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Abstract. We prove that for C0-generic homeomorphisms, acting on a compact smooth
boundaryless manifold with dimension greater than one, the upper metric mean dimension
with respect to the smooth metric coincides with the dimension of the manifold. As an
application, we show that the upper box dimension of the set of periodic points of a C0-
generic homeomorphism is equal to the dimension of the manifold. In the case of continuous
interval maps, we prove that each level set for the metric mean dimension with respect to
the Euclidean distance is C0-dense in the space of continuous endomorphisms of [0, 1] with
the uniform topology. Moreover, the maximum value is attained at a C0-generic subset
of continuous interval maps and a dense subset of metrics topologically equivalent to the
Euclidean distance.

1. Introduction

The topological entropy is an invariant by topological conjugation and a very useful tool
to either measure how chaotic is a dynamical system or to attest that two dynamics are
not conjugate. It counts, in exponential scales, the number of distinguishable orbits up to
arbitrarily small errors. Clearly, on a compact metric space, a Lipschitz map has finite
topological entropy. However, if the dynamics is just continuous, the topological entropy
may be infinite. Actually, K. Yano proved in [20] that, on compact smooth manifolds with
dimension greater than one, the set of homeomorphisms having infinite topological entropy
are C0-generic. So the topological entropy is no longer an effective label to classify them.

In order to obtain a new invariant to distinguish maps with infinite entropy, E. Linden-
strauss and B. Weiss introduced in [13] the notions of upper metric mean dimension and lower
metric mean dimension of an endomorphism f of a metric space (X, d), that we will denote
by mdimM (X, f, d) and mdimM (X, f, d), respectively. Historically, the concepts of upper
and lower metric mean dimension have been often useful to distinguish dynamical systems
acting on infinite dimensional spaces. We highlight that these notions can also be meaningful
and provide a new insight in the finite dimensional setting. For instance, in [10] the authors
consider homeomorphisms homotopic to the identity on the torus and employed precisely
the metric mean dimension as the finer scaling of complexity they needed to describe the
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multifractal aspects of the sets of points with prescribed rotation vectors. Actually, while
C0-generic dynamics have infinite topological entropy [20], the metric mean dimension can be
used to detect different rates of complexity at which this may grow to infinite. An extension
of this notion to Zk-actions can be found in [4, 5, 7], and a variational principle for the metric
mean dimension of free semigroup actions appeared in [1].

The upper and lower metric mean dimensions are metric versions of the mean dimension,
a concept proposed by M. Gromov in [3] which may be viewed as a dynamical analogue of
the topological dimension. In particular, it is known that the mean dimension of a homeo-
morphism f : X → X acting on a topological space X of finite dimension is zero. The upper
and lower metric mean dimensions, unlike Gromov’s concept, depend on the metric adopted
on the space and are nonzero only if the topological entropy of the dynamics is infinite.

More recently, it was proved in [18] that, on a compact manifold with dimension greater
than one, having positive upper metric mean dimension is a C0-dense property in the whole
class of homeomorphisms. Moreover, the authors established that the set of homeomorphisms
with metric mean dimension equal to the dimension of the manifold is C0-dense in the set
of all the homeomorphisms with a fixed point. Unfortunately, the previous subset is not C0-
dense in the space of homeomorphisms. The existence of a fixed point is crucial due to the
need of an adequate construction of separated sets using the pseudo-horseshoes introduced in
[20]. If, instead, f admits a periodic point of period p > 1, then the argument of [18] ensures
that mdimM (fp, X, d) = dimX hence, as mdimM (fp, X, d) 6 p mdimM (f,X, d),

mdimM (X, f, d) > dimX

p
. (1.1)

Therefore, in order to be able to consider homeomorphisms with periodic points of arbitrarily
large periods (actually the C0 generic case, as proved in [8]) and still obtain mdimM (X, f, d) =
dimX, one must compensate for the loss of metric mean dimension caused by their likely long
periods. In this work we show that for C0-generic homeomorphisms, acting on compact
smooth boundaryless manifolds with dimension greater than one, not only the metric mean
dimension is positive but it is equal to the dimension of the manifold. Our argument grew
out of the results of [8], [20] and [11], to which we refer the reader for more background.

Let us be more precise. It is known, after [20, Proposition 2], that for any homeomorphism
f , any scale δ > 0 and any N ∈ N there exist a C0-arbitrary small perturbation g of f and a
suitable iterate gk which has a compact invariant subset semi-conjugate to a subshift of finite
type with Nk symbols. This ensures the existence of some scale ε0 > 0 (depending on N
and f) such that the largest cardinality of any (n, ε) separated subset of X with respect to g
satisfies s(g, n, ε) > Nn for every ε 6 ε0 and all big enough n; so htop(g) > logN . Although
Yano’s strategy succeeds in producing homeomorphisms C0 close to f with arbitrarily large
topological entropy, it fails to bring forth any lower bound on their metric mean dimension
since there exists no explicit relation between ε0 and N . To obtain better estimates than
(1.1) for the metric mean dimension, we endeavored to find such a connection in RdimX ,
and then forwarded the conclusions to the manifold X using the bi-Lipschitz nature of the
charts. We have had to perform several C0-small perturbations along the orbit of a periodic
point (reminding the global changes done in the proof of Pugh’s C1 Closing Lemma [16]) in
order to build a new version of the pseudo-horseshoes used in [20], now obliged to satisfy two
conditions: to exist in all sufficiently small scales and to exhibit the needed separation in all
moments of the construction. We will be back to this issue on Section 7.
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The second setting we address here concerns the spaces C0([0, 1], d) and C0([0, 1], ρ) of
continuous endomorphisms of the interval [0, 1], with the uniform metric, where d stands for
the Euclidean distance and ρ denotes any metric topologically equivalent to d. Adjusting the
construction of horseshoes done by M. Misiurewicz in [14], which paved the way to prove that
the topological entropy of maps of the interval is lower semicontinuous and upper bounded
by the exponential growth rate of the periodic points, the authors of [18] showed that the
subset of those maps with maximal upper metric mean dimension (whose value is 1) is dense
in C0([0, 1], d). A finer construction allowed us to prove that, for every 0 6 β 6 1, the level
set of continuous maps for which the metric mean dimension exists and is equal to β is a
dense subset of C0([0, 1], d). Additionally, we show that the maximal value is attained at a
C0-generic subset of C0([0, 1], ρ) and a dense subset of metrics topologically equivalent to the
Euclidean distance. For more details we refer the reader to Section 3.

2. Upper and lower metric mean dimension

Most of the results we will use or prove require some mild homogeneity of the space so that
local perturbations can be made. For simplicity we consider here only the case of smooth
compact connected manifolds. Let X be such a manifold and d be a metric compatible with
the topology on X. Given a continuous map f : X → X and a non-negative integer n, define
the dynamical metric dn : X ×X → [0,+∞) by

dn(x, y) = max
{
d(x, y), d(f(x), f(y)), . . . , d(fn−1(x), fn−1(y))

}
and denote by Bf (x, n, ε) the ball of radius ε around x ∈ X with respect to the metric dn. It
is not difficult to check that dn generates the same topology as d.

Having fixed ε > 0, we say that a set A ⊂ X is (n, ε)-separated by f if dn(x, y) > ε for
every x, y ∈ A. Denote by s(f, n, ε) the maximal cardinality of all (n, ε)-separated subsets of
X by f . Due to the compactness of X, the number s(f, n, ε) is finite for every n ∈ N and
ε > 0.

Definition 2.1. The lower metric mean dimension of (f,X, d) is given by

mdimM (X, f, d) = lim inf
ε→ 0

h(f, ε)

| log ε|
where h(f, ε) = lim supn→+∞

1
n log s(f, n, ε). Similarly, the upper metric mean dimension

of (X, f, d) is the limit

mdimM (X, f, d) = lim sup
ε→ 0

h(f, ε)

| log ε|
.

