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Resumo 

O cancro da tiroide (CT) é a neoplasia endócrina mais comum. A grande maioria dos CT 

deriva das células foliculares tiroideias e mantém um certo grau de diferenciação, sendo 

denominado, nesses casos, carcinoma diferenciado da tiroide (CDT). Os CDT compreendem os 

carcinomas papilares (CPT) (~85% dos casos de CDT) e os carcinomas foliculares (~15% dos 

casos de CDT).  

Os doentes com CDT têm, na sua grande maioria, um bom prognóstico. O tratamento faz-

se por cirurgia seguida por terapia ablativa com iodo radioativo (131I) para destruição de possíveis 

remanescentes e/ou metástases. A eficácia da radioterapia com iodo deve-se, pelo menos em 

parte, à presença e à função preservada do transportador de sódio e iodo (NIS), codificado pelo 

gene SLC5A5, e localizado na membrana plasmática das células tumorais. O NIS capta o 131I para 

o interior das células tumorais, afetando minimamente as estruturas adjacentes. É uma 

radioterapia dirigida muito eficiente, que contribui para o bom prognóstico dos doentes com CDT.  

Infelizmente, um pequeno grupo de doentes com CDT desenvolve recidivas tumorais que 

deixam de captar o 131I (cerca de 26-60% dos doentes com recidivas deixam de captar o 131I), 

tornando-se resistentes à terapia. A perda de expressão/função do NIS é o mecanismo molecular 

melhor conhecido como “contribuinte” para a resistência à terapia com 131I. Esse grupo de doentes 

representa um verdadeiro desafio, pois como a sua identificação não é possível aquando do 

diagnóstico, todos os casos de CDT são tratados da mesma forma, e eventualmente sobretratados. 

É por isso premente a identificação de biomarcadores que permitam um reconhecimento precoce 

destes casos. 

A via do mTOR encontra-se sobreativada numa grande variedade de neoplasias humanas, 

estando por vezes associada a maior agressividade tumoral e pior prognóstico. Uma vez ativado, 

o mTOR pode dar origem à formação de dois complexos distintos: o mTORC1 e o mTORC2, 

cada um com efetores diferentes e com funções biológicas distintas. A via do mTOR encontra-se 

também sobreativada no CT mas as consequências biológicas de tal sobreativação permanecem 
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desconhecidas. Além de sobreativada, a via do mTOR parece desempenhar também um papel na 

regulação da expressão do NIS.  

Vários estudos têm abordado a expressão do NIS (mRNA e proteína) em diferentes tecidos 

tiroideus. Os tumores apresentam uma menor expressão do gene SLC5A5 do que o tecido tiroideu 

normal. No entanto, a respetiva proteína parece estar em maior quantidade no tumor embora 

localizada no citoplasma em vez da localização habitual na membrana citoplasmática. Os 

mecanismos moleculares que conduzem à perda da expressão/função do NIS permanecem pouco 

esclarecidos, assim como a utilidade que a avaliação da expressão do NIS (nos tumores primários) 

pode ter para prever a resposta à terapia com 131Ie/ou o comportamento tumoral.  

Neste trabalho pretendemos encontrar novos marcadores de agressividade tumoral e de 

resistência à terapia com 131I, com o objetivo de procurar estratificar melhor os pacientes com 

CDT. Para tal, caracterizámos a via do mTOR, através da avaliação da expressão do pmTOR 

Ser2448, pS6 Ser235/236 (efetor do complexo mTORC1) e pAKT Ser473 (efetor do complexo 

mTORC2) numa grande série de CPT. Avaliámos também a expressão do NIS (mRNA e proteína) 

numa grande série de CDT. Em seguida, avaliámos possíveis associações entre a expressão desses 

dois marcadores e as características clinocopatológicas e moleculares dos casos, o seu prognóstico 

e resistência à terapia com 131I. Para validar os nossos resultados, analisámos ainda a expressão 

do gene SLC5A5 numa serie de 378 CPT, através de dados recolhidos da base de dados do projeto 

denominado “The Cancer Genome Atlas”. 

Os nossos resultados demonstraram que o pmTOR é um marcador de agressividade em 

CPT, que pode eventualmente estar associado à resistência à terapia com 131I (maior número de 

terapias com 131I e menor expressão do gene SLC5A5). A expressão do pS6 foi associada a 

características clinicopatológicas de menor agressividade e à ausência da mutação do gene BRAF. 

Não encontrámos correlação entre a expressão do pS6 e do pmTOR. Observámos que a expressão 

do pAKT se correlacionava positivamente com a expressão do pmTOR, que era 

significativamente maior nos CPT com mutação do gene BRAFV600E; observámos mais ainda 

que a translocação nuclear do pAKT se associava significativamente à presença de metástases à 

distância. 
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Uma vez que também estávamos interessados no impacto que a via do mTOR poderia ter 

na expressão do gene SLC5A5, procedemos ao bloqueio farmacológico do complexo mTORC1, 

e dos complexos mTORC1 e C2, com rapamicina e Torin 2, respetivamente. Observámos que o 

bloqueio do complexo mTORC2 desempenha uma função na regulação da expressão do gene 

SLC5A5; tendo o seu bloqueio promovido a re-expressão deste gene. 

Observámos que a baixa expressão do gene SLC5A5 se associou a características 

patológicas de maior agressividade e de pior prognóstico. A expressão proteica do NIS não se 

associou, na nossa série, nem com prognóstico, nem com resposta à terapia com 131I, o que leva a 

concluir que a avaliação dessa expressão tem pouco valor prático. Observámos também que o 

contexto genético tumoral (RAS, BRAF e TERTp) tem um grande impacto na expressão do gene 

SLC5A5e na localização membranar do NIS. Os CPT não portadores das mutações estudadas 

apresentavam uma expressão do gene SLC5A5 significativamente maior comparativamente 

àqueles que continham pelo menos uma. As mutações do gene RAS foram aquelas que 

demonstraram causar o menor impacto na expressão do gene SLC5A5, seguidas pelas do BRAF e 

do TERTp, respetivamente. 

Concluindo, nesta tese demonstrámos que o pmTOR é um marcador de agressividade 

tumoral e de provável resistência à terapia em doentes com CPT. As suas ações parecem ser 

mediadas pelo efetor do complexo mTORC2, o pAKT cuja translocação nuclear se encontra 

associada a metastização à distância. Verificámos também que a inibição do complexo mTORC2 

é capaz de aumentar os níveis de expressão do gene SLC5A5. Estes resultados chamam a atenção 

para a via do mTOR como potencial alvo terapêutico para CPT metastáticos e/ou refratários à 

terapia com 131I. Adicionalmente, observámos que a baixa expressão do gene SLC5A5 no tumor 

primário se associa a maior agressividade tumoral e pior prognóstico; estes achados sugerem que 

a referida expressão poderá constituir um novo marcador para estratificação do risco/prognóstico 

dos doentes com CDT.  
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Abstract 

Thyroid cancer (TC) is the most prevalent endocrine malignancy. The vast majority of TC 

derives from follicular cells and maintains a certain degree of differentiation, being in that case 

denominated differentiated thyroid carcinoma (DTC). DTC can be further divided in papillary 

thyroid carcinoma (PTC) (~85% of DTC cases) and follicular thyroid carcinoma (FTC) (~15%of 

DTC cases).  

DTCs carry, in general, a very good prognosis. Treatment is based on surgery followed by 

radioactive iodine (RAI) ablation of tumor remnants and/or metastases. The effectiveness of this 

radiotherapy depends, at least in part, on the presence and preserved function of sodium iodide 

symporter (NIS), codified by the SLC5A5 gene, in the membrane of TC cells. NIS uptakes RAI 

into the tumor cells, while the adjacent structures remain unaltered. It is a very efficient, targeted 

radiotherapy that contributes to the very good prognosis of most patients with DTC. 

Unfortunately, a subgroup of DTC patients develops tumor recurrences; in this setting the tumor 

tissue loses the ability to uptake RAI (~ 26-60% of the patients with recurrent disease) and become 

resistant to RAI therapy. The loss of NIS expression/function is the major molecular mechanism 

contributing to RAI refractoriness. This group of patients represents a real challenge because it is 

still not possible to predict which DTC patients will develop recurrent and/or refractory disease. 

It is crucial to progress in the identification of biomarkers that allow the early recognition of such 

patients in order to turn the intensity of RAI therapy more appropriate and avoid the overtreatment 

of many DTC patients. 

mTOR pathway is overactivated in a great variety of human neoplasms, being occasionally 

associated with tumor aggressiveness and worse prognosis. Once activated, mTOR can give rise 

to the assembly of two distinct complexes: mTORC1 and mTORC2, with distinct downstream 

effectors and functions. mTOR pathway is also activated in TC, but the biological consequences 

of such activation remain unknown. Besides being overactivated, mTOR pathway seems to play 

a role on NIS expression regulation. 
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Several studies have addressed the issue of NIS expression (mRNA and protein) in different 

thyroid tissues, reporting its downregulation or mistargeting to the membrane in tumors compared 

to normal thyroid. The molecular mechanisms that contribute to that downregulation/loss of 

function are not fully understood, and the impact of NIS expression in thyroid primary tumors in 

terms of predicting RAI therapy response and/or tumor behavior remains unclarified. 

In an attempt to find new markers of aggressiveness and therapy resistance in primary 

DTCs, and to contribute to a better stratification of the patients, we characterized the mTOR 

pathway status through the expression of pmTOR Ser2448, pS6 (Ser235/236 mTORC1 

downstream effector) and pAKT (Ser473 mTORC2 downstream effector) in a large series of 

PTCs. Furthermore, we also addressed NIS (mRNA and protein expression) in a large series of 

DTCs. Having these data as background, we explored possible associations between the 

expression of those markers with clinicopathological and molecular features, prognosis and 

response to RAI therapy. To validate our results, we also studied the SLC5A5 mRNA expression 

from 378 PTCs, retrieved from The Cancer Genome Atlas. 

Our findings demonstrated that pmTOR is a marker of aggressiveness in PTCs, being 

particularly associated with distant metastization, and possibly with RAI therapy resistance (low 

SLC5A5 mRNA expression and higher number of RAI therapies). The expression of pS6 was 

associated with less aggressive pathological features and with BRAFWT status. There was no 

significant correlation between pmTOR and pS6 expression. At variance with this, the expression 

of pAKT was positively correlated with pmTOR expression, significantly increased in 

BRAFV600E mutated PTCs and its nuclear translocation was associated with distant 

metastization.  

Since we were also interested in the impact of the mTOR pathway in SLC5A5 mRNA 

expression, we blocked pharmacologically mTORC1, and mTORC1 and C2 complexes with 

rapamycin and Torin2, respectively, in a PTC derived cell line. We observed that mTORC2 

complex plays a role in SLC5A5 mRNA expression regulation: its inhibition increased 

substantially SLC5A5 mRNA expression. We further observed that a lower SLC5A5 mRNA 

expression was associated with aggressive pathological features and worse prognosis. 
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NIS protein expression was not significantly associated with prognosis or RAI therapy 

response, thus being in our opinion, of limited value.  

Finally, we also observed that the genetic background (RAS, BRAF and TERTp mutation) 

is of major importance to both SLC5A5 mRNA expression and NIS targeting to the membrane. 

PTCs wild type for the aforementioned mutations presented higher SLC5A5 mRNA expression 

compared to those harboring any mutation. The RAS mutation presented the lower impact on 

SLC5A5 mRNA expression, followed by BRAF and TERTp mutations, respectively. 

In conclusion, we demonstrated that pmTOR pathway is a marker of metastatic and, 

probably, RAI refractory PTCs. Its actions seem to be mediated by mTORC2 downstream effector 

pAKT whose nuclear translocation was associated with distant metastization and whose inhibition 

caused an increase of SLC5A5 mRNA expression. These results single out the mTOR pathway as 

an attractive therapeutic target for advanced refractory PTC treatment. The observation that 

SLC5A5 mRNA expression in primary tumors was associated with higher tumor aggressiveness 

and worse prognosis, suggests that such expression may be useful in DTC patient risk/prognostic 

stratification.  
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Chapter 1. Introduction 

1. Thyroid physiology 

1.1 Thyroid gland function, regulation and constitution 

Thyroid gland is located in the anterior neck and consists of two lobes connected by a band 

of thyroid tissue or isthmus, which lies just below the cricoid cartilage of the larynx1-3. The main 

function of the thyroid gland is to produce hormones: T4 (thyroxine or tetraiodothyronine) and 

T3(triiodothyronine), that regulate the differentiation of the central nervous system, body growth4, 

and pathways of body energy and intermediary metabolism1-5. 

The production of thyroid hormones is a complex process that occurs in line with the body 

needs; the hypothalamus produces and releases thyrotropin-releasing hormone (TRH) that binds 

to receptors on the plasma membrane of thyrotrophs of the pituitary gland which stimulates the 

secretion of thyroid stimulating hormone (TSH) into the blood. Once in the bloodstream, TSH 

will act on the thyroid gland, increasing the rate of thyroid hormone secretion4. This process is 

tightly regulated; thyroid hormones exert a direct negative-feedback effect on both hypothalamus 

(decreasing TRH release) and in the pituitary (reducing the sensitivity of the thyrotrophs to TRH), 

consequently TSH synthesis decreases, and the levels of T3 and T4 fall. This negative feed-back 

control system is part of the hypothalamic-pituitary- thyroid axis4 (Figure 1). 

 

Figure1. Hypothalamic-pituitary-thyroid axis. T3 and T4 high levels activate a negative feedback loop 
causing a decrease of TRH production and consequently a decrease of thyroid hormones synthesis. 
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Thyroid gland is constituted by spherical structures called follicles, which in its turn are 

composed by follicular cells disposed side by side forming a structure that encloses a gel-like 

substance called colloid in the lumen of the follicle. In addition to the follicular cells, thyroid 

gland is also constituted by another endocrine cell type, the parafollicular cells, located in the wall 

of the thyroid follicle, inside the basal lamina (Figure 2). The follicular cells are the ones 

responsible for thyroid hormone (T3 and T4) synthesis and, parafollicular cells produce and 

secrete the hormone calcitonin, involved on calcium metabolism1-3.  

 

Figure 2. Schematic representation of normal thyroid histology. Thyroid gland is composed by follicular 
cells, enclosing the colloid, and by parafollicular cells. 
 

1.2 Production of thyroid hormones 

In order to produce thyroid hormones, the follicular cells need two “raw materials”: 

thyroglobulin (Tg) and iodine; and also a complex network of membrane transporters and 

enzymes1-3, 5: Once thyroid gland is stimulated by TSH, all these components interact through 

orchestrated processes, culminating with the production of the hormones. 

1.2.1 Thyroglobulin synthesis 

Tg is a very large glycoprotein (600KDa) synthesized on the rough endoplasmatic 

reticulum (ER) of follicular cells and that undergo dimerization and glycosylation in the smooth 

ER. The completed glycoprotein is packaged into vesicles by the Golgi apparatus1. It accounts for 

approximately half of the protein content of the thyroid gland. Each molecule of Tg contains about 
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70 tyrosine residues that are the major substrates that combine with iodine1, 2. The vesicles 

containing Tg migrate to the apical membrane of the follicular cell and fuse with it, shedding Tg 

into the colloid3.  

1.2.2 Iodide trapping 

The only source of iodine is the dietary intake, being rapidly absorbed into the 

bloodstream3, through the small intestine5. It is then uptaken into the interior of the follicular cell 

against gradient; it is 30x more concentrated in the follicular cell compared to the blood. The 

capacity of the thyroid gland to accumulate iodine under physiological conditions, was first 

described in 1896, back then a I- transporter was inferred6. It took 100 years to understand that 

iodine enters into the thyroid follicular cell through a specialized intrinsic plasma glycoprotein 

named sodium iodine symporter (Na+/I- symporter-NIS), codified by the SLC5A5 gene7. 

NIS is located in the basolateral membrane of the follicular cells; it mediates iodine 

transport by using the energy released by the inward translocation of 2Na+ions down to its 

electrochemical gradient. The maintenance of the Na+ gradient acting as the driving force is 

insured by Na+-K+-ATPase 3, 5chanels. 

1.2.2.1 NIS in a physiological context 

The detailed molecular characterization of NIS started when Dai et al.,7 isolated the cDNA 

encoding rat NIS (rNIS) by expression cloning in X. laevis oocytes, using cDNA libraries derived 

from FTRL-5 cells (a highly functional rat thyroid derived cell line)7. Hoping that human NIS 

(hNIS) would be highly similar to rNIS, Smanik et al.,8 using primer for rNIS, identified a cDNA 

clone encoding hNIS, constituted by an open reading frame of 1929 nucleotides, encoding a 

protein of 643 aminoacids (approximately 70-90KDa)8. Later, Smanik et al.,9 examined the 

expression, exon-intron organization and chromosome mapping of hNIS: fifteen exons encoding 

hNIS were mapped to chromosome 19p12-13.29. hNIS exhibits 84% identity and 93% similarity 

to rNIS10. cDNAs encoding NIS have also been isolated from other two different species, pig11 

and mouse12. Mouse12 and rat7 NIS contain 618 aminoacids while pig11 and human8 NIS display 

643 aminoacids. There is a high sequence identity between species10. 
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The current secondary structure model for NIS proposes 13 transmembrane segments, the 

NH2 terminal in the extracellular face and the COOH terminal in the cytosol13. Being a 

glycoprotein, NIS is glycosylated at Asn residues 225, 485 and 497 (of the rat sequence), however 

the role of glycosylation on NIS targeting and function is not consensual, some authors claim that 

glycosylation is not essential for NIS stability, targeting or function13, but a recent study showed 

that NIS glycosylation can modulate both NIS targeting and function14. Several phosphorylation 

sites have been identified in the molecule, only three charged residues were predicted to lie within 

transmembrane segments15. 

NIS belongs to the solute carrier family 5, which includes the high affinity Na+-glucose 

co-transporter family (SLC5A1), the low Na+-glucose co-transporter (SLC5A2), the Na+-

myoinositol transporter (SLC5A3), the Na+-dependent proline symporter (SLC5A4) and the Na+-

dependent multivitamin transporter (SLC5A6)10.  

There are many players that contribute to NIS expression regulation in normal thyroid and, 

in the following section we present the ones that are better studied: TSH, iodine and follicular cell 

polarization.  

TSH is the main regulator of NIS transcription in normal thyroid cells10, 15, 16, modulating 

its expression and function trough transcriptional and post transcriptional events17, 18: TSH 

increases NIS transcription19, modulates its half-life (5 days in the presence of TSH and 3 days in 

its absence20) and also regulates its targeting and/or retention in the plasma membrane and its 

phosphorylation status13, 20, 21.TSH links to TSH receptor (TSHR) activating adenylyl cyclase 

through Gs-protein, resulting in the production of cyclic AMP (cAMP) which contributes at least 

in part, to NIS transcription activation13, 19, 22, 23.  

NIS gene expression regulation can take place at two different sites; NIS proximal promoter 

(NIS_PP) and the NIS upstream enhancer (NUE)10, 16. NUE involves the most relevant aspects of 

NIS regulation24. Different transcription factors are also involved on NIS transcription regulation, 

NK2 homeobox 1 (NKX2-1) previously named thyroid transcription factor (TTF1)25 and paired 

domain transcription factor-8 (Pax8)23. 
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NUE contains two Pax8 and two NKX2-1 binding sites (that do not contribute to NIS 

transcription) and a degenerate CRE (cAMP responsive element) sequence. For total activation 

of the NUE, both PAX8 and unidentified CRE-like binding factor (CRE-LBF) acts synergically 

to obtain full TSH-cAMP-dependent transcription23. NIS_PP has a binding site for NKX2-1 and 

for another transcription factor named NIS TSH-responsive factor (NTF-1)26. 

TSH stimulates both NIS_PP and NUE activity23, 25, 27. cAMP stimulation of NUE usually 

occurs through protein kinase A (PKA)27, however, NUE is also able to mediate cAMP-dependent 

transcription by a novel PKA independent mechanism23.More recently, forkhead transcription 

factor (FoxE1), previously known by thyroid transcription factor 2 (TTF-2) was also reported to 

be a transcription factor that can stimulate NIS transcription via NUE28. 

TSH can also regulate NKX2-129, Pax830 and FoxE131 expression and though contribute to NIS 

expression regulation by other mechanisms rather than cAMP. 

The other main regulator of NIS expression is iodine itself10. When I- levels reach a high 

threshold occurs an impairment of the organic I- binding and thyroid hormone synthesis, this 

phenomenon was observed the first time in 1948 and is known as the acute Wolff and Chaikoff 

effect32. Approximately two days later, even in the presence of high plasma I- concentration, 

occurs an “escape” from the acute effect, and consequently, the level of I-organification is restored 

and normal hormone biosynthesis is established33. This phenomenon is an intrinsic highly auto 

regulatory system that protects the thyroid gland from high doses of iodide, and also ensures a 

correct iodide uptake for thyroid hormone biosynthesis. Further studies revealed that the 

molecular basis of the “escape” is the decrease of NIS expression, which is mediated, at least in 

part by a transcriptional34 and also postranscriptional35 mechanisms. Recently, Serrano-

Nascimento et al36 proposed that high intracellular I- levels downregulate NIS expression by 

repressing Pax8 and p65 (NF-κB subunit known to increase NIS transcriptional activity37). 

Moreover their results indicated that excess of I- repressed NIS expression through ROS-induced 

activation of PI3K/Akt signaling pathway36. Other authors have previously reported that I-excess 

triggered an increase on ROS production38 
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Another factor that seem to control NIS activity is the state of cellular polarization: TSH 

induces NIS expression both in monolayer cells and in follicle-forming human primary culture 

thyrocytes, but significant stimulation of the I- uptake was only observed in the follicles39. A more 

recent study suggested that TSH activation of NIS gene transcription might involve, in addition 

to others, a regulatory factor(s) whose synthesis and/or activity are triggered by cell-cell 

interaction(s)40. A correct spacial organization of the thyroid seems critical to its function. 

1.2.3 Iodine organification 

Once in the follicular cell, iodine is dropped into the colloid2,3, probably by another channel 

called pendrin3. The next step in the formation of thyroid hormones is the iodination of Tg, which 

is mediated by the enzyme thyroid peroxidase (TPO). TPO is located in the apical membrane of 

the follicular cell or attached to it. It catalyzes the oxidation of iodine (I-) to iodide (I0), in the 

presence of hydrogen peroxide (H2O2) and then incorporates it into specific tyrosine amino acids 

from Tg1-3, 5.  

The H2O2 is essential for TPO activity and consequently for thyroid hormone production. 

In thyroid, H2O2 production is assured by an enzyme named dual oxidase 2 (DUOX2), a 

membrane-bound NADPH-dependent flavoprotein, also present in the apical membrane of the 

follicular cell, next to TPO5. Excess H2O2 not involved in the oxidation of iodide may act as 

mutagenic or carcinogenic. Selenium containing glutathione peroxidase is therefore typically 

upregulated to provide protection from oxidative damage41. 

1.2.4 Conjugation 

The iodination of Tg leads to the formation of monoiodotyrosine (MIT) residues, which 

remains in peptide linkage in the Tg structure. A second iodine atom may be added to a MIT 

residue by this same enzymatic process, forming a diiodotyrosine (DIT) residue. The final step in 

hormone synthesis it is called conjugation: it consists in the coupling of two neighboring 

iodotyrosyl residues to form iodothyronine: two DIT monomers form T4; one DIT and one MIT 

form T31-3, 5. 
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1.2.5 Proteolysis 

When the thyroid gland is stimulated to secrete thyroid hormones, pinocytosis occurs at the 

apical membrane of follicular cells. Briefly the apical membrane form pseudopods in to the lumen 

embracing little quantities of colloid, forming endocytic vesicles (colloid droplets) that further 

migrate towards the basal membrane of the cell. In this path, colloid droplets merge with 

lysosomes full of proteases that digest the Tg molecules and release T3 and T4 in free form. These 

then diffuse through the base of the thyroid cell into the surrounding capillaries. 

2. Thyroid cancer 

2.1 Thyroid cancer epidemiology 

Thyroid cancer (TC) incidence has been rising all over the years. In the United States of 

America (USA) the incidence increased gradually from 4.9 per 100 000 cases in 1975 to 15.07 

per 100 000 cases in 201342. This trend has also been observed in other countries across Europe, 

Asia, Oceania and South America43. The incidence was always higher in women42, 43. This 

increase in the incidence rate was not accompanied by an increase in the mortality rate, that 

remained stable throughout the years in both sexes42. Despite the steady worldwide increase, the 

incidence of TC remains relatively uncommon: 16.5 per 100000 in the USA and 7 per 100000 in 

Europe with the mortality varying between 0.6 and 0.8 per 100000 inhabitants, respectively (in 

2012)44. 

This significant increment in TC incidence has been largely attributed to the more usual 

use of ultrasonography, although environmental factors may also be important. A study reported 

that the rising incidence of TC was predominantly due to the increased detection of small papillary 

cancers. This trend combined with the stable overall mortality suggest that the increasing 

incidence reflects increased detection of subclinical disease, rather than a true uprising in the 

occurrence of TC45. Furthermore, it was previously reported that small papillary carcinomas were 

a common finding at autopsy, reaching a frequency of 36% 46, suggesting that there is a large 

reservoir of small papillary carcinomas, without clinical presentation during life, but can be 
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uncovered by ultrasonography or other screening techniques47. Nevertheless another study 

analyzed the incidence rates of differentiated thyroid carcinoma of all sizes between 1988 and 

2005 and observed an increment of incidence across all tumor sizes suggesting that increased 

diagnostic scrutiny may not be the sole explanation, environmental factors may also be 

important48.  

In Portugal, the incidence of TC has also been increasing in both sexes. The incidence rate 

in women is higher compared to men and is the highest compared to other European countries 

and even the world. This increased incidence is predominantly due to women of the north of the 

country. On the contrary, the mortality rate has decreased for women and slightly increased for 

men (with a greater increase in the south). These trends combined with an overall low mortality 

and high 5-year relative survival, raised some questions about the possible impact that an over-

diagnosis might be causing49. 

2.2 Thyroid cancer diagnosis 

The diagnosis of TC occurs mainly between 45-54 years (median 51). According to their 

anatomical location and size, thyroid nodules (a discrete lesion within the thyroid gland that is 

radiologically distinct from the surrounding thyroid parenchyma) can be noted by the patient 

and/or doctor or incidentally “found” in a routine ultrasonography50. 

The 2015 American Thyroid Association (ATA) Guidelines recommend thyroid nodule 

diagnostic fine needle aspiration (FNA) in the following cases: 

A) Nodules > 1cm in greatest dimension with high suspicion sonographic pattern; 

B) Nodules > 1 cm in greatest dimension with intermediate suspicion sonographic; 

(C) Nodules > 1.5cm in greatest dimension with low suspicion sonographic pattern.  

Nodules ≤ 1cm that course with clinical symptoms and/or lymphadenopathy also require 

further evaluation50. 

The FNA will be evaluated and classified according to the Bethesda system. This system 

recognizes six diagnostic categories (DC), and for each one provides estimation of cancer risk 

and proposes a clinical management: DC1 (non-diagnostic/unsatisfactory) the FNA should be 
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repeated; DC2 (benign) the patient must be under surveillance; DC3 (atypia of undetermined 

significance/follicular lesion of undetermined significance) and DC4 (follicular neoplasm or 

suspicious of follicular neoplasm) patient needs surveillance or surgery, depending on the clinical 

risk factors, ultasonography patterns, genetic testing and patient preferences); DC5 (suspicious of 

malignancy) and DC6 (malignant) patients should be subjected to surgery50, 51. 

2.3 Thyroid cancer histology 

TC can derive from follicular cells (98-99% of cases) and from parafollicular cells (that 

originate medullary carcinoma, a rare type of TC (1-2% of cases)52 that will not be addressed in 

this thesis). Tumors derived from follicular cells can be divided in three groups, according to their 

degree of differentiation: differentiated thyroid carcinomas (DTC) accounting for more than 97% 

of cases, poorly differentiated thyroid carcinomas (PDTC) and anaplastic thyroid carcinoma 

(ATC) that together represent less than 3% of the cases50, 52, 53.  

The DTC group can be further divided in papillary thyroid carcinoma (PTC), the most 

common DTC subtype (~85% of the cases) and follicular thyroid carcinoma (FTC) that represents 

~15% of DTC cases50, 54.  

There are some molecular evidences indicating that DTC can go through a process of 

dedifferentiation and give rise to PDTC and ultimately to ATC, nonetheless, the PDTC and ATC 

can be originated as de novo TCs55-58. 

2.4 Differentiated thyroid carcinoma 

2.4.1 Incidence, types, subtypes, and histological characteristics 

PTC is the most common thyroid tumor, representing 80-85% of all TC. Macroscopically, 

the lesions are firm, usually white and with an invasive appeearance59. 

Microscopically, neoplastic cells are organized in papillae, that contain a core of 

fibrovascular (occasionally only fibrous) tissue59, 60. The diagnosis of PTC depends almost 

exclusively on the identification of the typical nuclei: large, irregular, clear and grooved59, 61, 62. 

Additionally, it is also frequently observed other morphological features such as unencapsulation, 
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prominent stromal reaction, psammoma bodies, elongated shape of the follicles and variegated 

appearance61, 62. Mitoses are exceptionally unusual59, 63. PTCs invade lymphatic vessels, leading 

to multifocal lesions and to regional lymph node metastases. The vascular invasion is rare and 

only 5-7% of PTCs develop distant metastases59, 63. PTCs that are composed totally or in part by 

papillae besides the aforementioned nuclear features, are classified as classic PTC (cPTC), 

comprising the most frequent histotype of PTC (~80% of the cases). 

The follicular variant of PTC (FVPTC) is the second most common variant, being found 

in ~20% of patients with PTC64. The first histological description of FVPTC was by Lindsay in 

196065, followed by Chen in 197766 and Rosai in 198367. It is characterized as a tumor possessing 

the nuclear features typical of PTC, but a follicular growth pattern instead of papillae.  

FVPTC presents several diagnostic and management challenges, they can be divided in: 

infiltrative (or non encapsulated) and in encapsulated follicular variant of PTC (EFVPTC). In the 

first group, the diagnosis is easy, there is no capsule and an invasive pattern can be observed. The 

EFVPTC diagnosis is more challenging, being encapsulated and harboring follicular architecture, 

they may be mistaken for follicular adenoma or follicular carcinoma62. The EFVPTC is diagnosed 

as PTC if the nuclear features are diffusely present throughout the tumor59, which in many cases 

is subjective, leading to high interobserver variability59, 68, so the most controversial lesions in 

FVPTC are those encapsulated, without invasion and/or multifocal and/or with imperfect nuclear 

features59.  

Noninvasive EFVPTC display a particularly indolent behavior (only a few cases will 

behave in a clinically aggressive manner)59, 68 and are genetically different from infiltrative 

tumors, even though most patients continue to be treated similarly to those with conventional 

PTC69. So, in 2016 Nikiforov et al.,69 proposed that noninvasive EFVPTC should be termed as 

“noninvasive follicular thyroid neoplasms with papillary-like nuclear features” (NIFTP). This 

study also suggests that the clinical management of these patients can be deescalated because they 

are unlikely to benefit from completion thyroidectomy and radioactive iodine therapy. This 

reclassification intends to affect a large population of patients worldwide to achieve a significant 

reduction in psychological and clinical consequences associated with the diagnosis of cancer68. 
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Besides the cPTC and the FVPTC there are several other histological subtypes of PTC 

(Table1) with lower incidences that present, the characteristic papillary-like nuclei, and specific 

growth patterns, cell types, stromal changes and prognosis61. 

