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Abstract 

The traditional geometrical based approaches used in facial emotion recognition fail to 
capture the uncertainty present in the quadrilateral shape of emotions under analysis, which 
reduces the recognition accuracy rate. Furthermore, these approaches require extensive 
computational time to extract the facial features and to train the models. This article proposes 
a novel geometrical fuzzy based approach to accurately recognize facial emotions in images 
in less time. The four corner vertices of the mouth are the most important features to 
recognize facial emotions and can be extracted without the need of a reference face. These 
extracted features can then be used to define the quadrilateral shape, and the associated 
degree of impreciseness in the shape can be accessed using the proposed geometric fuzzy 
membership functions. Hence, four fuzzy features are derived from the membership 
functions and given to classifiers for emotion evaluations. In our tests, the fuzzy features 
achieved an accuracy rate of 96.17% in the Japanese Female Facial Expression database, and 
98.32% in the Cohn-Kanade Facial Expression database, which are higher than the ones 
achieved by other common up-to-date methods. In terms of computational time, the proposed 
method required an average of 0.375 seconds to build the used model in a common PC. 
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1. Introduction 

Emotions play an important role in our daily lives. A study on communications 

through emotions conducted by a psychologist (Mehrabian 1968) found that 55% of our usual 

messages are transmitted through facial expressions or emotions, vocal cues convey 38% and 

the remainder 7% is expressed using verbal cues. This suggests that facial expressions play 

a major role in human social interactions. Typically, facial expressions are created through 

shrinking of one or more facial muscles, which temporarily deform facial components. 

Ekman and Friesen (1978) developed a well-accepted study on facial expressions and 

suggested that expressions are universal across human ethnicities and cultures. Their research 

also stated that there are six basic emotions: anger, disgust, fear, happiness, sadness and 

surprise, which can be evaluated based on facial muscle movements generated by 44 

anatomical Action Units (AUs) defined in the Facial Action Coding System (FACS). In 

recent years, several authors managed to recognize facial emotions using AUs (Zhang L et 

al. 2015; Jain s et al. 2011; Wu T et al. 2010; Shan C et. 2009). However, it is a very laborious 

task to determine emotions using the FACS; consequently, attention has been given to 

automatic recognition of emotions. The recent progress in automation has seen a fast growth 

in facial expression analysis with applications in computer vision, pattern recognition and 

Human-Computer Interaction. Several other applications, such as Emo chat (Anderson & 

McOwan 2004), intelligent tutoring system (Whitehill et al. 2008), facial animation, and 

virtual reality of facial emotions have also been developed for the recognition of emotions. 

Systems for automatic detection of facial expressions can extract relevant facial features from 

either static images or image sequences that are input to computational classifiers to 

recognize the respective emotions. Usually, there are two ways to recognize facial 

expressions, namely, geometric based and appearance based approaches. The geometric 

based approach uses the shape and position of the face under analysis, while the appearance 

based features approach uses wrinkles, bulges, furrows, and other facial peculiarities, and 

obtain essential information about facial expressions through micro-patterns. Several 

appearance based algorithms have been proposed (Happy S L et al. 2015; Poursaberi. A et 
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al. 2012; Zhong et al. 2012; Zhang L et al. 2011; Mingli song M et al. 2010; Uddin M Z et 

al. 2009). However, the major challenge of appearance based features is its inability to 

generalize appearance based features across different human races. Although geometric 

features also have their drawbacks, for example, they are very difficult to track and can easily 

be affected by noise, they can generate all the necessary information to recognize facial 

expressions (Valstar et al. 2005). In fact, humans have an extraordinary ability to recognize 

expressions, and, for example, even when a cartoon image has only facial contours, they can 

easily recognize the associated expression (Gu et al. 2010). Therefore, geometric based 

features seem to be the best option for the development of computational systems to 

recognize human expressions. 

Most of the algorithms in the literature to detect facial expressions accurately can be 

classified as holistic or local. Eigenfaces and Fisherfaces (Turk and Pentland. 1991; 

Belhumeur et al. 1997) are holistic methods that extract facial features from the complete 

face under analysis On the other hand, local methods separate a face image into a few small 

blocks and apply certain feature extraction algorithms. The authors in (Heisele et al. 2007; 

Zou et al. 2007) reported that the performance of facial expression recognition is significantly 

increased when local features are used compared to the whole face. Those local descriptors 

are identified through deformations of eyebrows, eyes, nose, mouth and 42 muscles. Among 

the local regions, Li et al. (2013) stated that expression recognition based on the mouth is 

more rewarding than one based on the upper part of the face, that is the eyes. This statement 

can be justified since: First, the extraction of feature points from the mouth is easier than 

from the eye because the feature points in the mouth are much more clearly distinguished 

from each other. Majunder et al. (2014) reported that the feature detection in the eyes is a 

challenging task due to the presence of eyelashes, shadows between the eyes and eyebrows, 

and the very small gap between eyes and eyebrows. Moreover, the eye vertices are located 

in the skin region without a distinctive grey scale. Second, the main deformations in the face 

due to emotions are in the mouth region. Third, the main discerning features associated to 

facial expressions are distributed in the lower part of the face (Gu et al. 2012). Fourth, 
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although it is well-known that the eye is highly sensitive to emotions, the stimulus response 

to the emotions is very small. Furthermore, each longitudinal section of the face seems to be 

a mirror of the other one, but the symmetrical view does not resemble the same, as can be 

observed in Figure 1. These findings clearly suggest that the full mouth region with its 

geometrical nature can generate promising results. 
 

 

 

 
Figure 1 Two sample examples of the symmetrical view of the face: the face on the left is 

the original face and the face in the centre is the left symmetry and on the right is the right 

symmetry. 

 

This work introduces a fully automatic method for facial expression recognition using 

geometric features. A set of four corner vertices is extracted from the mouth region of the 

static image under analysis. The extracted features are used to define the quadrilateral shape 

and are then processed by the proposed fuzzy membership functions. The fuzzy features are 

derived from the membership functions with the ability to deal with uncertainty and are 

processed by a classifier that recognizes the presence of any basic expression. The 

experimental results show that the proposed approach achieves high recognition rates. The 

flow chart of the proposed approach is shown in Figure 2. 
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Figure 2 Flow chart of the proposed approach 

 

This article is organized as follows: related works are reviewed in Section 2, the proposed 

approach is presented in Section 3; the results of the proposed approach are compared to the 

ones obtained by other up-to-date approaches in Section 4; and finally, Section 5 brings the 

conclusions and suggests future works. 
 

2. Related work 

Researchers have worked on human facial emotion recognition for several decades 

and various techniques and approaches to recognize emotions have been proposed. Some of 

these techniques and approaches are reviewed in the following subsections. 