The upper/lower metric mean dimensions satisfy the following properties we may summon
later:

(1) If the topological entropy htop(f) = limε→ 0 h(f, ε) is finite (as when f is a Lipschitz
map on a compact metric space), then

mdimM (X, f, d) = mdimM (X, f, d) = 0.

(2) Given two continuous maps f1 : X1 → X1 and f2 : X2 → X2 on compact metric
spaces (X1, d1) and (X2, d2), then

mdimM (X1 ×X2, f1 × f2, d1 × d2) = mdimM (X1, f1, d1) + mdimM (X2, f2, d2).
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(3) Given a continuous map f : X → X on a compact metric space (X, d), the upper box
dimension of (X, d) is an upper bound for mdimM (X, f, d) (cf. Remark 4 of [18]).

(4) Let f : X → X be a continuous map on a compact metric space (X, d) and k be a
positive integer. The inequality

mdimM (X, fk, d) 6 kmdimM (X, f, d)

is always valid (the proof is similar to the one done for the entropy in [19]). The
equality may fail (see the previous item), though it is valid whenever f is Lipschitz,
in which case these values are zero for every k ∈ N.

(5) For every continuous map f : X → X on a compact metric space (X, d), one has

mdimM (Ω(f), f |Ω(f), d) = mdimM (X, f, d)

where Ω(f) stands for the set of non-wandering points of f .

(6) Given a continuous map f : X → X on a compact metric space X,

mdim(X, f) 6 mdimM (X, f, d)

for every metric d on X compatible with the topology of X (cf. [13, Theorem 4.2]),
where mdim(X, f) stands for the mean dimension of (X, f). The existence of a com-
patible metric for which the equality holds is conjectured for every maps (cf. [12]).
This is known to be valid in the case of minimal systems (cf. [11, Theorem 4.3]) and
to be true C0-generically (cf. [6, Appendix]).

3. Main results

Let (X, d) be a compact smooth boundaryless manifold with dimension greater than one.
Denote by Homeo(X, d) the set of homeomorphisms of (X, d). This is a complete metric space
if endowed with the metric

D(f, g) = max
x∈X

{
d(f(x), g(x)), d(f−1(x), g−1(x))

}
.

It is known from [18] that the upper metric mean dimension of every f ∈ Homeo(X, d)
cannot be bigger than the dimension of the manifold X. Our first result states that typical
homeomorphisms have the largest upper metric mean dimension with respect to any metric
compatible with the smooth structure of the smooth manifold X.

Theorem A. Let X be a compact smooth boundaryless manifold with dimension strictly
greater than one and d be a metric compatible with the smooth structure of X. There exists
a C0-Baire residual subset R ⊂ Homeo(X, d) such that

mdimM (X, f, d) = dimX ∀ f ∈ R.

Some comments are in order. Firstly we note that homeomorphisms in one-dimensional
smooth manifolds have zero entropy (thus their metric mean dimension is zero), so we cannot
drop the requirement on the dimension of the manifold. A second remark concerns the use
of a metric compatible with the smooth structure on the manifold. As a matter of fact,
by employing smooth charts one guarantees that the induced metric on the Euclidean space
is equivalent to the Euclidean metric, which is a product metric of one-dimensional length
factors, enabling one to effectively make the computations.
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The previous result also sheds light on the differences between the upper and lower metric
mean dimensions. Since the manifold X has finite dimension (so its Lebesgue covering di-
mension is also finite), mdim(X, f) = 0 for every f ∈ Homeo(X, d) (cf. [13]). Moreover, one
always has

mdim(X, f) 6 mdimM (X, f, d).

Therefore, if f ∈ R then

0 = mdim(X, f) 6 inf
ρ

mdimM (X, f, ρ) 6 sup
ρ

mdimM (X, f, ρ) = dimX

where the infimum and supremum are taken on the space of distances ρ which induce the same
topology on X as d. As the conjecture mentioned in [12] turns out to be true C0-generically,
that is, for generic homeomorphisms,

0 = mdim(X, f) = inf
ρ

mdimM (X, f, ρ)

(cf. [6, Appendix]), then C0-generically one finds

inf
ρ

mdimM (X, f, ρ) < sup
ρ

mdimM (X, f, ρ).

It is natural to consider the upper metric mean dimension as a function of three variables,
namely the dynamics f , the f -invariant non-empty compact set Z ⊂ X and the metric d,
and to ask whether it varies continuously. Concerning the first variable, within the space
of homeomorphisms satisfying the assumptions of Theorem A the irregularity of the map
Z 7→ mdimM (Z, f |Z , d), with respect to the Hausdorff metric, is a consequence of property
(5) in Section 2 together with the C0-general density theorem [8]. Indeed, C0-generically the
non-wandering set is the limit (in the Hausdoff metric) of finite unions of periodic points, on
which the upper metric mean dimension is zero, whereas Theorem A ensures that generically
the upper metric mean dimension is positive. Regarding the variable f , in the case of smooth
manifolds (X, d) where the C1-diffeomorphisms are C0-dense on the space of homeomorphisms
(which is true if the dimension of the manifold X is smaller or equal to 3, cf. [15]), Theorem A
implies that there are no continuity points of the map f 7→ mdimM (X, f, d). As far as we
know, the dependence of the upper metric mean dimension on the distance d is still beyond
utter understanding.

The study of the upper metric mean dimension for generic homeomorphisms in Theorem A
leads to an unexpected generic feature of the set of periodic points, measured through their
upper box-dimension.

Theorem B. Let X be a compact smooth boundaryless manifold with dimension strictly
greater than one and let d be a metric compatible with the smooth structure of X. There
exists a C0-Baire generic subset R ⊂ Homeo(X, d) such that

dimB (Per(f)) = dimX ∀ f ∈ R.

The second problem we address in this paper is closely related to the previous one. Focusing
on the space of continuous interval maps, we obtain stronger results both on the multifractal
structure and the largest level set of the upper metric mean dimension with respect to any
metric d topologically equivalent to the Euclidean distance (see Theorem C). Recall that two
metrics d1 and d2 on a space X are topologically equivalent if the identity map from (X, d1)
to (X, d2) is a homeomorphism. We show that, in the case of continuous maps on ([0, 1], d),
actually each level set for the upper metric mean dimension is relevant, since it is C0-dense
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in C0([0, 1]) with the uniform norm. Besides, we prove that the level set of the largest upper
metric mean dimension is C0-Baire generic independently of the chosen metric on the interval
as long as it is topologically equivalent to the Euclidean distance, thus extending the statement
of Theorem A to the one-dimensional context.

Theorem C. Let C0([0, 1], d) be the space of continuous endomorphisms of the interval
([0, 1], d), where d stands for the Euclidean distance. For every β ∈ [0, 1] there exists a
dense subset Dβ ⊂ C0([0, 1], d) for the uniform metric such that

mdimM ([0, 1], f, d) = mdimM ([0, 1], f, d) = β ∀ f ∈ Dβ .

Moreover, if ρ denotes any metric topologically equivalent to the Euclidean distance then C0-
generically in C0([0, 1], ρ) one has mdimM ([0, 1], f, ρ) = 1.

Regarding the space of continuous endomorphisms of ([0, 1], d), we may summarize as
follows what is now known:

(1) The subset of maps f ∈ C0([0, 1], d) satisfying mdimM ([0, 1], f, d) = 1 is C0-generic
(cf. Theorem C).

(2) The subset of maps of f ∈ C0([0, 1], d) such that mdimM ([0, 1], f, d) = 0 = mdim(X, f)

is C0-generic (cf. [6]).

(3) For each 0 < β < 1, the subset of maps f ∈ C0([0, 1], d) satisfying mdimM ([0, 1], f, d) =
mdimM ([0, 1], f, d) = β is C0-dense (cf. Theorem C).

