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ABSTRACT

It is proved that fundamental groups of boolean representable simplicial complexes
are free and the rank is determined by the number and nature of the connected
components of their graph of flats for dimension � 2. In the case of dimension 2, it
is shown that boolean representable simplicial complexes have the homotopy type of
a wedge of spheres of dimensions 1 and 2. Also in the case of dimension 2, necessary
and su�cient conditions for shellability and being sequentially Cohen-Macaulay are
determined. Complexity bounds are provided for all the algorithms involved.

1 Introduction

In a series of three papers [10, 11, 12], Izhakian and Rhodes introduced the concept of boolean
representation for various algebraic and combinatorial structures. These ideas were inspired by
previous work by Izhakian and Rowen on supertropical matrices (see e.g. [9, 13, 14, 15]), and were
subsequently developed by Rhodes and Silva in a recent monograph, devoted to boolean representable
simplicial complexes [18].

The original approach was to consider matrix representations over the superboolean semiring SB,
using appropriate notions of vector independence and rank. Writing N = {0, 1, 2, . . .}, we can define
SB as the quotient of (N,+, ·) (usual operations) by the congruence which identifies all integers � 2.
In this context, boolean representation refers to matrices using only 0 and 1 as entries.

In this paper, we view (finite) simplicial complexes under two perspectives, geometric and com-
binatorial. The geometric perspective involves subspaces of an euclidean space Rn, while the combi-
natorial perspective involves collections of subsets of a finite subset. As we recall in Section 2, that
each structure determines the other.

As an alternative to matrices, boolean representable simplicial complexes can be characterized
by means of their lattice of flats. The lattice of flats plays a fundamental role in matroid theory but
is not usually considered for arbitrary simplicial complexes, probably due to the fact that, unlike the
matroid case, the structure of a simplicial complex cannot in general be recovered from its lattice
of flats. However, this is precisely what happens with boolean representable simplicial complexes.
If H = (V,H) is a simplicial complex and FlH denotes its lattice of flats, then H is boolean
representable if and only if H equals the set of transversals of the successive di↵erences for chains in
FlH. This implies in particular that all (finite) matroids are boolean representable.
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In this paper we begin the study of the topology of boolean representable simplicial complexes
(BRSC).

As any finitely presented group can be the fundamental group of a 2-dimensional simplicial
complex (see e.g. [19, Theorem 7.45]), the problem of understanding the homotopy type of an
arbitrary simplicial complex is hopeless.

However, for matroids, the topology is very restricted. Indeed, it is known that a matroid is
pure shellable [2]. This implies that a matroid of rank r has the homotopy type of a wedge of r � 1
dimensional spheres, the number of which is then the rank of its unique non-trivial homology group.
This latter number has a number of combinatorial interpretations [2]. In particular, a matroid of
dimension at least 2 has a trivial fundamental group.

One of the main results of this paper is to show that the fundamental group of a BRSC is a free
group. We give a precise formula for the rank of this group in terms of the number and nature of
the connected components of its graph of flats [18]. In the simple case, this rank is equivalently a
function of the number of connected components of the proper part of its lattice of flats.

For 2 dimensional BRSCs, we completely characterize shellable complexes, showing that these are
precisely the sequentially Cohen-Macauley complexes [5]. Although not every 2 dimensional BRSC
is shellable, we prove that every 2 dimensional BRSC has the homotopy type of a wedge of 1-spheres
and 2-spheres.

We consider the connection to EL-labelings [2] of the lattice of flats and give an example of a
shellable 2-dimensional complex whose lattice of flats is not EL-labelable.

The paper is organized as follows. In Section 2 we present basic notions and results needed in
the paper. In Section 3 we show that the fundamental group of a boolean representable simplicial
complex is always free, and provide an exact formula to compute its rank for dimension � 2, using
the graph of flats. We also prove that any 2 dimensional BRSC has the homotopy type of a wedge
of 1-spheres and 2-spheres.

For higher degree homotopy groups, the situation is of course much harder, and we limit the
discussion to shellability in dimension 2. We note that in [18] we had characterized shellability for
simple boolean representable complexes of dimension 2. We are now able to deal with the non simple
case, and to assist us on this reduction we use the concept of simplification in Section 4. Then Section
5 is devoted to characterizing shellability for boolean representable simplicial complexes of dimension
2. For such complexes, it is also shown that the shellable complexes are precisely the sequentially
Cohen-Macaulay complexes.

In Section 6, we consider the concept of the order complex of a lattice L. The vertices of the order
complex are the elements of the proper part of L, i.e. L⇤ = L \ {0, 1}, and its faces are the chains of
L⇤. We show that, given a boolean representable simplicial complex H, if the order complex of FlH
is shellable, so is H. The converse turns out to be false.

In the matroid case, (some) shellings can be obtained from EL-labelings of the lattice of flats
(which is always geometric and thus has an EL-labeling by a theorem of Björner [1]). We show that,
for arbitrary shellable pure boolean representable simplicial complexes of dimension 2, the lattice of
flats does not necessarily admit an EL-labeling.

Finally, Section 7 discusses the complexity of several algorithms designed to compute fundamental
groups, decide shellability (for dimension 2) and compute shellings and Betti numbers. Although
the number of potential flats in a simplicial complex with n vertices is 2n and therefore exponential,
we achieve polynomial bounds for all algorithms when the dimension of the simplicial complexes is
fixed.
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2 Preliminaries

All lattices and simplicial complexes in this paper are assumed to be finite. Given a set V and n � 0,
we denote by Pn(V ) (respectively Pn(V )) the set of all subsets of V with precisely (respectively at
most) n elements. The kernel of a mapping ' : V ! W is the relation

Ker' = {(a, b) 2 V ⇥ V | a' = b'}.
A (finite) simplicial complex is a structure of the form H = (V,H), where V is a finite nonempty

set and H ✓ 2V contains P1(V ) and is closed under taking subsets. The elements of V and
H are called respectively vertices and faces. To simplify notation, we shall often denote a face
{x1, x2, . . . , xn} by x1x2 . . . xn.

A face of H which is maximal with respect to inclusion is called a facet. We denote by fctH the
set of facets of H.

The dimension of a face I 2 H is |I| � 1. An i-face (respectively i-facet) is a face (respectively
facet) of dimension i. We may refer to 0-faces and 1-faces as vertices and edges, respectively.

We say that H is:

• simple if P2(V ) ✓ H;

• pure if all the facets of H have the same dimension.

The dimension of H, denoted by dimH, is the maximum dimension of a face/facet of H.
A simplicial complex H = (V,H) is called a matroid if it satisfies the exchange property:

(EP) For all I, J 2 H with |I| = |J |+ 1, there exists some i 2 I \ J such that J [ {i} 2 H.

A simplicial complex H = (V,H) is shellable if we can order its facets as B1, . . . , Bt so that, for
k = 2, . . . , t, the following condition is satisfied: if I(Bk) = ([k�1

i=1 2
Bi) \ 2Bk , then

(Bk, I(Bk)) is pure of dimension |Bk|� 2

whenever |Bk| � 2. Such an ordering is called a shelling. In the literature, this is called non-pure
shellability and was first defined by Björner and Wachs [3, 4]. For pure complexes, the concept has
its roots in the 19th century (see [7]), and was important as means to provide an inductive proof
for the Euler-Poincaré formula. In this paper, the concept’s most important use is the theorem by
Björner which characterizes the homotopy type of a shellable complex [3].

Given an R ⇥ V matrix M and Y ✓ R, X ✓ V , we denote by M [Y,X] the submatrix of M
obtained by deleting all rows (respectively columns) of M which are not in Y (respectively X).

A boolean matrix M is lower unitriangular if it is of the form
0

BBBBB@

1 0 0 . . . 0
? 1 0 . . . 0
? ? 1 . . . 0
...
...
...
. . .

...
? ? ? . . . 1

1

CCCCCA

Two matrices are congruent if we can transform one into the other by independently permuting
rows/columns. A boolean matrix is nonsingular if it is congruent to a lower unitriangular matrix.
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Given an R⇥ V boolean matrix M , we say that the subset of columns X ✓ V is M -independent
if there exists some Y ✓ R such that M [Y,X] is nonsingular.

A simplicial complex H = (V,H) is boolean representable if there exists some boolean matrix M
such that H is the set of all M -independent subsets of V .

We denote by BR the class of all (finite) boolean representable simplicial complexes. All matroids
are boolean representable [18, Theorem 5.2.10], but the converse is not true.

We say that X ✓ V is a flat of H if

8I 2 H \ 2X 8p 2 V \X I [ {p} 2 H.

The set of all flats of H is denoted by FlH. Note that V, ; 2 FlH in all cases.
Clearly, the intersection of any set of flats (including V = \;) is still a flat. If we order FlH by

inclusion, it is then a ^-semilattice. Since FlH is finite, it follows that it is indeed a lattice (with the
determined join), the lattice of flats of H.

We say that X is a transversal of the successive di↵erences for a chain of subsets

A0 ⇢ A1 ⇢ . . . ⇢ Ak

if X admits an enumeration x1, . . . , xk such that xi 2 Ai \Ai�1 for i = 1, . . . , k.
Let H = (V,H) be a simplicial complex. If X ✓ V is a transversal of the successive di↵erences

for a chain
F0 ⇢ F1 ⇢ . . . ⇢ Fk

in FlH, it follows easily by induction that x1x2 . . . xi 2 H for i = 0, . . . , k. In particular, X 2 H.
It follows from [18, Corollary 5.2.7] that H is boolean representable if and only if every X 2 H

is a transversal of the successive di↵erences for a chain in FlH.
The lattice FlH induces a closure operator on 2V defined by

X = \{F 2 FlH | X ✓ F}
for every X ✓ V .

By [18, Corollary 5.2.7], H = (V,H) is boolean representable if and only if every X 2 H admits
an enumeration x1, . . . , xk satisfying

x1 ⇢ x1x2 ⇢ . . . ⇢ x1 . . . xk. (1)

Thus, given p, q 2 V distinct, we have

pq /2 H if and only p = pq = q. (2)

This fact will be often used throughout the text with no explicit reference. Note that, in the important
particular case of field representable matroids, this equivalence expresses the fact that two nonzero
vectors over a field are linearly dependent if and only if they generate the same subspace of dimension
1.

From (2) we can deduce that
p = {q 2 V | q = p}. (3)

Indeed, let F = {q 2 V | q = p}. Since p 2 F ✓ p, it su�ces to show that F 2 FlH. Let I 2 H \ 2F

and a 2 V \F . In view of (2), we may assume that I = {q}. Since a 6= q, we get qa 2 H also by (2).
Thus F 2 FlH and (3) holds.
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We summarize next the geometric perspective of simplicial complexes. For details, the reader
is referred to [18, Appendix A.5]. A geometric simplex in Rn is the convex hull C of an a�nely
independent set of pointsX0, . . . , Xm (i.e. the vectorsX1�X0, . . . , Xm�X0 are linearly independent).
The set {X0, . . . , Xm} is fully determined by the geometric simplex C and may be called the a�ne

basis of C. The convex hull of a subset of {X0, . . . , Xm} is a subsimplex of C. A geometric simplicial

complex in Rn is a set of geometric simplexes closed under subsimplexes.
If S is a geometric simplicial complex in Rn, then the set of a�ne bases of its simplexes defines

a simplicial complex H(S) (in the combinatorial sense). On the other hand, given an (abstract)
simplicial complex H, it is possible to construct a geometric simplicial complex S(H) in Rn (for
some n) such that H ⇠= H(S(H)). Moreover, the union of S(H) (a subspace of Rn) is unique up to
homeomorphism (for the standard topology of Rn). We denote this subspace by ||H|| and call it the
geometric realization of H.