2.1 Emotion recognition from whole faces 

To recognize emotions from whole faces, researchers have exploited pixel based 

information (Wang and Ruan, 2010; Rahulamathavan et al. 2013), Wavelet transform (Shih 

et al. 2008; Kazmi et al. 2012), Gabor filtering (Donato et al. 1999; Deng et al. 2005), edges 

and skin detection (Ilbeygi and Hosseini 2012), Discrete Cosine Transform (Kharat and 

Dudul 2009; Gupta et al. 2011), optical flow analysis (Anderson and McOwan 2006), thermal 
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analysis (Sophie et al. 2011), local binary pattern (Feng et al. 2004; Liu et al. 2009; Moore 

and Bowden 2009; Shan et al. 2009; Zhao and Zhang 2011; Zhang  X et al. 2012; Rizwan et 

al. 2013; Luo et al. 2013) and level set (Sohail et al. 2011) based methods. These methods 

extract features from whole faces of different persons, which increases the dimensionality of 

the recognition problem and the required computational time and complexity grows. 

2.2 Appearance-based approaches 

The major disadvantage of active based model methods, like the Active Appearance 

Model (AAM) (Xiaorong Pu et al. 2015; Luo et al. 2011) and the Active Shape Model (ASM) 

is the need for prior information concerning the expected shape features. During the training 

phase, the shape features of these models have to be identified, usually manually (Laniti et 

al. 1997), and the recognition rate also strongly depends on the sample set used for training. 

A recent study to recognize facial expressions addressed the problem through the selection 

of the region near salient facial components: the extraction and matching of salient patch-

based Gabor features was suggested in (Zhang et al. 2011). However, the proposed 

appearance based method achieved low recognition rates due to the inefficiency in selecting 

suitable patches for matching. Gu et al. (2010) used a radial encoding strategy based on Gabor 

filters to recognize facial expressions. The self-organizing map was applied to check the 

homogeneity of the encoded contours. The experimental results obtained using faces without 

occlusion, i.e. whole faces, and with local occlusions, showed interesting results. Xie and 

ManLam (2009) introduced the shape and texture based method for facial expression 

recognition. Thiago et al. (2013) used a multi-objective genetic algorithm to select the best 

features from a pool built using Gabor filtering and local binary patterns. However, the 

selection of the more suitable features from the salient regions increased the required 

processing time. 

2.3 Geometric-based approaches 

In these approaches, the geometric features are extracted from areas of facial components, 

e.g. eyes, mouth and nose, and then the geometric relations among the extracted features are 

processed. Kobayashiand (1997) developed a local facial features model using geometric 
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facial points. Zhang Z et al. (1998) suggested the used of the position of fiducial points of 

the face under analysis, the multi-scale and multi-orientation Gabor wavelet coefficients at 

the same points or their combination to address the problem of facial expression recognition. 

Several recent geometric based approaches are based on geometric feature tracking (Kotsia 

and Pitas 2007; Song et al. 2010; Valstar and Pantic 2012), Discriminant Non-negative 

Matrix Factorization (Kotsia et al. 2008), graph based feature point tracking (Zafeiriou and 

Pitas 2008) and facial contours (Gu, Venkatesh and Xiang, 2010). In a common approach, 

the deformation of facial components is assessed by tracking the variation of feature points 

from the expressive image under study to the related neutral image. Usually, humans have 

the ability to recognize facial expressions without any reference face. Hence, the 

development of solutions for facial expression recognition using reference faces reduces their 

success, as they are very different from the way humans perceive emotions, and also it 

increases the pre-processing time. Moreover, emotion analysis based on geometrical shapes 

always contains a certain level of ambiguity, which was not been taken into account in the 

previously mentioned approaches.  

2.4 Recognition Modules 

Various classifiers have been used to build recognition modules for facial expressions. The 

well-known recognition modules are based on support vector machines (SVMs), hidden 

Markov models (HMM), Random Forest, Boosting, Bagging, Gaussian mixture models 

(GMM), dynamic Bayesian networks (DBN), and MultiLayer Perceptron (MLP). For 

example, (Asthana et al., 2009, Ghimire D et al. 2013, Kotisa I et al, 2007, Moore S et al. 

2011, Rudovic O et al. 2012, Saeed A et al. 2014, Zhang S et al., 2012, Bartlett 2005; Sarah 

Adel Bargal et al. 2016) used SVMs, HMM models were used in (Yeasin M et al., 2006, 

Uddin M et al. 2009), MLP based networks in (Zhang et al. 1999; Mayor Torres et al. 2017; 

Pawel Tarnowski et al. 2017), Deep Neural networks in (Wan Ding et al. 2016; Yuchi Huang 

et al. 2016; Pablo Barros et al. 2017), and Radial Basis Function Networks (RBFN) in 

(Rosenblum et al. 1996) to classify facial emotions directly, but always without taking into 

account the vagueness presented in the model, which can reduce the recognition rates.  
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           The above review shows that the recent approaches have failed to capture the 

ambiguity presented in the geometric shape under analysis. Also the deformations associated 

with the expression need to be found by relating them to a corresponding neutral facial image. 

This reduces the efficiency and increases the required computational time and complexity. 

In our approach, the reference image is not needed, and a reduced number of features are 

extracted from the mouth to be analysed. The extracted features are then used to define the 

quadrilateral shape for each emotion and the fuzzy membership functions are derived from 

the shape. The proposed fuzzy membership functions are a square, rhombus, kite and an 

isosceles trapezoid. These four fuzzy functions produce the fuzzy features to capture the 

impreciseness and vagueness, i.e. the uncertainty, present in the shape. Then, SVM and 

Random Forest based classifiers are used for recognition. The results show that the 

recognition rate of the proposed method is higher than the ones from other recent approaches 

found in the literature. 

 

3. Mixed Quadratic Shape Model 

Facial expression analysis is generally divided into three main phases: feature 

extraction, geometric transformation and expression classification. Here, the first phase 

concerns the detection and extraction of feature points. The challenging issue in this phase is 

to find the optimal number of feature points to be used. The maximum number of extracted 

feature points found in the literature was 185 (Zhang et al. 2011). However, the number of 

extracted features should be as low as possible in order to reduce computational times. In the 

other more common related works a facial reference image is needed, i.e. a face in a neutral 

state. Then reference features are extracted from the image for analysis. This causes an 

additional delay in the pre-processing stage and is also very different from the way humans 

perceive objects. Most of the recent works fail to discriminate emotions using traditional 

classification methods because impreciseness and vagueness present in the geometrical 

shapes are not captured. In this work, the aforesaid disadvantages are overcome by extracting 

a minimum number of feature points from the mouth and using the geometric fuzzy 
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membership functions. The fuzzy features derived from fuzzy membership functions are used 

to classify the six basic emotions. The adopted fuzziness has the ability to deal with the 

uncertainty in shape that helps to effectively discriminate the emotions. The idea of the 

proposed mixed quadratic shape model (MQSM) developed to identify the emotions is 

described in the following subsections.  

