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Abstract

In this paper a positive control law is designed for multi-input positive

systems that ensures asymptotic tracking of a desired output reference value.

This control law can be viewed as a generalization of another one proposed

in the literature for the control of the total mass in SISO compartmental

systems, but is suitable for a wider class of positive systems. The controller

proposed here is applied to the control of the depth of anesthesia (DoA),

by means of the administration of propofol and remifentanil, when using a

parameter parsimonious Wiener model recently introduced in the literature.

Its performance is illustrated by realistic simulations.
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1. Introduction

The goal of automatically controlled drug administration is to determine

the dosage to be administered to achieve and keep a certain e�ect of a drug in

the patient. In this work, the primary goal is to track the level of the depth

of anesthesia, here measured by the bispectral index (BIS), which is trans-

formed into a problem of tracking the e�ect concentration by inverting the

generalized Hill equation. This problem can be modeled as an output refer-

ence tracking problem. More specifically, after modeling the phenomenon in

question by a control system in which the control input is the dosage of drug

to be administered and the output is the corresponding e�ect, one seeks a

control law that forces the system output to converge to the desired reference

value.

Since the quantities involved in this process are all nonnegative, this prob-

lem falls within the realm of positive systems. These systems have gained

increasing attention in the control literature during the last decades. See

for example Farina and Rinaldi [1], Haddad et al. [2], Roszak and Davison

[3], Roszak and Davison [4],Kaczorek [5], Willems [6], Soltesz et al. [7]. In

this latter reference, a controller by integral action together with a positivity

constraint was proposed, showing that the input is positive provided that

the integral gain ‘ > 0 is chosen su�ciently small. This controller does not

presuppose a full knowledge of the model, however it does need the a pri-

ori knowledge of the steady-state gain matrix, in order to obtain a suitable

value for the integral gain ‘. This may take a long time to obtain in case the
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process poles are not fast enough. This constitutes a disadvantage for its use

in our application. The controller presented in this paper ensures reference

tracking independently from the positive value of the design parameter, with-

out requiring the knowledge of the steady-state gain matrix. Nevertheless, it

does require information about the model parameters and the corresponding

state. However, these parameters can be identified in a short preliminary

stage, and a state observer can be included in order to estimate the state

online. The control law, developed in this work, is considered to be nonlin-

ear, not due to use of nonlinear design methods, but rather because of the

imposition of positivity constraint on the control variable, which makes it a

nonlinear function of the state of the system.

In this paper we consider single output positive systems with multiple

inputs and design a nonlinear positive control law that ensures asymptotic

tracking of a desired output reference value. This control law can be viewed

as a generalization of the one proposed in Bastin and Provost [8] for the

control of the total mass in SISO compartmental systems. However, whereas

the control law in Bastin and Provost [8] is only designed for compartmental

systems, our control law is suitable for a wider class of positive systems as is

sustained by the new theoretical results presented in the paper (Section 2).

Our results prove to be useful for the control of the depth of anesthesia,

a problem that has lately deserved much attention. For instance, the work

developed in Soltesz et al. [7] presents two controllers in parallel for the DoA

of a patient based on a PID controller for the administration of propofol and

a proportional controller for the input of remifentanil. Here, we present one

single multi-output feedback controller for both drugs. A good overview of
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the underlying problem may be found in Dumont [9] and in the references

there in.

The proposed controller is applied to the control of the depth of anesthesia

by means of propofol and remifentanil using the recently proposed parameter

parsimonious Wiener model (see Silva et al. [10]). The performance of the

controller is analyzed by means of several simulations along with realistic

simulations relying on identified real patients data collected in the surgery

room during general anesthesia.

The present paper is structured as follows. In Section 2 a control law

is designed for output reference tracking in MISO positive systems. The

application of the corresponding controller in general anesthesia is presented

in Section 3. In Section 4 the performance of the proposed controller is

illustrated by means of several simulations, and the results of its application

in realistic simulated patients are presented in Section 5. Conclusions follow

in Section 6.

2. Output Reference Tracking for MISO Positive Systems

In this section the general problem of reference tracking for multi-input/single-

output (MISO) positive systems is presented. The application to the control

of anesthesia will be presented in Section 3.

2.1. Problem Description

Consider a positive system with m inputs and a single output described

by the state-space model
Y
_]

_[

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(1)
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where A is a n◊n Meztler matrix, i.e., a matrix in which all the o�-diagonal

components are nonnegative, and B and C are matrices with nonnegative

entries (see Godfrey [11]) of dimension n ◊ m and 1 ◊ m, respectively. Here,

for short, in the sequel (1) is denoted by (A, B, C). Moreover, for a vector

v, the notations v Ø 0 (v > 0) and v Æ 0 (v < 0) mean that all its entries are

respectively positive (strictly positive) and negative (strictly negative). The

same applies to matrices.

Given a desired constant reference value y

ú for the output, a control law

u = Kx + L is sought such that the closed-loop system
Y
_]

_[

ẋ(t) = (A + BK)x(t) + BL

y(t) = Cx(t),
(2)

has bounded trajectories and tracks the reference, i.e., such that its output

verifies lim
tæŒ y(t) = y

ú.