Let J = (V, J) be a simplicial complex. We recall the definitions of the (reduced) homology
groups of J (see e.g. [8]).

If J has s connected components, it is well known that the 0th homology group H0(J ) is isomor-
phic to the free abelian group of rank s. For dimension k � 1, we proceed as follows.

Fix a total ordering of V . Let Ck(J ) denote the free abelian group on J \ Pk+1(V ), that is,
all the formal sums of the form

P
i2I niXi with ni 2 Z and Xi 2 J \ Pk+1(V ) (distinct). Given

X 2 J \ Pk+1(V ), write X = x0x1 . . . xk with x0 < . . . < xk. We define

X@k =
kX

i=0

(�1)i(X \ {xi}) 2 Ck�1(J )

and extend this by linearity to a homomorphism @k : Ck(J ) ! Ck�1(J ) (the kth boundary map of
J ). Then the kth homology group of J is defined as the quotient

Hk(J ) = Ker @k/Im @k+1.

The 0th reduced homology group of J , denoted by H̃0(J ), is isomorphic to the free abelian group
of rank s�1, where s denotes the number of connected components of J . For k � 1, the kth reduced

homology group of J , denoted by H̃k(J ) coincides with the kth homology group.
A wedge of spheres S1, . . . , Sm (of possibly di↵erent dimensions) is a topological space obtained

by identifying m points si 2 Si for i = 1, . . . ,m.
Given a group G and X ✓ G, we denote by hXi (respectively hhXii) the subgroup (respectively

normal subgroup) of G generated by X.
We denote by FA the free group on an alphabet A. A group presentation is a formal expression

of the form hA | Ri, where A is an alphabet and R ✓ FA. It defines the group FA/hhRii, and is said
to be a presentation for any group isomorphic to this quotient.

Given a (finite) alphabet A, we denote by A+ the free semigroup on A (finite nonempty words
on A, under concatenation). Given a partial order on A, we define the lexicographic order on A+

as follows. Given a1, . . . , ak, a01, . . . , a0m 2 A, we write a1 . . . ak < a01 . . . a0m if one of the following
conditions holds:

• k < m and ai = a0i for i = 1, . . . , k;

• there exists some i  min{k,m} such that a1 = a01, . . . , ai�1 = a0i�1, ai < a0i.
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3 The fundamental group

Let H = (V,H) be a simplicial complex. The graph of H is the truncation (V,H \P2(V )). We say
that H is connected if its graph is connected. We say that T ✓ H \ P2(V ) is a spanning tree of H if
it is a spanning tree of its graph.

Lemma 3.1 Let H = (V,H) be a boolean representable simplicial complex. Then H is connected

unless H = P1(V ) and |V | > 1.

Proof. Obviously, H is disconnected if H = P1(V ) and |V | > 1, and connected if |V | = 1. Hence
we may assume that pq 2 H for some distinct p, q 2 V .

LetM be anR⇥V boolean matrix representingH. It follows from pq 2 H thatM [R, p] 6= M [R, q].
Thus, for every v 2 V , we have either M [R, v] 6= M [R, p] or M [R, v] 6= M [R, q], implying that vp or
vq is an edge of H. Therefore H is connected. ⇤

Note that, if we consider the geodesic distance on the graph of a boolean representable simplicial
complex of dimension � 2 (the distance between two vertices is the length of the shortest path
connecting them), it follows from the above proof that the distance between any two vertices is at
most 2. Indeed, given vertices v, w 2 V , we have two possibilities:

• M [R, v] 6= M [R,w]. Then v �� w is an edge in H.

• M [R, v] = M [R,w]. Then either M [R, v] 6= M [R, p] or M [R, v] 6= M [R, q]. Assuming the
latter, we get a path v �� q �� w in H.

We consider now the geometric realization ||H||, described in Section 2.
Given a point v0 2 ||H||, the fundamental group ⇡1(||H||, v0) is the group having as elements the

homotopy equivalence classes of closed paths

v0 qq

the product being determined by the concatenation of paths.
If H is connected, then ⇡1(||H||, v0) ⇠= ⇡1(||H||, w0) for all points v0, w0 in ||H||, hence we may

use the notation ⇡1(||H||) without ambiguity. We produce now a presentation for ⇡1(||H||). This
combinatorial description is also known as the edge-path group of H (for details on the fundamental
group of a simplicial complex, see [20]).

We fix a spanning tree T of H and we define

A = {apq | pq 2 H \ P2(V )},
RT = {aqpa�1

pq | pq 2 H \ P2(V )} [ {apqaqra�1
pr | pqr 2 H \ P3(V )} [ {apq | pq 2 T}.

From now on, we view ⇡1(||H||) as the group defined by the group presentation

hA | RT i. (4)

We denote by ✓ : FA ! ⇡1(||H||) the canonical homomorphism. We note that the six relators induced
by a single 2-face pqr (corresponding to di↵erent enumerations of the vertices) are all equivalent to
apqaqrapr: each one of them is a conjugate of either apqaqrapr or its inverse.

Given a boolean representable connected simplicial complex H = (V,H), the graph of flats �FlH
has vertex set V and edges p �� q whenever p 6= q and pq ⇢ V .
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Lemma 3.2 Let H = (V,H) be a boolean representable connected simplicial complex. Let u, v 2 V
be distinct non adjacent vertices of �FlH. Then uv 2 H.

Proof. Since |V | > 1 and H is connected, there exists some pq 2 H \P2(V ). Suppose that uv /2 H.
By (2), we get u = uv = v. Since there is no edge u �� v in �FlH, we get u = V . By (3), we get
p = q = u = V . In view of (2), this contradicts pq 2 H. ⇤

Let C be a connected component of �FlH. If H \P2(C) 6= ;, we shall say that C is H-nontrivial.
Otherwise, we say that C is H-trivial. The size of C is its number of vertices.

If H is a connected simplicial complex of dimension  1 (i.e. a graph), then (4) is a presentation
of a free group, its rank equal to the number of edges of the graph that are not in T .

The next result shows that the graph of flats and the size of its H-disconnected components
determines completely the fundamental group for dimension � 2.

Theorem 3.3 Let H be a boolean representable simplicial complex of dimension � 2. Assume

that �FlH has s H-nontrivial connected components and r H-trivial connected components of sizes

f1, . . . , fr. Then ⇡1(||H||) is a free group of rank

✓
s+ f1 + . . .+ fr � 1

2

◆
�

rX

i=1

✓
fi
2

◆
,

or equivalently, ✓
s� 1

2

◆
+ (s� 1)(f1 + . . .+ fr) +

X

1i<jr

fifj .

Proof. Let H = (V,H) and � = �FlH. Since H has dimension � 2, there exists some xyz 2
H \ P3(V ). Since H is boolean representable, we may assume by (1) that yz ⇢ V , hence y �� z is
an edge of �. In view of (2), we may also assume that y /2 z.

Let
Z = {p 2 V \ {z} | pz 2 H}.

Note that y 2 Z. Now let

T = {pz | p 2 Z} [ {yq | q 2 V \ (Z [ {z})}.

We claim that T is a spanning tree of H.
Indeed, suppose that q 2 V \ (Z [ {z}). Then qz /2 H and so q = qz = z. Since y /2 z, we get

y /2 q, hence yq 2 H and so T ✓ H \ P2(V ). Now T has precisely |V |� 1 edges and every vertex of
V occurs in some edge of T . Therefore T is a spanning tree of H.

We consider now the finite presentation (4) of ⇡1(||H||) induced by the spanning tree T . Our goal
is to use a sequence of Tietze transformations (see [16]) to obtain a presentation that can be seen to
be that of the free group in the statement of the theorem. This requires some preliminary work.

To understand the procedure, it may help to consider two partial colourings of the complete
graph KV on the vertex set V . An edge pq has color red if pq 2 H, and color blue if pq 2 E(�).
Note that an edge may have one color, both or none. Then the H-nontrivial components of � are
the blue components of KV which contain a red edge. The strategy for the Tietze transformation
reduction consists then in establishing the following facts:

• every blue-and-red edge represents the identity in ⇡1(||H||) (5);
7



• if two vertices are red-adjacent and blue-connected, then they can be connected by a path of
blue-and-red edges (7);

• every red edge with endpoints connected by a path of blue-and-red edges represents the identity
in ⇡1(||H||) (8).

In terms of ⇡1(||H||), this will allow huge simplification inside each H-nontrivial component, but no
simplification will take place at the H-trivial components. This is the reason for the asymmetry in
the statement of the theorem.

Let ✓ : FA ! ⇡1(||H||) denote the canonical homomorphism. We show that

pq 2 E(�) \H ) apq✓ = 1. (5)

Suppose first that z /2 pq. Then pqz 2 H, hence p, q 2 Z and we get

apq✓ = (azpapqa
�1
zq )✓ = 1.

Thus we may assume that z 2 pq.
Suppose that y /2 pq. Then pqy 2 H. We claim that

ayp✓ = ayq✓ = 1. (6)

If p 2 V \ Z, then yp 2 T and so ayp✓ = 1. If p 2 Z, then pz 2 T . Since pz ✓ pq yields y /2 pz,
we get yzp 2 H and so

ayp✓ = (ayzazp)✓ = 1.

Similarly, ayq✓ = 1 and so (6) holds.
Now pqy 2 H yields

apq✓ = (apyayq)✓ = (a�1
yp ayq)✓ = 1.

So finally we may assume that z, y 2 pq. Let v 2 V \ pq (note that pq ⇢ V since pq 2 E(�)). We
prove that apv✓ = 1 by considering two cases. If p 6= z, then pzv 2 H and so apv✓ = (apzazv)✓ = 1.
Hence we assume that p = z. Now yzv 2 H yields ayv✓ = (ayzazv)✓ = 1, and pyv 2 H (which holds
since p = z implies p 6= y) yields apv✓ = (apyayv)✓ = 1 (since py 2 T ).

Hence apv✓ = 1 and by symmetry also aqv✓ = 1. Finally, pqv 2 H yields apv✓ = (apqaqv)✓ and
thus apq✓ = 1. Therefore (5) holds.

Let C1, . . . , Cs (respectively C 0
1, . . . , C

0
r) denote the H-nontrivial (respectively H-trivial) con-

nected components of �. We assume also that C 0
i has size fi for i = 1, . . . , r.

