085 — 075 — 097 009 — 005 — 099 000 — 000 — 100
E 065 — 092 — 050 006 — 003 — 098 076 — 062 — 097 027 — 016 — 097 000 — 000 — 100
F 069 — 090 — 056 020 — 011 — 099 087 — 079 — 098 008 — 004 — 093 000 — 000 — 100

Bray-curtis

A 051 — 086 — 036 018 — 010 — 098 057 — 041 — 090 016 — 009 — 098 000 — 000 — 100
B 005 — 098 — 002 000 — 000 — 100 000 — 000 — 098 000 — 000 — 100 000 — 000 — 100
C 055 — 083 — 041 008 — 004 — 096 057 — 043 — 088 001 — 000 — 099 000 — 000 — 100
D 002 — 100 — 001 001 — 000 — 100 000 — 000 — 100 000 — 000 — 100 000 — 000 — 100
E 036 — 090 — 022 005 — 003 — 098 044 — 028 — 096 006 — 003 — 096 000 — 000 — 100
F 053 — 085 — 039 003 — 002 — 096 054 — 038 — 091 021 — 012 — 098 000 — 000 — 100

distance has provided the best results with feature extractor F. As to class Q,
OPF did not classify any sample properly due to the following main factors:
the non-concentrated distribution of samples from that class, and the low
representation of samples in the training and test sets (∼ 0.00015% of the
total number of samples).

However, a high recognition rate not always reflects a satisfactory perfor-
mance in terms of classes separation, once that only class N (patient without
cardiac arrhythmia) represents ≈ 90% of all dataset. For instance, let’s con-
sider the case of Chi-Square metric, which presented the best accuracy rates
for feature extractor B (Table 5). The good results of such metric did not lead
us to a satisfactory performance in terms of classes separation, since it pre-
sented low values for sensitivity and specificity for all classes, except for class
N . This is due to the misclassification of most samples of classes S, V , F and
Q, as belonging to class N , leading to a low harmonic mean (2%). In order to
clarify this, the confusion matrix related to feature extractor B and Squared
Chi-Square metric was built, Table 7. From the data obtained, one can verify
that the dataset is dominated by class N , which clearly influenced all other
classes. This can be confirmed by analyzing the results obtained for classes
S, V , F and Q, that had the majority of the samples misclassified as being
from class N (first column of Table 7). Also, it is important to stress that the
accuracy calculated in this work do consider unbalanced datasets [26].
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Table 7 Confusion matrix obtained for Chi-Square and feature extractor B.

True class

N S V F Q

Predicted class

N 44,115 1,834 3,209 350 7
S 27 0 2 4 0
V 76 0 7 32 0
F 19 2 3 2 0
Q 1 0 0 0 0

3.1.2 Three-class Problem

We have also evaluated OPF considering the three-class dataset division pro-
posed by Llamedo and Mat́ınez [15], where classes F and Q are merged into
class V . Table 8 presents the accuracy results obtained considering the three-
class problem. Once again, the best result was obtained with Manhattan dis-
tance and feature extractor D (91.42%), as happened in the five-class problem
(Table 5). Although some classes have been merged, we still have an umbal-
anced dataset. The aggregation of classes F and Q into class V has smoothed
such problem, but class C still concentrates approximately 90% of the sam-
ples. Table 9 presents the results obtained in terms of sensitivity, specificity
and harmonic mean.

Table 8 OPF accuracy considering three classes. (The most accurate result is indicated in
bold.)

Distance metric

Dataset Euclidean Chi-Square Manhattan
[%] [%] [%]

A 81.00 83.41 77.82
B 80.43 88.89 80.18
C 81.41 87.68 84.61
D 90.92 89.13 91.42

E 86.81 89.08 86.80
F 89.46 85.35 90.78

Distance metric

Dataset Canberra Squared Chi-Squared Bray-Curtis
[%] [%] [%]

A 78.29 76.43 80.20
B 81.21 81.46 88.48
C 85.18 82.84 76.88
D 91.07 90.94 88.92
E 86.84 86.90 82.11
F 86.87 85.94 78.73
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Considering class N , Canberra and Squared Chi-Squared distances to-
gether with the feature extractor C presented the best values for the harmonic
mean (H) (0.78). Additionally, Squared Chi-Squared and the same feature
extractor achieved the best result over class S. This may indicate that aggre-
gation into 3 classes does not influence the measure H for classes N and S,
the same values where obtained in the five-class problem (Table 6). In regard
to class V , the best value (H = 0.88) was obtained with Euclidean and Man-
hattan distances over the feature extractor F. Therefore, the aggregation into
three classes seemed to improve the results for the classes V , F and Q, which
are now clustered into class V .