2.2. Controller design

Here we solve the problem of output reference tracking, by regarding it as

a problem of controlling the system to a level set �
y

ú = {x œ Rn

+ : Cx = y

ú}

in the state space, where Rn

+ = {x œ Rn : x Ø 0}.

For this purpose, we first design an auxiliary control law, ũ, and then

impose positivity to ũ in order to obtain a positive control input u. We also

make the following assumptions: (A1) A is stable, (A2) CB is a nonzero row

matrix and (A3) CA < 0.

Let

ũ(t) = ≠ECAx(t) + E⁄(yú ≠ y(t)), (3)

where ⁄ > 0 is a design parameter, and E is a column matrix with nonnega-

tive entries such that CBE = 1. Note that such a matrix always exists since
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CB has nonnegative entries, at least one of each is strictly positive. The

application of this control input leads to the closed-loop dynamics

ẋ(t) = Ax(t) + B(E⁄(yú ≠ y(t)) ≠ ECAx(t)) (4)

which implies that

ẏ(t) = Cẋ(t) = CAx(t) + ⁄(yú ≠ y(t)) ≠ CAx(t) (5)

= ≠⁄(y(t) ≠ y

ú) (6)

and therefore

‰̇
y(t) ≠ y

ú = ≠⁄(y(t) ≠ y

ú). (7)

Hence, y(t) ≠ y

ú = e

≠⁄t(y(0) ≠ y

ú) and

lim
tæŒ

y(t) = y

ú
, (8)

which means that the output reference value is asymptotically tracked.

In the sequel it is shown that reference tracking can still be achieved even

when a positivity restriction to the control input is imposed. This positivity

restriction is made componentwise and corresponds to taking the control

input as u =
5

u1 · · · u

m

6
T

with u

i

= max(ũ
i

, 0), where ũ

i

denotes the

i ≠ th component of ũ. Note that ũ

i

= E

i

(≠CAx + ⁄(yú ≠ y)), where E

i

Ø 0
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is the i ≠ th entry of E. Therefore if ũ

i

< 0 then ≠CAx + ⁄(yú ≠ y) < 0, and

all the other components ũ

j

of ũ corresponding to nonzero E

j

are negative

as well. This allows to conclude that either u = ũ or u = 0. In this latter

case

⁄(yú ≠ y) < CAx. (9)

Since, by assumption (A3), CA < 0 and x Ø 0, then CAx Æ 0 and (9)

implies that y

ú ≠ y < 0.

To prove that all trajectories converge to y

ú, we apply the LaSalle’s in-

variance principle (see LaSalle [12], Leine and Wouw [13], Liao et al. [14],

Bullo [15]) to the Lyapunov function

V (x) = 1
2(yú ≠ y)2 (10)

for the system (1) on Rn

+.

For u = ũ:

V̇ (x) = ≠(yú ≠ y)ẏ = ≠(yú ≠ y)Cẋ (11)

= ≠(yú ≠ y)C (Ax + B [E⁄(yú ≠ y) ≠ ECAx]) (12)

= ≠⁄(yú ≠ y)(yú ≠ y) = ≠⁄(yú ≠ y)2 Æ 0 (13)

For u = 0 (which can only happen when y

ú ≠ y < 0, see (3)):

V̇ (x) = ≠(yú ≠ y)Cẋ = ≠ (yú ≠ y)
¸ ˚˙ ˝

<0

CAx¸ ˚˙ ˝
Æ0

Æ 0 (14)

7



Thus

V̇ (x) =

Y
_]

_[

≠⁄(yú ≠ y)2 for u = ũ

≠(yú ≠ y)CAx for u = 0
(15)

By the LaSalle’s invariance principle, all system trajectories converge to the

largest set contained in

W = {x œ Rn

+ : V̇ (x) = 0}, (16)

which is forward-invariant under the closed-loop dynamics. It follows from

(15) that V̇ (x) = 0 either when u = ũ and y = y

ú or when u = 0,which

implies y

ú
< y, and CAx = 0. So we get

W = {x œ Rn

+ : y = y

ú or (yú
< y and CAx = 0)}. (17)

Moreover, the set �
y

ú of positive states for which the corresponding out-

put y equals y

ú is forward-invariant under the closed-loop dynamics. In fact,

let F (x) be the vector field associated with the closed-loop system

Y
_]

_[

ẋ = Ax + Bu

u = max(ũ, 0).
(18)

When Cx = y

ú, u = ũ = ≠ECAx Ø 0 and F (x) = Ax ≠ BECAx. As a

consequence, recalling that CBE = 1, one obtains CF (x) = 0 showing that

F (x) is tangent to �
y

ú . So �
y

ú is forward-invariant under the closed-loop

dynamics.

On the other hand, the trajectories starting in a state x for which Cx > y

ú

and CAx = 0 converge to �
y

ú , because
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Cx > y

ú ∆ u = 0 (19)

∆ ẋ(t) = Ax(t). (20)

Since A is assumed to be stable, if the control would remain zero, then

lim
tæŒ Cx(t) would be zero. This implies that at a certain time instant,

say t

ú, Cx(tú) reaches the value Cx(tú) = y

ú, i.e. x(tú) œ �
y

ú . From this

instant on the trajectories remain indefinitely in the forward-invariant set

�
y

ú . Therefore, the largest invariant subset contained in W is �
y

ú and, by

LaSalles’s invariance principle, all the closed-loop system trajectories con-

verge to this set, which means that lim
tæŒ y(t) = y

ú as desired.

