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ABSTRACT

We develop a new approach to random walks on de Bruijn graphs over the alphabet
A through right congruences on Ak, defined using the natural right action of A+. A
major role is played by special right congruences, which correspond to semaphore
codes and allow an easier computation of the hitting time. We show how right
congruences can be approximated by special right congruences.

1 Introduction

In graph theory, a k-dimensional de Bruijn graph over the alphabet A is a directed graph representing
overlaps between sequences of symbols [9, 10]. The de Bruijn graph has |A|k vertices, given by
all words of length k in the alphabet A. There is an edge from vertex a1 . . . ak ∈ Ak to vertex
a2 . . . aka ∈ Ak for every a ∈ A. An important question for cryptography and networking is that of
de Bruijn sequences. A de Bruijn sequence is a cyclic word of length |A|k such that every possible
word of length k over the alphabet A appears once and exactly once (see [16] for a review on de
Bruijn sequences). Obviously, a de Bruijn sequence corresponds to a Eulerian path in the de Bruijn
graph.

Here we are interested in random walks on the de Bruijn graph Γ. To an edge v
a−→ w in Γ we

associate a probability 0 ≤ π(a) ≤ 1, satisfying
∑

a∈A π(a) = 1. This gives rise to the de Bruijn–
Bernoulli process (see for example [5, 2]): if we are at vertex v at a given time, then with probability
π(a) we go to vertex w where v

a−→ w is an edge in Γ. The transition matrix T = (Tv,w)v,w∈Ak

encodes the transition probabilities, that is, Tv,w = π(a) if v
a−→ w. Given a random walk, an
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important question is to determine the stationary distribution, which intuitively is the state that is
reached after taking many steps in the random walk. Mathematically, the stationary distribution
is the vector I such that IT = I. In other words, I is the left eigenvector of T with eigenvalue
one. In the case of the de Bruijn–Bernoulli random walk, the stationary distribution I ∈ Ak is
multiplicative [5]

I =
(∏
a∈w

π(a)
)
w∈Ak

.

We can reformulate the random walk on the de Bruijn graph in algebraic terms. Namely, let us
define the right action of A on Ak by

a1 . . . ak.a = a2 . . . aka

for a1 . . . ak ∈ Ak and a ∈ A. This induces the action of the semigroup F (|A|, k) := A1∪A2∪· · ·∪Ak =
A≤k of all words in A of length 1, 2, . . . , k with the multiplication · being concatenation and taking
the last k letters if the length is bigger than k. For example, if A = {a, b} and k = 3, we have
ab · ba = bba in F (2, 3). In this formulation, it is clear that the walk in j steps given by a1 · · · aj
acts as a constant map (i.e., is independent of the initial vertex) if and only if j = k. We call such
elements resets.

Random walks on de Bruijn graphs are a “classical” subject. However, in applications it is right
congruences1 [1, 14, 15, 19] on Ak (denoted by RC(Ak)) under the faithful action of F (|A|, k) and
the associated random walks on their congruence classes that are important. Intuitively, these are
the finite semigroups for which any product of k elements act like constant maps on Ak, but because
of the right congruence some products of length less than k might be constant. Right congruences
are a standard idea in finite state machines or finite automata theory [18]. In finite state machines,
they are used in passing to the unique minimal automata doing the same computation. For example,
assume one has a stream of data (e.g. chemical data on waste water being emptied into a river).
Assume that there exist a positive integer k, so that only the k most recent symbols of data matter.
Then there is a function f : Ak → D, where D is the data set. The function could be of the form
f(a1, . . . , ak) is ok or not ok (that is, D is a two element set) depending on whether this recent k
long data meets EPA standards. Then the function f gives an equivalence relation ∼ on Ak given
by s ∼ t if and only if f(s) = f(t). In addition, there is a unique maximal refinement of ∼ which
is a right congruence (that is, the best lower approximation by a right congruence) R, namely sRt
for s, t ∈ Ak if and only if for all strings u ∈ A∗ we have s.u ∼ t.u or equivalently f(su) = f(tu).
Here . is the multiplication in F (|A|, k). Then (Ak/R, F (|A|, k)) can compute the function f since
f factors through the R classes (take u to be 1). See [18] for more details.

Consider the right congruence in RC(A3) with A = {a, b} defined by the congruence classes

{aaa, baa, aba}, {bba}, {aab, bab}, {abb}, {bbb}. (1.1)

It is not hard to check that if w, v ∈ A3 are in the same congruence class, then w · z and v · z
for z ∈ F (2, 3) are also in the same congruence class, proving that (1.1) is indeed in RC(A3). The

1An equivalence relation is a right congruence if it preserves the right action of a semigroup. See Definition 2.2 for
more details.
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Figure 1.1: The transition graph for the congruence of Equation (1.1).

transition graph is given in Figure 1.1 and the transition matrix of the associated random walk is

T =


π(a) 0 π(b) 0 0
π(a) 0 π(b) 0 0
π(a) 0 0 π(b) 0

0 π(a) 0 0 π(b)
0 π(a) 0 0 π(b)

 .

By lumping [12, 13], we can obtain the stationary distribution for T from the stationary distribu-
tion of the de Bruijn–Bernoulli stationary distribution by adding the product distributions for each
member of a congruence class. In our example

I = (π(a)3 + 2π(a)2π(b), π(a)π(b)2, π(a)2π(b) + π(a)π(b)2, π(a)π(b)2, π(b)3)

= (π(a)2 + π(a)2π(b), π(a)π(b)2, π(a)π(b), π(a)π(b)2, π(b)3),

where for the second line we used that π(a) + π(b) = 1.
Recall that all elements in F (|A|, k) of length k are constant maps. We are interested in the

probability that an element of length 1 ≤ ` < k is a constant map when F (|A|, k) acts on right
congruences. This is intuitively related to the hitting time (or waiting time) to constant map. As
we will show in Section 6, there is a lattice structure imposed on the set of right congruences with
partial order being inclusion. It turns out that we can approximate right congruences by special
right congruences as introduced in Section 7 using certain meets and joins in this lattice. Special
right congruences in turn are associated to semaphore codes as defined in Section 4, on which it is
easy to compute the hitting time (see Section 8). The hitting time of the approximation (given by a
semaphore code) and the right congruence turn out to be the same, and the approximation is finer
than the right congruence. The stationary distributions of the two are simply related by “lumping”.
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Let us now turn our attention to semaphore codes. For a fixed alphabet A, which we assume
to be a finite non-empty set, denote by A+ the set of all strings a1 . . . a` of length ` ≥ 1 over A
with multiplication given by concatenation. Thus (A+, A) is the free semigroup with generators A
(since every semigroup (S, ·) generated by a subset A ⊆ S is a surmorphism of (A+, A) by mapping
a1 . . . a` → a1 · a2 · . . . · a` ∈ S). Furthermore, let A∗ = A+ ∪ {1}, so that A∗ is A+ with the identity
added; it is the free monoid generated by A. The semigroup A+ has three orders: “is a suffix”, “is
a prefix”, and “is a factor”. In particular, for u, v ∈ A+

u is a suffix of v ⇐⇒ ∃w ∈ A∗ such that wu = v,

u is a prefix of v ⇐⇒ ∃w ∈ A∗ such that uw = v,

u is a factor of v ⇐⇒ ∃w1, w2 ∈ A∗ such that w1uw2 = v.

A suffix code C of A+ (or over A) is a subset C ⊆ A+ so that all elements in C are pairwise
incomparable in the suffix order [6].

A semaphore code [6] is a suffix code S over A for which there is a right action in the following
sense:

If u ∈ S ⊆ A+ and a ∈ A, then ua has a suffix in S (and hence a unique suffix of ua).

The right action u.a is the suffix of ua that is in S.
(1.2)

(The dual concept of prefix codes and left actions is often used in the literature, see for example [6]).
For example, S = {baj | j ≥ 0} =: ba∗ is a semaphore code with right action

baj .a = baj+1 and baj .b = b.

In practice, to check whether a suffix code is a semaphore code one merely needs to check the first
line of (1.2). For example, C = {a, bb} is a suffix code, but a.b has no suffix in C, so that C is not a
semaphore code.

Semaphore codes over A are inherently related to ideals of A+. A subset I ⊆ A+ is an ideal if
uIv ⊆ I for all u, v ∈ A∗. Similarly, L ⊆ A+ is a left ideal if uL ⊆ L for all u ∈ A∗. In this setting,
suffix codes over A are precisely the suffix minimal elements of a left ideal L.

Now given an ideal I ⊆ A+ we construct a semaphore code as follows. Given u = aj . . . a2a1 ∈ A+,
check whether u is in I. If u 6∈ I, ignore u. If u ∈ I, we find the (necessarily unique) index 1 ≤ i ≤ j
such that ai−1 . . . a1 6∈ I, but ai . . . a1 ∈ I. Then ai . . . a1 is a code word and the set of all such words
forms the semaphore code S =: Iβ`, as can be readily verified. It is easy to show that

I ←→ Iβ`

is a bijection between ideals I ⊆ A+ and semaphore codes over A, see Proposition 4.3. Hence
semaphore codes are precisely the suffix minimal elements of an ideal I ⊆ A+. Since ideals are
ubiquitous in mathematics, so are semaphore codes!

As mentioned earlier, the set of right congruences RC(Ak) is a finite lattice under the inclusion
order on the congruence classes, where the meet is given by intersection. We prove that RC(Ak) is
semimodular, but not modular in general, and thus satisfies the Jordan–Dedekind condition that all
maximal chains are of the same length. Also for |A| ≥ 2 and k ≥ 2, RC(Ak) is not generated by its
atoms. See Section 6 for more details.
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Denote by Sem(Ak) the set of semaphore codes coming from ideals I ⊇ Ak. This means that all
codewords of Sem(Ak) have length less than or equal to k (so the code is finite) and every member
of Ak has a suffix in the code. Starting with a semaphore code S and restricting the codewords
of S to those of length ≤ k, might not yield a finite semaphore code. But it is always possible to
add codewords of length k to this length restricted semaphore code to obtain Sk ∈ Sem(Ak). This
process of adding codewords of length k which have no suffix in the restricted words is unique. For
example, we have seen that S = ba∗ is a semaphore code. If we take k = 3, we obtain {b, ba, ba2}.
However, aaa has no suffix in this set, so it needs to be added to obtain the restricted semaphore
code S3 = {b, ba, baa, aaa}. In [22] we show that if S is a semaphore code, then the finite semaphore
code Sk converges to S in some precise sense.

Now each semaphore code S ∈ Sem(Ak) gives a right congruence ρ ∈ RC(Ak) as follows:

For two strings u, v ∈ Ak, we say u ∼S v if u and v have a common suffix in S. (1.3)

It is not too hard to verify that ∼S defines a right congruence on Ak. For example, for A = {a, b}

S = {aa, ab, aba, bba, abb, bbb} ∈ Sem3(A)

yields the right congruence in RC(A3)

{aaa, baa}, {aab, bab}, {aba}, {bba}, {abb}, {bbb}. (1.4)

We denote all elements of RC(Ak) that arise from semaphore codes in Sem(Ak) by SRC(Ak), the
special right congruences of RC(Ak). We prove in Section 7 that SRC(Ak) is a full (meaning that
top and bottom agree) sublattice of RC(Ak), so that each element ρ ∈ RC(Ak) has a unique largest
lower (finer) approximation denoted by ρ, namely ρ is the join of all elements in SRC(Ak) contained
in ρ. We will also prove in Section 7, and the reader can verify this, that the right congruence
in (1.1) is not a special right congruence, but the special right congruence in (1.4) is the unique lower
approximation.