If one endows the space M of metrics on [0, 1] with the metric

d1, d2 ∈ M 7→ D(d1, d2) = min

{
1, max

x, y ∈X

∣∣d1(x, y)− d2(x, y)
∣∣}

then, though not complete due to the existence of pseudo-metrics on its closure, M is a Baire
space (cf. [17]). Yet, the existence of discrete metrics, which form an open dense subset on
(M,D), prevents this space to be separable (cf. [17, Theorem 4]). Besides, under these kind
of metrics the interval [0, 1] is not compact, hence the definition of metric mean dimension
is meaningless. If, however, we restrict to the space ME of metrics on [0, 1] which are
topologically equivalent to the Euclidean distance, then we get a subset of C0([0, 1]×[0, 1],R+)
with the uniform norm determined by the Euclidean distance in [0, 1]× [0, 1]. This way, ME

is separable and Theorem C has the following direct consequence.

Corollary D. There exists a dense subset D ⊂ ME and a C0-Baire generic subset G of
C0([0, 1], d) such that

mdimM ([0, 1], f, ρ) = 1 ∀ f ∈ G ∀ ρ ∈ D.

We observe that, in spite of Corollary D, it may happen that some metric on ME is able to
drastically drop the upper metric mean dimension. The construction of minimizing metrics
for the upper metric mean dimension, and the estimation of the minimum value, are still open
problems.
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4. Absorbing disks

In this section we address some generic topological properties of homeomorphisms acting
on smooth manifolds, aiming to check the existence of absorbing disks with arbitrarily small
diameter.

Following M. Hurley in [8], if the dimension of the manifold X is dimX and DdimX
1 denotes

the closed unit ball in RdimX , call B ⊂ X a disk if it is homeomorphic to DdimX
1 . A closed

subset K of X is called k-absorbing for a homeomorphism f of X if fk(K) is contained in the
interior of K, and K is said to be absorbing if it is k-absorbing for some k ∈ N. Note that if
B is a k-absorbing disk, then, by Brouwer fixed point theorem, B contains a point periodic
by f with period k. We say that a point P ∈ X is a periodic attracting point for f if there is
a p-absorbing disk B satisfying

(1) diam(f i(B)) < diam(B) for every 1 6 i 6 p− 1;

(2)
∩

j>0 f
jp(B) = {P}.

Observe that, since f is a bijection, the last equality implies that fp(P ) = P . We also
remark that, given a periodic attracting point, it is possible to choose the disk B satisfying
f j(B)∩B = ∅ for every 1 6 j < p. In the next sections we will always assume that absorbing
disks satisfy this property.

Proposition 3 in [8] ensures that for every F ∈ Homeo(X, d) and every ε > 0 there is
f ∈ Homeo(X, d) exhibiting a periodic attracting point and such that D(F, f) < ε. Notice
that having a periodic attracting point is a C0 quasi-robust property. More precisely, for every
g ∈ Homeo(X, d) that is C0 close enough to f the following conditions hold:

(a) if B is a p-absorbing disk for f ∈ Homeo(X, d) then B is p-absorbing for g;

(b) if B is a p-absorbing disk for f ∈ Homeo(X, d) then for every 1 6 j < p the disk
f i(B) is p-absorbing for g;

(c) for every δ > 0 we may find some J > 0 such that fJp(B) has diameter smaller than
δ and is a p-absorbing disk for g.

Properties (a) and (b) are immediate consequences of the closeness in the uniform topology
and the compactness of B. Property (c) is due to the attracting nature of the periodic point
(that is, B is a p-absorbing disk satisfying

∩
j>0 f

jp(B) = {P}) and item (a). Unless stated
otherwise, the p-absorbing disks we will use satisfy the aforementioned properties.

Altogether this shows that having a p-absorbing disk of diameter δ is a C0-open and dense
condition. Therefore, taking the intersection of the sets

Hn =
{
f ∈ Homeo(X, d) : f has an absorbing disk with diameter at most 1/n

}
we conclude that:

Lemma 4.1. C0-generic homeomorphisms have absorbing disks of arbitrarily small diameter.

5. Pseudo-horseshoes

In this section we introduce the class of invariants that will play the key role in the proof
of Theorem A. They will be defined first on Euclidean spaces and afterwards conveyed to
manifolds via charts.
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5.1. Pseudo-horseshoes on Rk. Consider in Rk the norm

∥(x1, · · · , xk)∥ := max
16 i6k

|xi|.

Given r > 0 and x ∈ Rk, set

Dk
r (x) =

{
y ∈ Rk : ∥x− y∥ 6 r

}
Dk

r = Dk
r

(
(0, . . . , 0)

)
.

For 1 6 j 6 k, let πj : Rk → Rj be the projection on the first j coordinates.

Definition 5.1. Consider r > 0, x = (x1, · · · , xk) and y = (y1, · · · , yk) in Rk, and take
an open set U ⊂ Rk containing Dk

r (x). Having fixed a positive integer N , we say that a
homeomorphism φ : U → Rk has a pseudo-horseshoe of type N at scale r connecting x to y
if the following conditions are satisfied:

(1) φ(x) = y.

(2) φ
(
Dk

r (x)
)
⊂ int

(
Dk−1

r (πk−1(y))
)
× R.

(3) For i = 0, 1, . . . ,
[
N
2

]
,

φ
(
Dk−1

r (πk−1(x)) ×
{
xk − r +

4ir

N

})
⊂ int

(
Dk−1

r (πk−1(y))
)
× (−∞, yk − r).

(4) For i = 0, 1, . . . ,
[
N−1
2

]
,

φ

(
Dk−1

r (πk−1(x)) ×
{
xk − r +

(4i+ 2)r

N

})
⊂ int

(
Dk−1

r (πk−1(y))
)
× (yk + r, +∞).

(5) For each i ∈ {0, . . . , N − 1}, the intersection

Vi = Dk
r (y) ∩ φ

(
Dk−1

r (x)×
[
xk − r +

2ir

N
, xk − r +

(2i+ 2)r

N

])
is connected and satisfies:

(a) Vi ∩ (Dk−1
r (y)× {−r}) ̸= ∅;

(b) Vi ∩ (Dk−1
r (y)× {r}) ̸= ∅;

(c) each connected component of Vi ∪ ∂Dk
r (y) is simply connected.

The name pseudo-horseshoe seems adequate since, when x = y, the map φ does admit a
compact invariant subset which is semi-conjugate to a subshift of finite type (cf. [9]). Each
Vi is called a vertical strip of the pseudo-horseshoe φ, and we denote the collection of vertical
strips of φ by Vφ.

Notice that this definition is both topological and geometrical. Indeed, while we consider
homeomorphisms, we also assume that certain scale is preserved and identify a preferable
vertical direction by means of coordinates.

Definition 5.2. Consider ε > 0 and a homeomorphism φ : U → Rk with a pseudo-horseshoe
of type N at scale r connecting x to y. The pseudo-horseshoe is said to be ε-separating if we
may choose the collection Vφ so that the Hausdorff distance between distinct vertical strips is
bigger than ε, that is, inf {∥a− b∥ : a ∈ Vi, b ∈ Vj} > ε for every i ̸= j.
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5.2. Pseudo-horseshoes on manifolds. So far, pseudo-horseshoes were defined in open
sets of Rk. Now we need to convey this notion to manifolds.

Definition 5.3. Let (X, d) be a compact smooth manifold of dimension dimX. Given f ∈
Homeo(X, d) and constants 0 < α < 1, δ > 0, 0 < ε < δ and p ∈ N, we say that f
has a (δ, ε, p, α)-pseudo-horseshoe if we may find a pairwise disjoint family of open subsets
(Ui)06 i6 p−1 of X so that

f(Ui) ∩ U(i+1)mod p ̸= ∅ ∀ i
and a collection (ϕi)06 i6 p−1 of homeomorphisms

ϕi : D
dimX
δ ⊂ RdimX → Ui ⊂M

satisfying, for every 0 6 i 6 p− 1:

(1) (f ◦ ϕi) (DdimX
δ ) ⊂ U(i+1)mod p.