We say that two vertices p, q 2 Ci are H-connected if there exists a path

p = p0 �� p1 �� . . . �� pn = q

in Ci with n � 0 and pj�1pj 2 H for j = 1, . . . , n.
We claim that

pq 2 H \ P2(Ci) ) p and q are H-connected (7)

holds for i = 1, . . . , s.
Let d denote the geodesic distance on Ci. We show that p, q 2 Ci areH-connected using induction

on d(p, q).
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The case d(p, q)  1 is trivial, hence we assume that d(p, q) = n > 1 and (8) holds for closer
vertices. Take p0, p00 2 Ci such that d(p, p0) = n� 2 and d(p0, p00) = d(p00, q) = 1:

p ���� p0 �� p00 �� q

Suppose that p00q /2 H. Then p00 = p00q = q. It follows that p0q = p0p00 ⇢ V and so there exists an
edge p0 �� q in �, contradicting d(p, q) = n.

Thus p00q 2 H. Since d(p, q) > 1, we have p /2 p00q ⇢ V . Hence pp00 2 H. But d(p, p00) = n� 1, so
by the induction hypothesis p and p00 are H-connected. Since p00q 2 H, it follows that p and q are
H-connected. Therefore (7) holds.

We show next that
pq 2 H \ P2(Ci) ) apq✓ = 1 (8)

holds for i = 1, . . . , s.
We use induction on d(p, q). The case d(p, q) = 1 follows from (5), hence we assume that

d(p, q) = n > 1 and (8) holds for closer vertices. Take p0, p00 2 Ci as in the proof of (7). By that
same proof, we must have p00q 2 H. Since d(p, q) > 1, we have p /2 p00q. Hence pp00q 2 H and so
pp00, p00q 2 H. By the induction hypothesis, we get app00✓ = ap00q✓ = 1. But now pp00q 2 H yields
apq✓ = (app00ap00q)✓ = 1. Therefore (8) holds.

Now we may use (8) to simplify the group presentation hA | RT i. In view of (8), we start by
adding as relators all the apq 2 A such that p, q belong to the same Ci.

For i = 1, . . . , s, we fix some vertex ci 2 Ci. We may assume without loss of generality that
c1 = z. Given p 2 V , we write bp = ci if p 2 Ci. We define

R0 = {aqpa�1
pq | pq 2 H \ P2(V )} [ {apq | pq 2 T}

[ {apq | pq 2 H \ P2(Ci), i 2 {1, . . . , s}}
[ {apqa�1

bpbq | p 2 Ci, q 2 Cj , i, j 2 {1, . . . , s}, i 6= j}
[ {apqa�1

bpq | p 2 Ci, q 2 C 0
j , i 2 {1, . . . , s}, j 2 {1, . . . , r}}

[ {apqa�1
pbq | p 2 C 0

j , q 2 Ci, i 2 {1, . . . , s}, j 2 {1, . . . , r}}.

In view of Lemma 3.2, R0 is well defined. We show that hhR0ii = hhRT ii.
We show first that R0 ✓ hhRT ii. In view of (8), we only need to discuss the last three terms of

the union.
We start by proving that

apq✓ = abpq✓ (9)

whenever p 2 Ci and q /2 Ci. We may assume that p 6= bp. By (7), there exists a path

p = p0 �� p1 �� . . . �� pn = bp

in Ci with n � 1 and pk�1pk 2 H for k = 1, . . . , n. By Lemma 3.2, we have pkq 2 H for every k. Also
pk�1pk ⇢ V for k = 1, . . . , n. Suppose that q 2 pk�1pk. Then pkq ⇢ V and q 2 Ci, a contradiction.
Hence q /2 pk�1pk. Since pk�1pk 2 H, it follows that pk�1pkq 2 H and in view of (8) we get

apk�1q✓ = (apk�1pkapkq)✓ = apkq✓.

Now (9) follows by transitivity.
Similarly,

apq✓ = apbq✓ (10)
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whenever q 2 Ci and p /2 Ci.
Finally, if p 2 Ci and q 2 Cj 6= Ci, we may apply (9) and (10) to get apq✓ = abpq✓ = abpbq✓.

Therefore R0 ✓ hhRT ii and so hhR0ii ✓ hhRT ii.
To prove the opposite inclusion, let ✓0 : FA ! FA/hhR0ii denote the canonical homomorphism.

It su�ces to show that (apqaqra�1
pr )✓

0 = 1 for every pqr 2 H \ P3(V ).
Since H is boolean representable and pqr 2 H, one of the three elements p, q, r is not in the

closure of the other two. We remarked before that each one of the six relators of RT arising from
distinct enumerations of the elements of p, q, r is a conjugate of apqaqra�1

pr or its inverse, hence we may
assume that r /2 pq. Hence there exists an edge p �� q in � and so p, q 2 Ci for some i 2 {1, . . . , s}.

Suppose that r 2 Ci. Since pq, qr, pr 2 H, we get apq✓0 = aqr✓0 = apr✓0 = 1 and so (apqaqra�1
pr )✓

0 =
1.

Thus we may assume that r /2 Ci. If r /2 C 0
1 [ . . . [ C 0

r, then

aqr✓
0 = abqbr✓

0 = abpbr✓
0 = apr✓

0.

The case r 2 C 0
1[. . .[C 0

r is analogous. Since pq 2 H\P2(Ci) yields apq✓0 = 1, we get (apqaqra�1
pr )✓

0 =
1. Therefore hhR0ii = hhRT ii.

Now we simplify the presentation hA | R0i by means of further Tietze transformations.
The third term of the union in R0 ensures that we may omit all generators with both indices in

the same connected components, and the three last terms allow us to restrict ourselves to generators
with indices in {c1, . . . , cs}[C 0

1[ . . .[C 0
r. Since y, z 2 C1, the second term allows us to eliminate all

the generators where c1 = z appears as index, and we may now use the first term relators to remove
half of the remaining generators, ending up with the free group on the set

B = {acicj | 2  i < j  s}
[ {aciq | 2  i  s, q 2 C 0

1 [ . . . [ C 0
r}

[ {apq | p 2 C 0
i, q 2 C 0

j 1  i < j  r}
Now

|B| =
✓
s� 1

2

◆
+ (s� 1)(f1 + . . .+ fr) +

X

1i<jr

fifj .

On the other hand, we have
�
s+f1+...+fr�1

2

�
= (s�1+f1+...+fr)(s�2+f1+...+fr)

2

= (s�1)(s�2)
2 + (s� 1)(f1 + . . .+ fr) +

(f1+...+fr)(f1+...+fr�1)
2

=
�
s�1
2

�
+ (s� 1)(f1 + . . .+ fr) +

P
1i<jr fifj +

Pr
i=1(f

2
i �fi)

2

=
�
s�1
2

�
+ (s� 1)(f1 + . . .+ fr) +

P
1i<jr fifj +

Pr
i=1

�
fi
2

�
,

proving the theorem. ⇤

Given a lattice L with top element 1 and bottom element 0, write L⇤ = L \ {0, 1} (the proper

part of L) and define a graph �L⇤ = (L⇤, UHL⇤), where UHL⇤ denotes the set of undirected edges
in the Hasse diagram of L⇤. More formally, we can define UHL⇤ as the set of all edges a �� b such
that a covers b in L⇤ (i.e. a > b and there exists no c 2 L⇤ such that a > c > b).

Corollary 3.4 Let H be a boolean representable simple simplicial complex of dimension � 2. Then

⇡1(||H||) is a free group of rank

�
t�1
2

�
, where t denotes the number of connected components of �FlH.

This number is also equal to the number of connected components of �(FlH)⇤.
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Proof. If H = (V,H) is simple, then each H-trivial connected component of �FlH has precisely
one vertex. Hence, by Theorem 3.3, ⇡1(||H||) is a free group of rank

�
t�1
2

�
.

Note that, since H is simple, then P1(V ) ✓ FlH (so all points of H belong to (FlH)⇤).
Let p, q 2 V be adjacent in �FlH. Then pq ⇢ V and so pq is the join of p and q in �(FlH)⇤.

It follows that each connected component of �FlH is contained in the union of the points of some
connected component of �(FlH)⇤.

On the other hand, if F �� F 0 is an edge of �(FlH)⇤ (say, with F ⇢ F 0), then F 0 is a clique of
�FlH (i.e. induces a complete subgraph). It follows easily that the union of the points of a connected
component of �(FlH)⇤ belong to the same connected component of �FlH.

Since every connected component of �(FlH)⇤ contains necessarily a point, the number of con-
nected components must coincide in both graphs. ⇤

We show next that free groups of rank
�
n
2

�
(n � 2) occur e↵ectively as fundamental groups of

boolean representable simplicial complexes of dimension 2, even in the simple case.

Example 3.5 Let t � 3. Let H = (V,H) be defined by V = {a1, b1, a2, b2, . . . , at, bt} and

H = P2(V ) [ {X 2 P3(V ) | aibi ⇢ X for some i 2 {1, . . . , t}}.

Then H is a boolean representable simple simplicial complex of dimension 2 and ⇡1(||H||) ⇠= F(t�1
2 ).

Indeed, it is easy to check that

FlH = P1(V ) [ {a1b1, a2b2, . . . , atbt, V },

hence every face of H is a transversal of the successive di↵erences for some chain in FlH. Thus H is
boolean representable. Clearly, the graph of flats of H is

a1 �� b1, a2 �� b2, . . . at �� bt,

hence it possesses t connected components. Therefore ⇡1(||H||) ⇠= F(t�1
2 ) by Corollary 3.4. Note also

that �(FlH)⇤ is

a1b1 a2b2 · · · atbt

a1 b1 a2 b2 at bt

By shellability of matroids, every matroid H = (V,H) of dimension d � 2 has the homotopy
type of a wedge of spheres of dimension d. In particular, its fundamental group is trivial. We note
that this fact also follows from the preceding theorem, since �FlH is a complete graph. Indeed, given
p, q 2 V distinct, it is well known (see e.g. [18, Proposition 4.2.5(ii)]) that

pq = pq [ {r 2 V \ pq | I [ {r} /2 H for some I 2 H \ 2pq}.

Since every matroid is pure and dimH � 2, pq cannot be a facet and so pq ⇢ V . Thus �FlH has a
single connected component and so ⇡1(||H||) is trivial by Theorem 3.3.

Theorem 3.3 also yields the following consequence, one of the main theorems of the paper.

11



Theorem 3.6 Let H be a boolean representable simplicial complex of dimension 2. Then:

(i) the homology groups of H are free abelian;

(ii) H has the homotopy type of a wedge of 1-spheres and 2-spheres.

Proof. (i) It follows from Lemma 3.1 that H is connected. By Hurewicz Theorem (see [8]), the 1st
homology group of H is the abelianization of ⇡1(||H||), and therefore, in view of Theorem 3.3, a free
abelian group of known rank. The second homology group of any 2-dimensional simplicial complex
is Ker @2  C2(H), that is, a subgroup of a free abelian group. Therefore H2(H) is itself free abelian.