3.1 Background 

A geometric-based approach can be used to describe the shape associated to a face. Some of 

the facial geometrical features commonly used in the literature are: point, line, triangle, circle, 

oval, ellipse and quadrilateral. However, to initialize and track facial shapes is challenging. 

Vadivel et al. (2015) tracked the oval shape of the mouth using 13 feature points, but tracking 

all the points along the border of a shape is a difficult and time consuming task. They also 

interconnected the centre point with the vertex points to measure the deformation involved, 

which requires extra computational time. Ghimire and Lee (2014) tracked 52 facial key 

features modelled on  points and lines to recognize facial expressions. Saeed et al. (2014) 

used eight facial keypoints to model the geometric structure of the face. Recently, Deepak 

Ghimire et al. (2017) extracted 52 facial keypoints to develop their facial geometric model 

based on lines and triangles. They proved that the triangle based representation outperforms 

both line and point based representations. The triangle is half of a quadrilateral. 

         The proposed approach defines the quadrilateral shape from four vertices of the mouth. 

The defined shape failed to match the quadrilateral shapes in geometry due to the ambiguity 

involved in the defined shape; however, this is overcome by using the proposed fuzzy 

membership functions. 

3.1 Region of Interest  

As per discussion in the introduction, the mouth region has the highest deformation 

levels in faces due to emotions, therefore it is considered as the Region of Interest (ROI) in 

this work. Moreover, psychologically, the left half of the entire body is controlled by the right 

part of the brain and the right half is controlled by the left part of the brain. As per Nielsen et 

al. (2013) stated, the emotions are more expressive in the left half of the face of the people 
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with right brain activity and vice-versa. Therefore, the emotions extracted from the full mouth 

region are more truthful. The poses of the mouth can be used to find the associated 

deformations as listed in Table 1 for different type of facial emotions (Barthomeuf et al. 

2012). Based on Table 1, one can conclude that the left, upper, right and lower mouth vertices 

are the highlights for each emotion. Therefore, these four feature points of the mouth are 

employed in the current work. This low number of points reduces the required processing 

time, resource and storage space substantially, which facilitates, for example, the 

implementation in micro and nano electronic devices. The proposed approach is explained in 

the following subsections on a step-by-step basis. 
 

Table 1. Emotions and respective mouth poses 
Emotion Mouth Poses 

Fear Lip corners pulled sideways, tighten and elongating 

the mouth 

Happy Lips corners pulled up 

Anger Lips tighten and pressed together 

Surprise Mouth opened as jaw drops 

Disgust Mouth opened with upper lip raised, and tongue stuck 

out 

Sadness Lips corner pulled straight 

  

3.2 Feature Points Extraction 

The face to be analysed is localized in the input image and, to reduce the computational 

time, only three quarters of the lower part of the face is considered here as the ROI. Then, 

the mouth is cropped manually from the previous defined ROI; this results in the image 

, Figure 3(a). Then the flood fill algorithm is applied to obtain the intensity values of dark 

regions that are enclosed by lighter regions to the same intensity level, and the enhanced 

image  is obtained, Figure 3(b). The latter image is further processed through 

thresholding and a morphological opening operation to obtain the contour boundaries: 
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      (1) 

g(x,y) = (Th ⊖	S) ⊕S         (2) 

 

where T is the global threshold and S is the 3x3 structuring element. The contour boundary 

 is used to find the four vertices based on the min and max values of the ‘x’ and ‘y’ 

coordinates of its points, respectively. These four vertices are denoted as A, B, C and D, 

which represent the left, right, top and bottom of the mouth, respectively:  
 

    (3) 

    (4) 

                  (5) 

    (6) 

 

 

Figure 3 Example of the low-level feature extraction from a mouth in an input image: 

(a) Mouth segmented region; (b) Four mouth corner vertices; (c) Defined quadrilateral 

shape built for the mouth. 

 

Using the four points A, B, C and D, the quadratic shape is defined, as shown in Figure 2. 

Using this shape, different human emotions can be recognized.  

3.3  Quadrilateral Shape Definition  

Figure 4 shows the defined quadratic shapes of the mouth in the images indexed with 

‘KA.’ from the Japanese Female Facial Expression (JAFFE) benchmark dataset, which 
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contains 6 emotions: E={angry, disgust, fear, happy, sad and surprise}. The group of defined 

quadrilateral shapes for the eth emotion in Figure 4 is denoted as GpDQSLe, where  

represents the emotion index and represents the group index, and a single quadrilateral in a 

group is denoted as DQSLe. 
 

(a) (b) 
 

(c) 

(d) (e) 

 
(f) 

Figure 4. Defined quadrilateral shapes for different emotions from the JAFFE dataset: 

(a) Angry (KA.AN1 – KA.AN3), (b) Disgust (KA.DI1-KA.DI3), (c) Fear (KA.FE1-

KA.FE4), (d) Happy (KA.HA1-KA.HA4), (e) Sad (KA.SA1-KA.SA3), and (f) Surprise 

(KA.SU1-KASU3) 

 

Furthermore, the quadrilateral shapes in geometry: square, rhombus, parallelogram, kite and 

isosceles trapezoid, are denoted as GeoQSs. Figure 4 shows that each DQSLe in GpDQSLe 

failed to match up with GeoQSs. However, the impreciseness of DQSLe can be calculated 

using fuzzy membership functions. This can be done by calculating the contribution of the 

fuzzy functions of square, rhombus, parallelogram, kite and trapezoid in DQSLe. The 

contribution of DQS22 in GeoQSs is shown in Figure 5, where the shapes in dotted lines 

represent the GeoQSs and the shapes drawn in continuous lines represent the defined shape. 