The study just developed leads to the following result.

Theorem 1. Let (A, B, C) be a positive MISO linear system, such that A

is stable, CA < 0 and CB ”= 0. If u = max(ũ, 0), ũ = ≠ECAx + E⁄(yú ≠

y), with ⁄ > 0, and E Ø 0 such that CBE = 1, then the closed-loop system

output y(t) verifies lim
tæŒ y(t) = y

ú.

3. CONTROL OF THE DEPTH OF ANESTHESIA

Combinations of drugs are used in general anesthesia because no single

drug is able to provide all its necessary components (namely, analgesia, hyp-

nosis, areflexia) without seriously compromising hemodynamic and/or res-

piratory function, impairing operating conditions, or delaying postoperative

recovery. Ideal combination of dosing facilitates optimal therapeutic e�ect

without producing significant side e�ects.
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Here, a control law is designed to administer the hypnotic agent propofol

and the opioid analgesic remifentanil to patients during surgery, in order to

achieve a desired level of unconsciousness. This is measured in terms of the

depth of anesthesia (DoA), usually denoted by z(t), which is a feature that

can be related to the quantities of administered drugs as explained next.

In what concerns DoA, the response to the administration of hypnotics

and analgesics is commonly modeled as a high order pharmacokinetic/phar-

macodynamic (PK/PD) Wiener model (see Bailey and Haddad [16]). How-

ever, a new Wiener model (parameter parsimonious Wiener model) with a

reduced number of parameters describing the join e�ect of propofol and of

remifentanil as been introduced in Silva et al. [10]. Here, the main goal of

this section is to design a controller for the DoA based on this parameter

parsimonious Wiener model.

The e�ect concentration of propofol (cp

e

) and of remifentanil (cr

e

) can be

modeled by the parameter parsimonious Wiener model developed by Silva

et al. [10]. According to this model

c

p

e

(s) = k1k2k3–
3

(k1– + s)(k2– + s)(k3– + s)u

p(s), (21)

c

r

e

(s) = l1l2l3÷
3

(l1÷ + s)(l2÷ + s)(l3÷ + s)u

r(s), (22)

where c

p

e

(s), c

r

e

(s) denote the Laplace transforms of c

p

e

(t) and c

r

e

(t), respec-

tively, and u

p(s) and u

r(s) are the Laplace transforms of the administered

doses of propofol, u

p(t), and of remifentanil, u

r(t), in mg min

≠1. Each of
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the transfer functions in (21) and (22) has three aligned poles, more con-

cretely, the first one has poles (≠k1, ≠k2, ≠k3)– and the second one has poles

(≠l1, ≠l2, ≠l3)÷. The parameters k

j

, l

j

, j = 1, 2, 3 were chosen in Silva et al.

[10] according to the collected patient data and fixed at the values k1 = 10,

k2 = 9, k3 = 1, l1 = 3, l2 = 2, l3 = 1. The parameters – and ÷ are patient

dependent.

The joint e�ect of the concentrations of propofol and remifentanil on the

BIS level is modelled in Silva et al. [10] by the generalized Hill equation:

z(t) = z0
1 + (µU

p + U

r)“

, (23)

where µ, “ are patient dependent parameters, z0 is the e�ect at zero con-

centration, and U

p and U

r respectively denote the potencies of propofol and

remifentanil, which are obtained by normalizing the e�ect concentrations

with respect to the concentrations that produce half the maximal e�ect when

the drug acts isolated (denoted by EC

p

50 and EC

r

50, respectively), i.e.:

U

p = c

p
e

EC

p
50

and U

r = c

r
e

EC

r
50

.

(24)

In this work we consider – œ [0.03 , 0.17], ÷ œ]0 , 5.70], EC

p

50 = 10 and

EC

r

50 = 0.01. The values of EC

p

50 = 10 and EC

r

50 = 0.01 are taken from

Mendonça et al. [17] and the intervals for the values of – and ÷ are obtained

as follows: – œ [–̄ ≠ 2‡

–

, –̄ + 4‡

–

] and — œ]0 , —̄ + 4‡

—

], where –̄ and

‡

–

respectively denote the mean and standard deviation of the parameters

identified in Mendonça et al. [17], and ÷̄ and ‡

÷

have the obvious meaning,
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now for the parameter ÷. The choice of lower bound 0 for ÷ is due to the fact

that ÷ should be positive and ÷̄ ≠ 2‡

÷

< 0.

The transfer functions in (21) and (22) can be represented by the follow-

ing state-space model:

Y
_]

_[

ẋ

i = A

i

x

i + B

i

u

i

c

i

e

=
5

0 0 1
6

x

i

, i = p, r

(25)

where

x

i =

S

WWWWWU

x

i

1

x

i

2

x

i

3

T

XXXXXV
is the state,

A

p =

S

WWWWWU

≠10– 0 0

9– ≠9– 0

0 – ≠–

T

XXXXXV
, A

r =

S

WWWWWU

≠3÷ 0 0

2÷ ≠2÷ 0

0 ÷ ≠÷

T

XXXXXV
,

B

p =

S

WWWWWU

10–

0

0

T

XXXXXV
and B

r =

S

WWWWWU

3÷

0

0

T

XXXXXV
.