(ii) By [23, Proposition 3.3], any finite 2-dimensional simplicial complex with free fundamental
group has the homotopy type of a wedge of 1-spheres and 2-spheres. ⇤

4 The simplification of a complex

Let H = (V,H) and H0 = (V 0, H 0) be simplicial complexes. A simplicial map from H to H0 is a
mapping ' : V ! V 0 such that X' 2 H 0 for every X 2 H (that is, ' sends simplices to simplices).
This simplicial map is rank-preserving if |X'| = |X| for every X 2 H.

Let H = (V,H) 2 BR. We define an equivalence relation ⌘H on V by

a⌘Hb if a = b.

If no confusion arises, we omit the index from ⌘H.
It follows from (2) that a⌘b if and only if ab /2 H. If M is a boolean matrix representation of H,

it is easy to see that a⌘b if and only if the column vectors M [ , a] and M [ , b] are equal. Indeed,
M [ , a] = M [ , b] implies ab /2 H trivially and the converse follows from the fact that there exist no
zero columns in M (since P1(V ) ✓ H). Note also that (3) implies that p = p⌘ for every p 2 V .

The following lemma enhances the role played by ⌘ in the context of rank-preserving simplicial
maps.

Lemma 4.1 Let H = (V,H) 2 BR and let ⌧ be an equivalence relation on V . Then the following

conditions are equivalent:

(i) ⌧ is the kernel of some rank-preserving simplicial map ' : H ! H0
into some simplicial complex

H0
;

(ii) ⌧ ✓ ⌘H.

Proof. (i) ) (ii). Let a, b 2 V and suppose that (a, b) /2 ⌘. Then a 6= b and so ab 2 H. Since ' is a
rank-preserving simplicial map, it follows that a' 6= b' and so (a, b) /2 ⌧ . Thus ⌧ ✓ ⌘.

(ii) ) (i). We define a simplicial complex H/⌧ = (V/⌧, H/⌧), where

H/⌧ = {{a1⌧, . . . , ak⌧} | a1 . . . ak 2 H}.

Let ' : V ! V/⌧ denote the canonical projection. By definition, ' is a simplicial map. We claim
that

' is rank-preserving. (11)
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Indeed, every (nonempty) X 2 H admits an enumeration x1, . . . , xk satisfying (1) and so xi 6= xj
whenever i 6= j. Thus

xi⌧xj ) xi⌘xj ) xi = xj ) i = j

and so |X'| = |X|. Thus (11) holds and so ⌧ is the kernel of some rank-preserving simplicial map.
⇤

Note that, if ⌧ ✓ ⌘, it follows from the characterization of H in (1) that

if ai⌧bi for i = 1, . . . , k, then a1 . . . ak 2 H if and only if b1 . . . bk 2 H. (12)

We collect in the next result some of the properties of the simplicial complexes H/⌧ (using the
notation introduced in the proof of Lemma 4.1).

Proposition 4.2 Let H = (V,H) 2 BR and let ⌧ ✓ ⌘ be an equivalence relation on V . Let

' : V ! V/⌧ denote the canonical projection. Then:

(i) dim(H/⌧) = dimH;

(ii) FlH = {F'�1 | F 2 Fl(H/⌧)};
(iii) FlH ⇠= Fl(H/⌧);

(iv) H/⌧ is boolean representable;

(v) H/⌧ is simple if and only if ⌧ = ⌘;

(vi) H is pure if and only if H/⌧ is pure;

(vii) H is a matroid if and only if H/⌧ is a matroid;

(viii) if v, w 2 V are such that v⌧ 6= w⌧ , then v �� w is an edge of �FlH if and only if v⌧ �� w⌧ is

an edge of �Fl(H/⌧);

(ix) for every X ✓ V ,

X 2 fctH if and only if ('|X is injective and X' 2 fct(H/⌧)).

(x) if H/⌧ is shellable, so is H.

Proof. (i) It follows from the definition of H/⌧ and (11).
(ii) Let F 2 Fl(H/⌧). Let X 2 H \ 2F'

�1
and p 2 V \ F'�1. Then X' 2 (H/⌧) \ 2F and

p⌧ 2 (V/⌧) \ F , hence F 2 Fl(H/⌧) yields X' [ {p⌧} 2 H/⌧ . Since the elements of X' [ {p⌧} are
all distinct, it follows easily from (12) that X [ {p} 2 H. Thus F'�1 2 FlH.

To prove the opposite inclusion, we start by showing that

if Z 2 FlH, then Z' 2 Fl(H/⌧). (13)

Let Y 2 (H/⌧) \ 2Z' and p⌧ 2 (V/⌧) \ (Z'). We may write Y = X' for some X 2 H. Since
a''�1 ✓ a for every a 2 V , we have Z''�1 ✓ Z. Hence X 2 H \ 2Z . On the other hand,
p⌧ 2 (V/⌧) \ (Z') implies p 2 V \ Z. Since Z 2 FlH, we get X [ {p} 2 H and so Y [ {p⌧} 2 H/⌧ .
Therefore Z' 2 Fl(H/⌧) and so (13) holds.
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Let Z 2 FlH. Since we have already remarked that Z''�1 ✓ Z and the opposite inclusion holds
trivially, we get Z = Z''�1 2 {F'�1 | F 2 Fl(H/⌧)}.

(iii) By part (ii), the mapping
Fl(H/⌧)! FlH

F 7! F'�1

is bijective, and is clearly a poset isomorphism. Therefore it is a lattice isomorphism.
(iv) Let X 2 H so that X' 2 H/⌧ . In view of (11) and part (ii), there exists some enumeration

x1, . . . , xk of the elements of X and some F0, . . . , Fk 2 Fl(H/⌧) such that

F0'
�1 ⇢ F1'

�1 ⇢ . . . ⇢ Fk'
�1

and xi 2 (Fi'�1) \ (Fi�1'�1) for i = 1, . . . , k. It follows that F0 ⇢ . . . ⇢ Fk and xi' 2 Fi \ Fi�1

for every i, hence X' is a transversal of the successive di↵erences for a chain in Fl(H/⌧). Therefore
H/⌧ is boolean representable.

(v) Given X ✓ V , let Cl⌧ (X') denote the closure of X' in H/⌧ . We show that

Cl⌧ (X') = X'. (14)

Indeed, by (13) we have X' 2 Fl(H/⌧), and trivially X' ✓ X'. Suppose now that F 2 Fl(H/⌧)
contains X'. By part (ii), we have X ✓ F'�1 2 FlH, hence X ✓ F'�1 by minimality and so
X' ✓ F . Therefore (14) holds.

Suppose now that (a, b) 2 ⌘ \ ⌧ . Then (14) yields Cl⌧ (a') = a' = b' = Cl⌧ (b') and so
{a⌧, b⌧} /2 H⌧ by (2). Therefore H/⌧ is not simple.

Finally, assume that ⌧ = ⌘. Let a, b 2 V be such that a⌘ 6= b⌘. Then a 6= b and by (2) we get
ab 2 H. Hence {a⌘, b⌘} 2 H/⌘ and so H/⌘ is simple.

(vi) Considering transversals of successive di↵erences, it is immediate that a boolean representable
simplicial complex is pure if and only if its lattice of flats satisfies the Jordan-Dedekind condition
(all the maximal chains have the same length). Now we use part (iii).

(vii) It is well known that H is a matroid if and only if FlH is geometric [17, Theorem 1.7.5].
Now we use part (iii).

(viii) Assume that v �� w is an edge of �FlH. By part (ii), there exists some F 2 Fl(H/⌧) such
that vw ✓ F'�1 ⇢ V . It follows that {v⌧, w⌧} ✓ F ⇢ V/⌧ , hence v⌧ �� w⌧ is an edge of �Fl(H/⌧).

Conversely, assume that v⌧ �� w⌧ is an edge of �Fl(H/⌧). Then there exists some F 2 Fl(H/⌧)
such that {v⌧, w⌧} ✓ F ⇢ V/⌧ . Hence vw ✓ F'�1 ⇢ V . Since F'�1 2 FlH by part (ii), it follows
that v �� w is an edge of �FlH.

(ix) Let X 2 fctH. Then X' 2 H/⌧ and '|X is injective by (11). Suppose that X' ⇢ Y for
some Y 2 H/⌧ . We may write Y = X' [ Z' with Z minimal. It follows from the minimality of
Z that '|X[Z is injective, hence X [ Z 2 H in view of (12), contradicting X 2 fctH. Therefore
X' 2 fct(H/⌧).

Conversely, assume that '|X is injective and X' 2 fct(H/⌧). In view of (12), we have X 2 H.
Suppose that X [ {p} 2 H with p 2 V \ X. By (11), '|X[{p} is injective and (X [ {p})' 2 H/⌧ ,
hence X' ⇢ (X[{p})' 2 H, contradicting X' 2 fct(H/⌧). Therefore X 2 fctH and the equivalence
holds.

(x) We may assume that |V | = |V/⌧ | + 1, and then apply this case successively. Assume that
{a1, a2} is the only nonsingular ⌧ -class.
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Let B1, . . . , Bt be a shelling of H/⌧ . For k = 1, 2, let  k : V/⌧ ! V be defined by

x' k =

⇢
ak if x 2 {a1, a2}
x otherwise

Consider the sequence
B1 1, B1 2, B2 1, B2 2, . . . , Bt 1, Bt 2. (15)

We have Bi 1 = Bi 2 if and only if a1' /2 Bi. To avoid repetitions, we remove from (15) all the
entries Bi 2 such that a' /2 Bi. We refer to this sequence as trimmed (15).

It follows from part (ix) that trimmed (15) is an enumeration of the facets of H. We prove it is
a shelling.

Let i 2 {2, . . . , t} and assume that |Bi| � 2. Write

I(Bi) = ([i�1
j=12

Bj ) \ 2Bi , I 0(Bi 1) = (([i�1
j=12

Bj 1) [ ([i�1
j=12

Bj 2)) \ 2Bi 1 .

It is immediate that I 0(Bi 1) = (I(Bi)) 1. Since B1, . . . , Bt is a shelling of H/⌧ , then (Bi, I(Bi)) is
pure of dimension |Bi|� 2. Thus (Bi 1, I 0(Bi 1)) is pure of dimension |Bi 1|� 2.

Assume now that i 2 {1, . . . , t}, a1' 2 Bi and |Bi| � 2. Write

I 0(Bi 2) = (([i
j=12

Bj 1) [ ([i�1
j=12

Bj 2)) \ 2Bi 2 .

Assume first that i = 1. Then
I 0(B1 2) = 2B1\{a2},

hence (B1 2, I 0(B1 2)) is pure of dimension |B1 2|� 2.
Thus we may assume that i > 1. It is easy to check that

I 0(Bi 2) = (I(Bi) [ 2Bi\{a1'}) 2. (16)

Since (Bi, I(Bi)) is pure of dimension |Bi|�2, it follows that (Bi, I(Bi)[2Bi\{a1'}) has also dimension
|Bi|�2. Since the only new facet with respect to (Bi, I(Bi)) is possibly Bi \{a1'}, then (Bi, I(Bi)[
2Bi\{a1'}) is also pure. In view of (16), (Bi 2, I 0(Bi 2)) is pure of dimension |Bi 2|� 2. Therefore
trimmed (15) is a shelling of H and we are done. ⇤

Part (ii) implies that the maps ' constitute a particular case of maps known in matroid theory
as strong maps [24, Chapter 8].

