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Abstract: Snowshoe hares (Lepus americanus) maintain seasonal camouflage by molting to a 26

white winter coat, but in regions with low snow cover some hares remain brown in the winter. 27

We show that cis-regulatory variation controlling seasonal expression of the Agouti gene28

underlies this adaptive winter camouflage polymorphism. Genetic variation at Agouti clustered 29

by winter coat color across multiple hare and jackrabbit species, revealing a history of recurrent 30

interspecific gene flow. Brown winter coats in snowshoe hares originated from an introgressed 31

black-tailed jackrabbit allele that has swept to high frequency in mild winter environments. 32

These discoveries show that exchange of genetic variants underlying key ecological traits 33

through hybridization can seed past and ongoing adaptation to rapidly changing environments.34

35

One Sentence Summary: Introgression at the pigmentation gene Agouti underlies local 36

adaptation in seasonal camouflage of snowshoe hares.37
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Main Text: Many species undergo reversible changes in morphology, physiology, and behavior 38

to cope with the challenges of seasonal environments. These critical components of phenotypic 39

plasticity often track the environment through the photoperiod-dependent release of hormones 40

(1). However, circannual rhythms can become desynchronized when abiotic conditions change 41

rapidly (2), leading to declines in population fitness (3). The capacity of species to adapt to 42

rapidly changing environments will depend in part on the proximate and ultimate causes of 43

variation underlying seasonal traits (4, 5), which remain poorly understood at the molecular level 44

(1, 2).45

At least 21 bird and mammal species undergo autumn molts from brown to white coats 46

(6, 7) as part of a suite of plastic trait responses to seasonal environments. We used natural 47

variation in seasonal camouflage of the snowshoe hare (Lepus americanus) to understand the 48

genetic basis of this critical seasonal trait. Autumn molts to white winter coats are cued by 49

photoperiod (8) and generally track seasonal snow cover. Direct estimates of hare survival have 50

shown that mismatch between coat color and snow cover increases predation (3). White winter 51

coats predominate across the snowshoe hare range, but some populations molt into brown winter 52

coats (Fig. 1). In the Pacific Northwest (PNW), shifts in the probability of white coats coincide 53

with a gradient in snow cover from warmer coastal to colder inland environments, consistent 54

with local selection for seasonal camouflage with color morphs co-occurring across a broad 55

polymorphic zone (Fig. 1C) (7). 56

To dissect the genetic basis of polymorphic seasonal camouflage, we used whole genome 57

sequences for a winter-white hare from Montana (MT, 33 coverage) (9, 10) and a winter-brown 58

hare from Washington (WA, 22 coverage) and constructed a reference through iterative 59

mapping (11) to the rabbit genome (9, 12). We then sequenced 80 whole exomes (62 Mb, 21 ± 60
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7.6 per individual) from two regions in the PNW polymorphic zone (WA: n=26, Oregon 61

hereafter OR: n=26, each region 50% winter-white), a monomorphic winter-white locality in MT 62

(n=14), and a monomorphic winter-brown locality in British Columbia (BC: n=14; table S1). If 63

the polymorphic zone represents admixture between previously isolated populations, then 64

genetic structure could obscure genotype-phenotype associations (13). Analysis of 38,694 65

unlinked single nucleotide polymorphisms (SNPs) revealed geographic structure (Fig. 1C), but 66

genome-wide genetic differentiation (FST) between winter-brown and winter-white individuals 67

was ~0 within polymorphic localities (table S2). The polymorphic zone also showed no evidence 68

of admixture based on patterns of linkage disequilibrium (fig. S1) or allele sharing with other 69

populations (table S3) (14). Thus, geographic variation for winter coat color in the PNW likely 70

reflects primary intergradation across a gradient in snow cover.71

We tested 513,812 SNPs for coat color associations across polymorphic populations and 72

identified a single outlier region on chromosome 4 in perfect association with winter coat color 73