Table 9 Specificity, sensitivity and their harmonic mean considering the OPF classifier
and the three-class categorization. (The best values for the harmonic mean are indicated in
bold.)

Heartbeat class

N S V

Metric Dataset H—Se—Sp H—Se—Sp H—Se—Sp

Euclidean

A 066 — 085 — 054 002 — 001 — 097 082 — 077 — 088

B 050 — 086 — 035 005 — 002 — 097 062 — 047 — 090
C 074 — 085 — 066 031 — 018 — 095 080 — 072 — 089
D 073 — 096 — 059 030 — 018 — 099 081 — 070 — 096

E 065 — 092 — 050 006 — 003 — 098 074 — 060 — 094
F 074 — 093 — 062 022 — 012 — 099 088 — 082 — 094

Chi-Square

A 016 — 093 — 009 003 — 001 — 099 016 — 009 — 094

B 002 — 100 — 001 000 — 000 — 100 002 — 001 — 100
C 015 — 098 — 008 002 — 001 — 100 016 — 009 — 098

D 004 — 100 — 002 000 — 000 — 100 004 — 002 — 100
E 004 — 100 — 002 000 — 000 — 100 004 — 002 — 100

F 012 — 095 — 006 002 — 001 — 099 011 — 006 — 097

Manhattan

A 066 — 081 — 056 003 — 002 — 095 083 — 080 — 086
B 046 — 087 — 031 006 — 003 — 097 056 — 041 — 090
C 076 — 088 — 066 031 — 018 — 097 081 — 072 — 091

D 071 — 096 — 056 023 — 013 — 099 081 — 070 — 097
E 064 — 092 — 048 006 — 003 — 098 073 — 060 — 094

F 072 — 095 — 058 011 — 006 — 099 088 — 081 — 096

Canberra

A 071 — 081 — 063 047 — 031 — 098 077 — 072 — 083
B 042 — 088 — 028 005 — 003 — 098 051 — 035 — 091

C 078 — 088 — 071 056 — 039 — 096 081 — 073 — 092
D 071 — 096 — 057 026 — 015 — 099 081 — 070 — 097
E 064 — 092 — 049 007 — 004 — 098 074 — 061 — 094

F 064 — 092 — 049 007 — 004 — 099 078 — 068 — 093

Squared Chi-Sq.

A 066 — 080 — 056 006 — 003 — 097 078 — 074 — 083
B 048 — 088 — 033 004 — 002 — 098 059 — 044 — 090

C 078 — 085 — 072 060 — 044 — 095 081 — 074 — 090
D 074 — 096 — 060 032 — 019 — 099 081 — 070 — 096

E 065 — 093 — 050 006 — 003 — 098 074 — 061 — 094
F 069 — 090 — 056 020 — 011 — 099 082 — 074 — 091

Bray-curtis

A 051 — 086 — 036 018 — 010 — 098 057 — 042 — 088

B 001 — 099 — 001 000 — 000 — 100 001 — 000 — 099
C 055 — 083 — 041 008 — 004 — 096 057 — 042 — 087
D 002 — 100 — 001 001 — 000 — 100 000 — 000 — 100

E 035 — 090 — 022 005 — 003 — 098 045 — 030 — 092
F 053 — 085 — 039 003 — 002 — 096 055 — 039 — 089
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Table 10 presents the OPF computational time (in seconds) for the training
and test phases, being the fastest approaches the ones using Bray-Curtis and
Manhattan metrics, since they are simpler to compute. It is important to
highlight that these results are accompanied by a satisfactory classification
performance, since OPF with Manhattan distance obtained generally very
good classification results.

Table 10 OPF computational time (in seconds) considering the three-class problem. (Best
values are indicated in bold.)