Table1. Variants of PTC 

Classic* 

Follicular* 

Macrofollicular*

Oncocytic*

Clear cell*

Diffuse sclerosing*

Tall cell*

Columnar cell*

Solid*

Cribriform morular*

Papillary carcinoma with fasciitis-like stroma*

Papillary carcinoma with focal insular component*

Papillary carcinoma with squamous cell or mucoepidermoid carcinoma* 

Papillary carcinoma with spindle and giant cell carcinoma* 

Papillary microcarcinoma*

PTC with prominent hobnail features#
*World Health Organtzation61, #Asioli et al.,201070 

PTC tend to be a biological indolent tumor, and PTC patients have a good prognosis (10 

year survival is >90%), however the presence of vascular invasion and nuclear atypia may be 

adverse prognostic signs61. The World Health Organization (WHO) recognizes some variants: the 

tall-cell variant and the columnar cell variant as a subcategory of biological aggressive variants61. 

PTC with prominent hobnail features was also described as an aggressive variant compared do 

classic PTC70. 

FTC represents 10-15% of all TC. FTCs are invasive neoplasms of follicular origin that 

lack the typical nuclear features of PTC61. They can be divided in two major groups: minimally 

invasive (invasion limited to the capsule and/or vascular invasion) and widely invasive 

(widespread infiltration of adjacent thyroid tissues and/or blood vessels). The identification of 

capsular or vascular invasion differentiates FTC from follicular adenoma (FTA); carcinomas tend 

to have ticker and more irregular capsule61, 71. Patients with minimally invasive FTCs have a very 
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low long term mortality (3-5%), while widely invasive FTC patients have a long term mortality 

up to 50%61. 

FTC tends to be more aggressive compared to PTC. FCT rarely metastasizes to regional 

lymph nodes (5%), instead they usually present blood vessel invasion and ~20% of them present 

distant metastases, more frequently found in lung and bone61, 71. FTC encompass two variants: 

oncocytic variant (more likely to recur and cause death by local invasion compared to 

conventional FTC) and clear cell variant61. 

2.5 Prognostic biomarkers 

In general, DTC has a favorable prognosis, but it is of great importance to identify at the 

time of diagnosis those patients who have a high risk of progressive disease and DTC-related 

death. The importance of recognizing prognostic variables is relevant for the optimal management 

of DTC, e.g. the extent of thyroid surgery and the indications for postoperative radioiodine 

therapy. A recognized prognostic classification is also critical for the comparison of treatment 

results72. 

2.5.1 Age 

Age at diagnosis is a critical predictor of patient outcome. TC in children tend to have a 

low mortality rate, even with extensive disease or distant metastases at presentation73, the best 

indicator of outcome in this group is response to radioactive iodide (RAI) therapy74. Older patients 

tend to have aggressive histological variants, extensive neck and distant metastases at diagnosis, 

tumors tend to be more undifferentiated and metastases uptake less 131I compared to younger 

patients75. 

The prognostic cut off value for thyroid cancer considered by the Union for International 

Cancer Control/American Joint Committee on Cancer (UICC/AJCC) until the 7th edition to the 

calculation of the TNM (Tumor, Node, Metastases) staging (that will be further addressed) for 

age was 45 years, with patients with ≥45 years presenting worse prognosis compared to patients 

with <45 years76 (Table 2).  
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2.5.2 Gender 

Even though the incidence of DTC is higher in females compared to males (discussed 

above), the mortality rates are higher among males than women77. Rates of extrathyroidal 

extension, likelihood of lymph node metastases and recurrence are higher in males compared to 

women (from 1988 to 2007)42. 

2.5.3 Tumor size 

Tumor size correlates with patients’ outcome. Larger tumors are associated with higher 

recurrence rates and worse prognosis72, 78, 79. Larger tumors present more often locoregional and 

distant metastases, and the risk of recurrent disease and cancer specific mortality increases 

linearly with tumor size77. 

2.5.4 Extrathyroidal extension 

The presence of extrathyroidal extension (ET) is also a prognostic factor in TC, its presence 

increases the risk of recurrence72, 78, 79. There are different degrees of ET, according to the 7th 

edition of AJCC/UICC staging system: ET could be divided in minimal (being classified as T3), 

and gross (being classified as T4)76 (Table 2). Studies are concordant about the association of 

gross ET and higher risk of recurrence, however, the impact of minimal ET on recurrence rate 

and prognosis is controversial, some studies demonstrated that minimal ET had no risk/prognostic 

impact80-82 

2.5.5 Lymph node metastases 

Lymph node metastases, per se, have no prognostic impact. Several studies have found no 

difference in survival between patients with or without lymph node metastases78, 79, 83. Only one 

study demonstrated that the presence of lymph node metastases may have impact on survival, but 

only according to patients’ age: in patients with <45 years, lymph node metastases had no impact 

on survival, while in patients with ≥45years it was associated with increased risk of death84. 

27



 
 

2.5.6 Distant metastases 

The presence of distant metastases in DTC is rare at the time of diagnosis and even rarer 

after the initial treatment with RAI (2.5-5%)85 but very relevant. Mortality is higher in patients 

with distant disease, with a 50% survival at 3.5 years86. Nonetheless, even in the presence of 

distant metastases there are some aspects that can affect significantly the patients’ outcome: 

patients presenting distant  metastases initially, appear to have relatively favorable outcomes 

compared with DTC patients who developed distant metastases after initial treatment87, 

furthermore, survival is significantly improved in those cases which distant metastases remain 

avid to 131I therapy85, 86 . In DTC, the ability to uptake 131I has a great impact on survival, even in 

the presence of distant metastases, so the therapy response is a prognostic factor of great value85, 

this issue will be further discussed in the “treatment” section. 

2.5.7 Tumor staging systems 

In order to separate patients with low risk of recurrence or death, from those with 

intermediate to high risk, some staging/grading systems were developed using different 

combinations of prognostic factors. Most of the prognostic factors used to calculate risk can be 

assessed at the time of diagnosis. Staging systems are used to select the most appropriated initial 

treatment88. 

The European Thyroid Association (ETA) and the American Thyroid Association (ATA) 

recommend the use of Tumor, Node, Metastasis (TNM) classification of the UICC/AJCC for 

DTC staging, represented in Table 2.  

When we performed our studies, the current edition was the 7th, so every time we refer to 

TNM staging we will be using 7th edition criteria (Table 2). Recently, some studies recommended 

a change in the cutoff age from 45 years to 55 years, defending that this change would prevent 

over-staging in low-risk patients and prevent over- treatment89, 90. Consequently, in the 8th edition 

of UICC/AJCC staging system for DTC changed the cut off value from 45 years to 55 years91. 

Moreover, in the 8thedition, the definition of T3 has been revised and a new T category emerged: 

T3a- tumor more than 4 cm in greatest dimension, limited to the thyroid; T3b- tumor of any size 
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with gross extrathyroidal extension invading strap muscles (sternothyroid, or omohyoid 

muscles)91. There is a representation of the 8th edition of AJCC/UICC staging system for DTC in 

Appendix II.  
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UICC/AJCC staging system for differentiated thyroid carcinoma   

Adapted from UICC/AJCC TNM 7thedition #   

T- Primary Tumor     

T1- Tumor ≤2cm in greatest dimension limited to the thyroid

T1a- Tumor <1cm, limited to the thyroid

T1b-Tumor >1cm but ≤2cm in greatest dimension limited to the thyroid

T2- Tumor >2cm but ≤4cm in greatest dimension limited to the thyroid
T3-Tumour > 4 cm in greatest dimension, limited to the thyroid or any tumor with minimal 
extrathyroidal extension (e.g., extension to sternohyoid muscle or perithyroid soft tissues) 

T4a*-Tumor of any size extending beyond the thyroid capsule to invade subcutaneous soft tissues,  

larynx, trachea, esophagus or recurrent laryngeal nerve 

T4b*-Tumor invade prevertebral fascia or encases carotid artery or mediastinal vessels 

N- Regional lymph nodes 

Nx- Regional lymph nodes cannot be assessed

N0- No regional lymph node metastases

N1a- Metastases to Level VI (pretracheal, paratracheal, and prelaryngeal/delphian lymph nodes) 

N1b- Metastases to unilateral, bilateral, or contralateral cervical (Levels I, II, III, IV, or V)  

or retropharyngeal or superior mediastinal lymph nodes (Level VII)

M- Distant metastases  
Mx- Distant metastases cannot be assessed  
M0- No distant metastases  
M1- Presence of distant metastases  

Staging  
Stage<45 years old Stage ≥45 years old  
Stage I Stage I  

Any T. Any N. M0 T1. N0. M0  
Stage II Stage II  

Any T. Any N. M1 T2. N0. M0  

  Stage III  

  T3. N0. M0  

  T1. N1a.M0  

  T2. N1a.M0  

  T3. N1a.M0  

  Stage IVa  

  T4a. N0. M0  

  T4a. N1a. M0  

  T1. N1b.M0  

  T2. N1b.M0  

  T3. N1b.M0  

  T4a.N1b.M0  

  Stage IVb  

  T4b. Any N. M0  

  Stage IVc  
  Any T. Any N. M1     
*All anaplastic thyroid carcinoma are considered as T4. # Adapted from AJCC: thyroid. In: Edge 
SB, Byrd Compton CC, et al. AJCC Cancer staging manual. 7th ed. New York NY: Springer, 2010, 
87-96     
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In addition to TNM staging, other staging systems have been proposed. 

Table 3 Summary of other staging systems for thyroid cancer 

Staging systems Prognostic factors involved 

AMES (for DTC)92,  
Age, distant Metastases, Extent and Size of primary 
tumor

AGES (for PTC)93 Age, tumor Grade, Extent and Size 

MACIS (for PTC)83 
Distant Metastases, Age, Completeness of surgery, 
Invasion of extrathyroidal tissues and Size of the 
primary tumor

De Groot’s clinical classification (for 
DTC)94 

Extrathyroidal extension, cervical lymph node 
metastases, completeness of surgery and distant 
metastases 

NTCTCS (National Thyroid Cancer  
Treatment Cooperative Study 
Classification) 

(for all thyroid carcinomas)95 

Tumor size, multifocality, extrathyroidal extension, 
degree of differentiation, cervical lymph node 
metastases and distant metastases 

 

A comparison of the different prognostic systems in DTC demonstrated that the 

UICC/AJCC staging system clearly outperforms other prognostic systems96. 

The clinic applicability of these staging classifications for patients with DTC presents 

certain limitations: they do not contemplate the early diagnosis or recurrence or even therapy 

sucess54, 72. TNM staging was developed to predict the risk of death, since DTC patients present 

excellent 10 and 20 year disease survival, the most important aspect to predict in DTC patients is 

the risk of recurrence54. As a consequence, ATA (edition of 2009) has created a more functional 

definition of risk stratification for individual patients that is similar to the one outlined by the 

ETA97,98, both proposed a three-tiered clinicopathological risk stratification: low, intermediate 

and high risk for recurrence. In 2015 ATA50 guidelines updated some of the categories:  

 Low risk patients are those patients that present DTC with no evidence of ET or 

vascular invasion. Patients with small volume lymph node metastases (clinical N0 or ≤ 5 

pathologic N1 micrometastases, <0.2 cm in largest dimension), intrathyroidal 

encapsulated follicular variant of PTC, intrathyroidal well-differentiated follicular cancer 

with capsular or minor vascular invasion (<4vessels involved), and intrathyroidal 

papillary microcarcinomas that are either BRAF wild type or BRAF mutated; 
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 Intermediate risk patients demonstrated either microscopic ET, cervical lymph 

node metastases, RAI avid disease in the neck outside the thyroid bed, vascular invasion 

or aggressive tumor histology and a subset of patients with lymph node metastases 

(clinical N1 or >5 pathologic N1 with all involved lymph nodes < 3 cm in largest 

dimension), intrathyroidal papillary thyroid cancer with a primary tumor of 1-4 cm that 

is BRAF mutated (if known), and multifocal papillary microcarcinoma with 

extrathyroidal extension and BRAF mutated (if known); 

 Finally, high risk patients have gross ET, incomplete tumor resection, distant 

metastases, or inappropriate post-operative serum Tg values. Patients with large volume 

lymph node involvement (any metastatic lymph node ≥ 3 cm in largest dimension), and 

FTC with extensive vascular invasion (> 4 foci of vascular invasion or extracapsular 

vascular invasion)50. 

2.6 Genetic predictors 

Several genetic alterations have been identified in TC, and a putative role as molecular 

biomarkers of aggressiveness has been assigned for some of them. The importance of genetic 

markers for predicting thyroid cancer outcome is limited by the prominence of clinical, 

histopathological, and other context-driven features. Clinical and histopathological prognostic 

factors remain much more important than genetic factors for diagnostic and prognostic purposes88. 

This conclusion is, however, challenged almost every day by the publication of new molecular 

data in the different types of TC. The most important of such publications was the “Integrated 

genomic characterization of papillary thyroid carcinoma” that provided a detailed description of 

the genomic landscape of 496 cases of PTC under the auspices of The Cancer Genome Atlas 

(TCGA) Research Network Initiative99. This study highlighted the importance of the genetic 

background by demonstrating that PTCs can be grouped according to their genetic background, 

with each group harboring distinct characteristics, concerning for example differentiation99. 
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The genetic alterations that are more prevalent and/or seem to play a more important 

prognostic role in DTC are: RAS, BRAF, and TERT promoter (TERTp) mutations100. 

2.6.1 RAS mutations 

RAS are small GTPase-proteins that act as a molecular switch propagating signals from 

tyrosine kinase and non-tyrosine kinase receptors and activating the Mitogen Activated Protein 

Kinases (MAPK) and other signalling pathways. RAS mutations are more prevalent and seem to 

be more relevant as a prognostic indicator in follicular patterned lesions (FVPTC, and FTC) than 

in classic PTC101. RAS mutations are less prevalent in PTC (10%) than in FTC (25-30%)102, 103, 

and within PTC RAS mutations are rare in the classic form of PTC whereas, in FVPTC, its 

prevalence falls within the range of other follicular patterned tumors (~25%)104. 

All the three RAS genes (H, K, N-RAS) were shown to be mutated in both benign and 

malignant thyroid tumours, which brings some controversy on the prognostic value of RAS 

mutations in thyroid cancer. Specifically, in DTC, studies reported an association between (N) 

RAS mutation and distant metastases and/or lower survival in FTC105, 106.  

RAS mutations are present in DTC with areas of dedifferentiation, furthermore their 

prevalence is greater in PDTC and ATC than in DTC107  which may indicate that they 

canpredispose to differentiation loss in TC. However, a recent study with a high number of PTCs 

demonstrated that RAS-like PTCs are more differentiated, as least compared to BRAFV600E 

driven PTCS99. 

It has been difficult to demonstrate the prognostic value of RAS mutations due to the 

relatively small size of the majority of the series (in particular concerning FTCs, which are less 

frequent than PTCs) and the too short follow-up in most situations. Large, multicentric studies 

will be necessary to establish definitely the prognostic value of RAS mutations.  

2.6.2 BRAF mutation 

BRAF gene encodes a serine/threonine kinase that belongs to RAS-RAF-MEK-ERK- MAP 

Kinase pathway, whose biological role is to mediate cellular responses to growth factors. There 

are several BRAF mutations, being BRAFT1796A (in exon 15), leading to a substitution of a 
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valine by a glutamic acid at position 600 (V600E), largely more prevalent. Such mutation causes 

an increased BRAF kinase activity and subsequent phosphorylation of MEK1/2 and ERK1/2, 

turning the activation of the MAP kinase pathway independent from upstream factors 

activation108. 

BRAFV600E mutation is the most prevalent point mutation in PTC being present in 36-

69% of cases101. It rarely co-exists with other prevalent genetic events such as RET/PTC 

rearrangement109 or RAS mutation110. BRAFV600E mutation exhibits a strong genotype-

phenotype association; it is (almost) exclusively detected in PTC exhibiting papillary or mixed 

follicular/papillary growth pattern111. 

Although functional studies, using thyroid-targeted BRAFV600E transgenic mice112 and 

BRAFV600E transfected thyroid cell lines113, indicate that BRAF mutations lead to an “aggressive 

type” of PTC, several other studies, addressing the correlation between BRAFV600E and the 

clinical features of PTC provided discrepant results (see below).  

Some studies reported significant associations between BRAF mutation and poor 

prognostic indicators like older age114, 115, male gender116-118, ET114, 119, regional metastases117, 119, 

distant metastases120, higher tumour staging114, 119, 120, tumour size117, 118, 121 and tumour 

recurrence119, 122. Other studies have not observed the aforementioned associations123-125. 

Recently, a multicenter retrospective study showed that BRAFV600E was significantly 

associated with increased cancer-related mortality among patients with PTC but the association 

was not independent of several clinicopathological features of aggressiveness126. 

We observed that BRAFV600E PTCs tended to occur in older patients and did not exhibit 

a significant association with signs of clinicopathological aggressiveness, like larger size, ET, 

vascular invasion and lymph node metastases111, 127, or poor circumscription127. This does not 

mean, however, that BRAF mutation cannot contribute for progression of PTCs towards less 

differentiated carcinomas in the appropriate context, since our group and others55, 114, 120 detected 

BRAFV600E mutation in 10-35% of ATC. A more recent study demonstrated that BRAFV600E 

driven PTCs are less differentiated compare to RAS driven PTCs99.  
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In fact, it is widely demonstrated that BRAFV600E is associated with a decrease of several 

“thyroid specific genes” or “iodine handling genes”122, 128, 129, this issue will be further discussed 

in “NIS expression regulation in thyroid cancer” section.   

2.6.3 TERT promoter mutations  

Recently, mutations in the promoter region of telomerase (TERT) gene were reported in 

follicular cell-derived thyroid carcinomas (FCDTC)130-132. These mutations occur in two hotspot 

positions, located -124bp and -146bp upstream from the ATG start site (-124G>A and -146G>A, 

C>T on opposite strand) and confer enhanced TERT promoter activity, putatively by generating 

a consensus binding site (GGAA) for ETS transcription factors within the TERT promoter 

region133.  

In a large series of 469 carcinomas, our group found TERT promoter mutations (TERTp) in 

7.5 % of PTC and 17.1 % of FTC134. The majority (about 80%) of mutated cases present the -

124G>A mutation.  

In DTC, TERTp mutations were associated with older age, larger tumours and presence of 

distant mestastases134, 135. Furthermore, patients harbouring TERTp mutations were less prone to 

be disease-free at the end of follow-up. Similar results were found in three other studies136-138. 

Patients with TERT-mutated tumours were submitted to more treatments with radioiodine with 

higher cumulative doses, as well as to other treatment modalities like surgery for recurrent 

disease, external beam irradiation or treatment with tyrosine kinase inhibitors (TKI)134. 

Furthermore, patients with tumours harbouring TERT promoter mutations had increased disease-

specific mortality, and this finding was independent of age and gender134. 

In PTC, TERTp mutations were significantly more frequent in BRAF mutated tumours132, 

134. TERTp mutations were associated with increased mRNA expression, and this increase was 

more pronounced in tumours harbouring both BRAF and TERT promoter mutations130. 

Since BRAF has also been associated with worse prognosis in some studies, several authors 

hypothesized that both mutations could cooperate towards a worse prognosis132, 139. Multicentric 
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studies with large series of patients will be necessary to clarify if the addition of BRAF mutational 

status to a TERT-mutated tumor has indeed value for prognostic stratification140.  

The prognostic biomarkers, staging systems and genetic predictors are very useful in the 

estimation of the risk and stratification of TC patients for different treatment approaches.  

2.7 Treatment of differentiated thyroid carcinoma 

The main goals of DTC treatment are: remove completely the primary tumor and lymph 

node metastases (when present); minimize the risk of disease recurrence and metastatic spread; 

permit accurate staging and risk stratification of disease; favor accurate long-term surveillance 

for disease recurrence and minimize treatment related morbidity50. 

The initial treatment for DTC is total or near-total thyroidectomy whenever the diagnosis 

is made before surgery and the nodule is ≥1 cm, or regardless of the size if there is metastatic, 

multifocal or familial DTC98.  

After initial surgery, the second pillar of treatment for DTC is RAI therapy in order to 

eliminate thyroid and tumor remnants and/or metastases50, 141, 142.  

Patients are designated for RAI treatment or not, according to a combination of some 

postoperative findings. RAI treatment is: not considered if tumor size ≤1cm T1a, uni or 

multifocal; not routinely considered if tumor size >1cm ≤4cm (T1b-T2) or follicular cancer with 

no or minimal (<4foci) vascular invasion; considered if tumor size ≥3cm (T3) (7th edition 

UICC/AJCC TNM staging), presence of microscopic ET (T3), presence of lymph node metastases 

in central compartment (N1a) or lateral neck lymph node metastases (N1b); absolutely considered 

if follicular thyroid cancer with extensive vascular invasion (>4foci), gross extrathyroidal 

extension (T4) or presence of distant metastases50. 

Due to their well-differentiated nature, DTC cells often retain some degree of 

differentiation (in comparison to normal thyroid), that includes: NIS expression and functionality 

and the ability to uptake iodine, the production and secretion of Tg and expression of TSHR on 

their surfaces143,144-146. The administration of RAI refers to the administration of the radioactive 

isotope 131I, that due to NIS expression and preserved functionality, is uptaken by thyroid 
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normal/tumors cells147. Once in the interior of the cells, 131I decays and emits beta radiation with 

a mean tissue penetration of 1mm, as well as a more deeply penetrating gamma radiation that can 

be detected by scintigraphy. When RAI is administered, the tumor receives a high radiation dose 

(causing cell death), while the surrounding tissue is largely spared. Because of this biological 

property of thyroid tumor cells (preserved NIS expression and functionality) radiotherapy can be 

delivered specifically to the tumor tissue141. In order to increase NIS expression/functionality, 

prior to 131I administration, patients are subjected to an increase in TSH levels in the serum 

(≥30mU/L), either by administration of recombinant TSH or discontinuing treatment with 

levothyroxine for 4-5 weeks50, 147. 

RAI therapy is a very efficient targeted radiotherapy; it is given on an adjuvant basis after 

thyroidectomy, to destroy thyroid normal/tumor remnants and/or distant metastases, decreasing 

the risk of locoregional recurrences. Moreover, it also increases the sensitivity and specificity of 

follow-up testing for DTC persistence or recurrence:  

 measurements of serum Tg as a tumor marker (detectable serum Tg levels indicate 

persistence/recurrent of disease), and 

 diagnostic radioiodine whole body scintigraphy (detection of RAI uptake indicates 

persistent/recurrent disease142,147. 

Unfortunately, a subgroup of DTC patient (4-23%) develop distant metastases, worsening 

their prognosis148; patients are at increased risk to succumb to the disease when the tumor loses 

the ability to uptake RAI, which occurs in approximately 26-60% of the patients with recurrent 

disease149. The loss of NIS expression/function is thought to be the major molecular mechanism 

that contributes to RAI refractoriness150. This subgroup of DTC patients represents a real 

challenge in TC field because, although all clinicopathological prognostic factors, genetic 

predictors, and staging systems, it is still not possible to predict which DTCs patients that will 

course with high morbidity and eventually mortality at initial diagnosis.   

RAI treatments are highly effective in younger patients and with small metastases85. A 

study compared the survival rates between patients with recurrences with and without 131I uptake: 
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the 10 year survival rate was of 92% in patients with 131I uptake compared to 10% in those patients 

without any initial 131I uptake85. Another study addressed the prognostic factors of DTC patients 

with lung metastases, and the 131I non avidity, observed more often in late metastases, was the 

only independent predictive factor of poor prognosis148. In conclusion, the response of DTC 

remnants/recurrences to RAI is a critical prognostic factor. 

Having this in mind, ATA 2015 guidelines proposed a system to estimate the risk of 

recurrence, during follow-up, based on RAI response50. 

Table 4.ATA risk assessment during follow-up 

Excellent response (1-4% recurrence) 

. Imaging negative for disease recurrence 

. Serum thyroglobulin concentration lower than 0.2ng/ml basal or higher than 1ng/ml TSH stimulated 
  
Indeterminate response (15-20% recurrence) 

. Non-specific findings on imaging studies 

. Serum thyroglobulin concentration 0.2-1ng/ml basal or TSH stimulated or thyroglobulin antibodies stable 
or decreasing 
  
Biochemical incomplete response (20% recurrence) 

. Imaging negative for disease recurrence 

. Serum thyroglobulin concentration higher than 1ng/ml basal or higher than 10ng/ml TSH stimulated, or 
increasing thyroglobulin antibodies concentrations
  
Structural incomplete response (50-85% recurrence) 
. Structural (neck ultrasound, CT or MRI) or functional (whole body scan 18F-fluorodeoxyglucose PET) 
evidence of disease in imaging studies 

 
CT computed tomography. MRI Magnetic resonance imaging 
 

According to ATA guidelines 2015, a radioiodine-refractory structurally-evident DTC is 

defined in four basic ways (under similar conditions of TSH stimulation and low iodine intake):  

1) the malignant/metastatic tissue does not ever concentrate radioiodine (no uptake outside the 

thyroid bed at the first diagnostic or therapeutic WBS); 

 2) the tumor tissue loses the ability to concentrate radioiodine after previous evidence of RAI-

avid disease (in the absence of stable iodine contamination); 

3) radioiodine is concentrated in some lesions but not in others;  

4) metastatic disease progresses despite significant concentration of radioiodine50. 
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When a patient with DTC is classified as refractory to radioiodine, there is no indication 

for further radioiodine treatment50. Management of RAIR DTC is a real challenge, that vary from 

active surveillance (only biochemical evidence of disease and/or small cervical lymph node 

metastases and/or stable or slowly growing distant metastases) to localized therapy (when there 

is only one metastatic site and/or there are only a few progressive lesions) being the surgery the 

best therapeutic option, to systemic therapy (rapidly progressive disease and/or larger tumor 

burden and/or symptomatic)150. 

Systemic therapies consisted more often in TKI and their goal is to stop progression150. 

Sorafenib and lenvatinib are both TKI approved by Food and Drug Administration (FDA) to treat 

RAI refractory DTCs (in 2013 and 2015, respectively). In some cases, sorafenib caused lesion 

shrinkage151.Unfortunately neither sorafenib152 or lenvatinib153 show any improvement in patient 

overall survival, but those treatments improved progression-free survival rates when compared to 

placebo152, 153. 

Even though TKIs may not seem very promising in controlling the development of 

advanced refractory DTC, treatment of RAIR patients with selumetinib was able to enhance RAI 

uptake and even resssensitize some tumors to RAI therapy154. As far as our knowledge, this study 

was not continued, but it calls our attention to the importance of developing new treatments 

focused not only in stop tumor progression, but specially in restoring NIS expression/function.  
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3. mTOR pathway 

Mammalian target of rapamycin (mTOR) is a multidomain Ser/Thr kinase that belongs to 

the phosphoinositide 3-kinase (PI3K) pathway. mTOR pathway can be activated by diverse 

exogenous stimuli, such as growth factors, nutrients, energy and stress signals and essential 

signaling pathways: the canonical pathway of mTOR activation depends on mitogen-driven 

signaling through PI3K/AKT, although alternative non-AKT dependent activation through the 

RAS/MEK/ERK pathway is now recognized155.  

mTOR activity in the cell is carried out by two distinct complexes: mTORC1 complex 

made up by mTOR, raptor, mLST8, Deptor and PRAS40) and mTORC2 complex (composed by 

mTOR, rictor, mSin1, Deptor, Protor, HSp70and mLST8). Both complexes are activated by 

different stimuli and have different physiological functions155-158. When mTOR is phosphorylated 

at Ser2448 it can be part of any mTOR complexes, whereas phosphorylation in Ser2841 it is 

mTORC1 unique159. 

mTORC1 signaling has been more studied  and is better understood compared to mTORC2 

signaling156. mTORC1 is particularly sensitive to acute treatment with rapamycin, during some 

years mTORC2 complex was considered insensitive to rapamycin treatment, but recent evidences 

demonstrated that mTORC2 complex is also inhibited by rapamycin following chronic 

exposure160. 

mTORC1 complex is activated by the presence of growth factors and hormones such as 

insulin161,  nutrients such as amino-acids162 and cytokines such as tumor necrosis factor α- TNF 

α163. mTORC1 is active when cells are at a high energy state164 and in the presence of oxigen165, 

166, being inhibited in response to low ATP levels and hypoxia 164-166 . 

Regardless of the activating source, mTORC1 will phosphorylate its downstream effectors: 

the serine/threonine kinase S6K1 and S6K2, that in its turn will phosphorylate S6 (40S ribossomal 

protein S6)167, 168, and the eukaryotic initiation factor E binding protein (4EBP1)169 (Figure 3). 

pS6 will enhance mRNA translation particularly of ribossomal protein, elongation factors and 

insulin growth factor 2155. Phosphorylation of 4EBP1 promotes the dissociation of 4EBP1/eIF4E 
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(eukaryotic translation initiation factor 4E). Once free eIF4E will form a complex with other 

proteins culminating in an increased translation of its target genes, including cyclin D1, which are 

required to cell cycle progression (from G1 to S phase)155 (Figure 3). Furthermore, mTORC1 also 

stimulates adipogenesis170 and blocks autophagy171. Summing up, mTORC1 controls cell growth, 

proliferation, metabolism and survival156. 

pS6 is phosphorylated by S6K1/2 at the C-terminus on Ser236, Ser235, Ser240, Ser244 and 

Ser247172. In addition to being phosphorylated by S6K1/2 in a mTOR dependent way, some 

evidences demonstrated that S6 can also be phosphorylated independently of mTORC1 activity. 

S6K1-/-/2-/- knock-out mice, were found to display no phosphorylation of pS6 at Ser240/244, but 

persistent phosphorylation at Ser235/236, revealing the presence of another in vivo pS6 kinase, 

that was identified as p90 ribosomal S6 kinase (RSK)173. RSK can phosphorylate S6 in response 

to RAS/ERK pathway, serum and growth factors independently of mTORC1168. Furthermore, 

another kinase, the casein kinase 1 (CK1) was also described as being able to phosphorylate pS6 

(Ser247) also independently of mTORC1. It is important to refer that RAS/ERK pathway can 

contribute to phosphorylation of S6 also in a mTOR dependent way, briefly, ERK and RSK 

promotes TSC1/TSC2 complex dissociation, which drives the small GTPase Rheb into active 

state, leading to mTORC1 activation at Ser2448155. 

mTORC2 complex is not responsive to nutrient stimulation, it respond to growth factors 

via PI3K-mediated mechanism174. Besides that, mTORC2 is also regulated by mTORC1; 

mTORC1 can negatively influence mTORC2 function via S6K1 phosphorylation of rictor and 

Sin1175-177. 

Once activated, mTORC2 phosphorylates AKT at Ser473, protein kinase C α (PKC α), 

glucocorticoid-induced protein kinase (SGK1) and paxilin178-182 and can also affect the activity of 

Rho GTPases183(Figure 3). Recently, a study demonstrated that mTORC2 can phosphorylate 

insulin receptor and insulin growth factor receptor184. According to its downstream effectors, 

mTORC2 can contribute to actin cytoskeleton remodeling and cell migration, through Rho 

GTPases, paxilin183 and PKC α 185(Figure 3). Additionally, mTORC2 can influence cell survival, 
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growth, migration and proliferation through its effects on AKT, SGK1, (Figure 3) insulin receptor 

and insulin like growth factor receptor179, 180, 184, 185.  

 

Figure 3. Representative diagram of mTORC1 and mTORC2 assembly and respective main 

downstream effectors.  

 

3.1 mTOR pathway in cancer: different roles of mTORC1 and mTORC2 

complexes 

Taking into consideration the functions of the mTOR pathway in cell growth and 

metabolism, it is not surprising that this pathways is overactivated in a large variety of human 

neoplasms being in some models implicated in tumor growth, metastases and/or correlated with 

worse prognosis155.  