As for the de Bruijn graphs, we have random walks on semaphore codes since there is a right
action of a semigroup on semaphore codes. If S is a semaphore code over the alphabet A and
π : A→ [0, 1] is any probability distribution on A, namely

∑
a∈A π(a) = 1, then [6, Proposition 3.5.1]∑

s∈S
π(s) = 1,

where π(s) = π(a1) · · ·π(a`) if s = a1 . . . a`. This means in particular that S is a maximal code with
respect to inclusion.

We can now construct a random walk with state space given by the code words in S using the right
action given in (1.2). Defining the |S| × |S| monomial matrix T (a) for each a ∈ A by T (a)s,s.a = 1
and 0 otherwise for all s ∈ S, we obtain the transition matrix as

T =
∑
a∈A

π(a)T (a).

We prove in Theorem 8.1 that the stationary distribution I of T is given by I = (π(s))s∈S . Further-
more, the probability that a word of length ` is a reset (or constant map) is

P (`) =
∑
s∈S
`(s)≤`

π(s),
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see Theorem 8.2. This probability is related to the hitting time to reset. For example, for the
semaphore code S = ba∗, all words w are resets unless w = a`. The probability that a string of
length 3 is a reset is P (3) = π(b) + π(b)π(a) +π(b)π(a)2 = 1− π(a)3. For more details see Section 8.

We are now able to give a more direct construction of the special right congruence ρ for ρ ∈
RC(Ak), the best lower approximation of ρ in SRC(Ak). Define

Res(ρ) = {w ∈ A+ | w is a reset on Ak/ρ}.

Then we prove that Res(ρ) is an ideal of Ak ⊆ A+ and the special right congruence associated
to the semaphore code given by this ideal is ρ. An immediate consequence is that ρ and ρ have
the same hitting time to reset, but in general different stationary distributions. In general, ρ has
more congruence classes than ρ, so the stationary distributions cannot be the same. Note that both
distributions are determined by lumping from the product distribution of the de Bruijn random
walk on Ak. In applications a metric is placed on all distributions of RC(Ak). Then the probability
distribution π on A is chosen such that the distance between Iρ and Iρ is minimal. This is called the
principle of choosing a “correct” or “good” probability distribution π on A.

The paper is organized as follows. In Section 2 we provide the algebraic background of the
semigroups related to right congruences. The precise definition of resets is given in Section 3.
Semaphore codes are introduced in Section 4. In Sections 5 right congruence and their properties
are studied, in particular the lattice structure in Section 6. Special right congruences are the subject
of Section 7. Random walks on semaphore codes are studied in Section 8.
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2 Algebraic foundations

2.1 Elliptic maps on rooted trees

Elliptic maps on finite trees were considered by Rhodes and Silva [17, 20]. A tree is a connected
graph that does not contain a closed walk in which all vertices are distinct. A leaf of a tree is a
vertex of degree 1, that is, a vertex that connects to exactly one edge. A rooted tree is a tree in which
a particular node is designated as the root. In this case, if a vertex u is on the path from the root
to another vertex v, we say that u is an ancestor of v, or equivalently, that v is a descendant of u. If
u and v are adjacent, we say that u is the parent of v, which is the child of u.

Given a rooted tree T , we denote by Vert(T ) the set of vertices of T . The distance between two
vertices is the minimum number of edges in a path between them. An elliptic map on T is a mapping
Vert(T )→ Vert(T ) preserving adjacency and distance to the root. Equivalently, an elliptic map on
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Figure 2.1: Rooted tree T (2, 3).

r0

v1 v2

v11 v12 v13 v21 v22 v23

7→

r0

v2 v1

v22
v23

v21 v11
v12

v13

Figure 2.2: Elliptic map ϕ : Vert(T ) → Vert(T ) on T := T (2, 3) which maps r0 7→ r0, v1 7→ v2,
v2 7→ v1, v11 7→ v21, v12 7→ v21, v13 7→ v23, v21 7→ v12, v22 7→ v11, v23 7→ v11.

T is a contraction (decreases distances between vertices) while preserving distance to the root, or a
mapping fixing the root and preserving parenthood. We shall write functions on the right since we
will deal with right actions and compositions. Elliptic maps on a fixed rooted tree form a monoid
under composition.

Let T := T (n0, . . . , nN ) be a uniformly branching rooted tree, where all leaves are at distance
N + 1 from the root r0 and each vertex at distance (or level) k from the root has nk children for
k = 0, . . . , N . An example of a uniformly branching rooted tree is given in Figure 2.1. An example
of an elliptic map on this tree is given in Figure 2.2.

There is another way to represent an elliptic map ϕ using component actions. Namely, a given
vertex v ∈ Vert(T ) at level k is completely specified by the unique path r0 → w1 → · · · → wk = v
from the root. Since elliptic maps preserve parenthood, the image of this path under the elliptic map
r0 → (w1)ϕ→ · · · → (wk)ϕ = (v)ϕ is again a path, this time from r0 to (v)ϕ. Hence ϕ can be defined
recursively: given the map from path r0 → w1 → · · · → wk−1 to r0 → (w1)ϕ → · · · → (wk−1)ϕ, we
can define a map sw from the children of w := wk−1 to the children of (wk−1)ϕ. The map sw is called
the component action at vertex w. Graphically, we place sw on the vertex w for every vertex w that
is not a leaf. See Figure 2.4. The elliptic map of Figure 2.2 is written using component actions in
Figure 2.3.

As mentioned before, the product of elliptic maps is composition, which is another elliptic map.
We can formulate this in terms of the component actions. Let ϕ and ψ be elliptic maps on the same
rooted tree T with component action sv and tv at vertex v ∈ Vert(T ) that is not a leaf, respectively.
Then the component action of ϕ ◦ ψ at vertex v is svt(v)sw , where w is the parent of v. An example
is given in Figure 2.5.

Note that a child v of a vertex w can be uniquely specified by the edge e that leads to it.
Hence the path r0 = w0 → w1 → · · · → wk = v from r0 to v can alternatively be encoded by a
sequence e0 → e1 → · · · → ek−1 of edges, where ei is the edge from vertex wi to wi+1. For us,
it will be convenient to keep track of the edges by labelling the n` edges leaving a given vertex
at level 0 ≤ ` ≤ N bijectively with elements from a set X` with |X`| = n`. The result is a
labelled rooted tree. See Figure 2.6 for an example. Note that there are lots of ways to label a
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sr0

sv1 sv2

Figure 2.3: Elliptic map of Figure 2.2 written with component actions: sr0 is the map v1 7→ v2,
v2 7→ v1, sv1 is the map v11 7→ v21, v12 7→ v21, v13 7→ v23, and sv2 is the map v21 7→ v12, v22 7→ v11,
v23 7→ v11.

sww

v1 v2 v3

Figure 2.4: Component action at vertex w of an elliptic map on T (2, 3, 3). The component action
sw is a map on the children of w, namely on {v1, v2, v3}, and maps into the children of the image of
w under the elliptic map.

rooted tree. Labelling the rooted tree is equivalent to specifying a coordinate system. Once the
labelling L of T is fixed, a sequence e0 → e1 → · · · → ek−1 of edges is determined by an element
(x0, x1, . . . , xk−1) ∈ X0 ×X1 × · · · ×Xk−1.

Given a rooted tree T (n0, . . . , nN ) with labels in X = X0 × · · · × XN , elliptic maps can now
be expressed using the labels giving rise to the wreath product. The component action at level k
is described by a semigroup Sk acting faithfully on the right on Xk, denoted (Xk, Sk). Then the
wreath product (X0, S0) ◦ · · · ◦ (XN , SN ) is (X,S), where S is the semigroup with component action
at level k in (Xk, Sk). More precisely, Π = (Π0, . . . ,ΠN ) ∈ S if Π0 ∈ S0, Π1 : X0 → S1, and generally
Πk : X0 × · · · ×Xk−1 → Sk for 1 ≤ k ≤ N , so that for (x0, . . . , xN ) ∈ X

(x0, . . . , xN )Π =
(
x0.Π0, x1.(x0)Π1, x2.(x0, x1)Π2, . . . , xN .(x0, . . . , xN−1)ΠN

)
. (2.1)

The semigroup element m := (x0, . . . , xk−1)Πk ∈ Sk is the component action in the vertex (or
component) specified by (x0, . . . , xk−1).

Remark 2.1 The above arguments show that elliptic maps on uniformly branching trees and wreath
products are the same thing (confirming [20, Proposition 3.3]).

Multiplication of wreath products is given by composition of the component action (2.1). Graph-
ically on the level of labelled trees directly, the product Πg ·Πf for Πg,Πf ∈ (X,S) translates to the
following:

1. To determine the value of Πg · Πf at vertex x = (x0, . . . , xk−1) in the labelled rooted tree, go
to the corresponding vertex in the tree for Πg, keep track of all values at the vertices on the
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sr0

sv1 sv2
◦

tr0

tv1 tv2
=

sr0tr0

sv1t(v1)sr0
sv2t(v2)sr0

Figure 2.5: Composition or product of two elliptic maps on the rooted tree in Figure 2.1.

2 1 3 1 2 3 3 1 2

1 3 2

1 2 3 3 2 1 1 2 3

1 2 3

1 2

Figure 2.6: Labelled rooted tree T (2, 3, 3) with labeling sets X0 = {1, 2}, X1 = X2 = {1, 2, 3}.

way and act with the corresponding elements on the vertex vector:

xg =
(
x0.Π

g
0, x1.(x0)Πg

1, x2.(x0, x1)Πg
2, . . . , xk.(x0, . . . , xk−1)Πg

k

)
.

2. Then the entry in vertex (x0, . . . , xk−1) of Πg ·Πf is (x0, . . . , xk−1)Πg
k(x

g
0, . . . , x

g
k−1)Πf

k .

One of the main questions is “how restrained can the component action be”? See the first half
of [18] and the introduction to [21].

The Prime Decomposition Theorem of Krohn and Rhodes [11] (see also [18] and [21, Chapter
4]) states that every finite semigroup divides an iterated wreath product of its finite simple group
divisors and copies of the three element aperiodic monoid U2 consisting of two right zeroes and an
identity. More precisely, a semigroup S1 divides semigroup S2, written S1|S2, if S1 is a homomorphic
image of a subsemigroup of S2. In addition, U2 = {1, a, b} where xa = a, xb = b, and 1x = x1 = x
for all x ∈ U2. A finite semigroup is aperiodic if all of its subgroups are trivial. Alternatively, the
Prime Decomposition Theorem says that the basic building blocks of finite semigroups are the finite
simple groups and semigroups of constant maps with an adjoined identity.