Distance metrics

Euclidean Chi-Square Manhattan

Training — Test — Total Training — Test — Total Training — Test — Total

A 445.18 — 682.89 — 1128.07 3230.23 — 1987.14 — 5217.37 335.07 — 584.79 — 919.86
B 145.53 — 173.48 — 319.01 416.65 — 6.57 — 423.21 54.50 — 94.53 — 149.03
C 142.70 — 177.63 — 320.34 464.50 — 102.25 — 566.74 55.19 — 97.24 — 152.43
D 128.90 — 132.96 — 261.86 299.52 — 2.74 — 302.26 40.09 — 53.07 — 93.15
E 172.76 — 181.13 — 353.89 650.34 — 14.66 — 665.00 80.58 — 108.42 — 189.00
F 317.86 — 444.96 — 762.82 2103.07 — 818.28 — 2921.35 219.07 — 360.48 — 579.55

Distance metric

Canberra Squared Chi-Squared Bray-Curtis

Training — Test — Total Training — Test — Total Training — Test — Total

A 1479.33 — 1588.78 — 3068.11 1478.00 — 1588.67 — 3066.67 1143.30 — 1168.50 — 2311.81
B 187.74 — 161.54 — 349.28 189.63 — 183.48 — 373.11 43.35 — 0.06 — 43.41
C 203.89 — 225.74 — 429.63 204.11 — 230.33 — 434.44 104.88 — 118.07 — 222.96
D 130.45 — 142.55 — 273.00 132.00 — 136.51 — 268.52 35.22 — 6.01 — 41.22

E 297.03 — 198.04 — 495.07 299.07 — 227.00 — 526.07 150.78 — 125.34 — 276.12
F 969.35 — 997.24 — 1966.59 9682.9 — 976.22 — 1944.50 431.96 — 519.69 — 951.66

3.1.3 Comparative Analysis of the Classifiers considering the five-class

problem

In order to compare the performance of OPF over traditional classifiers (SVM-
RBF4 and Bayesian classifier), we considered only the two best distance met-
rics found in the previous section, i.e., Manhattan and Squared Chi-Squared
distances. Therefore, we can summarize the techniques to be compared as
follows:

– OPF-L1: OPF with Manhattan distance;
– OPF-SCS: OPF with Squared Chi-Squared distance;
– SVM-RBF: Support Vector Machines using RBF kernel5;
– BC: Bayesian Classifier.

Table 11 shows the accuracy obtained for each feature extractor and clas-
sifier considering five classes of heartbeats. The most accurate technique was
SVM-RBF with 94.09% of classification accuracy, followed by OPF-L1, BC
and OPF-SCS, which obtained 91.21%, 90.95% and 90.75% of classification

4 SVM parameters were optimized through cross-validation procedure.
5 SVM implementation used was based on LIBSVM [4].
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accuracies, respectively, considering the feature extractor D. Additionally, Ta-
ble 12 presents the sensitivity, specificity and harmonic mean results.

Table 11 Accuracy rates obtained considering AAMI five classes. (The best accuracy value
is indicated in bold.)

Classifier

Dataset OPF-L1 [%] OPF-SCS [%] SVM-RBF [%] BC [%]

A 77.57 76.14 88.21 80.69
B 79.43 80.61 84.06 79.52
C 84.46 82.63 89.82 81.37
D 91.21 90.75 94.09 90.95
E 86.47 86.62 87.06 86.82
F 90.39 85.70 87.12 89.14

Table 12 Harmonic mean, specificity and sensitivity obtained considering five classes and
all classifiers. (The best values are indicated in bold.)

Heartbeat class

N S V F Q

Metric Dataset H—Se—Sp H—Se—Sp H—Se—Sp H—Se—Sp H—Se—Sp

OPF-L1

A 066 — 081 — 056 003 — 002 — 095 086 — 082 — 090 051 — 035 — 096 000 — 000 — 100
B 046 — 087 — 031 006 — 003 — 097 051 — 035 — 090 001 — 000 — 099 000 — 000 — 100
C 076 — 088 — 066 031 — 018 — 097 085 — 078 — 093 013 — 007 — 098 000 — 000 — 100
D 071 — 096 — 056 023 — 013 — 099 085 — 075 — 098 008 — 004 — 099 000 — 000 — 100
E 064 — 092 — 048 006 — 003 — 098 075 — 061 — 097 023 — 013 — 097 000 — 000 — 100
F 072 — 095 — 058 010 — 006 — 099 090 — 083 — 098 034 — 021 — 098 000 — 000 — 100