(P=4.2410-10; Fig. 2A, fig. S2, Additional Data table S1) (12). We then augmented exome data 74

with low-coverage whole genome resequencing of polymorphic zone hares (~20 per color 75

morph). Coat color associations based on genotype likelihoods (15,173,804 SNPs) (15)76

confirmed a single outlier region (fig. S3) localized to a ~225 kilobase (kb) interval of elevated 77

FST between color morphs centered on the pigmentation gene Agouti and two flanking genes, 78

Ahcy and Eif2s2 (Fig. 2B). Winter-brown hares were homozygous (n=26) for brown-associated 79

alleles (hereafter, a), while winter-white hares were either heterozygous (n=24) or homozygous 80

(n=2) for the alternative allele (hereafter, A; Fig. 2C). We then induced autumn molts in 18 81

captive wild-caught hares (WA: n=11, MT: n=7) and found perfect concordance between Agouti82

genotypes and winter coat colors (Fig. 2C, table S4). This experiment included a heterozygous 83
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(Aa) wild-caught pregnant winter-white female from WA that gave birth in captivity to both 84

winter-white and winter-brown offspring (Fig. 2D). Therefore, winter coat color segregates as a 85

dominant locus in both wild and captive animals.86

The agouti signaling protein (ASIP) antagonizes the melanocortin-1 receptor (MC1R) in 87

follicular melanocytes, shifting melanogenesis towards lighter pheomelanin pigments or 88

inhibiting pigment production (16). MC1R mutations suppress expression of winter-white coats 89

in dark or blue color morphs of arctic foxes, suggesting that ASIP-MC1R interactions are 90

involved in the development of seasonal color molts (17). Agouti is typically expressed as ventral 91

or hair cycle-specific isoforms distinguished by alternative 5' untranslated regions (UTRs, Fig. 92

2B) (18). Both isoforms have been associated with lighter dorsal pelage (19, 20). We 93

hypothesized that the development of winter-white coats, which mostly lack pigments (8), is 94

controlled by isoform-specific upregulation of Agouti during the autumn molt. To test this, we 95

quantified allele-specific expression of both isoforms and the closely linked Ahcy locus in dorsal 96

skin biopsies from three captive heterozygous hares (Aa) undergoing brown-to-white molts. 97

Quantitative PCR verified expression of Ahcy and the Agouti hair-cycle isoform while expression 98

of the ventral isoform was negligible (Fig. 3A, table S5, table S6). Targeted pyrosequencing 99

revealed highly skewed expression toward the white (A) allele of the hair-cycle Agouti isoform 100

(P<0.0001, Student’s t-test), indicative of cis-regulatory variation, while Ahcy showed equal 101

allelic expression (Fig. 3B, table S7). These data suggest that winter-white coats develop as a 102

consequence of increased expression of Agouti during the autumn molt, which fits with our 103

observed dominance relationships and previous studies on the evolution of lighter pelage in deer 104

mice (19, 20). Our findings directly link Agouti expression and the evolution of seasonal 105
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camouflage in snowshoe hares and suggest that cis-regulatory evolution plays an important role 106

in the origin of novel seasonal traits.107

Comparison of winter-white (MT) and winter-brown genomes (WA) revealed 108

extraordinarily elevated levels of absolute genetic divergence across Agouti (Agouti dXY = 1.6%; 109

genome-wide dXY =0.41%; bootstrapped P<0.0001; Fig. 4A, fig. S4), indicating that the color 110

polymorphism did not arise from a recent de novo mutation. Alternatively, elevated divergence 111

could reflect either the long-term maintenance of polymorphism or introgression from another 112

species (21, 22). Six of the 32 species of hares and jackrabbits (genus Lepus) have winter-white 113

molts but evolutionary relationships within this rapid radiation are poorly resolved (23). To 114

examine the origins of winter coat color variants, we combined whole genome sequences of two 115

additional winter-white snowshoe hares from Pennsylvania (PA) and Utah (UT), two winter-116

brown black-tailed jackrabbits (L. californicus) from Nevada, and a previously sequenced 117

winter-white mountain hare (L. timidus) from Europe (10). Phylogenetic analyses (24) predicted 118