Aberrant mTOR pathway activation in cancer can be a consequence of oncogene 

stimulation or loss of tumor supressors186. Mutations in mTOR, PI3K, mutations/amplifications 
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of AKT and downregulation of PTEN (mTOR pathway blocker)  are genetic events that contribute 

to mTOR pathway overactivation in cancer155. 

The contribution of the mTORC1 complex to tumor progression is better understood in 

comparison to mTORC2. mTORC1 (through its downstream effectors pS6 and p4EBP1) 

potentiate the severity of tumor progression through numerous molecular mechanisms like tumor 

proliferation, growth and resistance to apoptosis187. Overexpression of the mTORC1 downstream 

effector pS6 has been implicated in tumor progression and/or worse  prognosis in melanoma,  

ovarian, lung, gastric cancer and esophageal squamous cell carcinoma188-192, on the other hand 

4EBP1 expression has been associated with progression and worse prognosis in renal cell 

carcinoma, breast and lung cancer193-195. 

mTORC2 complex also seems to play a role in cancer. pAKT Ser473 expression was 

associated with invasion in bladder cancer182 and with metastization in breast and gastric cancer196, 

197. Furthermore, mTORC2 complex has been associated with an increase in cell migration in 

models of renal cell carcinoma, breast cancer and gliomas198-200. 

Even though there are evidences that both mTORC1 and C2 complexes are involved with 

invasion and metastization201, 202, mTORC2 complex is more often associated with these 

features182, 196, 197, 199, 203, when compared to  mTORC1 complex198. In fact activation of AKT on 

Ser473 is associated with essential steps of metastization, such as the loss of expression of the 

adhesion molecule  E-cadherin, thereby permitting cell detachment204. 

3.2 mTOR inhibitors 

Rapamycin was the first identified mTOR inhibitor and nowadays several analogs are also 

available, known as rapalogs155. They all share the same mechanism of action, but new rapalogs 

tend to be more soluble and stable compared to rapamycin156.  

Rapamycin/rapalogs form a complex with FKBP12-binding protein (FKBP12) that will 

bind to the FKBP12/rapamycin-binding (FRB) domain of mTOR only when mTOR is associated 

with other components of mTORC1. The FKBP12/rapamycin complex results in the dissociation 
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of Raptor from mTORC1 and loss of contact between mTORC1 and its substrates205. As referred, 

it was demonstrated that chronic treatment with rapamycin can also disrupt mTORC2 complex160. 

Some rapalogs are currently used in cancer therapy and others are in clinical trial, for 

example RAD001/everolimus was approved by FDA for the treatment of advanced renal cell 

carcinoma, subependymal giant cell astrocytoma, non resectable neuroendocrine pancreatic 

tumors and advanced estrogen receptor positive/HER2 negative breast carcinoma (in association 

with other drugs)205. 

However, the efficacy of rapamycin/rapalogs as broad-based monotherapy for the 

treatment of cancer has not been as promising as initially expected, being limited to a subset of 

solid tumors156, 205. One possible explanation is the failure of acute inhibition of the mTORC2 

complex155, 156. So, a new generation of mTOR inhibitors as emerged, those drugs bind to the ATP 

binding site of mTOR decreasing its kinase activity, known as mTORC1/mTORC2 dual 

inhibitors156, 205.  Examples of dual mTOR inhibitors are AZD8055, AZD2014, OSI-027, INK128/ 

MLN-0128 and Torin2 among others206, some with promising results in preclinical evaluations207. 

3.3 mTOR pathway in thyroid carcinoma 

Both mTORC1 and C2 complexes are overactivated in PTCs: higher expression of their 

downstream effectors (pS6, p4EBP1 and pAKT) has been identified in PTCs compared to normal 

adjacent tissues208-210. In medullary thyroid carcinoma (MTC), mTOR pathway is also activated, 

pS6 expression is more intense in RAS mutated MTC, associated with the presence of lymph node 

metastases and significantly increased in invasive tumors 211. 

Despite being activated, the impact of mTOR pathway in DTC clinical behavior remains 

largely unknown. There is some dispersed evidence that pS6, p4EBP1, pAKT and/or Sin 1 

expression is higher in PTC with more aggressive histology compared to classical PTC212, 213, and 

that cPTC harboring BRAFV600E mutation expressed higher levels of pmTOR, pS6 and pAKT210 

compared to BRAFWT, presenting though, an overactivation of components of both mTORC1 

and C2 complexes. Finally, it was reported that pAKT was predominantly found in regions of 

capsular invasion, and assumed a nuclear translocation in the invasive regions of PTCs209. 
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Pharmacologic abrogation of mTOR pathway in TC cell lines by rapamycin caused a 

decrease on cell viability210 and treatment with Torin2 lead to a cell cycle arrest and increased 

apoptosis58. Torin2 also impaired tumor growth in vivo214. These results demonstrate that mTOR 

pathway is involved in cancer cell proliferation and survival. Inhibition of mTORC1 by 

rapamycin in thyrocytes and thyroid cancer cell lines also caused an incresase of NIS expression 

and RAI uptake, this particularity was previously adressed in “NIS expression regulation in 

thyroid carcinoma” section. 

Besides being implicated in proliferation and survival, mTOR pathway, and in particular 

the mTORC2 complex, seems to play an important role in metastization, Studies in a murine 

model of thyroid cancer (that spontaneously develops distant metastases) demonstrated that PI3K 

had a preponderant role in metastization215, and that effect could be mediated by AKT, since it 

was shown, that AKT deficiency delayed tumor progression, vascular invasion and distant 

metastases216. Finally, it was also demonstrated that activated AKT (pAKT Ser473) nuclear 

distribution may be relevant to both initiation and sustaining of metastases217. 

Summarizing, it seems that the mTOR pathway may play important roles in thyroid cancer, 

from cell proliferation, resistance to apoptosis, metastization, and potentially in RAI therapy 

resistance, becoming a very interesting therapeutic target. The elucidation of the role of mTOR 

complexes in TC is important since it was recently reported that everolimus demonstrated a 

clinically relevant antitumor activity in patients with advanced DTC218. 

So, it is very important to understand the impact of the mTOR pathway on TC behavior 

and therapy resistance, in order to find the best therapeutic strategy to overcome metastatic 

radioiodine refractory DTCs.   
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4. NIS expression in thyroid carcinoma 

Since NIS appears as a central molecule for RAI therapy success, many studies addressed 

its expression and/or expression regulation in TC. The following section will address the state of 

the art concerning NIS expression in thyroid tumors and what are/could be the molecular 

mechanisms that affect its expression/function. 

Many studies, in thyroid cell lines as well as in animal models of TC and in samples of 

human TC have been performed, in order to understand the molecular mechanisms that lead to 

NIS downregulation. NIS expression has been addressed by different methodologies, namely 

quantitative real-time (qRT-PCR) and/or immunohistochemistry (IHC). qRT-PCR is more 

sensitive compared to IHC, nonetheless SLC5A5 mRNA levels may not predict the final amount 

of functional NIS molecule. SLC5A5 mRNA is further processed and converted to protein, and 

then subjected to post transcriptional events that can affect its location and function219, which is 

very important since NIS is only functional when targeted into the plasma membrane.  

4.1 SLC5A5 mRNA expression in thyroid carcinoma 

The vast majority of the studies addressing SLC5A5 mRNA levels are concordant; SLC5A5 

mRNA expression is decreased in TC compared to normal adjacent thyroid220-223. As far as we are 

aware, only one study reported an increased SLC5A5 mRNA expression in PTCs compared to 

normal adjacent tissues224. Nevertheless, SLC5A5 mRNA levels seem to be of limited value in 

predicting NIS protein expression and function.  

Lower mRNA levels in general lead to reduced protein levels, but the opposite may not be 

true, a positive or high mRNA expression does not always correspond to higher protein levels or 

to functionality. Indeed, previous studies reported positive SLC5A5 mRNA levels in lymph node 

metastases of DTC that did not uptake RAI 219 and it was observed similar SLC5A5 mRNA levels 

in recurrences of thyroid cancer with and without 131I uptake ability223. These observations lead 

us to believe that other mechanisms, other than genetic control over NIS transcription (like post 

transcriptional events) might be involved in the failure of RAI therapy. 
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To add an additional level of complexity we must be aware that SLC5A5 mRNA levels in 

primary tumors might not be indicative of the SLC5A5 expression in metastatic tissues225: Park et 

al.,2000226 addressed SLC5A5 mRNA expression in primary tumors and respective lymph node 

metastases and observed that SLC5A5 mRNA expression in lymph node metastases was lower 

compared to corresponding primary tumors226. Another study compared SLC5A5 mRNA 

expression in primary DTCs with the ability of the correspondent metastases to uptake 131I: what 

was observed was that metastases from primary DTCs with or without SLC5A5 mRNA expression 

demonstrated a lower or even absent 131I uptake227. 

It seems that the absence of SLC5A5 mRNA expression lead to reduced protein levels, but 

its presence does not guarantee the protein expression/function. Additionally, SLC5A5 mRNA 

expression, in primary tumors, does not seem to be indicative of SLC5A5 mRNA expression or 

131I uptake in the corresponding metastases. Nonetheless, in a few studies, lower SLC5A5 mRNA 

levels were correlated with larger tumors (≥2cm), early recurrence and/or metastasis228, 229, 

indicating that a lower SLC5A5 mRNA expression in primary tumors might be associated with 

higher tumor aggressiveness. 

4.2 NIS protein expression in thyroid carcinoma 

NIS protein expression (evaluated by IHC) varies through thyroid tissues: in normal thyroid 

its expression is low and very heterogeneous, only a few follicular cells within some follicles 

express NIS in the basolateral membrane230-234, suggesting that in normal conditions, NIS 

expression is a much regulated process. In Graves’ disease (an autoimmune disease in which 

follicular cells are constantly stimulated to produce thyroid hormones) NIS is widely expressed 

in membrane across all follicular cells and all follicles. In carcinomas NIS, when present, it is 

usually expressed in a higher number of cells compared to normal tissue but its expression is 

mainly cytoplasmic, poorly targeted to the membrane224, 229, 232-238. The increased cytoplasmic 

staining in tumors, even in the presence of low SLC5A5 mRNA levels239, has been pointed out as 

a reason for the decreased RAI uptake in tumors, reflecting a mislocalization of NIS from the 

membrane, impairing its activity. At variance, other studies  question the real significance of NIS 
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cytoplasmic expression: a study performed with three different monoclonal antibodies raised 

against NIS suggested that the cytoplasmic NIS expression could be background instead of 

mislocalized NIS234. Since NIS is the molecule for RAI therapy’s success, and the mRNA levels 

may not be very accurate in predicting NIS functionality, some studies addressed the correlation 

between NIS protein expression on the primary tumor and the RAI uptake of recurrences and/or 

distant metastases. Just like it was observed for SLC5A5 mRNA expression, NIS protein 

expression in the primary tumor did not correspond to NIS protein expression in correspondent 

lymph node metastases in a significant number of cases240, 241. Furthermore, it is unclear if NIS 

protein expression in primary tumor predicts the 131I uptake by respective recurrences/metastases. 

Different studies reported that a positive NIS immunoreactivity in primary tumors seemed to be 

predictive of subsequent positive 131I scans, but a negative NIS staining did not predict 131I 

negative scans. These studies did not take into account whether NIS was expressed in the 

membrane or cytoplasm235, 240 but similar results were verified when membrane expression was 

considered241. 

Despite the higher number of studies about NIS protein expression, the great majority was 

performed in small series and did not address possible associations between NIS expression and 

clinicopathological features and prognosis129, 224, 230-233, 235-237, 240.  

As	 far	 as	 our	 knowledge,	 only two studies addressed NIS expression in a significant 

number of carcinomas (using tissue microarrays (TMA), Morari et al.,2011229 (265 DTCs) and 

Wei et al 2013.,(370 PTCs)238, and found lower NIS protein expression in older patients (>45 

years) and in aggressive variants of PTC (compared to conventional PTC). 

We think that additional retrospective studies in larger series of DTC are needed, performed 

in histological sections rather than in TMA, with a more detailed attention to NIS protein location 

in order to explore the putative impact of NIS protein expression in predicting tumor 

aggressiveness as well as in prognosis. It is also necessary to compare the analysis of NIS mRNA 

expression and NIS protein expression, in order to understand what is the best/more informative 

method to address NIS expression and to understand if NIS protein expression in primary tumor 

has a predictor value regarding RAI therapy’s success.  
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4.3 NIS expression regulation in thyroid carcinoma 

All the “iodine handling genes” (TSHR, NIS, and TPO) are decreased in TC compared to 

normal tissue, but among them NIS is the one that suffers higher levels of downregulation during 

the tumor progression220, 231. The molecular mechanism that lead to the decrease NIS expression 

in tumors remains poorly understood, but previous studies demonstrated that mutations in the 

SLC5A5 gene are not responsible242. 

Many studies tried to understand the loss of NIS expression as well as its mistargeting to 

the membrane. In the next section, we will discuss some of the major processes known to impair 

NIS expression in thyroid cancer.  

4.3.1 Genetic background 

To understand the mechanisms that contribute to NIS downregulation/ loss of function, 

some studies addressed the genetic background of recurrent DTCs with and without RAI uptake, 

and demonstrated that recurrences without uptake showed an enrichment on BRAFV600E 

mutations223,243. 

BRAFV600E mutation causes loss of SLC5A5 mRNA and/or NIS protein expression; these 

effects are well described in the literatute85, 122, 129, 229, 244, 245, additionally, this mutation also 

damages NIS targeting to the membrane122. BRAFV600E mutation also causes a significant 

decrease of the majority of the others “iodine handling genes”, like TPO and pendrin128, 246. 

Although the correlation between the BRAFV600E mutation and the decreased NIS 

expression is well accepted, pharmacological blockage of MEK (downstream BRAF in the 

MAPKinase pathway) was not able to completely restore NIS expression and RAI uptake, 

indicating that the BRAFV600E impairment of NIS might be, at least in part, MAPK 

independent122. 

Some studies suggested some possible molecular links between BRAFV600E and impaired 

NIS expression. Riesco-Eizaguirre et al.,244 demonstrated that BRAFV600E induces secretion of 

functional TGFβ, that in its turn causes NIS downregulation through a TGFβ/Smad signaling 

mediated process. 
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Is was also proposed that the BRAFV600E mutation is able to reprogram the epigenome of 

tumor cells by altering  not only the histone deacetylation status at critical regions of NIS 

promoter247 but also the methylation status of NIS promoter (via upregulation of DNA 

methyltransferase 1)248, all this contributing to an impaired SLC5A5 mRNA expression.  

Although the role of BRAFV600E mutation on NIS impairment has been widely explored, 

the role of other frequent mutations in TC such as RAS and TERTp mutations on NIS 

expression/function remains largely unknown.  

A recent study analyzing a large series of PTC, reported a distinct profile of expression of 

“iodine handling genes” (being SLC5A5 one of these genes) between BRAFV600E and RAS-

driven PTCs, with RAS-like PTCs having relatively high thyroid differentiation score99, so it 

seems that RAS mutation may also affect SLC5A5 expression, although less extensively when 

compared to BRAF mutation. Regarding TERTp mutation, there are no studies about its impact 

on NIS expression but, since TERTp mutated DTC patients needed higher number of 131I 

therapies134, one may speculate that it also might present impaired NIS expression/function. 

In our opinion, the information about the impact of frequent mutations in DTC on NIS 

expression is scarce and deserves further investigation. 

4.3.2 mTOR 

Apart from the genetic background, other signaling pathways have been implicated in NIS 

expression regulation. 

PI3K/mTOR pathway is frequently overactivated in TC210. In cell cultures of normal 

thyrocytes from rats and TC cell lines, pharmacological inhibition of PI3K was able to increase 

SLC5A5 mRNA expression and radioactive iodine uptake249. This observation called the attention 

to the role of PI3K/mTOR in NIS expression regulation. 

Further studies demonstrated that blocking the pathway downstream PI3K, by blocking 

mTOR with rapamycin (so blocking only mTORC1 complex) was also able to increase or restore 

SLC5A5 mRNA expression as well as RAI uptake in normal thyrocytes from rats and thyroid 

cancer cell lines250, 251. Nevertheless, the role of mTORC2 on NIS expression remains unknown. 
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Taking into consideration all these observations, it seems pertinent to explore the impact 

of the mTOR pathway on NIS expression and therapy success in human TC, in order to evaluate 

the potential importance of mTOR inhibitors in refractory DTC. To the best of our knowledge 

this issue was not previously addressed.  

Summing up, NIS expression regulation seems to be modulated by many factors. So, it is 

not surprising that treatment of TC cell lines with a synergy of drugs targeting the major signaling 

pathways involved (MAPK, PI3K, mTOR) as well as with epigenetic drugs targeting histone 

deacetylases (HDACs) inhibitors, have a higher impact on SLC5A5 mRNA expression and NIS 

function compared to each drug alone252. This synergetic treatment not only increases SLC5A5 

mRNA expression, but also the expression of other iodine handling genes, such as TSHR and 

TPO252. This observation together with the fact that early in tumorigenesis NIS downregulation 

is accompanied by the loss of other iodine handling genes, lead us to speculate that the loss of 

NIS expression in TC may not be an isolate event; instead it takes part of the dedifferentiation 

program that accompanies thyroid tumorigenesis. 

Although all this available information, many doubts remain about the role of mTOR status 

and NIS expression on TC behavior, prognosis and response to therapy.  

The understanding of the mTOR pathway impact in TC behavior and in NIS expression is 

very important because there are already available approved mTOR blockers, which could be 

very useful if in fact, mTOR pathway emerges as an attractive therapeutic target in for TC. 

Regarding NIS expression, even though all the efforts that have been made, it is not clear 

yet if its expression in the primary tumor is indicative of RAI therapy response. That information 

is very important, because until know, there is no predictor of RAI therapy response in TC which 

could be very helpful in the stratification of TC patients and to the development of a more 

personalized treatment.  
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Chapter 2. General aims and specific objectives 
 

The majority of DTC patients have a very good prognosis with high rates of cure and/or 

disease free survival. Despite this there is a small group that eventually will develop 

recurrences/distant metastases. At present, it is impossible to identify such patients at the time of 

diagnosis and this limitation may lead to an overtreatment of patients with low risk DTCs. More 

accurate prognostic biomarkers are necessary for an adequate management of thyroid cancer 

patients. 

mTOR pathway is overactivated in TC but the relative role played bymTORC1 and 

mTORC2 activation and the prognostic consequences of such activation remain unknown. The 

significance of NIS expression in the primary tumor for prediction of TC behavior and response 

to therapy remains also unclarified. mTOR pathway maybe a player in the regulation of NIS 

expression and function (the central molecule for the success of RAI therapy) becoming a very 

interesting target to explore to overcome TC therapy resistance. Taking all this into consideration 

we decided to explore, in this thesis, new prognostic biomarkers by addressing mTOR pathway 

and NIS expression in thyroid primary tumors, aiming to find some indicators of aggressiveness 

and therapy resistance. 

Our specific objectives were: 

1) to explore the role of the mTOR pathway in PTCs through the characterization of the 

pmTOR Ser2448, pS6 Ser235/236 and pAKT Ser473. In addition to this, to explore 

possible associations with clinicopathological and molecular features, prognosis and 

response to therapy,  

2) to analyze the role of mTORC1 and mTORC2 complex on SLC5A5 mRNA expression; 

3) to study SLC5A5 mRNA expression and NIS protein expression and cellular 

localization in a large series of thyroid primary tumors in an attempt to find associations 

with clinicopathological and molecular features, prognosis and response to therapy. 
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Chapter 3. Paper 1. pmTOR is a marker of aggressiveness in 
papillary thyroid carcinoma 
 

This chapter appears as an article with the same title published in the “Surgery” Tavares C et al., 
(2016) Dec;160(6):1582-1590. doi: 10.1016/j.surg.2016.06.050. Epub 2016 Aug 26. 
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Porto and Coimbra, Portugal

Background. Activation of the mTOR pathway has been observed in thyroid cancer, but the biologic
consequences regarding tumor behavior and patient prognosis remain poorly explored.
Methods. We aimed to evaluate the associations of the mTOR pathway with clinicopathologic and
molecular features and prognosis through the immunocharacterization of pmTOR and pS6 expression
(as readouts of the pathway) in a series of 191 papillary thyroid carcinomas.
Results. pmTOR expression was associated with distant metastases (P = .05) and persistence of disease
(P = .05). Cases with greater expression of pmTOR were submitted to more 131I treatments (r[102] = 0.2;
P = .02) and a greater cumulative dose of radioactive iodine (r[100] = 0.3; P = .01). Positive pmTOR
expression showed to be an independent risk factor for distant metastases (odds ratio = 18.2; 95%
confidence interval 2.1–157.9; P = .01). In contrast, pS6 expression was associated with absence of
extrathyroid extension (P = .001), well-defined tumor margins (P = .05), and wild-type BRAF status
(P = .01). There was no correlation between the expression of pmTOR and pS6 expression (r[140] = 0.1;
P = .3).
Conclusion. pmTOR expression is an indicator of aggressive, metastatic papillary thyroid carcinoma,
being possibly implicated in refractoriness to therapy, while pS6 expression is associated with less
aggressive pathologic features. Further studies are needed to understand better the biologic consequences
of activation of the mTOR pathway in the behavior of thyroid cancer, namely the contribution of other
pmTOR downstream effectors. (Surgery 2016;160:1582-90.)
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THYROID CANCER is the most common of the endo-
crine malignancies and accounts for 1% of all can-
cers.1 In contrast to their undifferentiated
counterparts, well-differentiated thyroid carci-
nomas (WDTCs) carry an overall good prognosis
and can be divided into 2 different subgroups: a
large majority that are treated effectively by opera-
tion followed by 131I radioactive iodine (RAI) abla-
tion and do not cause patients’ death, and a
minority that follow a more aggressive clinical
course. Indeed, 5–10% of WDTC develop regional
recurrences or distant metastases,2-4 and 26–60%
of those recurrences or metastases become refrac-
tory to RAI therapy,5 which may very well lead to
a fatal outcome.2

The success of RAI therapy is due to the almost
unique ability of thyroid follicular cells to take up
iodine, a process that is mediated by the sodium
iodide symporter (NIS), codified by the Sl5a5c
gene (solute carrier family 5).6 Mammalian target
of rapamycin (mTOR) is a downstream effector
of the PI3K/Akt pathway that can be activated as
part of the PI3K cascade and by other stimuli,
such as growth factors, nutrients, energetic bal-
ance, stress signals, and signaling pathways such
as MAPK.7 The mTOR pathway is upregulated in
a variety of neoplasias and in some of these neopla-
sias, pmTOR pathway is associated with a more
aggressive behavior, including an increased ten-
dency to metastasize and poor prognosis.8,9

Our group and others have observed an upre-
gulation of the mTOR pathway in thyroid cancers,
in comparison to the normal, adjacent, non-
neoplastic tissue, through the overexpression of
pmTOR and its downstream effectors, particularly
in papillary thyroid cancer (PTC).10,11 In the afore-
mentioned studies, the contribution of the mTOR
pathway activation for tumor behavior and patient
prognosis was not addressed.

In models of thyroid cancer (cell lines and
animal models), inhibition of the mTOR pathway
caused a decrease in cell proliferation and tumor
progression (decreased cell proliferation, motility,
and invasion), decreased formation of distant
metastases,11,12 and was also able to upregulate
the expression of NIS and to increase RAI up-
take.13,14 Moreover, in thyroid cell lines, the
mTOR pathway seems to play an important role
in iodine metabolism, both in normal as well as
in malignant thyroid tissues. Inhibition of the
mTOR pathway by rapamycin caused an increase
of NIS expression and therefore a greater uptake
of iodine.13,14

In light of all this information, we hypothesized
that upregulation of the mTOR pathway may be

associated, in malignant thyroid neoplasms to
clinical aggressiveness, as well as with NIS down-
regulation, and to resistance to therapy. Because
mTOR inhibitors have already been approved by
the US Food and Drug Administration for the
treatment of other malignancies,7 it seems logical
to try to understand the role of the mTOR pathway
in thyroid cancers.

Following the aforementioned assumptions, we
studied the status of the mTOR pathway (using 2
readouts: pmTOR and pS6) in a series of 191 cases
of PTC and looked for associations with relevant
clinicopathologic features, prognosis, and NIS
expression.

MATERIALS AND METHODS

Patient tissue samples. A total of 191, formalin-
fixed, paraffin-embedded, representative tissue
samples from PTCs were collected from the files
of the Institute of Molecular Pathology and Immu-
nology of the University of Porto (IPATIMUP,
Porto, Portugal) corresponding to 191 patients
followed in 2 university hospitals in Portugal; in
118 cases, we had follow-up data. Frozen material
was available from 46 cancers that were divided
into 2 equal parts: 1 part was conserved at �808C,
while the other part was formalin fixed and
paraffin embedded for routine histology.

The histology of all tumors samples was re-
viewed (CE, ER, MSS) according to the criteria of
the World Health Organization.15 Epidemiologic,
clinical, and molecular data of the 191 cases are
summarized in Table I. The number of 131I treat-
ments varied from 1 to 5 treatments (mean 1.9),
and the cumulative total dose of RAI was between
30 and 1,146 mCi (mean 251 mCi). All the proced-
ures described in this study were approved by the
respective ethical boards and are in accordance
with national and institutional standards.

DNA extraction, PCR, and Sanger sequencing.
DNA extraction from formalin-fixed, paraffin-
embedded tissues was performed from 10 mm
sections after careful microdissection. DNA extrac-
tion was performed using a tissue DNA kit
(ULTRAprep; AHN Biotecnologie, Nordhausen,
Germany) following the manufacturer’s instruc-
tions. The genetic characterization (gene amplifi-
cation and sequencing) of part of the tumors
regarding BRAF,V600E NRAS, RET/PTC, and
TERT promoter mutations had been reported pre-
viously; mutations were screened as described
formerly.16-20

Immunohistochemistry. Immunohistochemistry
was performed as described previously.11 Briefly,
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sections were subjected to heat-induced antigen
retrieval in 1 mM EDTA (pH 9.0) for the anti-
phospho-S6 Ser235/236 antibody (Cell Signaling

Technology, Danvers, MA, 1:400) and in 10 mM so-
dium citrate buffer (pH 6.0) for pmTOR Ser2448
(Cell Signaling Technology, 1:100). Endogenous

Table I. Epidemiologic, histologic, and clinical data of patients included in the study

Total (%) cPTC fvPTC
Other

variants

Age, n 186 119 47 20
<45 y 99 (53) 66 (55) 22 (47) 11 (55)
$45 y 87 (47) 53 (45) 25 (53) 9 (45)

Sex, n 190 121 48 21
Female 155 (82) 98 (81) 42 (88) 15 (71)
Male 35 (18) 23 (19) 6 (12) 6 (29)

Tumor size, n 181 114 47 20
<2 cm 69 (38) 43 (38) 18 (38) 8 (40)
$2 cm 112 (62) 71 (62) 29 (62) 12 (60)

Tumor capsule, n 181 114 46 21
Present 88 (49) 46 (40) 33 (72) 9 (43)

Tumor capsule invasion, n 82 42 33 7
Yes 67 (82) 37 (88) 23 (70) 7 (100)

Extrathyroid extension, n 177 112 45 20
Present 76 (43) 53 (47) 12 (27) 11 (55)

Multifocality, n 182 114 48 20
Multifocal 75 (41) 53 (47) 16 (33) 6 (30)

Lymphocytic infiltrate, n 183 116 47 20
Present 113 (62) 81 (70) 20 (43) 12 (60)

Lymph node metastases, n 153 100 36 17
Present 62 (41) 44 (44) 13 (36) 5 (29)

Vascular invasion, n 178 112 46 20
Present 63 (35) 46 (41) 10 (22) 7 (35)

Tumor margins, n 117 77 29 11
Infiltrative 82 (70) 60 (78) 14 (48) 8 (73)

Distant metastases, n 120 81 29 10
Present 18 (15) 10 (12) 5 (17) 3 (30)

Staging (AJCC), n 107 73 26 8
I 66 (62) 47 (65) 15 (57) 4 (50)
II 6 (6) 3 (4) 3 (12) 0 (0)
III 25 (23) 20 (27) 3 (12) 2 (25)
IV 10 (9) 3 (4) 5 (19) 2 (25)

One y disease free, n 117 78 29 10
No 50 (43) 34 (4) 10 (35) 6 (60)

Disease free (end of follow-up), n 118 79 29 10
No 45 (38) 33 (4) 9 (31) 3 (30)

Deaths, n 121 81 29 11
Yes 5 (4) 2 (2.5) 2 (6.9) 1 (9.1)

BRAF, n 189 122 46 21
WT 112 (59) 62 (51) 37 (80) 13 (62)
V600E 77 (41) 60 (49) 9 (20) 8 (38)

NRAS, n 180 117 43 20
WT 171 (95) 116 (99) 39 (91) 16 (80)
Mutation 9 (5) 1 (1) 4 (9) 4 (20)

TERT promoter, n 166 106 43 17
WT 158 (95) 100 (94) 41 (95) 17 (100)
Mutation 8 (5) 6 (6) 2 (5) 0 (0)

RET/PTC rearrangement, n 69 40 19 10
Absent 59 (86) 32 (80) 18 (95) 9 (90)
Present 10 (14) 8 (20) 1 (5) 1 (10)

y, Years; AJCC, American Joint Committee on Cancer; WT, wild type.

Surgery
December 2016

1584 Tavares et al

58



peroxidase activity was blocked with 3% hydrogen
peroxide and nonspecific binding with Large Vol-
ume Ultra V Block reagent (Thermo Scientific/
Lab Vision, Waltham, MA). Sections were then
incubated overnight at 48C with the primary
antibodies. Detection was performed with a
labeled, streptavidin-biotin immunoperoxidase
detection system (Thermo Scientific/Lab Vision)
followed by 3,39-diaminobenzidine (Dako,
Glostrup, Denmark) reaction and counterstained
with hematoxylin.

Evaluation of the immunostaining was done
according to our previous work.11 Slides were eval-
uated by 2 distinct observers and scored semiquan-
titatively in terms of percentage of stained tumor
cells (0, <5%; 1, 5–25%; 2, 25–50%; 3, 50–75%;
4, >75%) and staining intensity (0, negative; 1,
weak; 2, intermediate; 3, strong). An immunohisto-
chemical score was calculated by multiplying the
proportion of positive cells by the intensity of the
staining, with 12 as a maximum score. The distri-
bution of cases within the score is summarized in
Table II.

The cellular localization was also evaluated as
membrane and/or cytoplasmic and/or nuclear. To
determine the predictive value of pmTOR for
distant metastases, the following cut-off was based
on the score: negative and very low expression
scores (0, 1, and 2) were considered negative, while
values of score $3 were considered positive. Slides
were observed in an Axioskop 2 Zeiss microscope
(Carl Zeiss, Jena, Germany) with photographs
acquired using Nikon DS-L1 camera (Nikon, Tokio,
Japan) in 100X and 400X magnifications.

RNA extraction and reverse transcription. Total
RNA was extracted from PTCs in which frozen
samples were available (n = 46) using a commercial
kit (Trizol; Thermo Scientific/GIBCO) according

to the manufacturer’s protocol. RNA was quanti-
fied by spectrophotometry, and its quality was
checked by analysis of 260/280 nm and 260/
230 nm ratios. For cDNA preparation, 1 mg of total
RNA was reverse transcribed using a first strand
cDNA synthesis kit (RevertAid; Thermo Scienti-
fic/Fermentas).