We could not prove so far the converse of Proposition 4.2(x), which remains an open problem.
However, it follows from Theorem 5.2 that it holds for the particular case of ⌘ and dimension 2.

From now on, and in view of part (v), we shall refer to HS = H/⌘ as the simplification of H.
The next result shows how we can produce a boolean representation for HS from a boolean

representation of H.

Proposition 4.3 Let M be an R⇥ V boolean matrix representation of the simplicial complex H =
(V,H). Let M 0

be the matrix obtained from M by removing repeated columns. Then M 0
is a boolean

matrix representation of HS.
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Proof. By the remark following the definition of ⌘, we have a⌘b if and only if M [ , a] = M [ , b].
Hence we may view the column space ofM 0 as V/⌘. Let ' : V ! V/⌘ denote the canonical projection.

Let X 2 H so that X' 2 H/⌘. Then there exists some Y ✓ R such that M [Y,X] is non-
singular. Then M [Y,X] has no repeated columns and so M 0[Y,X'] is nonsingular. Thus X' is
M 0-independent.

Conversely, assume that X 0 ✓ V/⌘ is M 0-independent. Write X 0 = X' with |X| minimum.
Then there exists some Y ✓ R such that M 0[Y,X 0] is nonsingular. Since |X| = |X 0| by minimality,
it follows easily that M [Y,X] and M 0[Y,X 0] have the same structure, hence M [Y,X] is nonsingular.
Therefore X 2 H and so X 0 = X' 2 H/⌘ as required. ⇤

We end this section by discussing how the fundamental groups of H and HS are related.

Proposition 4.4 Let H be a boolean representable simplicial complex of dimension � 2. Then the

following conditions are equivalent:

(i) ⇡1(||H||) ⇠= ⇡1(||HS ||);
(ii) every H-trivial connected components of �FlH has size 1.

Proof. We show that

�FlH and �FlHS have the same number of connected components. (17)

LetH = (V,H) and denote by ' : V ! V/⌘ the canonical projection. Let C1, . . . , Cm ✓ V denote
the connected components of �FlH and let C 0

1, . . . , C
0
n ✓ V/⌘ denote the connected components of

�FlHS .
Given i 2 {1, . . . ,m}, it follows easily from Proposition 4.2(viii) that Ci' ✓ C 0

ki
for some ki 2

{1, . . . , n}. Since V/⌘ = C1' [ . . . [ Cm', it follows that m � n.
Suppose now that ki = kj for some distinct i, j 2 {1, . . . ,m}. Take vertices vi and vj in Ci and

Cj , respectively. If vi⌘ 6= vj⌘, it follows easily from Proposition 4.2(vi) that vi, vj are connected by
some path, a contradiction. Hence we may assume that vi⌘vj and so vi = vj in H.

But HS is simple, hence {vi⌘} 2 FlHS and so vi''�1 2 FlH by Proposition 4.2(ii). Since {vi⌘}
and V/⌘ are distinct flats ofHS , it also follows from Proposition 4.2(ii) that vi''�1 6= (V/⌘)'�1 = V ,
hence vi �� vj should be an edge of �FlH, a contradiction. Thus the correspondence i 7! ki is
injective and so m = n.

Therefore �FlH and �FlHS have the same number of connected components.
Assume that �FlH has s H-nontrivial connected components and r H-trivial connected compo-

nents of sizes f1, . . . , fr. By Theorem 3.3, ⇡1(||H||) is a free group of rank
✓
s� 1

2

◆
+ (s� 1)(f1 + . . .+ fr) +

X

1i<jr

fifj .

On the other hand, in view of (17) and Corollary 3.4, ⇡1(||HS ||) is a free group of rank

✓
s+ r � 1

2

◆
=

(s+ r � 1)(s+ r � 2)

2
=

(s� 1)(s� 2) + (2s� 3)r + r2

2
=

✓
s� 1

2

◆
+(s�1)r+

✓
r

2

◆
.

Now (s � 1)(f1 + . . . + fr) � and
P

1i<jr fifj � �
r
2

�
, and both equalities hold if and only if

f1 = . . . = fr = 1. ⇤
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The following is one of the simplest examples with ⇡1(||H||) 6= ⇡1(||HS ||).
Example 4.5 Let V = 12345 and H = (P2(V ) \ 45) [ {123, 124, 125}. Then H = (V,H) is a

boolean representable simplicial complex of dimension � 2 suvh that ⇡1(||H||) 6⇠= ⇡1(||HS ||).
Indeed, it is easy to check that

FlH = {;, 1, 2, 3, 12, 45, V }

and H is a boolean representable. Its graph of flats is

1 �� 2 3 4 �� 5,

hence the H-trivial connected components of �FlH have size 1 and 2, respectively. Now the claim
follows from Proposition 4.4.

Note that there is a natural embedding of ⇡1(||HS ||) into ⇡1(||H||) (since HS is isomorphic to a
restriction of H to a cross-section of ⌘) and this embedding splits since ⇡1(||HS ||) is a free factor of
⇡1(||H||).

5 Shellability and sequentially Cohen-Macaulay in dimension 2

We discuss in this section shellability for boolean representable simplicial complexes of dimension
2. The simple case was completely solved in [18, Theorem 7.2.8], now we generalize this theorem to
arbitrary boolean representable simplicial complexes of dimension 2.

We consider also another property of topological significance, sequentially Cohen-Macaulay. It is
often associated with shellability since a shellable complex is necessarily sequentially Cohen-Macaulay
[5, 21]. We need to introduce a few concepts and notation before defining it.

Assume that dimH = d. For m = 0, . . . , d, we define the complex purem(H) = (Vm, Hm) to
be the subcomplex of H generated by all the faces of H of dimension m. Clearly, purem(H) is the
largest pure subcomplex of H of dimension m.

Write H = (V,H). Given Q 2 H \ {V }, we define the link lk(Q) to be the simplicial complex
(V/Q,H/Q), where

H/Q = {X ✓ V \Q | X [Q 2 H} and V/Q =
[

X2H/Q

2X .

Here it is convenient to allow a simplicial complex to have an empty set of vertices.
In view of [6, Theorem 3.3], we say that H is sequentially Cohen-Macaulay if

H̃k(purem(lk(X))) = 0

for all X 2 H and k < m  d.
We start with the following lemma.

Lemma 5.1 Let H be a sequentially Cohen-Macaulay simplicial complex of dimension 2. Then the

simplification HS is sequentially Cohen-Macaulay.
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Proof. Write H = (V,H). Since dimHS = 2 by Proposition 4.2(i), we have to prove the following
facts:

(1) pure2(HS) is connected;

(2) pure1(HS) is connected;

(3) pure1(lk(v⌘)) is connected for every v 2 V ;

(4) H̃1(pure2(HS)) = 0.

We assume of course the similar statements for H.
(1) Let a⌘, b⌘ denote two distinct vertices from pure2(HS). Then there exist {a⌘, a0⌘, a00⌘},

{b⌘, b0⌘, b00⌘} 2 (H/⌘) \ P3(V/⌘). In view of (12), we have aa0a00, bb0b00 2 H \ P3(V ), hence a, b are
two distinct vertices from pure2(H). Since pure2(H) is connected, there exists in pure2(H) a path of
the form

a = c0 �� c1 �� . . . �� cn = b

for some n � 1. Let i 2 {1, . . . , n}. Since ci�1ci is an edge of pure2(H), there exists some c0i such
that ci�1cic0i 2 H \ P3(V ). In view of (11), we get {ci�1⌘, ci⌘, c0i⌘} 2 (H/⌘) \ P3(V/⌘). It follows
that

a⌘ = c0⌘ �� c1⌘ �� . . . �� cn⌘ = b⌘

is a path in pure2(HS) and so pure2(HS) is connected.
(2) Similar to (1).
(3) Let a⌘, b⌘ denote two distinct vertices from pure1(lk(v⌘)). Then there exist some edges

a⌘ �� a0⌘, b⌘ �� b0⌘ in lk(v⌘). Hence {a⌘, a0⌘, v⌘}, {b⌘, b0⌘, v⌘} 2 (H/⌘) \ P3(V/⌘). By (12), we
get aa0v, bb0v 2 H \ P3(V ), hence a �� a0 and b �� b0 are edges in lk(v) and so a, b are two distinct
vertices from pure1(lk(v)). Since pure1(lk(v)) is connected, there exists in pure1(lk(v)) a path of the
form

a = c0 �� c1 �� . . . �� cn = b

for some n � 1. Let i 2 {1, . . . , n}. Since ci�1ci is an edge of pure1(lk(v)), we have ci�1civ 2 H\P3(V )
and so (11) yields {ci�1⌘, ci⌘, v⌘} 2 (H/⌘) \ P3(V/⌘). It follows that

a⌘ = c0⌘ �� c1⌘ �� . . . �� cn⌘ = b⌘

is a path in pure1(lk(v⌘)) and so pure1(lk(v⌘)) is connected.
(4) Fix a cross section V0 ✓ V for ⌘. We consider the ordering of V/⌘ induced by the restriction

of the ordering of V to V0.
Suppose that H̃1(pure2(HS)) 6= 0. Let @k (respectively @0k) denote the kth boundary map of

pure2(H) (respectively pure2(HS)). Since Ker @01/Im @02 = H̃1(pure2(HS)) 6= 0, there exist some
distinct edges X1, . . . , Xm in pure2(HS) and some n1, . . . , nm 2 Z such that

Pm
i=1 niXi 2 Ker @01 \

Im @02. Write Xi = {ai⌘, bi⌘} with ai, bi 2 V0 and ai < bi. By definition of pure2(HS), there exists
some ci 2 V0 such that {ai⌘, bi⌘, ci⌘} 2 (H/⌘)\P3(V/⌘). In view of (12), we have aibici 2 H\P3(V0),
hence aibi is an edge from pure2(H). Now

0 = (
mX

i=1

niXi)@
0
1 =

mX

i=1

ni(bi⌘ � ai⌘)
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yields
Pm

i=1 ni(bi � ai) = 0 since V0 is a cross-section for ⌘ and so
Pm

i=1 ni(aibi) 2 Ker @1.
Since 0 = H̃1(pure2(H)) = Ker @1/Im @2, we must have

mX

i=1

ni(aibi) = (
rX

j=1

kj(xjyjzj))@2 (18)

for some distinct triangles xjyjzj in pure2(H) and kj 2 Z. Since ai, bi 2 V0 for every i, we may
assume that xj < yj < zj and xj , yj , zj 2 V0 for every j: indeed, we may replace each letter in V \V0

by its representative in V0, and remain inside pure2(H) by (12). In view of (11), {xj⌘, yj⌘, zj⌘} is a
triangle in HS (and therefore in pure2(HS)) for j = 1, . . . , r. Now (18) yields

mX

i=1

ni(aibi) =
rX

j=1

kj(yjzj � xjzj + xjyj)

and consequently

mX

i=1

ni{ai⌘, bi⌘} =
rX

j=1

kj({yj⌘, zj⌘}� {xj⌘, zj⌘}+ {xj⌘, yj⌘}).