9



2

3 2

2 1 3 1 3 3
2 1 3 1 2 3 3 1 2

1 3 2

1 2 3 3 2 1 1 2 3

1 2 3

1 2

Figure 2.7: Graphical presentation of an elliptic map with RZ component action using the same
labeling as in Figure 2.6. The black leaf has coordinates (1, 2, 2). Since it passes the constant maps
2,3,3 on its way, it gets mapped to the leaf with coordinates (2, 3, 3), denoted by the blue leaf.

We say that I ⊆ S is an ideal of the semigroup S if SI ∪IS ⊆ I. We write then IES. The kernel
of a semigroup S, denoted ker(S), is the unique minimal nonempty ideal of S. If S is a monoid, its
group of units is the subgroup formed by all the invertible elements. Both kernel and group of units
play a major role in this context.

Let S1 and S2 be semigroups and let ϕ be a homomorphism of S1 into endomorphisms of S2.
Then the semigroup S1 ×ϕ S2 is the semidirect product of S1 by S2 with connecting homomorphism
ϕ (see also [21, Section 1.2.2, pg. 23]). More precisely, S1 ×ϕ S2 has elements in S1 × S2 with
multiplication given by

(s1, s2) · (s′1, s′2) = (s1s
′
1, s2((s′1)ϕ) s′2) .

Notice that wreath products are a special case of semidirect products. In fact, wreath products are
“generic” semidirect products. Namely up to pseudovarieties, semidirect products, wreath products,
and elliptic products yield the same thing. See [21] for all details.

A semigroup S is called irreducible if for all finite semigroups S1 and S2 and all connecting
homomorphisms ϕ, S | S1 ×ϕ S2 implies S|S1 or S|S2. Krohn and Rhodes [11] showed that S is
irreducible if and only if either (a) S is a nontrivial simple group; or (b) S is one of the four divisors
of U2.

A pseudovariety is a collection of finite semigroups closed under taking finite direct products and
divisors (that is, subsemigroups and quotients) [21]. The monoid U2 is in the pseudovariety RZ1,
where RZ = [[xy = y]] is the pseudovariety of right zeroes, meaning that all elements x, y in S ∈ RZ
satisfy the identity xy = y. In other words, RZ is the pseudovariety generated by semigroups of
constant maps. We denote by RZ1 the pseudovariety generated by semigroups of transformations
consisting of constant maps plus the identity mapping. The elements in RZ1 are also called left
regular bands, indeed RZ1 = [[x2 = x, xyx = yx]] (cf. [21, Proposition 7.3.2]). Random walks
on left regular band are an important new topic [7, 8]. This has recently also been generalized to
random walks on R-trivial monoids [3, 4].

In light of the Prime Decomposition Theorem, there are three main cases for the component
actions in Sk of the elliptic maps on T (n0, . . . , nN ). All of the next three statements have the
following form. First note that composition of elliptic maps on a fixed tree with component action in
a fixed pseudovariety is closed under composition. Suppose that the component action Sk is selected
to be in the pseudovariety V. Then the pseudovariety generated by elliptic maps with component
action in V (in this case divisors of elliptic maps) is determined and is denoted PV(component in V).
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It is the semigroups of PV(components in V) on which we analyze their random walks:

1. Sk is in the pseudovariety RZ with PV(component in RZ) which is delay semigroups (see
Section 2.2). In this case the component action consists only of constant maps. If we label the
branches from a vertex at level k by Xk = {1, 2, . . . , nk}, then we can also label the vertices at
level k by elements in Xk. The label a ∈ Xk means the constant map that maps everything to
a. An example is given in Figure 2.7.

2. Sk is in the pseudovariety RZ1 with PV(component in RZ1) which is aperiodic semigroups
(which means semigroups with trivial subgroups). In this case the component action consists
of constant maps and the identity; the component monoids are aperiodic. If again the branches
at level k are labelled by Xk = {1, 2, . . . , nk}, then we can label the vertices by elements in
Xk ∪ {I}, where as before a ∈ Xk denotes the constant map to a and I is the identity.

3. Sk is any finite group plus constant maps and PV(component in any finite group plus constant maps)
is all finite semigroups. In this case the vertices at level k are labelled by elements in a finite
group G which acts on the right on Xk and elements in Xk which give the constant maps. This
yields a component semigroup with group of units in G and kernel in RZ.

In this paper we will restrict to elliptic maps or wreath products with component actions in RZ,
that is constant maps (without identity) to answer the question about resets. Future papers will
deal with cases 2 and 3.

2.2 Delay pseudovariety

Let D be the pseudovariety of semigroups whose idempotents are right zeroes, also called the delay
pseudovariety. The pseudovariety D can be characterized (see [21, pg. 248]) by

D =
⋃
k≥1

Dk,

where
Dk = [[x0x1 · · ·xk = x1 · · ·xk]] , (2.2)

meaning that any k+ 1 elements x0, . . . , xk in a semigroup S ∈ Dk satisfy the identity x0x1 · · ·xk =
x1 · · ·xk.

The delay pseudovariety is also equal to RZN defined as

RZN = {S | S/ker(S) is nilpotent and ker(S) ∈ RZ} ,

where we recall that RZ = [[xy = y]]. A semigroup N with zero is nilpotent if Nk = {0} for some
k, or in other words, x1 · · ·xk = 0 in N . Thus, S ∈ D if and only if S satisfies the pseudoidentity
xyω = yω, where yω is the unique idempotent in 〈y〉 ≤ S, or more succinctly

D = [[xyω = yω]] = RZN .

The pseudovariety D is also closed under semidirect products. For all details see [21].

A semigroup S is a subdirect product of S1 and S2, denoted S � S1×S2, if S is a subsemigroup of
S1×S2 mapping onto both S1 and S2 via the projections [21, pg. 34]. More concretely, S � S1×S2
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if and only if there exist surmorphisms ϕi : S → Si for i = 1, 2, so that ϕ1 and ϕ2 separate points,
that is, s, t ∈ S with s 6= t implies that (s)ϕj 6= (t)ϕj for some j ∈ {1, 2}. The right letter mapping
congruence on a semigroup S ∈ D is defined by s ∼ t if zs = zt for all z ∈ ker(S), that is, we identify
two elements of S if they act the same on the right of ker(S). Therefore ∼ is the kernel of the right
Schützenberger representation of S on ker(S). We denote by RLM: S � S the canonical morphism
s 7→ s/ ∼, and denote its image by RLM(S). (This definition agrees with the definition given in [21,
Section 4.6.2]).

From this it now follows that if S ∈ D = RZN, then

S � S/ker(S)× RLM(S).

This can be observed by letting ϕ1 : S → S/ker(S) be the Rees quotient map, which maps s 7→ s if
s 6∈ ker(S) and collapses ker(S) to a single element. Let ϕ2 : S → RLM(S) be the map s 7→ s/ ∼.
Hence ϕ2 is injective on ker(S), so that ϕ1 and ϕ2 separate points. In our applications, we only
care about RLM(S). Note that a semigroup S ∈ D is nilpotent if and only if RLM(S) is the trivial
semigroup (0).

Observe that for S, T ∈ D we have ker(S), ker(T ) ∈ RZ and

if S � T then RLM(S)� RLM(T )

if S � T then ker(S)� ker(T )

RLM(RLM(S)) ∼= RLM(S).

(2.3)

The proofs are not difficult and all details can be found in [21, Section 4.6.2].

Definition 2.2 An equivalence relation τ on ker(S) is called a right congruence if it preserves the
right action of S on ker(S), that is, if zτz′ implies (zs)τ(z′s) for all z, z′ ∈ ker(S) and s ∈ S. We
denote by RC(ker(S), S) (or by RC(ker(S)) if S is implicit) the set of all right congruences on ker(S).

We consider RC(ker(S)) (partially) ordered by inclusion. Since the intersection of right con-
gruences on ker(S) is still a right congruence, (RC(ker(S)),⊆) is a (complete) ∧-semilattice. Thus
(RC(ker(S)),⊆) is indeed a (complete) lattice with the determined join, described by

∨Λ =
⋂
{ρ ∈ RC(ker(S)) | λ ⊆ ρ for every λ ∈ Λ}

for every Λ ⊆ RC(ker(S)).
It is routine to check each τ ∈ RC(ker(S), S) determines a congruence τ on (ker(S),RLM(S))

defined by
(s ∼)τ(t ∼) if (zs)τ(zt) for every z ∈ ker(S),

where s ∼ denotes the equivalence class of s ∈ S under the right letter mapping congruence ∼. Since
S ∈ D, we have ker(S) ∈ RZ, and it follows easily that

zτz′ if and only if (z ∼)τ(z′ ∼) holds for all z, z′ ∈ ker(S). (2.4)

Thus right congruences on ker(S) and right letter mapping images of S are the “same thing”.
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A =

a

a b c

a b c a b c a b c

B =

b

a b c

a b c a b c a b c

C=

c

a b c

a b c a b c a b c

Figure 2.8: Generators for F (3, 3) on T (3, 3, 3) with A3 = {a, b, c}.

2.3 Right zero component action

In this section, we specialize the elliptic maps on rooted uniformly branching trees of Section 2.1 to
the constant component action. That is, we restrict ourselves to the case that the component action
S` ∈ RZ = [[xy = y]] for all 0 ≤ ` ≤ N .

Let F (g, k) be the semigroup generated by Ag := {a1, a2, . . . , ag} modulo all relations of the form

ai0ai1 . . . aik = ai1 . . . aik

for i0, . . . , ik ∈ {1, . . . , g}. This semigroup admits a convenient normal form: we can identify F (g, k)
with A≤k \ {ε}, the set of all nonempty words on A of length at most k (we denote the empty word
by ε). Note that we may define length of an element of F (g, k) as the length of the respective normal
form in A≤k \ {ε}.

Given u ∈ A+, let uξk denote the suffix of length k of u if |u| ≥ k and u otherwise. We define a
binary operation ◦ on A≤k \ {ε} by

u ◦ v = (uv)ξk.

This binary operation on the normal forms corresponds to the product of F (g, k). For example in
F (2, 3) with A2 = {a, b} we have aba · a = baa, aba · bbb = bbb, b · a = ba and so on.

It is immediate that F (g, k) satisfies the identity

x0x1 · · ·xk = x1 · · ·xk. (2.5)

Indeed, F (g, k) is the free pro-Dk semigroup over A (see [21, Subsection 3.2.2] for details on free
pro-V semigroups, for a pseudovariety V). Since F (g, k) is finite, it follows that F (g, k) ∈ D. Note
that we can identify ker(F (g, k)) with Ak, the set of all words on A of length k.

It can also be interpreted in terms of elliptic maps on T := T (g, . . . , g︸ ︷︷ ︸
k

) as follows. As in Section 2.1,

we represent elliptic maps directly on the tree by denoting the component action on the vertices.
Define the generators ϕ1, . . . , ϕg through trees of depth k with g branches at each level, where in
level 1 ≤ ` ≤ k the vertices are labeled a1, . . . , ag from left to right. The i-th generator has label
ai at level 0. Since the vertices at level k are not labeled, we will omit them for space reasons. An
example of the generators for F (3, 3) is given in Figure 2.8.
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A ·B =

b

a a a

a a a b b b c c c

Figure 2.9: Multiplication of elements A and B in F (3, 3). Note that the first two levels are constant
precisely as specified by A and B.