(26)

Defining U = µU

p + U

r yields

z(t) = z0
1 + U

“

, (27)
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with

U = 1
EC

p

50
µc

p

e

+ 1
EC

r

50
c

r

e

= 0.1µc

p

e

+ 100c

r

e

. (28)

This leads to the following model

Y
_____]

_____[

ẋ(t) = Ax(t) + Bu(t)

U(t) = 0.1µc

p

e

(t) + 100c

r

e

(t) = Cx(t)

z(t) = z0
1+U

“ ,

(29)

where

x(t) =

S

WU
x

p(t)

x

r(t)

T

XV , A =

S

WU
A

p 03◊3

03◊3 A

r

T

XV ,

B =

S

WU
B

p 03◊1

03◊1 B

r

T

XV , C =
5

0 0 0.1µ 0 0 100
6

.

(30)

As mentioned before, for surgery purposes it is desirable to maintain the

BIS close to a certain reference level z

ref between 40 and 60. This can be

achieved by designing a control law that forces U(t) to follow the constant

reference level

U

ref = “

Ú
z0

z

ref

≠ 1. (31)

In order to apply the design method of the previous subsection, the prod-

uct CB should be a nonzero row. However, here CB =
5

0 0
6

and the
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condition is not met. To overcome this problem, instead of the output U(t),

the output

M(x(t)) = 0.1M

p(xp(t)) + 100M

r(xr(t)) = C

M

x(t), (32)

with

M

p(xp) =
5

1 1 1
6

x

p

, M

r(xr) =
5

1 1 1
6

x

r and

C

M

=
5

0.1 0.1 0.1 100 100 100
6

,

(33)

is considered. The notations M(x(t)), M

p(xp(t)), and M

r(xr(t)) are inspired

by the fact that, in compartmental systems, the sum of the state components

usually corresponds to the total substance mass present in the system. As we

shall later see, a connection between the reference value U

ref and an adequate

reference value M

ref for M can be established, in such a way that when

lim
tæŒ M(x(t)) = M

ref then lim
tæŒ U(t) = U

ref and lim
tæŒ z(t) = z

ref , as

desired.

In a first stage we show that every positive constant reference value M

ú

for M (x(t)) can be tracked using a control law as proposed in Theorem 1.

Then, in a second step, we determine which value should be taken for M

ú

in order to ensure that the desired constant reference value z

ref for the BIS

level is achieved.

Since now, for the new output matrix C

M

, defined in (33), C

M

B =
5

– 300÷

6
is nonzero, the applicability of the proposed controller design

method is guaranteed.
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Proposition 1. Let (A, B, C

M

) be a positive MISO linear system, with A,

B as in (30) and C

M

as in (33). Define

E =

S

WU
fl

1

T

XV
1

–fl + 300÷

, (34)

where fl > 0 is an arbitrary nonnegative value. Then, applying the control

law

u = max(0, ũ), (35)

with

ũ =

S

WU
ũ

p

ũ

r

T

XV = E (≠C

M

Ax + ⁄(Mú ≠ M)) and ⁄ > 0 (36)

=

S

WU
fl

1

T

XV (≠C

M

Ax + ⁄(Mú ≠ M)) 1
–fl + 300÷¸ ˚˙ ˝

ū

, (37)

and ⁄ > 0

to the system (A, B, C

M

), yields lim
tæŒ M(x(t)) = M

ú.

Proof. Since C

M

BE = 1, all the conditions of Theorem 1 are satisfied yield-

ing the desired result.

Remark: Note that, in this control law, ⁄ and fl are design parameters.

Moreover

S

WU
ũ

p

ũ

r

T

XV =

S

WU
fl

1

T

XV ū, with ū as in (37), meaning that the proportion

of propofol and remifentanil is fl : 1.

Since the choice of the positive parameter fl does not a�ect the tracked

reference value, this may constitute an advantage, as it allows to choose
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the proportion between the two drugs, in order to accommodate clinical

restrictions or considerations, without significant consequences in terms of

the e�ect. This will be illustrated later on in the simulations.

In order to determine which value of M

ref should be chosen for M

ú in

the control law (37) to guarantee that the BIS level z(t) tracks a desired

constant value z

ú, an analysis is made of the values U(t) obtained for the

closed-loop system. For this purpose it will be first proved that the state

of the closed-loop system (A, B, C

M

) with the control law (35) converges to

an equilibrium point x

ú. To show this, since, as mentioned in the previous

section, the trajectories x(t) converge to the forward-invariant set �
M

ú =

{x œ R6
+ : M(x) = M

ú}, it is enough to prove that, for the restriction

of the closed-loop system to this set, the state trajectories converge to an

equilibrium point x

ú. Note that this restriction is well defined as �
M

ú is

forward-invariant under the closed-loop dynamics.