Since xj⌘ < yj⌘ < zj⌘, we get

mX

i=1

niXi = (
rX

j=1

kj{xj⌘, yj⌘, zj⌘})@02 2 Im @02,

a contradiction. Therefore H̃1(pure2(HS)) = 0 as required. ⇤

We may now prove one of our main theorems. The simple case (for dimension 2) had been
established in [18, Corollary 7.2.9].

Theorem 5.2 Let H be a boolean representable simplicial complex of dimension 2. Then the follow-

ing conditions are equivalent:

(i) H is shellable;

(ii) H is sequentially Cohen-Macaulay;

(iii) �FlHS contains at most two connected components or contains exactly one nontrivial connected

component.

Proof. (i) ) (ii). By [5, 21].
(ii) ) (i). By Lemma 5.1, HS is sequentially Cohen-Macaulay. It follows from [18, Corollary

7.2.9] that HS shellable. Therefore H is shellable by Proposition 4.2(x).
(i) ) (iii). We adapt the proof of [18, Lemma 7.2.7].
Let C1, . . . , Cm denote the connected components of �FlHS . We suppose that m � 3 and at least

C1, C2 are nontrivial. Since HS is simple of dimension 2, we know by [18, Lemma 6.4.3] that

if pqr 2 P3(V/⌘), p �� q is an edge of �FlHS but p �� r is not, then pqr 2 H/⌘. (19)
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Let ' : V ! V/⌘ be the canonical projection. For i = 1, . . . ,m, let Vi = {v 2 V | v' 2 Ci}. It
follows that V = V1 [ . . . [ Vm constitutes a partition of V . We show that

if pqr 2 H \ P3(V ), then p, q, r belong to at most two distinct Vi. (20)

It follows from (11) that {p', q', r'} 2 (H/⌘) \ P3(V/⌧). By Proposition 4.2, HS is a simple
boolean representable simplicial complex of dimension 2, so it follows from [18, Lemma 6.4.4] that
the three vertices p', q', r' belong to at most two connected components of �FlHS . Therefore (20)
holds.

We split now the discussion into two cases. Suppose first that �FlHS has a trivial connected
component Ck. Let v be its single vertex. We consider the link lk(v). By [3] (see also [18, Proposition
7.1.5]), H shellable implies lk(v) shellable. Let pi⌘ �� qi⌘ be an edge of Ci for i = 1, 2. By (19), we
have {pi⌘, qi⌘, v⌘} 2 H/⌧ . By (12), we get piqiv 2 H, hence piqi 2 H/v and so lk(v) has dimension
1.

The facets of a complex of dimension 1 are the edges and the isolated vertices. It is immediate
that such a complex is shellable if and only the complex has a unique nontrivial connected component.
Therefore, since lk(v) is shellable of dimension 1, the edges p1q1, p2q2 2 H/v must belong to the same
connected component of lk(v). Hence there exist distinct r0, . . . , rn 2 V \ {v} such that r0 2 p1q1,
rn 2 p2q2 and rj�1rj 2 H/v for j = 1, . . . , n.

Now we have rj�1rjv 2 H. Since v is an isolated vertex of �FlHS , then H \ P2(Vk) = ; by (11).
Hence (20) yields rj�1, rj 2 Vi for some i 2 {1, . . . ,m} \ {k}. Thus r0, rn 2 Vi. But r0 2 p1q1 and
rn 2 p2q2 imply r0 2 C1 and rn 2 C2, a contradiction.

Therefore we may assume that all the connected components C1, . . . , Cm of �FlHS are nontrivial.
Suppose that pq 2 H\P2(V ). By (2), we have p⌘ 6= q⌘. If p⌘ �� q⌘ is an edge of �FlHS , let r 2 V

be such that r⌘ /2 {p⌘, q⌘}. Then {p⌘, q⌘, r⌘} 2 H/⌘ and in view of (12) we get pqr 2 H \ P3(V ).
Thus H has no 1-facets.

On the other hand, given p 2 V , we may take q 2 V \ p'�1. Since HS is simple, we have
{p⌘, q⌘} 2 H/⌘, yielding pq 2 H in view of (12). Therefore every facet of H has dimension 2.

Let B1, . . . , Bt be a shelling of H. For k = 1, . . . , t, define a graph �k = (Wk, Ek) by

Wk = [k
j=1Bj , Ek = [k

j=1P2(Bj).

It follows easily from the definition of shelling that each �k is connected.
We say that p, q 2 Wk have the same color if p, q 2 Vi for some i 2 {1, . . . ,m}. We write p�kq if

there exists a monochromatic path of the form

p = r0 �� r1 �� . . . �� rn = q

in �k for some n � 0. It is immediate that �k is an equivalence relation on Wk. We define a graph
�k = (Wk, Ek) by taking Wk = {p�k | p 2 Wk} and

Ek = {{p�k, q�k} | p�k 6= q�k and pq 2 Ek}.

We prove that
�k is a tree for k = 1, . . . , t (21)

by induction on k.
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In view of (20), �1 has at most two vertices, hence a tree. Assume now that k > 1 and �k�1 is a
tree. We consider several cases and subcases:

Case 1: Bk 6✓ Wk�1.

Since Bk has dimension 2, then (Bk, I(Bk)) is pure of dimension 1, hence we may write Bk = pqr
with pq 2 Ek�1 and r /2 Wk�1. By (20), the vertices p, q, r have at most two di↵erent colors.

Subcase 1.1: r has the same color as p or q.

Then �k = �k�1, hence a tree by the induction hypothesis.

Subcase 1.2: r has a di↵erent color from p and q.

Then p�k�1q and so �k is obtained from �k�1 by adjoining the edge p�k�1 = p�k �� r�k. Since
�k�1 is a tree, �k is a tree as well.

Case 2: Bk ✓ Wk�1.

We may assume that Ek�1 ⇢ Ek. Since Bk has dimension 2, then (Bk, I(Bk)) is pure of dimension
1, hence we may write Bk = pqr with pq, qr 2 Ek�1 and pr /2 Ek�1. By (20), the vertices p, q, r have
at most two di↵erent colors.

Subcase 2.1: q has the same color as p or r.

Then �k = �k�1, hence a tree by the induction hypothesis.

Subcase 2.2: q has a di↵erent color from p and r.

Then p and r have the same color. If p�k�1r, then �k = �k�1, hence we may assume that (p, r) /2 �k�1.
It follows that �k is obtained from �k�1 by identifying the (non adjacent) vertices p�k�1 and q�k�1.
It is well known that folding such a pair of adjacent edges in a tree still yields a tree.

Therefore �k is a tree in all cases and so (21) holds.
Let pi �� qi be an edge in Ci for i = 1, 2 and let v be a vertex in C3. By (19), we have

p1q1p2, p1q1v, p2q2v 2 H. Since all the facets in H have dimension 2, we have Et = H \P2(V ), hence

v�t

p1�t p2�t

is a triangle in �t, contradicting (21). Therefore condition (ii) must hold.
(iii) ) (i). By [18, Theorem 7.2.8], HS is shellable, which implies H shellable by Proposition

4.2(x). ⇤

It is well known that a shellable simplicial complex has the homotopy type of a wedge of spheres
[3]. But in the case of BRSCs of dimension 2, we already know from Theorem 3.6(ii) that this is
always the case, despite there being such complexes that are not shellable (see e.g. Example 3.5 for
t � 3).

6 The order complex of a lattice and EL-labelings

Given a lattice L, let CL⇤ denote the set of totally ordered subsets of L⇤ = L \ {0, 1} (chains). The
order complex of L is the simplicial complex Ord(L) = (L⇤, CL⇤).
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The concept of EL-labeling provides a famous su�cient condition for shellability of the order
complex of a lattice. Let L be a lattice and let EHL denote the set of edges in the Hasse diagram
of L. More formally, we can define EHL as the set of all ordered pairs (a, b) 2 L ⇥ L such that
b covers a in L. Let P be a poset and let ⇠ : EHL ! P be a mapping. Given a maximal chain
� : `0 < `1 < . . . < `n in L (so that (`i�1, `i) 2 EHL for i = 1, . . . , n), we define a word �⇠ on the
alphabet P by �⇠ = (`0, `1)⇠ . . . (`n�1, `n)⇠. The chain � is increasing if (`0, `1)⇠ < . . . < (`n�1, `n)⇠.
Given a, b 2 L with a < b, we denote by [a, b] the subsemilattice of L consisting of all c 2 L satisfying
a  c  b. Clearly, ⇠ : EHL ! P induces also a mapping on the maximal chains of [a, b]. Consider
the lexicographic ordering on P+. We say that ⇠ : EHL ! P is an EL-labeling of L if, for all a, b 2 L
such that a < b:

• there exists a unique maximal chain �0 in [a, b] such that �⇠ is increasing;

• �0⇠ < �⇠ for every other maximal chain � in [a, b].

A fundamental theorem of Björner [2] states that if a lattice L admits an EL-labeling, then
Ord(L) is shellable. Moreover, it is known that every semimodular lattice admits an EL-labeling [22,
Exercise 3.2.14(d)]. In the case of boolean representable simplicial complexes, the lattice of flats is
semimodular if and only if the complex is a matroid [17, Theorem 1.7.5].

The next result shows how a shelling of the order complex can provide a shelling of the original
complex itself.

Theorem 6.1 Let H be a boolean representable simplicial complex. If the order complex of FlH is

shellable, so is H.

Proof. Write L = FlH and let d = dimH = dim(Ord(L))+1. The facets of Ord(L) can be identified
(recall that we are looking at chains in L⇤ in Ord(L)) with the maximal chains in L, i.e. subsets of
L of the form B = {F0, . . . , Fn} with

; = F0 ⇢ F1 ⇢ . . . ⇢ Fn = V (22)

and no intermediate flat Fi�1 ⇢ F 0 ⇢ Fi for i = 1, . . . , n. Note that n  d+1. We define B⌧ to be the
set of transversals of the maximal chain (22), i.e. B⌧ consists of all the subsets {a1, . . . , an} 2 Pn(V )
such that ai 2 Fi \ Fi�1 for i = 1, . . . , n. Note that Fi = Fi�1 [ {ai} by maximality of (22).

Assume that B1, . . . , Bt is a shelling of Ord(L). Then

fctH =
t[

i=1

Bi⌧.

We intend to concatenate successive enumerations of B1⌧, . . . , Bt⌧ so that, after removing repetitions,
we get a shelling of H.

We start with B1⌧ . Assuming that B1⌧ is the set of transversals of the chain (22), we fix a total
ordering <1 of V such that a <1 b whenever a 2 Fi \Fi�1, b 2 Fj \Fj�1 and i < j. We may associate
to each B0

k 2 B1⌧ a (unique) word a1 . . . an 2 V n such that B0
k = {a1, . . . , an} and ai 2 Fi \ Fi�1

for i = 1, . . . , n. Then we order the elements of B1⌧ according to the lexicographical ordering of the
associated words.