OPF-SCS

A 065 — 080 — 056 006 — 003 — 097 081 — 076 — 086 037 — 023 — 097 000 — 000 — 100
B 048 — 088 — 033 004 — 002 — 098 053 — 037 — 091 001 — 001 — 098 000 — 000 — 100
C 078 — 085 — 072 060 — 044 — 095 085 — 078 — 093 022 — 012 — 097 000 — 000 — 100
D 073 — 096 — 060 032 — 019 — 099 085 — 075 — 097 009 — 005 — 099 000 — 000 — 100
E 065 — 092 — 050 006 — 003 — 098 076 — 062 — 097 027 — 016 — 097 000 — 000 — 100
F 069 — 090 — 056 020 — 011 — 099 087 — 079 — 098 008 — 004 — 093 000 — 000 — 100

SVM-RBF

A 074 — 092 — 063 006 — 003 — 099 093 — 091 — 096 082 — 072 — 097 000 — 000 — 100
B 049 — 091 — 033 001 — 000 — 100 061 — 045 — 093 000 — 000 — 098 008 — 005 — 100
C 070 — 094 — 056 015 — 008 — 098 089 — 083 — 097 003 — 002 — 100 000 — 000 — 100
D 080 — 098 — 067 051 — 035 — 099 090 — 082 — 099 004 — 002 — 100 000 — 000 — 100
E 070 — 092 — 057 012 — 007 — 099 089 — 082 — 098 001 — 001 — 094 000 — 000 — 100
F 074 — 091 — 063 026 — 015 — 099 093 — 089 — 096 030 — 018 — 096 000 — 000 — 100

BC

A 066 — 084 — 054 002 — 001 — 097 084 — 078 — 091 055 — 038 — 097 000 — 000 — 100
B 050 — 086 — 035 005 — 002 — 097 056 — 041 — 090 001 — 001 — 099 000 — 000 — 100
C 074 — 085 — 066 031 — 018 — 095 084 — 078 — 091 013 — 007 — 097 000 — 000 — 100
D 073 — 096 — 059 029 — 017 — 099 085 — 076 — 097 007 — 004 — 099 000 — 000 — 100
E 064 — 093 — 049 005 — 003 — 098 076 — 062 — 097 027 — 016 — 097 000 — 000 — 100
F 074 — 093 — 062 021 — 012 — 099 091 — 086 — 097 031 — 018 — 097 000 — 000 — 100

From Table 12, one can realized that the best results in terms of har-
monic mean were obtained for class N with SVM-RBF and feature extractor
D (80.00%). This result is about 2% higher than the second best result ob-
tained by OPF-SCS with feature extractor C (78.00%). In regard to class S,
the best classifier was OPF-SCS using feature extractor C, followed by SVM-
RBF with 51% of classification accuracy, which achieved the best recognition
rates for classes V and F .
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Table 13 displays the mean execution times considering the training, test-
ing and total time (training+testing) required by each classifier6. The fastest
classifier in the training phase was the BC in all datasets, followed by OPF-
L1. The OPF-SCS was faster than SVM-RBF in all datasets as well, except
for dataset F, where SVM-RBF had the third best time. The excessive times
of SVM-RBF were due to the grid search that is necessary to fine-tune its
parameters.

Table 13 Mean computational time (in seconds) required in the AAMI five-class problem.
The standard deviation is also displayed. (The lowest times are indicated in bold.)

Dataset

Classifier

OPF-L1 OPF-SCS

train test total train test total

A 337.0 (1.6) 584.2 (0.7) 921.2 (1.8) 1487.2 (10.8) 1604.7 (12.4) 3091.9 (22.3)
B 54.8 (0.7) 102.9 (13.4) 157.7 (13.7) 191.9 (2.4) 181.2 (4.0) 373.1 (3.6)
C 55.5 (0.4) 95.1 (4.0) 150.6 (3.9) 206.9 (2.0) 242.5 (7.9) 449.4 (9.9)
D 40.3 (0.2) 53.3 (7.3) 93.6 (7.2) 132.4 (0.8) 131.3 (4.9) 263.7 (5.4)
E 81.1 (0.8) 115.1 (3.5) 196.2 (3.2) 302.2 (3.7) 223.8 (4.9) 525.9 (6.9)
F 220.4 (2.1) 380.3 (6.9) 600.8 (6.1) 974.9 (6.7) 990.0 (3.4) 1964.8 (9.9)