}{ E ... 1,2,  eÎ
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The proposed fuzzy membership functions for square, rhombus, parallelogram, kite and 

rectangle/isosceles trapezoid are presented in the following subsection, and the degrees of 

the functions are defined as:  
 

     

(7) 

 
 

 
Figure 5. Geometrical shapes (dotted shapes) vs defined shape (continuous shapes) 

 

Table 2. Six primitive shapes inferred from the MQS model 
Shape Sides Length1 Width1 Length2 Width2 Diagonal1 Diagonal2 

Square a1a2b1b2 a1b1 a1a2 a2b2 b1b2 a1b2 a2b1 

Rhombus a1a3b2b4 a1b2 a1a3 a3b4 b2b4 a1b4 a3b2 

Parallelogram a1a4b2b5 a4b5 a1a4 a1b2 b2b5 a1b5 a4b2 

Kite a1a2b1c1 a2c1 (L) a1a2 (S) a1b1 (S) b1c1 (L) a1c1 a2b1 

Rectangle a2a4b3b2 a2b2 a2a4 a4b3 b2b3 a2b3 a4b2 

Isosceles 

trapezoid 

a2a4b5b1 a2b1 a2a4 a4b5 b1b5 a2b5 a4b1 
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(a) Square vs defined shape 

 
(b) Parallelogram vs defined shape 

 

 
(c) Rhombus vs defined shape 

 

 
(d) Kite vs defined shape 

 
(e) Trapezoid vs defined shape 
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Figure 6. Variables used in the mixed quadratic shape model 

 

3.4 Fuzzy Membership Functions for the Defined Quadratic Shape  

As aforementioned, the proposed approach calculates the contribution of each GeoQSs in 

DQSLe. The variables used in the proposed mixed quadratic shape model are shown in Figure 

6 and in Table 2. In Figure 6, lines ‘A’ and ‘B’ indicate the widths of the MQSM and the 

vertical lines the lengths. Hence, A as four points ‘a1’,’a2’,’ a3’ and ‘a4’, in the same way, B 

as five points named as ‘b1’,’b2’,’b3’,’b4’ and ‘b5’. The point ‘c1’ is the starting point of the 

kite. The dotted lines between two endpoints are the diagonals of the respective shape. The 

proposed fuzzy membership functions are built as explained in the following subsections. 

3.4.1 Square 

In geometry, a four sided regular quadrilateral with all sides equal is called a square. A logical 

representation of a square is depicted in Figure 6 with a1, a2, b2 and b1. Based on the properties 

of this shape, the four equal lengths of the square are given by the distance between any two 

adjacent points, i.e. a1a2=a2b2=b2b1=b1a1. The length of the diagonals is the distance 

between opposite vertices: a1b2=b1a2. Only one of the diagonals is shown in Figure 6 to 

preserve the clarity of the diagram. It can be noted that the diagonal of any square is always 

greater than its side by √2 times; therefore, the fuzzy membership function for a perfect 
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square is defined as: 
 

       
(8) 

 

where , i.e. MQSSq is defined as twice the ratio between 

the sum of two adjacent sides and the sum of the two diagonals. MQSsq is assigned to each 

CQS of GCQSe to check the perfectness of the square. Hence in Eq. (8) the values range from: 
 

      
(9) 

 

3.4.2 Parallelogram 

The well-known property of a parallelogram (PP) is that both lengths and widths are different, 

as depicted in Figure 6 by a1, a4, b2 and b5. The lengths b2b5 and a1a4 are the upper and lower 

sides of parallelogram, and a1b2 and a4b5 are the widths. However, the opposite sides of the 

PP are equal, i.e.  and . The PP has a long diagonal and a short one: 

. Using these properties, the fuzzy membership function for a perfect parallelogram 

is derived as: 
 

       (10) 

 

where , which is a ratio of two 

products where the difference of two adjacent sides and the difference of the two diagonals 

(with a change in sign) in both the numerator and the denominator and the values always 

range between [0, 1]. 

3.4.3 Rhombus 

Rhombus is a special type of parallelogram with two diagonals: one long and one 

short. It differs from a parallelogram since all of its four sides have the same length. A logical 
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representation of a rhombus with its diagonals is shown in Figure 6 by a1, a3, b2 and b4, with 

the lengths indicated by a1b2=a1a3=a3b4=b2b4 and the diagonals by .  

The membership value of a perfect rhombus is the ratio between two adjacent sides 

with the differences in the diagonals which is equals to 1 (one): 
 

       (11) 

 

where . 

3.4.4 Kite 

A kite is a quadrilateral with four sides grouped into two sets of equal length sides which are 

adjacent to one another. Interestingly, a parallelogram also has two sets of equivalent length 

sides; however, they are opposite to one another. A pictorial representation of a kite is shown 

in Figure 6 by a1, a2, b1 and c1. The fuzzy membership function using the variables of a kite 

is given by Eq. 12, where  according to the property of the two 

segments joining opposite points of tangency of equal length; additionally, the diagonals 

connecting opposite ends have different lengths: 
 

       
(12) 

 

3.4.5 Rectangle and Isosceles trapezoid 

A rectangle is shown in Figure 6 by a2, b2, b3 and a4, where the diagonals are of equal length 

and the adjacent sides are not, i.e. . Figure 6 represents the rectangle 

pictorially that appears within the isosceles trapezoid. The isosceles trapezoid is typically 

considered a special type of rectangle as shown in Figure 6 by a2, b1, b5 and a4, where two 

opposite sides are parallel and the other two sides are of equal length, i.e. b1b5 //el a2a4 and 

a2b1=a4b5, respectively, which means that adjacent sides do not have equal lengths. The 

diagonals split each other into similar regions with lengths that are pairwise equal. As 
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pictured in Figure 6, the diagonals b1a4=b5a2 have the same length. Hence, the fuzzy 

membership function is derived for both rectangular and isosceles trapezoid as: 

 

       
(13a) 

 

or 

 

       (13b) 

3.5 Fuzzy Set 

        A set  of membership degrees obtained from Eqs. (8) – (13) for each DQSLe of the 

different  generates the fuzzy set EFS, where m represents the total number of 

fuzzy membership functions. Each degree in EFS varies in the real unit interval of [0, 1], say

. Using the matrix of the fuzzy relation , which relates the 

membership degrees with its associated emotion, the classification decision can be achieved. 

EFS  reveals that the minimum number of fuzzy values is used for predicting facial expression; 

hence, the required processing time, resources and storage are substantially reduced. Then, 

EFR is the input for a machine learning algorithm, which plays an important role to improve 

the classification accuracy. The proposed approach was tested using recent machine learning 

algorithms as described and discussed in the next section. 

 

4. Experimental results  

In this section, the recognition rates of the proposed approach are assessed and 

compared against other common approaches. 