Real-time PCR. Reverse transcription products
were amplified for the Sl5a5c by qPCR (Integrated
DNA Technologies [IDT], Leuven, Belgium, no.
HS.PT.56a.40789288) using a PCR Master Mix
(TaqMan; Applied Biosystems, Foster City, CA)
with the TBP gene (TATA-binding protein) as
endogenous control (Applied Biosystems, no.
4326322E-0705006). The ABI PRISM 7500 Fast
Sequence Detection System (Applied Biosystems)
was used to detect the amplification level and was
programmed to an initial step of 20 seconds at
508C, 10 minutes at 958C, followed by 40 cycles of
958C for 15 seconds and 608C for 1 minute. For
each sample, TBP and NIS amplifications were
done in triplicate using 1 ml of cDNA (;25 ng).
The relative quantification of target genes was
determined using the 2�DCT method. Similar effi-
ciencies of both assays were confirmed using
Livak’s Linear Regression Method (slope �0.4).21

Patient follow-up. Patients were treated and
followed in accordance with the international
protocols available at the time. Data regarding
the number of radioiodine treatments and cumu-
lative activity were retrieved from hospital records.
Patients were considered as being disease free at
the end of follow-up if they had undetectable
stimulated thyroglobulin (in the absence of thyro-
globulin antibodies) and no evidence of the dis-
ease on radiographic or radionuclide imaging.
The mean time of follow-up was 8 ± 6.7 years.

Statistical analysis. Statistical analysis was con-
ducted with SPSS software (Version 21.00; SPSS,
Inc, Chicago, IL). The results are expressed as
mean ± standard deviation. Independent sample
Student t test and Pearson correlation were used to
evaluate association and correlation of pmTOR
and pS6 expression with other variables. The pre-
dictive value of pmTOR expression and other fac-
tors (age, sex, tumor size, extrathyroid extension,
vascular invasion, lymph node metastases, BRAF,
and TERT promoter mutations) for distant meta-
stases were assessed using univariate and multivar-
iate logistic regression models.

RESULTS

The expression of pmTOR and pS6 were
negative in 20.3% and 35.6% of the cases,

Table II. Distribution of pmTOR and pS6 scores
in the series

pmTOR pS6

Score Frequency % Frequency %

0 36 20 52 35
1 10 6 20 14
2 19 11 17 12
3 11 6 13 9
4 18 10 12 8
6 22 12 13 9
8 3 2 4 3
9 21 12 7 5
12 37 21 8 5
Total 177 100 146 100
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respectively (Table II). Among the group of cases
classified as positive for pmTOR expression, most
had high (9–12; 33%) or intermediate (3–8;
30%) scores. In the group of cases classified as pos-
itive for pS6 expression, most presented with inter-
mediate (3–5; 29%) or low (1–2; 25%) score values
(Table II). The distribution and intensity of
pmTOR staining within the tumor was heteroge-
neous in the majority of cases; pmTOR staining
was more concentrated and/or stronger in the
invasive front of the tumors and located mainly
in the cytoplasm and cellular membrane of the
neoplastic cells (Fig, A and B). pS6 expression
was exclusively cytoplasmic, displaying a topo-
graphic heterogeneous distribution without any
specific pattern (Fig, C and D).

Relationship between the expression of
pmTOR and pS6 and clinicopathologic features.
Greater pmTOR expression was associated with
absence of a tumor capsule (P = .01), presence of
distant metastases (P = .05), persistence of disease
(one year disease-free status and disease-free status
at the end of follow-up) (P = .05), and NRAS
mutation (P = .04) (Table III). Furthermore,
greater pmTOR expression was also correlated
with a greater number of 131I therapies (r
[102] 0.2, P = .02), greater cumulative dose of

RAI (r[100] 0.3, P = .01), and a lesser expression
of NIS (r[44] �0.3, P = .03).

Analyzing the 2 main variants of PTC, cPTC,
and the follicular variant of PTC (fvPTC) inde-
pendently, greater pmTOR expression was associ-
ated with absence of a tumor capsule (P = .02), a
TERT promoter wild type (WT) (P = .01), and
persistence of disease at the end of follow-up
(P = .05) in the cPTC group; no statistically signif-
icant differences were found in the group of cases
of fvPTC concerning pmTOR expression.

A logistic regression model was performed for
factors associated with distant, blood-borne metas-
tases (Table IV). A total of 18 patients (15%) devel-
oped distant metastases detected during follow-up;
the metastases were located in lung (n = 11), bone
(n = 5), lung and bone (n = 1), and brain (n = 1).
Cases from male patients (odds ratio [OR] 3.7;
P = .02) with vascular invasion (OR 5.2; P = .01)
and positive pmTOR expression (OR 8.2;
P = .01) had a greater risk of developing distant
metastases. When all the features associated with
distant metastases in the univariate model were
introduced in a multivariate regression model,
positive pmTOR expression became the only inde-
pendent predictive factor of distant metastases
(Table IV). Using the same statistic model, we

Fig. Expression of pmTOR (A, B) and pS6 (C, D) in PTC. pmTOR expression is more concentrated and intense in the
periphery and the invasive front of the tumor (A). In a higher magnification, pmTOR expression is located in the
cytoplasm and cytoplasmic membrane (B). pS6 expression is heterogeneous within the tumor (C) without a specific
pattern; its location in the cell is only cytoplasmic and diffuse (D). Bar 100 mm. (Color version of this figure is available
online.)
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were also able to observe that positive pmTOR
expression is not a risk factor for the development
of lymph node metastases.

Greater pS6 expression was associated with the
presence of a tumor capsule (P = .01), absence of
extrathyroid invasion (P = .001), well-defined tu-
mor margins (P = .05), absence of lymphocytic
infiltrate (P < .001), WT BRAF status (P = .01),
and NRAS mutation (P = .001) (Table III). When
the subgroup of cPTC was analyzed independently,
only the association of greater pS6 expression and
absence of extrathyroid invasion remained statisti-
cally significant (P = .004). In the fvPTC group, the
associations between greater pS6 expression and
absence of lymphocytic infiltrate (P = .003),
BRAF WT (P < .001), and NRAS mutation
(P = .02) remained significant. There was no signif-
icant correlation between pmTOR and pS6
expression.

DISCUSSION

In the present study, we have found interesting
results regarding the role played by the mTOR
pathway as well as conflicting data regarding the
difference of the 2 readouts we used, pmTOR and
pS6. We observed that pmTOR expression appears
to be an indicator of tumor aggressiveness in PTC.
Its expression was associated with absence of a
tumor capsule, presence of distant metastases,
persistence of disease, RAS mutation (Table III),

and it correlated with a greater number of RAI
therapies, greater cumulative dose of RAI, and
with a lesser NIS expression.

In contrast, pS6 expression was associated with
less aggressive pathologic features, such as pres-
ence of a tumor capsule, absence of extrathyroid
extension, well-defined tumor margins, and BRAF
WT status (Table III). Despite being members of
the same pathway, we did not find a correlation be-
tween the expression of those 2 markers, indi-
cating that, in our series, the expression of
pmTOR and pS6 are not linked to each other.

Activation of mTOR was associated with distant
metastases and persistence of disease in PTC. The
only available evidence that mTOR may be
implicated in the ability of thyroid cancer cells
to metastasize is a mouse model that develops
thyroid cancer and distant metastases spontane-
ously. In this specific model, blockade of the
mTOR pathway totally prevented the formation
of distant metastases, but not tumor formation,12

indicating that mTOR activation may be more
important for tumor progression than for tumor
initiation.

Due to the clinical relevance of distant metasta-
ses, we performed a multivariate logistic regression
evaluating the clinicopathologic and molecular
features associated with distant metastases. Male
sex, presence of vascular invasion, and a positive
pmTOR expression were significant predictors of

Table III. Summary of clinicopathologic and molecular associations with pmTOR and pS6 expression

Frequencies
pmTOR mean
expression P value Frequencies

pS6 mean
expression P value

Tumor capsule Present (n = 83) 4.4 ± 4.4 .01 (n = 60) 3.7 ± 3.6 .01
Absent (n = 85) 6.2 ± 4.4 (n = 77) 2.2 ± 3.1

Extrathyroid invasion Yes (n = 70) 5.1 ± 4.4 .8 (n = 55) 1.6 ± 2.6 .001
No (n = 94) 5.3 ± 4.6 (n = 78) 3.5 ± 3.6

Lymphocytic infiltrate Present (n = 102) 5.5 ± 4.5 .8 (n = 82) 2.0 ± 2.8 <.001
Absent (n = 69) 5.3 ± 4.4 (n = 58) 4.2 ± 3.9

Tumor margins Infiltrative (n = 72) 4.2 ± 4.2 .4 (n = 53) 1.5 ± 2.6 .05
Well defined (n = 32) 3.4 ± 3.9 (n = 20) 2.9 ± 2.7

Distant metastases Yes (n = 14) 5.93 ± 3.91 .05 (n = 11) 2.8 ± 2.9 .2
No (n = 92) 3.61 ± 4.1 (n = 64) 1.6 ± 2.6

One y disease free Yes (n = 61) 3.3 ± 3.5 .05 (n = 44) 1.7 ± 2.7 .6
No (n = 42) 4.9 ± 4.7 (n = 29) 2.0 ± 2.8

Disease free (end of
follow-up)

Yes (n = 67) 3.4 ± 3.6 .05 (n = 48) 1.8 ± 2.7 1.0
No (n = 37) 5.1 ± 4.8 (n = 26) 1.8 ± 2.6

BRAF WT (n = 101) 5.4 ± 4.5 .9 (n = 81) 3.5 ± 3.7 .01
V600E (n = 75) 5.3 ± 4.5 (n = 64) 1.9 ± 2.9

NRAS WT (n = 158) 5.2 ± 4.4 .04 (n = 132) 2.6 ± 3.3 .001
Mut (n = 9) 8.3 ± 5.0 (n = 9) 6.7 ± 3.7

We did not find any significant associations between pmTOR and pS6 expression and: sex, tumor size, tumor capsule invasion, tumor multifocality, tumor
size, vascular invasion, lymph node metastases, TERT promoter mutation and RET/PTC rearrangements. Values in italics are statistically significant
results.
y, Year; WT, wild type; Mut, mutation.
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distant metastases in a univariated model. When all
the features associated with distant metastases in
the univariated model were included in the regres-
sion, positive pmTOR expression was the only
significant predictor (Table IV). Interestingly, pos-
itive pmTOR expression was not a predictor for
lymph node metastases, which are known to have
much less prognostic impact than distant metasta-
ses in PTC,3 thus revealing some specificity for the
type of metastases.

The association of the mTOR pathway with
essential steps in the metastatic cascade has already
been observed in other tumor models in vitro22-24

and in vivo.25 In human tumor specimens, the
mTOR pathway was associated with lymph node
metastases in invasive ductal breast carcinoma,25

with persistence of disease and poor prognosis in
gastric cancer,26 and with poorer prognostic char-
acteristics in cutaneous melanoma.9 Once acti-
vated, pmTOR can associate with a subset of
different proteins, forming 2 distinct complexes
with distinct biologic roles: mTORC1 and
mTORC2.7,27 Although both mTOR complexes
are implicated with cell motility, invasion, and met-
astatic ability, mTORC2 is more often correlated
with these tumor features and worse prog-
nosis.23,24,26 In models of breast and renal cell car-
cinoma, only inhibition of mTORC2 and not
mTORC1 was able to inhibit cell motility, invasion,
and metastases.23,24

In our study, we did not obtain enough infor-
mation to discriminate which mTOR complex(es)
is(are) contributing to tumor aggressiveness,
because the antibody we used is directed to
pmTOR at Ser2448, and phosphorylation at this
site is not exclusive of a specific mTOR complex.27

The distinct associations of the expression of
pmTOR and pS6 with clinicopathologic data, mo-
lecular features, and prognosis, as well as the lack
of correlation between their expression (as
observed in invasive breast cancer28) led us to hy-
pothesize that activation of pmTOR preferentially
leads to the assembly of mTORC2 instead of
mTORC1.

Further studies are needed to prove our hypoth-
esis, but the findings of our study support this
hypothesis. We know that mTORC2 phosphory-
lates Akt at Ser473 at the cellular membrane,29 and
in the majority of our cases, we showed that
pmTOR displays a membrane staining and a pref-
erential location in the invasive front of the tumor.
Furthermore, another study demonstrated that
SIN1 (another critical factor in the mTORC2 com-
plex) was overexpressed in PTCs displaying more
aggressive histologic features,30 suggesting a pre-
ponderant role of mTORC2 toward aggressiveness
in thyroid cancer.

Besides being implicated in distant blood-borne
metastases, we were also able to show an inverse
correlation between pmTOR and NIS expression
in PTC. This correlation fits with previous in vitro
results in which blockade of the mTOR pathway in
cell lines derived from thyroid cancers caused an
increase in NIS expression and also in RAI up-
take.13,14 Although statistically significant, this cor-
relation was weak and was based on a relatively
small number of cases (n = 46); further studies
involving larger series are needed to validate these
results.

Expression of pmTOR was also correlated
directly with a greater number of 131I therapies
and thus with greater cumulative dose of RAI.

Table IV. Predictive factors for distant metastases

Distant metastases n = 120

Presence %

Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Total 18 (15.0)
Sex

Female 10 (10.6) 1 1
Male 8 (30.8) 3.7 (1.3–10.8) .02 3.3 (0.7–15.4) .1

Vascular invasion
No 6 (7.3) 1 1
Yes 9 (29.0) 5.2 (1.7–16.2) .005 3.7 (0.9–14.7) .06

pmTOR
Negative 2 (3.6) 1 1
Positive 12 (25.5) 8.2 (1.7–38.5) .01 18.2 (2.1–157.9)* .01

*All the variables considered significant for univariate analysis were included in the multivariate model.
We found no significant predictive ability of age, tumor size, extrathyroid extention, lymph node metastases, or BRAF or TERT promoter mutations for
distant metastases on univariate and multivariate analysis. Values in italics are statistically significant results.
OR, Odds ratio.
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Because of these results, it may be important to
explore the role of the mTOR pathway in the resis-
tance to 131I therapy in order to evaluate possible
advantages of pharmacologic blockers of mTOR
in PTC resistance to RAI therapy.

Regarding NRAS mutations, despite the small
number of mutated cases, we observed a signif-
icant overexpression of pmTOR and pS6 in
RAS-mutated cases compared to WT cases. RAS
protein is able to activate PI3K, which then
activates the mTOR pathway.7,31 The results of
the present study, as well as those reported previ-
ously by our group showing that medullary thy-
roid carcinomas with RAS mutation had greater
activation of the mTOR pathway,32 suggest that
RAS mutations may be a trigger for the activa-
tion of the mTOR pathway in thyroid cancers
derived from both follicular and parafollicular
cells.

Limitations of the present study may explain the
divergent results in comparison with previous
reports11 and those of others,33 regarding associa-
tions between pmTOR and pS6 expression with
clinicopathologic and molecular features. Ahmed
et al33 reported an association with older age
($45 years) and higher tumor staging33 that we
did not find in our current series. Moreover, we
also did not confirm our previous results11

regarding pmTOR and pS6 overexpression in
BRAFV600E cPTCs compared to BRAFwt11.

In the present study, we did not observe a
difference between the expression of pmTOR and
pS6 in cPTCs with distinct BRAF contexts (BRAFwt

or BRAFV600E). These discordant results may be
due to methodologic differences of the 3 studies.
Faustino et al11 and Ahmed et al33 evaluated
pmTOR and pS6 expression in tissue microarrays
(TMA), while in the present study, we used histo-
logic sections. We observed that both pmTOR
and pS6 have a very heterogeneous distribution
within the tumor (especially pmTOR, being
more concentrated in the tumor periphery and
invasive front); the TMA evaluation may thus be
inadequate, because the limited samples may be
not representative of the overall tumor
expression.

In conclusion, pmTOR seems to be a promising
marker of the aggressiveness (distant metastases,
persistence of disease, and refractory disease) in
PTC. In order to develop a more effective thera-
peutic strategy, further studies are needed to
understand exactly the biologic consequences of
each of the 2 mTOR complexes in thyroid cancers,
because they seem to play different roles in tumor
progression and metastases.
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Abstract 

mTOR pathway is overactivated in thyroid cancer (TC). Once activated, mTOR can lead 

to the assembly of two different complexes mTORC1 and mTORC2, with distinct downstream 

effectors: pS6 Ser235/236 and pAKT Ser473, respectively. TC treatment is based on surgery 

followed by therapy with radioactive iodine (RAI) which is uptaken by TC cells through the 

sodium iodide symporter (NIS) codified by the SLC5A5 gene. In our previous study we observed 

that pmTOR expression was associated with tumor aggressiveness and therapy resistance in 

papillary thyroid carcinomas (PTCs). On the contrary, pS6 expression was associated with less 

aggressive clinicopathological and molecular features. The distinct behavior of the two markers 

led us to hypothesized, that mTOR activation could be contributing, in PTC, to a preferential 

activation of mTORC2 complex in detriment of mTORC1 complex.  

We performed immunohistochemistry for pAKT Ser473 in a series of 182 PTCs previously 

characterized for pmTOR and pS6 expression. Furthermore, we analyzed the impact of each 

mTOR complex on SLC5A5 mRNA expression, by treating a cell line derived from PTC with 

RAD001 (mTORC1 blocker) and Torin 2 (mTORC1 and mTORC2 blocker). 

pAKT Ser473 expression was positively correlated with pmTOR expression and 

significantly higher in PTCs harboring BRAFV600E mutation than in BRAFWT PTCs. Moreover, 

pAKT Ser473 nuclear expression was significantly associated with the presence of distant 

metastases. Treatment of TPC1 cell line with RAD001 had no consequences on SLC5A5 mRNA 

levels, whereas Torin2 caused a ~6fold increase of SLC5A5 mRNA expression. 

mTORC2 pathway is activated in PTCs and the nuclear translocation of its downstream 

effector pAKT Ser473 may play a major role in distant metastization. mTORC2 inhibition 

upregulates the expression of SLC5A5 mRNA. Pharmacological inhibition of mTORC2 complex 

should be further addressed in the management of specific RAI resistant TC.  
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4.1 Introduction 

Thyroid cancer (TC) is the most common endocrine neoplasia. Differentiated thyroid 

carcinoma (DTC) arises from thyroid follicular cells and represents more than 90% of all cases 

of TC. DTC comprises papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) 

being the PTC the most prevalent type1, 2. PTC can be further subdivided in variants, the more 

prevalent being the so called classic PTC (cPTC) and the follicular variant of PTC (FVPTC)1.  

PTC carries a very good prognosis with a 10 years 93-95% survival, being treated with 

surgery followed by radioactive iodine (RAI). By poorly understood reasons, a subgroup of TC 

patients (10-15%) becomes resistant to RAI treatment3 what could lead to a significant reduction 

of their 10-years survival 4. The molecular mechanism behind this resistance relies, at least in 

part, in the loss NIS expression and/or function. NIS is codified by the SLC5A5 gene, being 

normally expressed at the basolateral membrane of thyroid follicular cells. Usually, PTCs 

maintain NIS expression and function allowing the incorporation of 131I that cause tumor cell 

death, a very efficient targeted radiotherapy5. 

mTOR pathway is overactivated in a variety of human neoplasias6, including in TC7-9. It 

can be activated by diverse stimuli, such as growth factors, nutrients, energy, stress signals and 

other essential signaling pathways, such as PI3K and MAPK6, 9, 10. Once activated, mTOR can 

associate with different proteins forming two distinct complexes, mTORC1 and mTORC2. The 

complexes have different downstream effectors and physiological functions: mTORC1 effectors 

are S6K1 and 4EBP1 that participate in cellular growth, proliferation and survival, whereas 

mTORC2 phosphorylates PKC-α and AKT (Ser 473) and regulates the actin cytoskeleton of the 

cell and cell migration6, 10. 

A recent study of our group demonstrated that pmTOR is a marker of aggressiveness in 

PTC: its expression is associated with aggressive clinicopathological features, including distant 

metastases, resistance to 131I therapy and, consequently, worse prognosis11. In the same study, we 

observed that pS6 expression was associated with clinicopathological features of low 

aggressiveness and we did not find a significant correlation between pmTOR and pS6 expression 
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in each tumor11. The absence of correlation between the two proteins and the divergent behavior 

presented by them led us to hypothesized that, in PTC, the activation of pmTOR might be 

contributing preferentially to the formation of mTORC2 complex, and consequently to AKT 

activation11 (pAKT Ser473) as it has been observed in other tumor models12,13,14,15. pAKT is 

upregulated in PTCs7-9, but its role in PTCs’ clinical behavior and resistance to therapy needs to 

be further explored. 

Previous studies showed that when mTOR pathway is inhibited, NIS expression increases; 

however, such studies only explored the role of mTORC1 complex16, 17. As far as we are aware, 

mTORC2 role on SLC5A5 expression was not previously studied. So far, it is known that dual 

inhibition of mTORC1 and mTORC2 complexes by Torin2 in TC models causes a decrease in 

cell growth 18, 19 and inhibits metastization 19. Still, the impact of Torin2 on SLC5A5 mRNA 

expression or NIS protein function was not addressed. 

It is also well established that BRAFV600E mutation, the most prevalent mutation in 

PTCs20, has a negative impact on NIS expression and targeting to the membrane21, 22, but this 

effect does not seem to be mediated by MAPK22. Alternative molecular links between 

BRAFV600E mutation and NIS expression have been proposed23-26. An alternative mechanism 

could be mediated by mTOR, since BRAFV600E seems to contribute to an over-activation of 

mTOR pathway in PTCs9 and mTOR pathway over-activation has a negative impact on NIS 

expression and function16, 17. 

In this study, we intended to understand the relevance of mTORC2 complex activation in 

PTC, by exploring the role of pAKT Ser473 in PTC clinical behavior and the response of a TC 

cell line to Torin2 dual inhibition of mTORC1 and mTORC2 complexes. 
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4.2 Materials and Methods 

Patient tissue samples  

One hundred and eighty-two formalin-fixed, paraffin embedded representative tissue 

samples from PTCs were collected from the files of the Institute of Molecular Pathology and 

Immunology of the University of Porto (IPATIMUP, Porto, Portugal), corresponding to 182 

patients followed in two university hospitals in Portugal. In 115 cases, we had access to follow-

up data. The histology of all tumors samples was revised (CE, ER, MSS) according to the World 

Health Organization criteria 27. Epidemiological, clinical, and molecular data of the 182 cases are 

summarized in Table 1. The number of 131I treatments varied between 1 to 5 (mean 1.8) and 

cumulative dose of RAI totalized values between 30 and 1146 mCi (mean 245.2 mCi). All the 

procedures described in this study were approved by the respective ethical boards and are in 

accordance with national and institutional standards.  

Patient’s follow up 

Patients were treated and followed in accordance with the international protocols available 

at the time. Data regarding the number of radioiodine treatments and cumulative activity were 

retrieved from hospital records. Patients were considered as being disease free at the end of 

follow-up if they had undetectable stimulated thyroglobulin (in the absence of thyroglobulin 

antibodies) and no imagiological evidence of the disease. The mean time of follow up was 8±6.8 

years. For statistical analysis, we defined the category “additional treatments”, in which we 

included other treatment modalities in addition to radioiodine, including extra surgery, external 

beam irradiation, and treatment with tyrosine kinase inhibitors. 

Immunohistochemistry  

Immunohistochemistry was performed as previously described9. Briefly, sections were 

subjected to heat-induced antigen retrieval in 10 mM sodium citrate buffer (pH6.0). Endogenous 

peroxidase activity was blocked with 3% of H2O2 and nonspecific binding with Large Volume 

Ultra V Block reagent (Thermo Scientific/Lab Vision, Waltham, MA, USA). Sections were then 
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incubated overnight at 4ºCwith anti pAKT Ser473 antibody (clone 736E11) (Cell Signaling 

Technology, Danvers, USA) (1:50). 

The detection was performed with a labeled streptavidin-biotin immunoperoxidase 

detection system (Thermo Scientific/Lab Vision, Waltham, MA, USA) followed by 3,3’-

diaminobenzidine (Dako, Glostrup, Denmark) reaction and counterstained with hematoxylin. 

The immunostaining evaluation was done according to our previous work 9. Slides were 

evaluated by two observers and semiquantitatively scored in terms of percentage of tumoral 

stained cells (0 - ˂5%; 1 - 5 to 25%; 2 - 25-50%; 3 - 50-75%; 4 - ˃75%) and staining intensity (0 

- negative; 1 - weak; 2 - intermediate; 3 - strong). An immunohistochemical score was calculated 

by multiplying the proportion of positive cells by the intensity of the staining, with 12 as 

maximum score. The distribution of cases within the scores is summarized in Table 2. The cellular 

localization was also evaluated as membrane and/or cytoplasmic and/or nuclear. To be considered 

positive for nuclear expression, tumors must display pAKT Ser473 immunostaining in at least 

5% of tumor cells. Slides were observed in an Axioskop 2 Zeiss microscope. Representative slides 

were scanned using DSight Viewer (Menarini) and photographs were obtained through snapshots 

from the DSight Viewer Software (Menarini). From the 182 cases characterized for pAKT 

Ser473, 170 have been previously characterized for pmTOR Ser2448 and 141 for pS6 

Ser235/23611. 

DNA extraction, PCR and Sanger sequencing 

The genetic characterization (gene amplification and sequencing) of the tumors regarding 

BRAF, NRAS, RET/PTC and TERT promoter (TERTp) mutations were screened as previously 

described 28-32 and part had been previously reported11.  

Cell lines and treatments with RAD001 and Torin2 

TPC1 1 cell line used in this study is from papillary thyroid carcinoma origin. It was already 

characterized at the molecular and genotypic level, and cell line harbors RET/PTC1 rearrangement 

and TERTp mutation (-124G>A)9, 32. Cell line was maintained in RPMI supplemented with 

antibiotics 1% (vol/vol) Pen Strep and 0.5% fungizone (vol/vol) (Biowest, Nuaillé, France) and 
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10% (vol/vol) of fetal bovine serum (FBS) (GIBCO, Thermo Fisher Scientific Waltham, MA 

USA). Cells were grown in a humidified incubator with 5% C02 at 37ºC.  

For treatment purposes, cells were plated in six wells plates, (1x105 cells per well), 24 hours 

latter cells were treated with RAD001 (20nM) or Torin2 (450nM) (Selleckchem, Houston, TX, 

USA). Treatments lasted for 60 hours and 72 hours. After that cells were lysed in RIPA buffer 

(supplemented with protease and phosphatase inhibitors) for western blot analysis or in Trizol for 

RNA extraction. 

RNA extraction, reverse transcription and real time PCR 

Total RNA was extracted from TPC 1 cells using a Trizol commercial kit (Thermo 

Scientific/GIBCO, Waltham, MA, USA) according to the manufacturer’s protocol. RNA was 

quantified by spectrophotometry, and its quality was checked by analysis of 260/280 nm and 

260/230 nm ratios. For cDNA preparation, 1μg of total RNA was reverse transcribed using the 

RevertAid first strand cDNA synthesis kit (Thermo Scientific/Fermentas, Waltham, MA, USA).  

Reverse transcription products were amplified for SLC5A5 by qPCR (IDT:Integrated DNA 

Technologies, Leuven, Belgium; no. HS.PT.56a.40789288) using TaqMan PCR Master Mix 

(Applied Biosystems, Foster City, CA, USA) with TBP gene (TATA-binding protein) as 

endogenous control (Applied Biosystems; no. 4326322E-0705006). The ABI PRISM 7500 Fast 

Sequence Detection System (Applied Biosystems, Foster City, CA, USA) was used to detect the 

amplification level and was programmed to an initial step of 20 seconds at 50 °C, 10 min at 95° 

C, followed by 40 cycles of 95°C for 15 seconds and 60 ° C for 1 min. For each sample, TBP and 

SLC5A5 amplifications were done in triplicate using 1μl of cDNA (~25ng).The RNA extraction 

and SLC5A5 expression from the 31 PTCs in which frozen samples were available had been 

previously reported11.  

The relative quantification of target genes was determined using the 2-ΔΔCT method. 

Similar efficiencies of both assays were confirmed using Livak’s Linear Regression Method 33 

(slope -0.4).  
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Western blot analysis 

Cells were lysed in RIPA buffer supplemented with phosphatase and protease inhibitors. 

Proteins were resolved by SDS-PAGE and transferred to nitrocellulose membranes (GE 

Healthcare, Little Chalfont, UK). The primary antibodies were pS6 Ser235/236, S6, pAKT 

Ser473, AKT, (1:1000) all from Cell Signaling Technology (Danvers, MA). Protein was detected 

using a horseradish peroxidase-conjugated antibody (Santa Cruz Biotechnology, Santa Cruz, CA) 

and a luminescence system (Perkin-Elmer). For protein loading control, membranes were 

incubated with an anti actin (Santa Cruz Biotecnology, Santa Cruz, CA) antibody. Protein 

expression was quantified using the Bio-Rad Quantitaty One 1-D Analysis software (Bio-Rad 

Laboratories, Inc., Hercules, CA). The levels of phosphorylated proteins: pS6 Ser235/236 and 

pAKT Ser473 were normalized by the levels of their corresponding total protein (total S6 and 

AKT). The levels of expression of phosphorylated proteins and their corresponding total protein 

were evaluated in the same gel, furthermore, the antibodies used for the total proteins recognize 

all forms of the phosphorylated proteins.  

 
Statistical analysis 

Statistical analysis was conducted with SPSS version 21.00 (SPSS Inc). The pAKT Ser473 

expression results are expressed as mean ± standard deviation. Independent samples Student’s t 

test was used to evaluate possible associations between pAKT Ser 473 expression and 

clinicopathological and molecular features. Pearson Correlation was used to evaluate the 

correlation between pAKT Ser473 and pmTOR Ser2448 and pS6 Ser235/236 expression. Chi-

square test was used to evaluate possible associations between pAKT Ser473 nuclear expression 

and clinicopathological and molecular features. Independent samples Student’s t test was also 

used to compare protein expression (analyzed by western blot) between groups. Results were 

considered statistically significant at P≤0.05. 
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4.3 Results 

pAKT Ser473 immunoexpression 

The expression of pAKT Ser473 was negative in 49.5% of the cases and the 50.5% of the 

positive cases were distributed throughout the score values (Table 2). In the group of positive 

cases, the immunostaining was found in the cytoplasm in 40/92 of the cases and simultaneously 

in the cytoplasm and nucleus in 52/92 of the cases.  

Among the positive cases, pAKT Ser473 was more intense and preferentially located at the 

invasive front in 44% of the tumors. Once in the tumor’s periphery, pAKT Ser473 was more 

frequently located in the nucleus (67.6% of the cases with pAKT Ser473 in the invasive front of 

the tumor, displayed nuclear staining) (Figure 1). 

 
Relationship between the pAKT Ser473 expression and clinicopathological and molecular 

features. 

pAKT Ser473 expression was positively correlated with pmTOR expression [r(168)=0.2, 

P=0.02) but not with pS6 expression[r(139)=0.02, P=0.8).  

pAKT Ser473 was significantly more expressed in PTCs harboring BRAFV600E mutation 

compared to wild type (P = 0.04) (Table3), this significant association was maintained in the 

cPTC group but was not observed in the FVPTC group. pAKT Ser473 expression, in the overall 

PTC group or in cPTC or FVPTC group, was not associated with: age, tumor size, tumor capsule, 

multifocality, lymphocytic infiltrate, vascular invasion, lymph node metastases, tumor margins, 

distant metastases, staging, NRAS and TERTp status, number of 131I therapies or cumulative dose 

of radioactive iodine, additional treatments, disease-free status at one year and disease-free status 

at the end of follow-up. 

When cases were divided regarding pAKT Ser473 nuclear expression (presence or 

absence) we observed that cases presenting distant metastases displayed pAKT Ser473 in the 

nucleus more often compared to the cases without distant metastases (P=0.04) (Table4). We did 

not find any significant associations between pAKT Ser473 nuclear expression and other 

clinicopathological or molecular features (all PTCs, cPTC or FVPTC subgroups) 
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Regulation of SLC5A5 expression by mTOR pathway: contribution of mTORC1 and 

mTORC2 complexes 

To study the role of both mTORC1 and mTORC2 complexes on SLC5A5 expression, we 

performed treatments of TPC1 cell line with RAD001 (mTORC1 inhibitor) and Torin 2 

(mTORC1 and mTORC2 dual inhibitor) for 60 and 72 hours.  

