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Abstract In this paper we consider a control problem for a cascade of hydro-electric power stations

where some of the stations have reversible turbines. The objective of our work is to optimize the pro�t

of power production satisfying restrictions on the water level in the reservoirs. From mathematical point

of view this is a problem of minimization of an in�nite-dimensional quadratic functional subject to cone

constraints. We obtain su�cient conditions of optimality and illustrate them with some example.
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1 Introduction

Water is becoming a scarce resource and this has impact on how the water is used to produce electric

energy. The management of multireservoir systems has attracted the attention of many researchers in

di�erent contexts [1]. It is especially important if there is also a possibility of reusing the downstream

water in a situation of drought. This may be implemented in modern reversible hydro-electric power

stations, associated with reservoirs along a river basin with a cascade structure, where it is possible

both to turbine water from upstream to produce electric power and to pump from downstream to

re�ll an upstream reservoir. Here we consider a simpli�ed model (based on [2,3,4,5]) for a cascade of

hydro-electric power stations where some of the stations have reversible turbines. The water level in the

reservoirs is subject to some constraints. The problem is considered in the framework of optimal control

theory. Its abstract formulation leads us to consideration of local (non-isolated) minima of in�nite-

dimensional quadratic functionals subject to cone constraint. This subject is considered in section 3.
Su�cient conditions of optimality for local minimizers and also for directional minimizers are established.

To our knowledge the treatment of su�cient conditions for directional minimizers is knew. Quadratic

forms play an important role in the Calculus of Variations [6,7]. Usually principal attention is paid to

Legendre condition. Here we consider quadratic forms depending on the trajectories only and not on their

derivatives. However, we assume that the trajectories and the derivatives are subject to some geometric

constraints. Second order su�cient optimality conditions for optimal control problems have been studied

by many other authors; see, for example, [8,9,10] and the references therein. In general these results

are deduced under very strict hypothesis or are elaborate and di�cult to apply to particular problems.

Taking advantage of the particular structure of the problem we prove su�cient conditions of optimality
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Fig. 1 Cascade of �ve hydro-electric power stations

allowing one to show that a given solution is optimal in a local sense. Moreover, in the case of one power

station we analytically show an improvement of the pro�t, due to the use of reversible turbines.

2 Notations and problem statement

We shall use the following notations: the closure of a set A is denoted by clA, if L is a linear map then kerL

stands for the kernel of L, the graph of a set-valued map F is denoted by graphF , C([0, T ], R) represents
the space of real continuous functions de�ned on [0, T ], L2([0, T ], R) (L∞([0, T ], R)) represents the space
of measurable functions f : [0, T ]→ R whose square is integrable (essential supremum is �nite), the space

of functions f : [0, T ] → R of bounded variation is denoted by BV ([0, T ], R), the space of absolutely

continuous functions f : [0, T ]→ R is denoted by AC([0, T ], R).
The problem under consideration here is associated to a system of N hydro-electric power stations

with a cascade structure. The following picture represents a scheme for a possible cascade of �ve stations.

The dynamics of water volumes, Vk(t), in the reservoirs k = 1, N , is described by the following

control system

V̇k(t) = Ak − uk(t) +
∑

m∈M(k)

um(t), t ∈ [0, T ], k = 1, N, (1)

where M(k) is the set of indices for upstream reservoirs immediately before reservoir k.

Set V (·) = (V1(·), . . . , VN (·)) and u(·) = (u1(·), . . . , uN (·)). The controls u(t) = (u1(t), . . . , uN (t))
are the turbined/pumped �ows of water for reservoirs at time t, and Ak are the incoming �ows, k = 1, N .

The equation (1) is called water balance equation and is present in many references (see, e.g. [11]).

The control variables and the water volumes satisfy the following technical constraints :

Vk(0) = Vk(T ), Vk(t) ∈ [Vmk , VMk ], uk(t) ∈ [umk , u
M
k ].