In order to obtain the dynamics of the system restricted to �
M

ú , note that

when x œ �
M

ú , i.e., when M(x) = M

ú, the control ũ is given by ũ = ≠ECAx,

and the closed-loop system can be described as

ẋ = Ãx (38)

with
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Ã = A ≠ BEC

M

A

=

S

WWWWWWWWWWWWWWWU

a1 ≠ 10– 8a1 a1 a2 a2 a2

9– ≠9– 0 0 0 0

0 – ≠– 0 0 0

a3 8a3 a3 a4 ≠ 3÷ a4 a4

0 0 0 2÷ ≠2÷ 0

0 0 0 0 ÷ ≠÷

T

XXXXXXXXXXXXXXXV

where
a1 = –

2
fle, a2 = 1000–÷fle,

a3 = 0.3–÷e, a4 = 300÷

2
e,

e = 1
–fl+300÷

and A, B, C

M

and E are given by (30), (33), and (34).

In order to analyze the stability of the closed-loop system restricted to

�
M

ú , the evolution equations of this restriction are next obtained.

When M(x(t)) = M

ú
,

x

p

1(t) = M

ú ≠ x

p

2(t) ≠ x

p

3(t) ≠ 1000(xr

1(t) + x

r

2(t) + x

r

3(t)). (39)

Replacing this in the equation and ẋ(t) = Ãx(t) yields
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Y
___________________]

___________________[

ẋ

p

1(t) = M

ú ≠ ẋ

p

2(t) ≠ ẋ

p

3(t) ≠ ẋ

r

1(t) ≠ ẋ

r

2(t) ≠ ẋ

r

3(t)

ẋ

p

2(t) = 9–(Mú ≠ x

p

2(t) ≠ x

p

3(t) ≠ 1000(xr

1(t) + x

r

2(t) + x

r

3(t))) ≠ 9–x

p

2(t)

ẋ

p

3(t) = –x

p

2(t) ≠ –x

p

3(t)

ẋ

r

1(t) = a3M
ú + 7a3x

p

2(t) + (a4 ≠ 1000a3 ≠ 3÷)xr

1(t)+

+(a4 ≠ 1000a3(xr

2(t) + x

r

3(t))

ẋ

r

2(t) = 2÷x

r

1(t) ≠ 2÷x

r

2(t)

ẋ

r

3(t) = ÷x

r

2(t) ≠ ÷x

r

3(t).
(40)

Since the state component x

p

1(t) can be obtained from the others state com-

ponents (see (39)), we can conclude that the closed-loop system dynamics

restricted to �
M

ú is described by the evolution of the vector

x̄ =

S

WWWWWWWWWWWWU

x

p

2

x

p

3

x

r

1

x

r

2

x

r

3

T

XXXXXXXXXXXXV

, (41)

which is given by the last five equations from (40). These equations can

be written in matrix form as:

˙̄
x = Āx̄ + R, (42)
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with

Ā =

S

WWWWWWWWWWWWU

≠18– ≠9– ≠9000– ≠9000– ≠9000–

– ≠– 0 0 0

7a3 0 a4 ≠ 1000a3 ≠ 3÷ a4 ≠ 1000a3 a4 ≠ 1000a3

0 0 2÷ ≠2÷ 0

0 0 0 ÷ ≠÷

T

XXXXXXXXXXXXV

and

R =

S

WWWWWWWWWWWWU

9–M

ú

0

a3M
ú

0

0

T

XXXXXXXXXXXXV

.

Moreover, equation (42) can be written in the form:

‰̇
x̄ ≠ x̄

ú= Ā(x̄ ≠ x̄

ú), (43)

where

x̄

ú =

S

WWWWWWWWWWWWU

fl

fl

1

1

1

T

XXXXXXXXXXXXV

M

ú

3(0.1fl + 100) (44)

is the only equilibrium point of (42), i.e., the only point such that x̄(t) © x̄

ú

satisfies ˙̄
x = Āx̄(t) + R, as ˙̄

x(t) = 0 and Āx̄

ú = ≠R. This can be verified by

performing the corresponding multiplication Āx̄

ú and checking that the result
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equals ≠R. Moreover, the uniqueness of x̄

ú follows from the invertibility of

Ā for the considered parameter range.

As is shown in Fig. 1, where the locations of the eigenvalues of Ā are

plotted for the di�erent value combinations of the parameters – and ÷, within

the ranges in this paper, and for fl œ [0 , 500], the matrix Ā is stable, i.e.,

all its eigenvalues have negative real part. The restriction fl œ [0 , 500] is

only imposed to limit the high computation level, however this feat is not

a limitation to the applicability of the controller here proposed, since the fl

values observed in the collected clinical cases are included in the considered

interval. Thus, x̄(t) converges to x̄

ú = (fl, fl, 1, 1, 1) M

ú

3(0.1fl+100) . Recalling that

equation (39) holds, this implies that x(t) = (xpú
1 , x̄

ú) with

x

pú
1 = M

ú ≠
5

1 1 100 100 100
6

x̄

ú (45)

= flM

ú

3(0.1fl + 100) . (46)

Thus x(t) converges to x

ú = (fl, fl, fl, 1, 1, 1) M

ú

3(0.1fl+100) under the closed-

loop dynamics.
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Figure 1: Location of the eigenvalues of the matrix Ā, for the di�erent value combinations

of the parameters –, ÷ and fl within the ranges in this paper, i.e., – œ [0.03 , 0.17],