First, we confirmed the efficacy of the drugs by addressing pS6 expression as readout of 

mTORC1 activity and pAKT Ser473 as readout of mTORC2 activity. After 72hours of treatment, 

RAD001 caused an efficient down regulation of mTORC1 complex and did not affect the activity 

of the mTORC2 complex (significant decrease of pS6 expression and no differences in pAKT 

Ser473 expression) (Figure 2A and B). Additionally, Torin 2 treatment led to an efficient and 

simultaneous down regulation of mTORC1 and mTORC2 complexes (significant decrease of pS6 

and pAKT Ser473 expression) (Figure 2A and B), these effects were also observed after 60 hours 

of treatment. 

At 72h, RAD001 treatment did not affect SLC5A5 expression, whereas Torin 2 caused a 

significant increase of SLC5A5 mRNA expression (~6fold, P=0.02) (Table5 and Figure3). 

SLC5A5 mRNA expression was not altered after 60h of treatment with both drugs (Table 5). 

4.4 Discussion 

The first aim of this work emerged from our previous study11, and consisted in try to 

understand if pmTOR activation was conducting to a preferential formation of the mTORC2 

complex in PTC. In the present study, we observed a positive and significant correlation between 

pmTOR and pAKT Ser473 expression (readout of mTORC2 activation), meaning that PTCs that 

expressed higher levels of pmTOR also expressed higher levels of pAKT Ser473. We also 

demonstrated that pAKT Ser473 nuclear expression is associated with the presence of distant 

metastases. The positive correlation between pmTOR and pAKT Ser473 and the significant 

association between pAKT Ser473 expression and distant metastization (that we also found in our 

previous work for pmTOR11) corroborates our hypothesis that, in PTC, mTOR activation is 
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leading to a preferential assembly of mTORC2 complex and its downstream effector pAKT 

Ser473, that seems to play a role in distant metastization. 

Preferential formation of the mTORC2 complex was previously observed in other human 

malignancies, and is usually associated with increased cell motility12-15. In TC, both mTORC1 

and mTORC2 complexes are overexpressed compared to normal tissues9, 18, but the contribution 

of each complex to tumor behavior and prognosis is not fully understood. pAKT Ser473 is 

overexpressed in TC7-9, 34, and its expression has been associated with metastization in other 

tumors35-37, as well as, in animal models of TC38, 39. 

Our results, also point out the activation of pAKT Ser473 as an important step for TC 

distant metastization. We observed that pAKT Ser473 expression was associated with distant 

metastization only when we considered its nuclear expression. In fact, it seems that pAKT Ser473 

nuclear translocation is of major importance to migration and distant metastization of TC. Vasko 

et al.,8 demonstrated that pAKT Ser473 was expressed in the cytoplasm of PTC throughout the 

tumor, but the immunostaing was more intense and localized in the nucleus of cells located in the 

invasive regions. We also observed that when pAKT Ser473 staining was more concentrated in 

the invasive front of the tumor, it was preferentially located in the nucleus. Moreover, in an animal 

model of TC, pAKT Ser473 was localized primarily in the nucleus of cells from metastatic 

lesions, while in the primary tumors it was located in the cytoplasm and nucleus of cells, 

suggesting that pAKT nuclear distribution may be relevant to both initiation and sustaining 

metastasis39. 

In our series overall pAKT Ser473 expression was significantly higher in PTCs harboring 

BRAFV600E mutation compared to BRAFWT PTCs. In our previous study, we observed that 

BRAFV600E PTCs expressed similar levels of pmTOR but significantly lower levels of pS6 

compared to BRAFWT PTCs11, so it seems that PTCs harboring BRAFV600E mutation have a 

preferential activation of the mTORC2 complex in comparison to mTORC1. 

It may seem controversial with the consistent observation that BRAFV600E mutation is not 

associated with distant metastization40-42. However, in our series, only the nuclear pAKT Ser473 

expression is associated with distant metastization, suggesting that, nuclear translocation of 
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pAKT Ser473 is more important than its overall expression, regarding to distant metastization, 

which could explain these apparently discordant results. 

Loss of NIS expression and function has been indicated as the molecular mechanism 

responsible for RAIR in TC5. Recent studies explored the role of mTOR pathway on NIS 

expression/function in rat thyroid cells16 and in cell lines of TC (8505C, TPC1 and BCPAP)17, 

both demonstrating that treatments with rapamycin, an mTORC1 inhibitor, was able to restore 

NIS expression and function in the majority of them 16, 17. Since these works only evaluated the 

impact of mTORC1 on NIS expression and function, we were interested in exploring the role of 

mTORC2 in SLC5A5 mRNA expression. Albeit RAD001 caused a decrease on pS6 expression, it 

did not alter SLC5A5 expression, as was previously observed in TPC1cell line17. Torin2 treatment 

caused a decrease of pS6 and pAKT Ser473 expression, and was also able to significantly increase 

SLC5A5mRNA expression, (Figure 2 and 3). The inhibition of mTORC2 complex revealed to be 

of major importance in the restoration of SLC5A5mRNA expression, high lightening its role as a 

potential therapeutic target. 

This study demonstrated that mTORC2 pathway is activated in PTCs and that its 

downstream effector pAKT Ser473 nuclear translocation may play a major role in distant 

metastization. Thus, we considered that inhibition of mTORC2 complex should be further 

addressed in the management of specific RAIR TC.    
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4.6 Figures/Figures legends 
 

 

 

Figure 1. pAKT Ser473 immunoexpression in PTCs. A, B, C) Intensification of the 
immunostaining and pAKT Ser473 nuclear expression in the invasive front of a cPTC; A 0.44X, 
B 10X and C 40X magnification. D, E, F) Preferential pAKT Ser473 expression in the tumor 
periphery, another example on a cPTC. Note that, in this case, the nuclear translocation was not 
so intense compared to previous; D 0.44X, E 4X and F 40X magnification. G, H, I) strong and 
disseminated pAKT Ser473 nuclear expression in a hobnail variant of PTC; G 0.44X, H 10X and 
I 40X magnification. 
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Figure 2. RAD001 and Torin2 effect on TPC1 cell line. A. Cells were treated with 20nM of 
RAD001 and 450nM of Torin2 during 72H. Western blot analysis of RAD001 and Torin2 effect 
on the activation status of mTORC1 and mTORC2 complexes was evaluated by pS6 Ser235/236 
and pAKT Ser473 expression, respectively. Representative actin expression is shown. Protein 
level, in treated cells, was evaluated in duplicate. B. Mean fold change of protein expression 
observed in TPC1 cell line treated with 20nM of RAD001and 450nM of Torin2 in comparison to 
cells treated with DMSO. Phosphorylated proteins were normalized by the levels of their 
correspondent total proteins. Results are shown as mean expression value of three independent 
experiments ±SEM. *P<0.05 (unpaired Student’s t test). 

 

 

 

 

TPC1

A 

T
or

in
2 

T
or

in
2 

D
M

S
O

 

D
M

S
O

 

R
A

D
 

R
A

D
 

B

Actin 

pS6 Ser 235/236 

AKT 

S6

pAKT Ser473 

85



 
 

DM
SO 

RAD00
1

DM
SO

Tor
in

2

0

2

4

6

8 *

S
L

C
5

A
5

 e
x

p
re

s
s

io
n

(2
-
 C

T
)

 

Figure 3. SLC5A5 expression in TPC1 cell line after treatment with RAD001 (20nM) and Torin2 
(450nM) during 72H. Mean fold change of SLC5A5mRNA expression observed in TPC1 cell line 
after treatments in comparison to cells treated with DMSO. RAD001 did not affect SLC5A5 
expression. Treatment with Torin2 caused a significant increase of ~6 fold of SLC5A5 expression. 
Bars represent mean expression±SEM. * P<0.05. Results are shown as mean expression value of 
three independent experiments ±SEM.  
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4.7. Tables 
Table 1. Epidemiologic, histological, and clinical data of the patients. 

 total and % cPTC  FVPTC other PTC variants 
Gender  

F n=150 94 (82.5) 41 (87.2) 15 (71.4) 
M n=32 20 (17.5) 6 (12.8) 6 (28.6) 

Age 
<45 years n=94 62 (54.9) 21 (45.7) 11 (55.0) 
≥45 years n=85 51 (45.1) 25 (54.3) 9 (45.0) 

Tumor size 
<2cm n=64 39 (36.8) 17 (37.0) 8 (40.0) 
≥2cm n=108 67 (63.2) 29 (63.0) 12 (60.0) 

Tumor capsule 
Present n=83 42 (39.6) 32 (71.1) 9 (42.9) 
Absent n=89 64 (60.4) 13 (28.9) 12 (57.1) 

Tumor capsule invasion 
Yes n=64 35 (89.7) 22 (68.8) 7 (100) 
No n=14 4 (10.3) 10 (31.3) 0 (0) 

Extrathyroidal extension 
Yes n=73 50 (48.1) 12 (27.3) 11 (55.0) 
No n=95 54 (51.9) 32 (72.7) 9 (45.0) 

Multifocality
Single n=104 58 (54.7) 32 (68.1) 14 (70.0) 
Multiple n=69 48 (45.3) 15 (31.9) 6 (30.0) 

Lymphocytic infiltrate 
Present n=108 77 (70.6) 19 (41.3) 12 (60.0) 
Absent n=67 32 (29.4) 27 (58.7) 8 (40.0) 

Vascular invasion 
Present n=59 42 (40.4) 10 (22.2) 7 (35.0) 
Absent n=110 62 (59.6) 35 (77.8) 13 (65.0) 

Lymph node metastases 
Present n=57 40 (43.0) 12 (34.3) 5 (29.4) 
Absent n=88 53 (57.0) 23 (65.7) 12 (70.6) 

Tumor margins 
Infiltrative n=78 57 (79.2) 13 (46.4) 8 (72.7) 

Well defined n=33 15 (20.8) 15 (53.6) 3 (27.3) 
Distant metastases 

Yes n=17 9 (11.8) 5 (17.9) 3 (30.0) 
No n=97 67 (88.2) 23 (82.1) 7 (70.0) 

One year disease free survival 
Yes n=64 41 (56.2) 19 (67.9) 4 (40.0) 
No n=47 32 (43.8) 9 (32.1) 6 (60.0) 

Disease free (at the end of follow up)
Yes n=70 44 (59.5) 19 (67.9) 7 (70.0) 
No n=42 30 (40.5) 9 (32.1) 3 (30.0) 

Deaths 
Yes n=5 2 (2.6) 2 (7.1) 1 (9.1) 

No n=110 74 (97.4) 26 (92.9) 10 (90.9) 
BRAF 

WT n=106 56 (49.1) 37 (82.2) 13 (61.9) 
V600E n=74 58 (50.9) 8 (17.8) 8 (38.1) 

NRAS 
WT n=162 108 (99.1) 38 (90.5) 16 (80.0) 
Mut n=9  1 (0.9) 4 (9.5) 4 (20.0) 

TERTp 
WT n=152 95 (96.0) 40 (95.2) 17 (100.0) 
Mut n=6  4 (4.0) 2 (4.8) 0 (0.0) 

RET/PTC 
WT n=56 29 (78.4) 18 (94.7) 9 (90.0) 

Rearrangment n=10 8 (21.6) 1 (5.3) 1 (10.0) 
Staging 

I n=64 45 (64.3) 15 (60.0) 4 (50.0) 
II n=6 3 (4.3) 3 (12.0) 0 (0.0) 

III n=24 19 (27.1) 3 (12.0) 2 (25.0) 
IV n=9 3 (4.3) 4 (16.0) 2 (25.0) 
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Table 2. Distribution of pAKT score 
throughout the series.
pAKT score Frequency % 

0 90 49.5
1 18 9.9
2 15 8.2
3 6 3.3
4 8 4.4
6 14 7.7
8 11 6.0
9 6 3.3
12 14 7.7

Total 182 100
 

 

 

 

Table 3. Association between pAKT score and 
BRAF status. 

    pAKT Score P value 

BRAF WT (n=106)  2.2±3.3 0.04
V600E (n=74) 3.4±4.4

 

 

 

 

Table 4. Association between pAKT nuclear expression and 
distant metastases. 

  Distant metastases 

  Yes No  P value 

Nuclear expression 
Yes 9 (81.82%) 19 (47.5%)

0.04 No 2 (18.18%) 21 (52.5%)

  Total 11 40
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Table 5. Effect of RAD001 and Torin2 on SLC5A5 mRNA expression in TPC1 cell line. 

 

 

 

 

 

 

 

 

  

   TPC1 

 SLC5A5 expression P value 

RAD001 

DMSO 60H 1

RAD001 20nM 60H 0.9±0.7 0.4 

DMSO 72H 1

RAD001 20nM 72H 1.1±0.8 0.5 

Torin2 

DMSO 60H 1

Torin 2 450nM 60H 1.3±0.6 0.4 

DMSO 72H 1

Torin 2 450nM 72H 5.7±0.9 0.018 
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4.8 Supplementary data 
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Supplementary figure 1. SLC5A5 expression in a panel of thyroid carcinoma cell lines. Mean 
fold change of SLC5A5 expression in comparison to a sample of normal adjacent human thyroid. 
Results were evaluated as mean expression in triplicate from two t biological replicates ±SEM. 
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Chapter 5. Paper 3 The usefulness of the study of sodium 
iodide symporter expression in thyroid primary tumors 
 
 
This chapter is presently a manuscript submitted for publication with the same title. 
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Abstract 

Objective: Thyroid cancer therapy is based on surgery followed by radioiodine treatment. The 

incorporation of radioiodine by cancer cells is mediated by sodium iodide symporter (NIS) 

(codified by SLC5A5 gene), that is functional only when targeted to the cell membrane. We aimed 

to evaluate if NIS expression in thyroid primary tumors would be helpful in predicting tumor 

behavior, response to therapy and prognosis.  

Design: NIS expression was addressed by qPCR and immunohistochemistry. In order to validate 

our data, we also studied SLC5A5 expression on 378 primary papillary thyroid carcinomas from 

The Cancer Genome Atlas (TCGA) database. 

Results: In our series, SLC5A5 expression was significantly lower in carcinomas with vascular 

invasion and tendentially lower in those harboring BRAFV600E mutation and with extrathyroidal 

extension. Analysis of SLC5A5 expression from TCGA database confirmed our results. 

Furthermore, it demonstrated that carcinomas larger than 2cm and with locoregional recurrences 

and/or distant metastases or harboring RAS, BRAF, and/ or TERT promoter (TERTp) mutations 

presented significantly less SLC5A5 expression.  

Regarding immunohistochemistry, 12/211 of the cases demonstrated NIS in the membrane of 

tumor cells, those cases showed variable outcomes concerning therapy success, prognosis, and all 

but one were wild type for BRAF, NRAS and TERTp mutations. 

Conclusions: SLC5A5 mRNA lower expression is associated with markers of aggressiveness and 

with key genetic alterations involving BRAF, RAS and TERTp. Mutations in these genes seem to 

decrease protein expression and its targeting to the cell membrane. SLC5A5 mRNA expression is 

more informative than NIS immunohistochemical expression regarding tumor aggressiveness and 

prognosis.  
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5.1 Introduction 

Sodium iodide symporter is a transmembrane glycoprotein (codified by the SLC5A5 gene) 

expressed almost exclusively in the basolateral plasma membrane of thyroid follicular cells. It 

plays a central role in thyroid metabolism, mediating the active transport of iodine from the 

bloodstream into the follicular cells, the first step for thyroid hormones’ synthesis. NIS plays an 

essential role in the treatment of differentiated thyroid carcinomas (DTC), which usually maintain 

NIS expression, allowing the recognition and the treatment of recurrences and metastases with 

radioactive iodine (RAI) 1. Nonetheless, a significant subgroup of DTC patients with advanced 

disease loses NIS expression and becomes refractory to 131I; some of these patients die within 3-

5 years2. NIS expression has been widely studied in normal thyroid and tumor tissues, on one 

hand to verify if its downregulation could be the molecular cause for the decrease of RAI uptake 

and on the other hand to understand the impairing mechanisms of NIS expression and function. 

However, no clear answer emerged from the results obtained in the previous studies. Despite the 

central role of NIS in diagnosis, treatment and follow-up of thyroid cancer patients, reliable 

methods for ascertaining NIS expression and functionality in clinical samples are not available.  

In the majority of the studies, SLC5A5 mRNA levels are lower in thyroid carcinomas than 

in adenomas3 and normal adjacent thyroid4-6; furthermore, SLC5A5 expression presents some 

limitations in predicting NIS expression and functionality: whereas a negative or low mRNA level 

may lead to reduced protein expression, a positive or high mRNA expression does not always 

correspond to higher protein levels or higher functionality6, 7. 

These observations suggest that in thyroid carcinomas, besides transcription regulation, 

NIS expression appears to be modulated by post transcriptional events. Therefore, studies of NIS 

expression by immunohistochemistry (IHC)1, 8-24, may be, theoretically, more informative since 

they “grab” NIS a step forward in its biological processing and allow the evaluation of the 

localization of NIS in the basolateral plasma membrane of follicular cells (the functional 

transporter).  
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According to the published data, NIS expression (evaluated by IHC) varies in different 

thyroid tissues. In normal thyroid, it is low and very heterogeneous; only a few follicular cells 

within some follicles express NIS in the basolateral plasma membrane9, 13, 16, 20, 25, suggesting that, 

NIS expression is tightly regulated in thyroid gland. In carcinomas, when NIS is present, it is 

usually expressed in a higher number of cells than in normal tissue and the expression is mainly 

intracytoplasmic, poorly targeted to the basolateral plasma membrane1, 10-13, 16, 20-22. The increased 

intracytoplasmic NIS staining in thyroid tumors compared to normal tissue has been pointed out 

as a reason for the decreased RAI uptake in tumors, reflecting a mislocalization of NIS from the 

basolateral membrane, which would impair its activity16. This assumption has been questioned, 

because the real significance of intracytoplasmic NIS detected by immunostaining remains 

unclarified20. 

The molecular mechanisms responsible for the downregulation and/or not targeting to 

the basolateral membrane of NIS in thyroid tumors remain poorly understood, but some studies 

demonstrated that both mRNA and protein are differentially expressed according to the genetic 

background of the tumor. In fact, papillary thyroid carcinomas (PTCs) harboring the BRAFV600E 

mutation present lower SLC5A5 mRNA and NIS protein expression as well as less targeting to 

the basolateral membrane compared to PTCs BRAFWT 18, 23, 26. Less is known about the impact 

of other mutations on SLC5A5 and NIS expression/targeting to the basolateral membrane. 

Being NIS the central molecule for DTC treatment, it is logical to study if its expression in 

the primary tumor would be helpful in predicting therapy response as well as tumor behavior and 

prognosis. Some studies tried to understand if NIS immunohistochemical expression in thyroid 

primary tumors would be helpful in predicting 131I uptake in recurrences and distant metastases. 

Although authors related that positive NIS immunostaining in primary tumors seemed to be 

predictive of positive recurrences and metastases on 131I scans, some studies did not distinguish 

whether NIS was expressed in the cell basolateral membrane, and negative NIS staining did not 

predict 131I scan-negative metastases 12, 14, 17. To the best of our knowledge, there is only one study 

that addressed possible associations between NIS expression, evaluated by 

immunohistochemistry (IHC), and clinicopathological features and prognosis in a large series of 
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thyroid primary tumors1, reporting a significantly lower NIS expression in older patients 

(≥45years) and also that NIS expression in the primary tumor was not useful as a prognostic 

marker.  

So, in our opinion more retrospective studies in larger series of primary tumors are still 

necessary, in order to understand the role of NIS expression in therapy response, tumor behavior 

and prognosis, and also if other factors besides BRAFV600E mutation can contribute to NIS 

downregulation and/or misdirecting to the basolateral membrane. Furthermore, it is also 

important to understand the advantages and limitations of the analysis of SLC5A5 and NIS 

expression and evaluate what is the better/more informative method to study NIS expression. 

Having this in mind, we addressed SLC5A5 expression by qPCR and NIS expression by 

IHC analysis, in a large series of primary thyroid carcinomas and looked for possible associations 

with some clinicopathological and molecular features, as well as to the response to RAI therapy 

and outcome. In order to validate our results of SLC5A5 mRNA expression associations’ with 

clinicopathological and molecular features and also to get new evidences we used the data 

available about SLC5A5 in TCGA Research Network that completed an integrated genomic 

analysis of 496 PTCs using NGS and other pan-genomic technologies, together with detailed 

pathologic and clinical data27.  
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5.2 Materials and methods 

Patient samples 

Our series was composed by 255 thyroid samples from 229 patients. Cases were collected 

from the files of the Institute of Molecular Pathology and Immunology of the University of Porto 

(IPATIMUP, Porto, Portugal), corresponding to patients with thyroid tumors (n=229) operated 

and followed in two university hospitals. Samples from normal thyroid (n=25), and Graves’ 

disease (n=1) were obtained from the contralateral lobe of the surgical specimens. Carcinomas 

series was composed by 193 PTCs (123 cases of classical PTC (cPTC), 47 cases of follicular 

variant of PTC (FVPTC) and 23 cases of other PTC variants), 23 follicular thyroid carcinomas 

(FTC) and 13 poorly differentiated thyroid carcinomas (PDTC). In 166 cases, there was only 

formalin-fixed paraffin-embedded (FFPE) representative tissue; in 45cases there were FFPE 

samples and correspondent frozen tissue (the tumors were divided at the time of surgery); and in 

18 cases there was only frozen tissue available. Frozen material was collected at the time of 

surgery and conserved at-80ºC.The histology of all tumor samples was reviewed by three 

pathologists (CE, ER, MSS) according to the criteria of the World Health Organization28. 

Clinicopathological and molecular data of the 229 patients with carcinoma are summarized in 

Supplementary Table 1. In 141 cases, follow-up data was available. The number of 131I treatments 

varied from 1 to 5 treatments (mean 1.9), and the cumulative total dose of RAI was between 30 

and 1146 mCi (mean 251 mCi). All the procedures described in this study were approved by the 

respective ethical boards and are in accordance with national and institutional standards. 

Patient follow up 

Patients were treated and followed in accordance with the international protocols available 

at the time. Data regarding the number of radioiodine treatments and cumulative activity were 

retrieved from hospital records. Patients were considered as being disease-free at the end of 

follow-up if they had undetectable stimulated thyroglobulin (in the absence of thyroglobulin 

antibodies) and no evidence of the disease on radiographic or radionuclide imaging. The mean 

time of follow up was 8.0±6.7 years. For statistical analysis, we defined the category “additional 
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treatments”, in which we included other treatment modalities in addition to radioiodine, including 

extra surgery, external beam irradiation, and treatment with tyrosine kinase inhibitors. 

Dataset PTC in TCGA 

There were 378 tumor cases for which there was information for the main driver somatic 

mutations (RAS, BRAF and TERTp), gender and SLC5A5 expression. Of these, we eliminated 4 

cases, for which the SLC5A5 expression was above the 99 percentile, being outliers. A total of 

353 of the cases had information about tumor size, 362 had information for extrathyroidal 

extension, 282 had information for lymph node metastases (at the time of diagnosis) and all 374 

had information about new tumor event [lymph node metastases or local recurrence (grouped in 

locoregional recurrence) and distant metastases]. The SLC5A5 expression was inferred from 

RNA-seq data and quantification reflects reads per kilobase per million mapped reads (RPKM). 

There were also 58 SLC5A5 expression measures in adjacent tissue of the PTC cases, and two of 

them were not considered for further analyses as values were above the 99 percentile.  

DNA extraction, PCR, and Sanger sequencing 

DNA extraction from FFPE tissues was performed from 10μm sections after careful 

microdissection. DNA extraction was performed using Ultraprep tissue DNA kit (AHN 

Biotecnologie, Nordhausen, Germany) following the manufacturer’s instructions. The genetic 

characterization of part of the tumors regarding BRAF, NRAS, and TERT promoter mutations 

(TERTp) had been reported previously; mutations were screened as previously described 29-31. 

RNA extraction and reverse transcription  

Total RNA was extracted from tumors and from contralateral normal adjacent thyroid, from 

which frozen samples were available (n= 84), using a Trizol commercial kit (Thermo 

Scientific/GIBCO Waltham, MA USA) according to the manufacturer’s protocol. RNA was 

quantified by spectrophotometry, and its quality was checked by analysis of 260/280 nm and 

260/230 nm ratios. For cDNA preparation, 1μg of total RNA was reverse-transcribed using the 

RevertAid first strand cDNA synthesis kit (Thermo Scientific/Fermentas, Waltham, MA, USA). 
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qReal Time PCR 

Reverse transcription products were amplified for the SLC5A5gene and detected by a probe 

(IDT: Integrated DNA Technologies, Leuven, Belgium; no. HS.PT.56a.40789288), as previously 

described32. 

Immunohistochemistry  

Immunohistochemistry was performed in normal thyroid and in 211 carcinomas. Briefly, 

deparaffinized and rehydrated sections were subjected to heat-induced antigen retrieval in 10 mM 

sodium citrate buffer (pH6.0). Endogenous peroxidase activity was blocked with 3% of hydrogen 

peroxide and nonspecific binding with Large Volume Ultra V Block reagent (Thermo 

Scientific/Lab Vision, Waltham, MA, USA). Sections were then incubated overnight at 4ºC with 

anti-NIS antibody (1:400) clone FP5A (Thermo Scientific/Lab Vision, Waltham, MA, USA) and 

in 24 carcinomas with anti-NIS pAb 795 IgG (20µg/ml) (kindly supplied by Dr. Ruby)33. 

Additionally, Tyramide Signal Amplification (TSA) Biotin System (Perkin-Elmer, Foster City, 

USA) was used for signal amplification in 44 carcinomas, according to manufacturer’s 

instructions. The detection was performed with a labeled, streptavidin-biotin immunoperoxidase 

detection system (Thermo Scientific/Lab Vision Waltham, MA, USA) followed by 3,3’-

diaminobenzidine (Dako, Glostrup, Denmark) and counterstained with hematoxylin. Graves’ 

disease sample was used as a positive control and the negative control consisted in omission of 

the primary antibody. 

Slides were evaluated by two observers and were analyzed according to the percentage of 

tumor stained cells, the intensity and the cellular localization of the staining. In order to compare 

our results to the literature, we considered cases with >5% of stained tumor cells (regardless of 

the cellular localization) as positive. Nevertheless, all our statistical analyses were performed 

considering two groups; cases that presented membrane staining in tumor cells and all the other 

cases. Photographs were acquired using Nikon DS-L1 camera in 100X and 400X magnifications. 
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Statistical analysis 

Statistical analysis was performed using 21.0 SPSS Statistical Package (SPSS, Inc., 2003). 

Fisher’s exact test, and independent-samples t-test were performed to correlate NIS expression 

with clinicopathological and molecular features. When parametric tests were not applicable we 

used alternative tests, specifically Mann-Whitney (independent samples). Wilcoxon (related 

samples) was used to compare SLC5A5 expression between tumor samples and their adjacent 

normal counterparts. Kruskal-Wallis test was used to correlate SLC5A5expression (retrieved from 

TCGA and database) with clinicopathological and molecular features. Values of P˂0.05 were 

considered statistically significant. 

5.3 Results 

SLC5A5 mRNA expression 

SLC5A5 expression was significantly lower in carcinomas than in normal adjacent 

counterparts (Figure1). No significant difference was observed between the three different 

carcinoma histotypes (PTC, FTC and PDTC). Considering the analysis in DTC, SLC5A5 

expression was lower in males and in cases with vascular invasion (P=0.003 and P=0.03, 

respectively) (Table 1). SLC5A5 expression in normal thyroid from males was not significantly 

different from that of females (data not shown). In addition, there was a tendency to lower 

SLC5A5 levels in cases with extrathyroidal extension (P=0.06) and in PTCs harboring 

BRAFV600E mutation (P=0.07). When the statistical analysis was performed only in the PTC 

group all the significant associations described in the DTC group were maintained. 

SLC5A5 mRNA expression (TCGA database) 

The SLC5A5 expression was around 200 times higher in normal tissue than in tumor tissue 

in both genders, but no differences in tumor and in adjacent tissue between genders were found 

(Figure 2 A and B). SLC5A5 expression was significantly higher in smaller tumors ≤2cm 

(median= 5.85) compared to those with ˃2cm (median=2.51) (P=0.028; Figure 2 C). There was 

no statistical difference in SLC5A5 expression in primary tumors with (median=3.0) or without 

(median=5.4) lymph node metastases at the time of diagnosis (P=0.253) (Figure 2 D). 
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The SLC5A5 expression was reduced with the level of the extrathyroidal extension (median 

values: 5.4 for “none”; 2.8 for “minimal (T3)” and 0.9 for “moderate/advanced (T4a+b)”), 

reaching statistical significance for comparisons between “none” versus the “moderate/advanced 

(T4a+b)” class and “minimal (T3)” versus “moderate/advanced (T4a+b)” (P=0.018 and P=0.039, 

respectively Figure 2 E). We also observed a statistical significant decrease (from a median of 3.8 

to 0.8; P=0.002) of the SLC5A5 expression in cases with new tumor events (Figure 2 F), lumping 

together 12 cases of distant metastasis (6 lung; 1 lung+bone; 1 lymph node only; 1 

lung+femur+neck+pleura+liver; 1 bone; 2 unknown) and 14 locoregional recurrences (10 lymph 

node only; 2 left thyroid; 1 lymph node + soft tissue; 1 unknown). Finally, SLC5A5 expression 

was significantly higher in the absence (median=21.77) of the evaluated mutations: RAS 

(P=0.034), TERTp (P=0.0072) and BRAFV600E (P=3.1x10-8). The PTCs that harbored only 

TERTp, only BRAF or simultaneous TERTp and BRAF mutations displayed significantly lower 

expression of SLC5A5 than the double WT tumors. The group with RAS mutations displayed the 

second highest expression value (median=7.50), reaching statistical significance when compared 

with the groups including BRAF mutation only and BRAF+TERTp mutations [median=2.27 in 

BRAF (P=0.042); median=1.89 in TERT+BRAF (P=0.027)] (Figure 2 G).  

NIS expression  

In normal thyroid tissues, NIS immunohistochemical expression was mainly localized in 

the basolateral plasma membrane of follicular cells. NIS positivity was detected in a few foci of 

isolated follicles throughout the tissue and within the positive follicles the majority of the cells 

were positive. Positivity was more frequently detected in small follicles composed by cuboidal 

and columnar cells and rarely detected in large follicles limited by flattened cells (Figure 3A). In 

Graves’ disease, NIS was widely expressed and present in the basolateral plasma membrane of 

the great majority of follicular cells (Figure 3B). In carcinomas, NIS staining was observed in 

71.6% of the cases (74.8% of cPTCs, 69.8% of FVPTCs, 80.9% of other PTC variants, 55% of 

FTC and 67% of PDTC). Its location was predominantly in the cytoplasm (124/211) (Figure 3C) 
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in the cytoplasm and nucleus (15/211) and finally only 12/211 of the cases presented NIS in the 

basolateral plasma membrane of tumor cells (Figure 3D). 

Since we observed a low percentage of carcinomas with NIS staining in the basolateral 

membrane, we hypothesized that our IHC approach was not being sensitive enough to detect small 

amounts of NIS. In order to clarify this issue, we used two strategies: a TSA signal amplification 

method and the use of another NIS antibody characterized by a different specificity compared to 

the commercial antibody33. 

The TSA signal amplification method was applied in a subset of 44 carcinomas with 

different staining patterns (16 with cytoplasmic staining in the tumor and membrane staining in 

adjacent thyroid; 3 with membrane staining in the tumor; 5 negative both in the in tumor and the 

adjacent thyroid and, finally, 20 with only cytoplasmic staining in tumor and adjacent thyroid). 