Here Vmk and VMk , k = 1, N , stand for the imposed minimum and maximum water volumes, respectively;

umk and uMk , k = 1, N , are the imposed minimum and maximum turbined/pumped water �ows. The

objective is to �nd optimal controls ûk(·) ∈ L∞([0, T ], R) and respective volumes V̂k(·) ∈ AC([0, T ], R),
that lead to an optimal strategy for the management of water in the system:

maximize J(u(·), V (·)) =
N∑
k=1

∫ T

0

c(t) uk(t)

(
Vk(t)

Sk
+Hk −

Vj(k)(t)

Sj(k)
−Hj(k)

)
dt. (2)

Here c(·) is the price of the energy, Hk, k = 1, N , are the liquid surface elevations, and Sk, k = 1, N ,

are the areas of the reservoirs. The index j(k) is associated to the (unique) downstream reservoir which

receives water from reservoir k. In (2) the price c(t) is multiplied by an expression representing potential
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energy (for simplicity it is assumed that the reservoirs have cylindric form and that the gravity constant

is equal to one). It is assumed that all the potential energy is converted into electric energy.

3 Local minima of quadratic functionals subject to cone constraints

In this section we consider the problem of minimization of quadratic functionals subject to cone con-

straints.

Let X be a Hilbert space, Y and Z be normed spaces, K ⊂ Z be a closed convex cone, V : X → X,

A : X → Y , and C : X → Z, be linear bounded operators, and v ∈ X be a vector. The operator V is

symmetric. Consider the following minimization problem (P ):

J(x) =
1

2
〈x, V x〉+ 〈v, x〉 → min,

x ∈ Ω = {x ∈ X | Ax = 0, −Cx ∈ K}.

We say that x̂ ∈ Ω is a (local) minimizer point for problem (P ) if there exists ε > 0 such that

J(x) ≥ J(x̂), for all x ∈ Ω ∩ (x̂+ εBX).
In this work we will also use the concept of directional minimizer. The point x̂ ∈ Ω is a directional

minimizer point if for all x̄ satisfying x̂ + hx̄ ∈ Ω for h ∈ [0, hx̄], where hx̄ is some positive constant,

there exists εx̄ > 0 such that J(x̂+ hx̄) ≥ J(x̂) for all h ∈ [0, εx̄].
Our aim is to deduce su�cient conditions assuring that zero is a local minimizer for problem (P ).

Set L = kerA ∩ kerC. Assume that the following conditions are satis�ed:

1. 〈p, V p〉 ≥ 0, p ∈ L;
2. there exist y∗ ∈ Y ∗ and z∗ ∈ Z∗ such that A∗y∗ + C∗z∗ + v = 0.

Note that the classical su�cient conditions of optimality in the general mathematical programming

problem (see, [12], e.g.) involve the inequality 〈p, V p〉 ≥ (const)|p|2, p ∈ L. This guarantees that zero is

an isolated local minimizer. In this work, we deal with non-isolated minima and, as a consequence, need

a weaker condition. The non-negativity of the quadratic functional 〈p, V p〉 on the subspace L alone does

not guarantee that zero is a local minimum and we shall also assume that one of the following additional

conditions is satis�ed:

(C0) 〈z∗, Cq〉 < 0, q ∈ L⊥ ∩ kerA, −Cq ∈ K, q 6= 0;
(Cγ) there exists γ > 0 such that 〈z∗, Cq〉 ≤ −γ|q|, q ∈ L⊥ ∩ kerA, −Cq ∈ K.

Lemma 3.1 Let x = p+ q ∈ kerA, where p ∈ L and q ∈ L⊥. Then the following inequality holds:

J(x) ≥ −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈q, V q〉.

Proof. Indeed, we have

J(x) = 〈x, v〉+ 1

2
〈x, V x〉.

From this and condition 2 we obtain

J(x) = −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈p, V p〉+ 1

2
〈q, V q〉.

Condition 1 implies

J(x) ≥ −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈q, V q〉. 2

Proposition 3.1 Assume that condition (C0) is satis�ed, then for all x ∈ kerA and −Cx ∈ K there

exists ε > 0 such that the inequality J(tx) ≥ 0 holds, whenever t ∈ [0, ε], i.e., 0 is a local directional

minimizer.

Proof. From Lemma 3.1 and condition (C0) we have

J(tx) ≥ −t〈z∗, Cq〉+ t2〈q, V p〉+ t2

2
〈q, V q〉 > 0,

whenever t > 0 is su�ciently small. 2
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Proposition 3.2 Assume that condition (Cγ) is satis�ed, then for all x ∈ kerA and −Cx ∈ K there

exists ε > 0 such that the inequality J(x) ≥ 0 holds, whenever |x| ≤ ε, i.e., 0 is a local minimizer.