(2) The map

ψi = ϕ−1
(i+1)mod p ◦ f ◦ ϕi : DdimX

δ → RdimX

has a pseudo-horseshoe of type ⌊
(
1
ε

)α dimX
⌋ at scale δ connecting x = 0 to itself and

such that:

(a) There are families {Vi,j}j and {Hi,j}j of vertical and horizontal strips, respec-

tively, with j ∈ {1, 2, . . . , ⌊
(
1
ε

)α dimX
⌋}, such that Hi,j = ψ−1

i

(
Vi,j

)
.

(b) For every j1 ̸= j2 ∈ {1, 2, . . . , ⌊
(
1
ε

)α dimX
⌋} we have

min
{
inf {∥a− b∥ : a ∈ Vi,j1 , b ∈ Vi,j2}, inf {∥z − w∥ : z ∈ Hi,j1 , w ∈ Hi,j2}

}
> ε.

Regarding the parameters (δ, ε, p, α) that identify the pseudo-horseshoe, we note that δ
is a small scale determined by the size of the p domains and the charts so that item (1) of
Definition 5.3 holds; ε is the scale at which a large number (which is inversely proportional to
ε and involves α) of finite orbits is separated to comply with the demand (2) of Definition 5.3;
and α is conditioned by the room in the manifold needed to build the convenient amount of
ε-separated points.

Definition 5.4. We say that f has a coherent (δ, ε, p, α)-pseudo-horseshoe if the pseudo-
horseshoe satisfies the extra condition

(3) For every 0 6 i 6 p − 1 and every j1 ̸= j2 ∈ {1, 2, . . . , ⌊
(
1
ε

)α dimX
⌋}, the horizontal

strip Hi,j1 crosses the vertical strip V(i+1)mod p,j2.

By crossing we mean that there exists a foliation of each horizontal strip Hi,j ⊂ DdimX
δ by

a family Ci,j of continuous curves c : [0, 1] → Hi,j such that ψi(c(0)) ∈ Dk−1
δ × {−δ} and

ψi(c(1)) ∈ Dk−1
δ × {δ}.

There are two important main features of coherent (δ, ε, p, α)-pseudo-horseshoes. Firstly,
(δ, ε, p, α)-pseudo-horseshoes associated to a homeomorphism f persist by C0 perturbations
of f . Secondly, if the (δ, ε, p, α)-pseudo-horseshoe is coherent, then the composition ψp−1 ◦

· · · ◦ψ0, on the suitable subdomain of DdimX
δ , contains ⌊

(
1
ε

)α dimX
⌋p horizontal strips which
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≡

≡

Figure 1. Illustration of a coherent (top) and a non-coherent (bottom)
pseudo-horseshoe.

are mapped onto vertical strips, and are eventually ε-separated by f up to the pth iterate.
In particular, any homeomorphism f which has a coherent (δ, ε, p, α)-pseudo-horseshoe also

has a (p, ε)-separated set with ⌊
(
1
ε

)α dimX
⌋p elements (see Figure 1). It is precisely this type

of characterization of the local behavior of vertical and horizontal strips in a neighborhood
of a p-periodic point we will further select that compels the main differences between our
argument and the ones used in [18, 20].

Remark 5.5. While vertical and horizontal strips in Rk can be defined in terms of Euclidean
coordinates, the same notions on the manifold X are local and depend both on the dynamics
of f and the smooth charts (ϕi)06i6p−1. On the manifold, the Intermediate Value Theorem

ensures that Ĥi,j := ϕi(Hi,j) ⊂ Ui crosses every vertical strip V̂i,j := f(Ĥi,j) as well.
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Remark 5.6. To estimate the metric mean dimension using local charts taking values in
Euclidean coordinates, the separation scale in Euclidean coordinates (as in Definition 5.3)
has to be preserved by charts. For this reason, we assume that the local charts (ϕi)06i6p−1

are bi-Lipschitz, and thereby we require the compact manifold to be smooth.

6. Separating sets

We start linking the existence of pseudo-horseshoes to the presence of big separating sets.

Proposition 6.1. Assume that X is a smooth compact manifold. If f ∈ Homeo(X, d) then
there exists C > 1 such that, if f has a coherent (δ, ε, p, α)-pseudo-horseshoe, then

s
(
f, p ℓ, C−1ε

)
>

(
⌊
(1
ε

)α dimX
⌋
)p ℓ

∀ ℓ ∈ N. (6.1)

Proof. Let N = ⌊
(
1
ε

)α dimX
⌋. By assumption, there are charts (ϕi)06i6p−1 such that each of

the maps ψi = ϕ−1
(i+1)mod p ◦ f ◦ ϕi has an ε-separating pseudo-horseshoe of type N at scale

δ. Moreover, the horizontal strips (Hi,j)j=1, ··· , N in the domain DdimX
δ of ψi are ε-separated

and the same holds for the vertical strips (Vi,j)j=1, ··· , N in the image of ψi.
Define the horizontal and vertical strips, respectively, on the manifold X by

Ĥi,j := ϕi(Hi,j) and V̂i,j := f(Ĥi,j) = (f ◦ ϕi)(Ĥi,j)

for 0 6 i 6 p− 1 and 1 6 j 6 N . Observe that, by construction,

ϕ−1
(i+1)mod p

(
V̂i,j

)
=

(
ϕ−1
(i+1)mod p ◦ f ◦ ϕi

)
(Hi,j) = ψi(Hi,j) = Vi,j

is a vertical strip in the domainDdimX
δ of the pseudo-horseshoe ψi. Consider also the following

non-empty compact subsets of X:

j ∈ {1, · · · , N} 7→ K̂0,j := Ĥ0,j

j1, j2 ∈ {1, · · · , N} 7→ K̂1,j1,j2 := f−1(V̂0,j1 ∩ Ĥ1,j2) = f−1(f(K̂0,j1) ∩ Ĥ1,j2)

...
...

j1, j2, · · · , jp ∈ {1, · · · , N} 7→ K̂p−1,j1,j2,...,jp := f−(p−1)
(
fp−1(K̂p−2,j1,j2,...,jp−1) ∩ Ĥp−1,jp

)
.

Taking into account that X is a smooth manifold, we may assume that all the maps {ϕ±1
i : 0 6

i 6 p − 1} are Lipschitz with Lipschitz constant bounded by a uniform constant C > 1. In
particular, by item 2(b) in Definition 5.3, there exist at least N points which are (C−1ε)-

separated by f in K̂0,j .

Claim: With the previous notation,

(j1, j2) ̸= (J1, J2)

x ∈ K̂1,j1,j2 ⇒ x and y are (2, C−1ε)-separated.

y ∈ K̂1,J1,J2

Indeed, as ϕ−1
2 is C-Lipschitz and j1 ̸= J1, then

d2(x, y) > d(f(x), f(y)) > dist(V̂1,j1 , V̂1,J1) > C−1dist(V1,j1 , V1,J1) > C−1ε



12 M. CARVALHO, F. RODRIGUES, AND P.VARANDAS

where

dist(A,B) :=


inf {∥a− b∥ : a ∈ A, b ∈ B}, if A,B ⊂ Rk

inf {d(a, b) : a ∈ A, b ∈ B}, if A,B ⊂ X.

On the other hand, if j1 = J1 and j2 ̸= J2, then f(x), f(y) ∈ V̂1,j1 but lie in different horizontal

strips; consequently, f2(x) ∈ V̂1,j2 and f2(y) ∈ V̂1,J2 and so

d2(x, y) > d(f2(x), f2(y)) > C−1dist(V̂1,j2 , V̂1,J2) > C−1ε.