When we compared the slides with and without amplification, we verified that only the membrane 

staining remained and appeared more intense with the amplification. In these cases, the staining 

involved almost always the same foci of cells that already presented membrane staining (Figure 

2E, F, G and H) i.e. it did not stained additional cells. The intra cytoplasmic staining vanished 

both in cancer and in normal tissues. Furthermore, we performed IHC using a homemade antibody 

for human NIS, pAb 795 against a peptide corresponding to the C-terminal sequence of hNIS pAb 

79533 in 24 carcinomas (12 cPTC, 4 FVPTC, 2 micro PTC, 2 tall cell PTC, 2 FTC and 2 PDTC). 

The results were similar to those obtained with clone FP5A (Thermo Scientific/Lab Vision, 

Waltham, MA, USA) (Supplementary Table 2). 

Since some doubts remained about the specificity of the cytoplasmic staining, and also 

because NIS is only active when present in the basolateral membrane of the cells, we performed 

statistical analysis dividing our series in two groups: with (positive) and without (negative) 

membrane staining. 

We did not find any significant association between NIS expression in the membrane and 

age, tumor size, tumor capsule, multifocality, lymphocytic infiltration, vascular invasion, lymph 

node metastases, tumor margins, distant metastases, staging, BRAF, NRAS and TERTp status, 

additional treatments, disease-free status at one year, disease-free status at the end of follow-up 
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or disease-specific survival in the DTC group. When we analyzed NIS expression between WT 

PTCs and those harboring any of the studied mutations we verified that NIS positive expression 

was significantly more frequent in WT PTCs (Table 2). The number of RAI therapies, as well as 

the cumulative dose of RAI, did not differ significantly between patients with or without NIS 

expression in the basolateral membrane of primary tumor’s cells. 

The throughout analysis of the few cases with membrane staining (n=12) revealed that all 

but one carcinoma were wild type for the studied mutations (NRAS+ BRAF or TERTp). These 

cases presented variable outcomes i.e. presence of distant metastases, number of RAI therapies, 

cumulative dose of RAI, the need of additional treatments, disease free status and death (disease 

caused), that are apparently unrelated with the presence of NIS membrane expression (Table 3). 

5.4 Discussion 

In this work, we tried to clarify the impact of NIS expression (mRNA and protein) on 

thyroid tumors’ aggressiveness and therapy success and, as a result of the above, the putative 

prognostic significance of SLC5A5 mRNA and NIS protein expression. Moreover, we also 

addressed the impact of the genetic background of the tumor on SLC5A5 and NIS expression as 

well as its targeting to the basolateral cell membrane.  

We found that SLC5A5 expression was always lower in tumors than in normal adjacent 

counterparts as reported by others groups5, 6, 34. We observed a significantly lower SLC5A5 

expression in male gender patients, and in cases with vascular invasion, as well as a tendency to 

lower SLC5A5 expression in cases with extrathyroidal extension, but no differences were found 

in cases with and without lymph node metastases (Table 1).When we compare the results from 

our data to those from TCGA data, we confirmed that tumors express significantly less SLC5A5 

compared to normal adjacent tissue, that SLC5A5 was not differently expressed in the presence 

or absence of lymph node metastases (at the time of diagnosis) and a significant lower SLC5A5 

expression in tumors with extrathyroidal extension (moderate/advanced) compared to those 

without extrathyroidal extension (Figure 2D). However, the differential expression of SLC5A5 
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between genders was not confirmed (Figure 2 A, B). Unfortunately, in TCGA database there was 

no information about vascular invasion, so we could not validate this result in this large series. 

The significantly lower SLC5A5 expression in cases presenting vascular invasion and 

extrathyroidal extension suggests that a decreased SLC5A5 expression may be associated to an 

aggressive tumor behavior and thus may help to characterize patients at risk for poor therapy 

response. Further analysis of TCGA data demonstrated that SLC5A5 expression is significantly 

lower in cases that had locoregional recurrences and/or distant metastases (Figure 2 E). Given the 

high prognostic impact of recurrences and distant metastases35, these results suggest that a lower 

expression of SLC5A5 in thyroid primary tumor seems to be associated with features of higher 

aggressiveness of the primary tumor and also with a worse prognosis and with poor response to 

therapy. Two groups reported that SLC5A5 was significantly less expressed in DTCs larger than 

2cm and PTCs larger than 1cm (in comparison to ≤ 2cm and ˃ 1cm, respectively)1, 36, TCGA 

results corroborated the literature by showing that smaller PTCs (≤ 2cm) expressed significantly 

less SLC5A5 compare to those with ˃ 2cm. In our study we did not include microcarcinomas, so 

the group of tumors with ≤2 cm was very small, in any way we tested for a possible correlation 

between tumor size (as a continuous variable) and SLC5A5 expression and did not find any 

significant correlation, the same analysis was performed in TCGA data (in the group of PTCs 

˃2cm) and there was no significantly correlation either (data not shown). 

Previous studies reported a lower SLC5A5 expression in cases harboring BRAFV600E and 

there is experimental evidence showing that BRAFV600E can impair SLC5A5 expression1, 18, 26, 

36, nevertheless the impact of other relevant mutations found in thyroid tumors on SLC5A5 

expression remained unknown. In our series, SLC5A5 expression was lower but did not reach 

statistical significance in the BRAFV600E PTC compared to that of BRAF wild type group. The 

lack of significance in our series may be due to differences in size and composition of the series, 

since the above mentioned studies addressing SLC5A5 expression and BRAFV600E1, 18, 26, 36 used 

larger series of PTC. 

When we compared SLC5A5 expression (retrieved from TCGA database) between PTCs 

harboring different mutations (BRAFV600E, TERTp and RAS) and WT PTCs we observed that 
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independently of the mutation, SLC5A5 expression was always significantly lower compared to 

WT PTCs. Moreover, we also observed that RAS mutation was the one with lower impact on 

SLC5A5 expression. PTCs with RAS mutation displayed significantly higher levels of SLC5A5 

compared to BRAFV600E and BRAF+TERp mutated PTCs. In fact, it has been previously 

reported a distinct profile of expression of genes involved in thyroid hormone biosynthesis (being 

SLC5A5 one of these genes) between BRAFV600E and RAS-driven PTCs, with RAS-like PTCs 

having relatively high thyroid differentiation score27. 

Our results on the immunohistochemical NIS expression in normal thyroid and Graves’ 

disease (an autoimmune condition known to express high levels of NIS)37were in accordance to 

data previously reported 9, 11, 13, 16, 20, i.e., focal membrane expression of NIS in normal thyroid 

gland and a widespread, strong membrane NIS expression in Graves’ disease. The great difference 

observed in NIS expression between normal thyroid and in Graves’ disease may be considered as 

an example of how TSH is able to regulate NIS expression and the targeting to the membrane. 

Regarding carcinomas, we observed that the majority (71.6%) displayed NIS immunostaining, 

which is in accordance to the literature 12, 13, 16-22 (Table 4), but only a minority presented NIS in 

the basolateral membrane of tumor cells (5.7%). If one compares the percentage of cases with 

NIS plasma membrane staining, there are large differences between studies (Table 4). Such 

differences may be due to the variable size of the series and also to differences in the antibodies 

used to perform the IHC (almost every study uses its own antibody, Table 4). In order to be sure 

that we were not missing any signal, we performed the IHC for NIS with TSA signal amplification 

in a subset of carcinomas with different immunostaining patterns and observed a complete vanish 

of intracytoplasmic staining and an amplification of the membrane staining. These results, like 

those from Peyrottes et al20 rise some questions about the real significance of NIS 

intracytoplasmic staining, so we decided to perform our analysis considering positive only the 

cases with membrane staining.  

The presence of NIS in the membrane of thyroid primary carcinomas did not associate with 

clinicopathological features, response to therapy or prognosis (Table 3). If we look to the 

treatment of thyroid carcinoma (surgery followed by RAI ablation), only the remnants, metastases 
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and eventually the recurrences are subjected to RAI. Prior to RAI ablation patients are subjected 

to TSH stimulation, either by withdrawal of thyroid hormones or by the administration of 

recombinant TSH2. Since TSH has a major role in NIS expression and targeting to the 

membrane38, we can hypothesize that levels of membrane NIS in stimulated recurrences and 

metastases may be different from those in non-stimulated primary tumors because they may 

reflect two different biological conditions. This probably may help to explain why NIS expression 

in the primary tumor does not predict RAI therapy success and/or prognosis.  

Another interesting finding of our study was the observation that the cases with NIS 

membrane staining were predominantly wild type for the analyzed mutations (NRAS, BRAF and 

TERTp) (Table 3). Although this membrane expression was not associated with any particular 

outcome (clinicopathological features or prognosis), it is tempting to advance that the genetic 

background of tumors influence NIS targeting to the membrane. There are in vitro evidences that 

BRAFV600E mutation affects NIS targeting to the membrane 23, but the impact of the other 

mutations (NRAS and TERTp) remains unknown. 

In summary, SLC5A5 mRNA expression was significantly lower in mutated PTCs and the 

absence of BRAF and NRAS mutations in every carcinoma displaying NIS membrane staining at 

immunohistochemistry supports the assumption that the genetic background of tumors may be of 

major importance to SLC5A5 expression as well as to NIS targeting to the membrane. Moreover 

a lower SLC5A5 mRNA expression was associated with tumor aggressiveness and worse 

prognosis. On the other hand, NIS immunohistochemical expression did not predict tumor 

behavior, therapy response or outcome. Thus, the study of SLC5A5 mRNA expression is much 

more informative compared to NIS expression evaluated by IHC.  
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5.6 Figures/Figure legends 
 

 

 

Figure 1. SLC5A5 expression in thyroid carcinomas and paired normal adjacent counterparts. 
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Figure 2. SLC5A5 expression in primary PTCs (RPKM), data retrieved from TCGA database. 

Comparative analysis of SLC5A5 expression A) between genders in tumor (TT) and normal tissue 

(NT); B) between genders only in tumor tissue (TT); C) in tumors with  ≤2cm and ˃2 cm D) in 

cases with or without lymph node metastases at the time of diagnosis; E) in cases without, with 

minimal (T3) and with moderate/advanced extrathyroidal extension; F) in cases with and without 

recurrence; and G) between cases with different genetic backgrounds (WT, RAS mutation, TERTp 

mutation, BRAF mutation, BRAF+TERTp mutation). The boxes represent the interquartile range; 

the whiskers are the 5% and 95% quartiles; the small open boxes are the mean values; and the 

lines are the median values. Significant values for the Kruskal-Wallis test are indicated. 
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Figure 3. NIS immunoexpression in different thyroid tissues. A) normal thyroid; B) Graves’ 

disease; C) cytoplasmic staining in an oncocytic PTC; D) membrane staining in a FVPTC; E and 

F) NIS immunoexpression in a FVPTC without and with TSA amplification signal, respectively; 

G and H) NIS immunoexpression in a FTC without and with TSA amplification signal, 

respectively; I) negative staining in cPTC with strong membrane staining in the surrounding 

Graves’ disease. In E, F, G and H, notice the loss of cytoplasmic staining and the amplification 

of the membrane staining (E, F) after the use of TSA amplification system. Bar 100μm. 
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5.7 Tables 

Table 1. Associations between SLC5A5 expression with clinicopathological and 
molecular features in DTCs. 

    SLC5A5 expression P value 

Gender 
F (n=47) 1.2±2.2  
M (n=12) 0.2±0.2 0.003 

Age 
<45 years (n=30) 1.0±1.5  
≥45 years (n=29) 1.1±2.4 0.8 

Tumor capsule 
Present (n=27) 1.1±1.6  
Absent (n=30) 0.7±1.6 0.4 

Tumor capsule 
invasion 

Yes (n=17) 0.9±1.6  
No (n=11) 1.4±1.4 0.4 

Extrathyroidal 
extension 

Yes (n=17) 0.5±1.1  
No (n=37) 1,4±2.4 0.06 

Lymphocytic 
infiltration 

Present (n=19) 0.9±1.9  
Absent (n=37) 1.2±2.2 0.7 

Vascular invasion 
Present (n=28) 0.4±0.8  
Absent (n=29) 1.5±2.6 0.03 

Lymph node 
metastases 

Present (n=13) 0.5±0.8  
Absent (n=18) 0.4±0.7 0.8 

BRAF* 
WT n= (27) 1.6±2.7  
V600E (n=20) 0.5±1.0 0,07 

NRAS 
WT (n=54) 1.0±2.0  

Mut (n=6) 1.3±1.7 0.7 

* PTC only  
 

 

Table 2. Associations between NIS expression and clinicopathological and molecular 
features in PTCs. 

 NIS immunoexpression  

  Negative Positive P value 
Genetic background 

n=118  
WT 45 (41.3%) 8 (88.9%)  

Mutated# 64 (58.7%) 1 (11.1%) 0.011 

# (BRAF, NRAS or TERTp mutations)  
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Table 3. Clinicopathological and molecular data of cases presenting NIS membrane staining. 

 Diagnosis BRAF NRAS TERTp 
Lymph 

node 
metastases 

Distant 
metastases

Number 
of131I 

therapies 

Cumulative 
dose (mCi) 

Aditional 
treatments 

One 
year 

DFS* 
DFS*# Deaths

Case 1 cPTC WT WT WT no bone 3 457.5 no no no no 

Case 2 cPTC WT WT WT no no 1 63 no yes yes no 

Case 3 cPTC WT WT WT yes no 3 459 2 surgeries no no no 

Case 4 FVPTC WT WT WT yes no 1 37 no yes yes no 

Case 5 FVPTC WT WT WT no no 2 382 no no no no 

Case 6 PDTC WT WT WT no lung+bone 5 798 2 surgeries yes no no 

Case 7 cPTC WT WT 124>A yes no 4 527 U/I no no no 

Case 8 sclPTC WT WT WT yes no 3 400 U/I no no no 

Case 9 FTC WT WT WT no no 1 102 U/I U/I yes no 

Case 10 cPTC WT WT WT yes U/I U/I U/I U/I U/I U/I U/I 

Case 11 FVPTC WT WT WT U/I U/I U/I U/I U/I U/I U/I U/I 

Case 12 cPTC WT WT WT yes U/I U/I U/I U/I U/I U/I U/I 

*DFS disease free survival. # At the end of follow up. U/I unavailable information. sclPTC sclerosing variant of PTC. 
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Table 4.  Bibliographic revision and present results of NIS protein evaluation by IHC in thyroid carcinomas. 

   Nº of carcinomas 
Anti-NIS antibodies 

used in the study 
Negative 

cases 
Positive 
cases* 

Cases with 
membrane 
staining** 

                 

Jhiang et al 1998 4 DTCs Produced by authors 

Descriptive studies 
Caillou et al., 1998) 14 DTCs Produced by authors 

Saito et al., 1998 12 PTCs Produced by authors 

Castro et al., 1999 9 DTCs Produced by authors 

Castro et al., 2001 60 DTCs Clone FP-13 26.7% 73.3% N/A 

Dohan et al., 2001 

 

Produced by authors 29.8% 70.2% 15.8% 57 (53DTCs. 2 ATC; 2 
MTC) 

Min et al., 2001 67 DTCs 
Donated by Dr. SM 
Jhiang of Ohio State 

University, USA
67.2% 32.8% N/A 

Wapnir et al., 2003 90 (87 DTCs; 3 ATC) Produced by authors 22.5% 77.5% some  

Riesco Eizaguire et al., 2006 67 PTCs Pohlenz et al., 2000 N/A some  

Lee etal., 2007 17 PTCs Clone Ab-1 0% 100% 58.8% 

Romei et al. 2008 40 PTCs 
Brahms Diagnostica 

GmbH, Berlin, Germany
0% 100% 52.5% 

Jung et al., 2009 29 (25 DTCs; 4 ATC) Clone FP5A  37.5% 62.5% N/A 

Peyrottes et al., 2009 47 (42 DTCs; 5MTC) 
Clones 39S, Ab-1 and 

FP5A 
49% 51% 0% 

Riesco Eizaguire et al., 2009 50 PTCs Tazebay et al., 2000 N/A 8% 

Wang et al. 2011 32 DTCs 
Zhongshan Goldbridge 
Biotechnology, Beijin 

China
0% 100% 18.8% 

Morari et al. 2011# 265 DTCs Clone FP5A  88% 12% 12% 

Wei et al., 2013 370 PTCs Clone SPM186  32.7% 67.3% 0.8% 

Tavares et al., present study 
211 (199 DTCs;  

12PDTCs)
Clone FP5A  28.4% 71.6% 5.7% 

*Percentage of positive cases (independently of the cellular location). **Percentage of cases with NIS membrane staining with or 
without simultaneous cytoplasmic staining. # This specific study only considered positive cases with membrane staining. N/A not 
addressed. ATC Anaplastic thyroid carcinoma. MTC Medullary thyroid carcinoma. PDTC Poorly differentiated thyroid 
carcinoma. 
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5.8. Supplementary data 

Supplementary Table 1. Clinicopathological data of the 229 patients with carcinomas included 
in the study. 

Total and (%) PTC FTC PDTC 

Age (n) 226 191 22 13 

 ≥45 years 115(50.9) 91(47.6) 13(59.0) 11(84.6)

Gender (n) 228 193 22 13 

 Male 50(21.9) 39(20.2) 6(27.3) 5(38.5) 

Tumor size (n) 212 181 20 11 

 ≥2cm 161(75.9) 130(71.8) 20(100) 11(100)

Tumor capsule (n) 203 175 18 10 

 Present 108(53.2) 84(48.0) 18(100) 6(60) 

Tumor capsule invasion (n) 109 86 17 6 

 Yes 90(82.6) 67(77.9) 17(100) 6(100) 

Extrathyroidal extension (n) 196 170 18 8 

 Present 78(39.8) 76(44.7) 0(0) 2(25) 

Multifocality (n) 198 174 15 9 

 Multifocal 86(43.4) 73(42.0) 9(60.0) 4(44.4) 

Lymphocytic infiltrate (n) 197 170 18 9 

 Present 111(56.3) 102(60.0) 6(33.3) 3(33.3) 
Lymph 

node metastases (n) 186 160 16 10 

 Present 93(50) 89(55.6) 0(0) 4(40.0) 

Vascular invasion (n) 198 172 18 8 

 Present 80(40.4) 64(37.2) 9(50.0) 7(87.5) 

Tumor margins (n) 124 114 5 5 

 Infiltrative 83(66.9) 81(71.1) 1(20.0) 1(20.0) 

Distant metastases (n) 145 128 9 8 

 Present 33(22.8) 22(17.2) 5(55.6) 6(75.0) 

Staging (AJCC) (n) 118 107 5 6 

 I 68(57.6) 65(60.8) 1(20.0) 2(33.3) 

 II 10(8.5) 7(6.5) 2(40.0) 1(16.7) 

 III 29(24.6) 26(24.3) 1(20.0) 2(33.3) 

 IV 11(9.3) 9(8.4) 1(20.0) 1(16.7) 

One year disease free (n) 136 122 7 7 

 No 64(47.1) 56(45.9) 6(85.7) 2(28.6) 

Disease-free (end of follow up) (n) 141 125 8 8 

 No 61(43.3) 51(40.8) 6(75.0) 4(50.0) 

Deaths (n) 146 129 9 8 

 Yes   9(6.2) 5(3.9) 1(11.1)     3(37.5)

BRAF (n) 226 191 22 13 

 V600E 82(36.3) 79(41.4) 0(0) 3(23.1) 

NRAS (n) 207 176 19 12 

 Mutation 12(5.8) 8(4.5) 3(15.8) 1(8.3) 

 TERTp (n) 201 168 20 13 

 Mutation 19(9.5) 11(6.5) 5(25.0) 3(23.1) 
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Supplementary Table 2. Description of the immunolocalization of NIS in the cases stained with 
the two different anti-NIS antibodies: FP5A and pab795. 

  FP5A pab795 

  Cellular location Cellular location 

Case 1 Negative Cytoplasmic

Case 2 Cytoplasmic Cytoplasmic

Case 3 Cytoplasmic Cytoplasmic

Case 4 Membrane+Cytoplasmic Membrane+Cytoplasmic 

Case 5 Cytoplasmic Cytoplasmic

Case 6 Cytoplasmic Cytoplasmic

Case 7 Cytoplasmic Cytoplasmic

Case 8 Cytoplasmic Cytoplasmic

Case 9 Cytoplasmic Cytoplasmic

Case 10 Cytoplasmic Cytoplasmic

Case 11 Cytoplasmic Cytoplasmic

Case 12 Cytoplasmic Cytoplasmic

Case 13 Cytoplasmic Cytoplasmic

Case 14 Cytoplasmic Cytoplasmic

Case 15 Cytoplasmic Cytoplasmic

Case 16 Cytoplasmic Cytoplasmic

Case 17 Cytoplasmic Cytoplasmic

Case 18 Cytoplasmic Cytoplasmic

Case 19 Cytoplasmic Cytoplasmic

Case 20 Cytoplasmic Cytoplasmic

Case 21 Negative Cytoplasmic

Case 22 Cytoplasmic Cytoplasmic

Case 23 Cytoplasmic Cytoplasmic

Case 24 Cytoplasmic Cytoplasmic
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Chapter 6. General discussion and concluding remarks 
 

Differentiated thyroid carcinomas carry in general a very good prognosis, with high rates 

of disease free survival149. Unfortunately, a subgroup of DTCs’ patient (4-23%) will develop 

distant metastases, worsening their prognosis148. The situation gets worse when recurrences and 

/or distant metastases patients lose the ability to uptake RAI, a situation that occurs in 

approximately 26-60% of the patients with recurrent disease149. This subgroup of DTC patients 

represents a challenge in TC field because there are not robust predictors that could help to 

identify such cases at the time of diagnosis. There is a great need of new predictors of 

aggressiveness and therapy response in TC, to avoid unnecessary overtreatment and, at the same 

time, to maintain an adequate disease management and surveillance. 

mTOR pathway is overactivated in a great variety of human neoplasms, being sometimes 

associated with characteristics of aggressiveness and worse prognosis155. In TC, mTOR pathway 

is also overactivated; the effectors of the two mTOR complexes pS6 (mTORC1) and pAKT 

(mTORC2) are overexpressed in tumors compared to normal adjacent tissue210, but the 

consequences of such overexpression in terms of tumor clinical behavior, prognosis and response 

to therapy remain unknown. Moreover, mTOR pathway may be involved in NIS expression 

regulation; in vitro studies demonstrated that inhibition of mTORC1 complex caused an increase 

of NIS expression and function250, 251. Having these in mind, our first and second objectives were 

to evaluate the impact of mTOR pathway status in the clinical behavior and prognosis of PTCs, 

and whether or not mTOR pathway plays a role on NIS expression/function. 

Our results showed that pmTOR expression was associated with absence of tumor capsule, 

presence of distant metastases, persistence of disease, and RAS mutation, all characteristics of 

higher recurrence rates/worse prognosis61, 88, thus appearing as a marker of aggressiveness in 

PTCs. Additionally, pmTOR positive expression was a predictive factor for distant metastization 

in univariate analysis, together with male gender and vascular invasion. When all of these 
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parameters were included in a multivariate analysis, pmTOR positive expression revealed to be 

an independent predictor of distant metastization. 

Regarding the effectors of pmTOR, we observed that pS6 expression was associated with 

less aggressive pathological features, such as presence of tumor capsule, absence of extrathyroidal 

extension, well defined tumor margins and BRAF wild type status, while pAKT expression was 

significantly higher in PTCs harboring BRAFV600E mutation, and nuclear expression of pAKT 

was associated with the presence of distant metastases. We did not find a significant correlation 

between the expression of pmTOR and pS6 expression but the expressions of pmTOR and pAKT 

were significantly and positively correlated - PTCs with higher levels of pmTOR presented higher 

levels of pAKT. The positive and significant correlation between pmTOR and pAKT and the 

significant association between pAKT expression and distant metastization, also described for 

pmTOR253, indicates that, in PTC, mTORC2 complex may be more relevant in terms of guarded 

prognosis. mTOR activation is leading to the activation of mTORC2 complex and the nuclear 

translocation of its downstream effector pAKT may play a major role in distant metastization 

(Figure 4). 

mTOR pathway association with essential steps in the metastatic cascade was already 

observed in other tumor models. The impairment of mTORC1 and/or mTORC2 complexes 

assembly inhibited the capacity of cells to migrate and invade in some human carcinoma cell 

lines198, 199, 202. Even though both mTOR complexes are involved with features of cell motility and 

metastization, mTORC2 is more often correlated with such features198, 199. Preferential formation 

of the mTORC2 complex in tumor models and human malignancies was previously observed, 

and it is usually associated with metastization. In models of breast cancer and renal cell 

carcinoma, only mTORC2 (and not mTORC1) inhibition was able to impair cell motility and 

metastization198, 199.In gastric, colorectal and breast cancer, pAKT expression (and not pS6 

expression) was associated with metastization196, 254, 255. 
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pAKT expression has also been associated with metastization in animal models of TC216, 

217. Our results point out the activation of pAKT as an important step for PTC distant 

metastization. We observed that pAKTSer473 expression was associated with distant 

metastization only when we considered its nuclear expression. In fact, it seems that pAKTSer473 

nuclear translocation is of major importance for migration and distant metastization of DTC. 

Vasko et al.,209demonstrated that pAKT Ser473 was expressed in the cytoplasm of PTC 

throughout the tumor, but the immunostaining was more intense and localized in the nucleus of 

cells located in the invasive regions. We also observed that when pAKTSer473 staining was more 

concentrated in the invasive front of the tumor, it was preferentially located in the nucleus. 

Moreover, in an animal model of TC, pAKT Ser473 was localized primarily in the nucleus of 

cells from metastatic lesions, while in the primary tumors it was located in the cytoplasm and in 

the nucleus, suggesting that pAKT nuclear distribution may be relevant both for the initiation and 

the sustaining of the metastatic process217. 

The lack of correlation between pmTOR and pS6 expression, as well as the distinct 

behavior of both markers of the same pathway is intriguing. One may speculate that pS6 may be 

regulated by other factors rather than pmTOR. On record there are reports pointing to other 

mechanisms that may cause S6 phosphorylation alternatively to mTOR, such as the casein kinase 

1 (CK1), a ubiquitously expressed protein, involved in many biological processes including DNA 

repair, cell cycle control, and circadian rhythm entrainment 256, and RSK that can phosphorylate 

S6 in response to RAS/ERK pathway, serum and growth factors168. The latter is particularly 

interesting in the setting of TC that often presents mutations in genes of the MAPKinase cascade. 

In our study, when we compared pmTOR, pS6 and pAKT expression in PTCs with or 

without BRAFV600E mutation, we observed no differences in pmTOR expression, higher pS6 

expression, and lower pAKT expression in the BRAFWT when compared to BRAFV600E group. 

It seems that in PTCs harboring BRAFV600E mutation, the mTORC2 complex is more active in 

comparison to mTORC1. In a previous work of our group, it was observed a significantly 

overexpression of the three markers in BRAFV600E cPTCs compared to BRAFWT PTCs210. The 
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difference between these results may reflect two issues: methodological and biological. In terms 

of methodology, in the first study the expression of the three markers were analyzed in tissue 

microarrays (TMA) while in the present study we used complete histological sections. Since the 

immunoexpression of the markers is heterogeneous within each tumor, TMA may sometimes 

underrepresent the whole tumor. Another aspect to have in consideration from the biological 

standpoint regards the different composition of the series. In the first study the PTC series 

encompassed mostly cases with very good prognosis, whereas in the present study the series was 

enriched with PTCs carrying poor prognosis, with distant metastization and resistance to therapy. 

The mTOR pathway activation (and consequently the expression of its downstream effectors) 

may be different in these two different biological contexts. 

We were also interested in evaluating if mTOR pathway was implicated on NIS 

expression/function in human PTCs, as it had been suggested in in vitro studies. We observed a 

significant and inverse correlation between pmTOR expression and SLC5A5 mRNA expression, 

confirming for the first time in human thyroid tumors that overexpression of pmTOR may, in fact, 

be associated with a lower SLC5A5 mRNA expression. Moreover, we compared pmTOR 

expression and the number of 131I therapies and cumulative dose of RAI, and observed a 

significant and positive correlation between pmTOR expression and a greater number of 131I 

therapies and cumulative dose, meaning that patients with PTCs displaying higher pmTOR 

expression needed more RAI therapies and were subjected to higher cumulative doses. So, 

pmTOR expression is associated with worse response to RAI therapy (Figure 4). These results 

indicate that it may be important to explore the role of mTOR in the resistance to 131I therapy in 

order to evaluate possible advantages of pharmacological blockers of mTOR in RAI resistant 

PTCs. 

Since we observed the mTORC2 assembly in PTCs, we explored the mTORC2 role on 

SLC5A5 mRNA expression. We used a cell line derived from PTC (TPC1) and performed 

pharmacological blockage of mTORC1 with RAD001 and, simultaneous, mTORC1 and 

mTORC2 inhibition with Torin2. Both drugs were effective in terms of downregulation of 
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mTORC1, and Torin2 downregulated also mTORC2 downstream effectors. Albeit RAD001 

caused a decrease on pS6 expression it did not alter SLC5A5 expression, like previously 

observed251. On the contrary, Torin2 treatment caused a decrease of pS6 and pAKT expression, 

and was able to increase significantly SLC5A5 mRNA expression. In TPC 1 cell line the inhibition 

of mTORC2 complex revealed to be of major importance in the restoration of SLC5A5 mRNA 

expression. These results support the assumption that inhibition of the mTORC2 complex should 

be further addressed in the management of specific RAI resistant TC. Blocking of mTORC1 by 

rapamycin led to an increase of SLC5A5 mRNA expression and also to RAI uptake in other TC 

cell lines (BCPAP and FTC133)251 but not in TPC1251 (and present study). All these cell lines 

harbor different genetic backgrounds: TPC1 harbors RET/PTC rearrangement, BCPAP is 

BRAFV600E mutated210 and FTC133 is PTEN deficient251. Even though the authors of the study 

did not explore the lack of response of TPC1 cell line, we guess that, since SLC5A5 expression is 

different according to the tumor genetic background128 (and present study), such genetic 

differences could be the source of the aforementioned discrepancies. 

BRAFV600E mutation is known to decrease NIS expression targeting to the membrane and 

this effect seems to be MAPK independent122. Since pAKT is overexpressed in BRAFV600E 

mutated PTCs210, and pAKT downregulation by Torin2 caused a significant increase of SLC5A5 

mRNA expression, we may speculate that mTORC2 could be a molecular link between 

BRAFV600E mutation and NIS impairment. Further studies are needed in order to confirm or 

refute this hypothesis 

Summing up, pmTOR is a marker of aggressiveness and a possible indicator of RAI therapy 

resistance in PTCs. The expression of pAKT reflects the activation of the mTORC2 complex. 

Nuclear translocation of pAKT may play a major role in distant metastization, and its activation 

seems to be involved in SLC5A5 mRNA expression regulation (Figure 4). pAKT activation may 

serve as a potential marker that could help to identify the subgroup of PTCs with RAI refractory 

distant metastases. Moreover, the pharmacological inhibition of mTORC2 emerges as an 

interesting target in the management of metastatic RAI refractory PTCs. 
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NIS is the central molecule of TC treatment. It is postulated that downregulation/loss of 

function in recurrences and distant metastases causes resistance to RAI therapy, worsening 

considerably the patients’ prognosis. In addition, it is not yet clear if NIS expression in primary 

tumor (mRNA and/or protein) may be useful for predicting response to RAI therapy and/or tumor 

behavior. There are many studies about SLC5A5 mRNA expression and NIS protein expression 

in thyroid tumors, but the vast majority was performed in small series, and did not address 

possible associations with clinicopathological, and molecular features, nor with prognosis and 

response to therapy. In order to explore the aforementioned parameters, we analyzed SLC5A5 

mRNA expression and NIS protein expression in a vast series of TC (mostly DTCs) using 

different methodologies: quantitative real time/PCR and immunohistochemistry. 