A label ai in a given vertex denotes the constant map to ai. If we label the edges under each
vertex also a1, . . . , ag from left to right, then we can multiply generators on the labeled tree as in
Section 2.1. See Figure 2.9 for the product of A and B of Figure 2.8. Using the notation vj1...jk to
denote the nodes below the root as in Subsection 2.1, we have vj1...jkϕi = vij1...jk−1

and so

vj1...jkϕi`−1
. . . ϕi0 = vi0...i`−1j1...jk−`

for every ` ≤ k. In terms of component actions, this translates into a tree with ai0 on level 0, ai1 on
all g vertices of level 1, and in general aij on all vertices of level j for 0 ≤ j < `. It follows easily
from

vj1...jkϕik−1
. . . ϕi0 = vi0...ik−1

= vj1...jkϕik . . . ϕi0

that ϕ1, . . . , ϕg generate a semigroup isomorphic to F (g, k).
This gives a simple proof of Stiffler’s Theorem [23] (see also [21, Theorem 4.5.7, pg. 248]).

Theorem 2.3 (Stiffler) The smallest pseudovariety containing the 2-element right zero semigroup
that is closed under semidirect product (equivalently wreath or elliptic products) is D.

Proof. As discussed in Section 2.2, D is a pseudovariety that is closed under semidirect product.
By the arguments above, the free objects F (g, k) are elliptic products with component action in RZ
and since every member of D is a suromorphic image of an appropriate free one, the theorem is
proved. �

In the sequel, we will be interested in the classification of right congruences on ker(F (g, k)) ∈ RZ.

3 k-reset graphs

k-reset graphs are finite state automata [18] with the additional property that strings of length k
are resets or constant maps. The formalism is such that the definitions in the profinite case, when k
tends to infinity, is very similar. Let us now discuss the details.

Let A be a finite nonempty alphabet. An A-graph is a structure of the form Γ = (Q,E), where:

• Q is a finite nonempty set (vertex set);

• E ⊆ Q×A×Q (edge set).

A nontrivial path in an A-graph Γ = (Q,E) is a finite sequence of the form

q0
a1−→q1

a2−→· · · an−→qn
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such that (qi−1, ai, qi) ∈ E for i = 1, . . . , n. Its label is the word a1a2 · · · an ∈ A+ = A∗ \ {ε}, where
A∗ is the set of words in the alphabet A and ε is the empty word. A trivial path is a formal expression
of the form

q
ε−→q.

An A-graph Γ = (Q,E) is:

• deterministic if
(p, a, q), (p, a, q′) ∈ E ⇒ q = q′

holds for all p, q, q′ ∈ Q and a ∈ A;

• complete if
∀p ∈ Q ∀a ∈ A ∃q ∈ Q : (p, a, q) ∈ E;

• strongly connected if, for all p, q ∈ Q, there exists a path p
u−→q in Γ for some u ∈ A∗.

If Γ = (Q,E) is deterministic and complete, then E induces a function

Q×A→Q
(q, a) 7→ qa

defined by (q, a, qa) ∈ E. Conversely, every such function defines a deterministic complete A-graph.
Moreover, we can extend the function Q×A→ Q to a function Q×A∗ → Q as follows: given q ∈ Q
and u ∈ A∗, qu is the unique vertex such that there exists a path

q
u−→qu

in Γ. This function is called the transition function of Γ.
Let Γ = (Q,E) and Γ′ = (Q′, E′) be A-graphs. A morphism ϕ : Γ→ Γ′ is a function ϕ : Q→ Q′

such that
(p, a, q) ∈ E ⇒ (pϕ, a, qϕ) ∈ E′.

If ϕ is bijective and ϕ−1 is also a morphism, we say that ϕ is an isomorphism. In this case we write
Γ ∼= Γ′.

Given A-graphs Γ,Γ′, we write Γ ≤ Γ′ if there exists a morphism Γ → Γ′. This is clearly a
reflexive and transitive relation, hence a preorder on the class of all A-graphs. Technically, this is
not a partial order, but we have the following remark:

Lemma 3.1 Let A be a finite nonempty alphabet and let Γ,Γ′ be strongly connected deterministic
complete A-graphs such that Γ ≤ Γ′ ≤ Γ. Then Γ ∼= Γ′.

Proof. Let ϕ : Γ → Γ′ and ϕ′ : Γ′ → Γ be morphisms. Write Γ = (Q,E) and Γ′ = (Q′, E′). Fix
some q0 ∈ Q and take q′ ∈ Q′. Since Γ′ is strongly connected, there exists some path q0ϕ

u−→q′ in Γ′

for some u ∈ A∗. Since Γ is complete, there exists some path q0
u−→q in Γ for some q ∈ Q. It follows

from ϕ being a morphism that there exists a path q0ϕ
u−→qϕ in Γ′. Since Γ′ is deterministic, we get

q′ = qϕ, hence ϕ is onto and so |Q′| ≤ |Q|. By symmetry, we get |Q′| = |Q|, thus ϕ is bijective.
It remains to be proved that ϕ−1 is a morphism. Assume that (pϕ, a, qϕ) ∈ E′ for some p, q ∈ Q

and a ∈ A. Since Γ is complete, there exists some (p, a, r) ∈ E. Since ϕ is a morphism, we get
(pϕ, a, rϕ) ∈ E′. Now Γ′ being deterministic yields qϕ = rϕ, and so q = r since ϕ is bijective.
Therefore (p, a, q) ∈ E and so ϕ−1 is a morphism as required. �
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We say that u ∈ A∗ is a reset word for the deterministic and complete A-graph Γ = (Q,E) if
|Qu| = 1. This is equivalent to say that all paths labeled by u end at the same vertex. Let Res(Γ)
denote the set of all reset words for Γ. For every k ∈ N, let

Resk(Γ) = Res(Γ) ∩Ak.

We say that Γ is a k-reset graph if Resk(Γ) = Ak. We denote by RGk(A) the class of all strongly
connected deterministic complete k-reset A-graphs.

Given Γ ∈ RGk(A), let [Γ] denote the isomorphism class of Γ. Let

RGk(A)/ ∼= = {[Γ] | Γ ∈ RGk(A)}.

Given Γ,Γ′ ∈ RGk(A), write
[Γ] ≤ [Γ′] if Γ ≤ Γ′.

It is immediate that ≤ is a well-defined preorder on RGk(A)/ ∼=. Moreover, it follows from Lemma 3.1
that:

Corollary 3.2 Let A be a finite nonempty alphabet and let k ≥ 1. Then ≤ is a partial order on
RGk(A)/ ∼=.

4 Semaphore codes

A detailed discussion on semaphore codes can be found in [6, Chapter 3.4].
Let A be a finite alphabet. We define three partial orders on A∗ by

• u ≤p v if v ∈ uA∗,

• u ≤s v if v ∈ A∗u,

• u ≤f v if v ∈ A∗uA∗.

We refer to them as the prefix order, the suffix order and the factor order on A∗.
If X ⊂ A∗ is a nonempty antichain with respect to ≤p (respectively ≤s, ≤f ), it is said to be

a prefix code (respectively suffix code, infix code). Note that our notions differ slightly from the
standard notions since we admit {ε} to be a code of all three types!

Given an ideal I E A∗, let Iβ denote the subset of elements of I wich are minimal with respect
to ≤f . Then I = A∗(Iβ)A∗ and Iβ ⊆ B whenever B ⊆ A∗ satisfies I = A∗BA∗. We say that Iβ is
the basis of I. Clearly, the correspondences

I 7→ Iβ, C 7→ A∗CA∗

establish mutually inverse bijections between the set of all ideals of A∗ and the set of all infix codes
on A.

We say that L ⊆ A∗ is a left ideal if L 6= ∅ and A∗L ⊆ L. We write then LE`A∗. Given LE`A∗,
let Lβ` denote the subset of elements of L wich are minimal with respect to ≤s. Then L = A∗(Lβ`)
and Lβ ⊆ B whenever B ⊆ A∗ satisfies L = A∗B. We say that Lβ` is the left basis of L. Clearly,
the correspondences

L 7→ Lβ`, S 7→ A∗S
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establish mutually inverse bijections between the set of all left ideals of A∗ and the set of all suffix
codes on A.

Similarly, R ⊆ A∗ is a right ideal if R 6= ∅ and RA∗ ⊆ R. We write then REr A∗.
We relate now ideals to semaphore codes. The definition we use is actually the left-right dual of

the classical definition in [6, Section 3.5], but we shall call them semaphores codes for simplification.
We also admit ∅ and {ε} as (semaphore) codes, but this generalization is compatible with the relevant
results from [6].

A semaphore code on the alphabet A is a language of the form

XA∗ \A+XA∗,

for some X ⊆ A∗. If X 6= ∅, then XA∗ \A+XA∗ is a maximal suffix code (with respect to inclusion)
by [6, Proposition 3.5.1]. Now [6, Proposition 3.5.4] provides an alternative characterization of
semaphore codes:

Lemma 4.1 [6, Proposition 3.5.4] For every S ⊆ A∗, the following conditions are equivalent:

(i) S is a semaphore code;

(ii) S is a suffix code and SA ⊆ A∗S.

Let Sem(A) denote the set of all semaphore codes on the alphabet A. We define a partial order
≤ on Sem(A) by S ≤ S′ if A∗S ≤ A∗S′.
Example 4.2 Let A = {a, b} and X = {b}. Then the semaphore code is infinite

S = XA∗ \A+XA∗ = {b, ba, ba2, ba3, . . .} = ba∗.

If on the other hand A = {a, b} and X = {a2, ab, b2}, then the semaphore code is finite

S = XA∗ \A+XA∗ = {a2, ab, b2, aba, b2a}.

We denote by I(A) (respectively L(A),R(A)) the set of all ideals (respectively left ideals, right
ideals) of A∗. If we order I(A) (or L(A) or R(A)) by inclusion, we get a complete (distributive)
lattice where meet and join are given by intersection and union. The top element is A∗ and the
bottom element is ∅. We can now prove the following.

Proposition 4.3 Let A be a finite nonempty alphabet. Then

Φ: (I(A),⊆)→ (Sem(A),≤)
I 7→ Iβ`

and
Ψ: (Sem(A) ≤)→ (I(A),⊆)

S 7→A∗S

are mutually inverse lattice isomorphisms.

Proof. Let I ∈ I(A). Then Iβ` is clearly a suffix code. Since (Iβ`)A ⊆ I = A∗(Iβ`), then
Iβ` ∈ Sem(A) by Lemma 4.1 and Φ is well-defined.

On the other hand, given S ∈ Sem(A), it is clear that A∗SE`A∗. Now SA ⊆ A∗S by Lemma 4.1,
hence A∗S is actually an ideal of A∗ and so Ψ is also well-defined.