Recall that we have associated to (j1, j2, . . . , jp) ∈ {1, 2, . . . , N}p the non-empty compact
set

K̂p−1,j1,j2,...,jp = f−(p−1)
(
fp−1(K̂p−2,j1,j2,...,jp−1) ∩ Ĥp−1,jp

)
and observe that, whenever (j1, j2, . . . , jp) ̸= (J1, J2, . . . , Jp), one has

dp(x, y) > C−1ε ∀ x ∈ K̂p−1,j1,j2,...,jp ∀ y ∈ K̂p−1,J1,J2,...,Jp .

This proves that

s
(
f, p , C−1ε

)
> Np.

To show (6.1) for ℓ ∈ N \ {1}, we repeat ℓ times the previous recursive argument for the

iterate fp and the sets K̂p−1,j1,j2,...,jp instead of f and the sets K̂0,j . �
Corollary 6.2. Under the assumptions of Proposition 6.1 one has

lim sup
n→+∞

1

n
log s

(
f, n, C−1ε

)
> α dimX| log ε|. (6.2)

7. A C0-perturbation lemma along orbits

We are interested in constructing coherent pseudo-horseshoes inside absorbing disks with
small diameter. The argument depends on a finite number of C0-perturbations of the initial
dynamics on disjoint supports. Furthermore, the pseudo-horseshoes will be obtained inside
a small neighborhood of an orbit associated to a suitable concatenation of homeomorphisms
C0-close to the initial dynamics.

Taking into account that X is a smooth compact boundaryless manifold, we may fix a
finite atlas a whose charts are bi-Lipschitz. If ra > 0 denotes the Lebesgue covering number
of the domains of the charts, up to a homothety we may assume that the image of every disk
of radius ra in X contains a disk DdimX

1 (v) ⊂ RdimX for some v ∈ RdimX . Let L > 0 be an
upper bound of the bi-Lipschitz constants of all the charts.

Proposition 7.1. Given δ0 > 0 and f ∈ H, there exist p ∈ N and 0 < δ < δ0 such that, for
every 0 < ε≪ δ and every α ∈ (0, 1), we may find g ∈ Homeo(X, d) satisfying:

(a) g has a coherent (δ, Lε, p, α)-pseudo-horseshoe;

(b) D(g, f) 6 2δ0.

Proof. We recall from Section 4 that C0 generic homeomorphisms, belonging to the residual
set H given by Lemma 4.1, have absorbing disks of arbitrarily small diameter which do not
disappear under small C0 perturbations. More precisely, given δ0 > 0, each f ∈ H has both a
p-absorbing disk B with diameter smaller than δ0, for some p ∈ N, and an open neighborhood
Wf in Homeo(X, d) such that for every g ∈ Wf the disk B is still p-absorbing for g. In what
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follows we will always assume that Wf is inside the open ball in (Homeo(X, d), D) centered
at f with diameter δ0.

We start fixing coordinate systems. By Brouwer’s fixed point theorem, f has a periodic
point P of period p in B. For every 0 6 i 6 p − 1, let ϕi be a bi-Lipschitz chart from
DdimX

1 ⊂ RdimX onto some open neighborhood of f i(P ) contained in the disk f i(B) and such
that ϕi((0, · · · , 0)) = f i(P ). These charts are obtained by the composition of restrictions of
the charts of the atlas a and possible translations, which do not affect the value of L.

The next step is to choose δ > 0 such that every C0-perturbation h ∈ Homeo(X, d) of
the identity whose support has diameter smaller than 3Lδ satisfies h ◦ f ∈ Wf , and so
D(h ◦ f, f) 6 δ0. The existence of such a δ is guaranteed by the uniform continuity of f−1,
since

D(h ◦ f, f) = max
x∈X

{
D(h(f(x)), f(x)), D(f−1(h−1(x)), f−1(x))

}
.

We may assume, reducing δ if necessary, that the ball B3Lδ(f
i(P )) is strictly contained in

f i(B) for every 0 6 i 6 p−1. In fact, we may say more: the closeness in the uniform topology
assures that the ball B3Lδ(gi ◦ · · · ◦ g1(P )) is contained in f i(B) for every gi which is C0-close
enough to f and all 0 6 i 6 p− 1.

Step 1: Let N = ⌊
(
1
ε

)α dimX
⌋. Reducing δ if necessary, we may assume that the map

ϕ−1
1 ◦ f ◦ ϕ0 : DdimX

3δ → DdimX
1

is well defined, fixes the origin and is a homeomorphism onto its image. A reasoning similar
to the proof of [20, Proposition 1] provides a homeomorphism ρ1 : D

dimX
1 → DdimX

2δ isotopic
to the identity and such that:

(1)
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)
(DdimX

δ ) ⊂ int(DdimX−1
δ )× (−2δ, 2δ).

(2) For i = 0, 1, . . . ,
[
N
2

]
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)(

0, . . . , 0, (−1 +
4i

N
)δ
)

∈ int(DdimX−1
δ ) × (−2δ, −δ).

(3) For i = 0, 1, . . . ,
[
N−1
2

]
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)(

0, . . . , 0, (−1 +
4i+ 2

N
)δ
)

∈ int(DdimX−1
δ ) × (δ, 2δ).

By continuity of ρ1, if r > 0 is small enough then the conditions (1)-(3) above imply that:

(1’)
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)
(DdimX−1

r × D1
δ ) ⊂ int(DdimX−1

δ )× (−2δ, 2δ).

(2’) For i = 0, 1, . . . ,
[
N
2

]
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)
(DdimX−1

r ×
{
(−1 +

4i

N
)δ
}
) ⊂ int(DdimX−1

δ ) × (−2δ, −δ).
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(3’) For i = 0, 1, . . . ,
[
N−1
2

]
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)
(DdimX−1

r ×
{
(−1 +

4i+ 2

N
)δ
}
) ⊂ int(DdimX−1

δ ) × (δ, 2δ).

ρ1 ◦ [φ
−1

1
◦ f ◦ φ0]

D
dimX

2δ D
dimX

2δ

Figure 2. Illustration of the isotopy creating a pseudo-horseshoe.

Now, properties (1’)-(3’) imply that there exists a family V = (Vi)16i6N of connected
disjoint vertical strips such that

Vi =
(
ρ1 ◦ ϕ−1

1 ◦ f ◦ ϕ0
)
(Ki) ⊂ DdimX

δ

for some connected subset

Ki ⊂ DdimX−1
r ×

[
(−1 +

2i

N
)δ, (−1 +

2i+ 2

N
)δ

]
.

The isotopic perturbation ρ1 of the identity can be performed so that item (5) of Definition 5.1
holds, and we shall assume this is the case. See Figure 2. Making an extra C0-perturbation
supported in DdimX

δ , if necessary, we ensure that the vertical strips Vi are ε-distant apart.
This separability process is feasible because α ∈ (0, 1), so

N = ⌊
(1
ε

)α dimX
⌋ <

(1
ε

)dimX
.

Let h1 ∈ Homeo(X, d) be a homeomorphism conveying ρ1 to a neighborhood of f(P ) and
such that

h1(z) :=

 ϕ1 ◦ ρ1 ◦ ϕ−1
1 (z), if z ∈ f(ϕ0(D

dimX
2δ ))

z, if z /∈ f(ϕ0(D
dimX
3δ )).

By construction, the diameter of the support of h1 is smaller than 3Lδ. By the choice of
δ, this ensures that the homeomorphism f1 = h1 ◦ f belongs to Wf , and so D(f1, f) 6 δ0.
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Moreover, in DdimX
2δ one has

ϕ−1
1 ◦ f1 ◦ ϕ0 = ϕ−1

1 ◦ h1 ◦ f ◦ ϕ0 = ρ1 ◦ ϕ−1
1 ◦ f ◦ ϕ0

and, consequently, f1 has a L−1ε-separated pseudo-horseshoe of type N at scale δ connecting
P to f(P ) (which may differ from f1(P )). Thus, if p = 1, the proof of Proposition 7.1 is
complete.