SLC5A5 mRNA expression was studied in two different series: one constituted by cases 

randomly selected from the archives of the Hospital de S. João and the other (used to validate our 

results) constituted by 378 PTCs from The Cancer Genome Atlas Database (TCGA)99.  

SLC5A5 mRNA expression was significantly lower in the tumors compared to normal 

adjacent tissue in both series, a finding which is in agreement with the vast majority of the studies 

available in the literature222, 223, 226, 257. This might mean that loss of expression of SLC5A5 mRNA 

is a common event for all thyroid tumors, as well as an early event in thyroid carcinogenesis. 

Furthermore, we also observed a significantly lower SLC5A5 mRNA expression in tumors from 

male gender and with vascular invasion (both are characteristics associated with clinical 

aggressiveness of the tumors). The analysis of TCGA data revealed that SLC5A5 mRNA 

expression is significantly lower in PTCs measuring >2cm, with extensive extrathyroidal 

extension and in PTCs that presented a new tumor event (recurrences and/or distant metastases). 

The analysis of TCGA data did not confirm the association between male gender and lower 

SLC5A5 mRNA expression. It was not possible to validate the association that we observed 

between lower SLC5A5 mRNA expression in cases with the presence of vascular invasion because 

TCGA data has no information regarding vascular invasion. Nevertheless, the association 

observed in the analysis of TCGA data between lower SLC5A5 mRNA expression and extensive 
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extrathyroidal extension directly corroborates our results. Interestingly, SLC5A5 mRNA 

expression was not different between PTCS with or without lymph node metastases (a 

pathological feature without prognostic impact per se). 

The association between lower SLC5A5 mRNA expression and larger tumor size has 

already been described in the literature229, 246. Furthermore, a study in a small series of PTCs (11 

PTCs) also described a lower SLC5A5 mRNA expression in recurrent/metastatic PTCs228 . In our 

series, the difference in the size was not evident since we studied mainly PTCs ≥2cm, turning 

impossible to perform any statistic test comparing SLC5A5 mRNA expression between PTCs 

<2cm and ≥2cm. We evaluated the correlation between tumor size (as a continuous variable) and 

SLC5A5 mRNA expression and did not find a significant correlation (data not shown). 

To the best of our knowledge, this is the first study addressing the association of SLC5A5 

mRNA expression with a great variety of clinicopathological features and prognosis in a large 

series of cases. A lower SLC5A5 mRNA expression in the primary tumor seems to be associated 

with higher aggressiveness and worse prognosis, being potentially useful for a risk/prognosis 

patient’s stratification.  

We also observed that the genetic background of the tumors is of major importance 

concerning SLC5A5 mRNA expression. From the data obtained from the TCGA series, the 

presence of any of the studied mutations (RAS, BRAF, TERTp) caused a significantly decrease of 

SLC5A5 mRNA expression in comparison to wild type PTCs (confirming our tendency regarding 

BRAFV600E mutation). The impact of BRAFV600E mutation in SLC5A5 mRNA expression has 

been previously described, but the impact of the other mutations remained unknown. RAS mutated 

carcinomas seem to have a lower impact on SLC5A5 mRNA expression; in fact, a previous study 

reported that a distinct profile of expression of genes involved in thyroid hormone biosynthesis 

(being SLC5A5 one of these genes) could be observed between BRAFV600E and RAS-driven 

PTCs, with RAS-like PTCs having a relatively higher thyroid differentiation score99. The 

association between a lower SLC5A5 mRNA expression and TERTp mutation was not previously 
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addressed; however, TERTp mutated PTCs needed higher number of 131I therapies and were 

consequently exposed to higher cumulative doses134, thus suggesting that those features may be 

due (among other factors) to a reduction of SLC5A5 mRNA expression. 

Regarding NIS protein expression, we confirmed the results already reported in the 

literature. The majority of our cases were positive for NIS expression (71.6%) and, moreover, 

NIS protein expression was higher in thyroid tumors compared to normal adjacent tissue, but in 

tumors, NIS immunostaining was mainly localized in the cytoplasm. Only 12/211 cases presented 

NIS in the membrane of tumor cells 224, 229, 232, 233, 235, 240, 241, 258. Like in the study performed by 

Peyrottes and colleges234, some doubts remain about the real meaning of the diffuse cytoplasmic 

NIS staining we have observed. These doubts were reinforced by our own findings; when we used 

a signal amplification system, only the membrane staining was amplified while the diffuse 

cytoplasmic staining has totally vanished. 

The presence of NIS in the membrane of thyroid primary carcinomas was not associated 

with clinicopathological features, response to therapy or prognosis. Interestingly, the only aspect 

that those tumors had in common was that all, but one, were wild type for the studied mutations 

(NRAS, BRAF, TERTp). It is tempting to advance that the genetic background of tumors influence 

NIS targeting to the membrane. There are in vitro evidences that BRAFV600E mutation affects 

NIS targeting to the membrane 122, but the impact of the other mutations (NRAS and TERTp) had 

never been addressed to the best of our knowledge. 

The lack of correspondence between NIS membrane staining expression and prognosis was 

also previously described in one study229 . One could expect that NIS expression in primary tumor 

could predict NIS expression in derived recurrences and/or metastases, and consequently serve as 

an indicator of RAI therapy success or lack of it. This was not the case. Two reasons may explain 

this discrepancy: first if we look carefully to the treatment of thyroid carcinoma (surgery followed 

by RAI ablation), only the remnants, metastases and eventually the recurrences are subjected to 

RAI. Prior to RAI ablation patients are subjected to TSH stimulation, either by withdrawal of 

thyroid hormones or by the administration of recombinant TSH50. Since TSH has a major role in 
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NIS expression and targeting to the membrane259, we can hypothesize that different TSH 

concentrations could contribute to a difference between the levels of membrane NIS in non-

stimulated primary tumors and stimulated recurrences and metastases. Second, we previously 

observed that the genetic background is of major importance for SLC5A5 mRNA expression and 

NIS protein targeting to the membrane; in a recent study from our group it was demonstrated that 

the genetic background of distant metastases is very often different from the one of the respective 

primary tumors260. Primary tumors, recurrences and/or distant metastases may reflect different 

biological conditions with different NIS expression/targeting to the membrane. This hypothesis 

may help to explain why NIS expression in the primary tumor does not predict RAI therapy 

success. In summary, NIS protein expression evaluated by immunohistochemistry presents some 

methodological limitations and is not informative in terms of prognosis and RAI therapy 

resistance being, in our opinion, of very limited value in daily practice. 

 

Concluding remarks 

In this thesis, we explored the role of the mTOR pathway in PTC and addressed possible 

associations with clinicopathological and molecular features, prognosis and response to therapy 

and found that pmTOR is a marker of aggressiveness and, possibly, of therapy resistance. The 

effects of pmTOR seem to be mainly mediated by mTORC2 downstream effector pAKT.  

The mTORC2 complex plays a role in SLC5A5 mRNA expression regulation: its inhibition 

increases SLC5A5 mRNA expression. Furthermore, pAKT, a mTORC2 downstream effector, 

emerged as a possible molecular link between BRAFV600E mutation and SLC5A5 mRNA 

expression impairment (Figure 4). Taking all this into consideration we conclude that mTOR 

pathway emerges as potential therapeutic target for advanced refractory DTC.  

Our results demonstrated that while NIS protein expression appears to be of very limited 

value, SLC5A5 mRNA expression seems to be a marker of aggressiveness and worse prognosis 

(Figure 4), and consequently may help in patient’s prognostic stratification. 

Finally, we also observed that the genetic background of the tumor is of major importance 

for both SLC5A5 mRNA expression and NIS protein targeting to the cell membrane. The presence 
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of either RAS or BRAF and/or TERTp mutations caused a significantly decrease of SLC5A5 

mRNA expression. Moreover, the vast majority of DTCs with NIS expression in the membrane 

were wild type for the aforementioned mutations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of the main conclusions of this thesis.  
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Abstract

Genetic predictors of outcome are reviewed in the context of a disease – cancer – that can be (too) simplistically described as a

‘successful, invasive clone of our own tissues’. Context has many faces that determine a thyroid cancer patient’s outcome

beyond the influence of genetic markers. There is also plenty of evidence on the prognostic meaning of the interplay

between genetics and context/microenvironment factors (encapsulation, degree of invasion, staging, etc.). This review

addresses only genetic alterations detected by molecular methods in surgically resected specimens, thus ruling out

immunohistochemistry and (F)ISH, despite their crucial relevance as topographically oriented methods. For the sake of the

discussion, well-differentiated carcinomas were divided into two main morphologic types: papillary carcinoma (classic and

most variants) displaying BRAFV600E mutations and RET/papillary thyroid carcinoma rearrangements and the group of

follicular patterned carcinomas that encompasses follicular carcinoma and the encapsulated form of follicular variant of

papillary carcinoma, displaying RAS mutations and PAX8/PPARg rearrangement. TERT promoter mutations have been

recently described (and associated with distant metastases and reduced survival) in papillary and follicular carcinomas,

as well as in poorly differentiated and undifferentiated carcinoma. TP53 mutations, previously thought to be restricted to less

differentiated carcinomas, were also detected in papillary and follicular carcinoma and found to carry a guarded prognosis.

Besides their putative importance for targeted therapies, the prognostic meaning of such mutations is discussed per se and in

the setting of concurrent BRAF mutation.
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Introduction

Assuming that cancer can be defined, in an oversimplified

way, as a ‘highly regulated, successful invasive clone of our

own tissues’ or, in a less simplified but still too simplistic

way, as a ‘highly regulated, successful, invasive clone of

our own tissues, involving a multistep accumulation of

mutations in genes regulating major signalling pathways

that are frequently heterogeneous genetically, epigeneti-

cally and phenotypically, as well as the cross talk of such

mutations with cellular and extracellular alterations at the

surrounding tissues’, it does not make sense to discuss

genetic predictors of thyroid cancer (or any other cancer

type) outside host and surgical pathology context.

The aforementioned context has many faces that

determine patients’ outcomes beyond the influence of

genetic markers. This applies to the age and/or gender of

the patients, and the site, size and macroscopic charac-

teristics of the cancer – namely, its pushing or infiltrative

borders. The degree of invasiveness, both locally and at a

distance, is measured by the TNM staging, which is the

most powerful predictor of outcome of almost all cancer

patients. The histological characteristics of the cancer are

also a major factor of prognosis: morphological subtype,

degree of differentiation, extension of necrosis, mitotic

index and signs of invasion (parenchymatous, lympho-

vascular and to adjacent organs). The histological context

can be, and frequently is, enriched by immunohistochem-

ical data that allow to evaluate more precisely cell

proliferation, overexpression (or misplacement) of onco-

gene products and underexpression (or, again, misplace-

ment) of tumour-suppressor gene products and the

number and the type of cells involved in the immuno-

modulation of cancer development.

The sort of molecular approach that immunohisto-

chemistry provides is also achieved, and frequently

reinforced, by in situ demonstration of gene rearrange-

ment and gene amplification (FISH is frequently the best

method to detect such genetic alterations). Both immuno-

histochemistry and in situ methods provide, furthermore,

topographic information that complements the molecular

data and are often crucial for understanding carcino-

genesis. This has been demonstrated, for instance, by Eloy

et al. (1) who showed that the interaction between

transforming growth factor beta/Smad pathway activation

and BRAF mutation plays different roles in circumscribed

and infiltrative papillary thyroid carcinoma (PTC); in

the latter, the interaction is associated with epithelial-

to-mesenchymal transition and local invasion, as well as

to nodal metastization of infiltrative PTCs (1).

Thyroid carcinomas are classified according to the cell

type they derive from, their degree of differentiation and

their cytoarchitecture. Follicular cell-derived tumours

comprise well-differentiated thyroid carcinoma (WDTC),

poorly differentiated thyroid carcinoma (PDTC) and

undifferentiated thyroid carcinoma (UTC). The well-

differentiated group encompasses, according to cytoarchi-

tecture and nuclear features of the neoplastic cells,

follicular thyroid carcinoma (FTC) and PTC, with the

latter having two main variants: classic PTC (cPTC) and

follicular variant PTC (FVPTC). The minority of carci-

nomas that derive from parafollicular C cells are named

medullary thyroid carcinoma (2).

In this review, we will just focus on genetic

alterations detected by molecular methods in surgically

resected specimens, thus skipping their usefulness in

cytopathology. To keep the paper within an adequate

size, we will only address the importance of the genetic

predictors of outcome of patients with follicular cell-

derived carcinomas displaying good or moderate differ-

entiation, thus avoiding medullary carcinoma and UTC.

PDTC will be discussed together with the respective better

differentiated counterparts PTC and its variants, namely,

FVPTC and FTC.

Clinico-pathological factors vs genetic
predictors of outcome

In a recent article on the usefulness of molecular

biomarkers in thyroid cancer, we concluded that, for the

moment, clinical and histopathological prognostic factors

remain much more important than genetic factors for

diagnostic and prognostic purposes (3). This conclusion is,

however, challenged almost every day by the publication

of new molecular data in the different types of thyroid

cancer. The most important of such publications was the

‘Integrated genomic characterization of papillary thyroid

carcinoma’ that provided a detailed description of the

genomic landscape of 496 cases of PTC under the auspices

of The Cancer Genome Atlas (TCGA) Research Network

Initiative (4).

Besides a huge amount of genetic and epigenetic

information that will take time to fully understand, it is

interesting to realize that the aforementioned study (4)

confirmed the existence of two main genetic types of

differentiated thyroid carcinoma (DTC) that correspond to

cPTC (and some variants of PTC such as the tall cell and

Warthin-like variant) and to the group of follicular
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patterned carcinomas that encompass FVPTC, as our

group and others have suggested years ago (5, 6, 7). The

absence of solid prospective studies on thyroid cancer and

the close relationship between clinical, pathological,

immunohistochemical and genetic factors turn very

difficult to discuss out of the global context the prognostic

role played by the latter (8).

Of the numerous genetic alterations detected in

WDTC and PDTC, we included in the present review

those that are more prevalent and/or seem to play a more

important prognostic role. It is the case of BRAF, RAS,

TERT promoter and TP53 mutations and of RET/PTC and

PAX8/PPARg rearrangements.

RET/PTC and PAX8/PPARg rearrangements

RET/PTC rearrangements are quite frequent in PTC,

whereas PAX8/PPARg rearrangement is often detected

in follicular patterned lesions (FVPTC and FTC) (3, 5, 6,

7, 9); the overall evidence indicates that tumours with

either of these rearrangements rarely evolve to less

differentiated forms (i.e. their prevalence is very low in

PDTC and UTC). RET/PTC is a chimeric gene generated

by the fusion of the RET tyrosine kinase (TK) domain

with the 5 0 terminal region of genes that are constitu-

tively expressed in thyroid follicular cells (10) allowing

dimerization of the RET TK domain and its constitutive

activation. The most frequent forms of this oncogene

in PTC are RET/PTC1 and RET/PTC3, both arising from

chromosome 10 inversions (11). RET/PTC1 rearrange-

ment appears to be associated with small, classic type

PTC displaying low proliferation and occurring in young

patients (12, 13, 14, 15). At variance with this,

RET/PTC3 rearrangement is prevalent in the solid

variant of PTC that is frequent in children and was

often found in PTCs occurring in the setting of the

Chernobyl accident (16), being more prone to a more

aggressive behaviour (13, 14, 15, 17). Despite being

associated with signs of clinical aggressiveness (namely

nodal and lung metastases), cases of solid variant of PTC

arising in young patients, with or without RET/PTC3

rearrangement, respond well to radioactive iodine (RAI)

treatment and are not significantly associated with a

worse survival of the patients.

Taking the data on record in the literature as well as

our own experience into account, it may be concluded

that the prognostic value of RET/PTC rearrangement in

thyroid cancer has not been fully clarified yet.

PAX8/PPARgrearrangement has been associated with

some adverse prognostic features (e.g. multifocality and

vascular invasion) in some series, but the gathered

evidence is not strong enough to identify this rearrange-

ment as a genetic predictor of outcome in thyroid cancer

(9, 18). Furthermore, PAX8/PPARgrearrangements have

been also detected in 14% of the cases of follicular thyroid

adenoma (FTA) (19).

RAS mutations and prognosis

RAS are small GTPase-proteins that act as a molecular

switch propagating signals from TK and non-TK receptors

and activating the MAPK and other signalling pathways.

RAS mutations are more prevalent and seem to be more

relevant as a prognostic indicator in follicular patterned

lesions (FVPTC, FTC and, namely, PDTC) than in cPTC

(18). All of the three RAS genes (H, K and N-RAS) were

shown to be mutated in both benign and malignant

thyroid tumours but the frequency of the mutations is

higher in FTC (36%), PDTC (55%) and UTC (52%) and

more frequently affects the N-RAS gene (20).

RAS mutations are less prevalent in benign and

malignant Hürthle cell tumours (5 and 11% respectively)

than in their non-Hürthle cell counterparts and less

prevalent in PTC (10%) than in FTC (25–30%) (7, 20).

Within PTC, RAS mutations are rare in its classic form,

whereas in FVPTC, its prevalence falls within the range of

other follicular patterned tumours (w25%) (6).

The controversy on the prognostic value of RAS

mutations in thyroid cancer results partially, at least,

from the fact that RAS mutations are present along all of

the whole spectrum of thyroid lesions, from FTA to the

deadly UTC. Garcia Rostan et al. (21) have shown that

patients with RAS mutated carcinomas, namely PDTC,

harbour distant metastases more frequently and have

higher mortality, being RAS mutations an independent

predictor of poor survival (21). Other studies disclosed a

similar association between (N) RAS mutation and

distant metastases and/or lower survival in FTC (22, 23).

The assumption that RAS mutations can predispose

to differentiation loss in thyroid cancer derives from

their presence in DTC with areas of dedifferentiation and

from their greater prevalence in PDTC and UTC than

in DTC (24).

It has been difficult to demonstrate the prognostic

value of RAS mutations due to the relatively small size of

the majority of the series (in particular concerning FTC,

PDTC and UTC that are less frequent than PTC) and the

too short follow-up in most situations. Large, multicentric

studies will be necessary to establish definitely the

prognostic value of RAS mutations.
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BRAF and NIS expression

BRAF gene encodes a serine/threonine kinase that

belongs to the RAS–RAF–MEK–ERK–MAP kinase pathway,

whose biological role is to mediate cellular responses

to growth factors. There are several BRAF mutations, the

BRAFT1796A (in exon 15) is largely the more prevalent,

leading to a substitution of a valine by a glutamic acid at

position 600. Such a mutation causes increased BRAF

kinase activity and the subsequent phosphorylation of

MEK1/2 and ERK1/2, turning the activation of the MAP

kinase pathway independent from upstream factors

activation (25).

BRAFV600E mutation is the most prevalent point

mutation in PTC, being present in 36–83% of cases. It

rarely co-exists with other prevalent genetic events such

as RET/PTC rearrangement or RAS mutation (18).

BRAFV600E mutation exhibits a strong genotype–pheno-

type association; it is (almost) exclusively detected in PTC

exhibiting a papillary or mixed follicular/papillary growth

pattern, regardless of being a cPTC or any of the PTC

variants (other than the encapsulated FVPTC) (5).

Besides the frequent BRAFV600E mutation, other

alterations were detected in the BRAF gene in PTCs: the

BRAFK601E mutation, which occurs mainly in FVPTC

(!10% of the cases) (5), and the in-frame deletion

VK600-1E that has been detected in rare cases of solid

variant of PTC. BRAF rearrangements, namely the AKAP9–

BRAF fusion, were also described as rare events preferentially

found in radiation-induced PTC (18). At present, there is not

enough evidence to evaluate the putative prognostic role of

the aforementioned rare BRAF alterations.

Although functional studies, using thyroid-targeted

BRAFV600E transgenic mice (26) and BRAFV600E trans-

fected thyroid cell lines (27), indicate that BRAF mutations

lead to a more ‘aggressive type’ of PTC, several other

studies, addressing the correlation between BRAFV600E

and the clinical features of PTC, provided discrepant

results (see below).

Some studies reported significant associations

between BRAF mutation and poor prognostic indicators

like older age (28, 29), male gender (30, 31), extrathyroid

extension (28, 32), regional metastases (29, 32), distant

metastases (33), higher tumour staging (28, 32, 33),

tumour size (31, 34, 35) and tumour recurrence (32, 36).

Other studies have not observed the aforementioned

associations (37, 38, 39). Furthermore, Elisei et al. (40)

have demonstrated that the search for BRAFV600E

mutation may prove useful to modulate the treatment

among low-risk PTC patients, those who require less or

more aggressive treatment. Recently, a multicenter

retrospective study showed that BRAFV600E was signi-

ficantly associated with increased cancer-related mortality

among patients with PTC, but the association was not

independent of several clinico-pathological features of

aggressiveness (41).

We observed that BRAFV600E PTCs tended to occur in

older patients and did not exhibit a significant association

with signs of clinico-pathological aggressiveness – namely

larger size, extrathyroidal extension, vascular invasion and

lymph node metastases (5, 8) – or poor circumscription

(8). This does not mean, however, that BRAF mutation

cannot contribute for progression of PTC toward less

differentiated carcinomas in the appropriate context,

because our group and others (28, 33, 42) detected

BRAFV600E mutation in 10–35% of UTC.

Despite the BRAF mutation controversial association

with guarded prognostic features, its association with

a decrease in expression of several ‘thyroid specific genes’

or ‘iodine handling genes’ (36, 43, 44) is widely acknowl-

edged. The association of BRAF mutation with the loss of

RAI avidity in recurrent PTC has been confirmed in vitro

and in vivo (36, 45). It was recently shown that MEK

inhibition may restore RAI incorporation, turning BRAF

and/or MEK inhibitors into promising targets to treat RAI-

refractory thyroid cancers (45, 46).

TERT promoter mutations

About two-thirds of thyroid carcinomas display telomer-

ase activation that is more frequent in UTC than in DTC

(42). Capezzone et al. (47) observed telomerase activity in

most sporadic and familial malignant thyroid tumours, as

well as in some adenomas. Recently, mutations in the

promoter region of the telomerase (TERT) gene were

reported in follicular cell-derived thyroid carcinomas

(FCDTC) (48, 49, 50). These mutations occur in two

hotspot positions, located at K124 and K146 bp upstream

from the ATG start site (K124GOA and K146GOA, COT

on opposite strand) and confer enhanced TERT promoter

activity, putatively by generating a consensus-binding site

(GGAA) for ETS transcription factors within the TERT

promoter region (51).

In a large series of 469 carcinomas, we found TERT

promoter mutations in 7.5% of PTC, 17.1% of FTC, 29.0%

of PDTC and 33.0% of UTC (52). This stepwise increase in

the frequency of TERT promoter mutations from well to

poorly differentiated and undifferentiated carcinomas was

also reported in other studies (49, 50). No TERT promoter

mutations were found in normal tissues, benign lesions or
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medullary thyroid carcinomas. Like RAS mutations, the

frequency of TERT promoter mutations seems to be lower

in tumours with oncocytic features than in their non-

oncocytic counterparts; these observations reinforce the

assumption that oncocytic tumours have a different set of

molecular alterations and probably also alternative

mechanisms for cell survival (53, 54, 55). The majority

(about 80%) of mutated cases present the K124GOA

mutation. In PTC, TERT promoter mutations were

significantly more frequent in BRAF mutated tumours

(50, 52). TERT promoter mutations were associated with

increased mRNA expression, and this increase was more

pronounced in tumours harbouring both BRAF and TERT

promoter mutations (48).

Several studies analysed the relationship between

TERT promoter mutations and clinico-pathological features

(49, 50, 52, 56, 57), and four studies also analysed

the implications of the presence of these mutations on

patients’ clinical outcomes (52, 56, 58, 59). TERT promoter

mutations were associated with older age of the patients at

diagnosis, larger tumour size, distant metastases and a

higher stage in several studies (50, 52, 57). The association

with distant metastases seems to be particularly consistent

and has been reported in most of the studies, strongly

suggesting that there is a link between TERT promoter

mutations and the metastatic potential of FCDTC. From the

clinical standpoint, this association is extremely relevant

because distant metastases are major determinants of

prognosis, especially in older patients (60).

In our study (52), patients with DTC harbouring TERT

promoter mutations were less prone to be disease free at

the end of follow-up, and similar results were found in

three other studies (56, 58, 59). Our study also showed that

patients with TERT-mutated tumours were submitted to

more treatments with radioiodine with higher cumulative

doses, as well as to other treatment modalities like surgery

for recurrent disease, external beam irradiation or treat-

ment with TK inhibitors (52). Furthermore, patients with

tumours harbouring TERT promoter mutations had

increased disease-specific mortality, and this finding was

independent of age and gender (52).

As previously mentioned, TERT-mutated PTC har-

bours more frequently BRAF mutations than TERTwt

tumours. Horn et al. (51) advanced that the mutation

creates newly consensus binding sites for TCF subfamily

transcription factors (Elk1 and Elk4) that can be activated

by BRAF. Our results in TERT mRNA expression corrobo-

rated this assumption, showing an increased TERT

expression in tumours harbouring BRAF and TERT

mutation (48). Because BRAF has also been associated

with worse prognosis in some studies, several authors

hypothesized that both mutations could cooperate toward

a worse prognosis (50, 61). One still ignores the

mechanism behind the putative cooperation between

BRAF and TERT promoter mutation. It is nevertheless

tempting to speculate, considering the pro-senescent

effect of BRAF mutation alone (62), that TERT promoter

mutations may contribute to abrogate such effect through

their, role leading to evasion from senescence (63, 64, 65).

Taking into account that the prognostic value of BRAF is

currently under debate and that TERT promoter mutations

were independently associated with aggressive clinico-

pathological features and worse outcome in all of the large

series published to date (66), we think that, at present, the

most important question is to clarify, whether or not, after

controlling the clinical importance of TERT mutations,

BRAF goes on adding a significant prognostic value (66).

Multicentric studies with large series of patients will be

necessary to clarify if the ‘addition’ of BRAF mutational

status to a TERT-mutated tumour has indeed value for

prognostic stratification (66).

TP53 mutations

Most TP53 mutations lead to the expression of a mutant

protein or, less commonly, to its absence (67, 68). In

thyroid carcinomas, TP53 mutations are not different

from those of cancers at other sites and have been

described in exons 5–9, with 273 being the codon most

often altered (42, 67, 69, 70, 71, 72, 73). No p53 expression

or mutation has been found in normal thyroid or in

benign lesions, including follicular adenoma, adenoma-

tous goitre and chronic thyroiditis (72, 73, 74, 75, 76). For

years it was repeated that more than 98% of DTC (PTC and

FTC) had a normal TP53 gene (18, 69, 70, 71, 72, 73, 75,

77), even when cases secondary to radiation exposure were

included (78). This scenario may be changing due to the

utilization of next-generation sequencing; using this

methodology, Nikiforova et al. (79) reported the presence

of TP53 mutations in 3.5% of PTC (2/57) and in four of 36

FTC (11.1%); the four FTC cases were oncocytic carci-

nomas and three were widely invasive (75). In the recent

TCGA study (4), TP53 mutations were detected in 0.7% of

PTC thus confirming their scarcity in PTC, but no clinico-

histopathological data were provided on the mutated

cases. The results of the study by Nikiforova et al. (75)

study regarding the high clinical aggressiveness of TP53

mutated DTC fit with previously reported results. A small

proportion of aggressive PTC are associated with TP53

mutations and/or p53 expression; the tall cell variant of
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PTC is associated with a significantly higher rate of p53

than common PTC (80). Positivity for p53 protein has

been detected in rare aggressive thyroid tumours such as a

mixed columnar and tall cell variant of PTC (81) and a

squamous cell carcinoma associated with the tall cell

variant of PTC (82). Positivity for p53 protein has also been

reported in some aggressive cases of the cribriform–

morular variant of PTC (83, 84). Immunohistochemical

evaluation of the columnar cell variant of PTC showed a

predominantly weak nuclear p53 staining in both indo-

lent and aggressive tumours (81).

Loss of cellular polarity/cohesiveness, hobnail features

and micropapillary structures, either alone or in com-

bination, are independent predictive factors for lymph

node metastasis both in common PTC and in papillary

microcarcinoma (82, 83, 84, 85). All of these peculiar

morphological features are characteristic of the so-called

micropapillary/hobnail variant of PTC (85, 86, 87, 88, 89),

an aggressive type of PTC carrying poor outcome, which is

consistently positive for p53 (85, 86, 87, 89) at the

immunohistochemical level. Hobnail features were most

commonly observed in association with PDTC and UTC

(90). These features have also been associated with other

histologic variants that are known to be more clinically

aggressive, such as increased mitotic activity and/or

necrosis and lymph node metastases at presentation. It

has therefore been suggested that hobnail features may be

a manifestation of ‘higher-grade transformation’ (90). The

recent observation by our group (91) of two fatal cases of

the micropapillary/hobnail variant of PTC positive for p53

by immunohistochemistry (Fig. 1) and TP53 mutated at

the molecular level with progression to UTC supports the

involvement of p53 in such transformation (90, 92).

Inactivating TP53 mutations have been reported in

about 26% of PDTC (71, 73, 85) and in more than 60%

of UTC (42, 69, 70, 71, 73, 85). The results of the studies

based on the detection of nuclear accumulation of p53

protein (73, 74, 75, 76, 86, 87) fit with molecular studies.

p53 expression is more obvious in areas showing active

infiltrative growth and/or at the periphery in PDTC, and

widespread positivity for p53 is characteristic of UTC. The

analysis of TP53 mutations and/or p53 expression in PTC

co-existing with UTC has shown that p53 expression/

mutation is limited to the undifferentiated components

(70, 71, 86, 88). Moreover, re-expression of WT p53 in

human UTC cell lines with a mutated p53 has been

associated with re-expression of the paired box domain

transcription factor Pax-8, thyroglobulin, thyroperoxidase

and TSH receptor (72, 89). All of these findings strongly

support that TP53 inactivation plays an important role in

the progression from differentiated to undifferentiated

carcinoma, as a final event in the tumourigenic process,

contributing to the highly aggressive phenotype of these

tumours (90).

miRNA and lncRNA in thyroid cancer
outcome

Of the numerous molecules and mechanisms described in

recent years in the oncology field, miRNA and lncRNA

arise as major players due to their action on the

modulation of known cancer genes and/or their products

(oncogenes, tumour suppressor genes and apoptotic

proteins).

It has been hypothesized that some of the miRNA

and/or lncRNA (or a set of) can help in the differential

diagnosis of benign and malignant tumours, however

scarce information is available regarding their putative role

on prognosis. Nevertheless, some miRNA have been

repeatedly found dysregulated in thyroid cancer, in

particular in PTC (miR-146b, miR-181b, miR-187, miR-

221 and miR-222) and the same set of molecules has been

associated with tumour aggressiveness in some studies

(92). Unfortunately, the relevant set of miRNAs varies from

one report to the other, turning difficult or even impossible

to draw, at present, any meaningful conclusions.

Figure 1

Micropapillary/hobnail variant of PTC. (A) The papillary

structures are lined by cells with dense eosinophilic cytoplasm

and the nuclei placed in the apex of the cytoplasm producing a

surface bulge (hobnail appearance). There are also areas

of cellular discohesiveness and micropapillary pattern

(H&E, 400!). (B) The nuclei of the tumour cells show strong

positivity for p53 (clone DO-7, Dako, Denmark, 400!).
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The same holds true concerning the available data on

lncRNAs. The complexity of the available evidence is huge

because these long (longer than 200 nt) RNAs can play a

role at both the transcriptional and the post-transcrip-

tional gene regulation level. lncRNAs NAMA, AK023948

and PTCSC3AA (PTC susceptibility candidate 3) are among

the (yet) reduced number of lncRNAs that have been

associated with PTC (93, 94). Until now it has not been

possible to ascertain any role to lncRNA in the prognosis of

thyroid cancer patients.