÷ œ]0 , 5.70], fl œ [0 , 500]

Recalling that u(t) = 0.1µx

p

3(t) + 100x

r

3(t), one concludes that, under the

closed loop dynamics,

U

ú = lim
tæŒ

U(t) = 0.1µ lim
tæŒ

x

p

3(t) + 100 lim
tæŒ

x

r

3(t) (47)

= 0.1µ

flM

ú

3(0.1fl + 100) + 100 M

ú

3(0.1fl + 100) (48)

= M

ú 0.1µfl + 100
3(0.1fl + 100) . (49)

Consequently, in order to track a constant reference level U

ref for U(t) it

is enough to take

M

ú = M

ref = 3(0.1fl + 100)
0.1µfl + 100 U

ref (50)
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in the control law (35).

Together with expression (31), these considerations lead to the following

result.

Proposition 2. Let (A, B, C

M

) be a positive MISO linear system, with A,

B as in (30) and C

M

as in (33). Then, applying the control law u as in (35),

with M

ú = M

ref = 3(0.1fl+100)
0.1µfl+100

“
Ò

z0
z

ref ≠ 1, to the system (A, B, C

M

), achieves

tracking of the constant reference value z

ref for the BIS level z(t) defined as

in (23), i.e., lim
tæŒ z(t) = z

ref .

Proof. It follows from what has just been said that taking in (35)

M

ú = M

ref = 3(0.1fl + 100)
0.1µfl + 100

“

Ú
z0

z

ref

≠ 1

achieves tracking of the constant reference value for U :

U

ref = “

Ú
z0

z

ref

≠ 1.

The result now follows from expression (31).

As stated in Proposition 2, once the values of “ and µ are known for a

particular patient, the value of M

ref to be considered in the control law is:

M

ref = 3(0.1fl + 100)
0.1µfl + 100

“

Ú
z0

z

ref

≠ 1, (51)

where z0 = 97.7 and z

ref is the desired BIS level. Here it is assumed that the

22



values of “ and µ are available, however, if this is not the case, these values

can be identified in a first stage, before turning on the controller. Another

possibility is to start with an average value for “ and µ and hence M

ú as a

first estimate and then retune this value after “ and µ are more accurately

identified. A similar procedure was used in Nogueira et al. [18]. Here, it is

also assumed that the values of the parameters –, ÷ are known. This does

not happen in practice. However, in a real situation the controller action

only starts after an initial drug bolus is given. This is a current practice

with other automatic controllers previously used in clinical environment and

allows to identify the parameters for patient model.

4. CONTROLLER PERFORMANCE

In this section the performance of the control law presented in the previ-

ous sections is illustrated by means of several simulations. For this purpose,

we consider: z0 = 97.7; – = 0.0759; ÷ = 0.583; µ = 1.79; “ = 1.88. These pa-

rameter values are the mean values used in the work developed in Mendonça

et al. [17], to which we refer for further explanation. We also assume that it

is intended that the DoA of a patient, corresponds to the reference value of

50 for the BIS signal. By (31), this means that U must follow the reference

U

ú = 0.9753. Once these values are fixed, the control law only depends on

the design parameters ⁄ > 0 and fl Ø 0. The parameter ⁄ influences the

speed of convergence to the reference value, as can be seen in Fig. 2 where

the values ⁄ = 0.02, ⁄ = 1 were respectively taken for a fixed value of fl = 2

(corresponding to proportion of 2 : 1 for propofol and remifentanil).
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Figure 2: Evolution of DoA, for fl = 2, ⁄ = 0.02 and ⁄ = 1.

On the other hand the parameter fl specifies the desired proportion be-

tween the administered amounts of propofol and remifentanil, which may

be chosen according to clinical criteria. Figure 3 illustrates DoA e�ect for

di�erent drug proportions (namely, fl = 0, fl = 2, and fl = 10) and Figures

4, 5, and 6 present the evolution of the corresponding drug dosages. As can

be seen in Fig. 3, in spite of the variation of the drug proportion (fl) the

desired e�ect is practically the same. It turns out that this may constitute an

advantage, since the choice of the proportion can be made in order to accom-

modate individual clinical restrictions or considerations, without significantly

consequences in terms of the e�ect.
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Figure 3: Evolution of DoA for di�erent values of drugs proportion, i.e., fl = 0, fl = 2, fl =

10 and for ⁄ = 1.
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Figure 4: Evolution of the dosage of propofol and of remifentanil, for ⁄ = 1, fl = 0 (without

propofol infusion dose).
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Figure 5: Evolution of the dosage of propofol and of remifentanil, for ⁄ = 1, fl = 2.
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Figure 6: Evolution of the dosage of propofol and of remifentanil, for ⁄ = 1, fl = 10.