an exceptionally rare topology at Agouti that clustered individuals by winter coat color (Fig. 4B, 119

fig. S5B). Pairwise divergence between all winter-brown and white individuals was significantly 120

elevated across a known cis-regulatory region of Agouti (25, 26) ~40 kb upstream of the 121

transcription start site of the hair-cycle isoform (P<0.001; Fig. 4A, fig. S4). Divergence peaked 122

across a ~20 kb interval (dXY = 2.2-2.4%) that included a 1,033 base pair insertion on the winter-123

white haplotype and a ~4.3 kb deletion on the winter-brown haplotype (fig. S4). Additional 124

functional data are needed to determine if either of these candidate mutations underlie the125

observed cis-regulatory differences in Agouti expression (Fig. 3B). 126

The elevated interspecific divergence between color groups suggests that the winter-127

white and brown Agouti alleles may have arisen relatively early in Lepus (21). In contrast,128
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divergence within color groups was strongly reduced across a larger interval encompassing 129

Agouti (Fig. 4A, fig. S6), indicating that winter coat color alleles may have been shared through 130

hybridization. In support of this hypothesis, we found low but significant levels of genome-wide 131

introgression (27) between snowshoe hares and both black-tailed jackrabbits and mountain hares132

(table S8). Window-based analyses of absolute divergence and derived allele sharing (28)133

identified Agouti among the strongest genome-wide signatures of introgression in both winter-134

brown and winter-white clusters (fig. S7). 135

Previous studies demonstrated mitochondrial DNA introgression from black-tailed 136

jackrabbits, a western North American prairie-scrub species, into PNW snowshoe hares and 137

speculated that hybridization may have contributed to the evolution of brown winter coats in 138

snowshoe hares (29, 30). Consistent with this, winter-brown snowshoe hares unambiguously 139

nested within black-tailed jackrabbit variation at Agouti (Fig. 4B, fig. S5B) resulting in a 174 kb 140

interval of significantly reduced divergence between species (dXY =0.42% versus 1.2% genome-141

wide) embedded within a 236 kb interval of significantly elevated admixture proportions 142

( መℎ=0.71; Fig. 4A). Strong selection at a locus in the ancestral population can reduce 143

divergence between species (31), resulting in false inferences of admixture (28); however, 144

coalescent simulations of shared polymorphism with and without selection in the ancestral 145

population indicate that such a long interval of shallow divergence is highly unlikely in the 146

absence of interspecific gene flow (Fig. 4C, fig. S7, fig. S8). We also detected introgression 147

within the winter-white Agouti group (fig. S7, fig. S8). Resolving the origin and functional 148

relevance of these signatures awaits further investigation given that three other North American149

Lepus species undergo some degree of seasonal coat color change (7).150
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To link introgression with local adaptation we tested for selective sweeps based on allele151

frequency skews (32) while controlling for demographic history (fig. S9, table S9). We detected 152

a hard sweep overlapping Agouti in winter-brown individuals from the polymorphic zone, but no 153

evidence for a sweep in winter-white individuals (fig. S10, fig. S11). We estimate that the sweep 154

of the winter-brown allele in the PNW occurred 3-15 kya, following the retreat of the Cordilleran 155

ice sheet (33). High inferred selection coefficients (s) on the introgressed winter-brown Agouti156

background (s̅WA=0.024, s̅OR=0.015; fig. S11C) and fixation of alternative Agouti alleles between 157

monomorphic winter-brown (BC) and winter-white (MT) localities (Fig. 4D), despite high gene 158

flow (table S9), indicate that seasonal camouflage is maintained under strong local selection. 159

Despite widespread evidence of hybridization between animal species, introgression has 160

rarely been directly linked to ecological adaptation (34–36). We have shown that introgression 161

has shaped locally adaptive seasonal camouflage in snowshoe hares. Recurrent introgression of 162

coat color variants could facilitate evolutionary responses to environmental change within 163

populations as well as the long-term maintenance of adaptive variation among species, similar to 164

adaptive polymorphisms in beak morphology across the radiation of Darwin’s finches (22, 34). 165