4.1 Dataset 

The JAFFE and Cohn-Kanade Facial Expression (CK++) databases for facial 
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expression analysis were used to assess the proposed and the other state-of-the-art 

approaches. JAFFE has 213 grayscale facial expression images (neutral - 30, angry - 30, 

disgust - 29, fear - 33, happy - 30, sad - 31, and surprise - 30) of ten subjects. This controlled 

database was taken under similar lighting conditions and without occlusion. All the images 

have a resolution of 256x256 pixels. As previously described, the three-quarters of the lower 

part of each input image were considered the ROI, from which the mouth region is extracted 

and used in the posterior processing steps. In addition, the CK++ dataset available at CMU, 

in Pittsburgh, USA (Kanade, Cohn, & Tian 2000) was used, which consists of 593 image 

sequences from 123 subjects. The facial expressions in each grayscale sequence begin with 

a neutral face and increase to the height of the emotion given in the last frame. These peak 

expression frames from each sequence were used to validate the performance of the proposed 

approach. Experiments were carried out for the six emotions: anger, disgust, fear, happy, sad 

and surprise; however, the neutral images were discarded. Therefore, all images used in this 

study are public available and were acquired according to the Ethics Commissions of the 

related Institutions. 

4.2 Feature Extraction from Mouth 

The accuracy rate decreases substantially when the entire set of facial features is 

considered (Hernán F. García et al., 2016). Recently, researchers recognized emotions using 

important facial regions, particularly, the eyes and mouth (Ithaya Rani & K. Muneeswaran 

et al., 2016). As discussed previously, the mouth provides more promising results than eyes, 

hence, the four vertices of the mouth in each input image of the JAFFE dataset were extracted, 

Figure 7. 

Using the four vertices A, B, C and D, the DQSLe for all facial expression images were 

defined. Then, Eqs. (8) to (13) were applied on each DQSLe to generate the EFS. Each 

collection of membership degrees in EFS was mapped to the respective emotion to obtain the 

EFR, and the recognition rate associated to each emotion was computed. 
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Figure 7. Cropped mouths from images indexed with “KA.” in the JAFFE dataset with the 

four vertices highlighted 

  

4.3 Mouth against Eyes 

The highest recognition rates obtained by Gu et al., (2012) using the full faces on the JAFFE 

and CK++ databases were 89.67% and 91.57%, respectively. In this approach, the accuracy 

of the results was enhanced once again with the eyes/mouth occlusion. Three mask sizes, 

namely small, medium and large, were overlapped on the eyes and mouth and the results 

were evaluated. Based on the evaluation perform, it was concluded that the expressions with 

a masked mouth were more difficult to recognize than those with masked eyes. The results 

for the CK++ database with large masks are given in Table 3, where there was a 12% 

improvement in the recognition rate for masked eyes. 

 

Table 3. Results obtained by the method proposed by Gu et al. 2012 with mouth and eyes 

occluded with large masks 

Gu et al., 2012 Happy Sad Surprise Disgust Angry Scared Recognition 

Rate  

Mouth Masked 80.2 50.97 93.01 85.53 62.12 69.55 73.56% 

Eyes Masked 89.8 86.43 96.97 91.86 63.00 84.78 85.47% 

 

Zhang Li et al. (2013) obtained a recognition rate of 78.6% for lower AUs and of 71.3% for 

the upper ones. Moreover, in (Kotsia et al. 2009) the recognition accuracy obtained was 
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96.3% with eyes occlusion, and 93.7% with mouth occlusion. This concludes that the 

recognition accuracy for the mouth provides more promising outcomes than the eyes.  

Table 4 presents the confusion matrices obtained by the proposed work and by the work 

presented in (Gu et al. 2012) for the CK++ dataset. The data in Table 4 shows that the 

recognition rate of the proposed approach was 96.5% and was 85.47% for the approach under 

comparison. This suggests that the proposed approach gives encouraging recognition rates 

compared to other similar works for the mouth, and that the mouth leads to more promising 

results than the eyes. 

 

Table 4. Results with the CK++ images by the proposed method and the one proposed by 

Gu et al. 2012 only based on  mouth features  

Approach(mouth) Angry Disgust Fear/Scared Happy Sad Surprise Recognition 

Rate 

Proposed work 93.1 95.3 93.36 99.67 97.7 100 96.52% 

Gu et al. 2012 63.00 91.86 84.78 89.8 86.43 96.97 85.47% 

 

4.4 Recognition Rate 

The local features extracted from the JAFFE images were analysed using the J48 decision 

tree to prune unwanted features from the dataset. Table 5 presents the confusion matrix 

obtained for the JAFFE dataset using Fuzzy Membership Functions (FMF) with the J48 

decision tree algorithm. The Table includes the individual recognition percentage of each 

emotion along with the overall correct recognition percentage. The J48 decision tree 

algorithm is used to identify the essential features and reduces the outliers in each class. It 

greatly reduces both the input dimension and the required computational time. On using the 

J48 algorithm, the values of  were found to be similar, which may not help in the 

discrimination of the emotions. Thus, the other four fuzzy features, namely 
, were selected for further use in the machine learning algorithm to 

improve the accuracy rate. 

 

Pllµ
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Table 5. Confusion matrix from the JAFFE dataset using the J48 algorithm 

  Angry Disgust Fear Happy Sad Surprise Percentage 

Angry 26 1 1 0 2 0 86.66% 

Disgust 2 20 2 1 4 0 68.99% 

Fear 0 2 29 0 1 0 90.65% 

Happy 0 0 0 31 0 0 100% 

Sad 2 1 1 0 27 0 87.09% 

Surprise 3 0 2 0 0 25 83.33% 

Average of Correctly Classified Instances: 86.12% 

 

The machine learning methods used in the facial emotion recognition were: SVM, Multi-

Layer Perceptron (MLP) and Ensemble learning, which have all been successfully used in 

other similar works. The parameters were selected separately for each classifier in order to 

find the best values that led to the highest classification. The LibSVM toolbox of the SVM 

was used with the Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid kernels. 

Among these, the best result was obtained with the RBF kernel, and with the parameters C = 

20 and gamma = 0.1, see Table 6. The MLP classifier presented good results with a topology 

of 4 neurons in the input layer, 20 neurons in the hidden layer and 7 in the output layer, and 

the learning rate = 0.3, momentum = 0.2 and training time = 500. Finally, a recent machine 

learning technique, mainly ensemble learning, was used to assess the performance of the 

proposed approach. In the first model an Adaboost meta-algorithm with Random Forest was 

used, and in the second model, bagging with Hidden Markov Model was combined to build 

the model for prediction. In the random forest tree, resampling was applied as a pre-

processing step, which is a supervised filter to produce a random subset of the input dataset. 