Figure 7 illustrates the performance of the control algorithm in the pres-

ence of a change of the reference profile. In the first thirteen minutes it

is intended that the BIS follows the reference 50, in the following thirteen
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minutes the BIS reference level is set to 30 and in the last twenty minutes

the BIS should again follow the reference level 50. It may be seen that the

controller has a good performance also in this case. As expected, when the

reference decreases there is a small bolus of propofol and remifentanil, in

order to follow the reference, and when it increases no drug is administered.
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Figure 7: Evolution of DoA and of the dosages of propofol and of remifentanil, assuming

changes in the reference profiles (zú = 50 from the beginning till t = 30 min, zú = 30 from

t = 30 min till t = 60 min, and zú = 50 from then on), for ⁄ = 1, fl = 2.

In a real clinical environment, the measurements of the patients BIS levels

usually present a high level of noise, due to the nature of the sensors and the

physiological ineheretic signs. This fact implies the existence of noise in the

estimation of the states in the corresponding theoretical model. In Fig. (8)

the evolution of the DoA of a patient is illustrated in the presence of noise

in the measurement of the BIS level, that mimics the real data collected in

the surgery room. For this purpose, a normal distribution N(µ
noise

, ‡

noise

),
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where µ

noise

= 0 and ‡

noise

= 3 are respectively the mean and the standard

deviation, was used. As we can see, in spite of the presence of noise in the

BIS measurements, the behavior of the controlled output of the patient is

clinically accepted.
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Figure 8: Evolution of DoA in the presence of noise, for fl = 2 and ⁄ = 1.

5. A realistic simulation study

As a necessary preliminary step before implementation in clinical environ-

ment, the performance of the controller proposed in this paper is tested on a

bank of realistic simulated patients. These patients are simulated by means

of PK/PD Wiener models (see Marsh et al. [19], and Minto et al. [20]) ob-

tained from real data collected during eighteen breast surgeries. The patients

(all female, with 54 ± 13 years of age, a height of 160 ± 5cm, and 69 ± 18Kg)

were subject to general anesthesia under propofol and remifentanil adminis-

tration. The DoA was monitored by the BIS and was manually controlled
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around clinically accepted values by the anesthetist. Alaris GH pumps were

used for both propofol and remifentanil. Infusion rates, BIS values and other

physiological variables were acquired every five seconds (Mendonça et al.

[17]).

For each patient, the corresponding PK/PD Wiener model was obtained

as follows. The parameters of the linear part were computed according to

Marsh et al. [19], Minto et al. [20], and Schnider et al. [21] based on the rel-

evant patient characteristics, whereas the parameters of the nonlinear part

(generalized Hill equation) were identified from the surgery data, by Men-

donça et al. [17]. In order to test the proposed control strategy, each simu-

lated patient is also modeled by the parsimonious parameter Wiener model

of Silva et al. [10], with parameters identified as in Mendonça et al. [17],

and a control law of the form (37) tuned for that model is applied to the

simulated patient. The set of parameter values identified by Mendonça et al.

[17] is given in appendix A, where also the corresponding relevant patient

features that allow to compute the PK/PD model parameters are displayed.

Here we present the results obtained for patients 9 and 15 of the database

in two di�erent simulations settings respectively. Patient 9 is a woman,

with 51 years of age, a height of 163cm, and with 55kg. The corresponding

identified parameters were: EC

p

50 = 12.17, EC

r

50 = 0.031, “ = 1.86, µ = 3.84,

– = 0.07, and ÷ = 0.28. Patient 15 is a woman, with 73 years of age, a

height of 160cm, a weight of 75kg, for which the identified parameters were:

EC

p

50 = 12.41, EC

r

50 = 0.016, “ = 1.68, µ = 3.47, – = 0.10, and ÷ = 0.04.

Figure 9 shows the BIS response of the patient 15 to the drug doses

administered by the anesthetist during the surgery, along with the response
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of the corresponding PK/PD model to the same drug input. The similarity

between the two responses supports the idea of using the identified PK/PD

models in order to simulate real patients.
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Figure 9: BIS response of the patient 15 (upper plot) to the drug doses administered by the

anesthetist during the surgery (lower plot), along with the response of the corresponding

PK/PD model to the same drug input. The average doses of propofol and of remifentanil

reported were 4.21mg min≠1 and 0.0147mg min≠1 respectively. Notice that propofol doses

above 30 mg min≠1 are not represented in the graphic.

In Fig. 10 the BIS response of the simulated patient 15 is presented, where

the DoA control was performed using the control law (37) for tracking a BIS

level of 50; this is an approximation value of the average real BIS obtained

throughout the surgery. The selected proportion between the two drugs was

the corresponding average reported in the monitored real case, fl = 286.

The average of the doses of propofol and of remifentanil obtained by the

controller were respectively 4.27mg min

≠1 and 0.0149mg min

≠1; these values

are quite close to the reported real ones, 4.21mg min

≠1 and 0.0147mg min

≠1
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respectively. The obtained set-point for the BIS level was 54.7, presenting

an relative error of only 9%.
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BIS evolution of the simulated patient 15
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Figure 10: BIS response of the patient 15 and the infusion doses of propofol and of remifen-

tanil obtained by the proposed control law, for zú = 50, fl = 286, and ⁄ = 10. The

average doses of propofol and of remifentanil obtained by the controller were respectively

4.27 mg min≠1 and 0.0149 mg min≠1. Notice that propofol doses above 30 mg min≠1 are

not represented in the graphic.