Now IΦΨ = A∗(Iβ`) = I and SΨΦ = (A∗S)β` = S follows easily from S being a suffix code,
hence Φ and Ψ are mutually inverse bijections. Since S ≤ S′ if and only if SΨ ⊆ S′Ψ holds for all
S, S′ ∈ Sem(A), Φ and Ψ are actually mutually inverse poset isomorphisms. Since (I(A),⊆) is a
lattice, so is (Sem(A),≤) and so Φ and Ψ are lattice isomorphisms. �

As we will see in Section 7, semaphore codes are related to special right congruences.
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5 Right congruences on the minimal ideal of F (g, k)

Now fix a nonempty alphabet A = {a1, . . . , ag} and a positive integer k. We remarked in Subsec-
tion 2.3 that A≤k \ {ε} is a set of normal forms for F (g, k), the free pro-Dk semigroup on the set
A = {a1, . . . , ag}. Moreover, we can identify Ak with ker(F (g, k)). Since F (g, k) is generated by A,
right congruences on Ak can be described as equivalence relations ρ satisfying

uρv ⇒ (u ◦ a)ρ(v ◦ a)

for every a ∈ A, or equivalently,
uρv ⇒ ((ua)ξk)ρ((va)ξk)

for every a ∈ A.
Given R ⊆ Ak × Ak, we denote by R] the right congruence on Ak generated by R, i.e. the

intersection of all right congruences on Ak containing R. Let u, v ∈ Ak. Then (u, v) ∈ R] if and only
if there exists some finite sequence w0, . . . , wn ∈ Ak (n ≥ 0) such that:

• w0 = u and wn = v;

• for every i = 1, . . . , n, there exist (ri, si) ∈ R and xi ∈ A∗ such that {wi−1, wi} = {ri◦xi, si◦xi}.

It is easy to see that
∨Λ = (∪Λ)]

for every Λ ⊆ RC(Ak).
We now relate right congruences on Ak with the k-reset graphs introduced in Section 3.
Given ρ ∈ RC(Ak), the Cayley graph of ρ is the A-graph Cay(ρ) = (Ak/ρ,E) defined by

E = {(uρ, a, (u ◦ a)ρ) | u ∈ Ak, a ∈ A},

where uρ denotes the congruence class of u. In particular, if ρ is the identity relation, then Cay(ρ)
is a k-dimensional De Bruijn graph on |A| symbols.

Given Γ = (Q,E) ∈ RGk(A), let ζΓ be the equivalence relation on Ak defined by

uζΓv if Qu = Qv.

Note that
Q((ua)ξk) = Qua (5.1)

holds for all u ∈ Ak and a ∈ A. Indeed, since Qua ⊆ Q((ua)ξk) and (ua)ξk is a reset word, we must
have equality and (5.1) holds.

Proposition 5.1 Let A be a finite nonempty alphabet and k ≥ 1. Then

Φ: (RC(Ak),⊆)→ (RGk(A)/ ∼=,≤)
ρ 7→ [Cay(ρ)]

and
Ψ: (RGk(A)/ ∼=,≤)→ (RC(Ak),⊆)

[Γ] 7→ ζΓ

are mutually inverse lattice isomorphisms.
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Proof. Let ρ ∈ RC(Ak). It follows from the definition that Cay(ρ) is deterministic and complete.
For all u, v ∈ Ak, we have u ◦ v = v, hence there exists a path

uρ
v−→(u ◦ v)ρ = vρ

in Cay(ρ). It follows that Cay(ρ) is strongly connected and Ak ⊆ Resk(Cay(ρ)), thus Cay(ρ) ∈
RGk(A) and Φ is well-defined.

On the other hand, it is clear that [Γ]Ψ does not depend on the chosen representative for the
isomorphism class [Γ].

Let Γ ∈ RGk(A). Let (u, v) ∈ ζΓ and a ∈ A. Then Qu = Qv implies Qua = Qva and therefore
(u ◦ a, v ◦ a) ∈ ζΓ in view of (5.1). Thus ζΓ ∈ RC(Ak) and so Ψ is well-defined.

Let ρ ∈ RC(Ak) and write ρ′ = ζCay(ρ). If Q = Ak/ρ is the vertex set of Cay(ρ), then Qu = {uρ}
for every u ∈ Ak. Hence

uρ′v ⇔ Qu = Qv ⇔ uρ = vρ

and so ΦΨ = 1.
Conversely, let Γ = (Q,E) ∈ RGk(A) and let Γ′ = Cay(ζΓ). We show that

∀q ∈ Q ∃uq ∈ Ak : Quq = {q}. (5.2)

We may assume that |Q| > 1. Since Γ is strongly connected, it follows that there exists a loop q
w−→q

in Γ with w 6= ε. Replacing w by a proper power if necessary, we may assume that |w| ≥ k. Hence
there exists some uq ∈ Ak such that q ∈ Quq. Since uq is necessarily a reset word, we get Quq = {q}
and so (5.2) holds.

We define a mapping
θ : Q→Ak/ζΓ.

q 7→ uqζΓ

Note that
Qu = Qv ⇔ uζΓ = vζΓ (5.3)

holds for all u, v ∈ Ak, hence θ is well-defined and one-to-one. Since Γ is a k-reset graph, θ is also
onto. We show that θ is an isomorphism from Γ onto Cay(ζΓ).

Assume that (p, a, q) ∈ E. By (5.1), we get

Q(up ◦ a) = Qupa = pa = q = Quq.

Hence uqζΓ = (up ◦ a)ζΓ and so there exists an edge upζΓ
a−→uqζΓ in Cay(ζΓ).

Conversely, assume that upζΓ
a−→uqζΓ is an edge of Cay(ζΓ). Then uqζΓ = (up ◦ a)ζΓ and so

q = Quq = Q(up ◦ a) = Qupa = pa

by (5.3) and (5.1). Thus (p, a, q) ∈ E and so θ : Γ→ Cay(ζΓ) is an isomorphism. Therefore ΨΦ = 1
and so Φ and Ψ are mutually inverse bijections.

Let ρ, ρ′ ∈ RC(Ak) with ρ ⊆ ρ′. Then

θ : Ak/ρ→Ak/ρ′

uρ 7→ uρ′
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is a well-defined surjective map. If uρ
a−→(u ◦ a)ρ is an edge of Cay(ρ), then uρ′

a−→(u ◦ a)ρ′ is an
edge of Cay(ρ)′, hence θ is a morphism from Cay(ρ) to Cay(ρ′) and so Cay(ρ) ≤ Cay(ρ′). Thus
[Cay(ρ)] ≤ [Cay(ρ′)] and so Φ is order-preserving.

Let Γ,Γ′ ∈ RGk(A) be such that [Γ] ≤ [Γ′]. Then there exists a morphism θ : Γ → Γ′. Write
Γ = (Q,E) and Γ′ = (Q′, E′). Suppose that (u, v) ∈ ζΓ. Then Qu = Qv = {q} for some q ∈ Q.
Hence qθ ∈ Q′u ∩ Q′v. Since Γ′ is a k-reset graph, we get Q′u = {qθ} = Q′v and so (u, v) ∈ ζΓ′ .
Therefore Ψ is order-preserving.

Since Φ and Ψ are mutually inverse order-preserving mappings, they are isomorphisms of posets.
Since (RC(Ak),⊆) is a lattice, then (RGk(A),≤) is also a lattice, and Φ and Ψ are mutually inverse
lattice isomorphisms. �

6 Lattice-theoretic properties

We discuss in this section the lattice-theoretic properties of the lattice RC(Ak).
We recall some well-known notions from lattice theory. Let L be a (finite) lattice with bottom

element B and top element T . Given a, b ∈ L, we say that b covers a if a < b and there is no c ∈ L
such that a < c < b. If a covers the bottom B, we say that a is an atom.

The lattice L is said to be:

• modular if it has no sublattice of the form

a

b

c d

e

(6.1)

• semimodular if it has no sublattice of the form (6.1) with d covering e;

• atomistic if every element of L is a join of atoms (B being the join of the empty set).

Proposition 6.1 Let A be a nonempty set and k ≥ 1. Then RC(Ak) is semimodular.

Proof. It suffices to show that RC(Ak) has no sublattice of the form

ρ

σ′

σ τ

λ
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with τ covering λ in RC(Ak).
Suppose it does. Given x, y ∈ A∗, let lcs(x, y) denote the longest common suffix of x and y. If

x, y ∈ Ak are distinct, then |lcs(x, y)| < k and so

|lcs(x ◦ a, y ◦ a)| > |lcs(x, y)| (6.2)

for every a ∈ A.
Let (u, v) ∈ τ \ λ with |lcs(u, v)| maximal. For every a ∈ A, we have

(u ◦ a, v ◦ a) ∈ {(u, v)}] ⊆ τ.

In view of (6.2), and by maximality of |lcs(u, v)|, we get

(u ◦ a, v ◦ a) ∈ λ. (6.3)

Note also that
λ ⊂ (λ ∪ {(u, v)})] ⊆ τ

yields
τ = (λ ∪ {(u, v)})] (6.4)

since τ covers λ.
Let (y, z) ∈ σ′ \ σ. Then (6.4) yields

(y, z) ∈ ρ = (σ ∨ τ) = (σ ∪ (λ ∪ {(u, v)})])] = (σ ∪ {(u, v)})]

and so there exists some finite sequence w0, . . . , wn ∈ Ak such that:

• w0 = y and wn = z;

• for every i = 1, . . . , n, there exist (ri, si) ∈ σ ∪ {(u, v)} and xi ∈ A∗ such that {wi−1, wi} =
{ri ◦ xi, si ◦ xi}.

Now by (6.3) we may assume that xi = ε whenever (ri, si) = (u, v). Since we may assume that the
wi are all distinct, the relation (u, v) is used at most once, indeed exactly once since (y, z) /∈ σ and
(ri, si) ∈ σ implies (ri ◦xi, si ◦xi) ∈ σ. We may assume without loss of generality that u = wj−1 and
v = wj for some j ∈ {1, . . . , n}. Hence

y = w0 σ wj−1 = u, v = wj σ wn = z

and so
u = wj−1 σ

′ y σ′ z σ′wj = v.

It follows that λ ∪ {(u, v)} ⊆ σ′. By (6.4), we get τ ⊆ σ′, a contradiction. Therefore RC(Ak) is
semimodular. �

Since a semimodular lattice of finite height (i.e. the length of chains is bounded) satisfies the
Jordan-Dedekind condition (i.e. all maximal chains have the same length), we immediately obtain:

Corollary 6.2 Let A be a nonempty set and k ≥ 1. Then RC(Ak) satisfies the Jordan-Dedekind
condition.

We show next that we cannot replace semimodular by modular in Proposition 6.1.

Proposition 6.3 Let k ≥ 1 and let A be a set with |A| ≥ 4. Then RC(Ak) is not modular.
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Proof. Let a, b, c, d ∈ A be distinct. Let λ be the identity relation on Ak and let

σ = λ ∪ {ak, bak−1}2;

σ′ = λ ∪ {ak, bak−1}2 ∪ {cak−1, dak−1}2;

τ = λ ∪ {ak, dak−1}2 ∪ {bak−1, cak−1}2;

ρ = λ ∪ {ak, bak−1, cak−1, dak−1}2.

It is routine to check that all the above relations are right congruences on Ak. Moreover,

λ ⊂ σ ⊂ σ′ ⊂ ρ, λ ⊂ τ ⊂ ρ,

σ′ ∩ τ = λ, (σ ∨ τ) = ρ,

hence
ρ

σ′

σ τ

λ

is a sublattice of RC(Ak) and so RC(Ak) is not modular. �

We can also show that RC(Ak) can only be atomistic in trivial cases:

Proposition 6.4 Let k ≥ 2 and let A be a set with |A| ≥ 2. Then RC(Ak) is not atomistic.