Each classifier was trained using 10-fold cross-validation. Using these configurations, the 

recognition accuracies of the JAFFE dataset for the different classifiers were computed and 

the confusion matrices were built, Tables 6-9.   
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Table 6. Confusion matrix obtained with the JAFFE dataset using SVM with RBF 

  Angry Disgust Fear Happy Sad Surprise Percentage 

Angry 30 0 0 0 0 0 100% 

Disgust 1 28 0 0 0 0 96.6% 

Fear 0 0 30 1 1 0 93.8% 

Happy 0 0 0 30 1 0 96.8% 

Sad 0 0 0 0 31 0 100% 

Surprise 1 2 0 2 0 25 83.33% 

Average of Correctly Classified Instances: 95.08% 

 

Table 7. Confusion matrix obtained with the JAFFE dataset using MLP 

  Angry Disgust Fear Happy Sad Surprise Percentage 

Angry 30 0 0 0 0 0 100% 

Disgust 1 28 0 0 0 0 96.6% 

Fear 0 0 31 0 1 0 96.9% 

Happy 0 0 0 30 1 0 96.8% 

Sad 0 0 0 0 31 0 100% 

Surprise 1 2 0 2 0 25 83.3% 

Average of Correctly Classified Instances: 95.63% 

 

Table 8. Confusion matrix obtained with the JAFFE dataset using the Bagging + HMM 

model 

  Angry Disgust Fear Happy Sad Surprise Percentage 

Angry 30 0 0 0 0 0 100% 

Disgust 1 27 0 0 1 0 93.1% 

Fear 0 0 31 0 1 0 96.9% 

Happy 0 0 0 30 1 0 96.8% 

Sad 0 0 0 0 31 0 100% 

Surprise 1 2 0 2 0 25 83.33% 

Average of Correctly Classified Instances: 95.08% 
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Table 9. Confusion matrix obtained with the JAFFE dataset using the Adaboost + Random 

Forest model 

  Angry Disgust Fear Happy Sad Surprise Percentage 

Angry 30 0 0 0 0 0 100% 

Disgust 1 27 0 0 1 0 93.1% 

Fear 0 0 31 0 1 0 96.9% 

Happy 0 0 0 30 1 0 96.8% 

Sad 0 0 0 0 31 0 100% 

Surprise 1 1 0 1 0 27 90.0% 

Average Correctly Classified Instances: 96.17% 

 

Tables 6-9 show that all classifiers provided more or less the same outcome and efficiency: 

with an accuracy from 95.1 to 96.2%. Beside the overall efficiency, the recognition rate of 

all classifiers was equal to 100% for the emotions angry and sad. The emotions that follow 

the highest recognition rates were happy and disgust. It seems that the recognition rates for 

the surprise class tend to be lower compared to the other emotions, as it was confused with 

the other expressions. The probable reason reported in (Zhang Li et al. 2013) for this finding 

is that the surprise images on the JAFFE database have a closed or only slightly open mouth. 

However, the proposed approach showed an interesting result for the surprise emotion using 

the random forest based ensemble learning classifier.  

The consolidated results for the different classifiers in terms of average recognition rate using 

10-fold cross validated and percentage split are shown in Table 10. 
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Table 10. Average recognition rate of the proposed approach using different classifiers 
 Classifier Tenfold cross-

validated 

Training samples (66%) 

Testing samples (34%) 

SVM 95.08% 96.8% 
BAGGING + HMM 95.08% 97.1% 

MLP 95.63% 99.8% 
ADABOOST+ 

RANDOM FOREST 
96.17% 98.4% 

 

In terms of percentage split, the proposed approach was evaluated using the default values of 

the classifiers with 66% for training purposes and 34% for evaluation. Table 10 shows that 

the average accuracy rates obtained by the classifiers were always higher than 95% reaching 

a peak at 99.8%. The proposed approach achieved the best accuracy rate (99.8%) with 

percentage split, which is better than the ones obtained by the state-of-the-art approaches. 

However, the 10-fold cross-validator was the best estimator and the Adaboost+Random 

forest model obtained the best results among all the classifiers. Hence, the 

Adaboost+Random forest was chosen as the proposed model classifier. 

Apart from the recognition rate, statistical tests are required to prove the performance of a 

new classification method. Thus, the statistical measures, namely, sensitivity (SEN), 

specificity (SPEC), positive predictive value (PPV), F-measures were calculated for our 

method applying all the classifiers used in this work, Table 11. 

 

Table 11. Overall performance of the proposed approach using different classifiers 
 CLASSIFIER SEN SPEC PPV F-MEASURE TT 

SVM 0.951 0.99 0.954 0.95 0.18s 
MLP 0.956 0.991 0.958 0.956 0.64s 
BAGGING+ HMM 0.951 0.99 0.953 0.950 0.33s 
ADABOOST + RANDOM 

FOREST 
0.962 0.992 0.964 0.962 0.35s 
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Sensitivity and specificity measure the percentage of positive and negative samples that are 

correctly recognized, respectively. PPV defines the proportion of positive outcomes in a 

statistical test. The data in Table 11 confirms that the overall averages were 95.5% for 

sensitivity, 99% for specificity, 95.5% for PPV and 95.5% for the F-Measure. These results 

show that the overall performance of the proposed approach was good. The, Random 

forest+Adaboost classifier achieved the best results followed by MLP, then the SVM 

classifier with the RBF kernel and the HMM based classifier which had similar performances. 

Furthermore, the proposed approach took only 0.18–0.64 seconds (TT) to train the model; 

this high computational speed was due to fact that the model was trained using only four 

fuzzy features. Also, the proposed fuzzy membership functions used only the elementary 

arithmetical operations and operated over: the length, width and diagonals of the quadrilateral 

shapes, which takes a fixed computational time. 

The Adaboost + Random forest model was found to outperform the other classifiers in both 

recognition rate and the statistical metrics. The performance of this classification model was 

assessed using the Receiving Operator Characteristics (ROC) curve, Figure 9. The X-axis of 

the ROC curve represents false positive (1-Specificity) and the Y-axis the true positive 

(Sensitivity). The best compromise is found when both sensitivity and specificity are highest 

at the same time. Further, the area under the ROC curve, called AUC, is 1 (one) for a perfect 

predictive power. Figure 8 shows that the best predictive power for all emotions was found 

using the Adaboost+Random forest classifier model. 
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a. Angry b. Disgust 

 
c. Fear 

c. Happy d. Sad 
 

e. Surprise 

Figure 8. ROC curves for all emotions using the Adaboost + Random forest classifier 

model 

 

However, the ROC curves might be mislead when handling highly unbalanced datasets. 