Introgression of winter-brown coats into snowshoe hares may have enabled their persistence in 166

environments with more ephemeral seasonal snow following the end of the last glacial 167

maximum. Temperate snow cover duration is predicted to dramatically decrease over the next 168

century under most models of climate change (37), which may further intensify directional 169

selection for winter-brown camouflage (3, 6). Thus, the recent establishment of this dynamic 170

color polymorphism through introgression is likely to be a critical component of ongoing 171

adaptation to rapidly changing seasonal environments (7) in this iconic ecological model.172
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442

Fig. 1. Winter coat color polymorphism and population structure in snowshoe hares. (A)443

Alternative winter color morphs in snowshoe hares. (B) The modeled range-wide probability of 444

winter-white coats, adapted from (7). (C) Principle components (PC1 – 7.42%, PC2 – 5.27%; 445

coat color represented as brown/white circles) and population ancestry plots of 38,694 unlinked 446

SNPs derived from 80 exomes sampled from five localities (colored diamonds) overlaid on the 447

probability of winter-white coats in the Pacific Northwest. 448
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449

Fig. 2. The genetic basis of winter coat color polymorphism. (A) Exome SNP associations (-450

log10 of P-values, assuming dominant minor allele, 513,812 SNPs) for polymorphic zone 451

individuals. Red points above dashed line exceed the Bonferroni-corrected threshold of P=0.05. 452

(B) Gene structure across the associated interval and alternative Agouti transcription start sites 453

(arrows) corresponding to hair-cycle (HC) and ventral (V) 5' UTRs. Sliding window averages of 454

FST (5 kb with 2.5 kb step) between winter-white and winter-brown individuals with low-455

coverage whole genomes (15,173,804 SNPs). (C) Dominance of winter coat color inferred from456

Agouti genotypes of wild (OR and WA; Hardy-Weinberg χ2 =1.6, P=0.21) and captive (WA and 457

MT) hares. (D) Pedigree and genotypes of a mixed phenotype family (paternal genotype is 458

unknown, but inferred to carry the a allele). 459
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460

Fig. 3. Agouti expression in snowshoe hares during autumn molts. (A) The relative 461

expression level (2-ΔC , normalized to Gapdh) of hair-cycle (HC) and ventral (V) Agouti isoforms 462

in molting skin of winter-white (Aa) snowshoe hares. (B) Relative abundance of the winter-white 463

allele in the same skin samples for Agouti hair-cycle transcripts, Ahcy transcripts, and Agouti 464

genomic DNA. White allele proportions were significantly elevated in Agouti transcripts 465

compared to Ahcy transcripts and Agouti genomic DNA (P<0.00001, Student’s t-test). Pairs of 466

points represent technical replicates.467
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468

Fig. 4. The evolution of winter coat color alleles in hares and jackrabbits. (A) Estimated tree 469

topologies across the Agouti region (top, see 4B). Mutation-scaled absolute genetic divergence in 470

20 kb sliding windows for pairs of individuals (dashed line indicates location of candidate 471

insertion-deletion mutations). Gray rectangles represent 99.8% bootstrap quantiles and red points 472

are windows with one-tailed P<0.001. Bottom plot shows a finer scale of absolute divergence in 473

black (dXY, red points with one-tailed P<0.001) and the fraction of introgression in blue ( መℎ, 474

dark blue points with z-score>4) between black-tailed jackrabbits and the WA winter-brown 475

snowshoe hare. (B) The most common genome-wide topology (white) and the local Agouti476

topology (hatched; rabbit outgroup). (C) Distributions of dXY between the winter-brown 477

snowshoe hare and black-tailed jackrabbits genome-wide (gray), at Agouti (green), and under 478

simulations of strong ancestral selection (blue). (D) Distributions of SNP FST values between BC 479
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(monomorphic winter-brown) and MT (monomorphic winter-white) hares genome-wide (gray) 480

and for non-synonymous SNPs (yellow). FST=1 at a diagnostic Agouti SNP, indicated with a 481

green star. 482