Dataset

Classifier

SVM-RBF BC

train teste total train test total

A 2668.4 (26.2) 32.2 (6.7) 2700.6 (31.3) 62.9 (0.3) 1622.2 (8.6) 1685.2 (8.9)
B 576.0 (474.0) 12.6 (1.7) 588.6 (472.3) 11.1 (0.2) 236.0 (2.7) 247.1 (2.8)
C 195.3 (8.6) 6.9 (2.1) 202.2 (10.5) 11.9 (0.0) 253.8 (3.0) 265.7 (2.9)
D 170.7 (5.7) 6.7 (0.0) 177.4 (5.7) 8.7 (0.1) 173.0 (1.9) 181.7 (1.9)
E 546.5 (48.2) 9.4 (0.7) 555.9 (47.5) 15.6 (0.1) 354.1 (4.1) 369.6 (4.0)
F 608.7 (9.5) 15.3 (0.1) 624.0 (9.6) 42.0 (0.1) 1058.8 (9.2) 1100.8 (9.2)

In the test phase, the best computational time was obtained by SVM-RBF
(6.7 seconds), being almost 8 times faster than OPF-L1 (53.3 seconds), both
with feature extractor D. The third fastest technique was OPF-SCS (131.3
seconds) while BC, despite being the fastest in the training phase, took 173
seconds to classify the samples. In resume, SVM-RBF was the fastest in the
classification phase, followed by OPF-L1, OPF-SCS and BC. Usually, SVM is
fast for classifying samples, since it only considers the support vectors for such
purpose, while OPF may need to evaluate a considerable number of training
samples for that. However, if we consider the total time, OPF-L1 was the most
efficient technique, which may lead us to consider it as a very suitable classifier
concerning the trade-off between low computational time and high recognition
rate.

Table 14 presents the confusion matrix related to SVM-RBF classifier in
the five-class problem for the Dataset A [5]. It can be noted a confusion of class
SV EB with class N , where only 37 (2 %) samples were classified correctly for
class SV EB. However, using the OPF-SCS classifier with Dataset C [29], the
amount of samples correctly classified in the same class was around 43 %.

6 We have executed all techniques 10 times for statistical purposes.
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Thus, to detect Cardiac arrhythmia, also known ascardiac dysrhythmia or
irregular heartbeat, the accuracy over class SV EB is usually considered most
important. As such, the OPF-SCS accuracy obtained for this class, which is
much higher than the one of SVM-RBF, is of greater clinical relevance.

Table 14 Confusion matrices obtained for SVM-RBF and OPF-SCS classifiers.

SVM-RBF - Dataset A [5]

True Class

N SVEB VEB F Q

C
la
ss
ifi
ed

a
s

N 40099 1705 221 83 3
SVEB 361 37 3 0 0
VEB 2285 23 2933 15 4
F 1436 21 61 290 0
Q 0 0 0 0 0

OPF-SCS - Dataset C [29]

True Class

N SVEB VEB F Q

C
la
ss
ifi
ed

a
s

N 37677 612 591 322 2
SVEB 2495 802 33 2 0
VEB 2798 412 2514 17 5
F 1245 9 81 47 0
Q 3 2 0 0 0

3.1.4 Comparative Analysis of the Classifiers considering the three-class

problem

In this section, we analyze the performance and computational time of all clas-
sifiers considering the three-class division proposed by [15]. Table 15 presents
the recognition rates for each pair classifier/feature extractor method, being
the sensitivity, specificity and harmonic mean results displayed in Table 16.

Table 15 Classification accuracy considering the three-class problem. (The best accuracy
value is indicated in bold.)