Therefore, graphs were drawn for Precision versus Recall (PR) to interpret the performance 

of the proposed method in a more objective manner. Hence, the PR curves in Figure 9 indicate 

the number of true positives that are likely to be obtained in a competent predictive system. 
 

 
a. Angry  

b. Disgust c. Fear 

c. Happy d. Sad e. Surprise 

Figure 9. PR curves for all emotions when classified using the Adaboost + Random forest 
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classifier model 
  

Table 12. Results obtained by different state-of-the-art approaches when classifying the 

different emotions on the JAFFE database 

Literature Angry Disgust Fear Happy Sad Surprise Average 

Proposed Work 100 93.1 96.9 96.8 100 90.0 96.17% 

Vilas H Gaidhane et al., 2016 92.6 94.4 91.0 96.0 94.2 96.5 94.11% 

Happy S L et al. 2015 100 86.2 93.8 96.8 77.4 96.7 91.81% 

Hua Wang et al., 2014 84.2 87.2 78.1 96.3 92.4 96.1 89.0% 

Rahulamathavan et al. 2013 96.7 93.1 93.8 93.5 90.3 93.3 93.45% 

Zhang Shiqing et al. 2012 92.4 90.8 87.5 96.2 84.2 88.3 89.88% 

Gu et al. 2012 93.3 86.2 75.0 100 93.3 96.7 90.75% 

Ligang Zhang et al. 2011 96.7 90.0 93.8 93.6 93.6 90.0 92.92% 

Wu. T. et al. 2010 83 68 67 88 78 88 78.66% 

 

Table 12 presents the confusion matrix for the methods under comparison, and the 

proposed approach outperformed all the other approaches, and without the need of a neutral 

image as reference. The recognition rate obtained by Wu T et al. (2010) was lower than 

80% and poorer compared to all the other approaches. The performances obtained by Li 

Zhang et al. (2014) were between 80-81%. The results obtained by Zhang Shiqing et al. 

(2012) and Gu et al. (2012) were greater than 90%, and the performances as to happy 

emotion obtained by S L et al. 2015, Ligang Zhang et al., (2011) and Rahulamathavan et al. 

(2013) reached 90%. Vilas H Gaidhane et al., (2016) more recently presented an approach 

that reached 94%. In short, the proposed approach gave encouraging results compared to 

the other approaches. These encouraging results are because the impreciseness and 

vagueness in the shapes used to classify each emotion were built using fuzzy membership 

functions. 

When the proposed method was evaluated with the CK++ dataset, the default parameter 

values were used for the classifiers and the SVM with the RBF kernel classifier gave the best 

results. Table 13 gives the confusion matrices of the proposed method as well as the other 



 

28 

methods under comparison for the CK++ database. The recognition rates for the surprise and 

happy emotions obtained by the proposed method were higher than those of the other 

methods. Recently, Ghimire et al. (2017) and Gu et al. (2012)  suggested that the results for 

anger, fear and sadness emotions in the CK++ dataset were more similar than the ones 

obtained for happy and surprise emotions. The best results were obtained when they took two 

peak expression frames for anger, fear and sadness and one for each of the happy and surprise 

emotions. Finally, they achieved a 97.25% recognition rate. The results of our proposed 

approach were similar with a value of 98.32%; however, we only used the last frame of each 

case in the input database. Zhang Li et al. (2013) reported that the surprise images in the 

CK++ database have an exaggerated open mouth and are easily distinguished from the other 

emotions. Also, the results for the surprise and anger emotions contrast with those obtained 

with the JAFFE database. Table 13 shows that the average results obtained (98.32%) are 

better than those obtained by the other methods. The highest accuracy obtained by the 

proposed approach was for the emotion of surprise and the lowest was for the emotion of 

anger.   

Tables 14 and 15 indicate the performance obtained previously by similar works on facial 

emotion recognition using the JAFFE and CK++ databases, respectively. In general, the 

literature considers that a performance comparison with other approaches may not be 

analysed directly because of differences in method, subjects, number of features, classifier, 

number of classes, number of images used as well as differences in partitioning the datasets. 

However, the results of each method can be analysed by taking the recognition result from 

their respective articles and tabulated as in Table 14. Among all the state-of-the-art methods, 

the proposed approach obtained very good recognition rates using the JAFFE database. Table 

14 shows that the proposed approach reached a recognition rate of 96.17%, which is 

significantly higher than the rates obtained by the other methods. The number of features 

used to recognize emotions in the literature varies from 11 to 185. However, the proposed 

approach considers only four fuzzy features and, even so, attained a recognition accuracy of 

96.17%. 
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Table 13. Results of various approaches in the classification of the different emotions from 

the CK++ database 

Approach Angry Disgust Fear Happy Sad Surprise Average 

Proposed Work 95.3 100 95.8 100 98.8 100 98.32% 

Deepak Ghimire et al. 2017 97.5 96.7 96 100 96.7 100 97.81% 

Swapna Agarwal et al., 2017 97.5 94.6 82.6 98.2 92.3 100 94.2% 

Vilas H Gaidhane et al., 2017 94 98.7 93.1 99.6 94.5 99.7 96.47 

Hsieh et al., 2015 93.3 93.8 90.5 94.5 - 96.1 93.6 

Zhang Li et al. 2015 85 95 85 97 90 98 90.38% 

Xiaorong Pu et al. 2015 75 94.6 68.6 97.7 88.9 92.5 89.37% 

Happy S L. 2015 87.8 94.3 93.3 94.2 96.4 98.5 94.09% 

Hua Wang et al., 2014 70.4 94.3 80 94.4 87 98 87.4% 

Hsu et al., 2014 86.7 96.6 68.0 97.1 75.0 97.6 86.8% 

Zhang L et al. 2013 90 83 65 80 60 77 75.83% 

Gu et al. 2012 63 91.9 84.8 89.8 86.4 97 86.63% 

Poursaberi et al. 2012 87.0 91.9 91 96.9 84.6 91.2 90.38 

Zhong L et al. 2012 71.4 95.3 81.1 95.4 88.0 98.3 88.26% 

Zhang Ligang et al. 2011 87.1 90.2 92 98.1 91.5 100 93.14% 

Zhao Xiaoming et al. 2011 97.6 94.2 99.6 95.5 89.8 97.2 95.66% 

Jain et al, 2011 76.7 81.5 94.4 98.6 77.2 99.1 87.90% 

Song et al, 2010 90.6 86.0 84.6 93.6 90.2 92.3 89.56% 

Wu et al. 2010 82.9 67.7 66.7 87.7 78.4 87.9 78.55% 

Shan et al. 2009 85.1 97.5 79.9 97.5 74.7 97.3 88.83% 

Uddin M Z et al. 2009 82.5 97.5 95 100 92.5 92.5 93.33% 
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Table 14. Recognition rates obtained by different approaches using the JAFFE database 

Approach  Method No. of 

features 

Images Accuracy (%) 

Proposed Work Fuzzy Geometry  4 184 

(without 

neutral) 

96.17 

(Cross-validation) 

Hung-Hsu Tsai et al., 

2017 

HOG+U-LTP N/A  95.71 

Happy S L et al. 2015 Appearance Feature 18 facial 

patches 

183 91.7 

Rahulamathavan et al. 