Step 2: Assume now that p > 2. By construction, the homeomorphism f1 belongs toWf , and

so f1(B) is a p-absorbing disk for f1. Now, by a translation in the charts ϕ1 and ϕ2 in RdimX ,
which does not change the Lipschitz constant L, we assume without loss of generality that

ϕ1(0, 0, . . . , 0) = f(P ) and ϕ2(0, 0, . . . , 0) = f1(f(P )). Therefore,
(
ϕ2◦f1◦ϕ−1

1

)
(0, 0, . . . , 0) =

(0, 0, . . . , 0).

Proceeding as in Step 1, we find homeomorphisms ρ2 : D
dimX
1 → DdimX

2δ and

h2(z) :=

 ϕ2 ◦ ρ2 ◦ ϕ−1
2 (z), if z ∈ f1(ϕ1(D

dimX
2δ ))

z, if z /∈ f1(ϕ1(D
dimX
3δ ))

such that

• the support of h2 is contained in a ball with diameter 3Lδ centered at f1(f(P ));

• f2 = h2 ◦ f1 has a L−1ε-separated pseudo-horseshoe of type N at scale δ connecting
f(P ) to f1(f(P )).

The support of the perturbation h2 is disjoint from the one of the homeomorphism h1 and
has diameter smaller that 3Lδ; thus f2 ∈ Wf , and so D(f2, f) 6 δ0.

Let us summarize what we have obtained so far. Under the two previous perturbations we
have built a homeomorphism f2 ∈ Wf exhibiting two pseudo-horseshoes, one connecting P to
f(P ) and another connecting f(P ) to f1(f(P )). Since these perturbations are performed in
Euclidean coordinates (using either the charts ϕi or their modifications by rigid translations,
which do not change the notions of horizontal and vertical strip), and then conveyed to the
manifold X using the fixed charts, we are sure that these pseudo-horseshoes are coherent.

Step 3: The recursive argument. Set f0 = f . Using the previous argument recursively
we obtain homeomorphisms {f0, f1, f2, . . . , fp−1} such that fi ∈ Wf , so clearly D(fi, f) 6 δ0
for every 1 6 i 6 p − 1; besides, fp−1 has L−1ε-separated pseudo-horseshoes connecting the
successive points of the finite piece of the random orbit{

P, f0(P ), (f1 ◦ f0)(P ), (f2 ◦ f1 ◦ f0)(P ), . . . , (fp−1 ◦ · · · ◦ f2 ◦ f1 ◦ f0)(P )
}
.

If the points (fp−1 ◦ · · · ◦f2 ◦f1 ◦f0)(P ) and P are distinct, to end the proof of Proposition 7.1
we need an extra perturbation to identify them. This last perturbation is performed in the
interior of the disk B, so the resulting homeomorphism g satisfies D(g, fp−1) 6 δ0 and g = f
in X \

∪
06 j 6 p−1 f

j(B). Therefore, D(g, f) 6 D(g, fp−1) + D(fp−1, f) 6 2δ0 and g has a

L−1ε-separated pseudo-horseshoe of type N at scale δ connecting the point P to itself. �

Remark 7.2. For the construction of the pseudo-horseshoes it is essential that α is strictly

smaller than 1. Indeed, only if 0 < α < 1 are we able to create ⌊
(
1/ε

)α dimX
⌋ points that are
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ε-separated inside a ball with diameter 2δ, since this obliges ε > 0 to satisfy the condition

dimX

√
⌊
(
1/ε

)α dimX
⌋ ε < 4δ or, equivalently, 0 < ε < 1−α

√
4δ.

8. Proof of Theorem A

Firstly, we note that mdimM (X, f, d) 6 dimX for every f ∈ Homeo(X, d) (cf. [18, §5]).
We are left to prove the converse inequality in a residual subset of Homeo(X, d).

Fix a strictly decreasing sequence (εk)k∈N in the interval (0, 1) which converges to zero.
For any α ∈ (0, 1) and k ∈ N, consider the C0-open set O(εk, α) of the homeomorphisms
g ∈ Homeo(X, d) such that g has a coherent (δ, Lεk, p, α)-pseudo horseshoe, for some δ > 0
and p ∈ N and L > 0. Observe that, given α ∈ (0, 1) and K ∈ N, the set

OK(α) :=
∪

k ∈ N
k > K

O(εk, α)

is C0-open and, by Proposition 7.1, nonempty. Besides, it is C0-dense in Homeo(X, d) since
the residual H (cf. Lemma 4.1) is C0-dense in the Baire space Homeo(X, d) and Proposi-
tion 7.1 holds for every f ∈ H. Define

R :=
∩

α∈ (0,1)∩Q

∩
K ∈N

OK(α).

This is a C0-Baire residual subset of Homeo(X, d) and

Lemma 8.1. mdimM (X, g, d) = dimX for every g ∈ R.

Proof. Take g ∈ R. Given a rational number α ∈ (0, 1) and a positive integer K, the
homeomorphism g has a coherent (δ, LεjK , p, α)-pseudo-horseshoe for some jK > K, δ > 0,
p ∈ N and L > 0. Therefore, by Corollary 6.2,

lim sup
n→+∞

1

n
log s(g, n, LεjK ) > α dimX | log εjK |

for a subsequence (εjK )K ∈N of (εk)k∈N. Thus,

mdimM (X, g, d) > lim sup
k→+∞

lim supn→+∞
1
n log s (g, n, Lεk)

| log εk|
> α dimX.

As α ∈ (0, 1) ∩Q is arbitrary, Theorem A is proved. �

Remark 8.2. The assumption that the manifoldX has no boundary is not essential. Allowing
boundary points we need to alter the argument to prove Proposition 7.1 on two instances.
Firstly, absorbing disks must be considered with respect to the induced topology. Secondly,
the role of Brouwer fixed point theorem is transferred to the C0-closing lemma, which also
ensures the existence of a periodic point. In case this periodic point lies at the boundary of
the manifold, an additional C0-arbitrarily small perturbation yields a close homeomorphism
with an interior periodic point. Accordingly, we are obliged to change the closeness estimate
on the statement of Proposition 7.1, by replacing 2δ0 by 3δ0.
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9. Proof of Theorem B

Let X be a compact smooth boundaryless manifold with dimension strictly greater than
one and d be a metric compatible with the smooth structure of X. It is known that there
exist C0-Baire generic subsets Ri ⊂ Homeo(X, d) (i = 1, 2) such that:

(1) The closure of the set Per(f) of periodic points coincides with both the non-wandering
set Ω(f) and the chain recurrent set CR(f) of every homeomorphism f ∈ R1 (cf. [8]).

(2) mdimM (X, f, d) = dimX for every f ∈ R2 (by Theorem A).

Therefore, taking into account that mdimM (X, g, d) = mdimM (Ω(g), g |Ω(g), d) for all home-
omorphisms g ∈ Homeo(X, d), we obtain

mdimM (Per(f), f |
Per(f)

, d) = mdimM (Ω(f), f |Ω(f), d) = dimX

for every homeomorphism f in the C0-Baire generic subset R := R1 ∩ R2. Now, noticing
that mdimM (Ω(f), f |Ω(f), d) 6 dimB (Ω(f)) 6 dimX we conclude that

dimB (Per(f)) = dimB (Ω(f)) = dimX ∀ f ∈ R.
The theorem now follows from the fact that the upper box dimensions of a set and its closure
coincide (cf. [2, Proposition 3.4]).