Let us check the shelling condition for the facets in B1⌧ , enumerated as B0
1, . . . , B

0
p. Let k 2

{2, . . . , p}. Let A 2 I(B0
k). Then B0

k is not the minimum facet (for the lexicographic order) containing
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A. Hence there exists some i 2 {1, . . . , n} and some letters b, c 2 Fi \Fi�1 such that b <1 c 2 B0
k \A.

It follows that (B0
k \ {c})[ {b} = B0

j for some j < k and so A ✓ B0
k \ {c} 2 I(B0

k). Thus (B
0
k, I(B

0
k))

is pure of dimension n� 2.
Assume now that j 2 {2, . . . , t} and we have already defined enumerations for the facets in

B1⌧ [ . . . [ Bj�1⌧ so that the shelling condition is satisfied. We may assume that Bj⌧ is the set of
transversals of the chain (22). We fix a total ordering <j of V such that a <j b whenever a 2 Fi\Fi�1,
b 2 Fr \ Fr�1 and i < r. Similarly to the case j = 1, we associate to each B0

k 2 Bj⌧ a (unique)
word a1 . . . an 2 V n such that B0

k = {a1, . . . , an} and ai 2 Fi \ Fi�1 for i = 1, . . . , n. Then we
order the elements of Bj⌧ according to the lexicographical ordering of the associated words, and we
concatenate the new elements, say B0

1, . . . , B
0
p, to the enumeration of the elements of B1⌧[. . .[Bj�1⌧

previously defined.
Assume that q 2 {1, . . . , p} and B0

q = {a1, . . . , an}, where ai 2 Fi \ Fi�1 for i = 1, . . . , n. Let

A 2 I(B0
q), say A = {au1 , . . . , aus}. Let eA = {Fu1 , . . . , Fus} 2 I(Bj). Since (Bj , I(Bj)) is pure of

dimension n� 2, there exists some j0 < j such that eA ✓ Bj0 and Bj0 contains all the elements of Bj

but one, say Fi. We may then assume that Bj0 originates from the chain

; = F0 ⇢ . . . ⇢ Fi�1 ⇢ G1 ⇢ . . . ⇢ Gw ⇢ Fi+1 ⇢ . . . ⇢ Fn = V (23)

in L. Note that the Gi must appear consecutively as a replacement of the missing Fi by maximality
of (22). We claim that B0

q \ {ai} is a partial transversal of (23) containing A.

Suppose that ai 2 A. Then Fi 2 eA ✓ Bj0 , a contradiction since (22) is maximal and di↵erent
from (23). Hence ai /2 A and so A ✓ B0

q \ {ai}. To show that B0
q \ {ai} is a partial transversal of

(23), it is enough to note that

ai+1 2 Fi+1 \ Fi ✓ (Fi+1 \Gw) [ . . . [ (G2 \G1) [ (G1 \ Fi�1).

Thus A ✓ B0
q \ {ai} 2 I(B0

q) and so (B0
q, I(B

0
q)) is pure of dimension n� 2. By double induction on

q and j, this validates our construction of a shelling of H. ⇤

The next example shows that the converse of Theorem 6.1 does not hold.

Example 6.2 Let V = {1, . . . , 6} and let � be the graph

1 2 3 4 5 6

Let

H = P2(V ) [ {X 2 P3(V ) | at least two vertices in X are adjacent in �}
and H = (V,H). Then H is a shellable pure boolean representable simplicial complex but the order

complex of FlH is not shellable.

Since there exist no isolated vertices in �, H is pure. It is easy to compute the flats of H, we
have

FlH = P1(V ) [ {12, 23, 34, 56, V }.
It follows easily that H is boolean representable. Moreover, � is indeed the graph of flats of H, hence
H is shellable by Theorem 5.2. A possible shelling is

123, 124, 125, 126, 134, 156, 234, 235, 236, 256, 345, 346, 356, 456.
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Now the facets of Ord(FlH) are

{1, 12}, {2, 12}, {3, 34}, {4, 34}, {5, 56}, {6, 56}.

It is well known that a graph is shellable if and only if has at most one nontrivial connected compo-
nent: a shelling of a graph must be an enumeration of its edges and isolated vertices where each edge
(except the first) shares an endpoint with some previous edge. Hence Ord(FlH) is not shellable.

In the matroid case, we can combine Theorem 6.1 with the aforementioned results of Björner
on EL-labelings to produce shellings for matroids (see [2]). Example 6.2 provides an example of a
shellable pure boolean representable simplicial complex which admits no EL-labeling of the lattice of
flats (otherwise Ord(FlH) would be shellable). Of course, this simplicial complex is not a matroid.
The next example shows that the existence of EL-labelings is not exclusive of matroids.

Example 6.3 Let V = {1, . . . , 7} and let � be the graph

1 2 3 4 5 6 7

Let

H = P2(V ) [ {X 2 P3(V ) | at least two vertices in X are adjacent in �}
and H = (V,H). Then H is a shellable pure boolean representable simplicial complex which is not a

matroid and FlH admits an EL-labeling.

Since there exist no isolated vertices in �, H is pure. It is easy to compute the flats of H, we
have

FlH = P1(V ) [ {12, 23, 34, 45, 56, 67, V }.
It is easy to check now that H is boolean representable and � is indeed the graph of flats of H. Thus
H is shellable by Theorem 5.2.

The exchange property fails for 123 and 57, hence H is not a matroid. The following diagram
describes an EL-labeling ⇠ : EHFlH ! N. where the naturals are endowed with the usual ordering.

V

3
11

1 1

1

12 23 34 45 56 67

1

2

2

0
3

3

0
4

4

0
5

5

0
6

6

0
7

7

0

;

1

2 3 4 5 6

7
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7 Computing the flats

In this section, we discuss the computation of the flats for a boolean representable simplicial complex
of fixed dimension d, and relate these computations to the main results of the paper. The case d  1
is straightforward and shall be omitted in most results.

We recall the O notation from complexity theory. Let P be an algorithm defined for instances
depending on parameters n1, . . . , nk. If ' : Nk ! N is a function, we write P 2 O((n1, . . . , nk)')
if there exist constants K,L > 0 such that P processes each instance of type (n1, . . . , nk) in time
 K((n1, . . . , nk)')+L (where time is measured as the number of elementary operations performed).

Clearly, boolean matrices provide the most natural means of defining a boolean representable
simplicial complex H = (V,H). We may assume that a boolean representation M of H is reduced,
i.e. all the rows of M are distinct and nonzero. Note that we are assuming that P1(V ) ✓ H in all
circumstances, hence all columns must be nonzero as well.

Lemma 7.1 It is decidable in time O(n!m) whether or not the set of columns of an arbitrary m⇥n
boolean matrix is independent.

Proof. We use induction on n to show that independence can be checked in at most n!m
Pn�1

i=0
1
i!

elementary steps.
Assume that n = 1. Let M denote an m ⇥ 1 boolean matrix. Then the single column of M is

independent if and only if M is nonzero. Clearly, we may check if M is nonzero in m = 1!m
P1�1

i=0
1
i!

elementary steps.
Assume now that n > 1 and the claim holds for n� 1. Let M denote an m⇥ n boolean matrix.

A necessary condition for the columns of M to be independent is existence of a marker of type
j 2 {1, . . . , n}: a row having a 1 at column j and zeroes anywhere else. This follows from the
fact that a lower unitriangular matrix has a marker and the existence of a marker is preserved by
congruence.b We need at most mn elementary steps to determine all j 2 {1, . . . , n} admitting a
marker of type j. For each such j (and there are at most n), we must check if the columns of
the (m � 1) ⇥ (n � 1) matrix obtained by removing the marker and the jth column from M are
independent. Applying the induction hypothesis, we deduce that independence of the columns of M
can be checked in at most

mn+ n(n� 1)!(m� 1)
n�2X

i=0

1

i!
=

n!m

(n� 1)!
+ n!(m� 1)

n�2X

i=0

1

i!
 n!m

n�1X

i=0

1

i!

elementary steps, completing the induction.
Since

Pn�1
i=0

1
i!  e, it follows that independence can be checked on at most en!m steps, hence in

time O(n!m). ⇤

Let H = (V,H) be a boolean representable simplicial complex defined by an R ⇥ V boolean
matrix M = (mrv). We assume M to be reduced.

For each r 2 R, let
Zr = {v 2 V | mrv = 0}.

By [18, Lemma 5.2.1], we have Zr 2 FlH for every r 2 R.
If 2  |Zr| < |V |, then Zr is said to be a line of M . We denote by LM the set of all lines of M .

Now every element of FlH is of the form X for some X 2 H by [18, Proposition 4.2.4]. On the other
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hand, X = V /2 LM whenever X is a facet of H by [18, Proposition 4.2.4]. It follows that

|R|  |FlH|� 1  |H \ fctH| 
dX

i=0

✓
n

i

◆
 (d+ 1)nd. (24)

We consider next the problem of recognizing a boolean representation of a simplicial complex of
dimension d � 0. Note that we view d as a fixed constant.

Lemma 7.2 Let d � 0. It is decidable in time O(n2d+3) whether a reduced boolean matrix with n
columns defines a simplicial complex of dimension d.

Proof. Let M be such a matrix. By (24), M must have at most (d + 1)nd rows and we can check
this necessary condition in time O(nd), hence we may assume that M has O(nd) rows. On the other
hand, M has

�
n

d+1

�
subsets of d+ 1 columns. By Lemma 7.1, we can decide in time O(nd) whether

each such subset is a face of H. Hence we can decide in time
�

n
d+1

�
O(nd), thus O(n2d+1), whether or

not dimH � d.
Since dimH = d if and only if dimH � d and dimH 6� d + 1, we may decide dimH = d in time

O(n2d+1) +O(n2d+3), hence O(n2d+3). ⇤

We present next a complexity bound for the computation of faces.

Theorem 7.3 Let d � 0. It is possible to compute in time O(n2d+1) the list of faces of a simplicial

complex of dimension d defined by a reduced boolean matrix with n columns. Moreover, facets can be

marked in this list in time O(n2d+2).

Proof. Note that, by Lemma 7.2, given a reduced boolean matrixM , we can decide in time O(n2d+3)
whether M defines a simplicial complex of dimension d.

By (24), M has O(nd) rows. On the other hand, M has
�
n
i

�
subsets of i columns for i = 0, . . . , d+1.

In view of Lemma 7.1, we can decide in time O(nd) whether each such subset is a face. Hence we
can enumerate all the faces of H in time

Pd+1
i=0

�
n
i

�
O(nd), thus O(n2d+1).

For each face I of dimension < d and each p 2 V \ I, we can check in time O(nd) whether I [ {p}
is still a face (if I has dimension d, is certainly a facet). Hence we may check whether I is a facet in
time O(nd+1), and so we may mark all facets (among the O(nd+1) faces) in time O(n2d+2). ⇤

We discuss now the computation of flats.

Theorem 7.4 Let d � 2. It is possible to compute in time O(n3d+3) the list of flats of a simplicial

complex of dimension d defined by a reduced boolean matrix with n columns.

Proof. By Theorem 7.3, we may enumerate the list of faces X1, . . . , Xm of H in time O(n2d+1).
Note that m  Pd+1

i=0

�
n
i

�
, hence m is O(nd+1).