Proof. Let λ be the identity relation on Ak. Let a, b ∈ A be distinct and let

σ = λ ∪ {ak, b2ak−2, bak−1}2 ∪ {ak−1b, bak−2b}2;

τ = λ ∪ {ak, bak−1}2 ∪ {ak−1b, bak−2b}2.

It is routine to check that σ, τ ∈ RC(Ak). Moreover, λ ⊂ τ ⊂ σ. We show that

σ = {(xak−1, b2ak−2)}] (6.5)

for every x ∈ {a, b}. Indeed, let η = {(xak−1, b2ak−2)}]. Then (xak−1, b2ak−2) ∈ η yields (ak, bak−1) ∈
η and so {ak, b2ak−2, bak−1}2 ⊆ η. Finally, (xak−1, b2ak−2) ∈ η yields (ak−1b, bak−2b) ∈ η and so

σ ⊆ {(xak−1, b2ak−2)}].

Since (xak−1, b2ak−2) ∈ σ for x ∈ {a, b}, (6.5) holds.
Now we claim that τ is the unique element of RC(Ak) covered by σ. Indeed, assume that ρ ⊂ σ.

In view of (6.5), we have (ak, b2ak−2) /∈ ρ and (bak−1, b2ak−2) /∈ ρ. Hence ρ ⊆ τ . Since σ is not an
atom, it follows that

α ≤ σ if and only if α ≤ τ
for every atom α of RC(Ak). Thus σ cannot be expressed as a join of atoms and so RC(Ak) is not
atomistic. �
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7 Special right congruences on Ak

To avoid trivial cases, we assume throughout this section that A is a finite alphabet containing at
least two elements. We define

Ik(A) = {I EA∗ | Ak ⊂ I},

Lk(A) = {LE` A∗ | Ak ⊂ L}.

If we order Ik(A) (or Lk(A)) by inclusion, we get a finite (distributive) lattice where meet and join
are given by

(I ∧ J) = I ∩ J, (I ∨ J) = I ∪ J.

The top element is A∗ and the bottom element is AkA∗.
Given L ∈ Lk(A), we define a relation τL on Ak by:

uτLv if u and v have a common suffix in L.

Lemma 7.1 Let L ∈ Lk(A). Then τL is an equivalence relation on Ak.

Proof. It is immediate that τL is symmetric. Since Ak ⊆ L, it is reflexive. Assume now that
u, v, w ∈ Ak and x, y ∈ L are such that x ≤s u, v and y ≤s v, w. Since x and y are both suffixes of v,
one of them is a suffix of the other. Hence either x ≤s u,w or y ≤s u,w. Therefore τL is transitive.
�

Being a right congruence turns out to be a special case:

Proposition 7.2 Let L ∈ Lk(A). Then the following conditions are equivalent:

(i) τL ∈ RC(Ak);

(ii) L ∈ Ik(A);

(iii) (Lβ`)A ⊆ A∗(Lβ`);

(iv) Lβ` is a semaphore code.

Proof. (i) ⇒ (iii). Let u ∈ Lβ` and a ∈ A. Since A∗(Lβ`) = L ⊃ Ak, we may assume that
|u| < k − 1. Let b ∈ A \ {a} and write m = k − |u|. Then (amu, bmu) ∈ τL, hence

(am−1ua, bm−1ua) = (amu ◦ a, bmu ◦ a) ∈ τL.

It follows that am−1ua and bm−1ua must share a suffix in L, and so ua itself must have a suffix in
L. Thus

(Lβ`)A ⊆ A∗L = L = A∗(Lβ`).

(iii) ⇒ (ii). We have
LA = A∗(Lβ`)A ⊆ A∗(Lβ`) = L.

It follows that LA∗ ⊆ L. Since L ∈ Lk(A), we get L ∈ Ik(A).
(ii) ⇒ (i). By Lemma 7.1, τL is an equivalence relation. Let u, v ∈ Ak be such that uτLv. Then

w ≤s u, v for some w ∈ L. We may assume that |w| < k. Let a ∈ A. Since LEA∗, we have wa ∈ L.
Since |w| < k, it follows that wa is a common suffix of u ◦ a and v ◦ a. Therefore (u ◦ a)τL(v ◦ a) and
we are done.

(iii) ⇔ (iv). This follows from Lemma 4.1, since Lβ` is always a suffix code. �
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Note that we can easily produce examples of L ∈ Lk(A) \ Ik(A):

Example 7.3 Let A = {a, b}, k = 3 and L = A∗b ∪A+Aa. Then L ∈ Lk(A) but τL /∈ RC(Ak).

Indeed, b ∈ L but ba /∈ L, hence L /∈ Ik(A) and so τL /∈ RC(Ak) by Proposition 7.2. Note that
in this case β` = {b, a3, ba2, aba, b2a}.

Inclusion among left ideals determines inclusion for the equivalence relations τL:

Lemma 7.4 Let |A| > 1 and L,L′ ∈ Lk(A). Then

τL ⊆ τL′ ⇔ L ⊆ L′.

Proof. Assume that L ⊆ L′. Let (u, v) ∈ τL. Then u and v share a common suffix in L and therefore
in L′. Thus (u, v) ∈ τL′ .

Assume now that L 6⊆ L′. Let w ∈ L \L′ have minimum length. Since Ak ⊆ L′, we have |w| < k.
Let n = k− |w|. Fix a, b ∈ A distinct and take (u, v) = (anw, bnw) ∈ Ak ×Ak. Since w ∈ L, we have
(u, v) ∈ τL. Now w is the longest common suffix of u and v. Since w /∈ L′, it follows that (u, v) /∈ τL′ .
�

Note that Lemma 7.4 does not hold for |A| = 1, since |Ak| = 1.

Definition 7.5 We say that ρ ∈ RC(Ak) is a special right congruence on Ak if ρ = τI for some
I ∈ Ik(A). In view of Proposition 7.2, this is equivalent to say that ρ = τA∗S for some semaphore
code S on A such that Ak ⊂ A∗S. We denote by SRC(Ak) the set of all special right congruences on
Ak.

Note that not every semaphore code S satisfies the condition Ak ⊂ A∗S. However, it is easy to
derive a semaphore code from S that does by considering

S′ = (S ∩A≤k) ∪ (Ak \A∗S). (7.1)

S′ is a suffix code since the elements in S ∩ A≤k are incomparable in suffix order since S is a suffix
code, and by construction any element in Ak \ A∗S is incomparable with the elements in S ∩ A≤k
and vice versa. Furthermore, Ak ⊂ A∗S′ ⊇ A∗S and SA ⊆ A∗S by Lemma 4.1. Thus S′A ⊆ A∗S′

and so by Lemma 4.1 S′ is a semaphore code.

Proposition 7.6 Let |A| > 1. Then:

(i) τI∩J = τI ∩ τJ and τI∪J = τI ∪ τJ for all I, J ∈ Ik(A);

(ii) SRC(Ak) is a full sublattice of RC(Ak);

(iii) the mapping
Ik(A)→ SRC(Ak)

I 7→ τI

is a lattice isomorphism.

Proof. (i) By Lemma 7.4, we have τI∩J ⊆ τI ∩ τJ and τI ∪ τJ ⊆ τI∪J .
Let (u, v) ∈ τI ∩ τJ . Then there exist x ∈ I and y ∈ J such that x ≤s u, v and y ≤s u, v. Since

x and y are both suffixes of the same word, one of them is a suffix of the other, say x ≤s y. Then
y ∈ I ∩ J and so (u, v) ∈ τI∩J . Thus τI∩J = τI ∩ τJ .
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Assume now that (u, v) ∈ τI∪J . Then there exists some x ∈ I ∪ J such that x ≤s u, v. If x ∈ I,
then (u, v) ∈ τI , otherwise (u, v) ∈ τJ . Therefore τI∪J = τI ∪ τJ .

(ii) Let I, J ∈ Ik(A). By part (i), τI∩J is the meet of τI and τJ in both RC(Ak) and SRC(Ak).
And τI∪J is the join of τI and τJ in both RC(Ak) and SRC(Ak).

Finally, τAkA∗ is the identity relation and therefore the bottom element of both lattices. And τA∗

is the universal relation and therefore the top element of both lattices.
(iii) This follows from Lemma 7.4. �

Given ρ ∈ RC(Ak) and C ∈ Ak/ρ, we denote by lcs(C) the longest common suffix of all words in
C. We define

Λρ = {lcs(C) | C ∈ Ak/ρ} and Λ′ρ = {lcs(u, v) | (u, v) ∈ ρ}. (7.2)

Lemma 7.7 Let ρ ∈ RC(Ak). Then A∗Λρ = A∗Λ′ρ ∈ Ik(A).

Proof. Let C ∈ Ak/ρ and let w = lcs(C). If |w| = k, then w = lcs(w,w). If |w| < k, then
by maximality of w there exist a, b ∈ A distinct and u, v ∈ A∗ such that uaw, vbw ∈ C. Thus
w = lcs(uaw, vbw) and so

Λρ ⊆ Λ′ρ. (7.3)

Therefore A∗Λρ ⊆ A∗Λ′ρ.
Conversely, let (u, v) ∈ ρ. Then lcs(uρ) is a suffix of lcs(u, v), hence Λ′ρ ⊆ A∗Λρ and so A∗Λρ =

A∗Λ′ρ.

Clearly, A∗Λ′ρ E` A
∗. Since u = lcs(u, u) for every u ∈ Ak, we have Ak ⊆ Λ′ρ. Hence it suffices to

show that (Λ′ρ)A ⊆ A∗Λ′ρ.
Let (u, v) ∈ ρ and a ∈ A. We must show that (lcs(u, v))a ∈ A∗Λ′ρ. Since Ak ⊆ Λ′ρ, we may

assume that |lcs(u, v)| < k − 1. Then (lcs(u, v))a = lcs(u ◦ a, v ◦ a). Since (u ◦ a, v ◦ a) ∈ ρ, we get
(lcs(u, v))a ∈ Λ′ρ and we are done. �

Given ρ ∈ RC(Ak), we write
Res(ρ) = Res(Cay(ρ)).

We refer to the elements of Res(ρ) as the resets of ρ.

Lemma 7.8 Let ρ ∈ RC(Ak). Then:

(i) Res(ρ) = {w ∈ A∗ | uρv for all u, v ∈ Ak ∩ (A∗w)};

(ii) Res(ρ) ∈ Ik(A).

Proof. (i) Let w ∈ Res(ρ) and suppose that u = u′w ∈ Ak, v = v′w ∈ Ak. Since w ∈ Res(ρ), we
have paths

p
u′−→p′ w−→r, q

v′−→q′ w−→r

in Cay(ρ). It follows from the definition of Cay(ρ) that

uρ = (u′w)ρ = r = (v′w)ρ = vρ,

hence the direct inclusion holds.
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To prove the opposite inclusion, we suppose that w ∈ A∗ \ Res(ρ). Then there exist paths

p′
w−→p, q′

w−→q

in Cay(ρ) with p 6= q. If w has a suffix w′ of length k, then every path labeled by w ends necessarily
in w′ρ, hence we must have |w| < k. Since Cay(ρ) is strongly connected by Proposition 5.1, there
exist paths

p′′
x−→p′, q′′

y−→q′

in Cay(ρ) with |xw| = |yw| = k. But then

(xw)ρ = p 6= q = (yw)ρ

and we are done.
(ii) It is immediate that Res(ρ) E A∗. Since every path in Cay(ρ) labeled by w ∈ Ak ends

necessarily in wρ, we have Ak ⊆ Res(ρ) and so Res(ρ) ∈ Ik(A). �

We can now compare a right congruence with a special right congruence:

Proposition 7.9 Let |A| > 1, ρ ∈ RC(Ak) and I ∈ Ik(A). Then:

(i) ρ ⊆ τI ⇔ Λρ ⊆ I ⇔ Λ′ρ ⊆ I;

(ii) τI ⊆ ρ⇔ I ⊆ Res(ρ).