Figure 11 illustrates the application of the proposed control law to all the

18 simulated patients, for a desired reference BIS level of 50 (the remaining

parameters are presented in the figure). As can be seen, the desired BIS level

obtained in all the cases are very close to the desired one.
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BIS evolution of the 18 simulated patients

Figure 11: BIS response of all eighteen simulated patients (by means of a PK/PD model)

controlled by the proposed control law, tuned for the corresponding parameter parsimo-

nious model, for zú = 50, fl = 2, and ⁄ = 10.

In Fig. 12 the performance of the control in the presence of a change of

the reference profile and in the value of drugs proportion is illustrated (for

patient 9). In the first ninety minutes it is intended that the BIS follows

the reference 50, in the following thirty minutes the BIS reference level is set

to 40 and in the last forty minutes the BIS is regulated to follow again the

reference level 50. As expected, a reference decrease produces a peak in the

doses of propofol and remifentanil, whereas when the reference increases no

drug is administered. The proportion between the two drugs was fl = 0.2 in

the first forty minutes and from then on it was changed to fl = 3. In spite

of the variation of the drug proportion the BIS follows the desired reference.

The possibility of changing the drug proportion during the surgery without

a�ecting the reference tracking results constitutes a considerable advantage.
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Indeed, clinical practice has often shown the need of adjusting the dosage

profile according to the overall physiological response of the patient.
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Figure 12: Evolution of DoA, of patient 9, and of the dosages of propofol and of remifen-

tanil, assuming changes in the reference profiles (zú = 50 from the beginning till t = 90min,

zú = 40 from t = 90min till t = 120min, and zú = 50 from then on) and assuming changes

in the value of the drugs proportions (fl = 0.2 in the first forty minutes and from then on

it was changed to fl = 3). ⁄ = 1.

6. Conclusion

A positive control law for multi-input positive systems was proposed in

order to track a desired output reference value. This controller was applied in

the control of the DoA, tracking the BIS level for a certain designed profile,

by means of simultaneous administration of propofol and remifentanil, based

on the parsimonious parameter model. This new Wiener model describes the

joint e�ect of these two drugs and is adequate for model based control design

since it presents a reduced number of parameters.
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In this work it was theoretically proved that the controller may be tuned in

order to achieve di�erent convergence rates and di�erent desired proportions

between the dosages of these two drugs, in order to obtain a certain reference

value for the BIS. Moreover, this controller also provides the possibility of

changing the drugs proportion during the surgical anesthetic procedure with-

out a�ecting the reference tracking results, which constitutes an interesting

clinical advantage. Indeed anesthetic procedures during surgery relies on a

defined DoA profile, but the change of the dosage profile due to the overall

physiological response of the patient is often required.

The performance of the controller proposed in this paper was tested with

success, by several simulations, on a bank of realistic simulated patients sim-

ulated by means of PK/PD Wiener models obtained from real data collected.

The simulation study illustrates the performance of the proposed controller

under a variety of clinical conditions, like presence of noise measurement,

changing of the doses proportions and of the reference profile.
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Appendix A. Database

This database was courteously provided by Galeno project (http://www2.fc.up.pt/galeno/).

The parameters presented in Table A.2 were identified in Mendonça et al.

[17].
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Table A.1: Patient features

Gender Age Height (cm) Weight (kg)

Patient 1 F 56 160 88

Patient 2 F 48 158 52

Patient 3 F 51 165 55

Patient 4 F 56 160 65

Patient 5 F 64 146 60

Patient 6 F 59 159 110

Patient 7 F 29 163 59

Patient 8 F 45 155 58

Patient 9 F 51 163 55

Patient 10 F 32 172 56

Patient 11 F 68 160 64

Patient 12 F 50 161 68

Patient 13 F 68 158 113

Patient 14 F 70 161 78

Patient 15 F 73 160 75

Patient 16 F 34 162 57

Patient 17 F 43 155 62

Patient 18 F 66 155 74
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Table A.2: PPM Parameters

– ÷ “ µ

Patient 1 0.0667 0.3989 2.0321 4.3266

Patient 2 0.0874 0.0670 1.0133 4.3845

Patient 3 0.0693 0.0482 2.0196 3.3133

Patient 4 0.0590 0.0425 1.8930 4.2273

Patient 5 0.0489 0.1269 1.0702 3.9505

Patient 6 0.0677 0.3373 2.6169 4.3774

Patient 7 0.0737 0.2793 3.7297 4.1494

Patient 8 0.0860 0.0212 0.9172 1.0000

Patient 9 0.0701 0.2837 1.8645 3.8367

Patient 10 0.1041 0.1038 1.4517 3.7978

Patient 11 0.0343 3.5768 0.9334 4.4496

Patient 12 0.0467 0.1254 1.6649 4.2860

Patient 13 0.0687 4.5413 0.9882 3.8094

Patient 14 0.0774 0.0397 3.8213 3.2302

Patient 15 0.0995 0.0377 1.6771 3.4726

Patient 16 0.0929 0.1205 3.9302 3.9983

Patient 17 0.0811 0.1033 1.6096 4.2064

Patient 18 0.1336 0.2307 1.5613 4.2411
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