Classifier

Dataset OPF-L1 OPF-SCS SVM-RBF BC

A 77.82 76.43 80.01 80.98
B 80.18 81.46 84.29 80.31

C 84.61 82.84 90.01 81.53
D 91.42 90.94 93.72 91.17
E 86.80 86.90 88.45 87.07

F 90.78 85.94 83.66 89.47
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In regard to class N , the SVM-RBF classifier has obtained the best har-
monic mean value with feature extractor D, meanwhile OPF-SCS was the
most accurate technique for class S using feature extractor C. These results
are consistent with those obtained considering five classes. With respect to
class V , three classifiers obtained the best harmonic mean values: SVM-RBC
with feature extractor A, and OPF-L1 and BC with feature extractor F. How-
ever, in all these three cases, the values are followed by low sensitivity values
for class S.

Table 16 Harmonic mean, specificity and sensitivity considering three classes and all clas-
sifiers. (The best values are indicated in bold.)

Heartbeat class

N S V

Metric Dataset H—Se—Sp H—Se—Sp H—Se—Sp

OPF-L1

A 066 — 081 — 056 003 — 002 — 095 083 — 080 — 086
B 046 — 087 — 031 006 — 003 — 097 056 — 041 — 090
C 076 — 088 — 066 031 — 018 — 097 081 — 072 — 091
D 071 — 096 — 056 023 — 013 — 099 081 — 070 — 097
E 064 — 092 — 048 006 — 003 — 098 073 — 060 — 094
F 072 — 095 — 058 011 — 006 — 099 088 — 081 — 096

OPF-SCS

A 066 — 080 — 056 006 — 003 — 097 078 — 074 — 083
B 048 — 088 — 033 004 — 002 — 098 059 — 044 — 090
C 078 — 085 — 072 060 — 044 — 095 081 — 074 — 090
D 074 — 096 — 060 032 — 019 — 099 081 — 070 — 096
E 065 — 093 — 050 006 — 003 — 098 074 — 061 — 094
F 069 — 090 — 056 020 — 011 — 099 082 — 074 — 091

SVM-RBF

A 072 — 082 — 065 007 — 004 — 098 088 — 092 — 084
B 053 — 090 — 038 001 — 000 — 100 069 — 056 — 091
C 070 — 095 — 056 012 — 007 — 099 083 — 074 — 095
D 080 — 098 — 067 052 — 035 — 099 084 — 074 — 098
E 071 — 093 — 057 012 — 006 — 099 086 — 080 — 093
F 072 — 087 — 062 023 — 013 — 099 086 — 085 — 088

BC

A 066 — 085 — 054 002 — 001 — 097 082 — 077 — 088
B 050 — 086 — 035 005 — 002 — 097 062 — 047 — 089
C 074 — 085 — 066 031 — 018 — 095 080 — 072 — 089
D 073 — 096 — 059 029 — 017 — 099 082 — 071 — 096
E 065 — 093 — 049 005 — 003 — 098 074 — 060 — 094
F 074 — 093 — 062 021 — 012 — 099 088 — 083 — 094

Table 17 presents the mean computational time in seconds concerning
all techniques. Once again, the lowest computational time for training was
achieved by BC and followed by OPF-L1 for all datasets. Except for feature
extractors C and F, where OPF took longer to train, SVM-RBF classifier was
the most costly technique for training the samples. Relatively to the five-class
problem, similar computational times could be observed for BC and OPF-
based classifiers, evidencing the robustness of these classifiers when dealing
with different number of classes. As expected, the SVM computational time
decreased, since we have less classes to be analyzed during the pair-wise com-
parison against them7. Last but not least, SVM-RBF was the fastest technique
for the classification phase, while OPF-L1 obtained the lowest execution time
considering both training and test phases.

7 LIBSVM implements the one-against-one method for multi-class tasks.
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Table 17 Mean computational time (in seconds) considering the three-class problem. The
standard deviation is also displayed. (The lowest times are indicated in bold.)