10. Proof of Theorem C

We begin presenting the proof for the case of the Euclidean distance. Afterwards we will
stress the necessary adaptations for more general metrics.

10.1. Euclidean metric. The first step of the proof is the construction of piecewise affine
continuous models with any prescribed metric mean dimension. To complete the argument
we use surgery in the space of continuous maps on the interval.

10.1.1. Piecewise affine models. Recall that d stands for the Euclidean metric on [0, 1] and
that C0([0, 1], d) is the space of continuous maps on the interval [0, 1] with the uniform
metric. We start describing examples in C0([0, 1], d) with metric mean dimension equal to
any prescribed value β ∈ [0, 1].

Proposition 10.1. For every β ∈ [0, 1] there exists a piecewise affine function fβ ∈ C0([0, 1], d)
such that fβ(0) = 0, fβ(1) = 1 and mdimM ([0, 1], fβ , d) = β.

Proof. If β = 0, the assertion is trivial: take for instance fβ = identity map. Now, fix
β ∈ (0, 1], take a0 = a−1 = 1 and consider a sequence (ak)k∈N of numbers in (0, 1) strictly
decreasing to zero. For any k > 0, consider the interval

Jk = [a2k+1, a2k]

denote by γk the diameter a2k−a2k+1 of Jk and fix a point bk+1 of the interval (a2k+2, a2k+1).
Let Gk := [a2k+2, a2k+1] be the closed interval gap between Jk and Jk+1.

On each interval Gk, define fβ as a continuous piecewise affine map which maps the interval
[a2k+2, a2k+1] onto itself, fixes the boundary points and has an attracting fixed point at
bk whose topological basin of attraction contains all points in the interval (a2k+2, a2k+1).
By construction the set

∪
k>0Gk is fβ-invariant, restricted to which fβ has zero topological

entropy; hence this compact set will not contribute to the metric mean dimension of fβ .
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We now define the map fβ on the set
∪

k>0 Jk. Let (ℓk)k>0 be a strictly increasing sequence
of positive odd integers such that ℓ0 > 3. Fix k > 0 and subdivide the interval Jk in ℓk
sub-intervals (Jk,i)16i6ℓk of equal size γk/ℓk, where γk = a2k −a2k+1. For each 0 6 i < ℓk, set

ck,i := a2k+1 + i
γk
ℓk
.

Afterwards define

fβ(x) :=


ℓk
γk

(x− ck,i) + a2k+1, if x ∈ Jk,1+4i, 0 6 i 6 ik

− ℓk
γk

(x− ck,i) + a2k, if x ∈ Jk,3+4i, 0 6 i 6 ik − 1

(10.1)

where 1 6 ik 6 ℓk is given by

ik :=
⌊( ℓk

γk

)β ⌋
. (10.2)

︸ ︷︷ ︸

ik subintervals
︸ ︷︷ ︸

!k subintervals

Figure 3. Selection procedure of piecewise linear components of fβ .

In rough terms, we have defined fβ on each interval Jk as a piecewise affine self map taking
values on Gk ∪ Jk ∪ Gk−1 in such a way that it has a metric mean dimension close to β
at a certain scale. See Figure 3. Notice that this construction is entirely analogous to the
generation process of a (δ, ε, p, α)-pseudo-horseshoe in Section 5, taking δ = γk, ε = γk/ℓk,
p = 1 and α = β. In particular, having such a pseudo-horseshoe is a C0-open condition.

In the remaining sets( ∪
06 i<

4ik−1

4

Jk,2+4i

) ∪ ( ∪
1+4ik <i6 ℓk

Jk,i

) ∪ ( ∪
06 i<

4ik−3

2

Jk,4+4i

)
(10.3)

we define fβ as a piecewise affine map preserving the boundary points in such a way that the
sets (10.3) are mapped inside the regions Gk−1 and Gk, respectively (see e.g. Figure 4). By
construction, the map fβ is continuous, piecewise affine and fixes the points 0 and 1.

Claim: If the sequences (ak)k∈N and (ℓk)k∈N satisfy the additional condition

a2k =
a2k−2 − a2k−1

ℓk−1
∀k ∈ N (10.4)

then mdimM ([0, 1], fβ, d) = β.
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Indeed, given ε > 0 smaller than a2−a3
ℓ1

, let k = k(ε) ∈ N be the largest positive integer
such that

ε < εk :=
a2k − a2k+1

ℓk
.

Thus εk+1 6 ε < εk, and so the assumption (10.4) ensures that a2k+2 = εk+1 6 ε. Therefore,

fβ([0, a2k+2]) ⊂ [0, a2k+2] ⊂ [0, ε]

and, as ε < εk, for every n ∈ N one has

s(fβ , n, ε) > s(fβ |J∞
k
, n, ε) > s(fβ |J∞

k
, n, εk) =

⌊( ℓk
γk

)β ⌋n
=

⌊ 1

εβk

⌋n
>

⌊ 1

εβ

⌋n
(10.5)

where J∞
k :=

∩
i≥0 f

−i
β (Jk). Consequently, as n is arbitrary

mdimM ([0, 1], fβ, d) > β.

Before proceeding, we note that the sequences (ak)k∈N and (ℓk)k∈N may be chosen complying
with the condition (10.4).

a2k+1a2k+2

• •••

a2k+3 a2k

bk
•

•

•

•

•

•

Figure 4. Local construction of an attractor between two consecutive pseudo-horseshoes.

On the other hand, by construction the derivative of fβ at the points of the intersection

Jk ∩ f−1
β (Jk) ∩ . . . ∩ f

−(n−1)
β (Jk) is constant and equal to γk/ℓk. Thus, this set is formed

by (γkℓk )
n disjoint and equally spaced subintervals. Moreover, any such subinterval is the

(n, εk/2)-dynamical ball associated to its mid-point. Therefore, every (n, ε)-dynamical ball of

fβ which is contained in an (n, εk)-dynamical ball inside Jk ∩ f−1
β (Jk)∩ . . .∩ f

−(n−1)
β (Jk) has

diameter smaller or equal to ε (γkℓk )
n (actually equal when dynamical balls do not intersect
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the boundary of the connected components of Jk ∩ f−1
β (Jk)∩ . . .∩ f

−(n−1)
β (Jk)). This implies

in particular that

s(fβ |J∞
k
, n, ε) 6 s(fβ |J∞

k
, n, εk) ·

εk (
γk
ℓk
)n

ε (γkℓk )
n

= s(fβ |J∞
k
, n, εk) ·

εk
ε

=
⌊ 1

εβk

⌋n
· εk
ε

(10.6)

and so

lim sup
n→∞

1

n
log s(fβ |J∞

k
, n, ε) 6 β| log εk| 6 β| log ε|.

Furthermore, if 1 6 t < k then (10.6) also implies that

s(fβ |J∞
t
, n, ε) 6 s(fβ |J∞

t
, n, εt) ·

εt
ε

which yields

lim sup
n→+∞

1

n
log s(fβ |J∞

t
, n, ε) 6 β| log εt| 6 β| log ε|.

Since ε may be taken arbitrarily small, we conclude that

mdimM ([0, 1], fβ, d) 6 β.

Thus, mdimM ([0, 1], fβ , d) = β. This completes the proofs of the claim and of the proposition.
�

10.1.2. Level sets of the metric mean dimension. Let us now show that for every β ∈ [0, 1]
there exists a C0-dense subset Dβ ⊂ C0([0, 1], d) such that mdimM ([0, 1], f, d) = β for every
f ∈ Dβ .

When β = 0 it is enough to take D0 = C1([0, 1]), which is a C0-dense subset of C0([0, 1], d).
Indeed, for any C1 interval map f one has htop(f) 6 log ∥f ′∥∞ < +∞ and, consequently,
mdimM ([0, 1], f, d) = 0.