Final remarks

The importance of genetic markers for predicting thyroid

cancer outcome is limited by the pre-eminence of clinical,

histopathological, immunological and other context-

driven features. Despite this, there is enough evidence to

claim that TERT promoter mutations and TP53 mutations

are major molecular biomarkers of prognosis and to

suggest that BRAF and RAS mutations may also play a

prognostic role in some conditions. Besides prognosis, the

aforementioned mutations and the respective molecular

pathways, as well as other genetic and epigenetic

alterations recently identified by the Cancer Genome

Atlas (4), will probably serve as targets for the so-called

personalized therapy.

Declaration of interest

The authors declare that there is no conflict of interest that could be

perceived as prejudicing the impartiality of the review.

Funding

This study was supported by FCT, the Portuguese Foundation for Science

and Technology through a PhD grant to C Tavares. Further funding was

obtained from the project ‘Microenvironment, metabolism and cancer’

that was partially supported by Programa Operacional Regional do Norte

(ON.2 – O Novo Norte) under the Quadro de Referência Estratégico

Nacional (QREN) and the Fundo Europeu de Desenvolvimento Regional

(FEDER). IPATIMUP integrates the i3S Research Unit, which is partially

supported by FCT. This study was funded by FEDER funds through the

Operational Programme for Competitiveness Factors – COMPETE and

National Funds through FCT, under the project PEst-C/SAU/LA0003/2013.

The work of J M Cameselle-Teijeiro was supported by grant PI12/00749-

FEDER from Instituto de Salud Carlos III, Ministry of Economy and

Competitiveness, Madrid, Spain.

References

1 Eloy C, Santos J, Cameselle-Teijeiro J, Soares P & Sobrinho-Simoes M.

TGF-b/Smad pathway and BRAF mutation play different roles in

circumscribed and infiltrative papillary thyroid carcinoma. Virchows

Archiv 2012 460 587–600. (doi:10.1007/s00428-012-1234-y)

2 Rosai JD, Frable WJ & Tallini G. In Tumors of the Thyroid & Parathyroid

Glands. Chapter 9, pp 500–530. American Registry of Pathology:

Washington DC, 2014.

3 Soares P, Celestino R, Melo M, Fonseca E & Sobrinho-Simoes M.

Prognostic biomarkers in thyroid cancer. Virchows Archiv 2014 464

333–346. (doi:10.1007/s00428-013-1521-2)

4 Cancer Genome Atlas Research N. Integrated genomic characterization

of papillary thyroid carcinoma. Cell 2014 159 676–690. (doi:10.1016/

j.cell.2014.09.050)

5 Trovisco V, Soares P, Preto A, de Castro IV, Lima J, Castro P, Maximo V,

Botelho T, Moreira S, Meireles AM et al. Type and prevalence of BRAF

mutations are closely associated with papillary thyroid carcinoma

histotype and patients’ age but not with tumour aggressiveness.

Virchows Archiv 2005 446 589–595. (doi:10.1007/s00428-005-1236-0)

6 Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V,

Vieira de Castro I, Cardoso-de-Oliveira M, Fonseca E, Soares P et al.

PAX8–PPARg rearrangement is frequently detected in the follicular

variant of papillary thyroid carcinoma. Journal of Clinical Endocrinology

and Metabolism 2006 91 213–220. (doi:10.1210/jc.2005-1336)

7 Nikiforov YE & Nikiforova MN. Molecular genetics and diagnosis of

thyroid cancer. Nature Reviews. Endocrinology 2011 7 569–580.

(doi:10.1038/nrendo.2011.142)

8 Eloy C, Santos J, Soares P & Sobrinho-Simoes M. The preeminence of

growth pattern and invasiveness and the limited influence of BRAF and

RAS mutations in the occurrence of papillary thyroid carcinoma lymph

node metastases. Virchows Archiv 2011 459 265–276. (doi:10.1007/

s00428-011-1133-7)

9 Armstrong MJ, Yang H, Yip L, Ohori NP, McCoy KL, Stang MT,

Hodak SP, Nikiforova MN, Carty SE & Nikiforov YE. PAX8/PPARg

rearrangement in thyroid nodules predicts follicular-pattern carci-

nomas, in particular the encapsulated follicular variant of papillary

carcinoma. Thyroid 2014 24 1369–1374. (doi:10.1089/thy.2014.0067)

10 Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA,

Della Porta G & Vecchio G. A new oncogene in human thyroid

papillary carcinomas and their lymph-nodal metastases. Nature 1987

328 170–172. (doi:10.1038/328170a0)

11 Romei C & Elisei R. RET/PTC translocations and clinico-pathological

features in human papillary thyroid carcinoma. Frontiers in

Endocrinology 2012 3 54. (doi:10.3389/fendo.2012.00054)

12 Soares P, Fonseca E, Wynford-Thomas D & Sobrinho-Simoes M.

Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of

slow growing, less aggressive thyroid neoplasms? Journal of Pathology

1998 185 71–78. (doi:10.1002/(SICI)1096-9896(199805)185:1!

71::AID-PATH42O3.0.CO;2-S)

13 Thomas GABH, Cook HA, Williams ED, Nerovnya A, Cherstvoy ED,

Tronko ND, Bogdanova TI, Chiappetta G, Viglietto G, Pentimalli F et al.

High prevalence of RET/PTC rearrangements in Ukrainian and

Belarussian post-chernobyl thyroid papillary carcinomas: a strong

correlation between RET/PTC3 and the solid-follicular variant.

Journal of Clinical Endocrinology and Metabolism 1999 84 4232–4238.

(doi:10.1210/jcem.84.11.6129)

14 Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocrine

Pathology 2002 13 3–16. (doi:10.1385/EP:13:1:03)

15 Mochizuki KKT, Nakazawa T, Iwashina M, Kawasaki T, Nakamura N,

Yamane T, Murata S, Ito K, Kameyama K, Kobayashi M et al. RET

rearrangements and BRAF mutation in undifferentiated thyroid

carcinomas having papillary carcinoma components. Histopathology

2010 57 444–450. (doi:10.1111/j.1365-2559.2010.03646.x)

16 Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H & Fagin JA.

Distinct pattern of ret oncogene rearrangements in

morphological variants of radiation-induced and sporadic

thyroid papillary carcinomas in children. Cancer Research 1997 57

1690–1694.

17 Sugg SL, Ezzat S, Zheng L, Freeman JL, Rosen IB & Asa SL. Oncogene

profile of papillary thyroid carcinoma. Surgery 1999 125 46–52.

(doi:10.1016/S0039-6060(99)70287-4)

E
u

ro
p

e
a
n

Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review C Tavares, M Melo
and others

Genetic predictors of cancer
outcome

174 :4 R123

www.eje-online.org
163



18 Sobrinho-Simoes M, Maximo V, Rocha AS, Trovisco V, Castro P,

Preto A, Lima J & Soares P. Intragenic mutations in thyroid cancer.

Endocrinology and Metabolism Clinics of North America 2008 37 333–362,

viii. (doi:10.1016/j.ecl.2008.02.004)

19 Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T,

Sobrinho LG & Leite V. Expression of PAX8–PPARg1 rearrangements in

both follicular thyroid carcinomas and adenomas. Journal of Clinical

Endocrinology and Metabolism 2002 87 3947–3952. (doi:10.1210/jcem.

87.8.8756)

20 Howell GM, Hodak SP & Yip L. RAS mutations in thyroid cancer.

Oncologist 2013 18 926–932. (doi:10.1634/theoncologist.2013-0072)

21 Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, Wu R,

Carcangiu ML, Costa J & Tallini G. ras mutations are associated with

aggressive tumor phenotypes and poor prognosis in thyroid cancer.

Journal of Clinical Oncology 2003 21 3226–3235. (doi:10.1200/JCO.2003.

10.130)

22 Jang EK, Song DE, Sim SY, Kwon H, Choi YM, Jeon MJ, Han JM,

Kim WG, Kim TY, Shong YK et al. NRAS codon 61 mutation is

associated with distant metastasis in patients with follicular thyroid

carcinoma. Thyroid 2014 24 1275–1281. (doi:10.1089/thy.2014.0053)

23 Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S,

Sakuma Y, Koizume S, Okamoto N, Kondo T, Masuda M et al. The

associations between RAS mutations and clinical characteristics in

follicular thyroid tumors: new insights from a single center and a large

patient cohort. Thyroid 2012 22 683–689. (doi:10.1089/thy.2011.0261)

24 Zhu Z, Gandhi M, Nikiforova MN, Fischer AH & Nikiforov YE.

Molecular profile and clinical–pathologic features of the follicular

variant of papillary thyroid carcinoma. An unusually high prevalence

of ras mutations. American Journal of Clinical Pathology 2003 120 71–77.

(doi:10.1309/ND8D9LAJTRCTG6QD)

25 Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J,

Woffendin H, Garnett MJ, Bottomley W et al. Mutations of the BRAF

gene in human cancer. Nature 2002 417 949–954. (doi:10.1038/

nature00766)

26 Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S,

Nikiforov YE & Fagin JA. Targeted expression of BRAFV600E in thyroid

cells of transgenic mice results in papillary thyroid cancers that

undergo dedifferentiation. Cancer Research 2005 65 4238–4245.

(doi:10.1158/0008-5472.CAN-05-0047)

27 Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM,

Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M et al. The

RET/PTC–RAS–BRAF linear signaling cascade mediates the motile and

mitogenic phenotype of thyroid cancer cells. Journal of Clinical

Investigation 2005 115 1068–1081. (doi:10.1172/JCI200522758)

28 Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA,

Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A et al. BRAF mutations

in thyroid tumors are restricted to papillary carcinomas and anaplastic

or poorly differentiated carcinomas arising from papillary carcinomas.

Journal of Clinical Endocrinology and Metabolism 2003 88 5399–5404.

(doi:10.1210/jc.2003-030838)

29 Kebebew E, Weng J, Bauer J, Ranvier G, Clark OH, Duh QY, Shibru D,

Bastian B & Griffin A. The prevalence and prognostic value of BRAF

mutation in thyroid cancer. Annals of Surgery 2007 246 466–470

(discussion 470–471). (doi:10.1097/SLA.0b013e318148563d)

30 Xu X, Quiros RM, Gattuso P, Ain KB & Prinz RA. High prevalence of

BRAF gene mutation in papillary thyroid carcinomas and thyroid

tumor cell lines. Cancer Research 2003 63 4561–4567. (doi:10.1111/j.

1365-2265.2006.02605.x)

31 Kim TY, Kim WB, Rhee YS, Song JY, Kim JM, Gong G, Lee S, Kim SY,

Kim SC, Hong SJ et al. The BRAF mutation is useful for prediction of

clinical recurrence in low-risk patients with conventional papillary

thyroid carcinoma. Clinical Endocrinology 2006 65 364–368.

(doi:10.1111/j.1365-2265.2006.02605.x)

32 Xing M. BRAF mutation in thyroid cancer. Endocrine-Related Cancer

2005 12 245–262. (doi:10.1677/erc.1.0978)

33 Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S,

Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T & Yamashita S.

Clinical implication of hot spot BRAF mutation, V599E, in papillary

thyroid cancers. Journal of Clinical Endocrinology and Metabolism 2003 88

4393–4397. (doi:10.1210/jc.2003-030305)

34 Oler G & Cerutti JM. High prevalence of BRAF mutation in a Brazilian

cohort of patients with sporadic papillary thyroid carcinomas:

correlation with more aggressive phenotype and decreased expression

of iodide-metabolizing genes. Cancer 2009 115 972–980. (doi:10.1002/

cncr.24118)

35 Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, Romei C,

Miccoli P, Pinchera A & Basolo F. BRAF(V600E) mutation and outcome

of patients with papillary thyroid carcinoma: a 15-year median follow-

up study. Journal of Clinical Endocrinology and Metabolism 2008 93

3943–3949. (doi:10.1210/jc.2008-0607)

36 Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M

& Santisteban P. The oncogene BRAF V600E is associated with a high

risk of recurrence and less differentiated papillary thyroid carcinoma

due to the impairment of NaC/IK targeting to the membrane.

Endocrine-Related Cancer 2006 13 257–269. (doi:10.1677/erc.1.01119)

37 Fugazzola L, Puxeddu E, Avenia N, Romei C, Cirello V, Cavaliere A,

Faviana P, Mannavola D, Moretti S, Rossi S et al. Correlation between

B-RAFV600E mutation and clinico-pathologic parameters in papillary

thyroid carcinoma: data from a multicentric Italian study and review of

the literature. Endocrine-Related Cancer 2006 13 455–464. (doi:10.1677/

erc.1.01086)

38 Fugazzola L, Mannavola D, Cirello V, Vannucchi G, Muzza M,

Vicentini L & Beck-Peccoz P. BRAF mutations in an Italian cohort of

thyroid cancers. Clinical Endocrinology 2004 61 239–243. (doi:10.1111/j.

1365-2265.2004.02089.x)

39 Abrosimov A, Saenko V, Rogounovitch T, Namba H, Lushnikov E,

Mitsutake N & Yamashita S. Different structural components of

conventional papillary thyroid carcinoma display mostly identical

BRAF status. International Journal of Cancer 2007 120 196–200.

(doi:10.1002/ijc.22290)

40 Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C,

Molinaro E, Agate L, Biagini A, Lupi C et al. The BRAF(V600E) mutation

is an independent, poor prognostic factor for the outcome of patients

with low-risk intrathyroid papillary thyroid carcinoma: single-insti-

tution results from a large cohort study. Journal of Clinical Endocrinology

and Metabolism 2012 97 4390–4398. (doi:10.1210/jc.2012-1775)

41 Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L,

Mian C, Vianello F, Tuttle RM et al. Association between BRAF V600E

mutation and mortality in patients with papillary thyroid cancer.

Journal of the American Medical Association 2013 309 1493–1501.

(doi:10.1001/jama.2013.3190)

42 Soares P, Lima J, Preto A, Castro P, Vinagre J, Celestino R, Couto JP,

Prazeres H, Eloy C, Maximo V et al. Genetic alterations in poorly

differentiated and undifferentiated thyroid carcinomas. Current

Genomics 2011 12 609–617. (doi:10.2174/138920211798120853)

43 Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, Barbi F,

Avenia N, Scipioni A, Verrienti A et al. BRAF mutations in papillary

thyroid carcinomas inhibit genes involved in iodine metabolism.

Journal of Clinical Endocrinology and Metabolism 2007 92 2840–2843.

(doi:10.1210/jc.2006-2707)

44 Romei C, Ciampi R, Faviana P, Agate L, Molinaro E, Bottici V, Basolo F,

Miccoli P, Pacini F, Pinchera A et al. BRAFV600E mutation, but not

RET/PTC rearrangements, is correlated with a lower expression of both

thyroperoxidase and sodium iodide symporter genes in papillary

thyroid cancer. Endocrine-Related Cancer 2008 15 511–520.

(doi:10.1677/ERC-07-0130)

45 Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL,

Bollag G, Kolesnick R, Thin TH, Rosen N et al. Small-molecule MAPK

inhibitors restore radioiodine incorporation in mouse thyroid cancers

with conditional BRAF activation. Journal of Clinical Investigation 2011

121 4700–4711. (doi:10.1172/JCI46382)

E
u

ro
p

e
a
n

Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review C Tavares, M Melo
and others

Genetic predictors of cancer
outcome

174 :4 R124

www.eje-online.org
164



46 Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D,

Pentlow KS, Zanzonico PB, Haque S, Gavane S et al. Selumetinib-

enhanced radioiodine uptake in advanced thyroid cancer. New England

Journal of Medicine 2013 368 623–632. (doi:10.1056/NEJMoa1209288)

47 Capezzone M, Cantara S, Marchisotta S, Busonero G, Formichi C,

Benigni M, Capuano S, Toti P, Pazaitou-Panayiotou K, Caruso G et al.

Telomere length in neoplastic and nonneoplastic tissues of patients

with familial and sporadic papillary thyroid cancer. Journal of Clinical

Endocrinology and Metabolism 2011 96 E1852–E1856. (doi:10.1210/jc.

2011-1003)

48 Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, Coelho R,

Celestino R, Prazeres H, Lima L et al. Frequency of TERT promoter

mutations in human cancers. Nature Communications 2013 4 2185.

(doi:10.1038/ncomms3185)

49 Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T,

Ghossein RA & Fagin JA. Frequent somatic TERT promoter mutations in

thyroid cancer: higher prevalence in advanced forms of the disease.

Journal of Clinical Endocrinology and Metabolism 2013 98 E1562–E1566.

(doi:10.1210/jc.2013-2383)

50 Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, Sun H, El-Naggar AK

& Xing M. Highly prevalent TERT promoter mutations in aggressive

thyroid cancers. Endocrine-Related Cancer 2013 20 603–610.

(doi:10.1530/ERC-13-0210)

51 Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S,

Moll I, Nagore E, Hemminki K et al. TERT promoter mutations in

familial and sporadic melanoma. Science 2013 339 959–961.

(doi:10.1126/science.1230062)

52 Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C,

Celestino R, Almeida A, Salgado C, Eloy C et al. TERT promoter

mutations are a major indicator of poor outcome in differentiated

thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism

2014 99 E754–E765. (doi:10.1210/jc.2013-3734)

53 de Vries MM, Celestino R, Castro P, Eloy C, Maximo V, van der Wal JE,

Plukker JT, Links TP, Hofstra RM, Sobrinho-Simoes M et al. RET/PTC

rearrangement is prevalent in follicular Hurthle cell carcinomas.

Histopathology 2012 61 833–843. (doi:10.1111/j.1365-2559.2012.

04276.x)

54 Maximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, Amaro T,

Barbosa AP, Preto A, Harach HR et al. Somatic and germline mutation in

GRIM-19, a dual function gene involved in mitochondrial metabolism

and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours

of the thyroid. British Journal of Cancer 2005 92 1892–1898.

(doi:10.1038/sj.bjc.6602547)

55 Maximo V, Lima J, Prazeres H, Soares P & Sobrinho-Simoes M.

The biology and the genetics of Hurthle cell tumors of the thyroid.

Endocrine-Related Cancer 2012 19 R131–R147. (doi:10.1530/

ERC-11-0354)

56 Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, Larsson C &

Xu D. The age- and shorter telomere-dependent TERT promoter

mutation in follicular thyroid cell-derived carcinomas. Oncogene 2014

33 4978–4984. (doi:10.1038/onc.2013.446)

57 Gandolfi G, Ragazzi M, Frasoldati A, Piana S, Ciarrocchi A & Sancisi V.

TERT promoter mutations are associated with distant metastases in

papillary thyroid carcinoma. European Journal of Endocrinology 2015 172

403–413. (doi:10.1530/EJE-14-0837)

58 Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S & Bishop J.

BRAF V600E and TERT promoter mutations cooperatively identify the

most aggressive papillary thyroid cancer with highest recurrence.

Journal of Clinical Oncology 2014 32 2718–2726. (doi:10.1200/JCO.2014.

55.5094)

59 Muzza M, Colombo C, Rossi S, Tosi D, Cirello V, Perrino M, De Leo S,

Magnani E, Pignatti E, Vigo B et al. Telomerase in differentiated

thyroid cancer: promoter mutations, expression and localization.

Molecular and Cellular Endocrinology 2015 399 288–295. (doi:10.1016/j.

mce.2014.10.019)

60 Sampson E, Brierley JD, Le LW, Rotstein L & Tsang RW. Clinical

management and outcome of papillary and follicular (differentiated)

thyroid cancer presenting with distant metastasis at diagnosis. Cancer

2007 110 1451–1456. (doi:10.1002/cncr.22956)

61 Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G, Murugan AK, Guan H, Yu H,

Wang Y et al. TERT promoter mutations and their association with

BRAF V600E mutation and aggressive clinicopathological charac-

teristics of thyroid cancer. Journal of Clinical Endocrinology and

Metabolism 2014 99 E1130–E1136. (doi:10.1210/jc.2013-4048)

62 Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T,

van der Horst CM, Majoor DM, Shay JW, Mooi WJ & Peeper DS.

BRAFE600-associated senescence-like cell cycle arrest of human naevi.

Nature 2005 436 720–724. (doi:10.1038/nature03890)

63 Bell RJ, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, Choi S,

Hong C, He D, Pekmezci M et al. Cancer. The transcription factor GABP

selectively binds and activates the mutant TERT promoter in cancer.

Science 2015 348 1036–1039. (doi:10.1126/science.aab0015)

64 Preto A, Singhrao SK, Haughton MF, Kipling D, Wynford-Thomas D &

Jones CJ. Telomere erosion triggers growth arrest but not cell death in

human cancer cells retaining wild-type p53: implications for anti-

telomerase therapy. Oncogene 2004 23 4136–4145. (doi:10.1038/sj.onc.

1207564)

65 Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM & Hockemeyer D.

Cancer-associated TERT promoter mutations abrogate telomerase

silencing. eLife 2015 4 e07918. (doi:10.7554/eLife.07918)

66 Melo M, da Rocha AG, Vinagre J, Sobrinho-Simoes M & Soares P.

Coexistence of TERT promoter and BRAF mutations in papillary thyroid

carcinoma: added value in patient prognosis? Journal of Clinical

Oncology 2015 33 667–668. (doi:10.1200/JCO.2014.59.4614)

67 Levine AJ & Oren M. The first 30 years of p53: growing ever more

complex. Nature Reviews. Cancer 2009 9 749–758. (doi:10.1038/

nrc2723)

68 Lane D & Levine A. p53 Research: the past thirty years and the next

thirty years. Cold Spring Harbor Perspectives in Biology 2010 2 a000893.

(doi:10.1101/cshperspect.a000893)

69 Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi T, Hayashi Y, Dohi K,

Nakamura N & Akiyama M. Unique association of p53 mutations with

undifferentiated but not with differentiated carcinomas of the thyroid

gland. Cancer Research 1992 52 1369–1371.

70 Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi Y, Dohi K, Nakamura N

& Akiyama M. Genetic alterations in thyroid tumor progression:

association with p53 gene mutations. Japanese Journal of Cancer Research

1993 84 526–531. (doi:10.1111/j.1349-7006.1993.tb00171.x)

71 Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G & Pierotti MA.

Gene p53 mutations are restricted to poorly differentiated and

undifferentiated carcinomas of the thyroid gland. Journal of Clinical

Investigation 1993 91 1753–1760. (doi:10.1172/JCI116385)

72 Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH & Koeffler HP. High

prevalence of mutations of the p53 gene in poorly differentiated

human thyroid carcinomas. Journal of Clinical Investigation 1993 91

179–184. (doi:10.1172/JCI116168)

73 Dobashi Y, Sakamoto A, Sugimura H, Mernyei M, Mori M, Oyama T &

Machinami R. Overexpression of p53 as a possible prognostic factor in

human thyroid carcinoma. American Journal of Surgical Pathology 1993

17 375–381. (doi:10.1097/00000478-199304000-00008)

74 Soares P, Cameselle-Teijeiro J & Sobrinho-Simoes M. Immunohisto-

chemical detection of p53 in differentiated, poorly differentiated and

undifferentiated carcinomas of the thyroid. Histopathology 1994 24

205–210. (doi:10.1111/j.1365-2559.1994.tb00511.x)

75 Park KY, Koh JM, Kim YI, Park HJ, Gong G, Hong SJ & Ahn IM.

Prevalences of Gsa, ras, p53 mutations and ret/PTC rearrangement

in differentiated thyroid tumours in a Korean population. Clinical

Endocrinology 1998 49 317–323. (doi:10.1046/j.1365-2265.

1998.00515.x)

76 Farid P, Gomb SZ, Peter I & Szende B. bcl2, p53 and bax in thyroid

tumors and their relation to apoptosis. Neoplasma 2001 48 299–301.

E
u

ro
p

e
a
n

Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review C Tavares, M Melo
and others

Genetic predictors of cancer
outcome

174 :4 R125

www.eje-online.org
165



77 Wright PA, Lemoine NR, Goretzki PE, Wyllie FS, Bond J, Hughes C,

Roher HD, Williams ED & Wynford-Thomas D. Mutation of the p53

gene in a differentiated human thyroid carcinoma cell line, but not in

primary thyroid tumours. Oncogene 1991 6 1693–1697.

78 Nikiforov YE, Nikiforova MN, Gnepp DR & Fagin JA. Prevalence of

mutations of ras and p53 in benign and malignant thyroid tumors from

children exposed to radiation after the Chernobyl nuclear accident.

Oncogene 1996 13 687–693.

79 Nikiforova MN, Wald AI, Roy S, Durso MB & Nikiforov YE. Targeted

next-generation sequencing panel (ThyroSeq) for detection of

mutations in thyroid cancer. Journal of Clinical Endocrinology and

Metabolism 2013 98 E1852–E1860. (doi:10.1210/jc.2013-2292)

80 Ruter A, Dreifus J, Jones M, Nishiyama R & Lennquist S. Overexpression

of p53 in tall cell variants of papillary thyroid carcinoma. Surgery 1996

120 1046–1050. (doi:10.1016/S0039-6060(96)80053-5)

81 Putti TC & Bhuiya TA. Mixed columnar cell and tall cell variant of

papillary carcinoma of thyroid: a case report and review of the

literature. Pathology 2000 32 286–289.

82 Kleer CG, Giordano TJ & Merino MJ. Squamous cell carcinoma of the

thyroid: an aggressive tumor associated with tall cell variant of

papillary thyroid carcinoma. Modern Pathology 2000 13 742–746.

(doi:10.1038/modpathol.3880129)

83 Cameselle-Teijeiro J, Menasce LP, Yap BK, Colaco RJ, Castro P,

Celestino R, Ruiz-Ponte C, Soares P & Sobrinho-Simoes M. Cribriform–

morular variant of papillary thyroid carcinoma: molecular character-

ization of a case with neuroendocrine differentiation and aggressive

behavior. American Journal of Clinical Pathology 2009 131 134–142.

(doi:10.1309/AJCP7ULS0VSISBEB)

84 Nakazawa T, Celestino R, Machado JC, Cameselle-Teijeiro JM,

Vinagre J, Eloy C, Benserai F, Lameche S, Soares P & Sobrinho-

Simoes M. Cribriform–morular variant of papillary thyroid carcinoma

displaying poorly differentiated features. International Journal of Surgical

Pathology 2013 21 379–389. (doi:10.1177/1066896912473355)

85 Pita JM, Figueiredo IF, Moura MM, Leite V & Cavaco BM. Cell cycle

deregulation and TP53 and RAS mutations are major events in poorly

differentiated and undifferentiated thyroid carcinomas. Journal of

Clinical Endocrinology and Metabolism 2014 99 E497–E507. (doi:10.1210/

jc.2013-1512)

86 Quiros RM, Ding HG, Gattuso P, Prinz RA & Xu X. Evidence that one

subset of anaplastic thyroid carcinomas are derived from papillary

carcinomas due to BRAF and p53 mutations. Cancer 2005 103

2261–2268. (doi:10.1002/cncr.21073)

87 Evans JJ, Crist HS, Durvesh S, Bruggeman RD & Goldenberg D. A

comparative study of cell cycle mediator protein expression patterns in

anaplastic and papillary thyroid carcinoma. Cancer Biology & Therapy

2012 13 776–781. (doi:10.4161/cbt.20560)

88 Pilotti S, Collini P, Del Bo R, Cattoretti G, Pierotti MA & Rilke F. A novel

panel of antibodies that segregates immunocytochemically poorly

differentiated carcinoma from undifferentiated carcinoma of the

thyroid gland. American Journal of Surgical Pathology 1994 18

1054–1064. (doi:10.1097/00000478-199410000-00009)

89 Moretti F, Farsetti A, Soddu S, Misiti S, Crescenzi M, Filetti S,

Andreoli M, Sacchi A & Pontecorvi A. p53 re-expression inhibits

proliferation and restores differentiation of human thyroid anaplastic

carcinoma cells. Oncogene 1997 14 729–740. (doi:10.1038/sj.onc.

1200887)

90 DeLellis RA, Lloyd RV, Heitz PU & Eng C. In WHO Classification of

Tumours. Pathology and Genetics of Tumours of Endocrine Organs. Lyon:

IARC Press, 2004.

91 Cameselle-Teijeiro J, Rodrı́guez-Pérez I, Celestino R, Eloy C, Piso Neira I,

Abdulkader Nallib I, Soares P & Sobrino-Simões M. Hobnail/

micropapillary variant of papillary thyroid carcinoma: Evidence of

progression to undifferentiated carcinoma with molecular analysis.

Virchows Archiv 2015 467 (Supplement 1) S69.

92 Mazeh H. MicroRNA as a diagnostic tool in fine-needle aspiration

biopsy of thyroid nodules. Oncologist 2012 17 1032–1038. (doi:10.1634/

theoncologist.2012-0013)

93 Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S,

Davuluri RV, Nagy R & de la Chapelle A. The polymorphism rs944289

predisposes to papillary thyroid carcinoma through a large intergenic

noncoding RNA gene of tumor suppressor type. PNAS 2012 109

8646–8651. (doi:10.1073/pnas.1205654109)

94 Kentwell J, Gundara JS & Sidhu SB. Noncoding RNAs in endocrine

malignancy. Oncologist 2014 19 483–491. (doi:10.1634/theoncologist.

2013-0458)

Received 18 June 2015

Revised version received 7 October 2015

Accepted 28 October 2015

E
u

ro
p

e
a
n

Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review C Tavares, M Melo
and others

Genetic predictors of cancer
outcome

174 :4 R126

www.eje-online.org
166



 
 

 

 

  

167



 
 

  

168



 
 

7.2 – Appendix II. UICC/AJCC staging system for differentiated thyroid carcinoma (8thedition). 
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Table 1 UICC/AJCC staging system for differentiated thyroid carcinoma      

Adapted from UICC/AJCC TNM 8th edition 201791          

T- Primary Tumor      

T1- Tumor ≤2cm in greatest dimension limited to the thyroid    

T1a- Tumor <1cm, limited to the thyroid      

T1b-Tumor >1cm but ≤2cm in greatest dimension limited to the thyroid  

T2- Tumor >2cm but ≤4cm in greatest dimension limited to the thyroid  

T3a-Tumour > 4 cm in greatest dimension, limited to the thyroid    

T3b-Tumor of any size with gross extrathyroidal extension invading only strap muscles  

(sternohyoid, or omohyoid muscles)   
T4a*-Tumor of any size extending beyond the thyroid capsule to invade subcutaneous soft tissues,  

larynx, trachea, esophagus or recurrent laryngeal nerve   
T4b*-Tumor invade prevertebral fascia or encases carotid artery or mediastinal vessels 

N- Regional lymph nodes      

Nx- Regional lymph nodes cannot be assessed      

N0- No regional lymph node metastases      

N1a- Metastases to Level VI (pretracheal, paratracheal, and prelaryngeal/Delphian lymph nodes 
N1b- Metastases to unilateral, bilateral, or contralateral cervical (Levels I, II, III, IV, or V) or retropharyngeal 
or superior mediastinal lymph nodes (Level VII) 

M- Distant metastases      

Mx- Distant metastases cannot be assessed      

M0- No distant metastases      

M1- Presence of distant metastases      

Staging      

Stage<55 year sold Stage ≥55 years old      

Stage I Stage I      

Any T. Any N. M0 T1a, T1b. N0. M0      

Stage II Stage II      

Any T. Any N. M1 T3. N0. M0      

  T1, T2, T3. N1. M0      

  Stage III      

  T4a. Any N. M0      

  Stage IVa      

  T4b. Any N. M0      

  Stage IVb      

  Any T. Any N. M1          
*All anaplastic thyroid carcinoma are considered as T4 
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