Let X 2 H. We claim that we can compute X in time O(n2d+3). Note that if X is a facet, then
we have X = V by [18, Proposition 4.2.4].

Indeed, let Y = X. By Theorem 7.3, we may check whether Y contains a facet in time O(n2d+2),
yielding Y = V . Hence we may assume that Y contains no facet. For every non-facet Xi and
p 2 V \ Y , we may check whether Xi ✓ Y and Xi [ {p} /2 H hold simultaneously. There exist O(nd)
non-facets Xi, hence we have O(nd+1) choices for both i and p. Since m is O(nd+1) we may check if
Xi [ {p} /2 H in time O(nd+1). If this happens, we replace Y by Y [ {p} and we restart the process.
Eventually, we reach a point where Y contains a facet or there are no more p’s to add. In view of
[18, Proposition 4.2.5], we may then deduce that Y = X.
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Now each cycle Y�!Y [ {p} can be performed in time O(n2d+2) and there are at most n cycles
to be performed, hence X can be computed in time O(n2d+3). Since the number of non-facets Xi is
O(nd), we can compute their closures (and consequently all flats) in time O(n3d+3). ⇤

Corollary 7.5 Let d � 2. Let H denote an arbitrary simplicial complex of dimension d represented

by a reduced boolean matrix M with n columns. Then:

(i) �FlH can be computed in time O(n2d+5);

(ii) ⇡1(||H||) can be computed in time O(n2d+5).

Proof. (i) We have
�
n
2

�
potential edges a �� b in �FlH. By the proof of Theorem 7.4, we may

compute ab in time O(n2d+3), and check whether or not ab = V . Thus we reach a global complexity
bound of O(n2d+5).

(ii) By Theorem 3.3, we need to compute the number of connected components of �FlH (a graph
with n vertices and at most

�
n
2

�
edges) and to identify the H-trivial components. It is easy to see

by induction that the number of connected components can be computed in time O(n2). In view
of Theorem 7.3, we can identify the H-trivial connected components in time O(n2d+3). Therefore
⇡1(||H||) can be computed in time O(n2d+5) +O(n2) +O(n2d+3) = O(n2d+5). ⇤

We show next how these complexity bounds can be improved in the case of dimension 2.
Let � = (V,E) be a graph. Given v 2 V , we write nbh(v) = {w 2 V | vw 2 E}. We say that

A ✓ V is a superanticlique if |A| > 1 and

nbh(a) [ nbh(b) = V \A

holds for all a, b 2 A distinct. In particular, the superanticlique A is a maximal anticlique (i.e.
maximal with respect to P2(A) \ E = ;).

Superanticliques play a major role in the theory of boolean representable simple simplicial com-
plexes of dimension 2. Let M be a boolean matrix representation of such a complex, say H = (V,H).
We denote by �M the graph with vertex set V and edges of the form p �� q whenever pq is a 2-subset
of a line of M . By [18, Theorem 6.3.6], FlH is the union of P1(V ) [ {V } [ LM with the set of all
superanticliques of �M .

Given two graphs � = (V,E) and �0 = (V 0, E0), assumed to be disjoint, we define their join to
be the graph �+ �0 = (V [ V 0, E [ E0 [ E00), where E00 = {vv0 | v 2 V, v0 2 V 0}. Their coproduct is
the graph � t �0 = (V [ V 0, E [ E0).

Given n � 1, we denote by Kn the complete graph on n vertices. We denote by Kn the comple-
ment graph of Kn, so that Kn has n vertices and no edges.

We define now two classes of graphs as follows. Let ⌦1 be the class of all graphs of the form
(Kn +�)tK1, where n � 1 and � is any finite graph. Let ⌦2 be the class of all graphs of the form
(K1 +�) t (K1 +�0), where � and �0 are any finite graphs.

Theorem 7.6 Let M be a boolean matrix representation of a simple simplicial complex H of dimen-

sion 2. Then:

(i) if �M is connected or belongs to ⌦1 [ ⌦2, then �FlH is connected;

(ii) in all other cases, �FlH = �M .
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Proof. (i) Since LM ✓ FlH by [18, Lemma 5.2.1], then �M is a subgraph of �FlH with the same
vertex set. Therefore �M connected implies �FlH connected.

Assume next that �M 2 ⌦1, say of the form (Kn+�)tK1. Let A be the union of the n vertices
of Kn and the single vertex of K1. Given a, b 2 A, then nbh(a) [ nbh(b) are the vertices of �, i.e.
V \ A. Thus A is a superanticlique of �M and so A 2 FlH \ {V } by [18, Theorem 6.3.6]. Since A
intersects the two connected components of �M , it follows that �FlH is connected.

Assume now that �M 2 ⌦2, say of the form (K1 + �) t (K1 + �0). Let A consists of the two
vertices in both copies of K1, say a, b. Then nbh(a)[nbh(b) are the vertices of � and �0, i.e. V \A.
Thus A is a superanticlique of �M and so A 2 FlH \ {V }. Since A intersects the two connected
components of �M , it follows that �FlH is connected.

(ii) Suppose that �M is disconnected and �FlH 6= �M . We must show that �M 2 ⌦1 [ ⌦2. In
view of [18, Theorem 6.3.6], there exists some superanticlique A of �M . It follows from the definition
that A must intersect all the connected components of �M .

Suppose that �M has more than two connected components. Since H has dimension 2, one of the
connected components, say C, must be nontrivial. Let a, b 2 A \C. Then (nbh(a)[nbh(b))\C = ;.
Since C \A 6= ;, this contradicts nbh(a)[nbh(b) = V \A. Therefore �M has precisely two connected
components, and we may write �M = � t �0 with � and �0 connected.

Suppose that � and �0 are both nontrivial. The same argument used above implies that A has
one element a in � and another b in �0. Since nbh(a)[ nbh(b) = V \ {a, b}, it follows that �M 2 ⌦2.

Thus we may assume that �0 is trivial. Let a 2 A be a vertex of � and let b be the unique vertex
of �0 (which is in A). Let � (respectively �0) be the subgraph of � induced by nbh(a) (respectively
the remaining vertices of �). Since A = V \ (nbh(a) [ nbh(b)), then �0 is an edgeless graph. Let c
be a vertex of �0. Since nbh(c) [ nbh(b) = V \ A = nbh(a) [ nbh(b), it follows that � = � + �0.
Therefore �M 2 ⌦1. ⇤

Now we can provide complexity bounds for both fundamental group and decidability of shellability
in dimension 2.

Theorem 7.7 Let H denote an arbitrary simplicial complex of dimension 2 represented by a reduced

boolean matrix M with n columns. Then:

(i) if H is simple, then ⇡1(||H||) can be computed in time O(n4);

(ii) it can be determined in time O(n4) whether or not H is shellable.

Proof. (i) Since H is connected by Lemma 3.1, then ⇡1(||H||) is well defined. Since M is reduced,
it has at most 3n2 rows by (24).

By Corollary 3.4, it su�ces to compute the number of connected components of �FlH.
Since M has at most 3n2 rows, we may compute �M in time O(n4) (there are

�
n
2

�
pairs of vertices

to check, and each pair can be checked in time O(n2)).
We claim that we can check whether or not �M is connected in time O(n4). Indeed, let r be the

number of rows of M and let Mi be the submatrix of M defined by the first i rows (i = 1, . . . , r).
Obviously, we can compute the connected components of �M1 in time O(n). Assume now that
1 < i  r and the connected components of �Mi�1 were computed in time O(in2). We can mark
the zero entries of the ith row with the connected components of �Mi�1 in time O(n2) and merge
distinct connected components arising this way in time O(n2), and the complexity constants for
these two procedures do not depend on i. Since r  3n2, it follows by induction that the connected
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components of �Mr = �M can be computed in time O(n4). Therefore we can check whether or not
�M is connected in time O(n4).

We claim that we can also decide whether or not �M 2 ⌦1 [ ⌦2 in time O(n4). Since the
connected components of �M were already computed in time O(n4), it su�ces to show that it is
decidable in time O(n4) whether or not a connected graph with at most n vertices is of the form
K1+� or Km+�. The first case is obvious since we have at most n potential choices for the vertex
playing the K1 role. For the case Km + �, we note that we need at most n tries to pick a vertex
v in Km, and for each such v the vertices of � (if it exists) would be necessarily nbh(v), hence the
vertices in both Km and � would be fully determined by v. We would be able to mark them as such
in time O(n). Finally, we may decide whether nbh(v) is an anticlique in time O(n2), and we can
check whether a �� b is an edge for all a 2 nbh(v) and b /2 nbh(v) [ {v} in time O(n2), proving our
claim.

Now it follows from Theorem 7.6 that we may compute the number of connected components of
�FlH in time O(n4), and we apply Theorem 3.3.

(ii) By Proposition 4.3, we can produce a submatrix M 0 of M representing HS by removing
repeated columns. We may do it by comparing pairs of columns. There are

�
n
2

�
pairs to compare,

and each pair can be compared in time O(n2), hence we can compute M 0 in time O(n4).
In view of Theorem 5.2, we can assume that H is simple, and use the proof of part (i). ⇤

Note that the quartic bound in part (i) is much better than the O(n9) bound provided by
Corollary 7.5(i).

We remark also that, once shellability is ensured, an actual shelling can be produced in the
simple case using the algorithms described in [18, Lemma 7.2.1] and [18, Lemma 7.2.5] within the
same quartic complexity bounds. The extension to the general case follows then from Proposition
4.2(x) and Theorem 5.2. Therefore we obtain the following corollary.

Corollary 7.8 Let H denote an arbitrary shellable simplicial complex of dimension 2 represented by

a reduced boolean matrix M with n columns. Then a shelling of H can be actually computed in time

O(n4).

The i-th Betti number wi(H) is defined as the rank of the ith homology group of ||H||. If H is
shellable, then by [3] wi(H) is the number of homology facets in a shelling B1, . . . , Bt of H. We say
that Bk (k > 1) is a homology facet in this shelling if 2Bk \ {Bk} ✓ [k�1

i=1 2
Bi .

Assume that H satisfies the conditions of Corollary 7.8. Then we can construct a shelling
B1, . . . , Bt in time O(n4). Now we can build a sequence �1, . . . ,�t of graphs with vertex set
V (�k) = [k

i=1Bi and edge set E(�k) = [k
i=1P2(Bi) to help us keep track of homology facets:

indeed, if k > 1, then Bk is a homology facet if and only if (|Bk| = 2 and Bk ✓ V (�k�1)) or
(|Bk| = 3 and P2(Bk) ✓ E(�k�1)). Since t 2 O(n3), this provides a proof for the following result.

Corollary 7.9 Let H denote an arbitrary shellable simplicial complex of dimension 2 represented by

a reduced boolean matrix M with n columns. Then the Betti numbers of H can be computed in time

O(n4).

8 Open problems

The problem of determining the homotopy type for BRSCs of dimension � 3 remains open, as are
the problems of identifying the shellable and the sequentially Cohen-Macauley BRSCs for dimension
� 3.
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