Fix 0 < β 6 1 and f ∈ C0([0, 1], d), and let ε > 0 be arbitrary. We claim that there exists
h ∈ C0([0, 1], d) such thatD(f, h) < ε and mdimM ([0, 1], h, d) = β. The proof is done through
a local perturbation starting at the space of C1-interval maps as we will explain. Firstly, by
the denseness of the C1-interval maps we may choose h1 ∈ C1([0, 1]) so that D(h1, h) <

ε
3 .

Secondly, if P denotes a fixed point of h1 (which surely exists), let h2 ∈ C0([0, 1], d) be such
that D(h2, h1) <

ε
3 and whose set of fixed points in a small neighborhood of P consists of an

interval J centered at P . This C0-perturbation can be performed in such a way that h2 is

C1 at all points except, possibly, the extreme points of J . Finally, if Ĵ ( J̃ ( J and Ĵ , J̃ are

intervals of diameter smaller than ε/3, we take a C1 map χ such that χ ≡ 1 on Ĵ and χ ≡ 0

on [0, 1] \ J̃ .
Let Tλ denote the homothety of parameter λ ∈ (0, 1) and |Ĵ | stand for the diameter of the

interval Ĵ . Since {χ, 1− χ} is a partition of unity, the map

h3 := h3,β = (1− χ) · h2 + χ · T|Ĵ | ◦ fβ ◦ T|Ĵ |−1 (10.7)

is continuous, coincides with h2 on [0, 1] \ J̃ and is linearly conjugate to fβ on the interval Ĵ .
Moreover, by the uniform continuity of h2 we can choose h3 so that D(h3, h2) <

ε
3 provided

that Ĵ , J̃ are small enough. This guarantees that D(h3, h) < ε and, since all maps in the
combination (10.7) but fβ are smooth (except possibly at two points), then

mdimM ([0, 1], h3, d) = mdimM ([0, 1], fβ , d) = β.
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This ends the proof of the first part of Theorem C.
Regarding the last statement of Theorem C, we might argue as in the proof of Theorem A.

However, as we have established that D1 is C0-dense in C0([0, 1], d), the reasoning can be
simplified (observe that the case α = 1 was not considered in Theorem A).

Take a strictly decreasing sequence (εk)k∈N in the interval (0, 1) converging to zero. Given
K ∈ N, consider the non-empty C0-open set

DK =
{
g ∈ C0([0, 1]) : g has a (γ, εk, 1, 1)-pseudo-horseshoe, for some k > K and γ > 0

}
.

Notice that DK is C0-dense in C0([0, 1], d) by the first part of Theorem C. Define

D :=
∩

K ∈N
DK .

This is a C0-Baire residual subset of C0([0, 1], d). Besides, mdimM ([0, 1], g, d) = 1 for every
g ∈ D. Indeed, given a positive integerK, such a map g has a (γjK , εjK , 1, 1)-pseudo-horseshoe
for some jK > K and γjK > 0. Therefore, an estimate analogous to (10.5) indicates that, for
a subsequence (εjK )K ∈N of (εk)k∈N, one has

lim sup
n→+∞

1

n
log s(g, n, εjK ) > | log εjK |.

Thus,

mdimM ([0, 1], g, d) > lim sup
k→+∞

lim supn→+∞
1
n log s (g, n, εk)

| log εk|
> 1

and so mdimM ([0, 1], g, d) = 1.

10.2. Metrics in ME. Let ρ be any metric on [0, 1] topologically equivalent to d, and
C0([0, 1], ρ) denote the space of continuous endomorphisms of the interval ([0, 1], ρ). The
argument used in the case of the Euclidean distance does not apply directly due to the possi-
ble absence of homogeneity. More precisely, the surgery described in equation (10.7) may not
preserve the upper metric mean dimension of the piecewise affine model. Notwithstanding, we
will show that a suitable C0-local perturbation replaces the previous role of the homothety.

10.2.1. Piecewise affine models. The construction is similar to the one in Subsection 10.1.1,
in local domains.

Proposition 10.2. For every closed interval I ⊂ [0, 1] there exists a piecewise affine function
g1 ∈ C0(I, ρ) such that g1 fixes the boundary points of I and mdimM (I, g1, ρ |I×I) = 1.

Proof. The proof is similar to the one of Proposition 10.1. Write I = [a, b]. Take a0 = a−1 = a
and consider a sequence (ak)k∈N of numbers in I strictly decreasing to a. For any k > 0,
consider the interval

Jk = [a2k+1, a2k]

denote by γk the d-diameter of Jk and fix a point bk+1 of the interval (a2k+2, a2k+1). Let Gk :=
[a2k+2, a2k+1] be the closed interval gap between Jk and Jk+1. As before, on each interval
Gk, define g1 as a continuous piecewise affine map which maps the interval [a2k+2, a2k+1] onto
itself, fixes the boundary points and has an attracting fixed point at bk whose topological
basin of attraction contains all points in the interval (a2k+2, a2k+1). The set

∪
k>0Gk does

not contribute to the metric mean dimension of g1.
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We now define the map g1 on the set
∪

k>0 Jk. Let (ℓk)k>0 be a strictly increasing sequence
of positive odd integers such that ℓ0 > 3. Fix k > 0 and subdivide the interval Jk in ℓk
sub-intervals (Jk,i)16i6ℓk of equal d-length, each of them with length γk/ℓk. As before, it is
enough to define g1 affine increasing on intervals of the form Jk,1+4i, 0 6 i 6 ik, and affine
and decreasing on intervals of the form Jk,3+4i, 0 6 i 6 ik − 1, where

ik :=
⌊ ℓk
γk

⌋
. (10.8)

In the remaining sets( ∪
06 i<

4ik−1

4

Jk,2+4i

) ∪ ( ∪
1+4ik <i6 ℓk

Jk,i

) ∪ ( ∪
06 i<

4ik−3

2

Jk,4+4i

)
(10.9)

we define g1 as a piecewise affine map preserving the boundary points of I in such a way that
the sets (10.9) are mapped inside the regions Gk−1 and Gk, respectively. By construction,
the map g1 is continuous, piecewise affine and fixes the points a and b.

We claim that if the sequences (ak)k∈N and (ℓk)k∈N satisfy the additional condition

a2k =
diamρ([a2k−2, a2k−1])

ℓk−1
∀k ∈ N (10.10)

then mdimM (I, g1, ρ) = 1. Indeed, an estimate identical to (10.5) (which at this point involves
a counting argument and does not make use of the metric) ensures that

mdimM (I, g1, ρ |I×I) > 1.

This proves the proposition. �

10.2.2. Maximal level set of the upper metric mean dimension. In order to complete the
proof of the theorem, as before it is enough to show that there exists a C0-dense subset
D1 ⊂ C0([0, 1], ρ) such that mdimM ([0, 1], f, ρ) = 1 for every f ∈ D1. Take any continuous
map f of the interval. Since it has a fixed point, by a C0-small perturbation we produce a
C0-close continuous map exhibiting an interval I ⊂ [0, 1] of fixed points. Let g1 : I → I be
given by Proposition 10.2 with mdimM (I, g1, ρ |I×I) = 1. The map f1 ∈ C0([0, 1], ρ) given by

f1(x) =

{
g1(x) if x ∈ I

f(x) otherwise

is C0-close to f and satisfies mdimM ([0, 1], f1, ρ) = 1. This completes the proof of Theorem C.

Remark 10.3. A final word concerning the different range of the results obtained for home-
omorphisms on high-dimensional manifolds and the ones established for continuous maps of
the interval. While the use of a metric compatible with the smooth structure on the manifold
may turn to be not essential, the fact is that our proof of Theorem A depends on the prop-
erty that the cardinality of an ε-separated set on the cube [0, 1]dimX is approximately equal
to (1ε )

dimX , an estimate valid for the Euclidean metric since it is strongly equivalent to the
metric given by the maximum of the coordinates.
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