Dataset

Classifier

OPF-L1 OPF-SCS

train test total train test total

A 336.0 (1.7) 575.2 (11.5) 911.2 (9.9) 1486.1 (7.1) 1597.9 (8.1) 3084.1 (15.1)
B 54.5 (0.2) 93.0 (2.8) 147.5 (3.0) 191.2 (1.7) 192.3 (7.8) 383.4 (9.4)
C 55.5 (0.3) 92.3 (9.2) 147.7 (9.3) 206.2 (2.0) 233.5 (12.7) 439.7 (14.1)
D 40.2 (0.2) 52.2 (5.2) 92.4 (5.4) 132.6 (0.5) 134.1 (3.8) 266.7 (3.5)
E 81.0 (0.4) 105.9 (4.2) 186.9 (4.0) 301.6 (2.6) 224.8 (4.2) 526.4 (2.2)
F 221.7 (2.7) 368.8 (11.6) 590.5 (14.1) 973.4 (4.7) 977.3 (2.8) 1950.7 (6.8)

Dataset

Classifier

SVM-RBF BC

train test total train test total

A 2069.7 (23.7) 25.9 (5.4) 2095.6 (28.6) 62.5 (0.1) 971.2 (5.2) 1033.7 (5.3)
B 280.5 (2.9) 11.6 (0.7) 292.2 (3.6) 11.0 (0.1) 141.5 (0.7) 152.5 (0.7)
C 194.8 (2.7) 7.7 (0.0) 202.5 (2.7) 11.7 (0.1) 152.9 (0.3) 164.6 (0.4)
D 165.9 (1.0) 6.0 (0.0) 171.9 (0.9) 8.7 (0.1) 105.4 (1.4) 114.1 (1.5)
E 536.1 (58.9) 9.1 (0.8) 545.2 (58.1) 15.5 (0.1) 213.5 (2.2) 229.0 (2.3)
F 553.3 (26.2) 17.0 (6.8) 570.3 (32.9) 41.6 (0.3) 638.5 (5.1) 680.1 (5.3)

Also, based on a similar analysis to the one carried out with the data in
Table 14, it could be confirmed that also in the three-classes problem OPF-SCS
is the most appropriate to identify the pathological classes, i.e., the ones with
greater clinical interest. Luz et al. [17] considered only the Euclidean metric,
and obtaining highest accuracy rates of 90.7% and 90.9% in the 3- and 5-
classe problems, respectively, considering in both cases the extraction method
proposed by [34]. However, the present work could improve the accuracy of
OPF with Manhattan distance, obtaining 91.42 and 91.21% in the 3- and 5-
classe problems, respectively, for the same dataset and with computational
time inferior to the one achieved by Luz et al. [17]. This considerable increase
in accuracy directly leads to a more accurate detection of pathological classes.
As such, it is possible to identify more precisely a cardiac arrhythmia with
the Manhattan distance than with Euclidean one. Again, it should be stressed
that the aforementioned classes are of great importance for clinical analysis,
and that the SVM classifier could not detect accurately enough the samples
of these classes.

4 Conclusions and Future Works

In this paper, a detailed study about the performance and computational
time of supervised classification algorithms regarding the task of arrhythmia
detection in ECG signals was presented. The main contributions of this work
are: (i) to evaluate the OPF classifier in the task of arrhythmia detection,
(ii) to evaluate six distances with OPF, among which the best accuracy rates
were obtained by the Manhattan metric, while better generalization (i.e., the
accuracy achieved per class) was attained using Square Chi-Square distance,
(iii) to test six feature extraction techniques and investigate which one leads
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to better recognition rates and generalization, (iv) to compare OPF against
Support Vector Machines and a Bayesian classifier, being found that OPF was
the less generalist, while the SVM classifier was the most accurate, and, finally,
(v) to find that OPF achieved the best trade-off between computational load
and recognition rate.

Being OPF less generalist with respect to classes V and S, which are of
great clinical significance regarding to class N , one can concluded that this
classifier is more appropriate for the classification of arrhythmias in ECG
signals that the SVM and Bayesian classifiers.

Since we observed that OPF and SVM-RBF were the most accurate clas-
sifiers, our future works will be guided to explore the synergy between these
classifiers in order to build an ensemble of classifiers aiming at increasing the
recognition rate of arrhythmia detection in ECG signals, as well as to evaluate
other traditional and most recent feature extraction methods.
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14. Korürek, M., Dogan, B.: ECG beat classification using particle swarm
optimization and radial basis function neural network. Expert Systems
with Applications 37(12), 7563–7569 (2010)

15. Llamedo, M., Mart́ınez, J.P.: Heartbeat classification using feature selec-
tion driven by database generalization criteria. IEEE Transactions on
Biomedical Engineering 58(3), 616–625 (2011)