Proof. (i) Assume that ρ ⊆ τI . Let (u, v) ∈ ρ. Then u and v have a common suffix in I, hence
lcs(u, v) has a suffix in I and so Λ′ρ ⊆ A∗I = I.

By (7.3), Λ′ρ ⊆ I implies Λρ ⊆ I.
Finally, assume that Λρ ⊆ I. Let (u, v) ∈ ρ and write w = lcs(uρ) ∈ Λρ ⊆ I. Since w is a suffix

of both u and v, we get (u, v) ∈ τI . Thus ρ ⊆ τI as required.
(ii) Assume that τI ⊆ ρ. Let w ∈ I and let u, v ∈ Ak ∩ (A∗w). Since u, v have a common suffix

in I, we get (u, v) ∈ τI ⊆ ρ. Thus w ∈ Res(ρ) by Lemma 7.8(i) and so I ⊆ Res(ρ).
Conversely, assume that I ⊆ Res(ρ). Let (u, v) ∈ τI . Then we may write u = u′w, v = v′w with

w ∈ I ⊆ Res(ρ). Since u, v ∈ Ak ∩ (A∗w), it follows from Lemma 7.8(i) that (u, v) ∈ ρ and so τI ⊆ ρ.
�

We can now prove several equivalent characterizations of special right congruences:

Proposition 7.10 Let |A| > 1 and ρ ∈ RC(Ak). Then the following conditions are equivalent:

(i) ρ ∈ SRC(Ak);

(ii) lcs : Ak/ρ→ A≤k is injective and Λρ is a suffix code;

(iii) ρ = τA∗Λρ;

(iv) ρ = τA∗Λ′ρ;

(v) ρ = τRes(ρ);

(vi) ρ = τ ]L for some L ∈ Lk(A);
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(vii) Λρ ⊆ Res(ρ);

(viii) Λ′ρ ⊆ Res(ρ);

(ix) whenever
p
aw−→q, p′

bw−→q, p′′
w−→r (7.4)

are paths in Cay(ρ) with a, b ∈ A distinct, then q = r.

Proof. (i) ⇒ (ii). We start by proving that

lcs(uτI) ∈ I (7.5)

for all I ∈ Ik(A) and u ∈ Ak.
Indeed, for every w ∈ uτI , there exists some w′ ∈ I such that w′ ≤s u,w. Let z be the shortest

suffix among the w′. Then z ∈ I and z ≤s w for every w ∈ uτI , hence z ≤s lcs(uτI). Since I EA∗, it
follows that lcs(uτI) ∈ I and so (7.5) holds.

Assume that ρ = τI for some I ∈ Ik(A). We prove that

lcs(uρ) ≤s lcs(vρ)⇒ (u, v) ∈ ρ (7.6)

holds for all u, v ∈ Ak. Assume that lcs(uρ) ≤s lcs(vρ). Since lcs(uρ) ≤s u and lcs(vρ) ≤s v, it
follows that lcs(uρ) is a suffix of both u and v. Now (7.5) yields lcs(uρ) = lcs(uτI) ∈ I and so u, v
have a common suffix in I. Therefore (u, v) ∈ τI = ρ and (7.6) holds.

Now (ii) follows from (7.6).
(ii) ⇒ (iii). Write I = A∗Λρ. If (u, v) ∈ ρ, then lcs(uρ) ∈ Λρ ⊆ I is a suffix of both u and v,

hence (u, v) ∈ τI .
Conversely, let (u, v) ∈ τI . Then there exists some w ∈ Λρ such that w ≤s u, v. Suppose that

lcs(uρ) 6= w. Then lcs(uρ) <s w or w <s lcs(uρ), contradicting Λρ being a suffix code. Hence
lcs(uρ) = w. Similarly, lcs(vρ) = w. Since lcs : Ak/ρ → A≤k is injective, we get uρ = vρ. Thus
ρ = τI .

(iii) ⇔ (iv). This follows from Lemma 7.7.

(iii) ⇒ (vi). Write L = A∗Λρ. By (iii), we have τ ]L = ρ] = ρ. Since L ∈ Lk(A) by Lemma 7.7,
(vi) holds.

(vi) ⇒ (i). Let I = LA∗ ∈ Ik(A). Since L ⊆ I, it follows from Lemma 7.4 that τL ⊆ τI , hence

ρ = τ ]L ⊆ τ
]
I = τI

by Proposition 7.2.
Now assume that (u, v) ∈ τI . Then there exist factorizations u = u′w and v = v′w with w ∈ I.

Write w = zw′ with z ∈ L. Then (w′u′z, w′v′z) ∈ τL and so

(u, v) = (u′w, v′w) = (u′zw′, v′zw′) = (w′u′z ◦ w′, w′v′z ◦ w′) ∈ τ ]L = ρ.

Thus τI ⊆ ρ as required.
(i) ⇒ (v). If ρ = τI for some I ∈ Ik(A), then I ⊆ Res(ρ) by Proposition 7.9(ii). Since

Res(ρ) ∈ Ik(A) by Lemma 7.8(ii), then Proposition 7.9(ii) also yields

τRes(ρ) ⊆ ρ = τI ,

27



hence Res(ρ) ⊆ I by Lemma 7.4. Therefore I = Res(ρ).
(v) ⇒ (vii) ⇔ (viii). By Lemma 7.8(ii), Res(ρ) ∈ Ik(A). Now we apply Proposition 7.9(i).
(viii) ⇒ (i). We have A∗Λ′ρ,Res(ρ) ∈ Ik(A) by Lemmas 7.7 and 7.8(ii). It follows from Proposi-

tion 7.9 that
τRes(ρ) ⊆ ρ ⊆ τA∗Λ′ρ .

Since Λ′ρ ⊆ Res(ρ) yields A∗Λ′ρ ⊆ Res(ρ) and therefore τA∗Λ′ρ ⊆ τRes(ρ) by Lemma 7.4, we get

ρ = τRes(ρ) ∈ SRC(Ak).

(viii) ⇒ (ix). Consider the paths in (7.4). Since Ak ⊆ Res(ρ) by Lemma 7.8(ii), we may assume
that |w| < k. Since Cay(ρ) is strongly connected, there exist paths

s
x−→p, s′

x′−→p′

such that xaw, x′bw ∈ Ak. Hence

w = lcs(xaw, x′bw) ∈ Λ′ρ ⊆ Res(ρ)

and so q = r.
(ix) ⇒ (viii). Let w ∈ Λ′ρ. Since Ak ⊆ Res(ρ) by Lemma 7.8(ii), we may assume that |w| < k.

Then w = lcs(u, v) for some distinct ρ-equivalent u, v ∈ Ak. Hence we may write u = u′aw and
v = v′bw with a, b ∈ A distinct. Since uρ = vρ, it follows that there exist in Cay(ρ) paths of the
form

s
u′−→p aw−→uρ, s′

v′−→p′ bw−→vρ.

Now (ix) implies that w ∈ Res(ρ). �

Corollary 7.11 If ρ ∈ SRC(Ak) with |A| > 1, then Λρ is a semaphore code.

Proof. By Proposition 7.10(ii), Λρ is a suffix code. Furthermore, by Lemma 7.7 we have A∗Λρ ∈
Ik(A), which in turn implies by Proposition 7.2 that (A∗Λρ)β` = Λρ is a semaphore code. �

We can now prove that not all right congruences are special, even for |A| = 2:

Example 7.12 Let A = {a, b} and let ρ be the equivalence relation on A3 defined by the following
partition:

{a3, aba, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {b2a} ∪ {b3}.

Then ρ ∈ RC(A3) \ SRC(A3).

Indeed, it is routine to check that ρ ∈ RC(A3). Since lcs(a3ρ) = a and lcs((b2a)ρ) = b2a, then Λρ
is not a suffix code and so ρ /∈ SRC(A3) by Proposition 7.10.

Let ρ ∈ RC(Ak) and let

ρ = ∨{τ ∈ SRC(Ak) | τ ⊆ ρ},
ρ = ∧{τ ∈ SRC(Ak) | τ ⊇ ρ}.

(7.7)

By Proposition 7.6(ii), we have ρ, ρ ∈ SRC(A∗).

Proposition 7.13 Let |A| > 1 and ρ ∈ RC(Ak). Then:

(i) ρ = τRes(ρ);
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(ii) ρ = τA∗Λρ = τA∗Λ′ρ.

Proof. (i) By Lemma 7.8(ii), we have Res(ρ) ∈ Ik(A). Now the claim follows from Proposi-
tion 7.9(ii).

(ii) Similarly, we have A∗Λρ = A∗Λ′ρ ∈ Ik(A) by Lemma 7.7, and the claim follows from Propo-
sition 7.9(i). �

The next counterexample shows that the pair (ρ, ρ) does not univocally determine ρ ∈ RC(Ak):

Example 7.14 Let A = {a, b} and let ρ, ρ′ be the equivalence relations on A3 defined by the following
partitions:

{a3, aba, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {b2a} ∪ {b3},

{a3, b2a, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {aba} ∪ {b3}.

Then ρ, ρ′ ∈ RC(A3), ρ = ρ′ and ρ = ρ′.

Indeed, we claimed in Example 7.12 that ρ is a right congruence, and the verification for ρ′ is
also straightforward.

It is easy to see that
Res(ρ) = A∗A3 ∪ {a2, ab} = Res(ρ′),

hence ρ = ρ′ by Proposition 7.13(i).
Since

Λρ = {a, ab, ab2, b2a, b3}

and
Λρ′ = {a, ab, ab2, aba, b3}

we obtain
A∗Λρ = A+ \ {b, b2} = A∗Λρ′

and Proposition 7.13(ii) yields ρ = ρ′.

This same example shows also that ρ does not necessarily equal or cover ρ in SRC(Ak). Indeed,
in this case we have

Res(ρ) = A∗A3 ∪ {a2, ab} ⊂ I ⊂ A+ \ {b, b2} = A∗Λρ

for I = A∗A3 ∪ {a2, ab, ba} ∈ Ik(A). By Lemma 7.4, we get

ρ ⊂ τI ⊂ ρ.