2013 

LFDA (in the 

encrypted domain) 

40 213 94.37  

(leave-one-out) 

Zhang S et al. 2012 Local Binary Pattern 

+ LFDA 

11 213 90.70  

(leave-one-out) 

Gupta et al. 2011 Hybrid (discrete 

cosine transform + 

Gabor filter + 

Wavelet transform + 

Gaussian distribution) 

Unknown 213 93.40  

(Conventional) 

Zhao and Zhang (2011) Local binary pattern 

+ KDIsomap 

20 213 81.59 

 (Cross-validation) 

Zhang and 

Tjondronegoro (2011) 

Patch-based Gabor 185 203 93.48  

(leave-one-out) 

Gu et al. 2010 Radial encoded 

Gabor jets 

49 213 89.67  

(Cross-validation) 

Kyperountas et al. 2010 Salient Feature 

vectors 

- 213 85.92 

 

The proposed approach partitioned the used input database through tenfold cross-validation 

and, obtained a recognition accuracy of 96.17% using the JAFFE dataset. Hung-Hsu Tsai et 

al. (2017) achieved a recognition accuracy of 95.71%, which is close to the one obtained by 

the proposed approach. Other approaches, like those proposed by Happy S L et al., (2015), 

Rahulamathavan et al. (2013), Zhang and Tjondronegoro (2011), Gupta et al. (2011) and 



 

31 

Zhang et al. (2012), used leave-one-out and conventional approaches for the input dataset 

partition and achieved more than 90% of recognition accuracy. Zhao and Zhang (2011) and 

Gu et al. (2010) suggested other approaches based on cross-validation and obtained 

performances below 90%. Based on all these findings, the recognition rate of the proposed 

approach, which used minimal feature points and the best cross-validation estimator, is 

encouraging relative to the rates of the other current methods. 

Table 15 compares the recognition rates obtained by the various approaches using the CK++ 

database. The number of features used in the CK++ database to recognize the expressions 

varies from 30 to 180. Meanwhile, the four fuzzy features used in the proposed approach 

through partitioning the input dataset using cross-validation achieved the highest accuracy of 

98.32%. Deepak Ghimire et al. (2017a and 2017b) achieved an accuracy close to our result 

using 29 and 52 features, respectively. Zhao and Zhang (2011), Zhang and Tjondronegoro 

(2011) and Gu et al. (2010) used 30 to 180 features, obtaining 90-95% of accuracy. Saeed et 

al. (2014) used a low number of facial key points, only 8, but they only reached an accuracy 

of 83%. The other action units and appearance based methods proposed by Zhang L et al. 

2015, Pu X et al. 2015 and Happy S L. 2015, achieved 89-94% of accuracy. The recent 

classifiers used in (Mollahossein et al., 2016; Elaiwat et al., 2016; J. Li and E. Y. Lam et al., 

2015; Siddiqi M H et al., 2015; Ghimire D et al., 2014; Liu M et al., 2014; Aifanti N et al., 

2014) obtained accuracies of 93-97%, and in (Bing-Fei Wu et al., 2017; D. M. Vo et al., 

2016; Jung H et al., 2015; Cruz AC et al., 2014) of 70-89.9%. 
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Table 15. Results of recognition rates of the different approaches using the CK++ database 

Approach Method No. of feature Accuracy (%) 

Proposed Work Fuzzy Geometry 4 features 98.32%(Cross-

validation) 

Deepak Ghimire et al., 

2017a 

LBP + NCM features 29 local 

features 

97.25% 

Deepak Ghimire et al., 

2017b 

Salient geometric features 52 facial 

patches 

98.30% 

 
Bing-Fei Wu et al., 2017 

GM + W-CR-AFM 
 

- 89.84% 

D. M. Vo et al., 2016 AlexNet + SVM 
 

- 86.83% 

Mollahossein et al., 2016 CNN - 93.2% 

Elaiwat et al., 2016 Spatio temporal - 95.66% 

Jung H et al., 2015 CNN - 80.6% 

J. Li and E. Y. Lam et al., 

2015 

CNN - 96.8% 

Siddiqi M H et al., 2015 Stepwise linear discriminant 

analysis 

- 96.83% 

Zhang L et al., 2015 Action Unit 56 features 90.38% (Cross-

validation) 

Xiaorong Pu et al., 2015 Active Appearance Model - 89.37% (Cross-

validation) 

Happy S L., 2015 Appearance Feature 18 facial 

patches 

94.1% 

Ghimire D et al., 2014 HOG feature, ELM Ensemble - 97.30% 

Liu M et al., 2014 spatio-temporal - 94.19% 

Saeed A et al., 2014 Geometric features, SVM 

classifier 

8 facial key 

points 

83.01% 

Cruz AC et al., 2014 Temporal features - 71.83% 

Aifanti N et al., 2014 Facial key point tracking - 94.31% 

Zhao and Zhang (2011) LBP + KDIsomap 30 features 94.88 (Cross-

validation) 

Zhang and Tjondronegoro Patch-based Gabor 180 features 94.48 (Leave-one-out) 
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(2011) 

Gu et al. (2010) Radial encoded Gabor jets 49 features 91.51 (Cross-

validation) 

                                                                                                                                       

 

5. Conclusion 

In this article, a new approach based on a minimum number of features extracted from the 

mouth region and without using a reference face was proposed to recognize human emotions. 

The extracted features were used to draw a quadrilateral for the face under analysis and the 

associated degree of impreciseness was addressed using the proposed mixed quadratic shape 

model through fuzzy membership functions. The proposed fuzzy membership functions were 

square, rhombus, kite and isosceles trapezoid. To validate the proposed approach, common 

learning methods were used to classify the human emotions and their recognition rates 

compared. The best recognition rates of the proposed approach were 96.17% and 98.32% for 

the JAFFE and CK++ datasets, respectively, and which were comparatively higher than the 

ones obtained by other recently proposed approaches. 

The major advantages of the proposed approach are: only four facial features, fuzzy 

membership functions and fuzzy features are used to accurately identify the human emotions 

under evaluation here. The development of the proposed model based only on four fuzzy 

features reduced the computation time and space. The detection of the emotions without the 

need of a reference face brings this computational approach closer to the human system of 

perception. Finally, the evaluation with a competent cross validator and with statistical tests 

confirmed the efficiency of our approach. 

A future work will continue the proposed method but will also consider other factors like, 

age and gender, which also play vital roles in emotion recognition.  
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