16. Luz, E., Menotti, D.: How the choice of samples for building arrhythmia
classifiers impact their performances. In: Engineering in Medicine and
Biology Society (EMBC), Annual International Conference of the IEEE,
pp. 4988–4991. IEEE, Boston, EUA (2011)

17. Luz, E.J.S., Nunes, T.M., Albuquerque, V.H.C., Papa, J.P., Menotti, D.:
ECG arrhythmia classification based on optimum-path forest. Expert Sys-
tems with Applications 40(9), 3561–3573 (2013)

18. Mar, T., Zaunseder, S., Mart́ınez, J.P., Llamedo, M., Poll, R.: Optimiza-
tion of ECG classification by means of feature selection. IEEE Transac-
tions on Biomedical Engineering 58(8), 2168–2177 (2011)



Robust Automated Cardiac Arrhythmia Detection in ECG Beat Signals 21

19. Mark, R.G., Schluter, P.S., Moody, G.B., Devlin, P.H., Chernoff, D.:
An annotated ECG database for evaluating arrhythmia detectors. IEEE
Transactions on Biomedical Engineering 29(8), 600 (1982)

20. Martis, R.J., Acharya, R., Adeli, H.: Current methods in electrocardio-
gram characterization. Computers in Biology and Medicine 48, 133–149
(2014)

21. Martis, R.J., Acharya, U.R., Mandana, K., Ray, A., Chakraborty, C.: Ap-
plication of principal component analysis to ECG signals for automated
diagnosis of cardiac health. Expert Systems with Applications 39, 11,792–
11,800 (2012)

22. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia
database. IEEE Engineering in Medicine and Biology Magazine 20(3),
45–50 (2001)

23. Nejadgholi, I., Mohammad, M.H., Abdolali, F.: Using phase space recon-
struction for patient independent heartbeat classification in comparison
with some benchmark methods. Computers in Biology and Medicine 41,
411–419 (2011)

24. Papa, J.P., Falcão, A.X., de Albuquerque, V.H.C., Tavares, J.M.R.S.: Ef-
ficient supervised optimum-path forest classification for large datasets.
Pattern Recognition 45(1), 512–520 (2012)

25. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: LibOPF: A library for the design
of optimum-path forest classifiers. Campinas, SP (2009). Version 2.1,
available at http://www.ic.unicamp.br/~afalcao/LibOPF

26. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification
based on optimum-path forest. International Journal of Imaging Systems
and Technology 19(2), 120–131 (2009)

27. Park, K.S., Cho, B.H., Lee, D.H., Song, S.H., Lee, J.S., Chee, Y.J., Kim,
I.Y., Kim, S.I.: Hierarchical support vector machine based heartbeat clas-
sification using higher order statistics and hermite basis function. In:
Computers in Cardiology, pp. 229–232 (2008)

28. Rai, H.M., Trivedi, A., Shukla, S.: Ecg signal processing for abnormalities
detection using multi-resolution wavelet transform and artificial neural
network classifier. Measurement 46, 3238–3246 (2013)

29. Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K.: Support vector ma-
chine based arrhythmia classification using reduced features. International
Journal of Control, Automation, and Systems 3(4), 509–654 (2005)

30. Wang, J.S., Chiang, W.C., Hsu, Y.L., Yang, Y.T.C.: ECG arrhythmia
classification using a probabilistic neural network with a feature reduction
method. Neurocomputing 116, 38–45 (2013)

31. Y. Chen, S.Y.: Selection of effective features for ECG beat recognition
based on nonlinear correlations. Artificial Intelligence in Medicine 54,
43–52 (2012)

32. Ye, C., Coimbra, M.T., Kumar, B.V.K.V.: Arrhythmia detection and clas-
sification using morphological and dynamic features of ECG signals. In:
IEEE International Conference on Engineering in Medicine and Biology
Society, pp. 1918–1921. IEEE, Buenos Aires, Argentina (2010)



22 Victor Hugo C. de Albuquerque et al.

33. Yu, S., Chen, Y.: Electrocardiogram beat classification based on wavelet
transformation and probabilistic neural network. Pattern Recognition Let-
ters 28(10), 1142–1150 (2007)

34. Yu, S., Chou, K.: Integration of independent component analysis and neu-
ral networks for ECG beat classification. Expert Systems with Applica-
tions 34(4), 2841–2846 (2008)