8 Random walks on semaphore codes

As we have seen in Proposition 7.13, semaphore codes approximate right congruences from above
and below in the lattice structure. In this section, we will define random walks (or more specifically
Markov chains) on semaphore codes. The property that makes this possible is that for a semaphore
code S associated to the alphabet A

SA ⊆ A∗S, (8.1)

see Lemma 4.1. Namely, (8.1) implies a right action of A on S: for a ∈ A and s ∈ S, the action s.a
is t, if sa = wt with w ∈ A∗ and t ∈ S under (8.1).
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To turn the action S × A → S into a random walk, we impose a Bernoulli distribution on A∗,
see [6, Section 1.11]. More precisely, we associate a probability 0 ≤ π(a) ≤ 1 to each letter a ∈ A
such that

∑
a∈A π(a) = 1. The state space of the random walk is S. Given s ∈ S, with probability

π(a) we transition to state s.a in one step. This gives rise to the transition matrix T with entry in
row s and column s′

Ts,s′ =
∑
a

with s′=s.a

π(a).

Since
∑

a π(a) = 1, it follows that the row sums of T are equal to one, so that T is a row stochastic
matrix. Taking ` steps in the random walk is described by the `-th power of T , that is, the probability
of going from s to s′ in ` steps is the (s, s′)-entry (T `)s,s′ in T `. Under the Bernoulli distribution,
the probability π(a1 · · · a`) of a word of length ` is given by the multiplicative formula π(a1 · · · a`) =∏`
i=1 π(ai).

A suffix code X on A∗ is maximal if it is not properly contained in any other suffix code on A∗,
that is, if X ⊆ Y ⊆ A∗ and Y is a suffix code, then Y = X. Furthermore, X is called thin if there
exists an elements w ∈ A∗ such that A∗wA∗ ∩X = ∅. By [6, Proposition 3.3.10], for a thin maximal
suffix code X we have π(X) =

∑
x∈X π(x) = 1 for all positive Bernoulli distributions π on X. A

Bernoulli distribution on X is positive if π(x) > 0 for all x ∈ X. As shown in [6, Proposition 3.5.1],
semaphore codes S are thin maximal suffix codes, so that

π(S) =
∑
s∈S

π(s) = 1. (8.2)

Hence any positive Bernoulli distribution on semaphore codes yields a probability distribution.
A stationary distribution I = (Is)s∈S is a vector such that

∑
s∈S Is = 1 and IT = I, that is,

it is a left eigenvector of the transition matrix with eigenvalue one. In the finite state case, by the
Perron–Frobenius Theorem, the stationary distribution exists. It is unique if the random walk is
irreducible. See [13] for more details. In our case, we prove next that a stationary distribution exists
and give its explicit form.

Theorem 8.1 The stationary distribution of the random walk associated to the semaphore code S
is given by

I = (π(s))s∈S .

Proof. Taking the s′-th component of IT = I reads∑
s∈S

∑
a∈A
s′=s.a

π(a)π(s) = π(s′). (8.3)

Recall that s.a = s′ with a ∈ A and s, s′ ∈ S means that sa = ws′ for some w ∈ A∗. In particular,
this can only hold if a is the last letter of s′ and hence fixed by s′.
Claim: The set S′ = {w | sa = ws′, s ∈ S} for fixed s′ ∈ S with a ∈ A the last letter of s′, is a thin
maximal suffix code.

Indeed, if the claim is true, we have
∑

w∈S′ π(w) = 1 by [6, Proposition 3.3.10]. Using that
π(a)π(s) = π(w)π(s′) we can hence rewrite (8.3)∑

s∈S

∑
a∈A
s′=s.a

π(a)π(s) = π(s′)
∑
w∈S′

π(w) = π(s′)
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as desired. It remains to prove the claim.
First assume that S′ is not a suffix code. Then there must be two elements w,w′ ∈ S′ that

are comparable in suffix order. But then ws′ and w′s′ are comparable in suffix order, contradicting
the fact that S is a suffix code (since after removing the last letter a the result must be in S).
Next assume that S′ is not maximal. This means there exists y ∈ A∗ such that S′ ( S′ ∪ {y} is
a suffix code. But then S ∪ {ys̃′} is a suffix code, where s̃′ is obtained from s′ by removing the
last letter a, contradicting the maximality of S (recall that all semaphore codes are maximal by [6,
Proposition 3.5.1]). Finally assume that S′ is not thin. That means that there exists w ∈ A∗ such
that A∗wA∗ ∩ S′ 6= ∅. In particular uwv ∈ S′ for some u, v ∈ A∗. Since by construction S′s̃′ ⊆ S,
this would imply uwvs̃′ ∈ S, contradicting the fact that S is thin. �

Given A = {a1, . . . , ag} and a right congruence ρ ∈ RC(Ak), we are interested in the probability
for nonempty words of length ` ≤ k to be resets on Ak/ρ. Since Res(ρ) = Res(ρ) by Propositions 7.10
and 7.13, we can restrict ourselves to determine the probabilities for resets of words of given length
for ρ ∈ SRC(Ak), or equivalently for semaphore codes Λρ by Corollary 7.11.

Theorem 8.2 Let ρ ∈ RC(Ak). Then the probability that a word of length 1 ≤ ` ≤ k is a reset on
Ak/ρ is given by

P (`) =
∑
s∈Λρ
`(s)≤`

∏
a∈s

π(a) , (8.4)

where a ∈ s in the product runs over every letter in s and `(s) is the length of the word (or suffix) s.

Proof. As mentioned above, Res(ρ) = Res(ρ) by Propositions 7.10 and 7.13 and in addition Λρ is a

semaphore code. Define Res(`) = {w ∈ A+ | `(w) = ` and w is a reset on Ak/ρ} = Res(ρ) ∩A`. We
claim that

Res(`) = {w ∈ A+ | `(w) = ` and w has a suffix in Λρ}.
Since Λρ is a suffix code, each word has precisely one suffix in Λρ. Hence the claim immediately
yields the formula for P (`) using that a letter a ∈ s for s ∈ Λρ occurs with probability π(a).

We prove the claim by induction on `. By Proposition 7.10(vii) we have that Λρ ⊆ Res(ρ) =
Res(ρ). Certainly, for ` = 1 the only words that are resets are the words/suffixes of length 1 in Λρ.
Now assume that the claim holds for all words of length less than `. Since Λρ ⊆ Res(ρ), we deduce
that

{w ∈ A+ | `(w) = ` and w has a suffix in Λρ} ⊆ Res(`) .

To prove the reverse inclusion let v = ai` . . . ai1 ∈ Res(`). If v ∈ Λρ, we are done. If ai`−1
· · · ai1 ∈

Res(`− 1), then by induction v has a suffix in Λρ. Hence assume that ai`−1
. . . ai1 6∈ Res(`− 1) and

v 6∈ Λρ. This requires that ai` . . . ai2 is a reset, so that again by induction ai` . . . ai2 has a suffix s in
Λρ. Since Λρ is a semaphore code and hence ΛρA ⊆ A∗Λρ, we have that if s ∈ Λρ, then sai1 ∈ A∗Λρ.
In all cases v has a suffix in Λρ. This concludes the proof of the claim. �

Example 8.3 Take the special right congruence ρ given by congruency classes {aaa, baa, aba, bba},
{aab, bab}, {abb}, {bbb} with corresponding semaphore code Λρ = {a, ab, abb, bbb}. The probability to
have a reset for words of length ` is

P (1) = π(a)

P (2) = π(a) + π(a)π(b)

P (3) = π(a) + π(a)π(b) + π(a)π(b)2 + π(b)3 = π(a) + π(a)π(b) + π(b)2 = π(a) + π(b) = 1,
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where for P (3) we have used repeatedly that π(a) + π(b) = 1.

Example 8.4 Take the semaphore code

{aa, aab, aba, abba, babb, aabb, bbab, abab, bbba, aabb, babbb, abbbb, bbbbb} ,

which corresponds to a special right congruence, which is easy to check by Proposition 7.10. Then
we have

P (1) = 0

P (2) = π(a)2

P (3) = π(a)2 + 2π(a)2π(b)

P (4) = π(a)2 + 2π(a)2π(b) + 3π(a)2π(b)2 + 3π(a)π(b)3 = π(a)2 + 2π(a)2π(b) + 3π(a)π(b)2

= π(a)2 + 2π(a)π(b) + π(a)π(b)2 = π(a) + π(a)π(b) + π(a)π(b)2

P (5) = π(a) + π(a)π(b) + π(a)π(b)2 + π(a)2π(b)3 + 2π(a)π(b)4 + π(b)5

= π(a) + π(a)π(b) + π(a)π(b)2 + π(a)π(b)3 + π(b)4

= π(a) + π(a)π(b) + π(a)π(b)2 + π(b)3 = π(a) + π(a)π(b) + π(b)2

= π(a) + π(b) = 1 ,

where again we repeatedly used that π(a) + π(b) = 1.

The probability P (`) to reach a reset in ` steps is related to the hitting time (see [13, Chapter
10]). Namely, given a Markov chain with state space S, the hitting time tR of a subset R ⊆ S is the
first time one of the nodes in R is visited by the chain. We are interested in the hitting time tRes(ρ)

for ρ ∈ RC(Ak). Set

p(`) = P (`)− P (`− 1) =
∑
s∈Λρ
`(s)=`

∏
a∈s

π(a) .

Then

tRes(ρ) =

k∑
`=1

`p(`).

Note that by Definition 2.2, we also have a right action of A on right congruences ρ ∈ RC(Ak),
namely ρ× A→ ρ. Hence, as for semaphore codes, we can define a random walk on ρ by assigning
a probability π(a) for each a ∈ A. Recall that by its definition in (7.7), ρ is a refinement of ρ. Let
us relate these various random walks. A step s.a = t for s, t ∈ Λρ and a ∈ A in the random walk
on the semaphore code Λρ is in one-to-one correspondence to a step cs.a = ct in the random walk
on ρ ∈ SRC(A∗), where cs, ct ∈ ρ are the unique congruences such that lcs(cs) = s, lcs(ct) = t,
respectively. Since ρ is a refinement of ρ, a step cs.a = ct on ρ implies a step c.a = d on ρ whenever
cs ⊆ c and ct ⊆ d. In particular, the transition matrix T for the random walk on the semaphore
code Λρ satisfies for a fixed d ∈ ρ∑

t∈Λρ
ct⊆d

Ts,t =
∑
t∈Λρ
ct⊆d

Ts′,t for all s, s′ ∈ Λρ such that cs′ ρ cs. (8.5)
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This relation is precisely the condition for a Markov chain to be lumpable. Lumpability was first
introduced by Kemeny and Snell [12], see also [13, Section 2.3.1]. This means that the transition
matrix T ρ on ρ indexed by right congruence classes c, d ∈ ρ can be expressed in terms of T as follows

T ρc,d =
∑
t∈Λρ
ct⊆d

Ts,t for any s ∈ Λρ such that cs ⊆ c.

The theory of lumpability (or projection) then gives us the stationary distribution Iρ for T ρ.
Proposition 8.5 Let Iρ = (Iρc )c∈ρ be the stationary distribution for T ρ. Then

Iρc =
∑
s∈Λρ
cs⊆c

π(s).

Proof. By lumpability, we have

Iρc =
∑
s∈Λρ
cs⊆c

Is,

where I = (Is)s∈Λρ is the stationary distribution of T . By Theorem 8.1 we have Is = π(s). �

Remark 8.6 We could have derived an expression for Iρ also directly from the stationary distribu-
tion of the delay de Bruijn random walk by lumping given as

Iρc =
∑
x∈c

π(x).
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