Proof. From Lemma 3.1 and condition (Cγ) we have

J(x) ≥ −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈q, V q〉

≥ |q|
(
γ − |V |

(
|p|+ |q|

2

))
> 0,

whenever |x| is su�ciently small. 2

Example 3.1 There are directional minimizers that are not minimizers.

Proof. Let X = L2([0, 1], R). Consider the problem

J(x(·)) = −
∫ 1

0

x(s)ds−
∫ 1

0

x2(s)ds→ min,

x(s) ≤ 0.

Let Z = X, K = {z(·) ∈ L2([0, 1], R) | z(s) ≥ 0, s ∈ [0, 1]}, A = 0, C = I, and L = {0}. Condition
(C0) is satis�ed with z∗ ≡ 1. By Proposition 3.1 zero is a local directional minimizer. Consider the

sequence

xn(s) =

{
−
√
n, s ∈ [0, 1/n],

0, t ∈]1/n, 1].

Obviously, |xn(·)|L2
= 1 and J(txn(·)) = t

(
1√
n
− t
)
≥ 0, only if t ≤ 1√

n
. 2

Lemma 3.2 Let M ⊂ X be a closed subspace, and let N ⊂ X be a �nite-dimensional subspace. Then

dim(M ∩ (M⊥ +N)) < +∞.

Proof. Let N = Lin{e1, . . . , en}. Denote by πM (y) the orthogonal projection of y ∈ X onto M . Set

pi = πM (ei), i = 1, n. Consider x ∈M ∩ (M⊥ +N). Then there exist ξ1, . . . , ξn ∈ R and q ∈M⊥ such

that

x = q +
n∑
i=1

ξiei.

Since

x = πM (x) =
n∑
i=1

ξiπM (ei) =
n∑
i=1

ξipi,

we see that any x ∈M ∩ (M⊥ +N) is a linear combination of vectors p1, . . . , pn. 2

Proposition 3.3 Assume that Z = Rn, K = Rn+, and z∗ > 0. Then condition (Cγ) is satis�ed.

Proof. Since (kerC)⊥ = imC∗ is a �nite-dimensional subspace, from Lemma 3.2 we see that the

subspace

kerA ∩ L⊥ = kerA ∩ cl((kerA)⊥ + (kerC)⊥) = kerA ∩ ((kerA)⊥ + (kerC)⊥)

is �nite-dimensional. Suppose that there exists a sequence qj ∈ kerA ∩ L⊥, −Cqj ∈ K, |qj | = 1 such

that 〈z∗, Cqj〉 ↑ 0. Without loss of generality qj converges to a vector q0. Obviously q0 ∈ kerA ∩ L⊥,
−Cq0 ∈ K, 〈z∗, Cq0〉 = 0, and |q0| = 1. Since z∗ > 0, we have Cq0 = 0, i.e., q0 ∈ kerA ∩ kerC = L.

Therefore we have q0 ∈ L ∩ L⊥ = {0}, a contradiction. 2

Consider functionals z∗j ∈ K
∗, j = 1, n. Set ξj(x) = 〈C∗z∗j , x〉 and

ξ(x) = (ξ1(x), . . . , ξn(x)).
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Assume that Y = Rm and that the problem has the following special form:

J(x) =
1

2
〈ξ(x), V ξ(x)〉+ 〈v, ξ(x)〉 → min,

Λξ(x) = 0,

−Cx ∈ K.

Consider an auxiliary �nite-dimensional majorant problem

J(x) =
1

2
〈ξ, V ξ〉+ 〈v, ξ〉 → min,

Λξ = 0,

ξ ≤ 0.

Proposition 3.4 Assume that the following conditions are satis�ed:

1. 〈p, V p〉 ≥ 0, p ∈ kerA,
2. there exist y∗ ∈ Rm and z∗ ∈ Rn such that Λ∗y∗ + z∗ + v = 0 and z∗ > 0.

Then ξ = 0 is a local minimizer for the auxiliary problem, and x = 0 is a local minimizer for the original

problem.

Proof. From Proposition 3.3 we see that ξ = 0 is a local minimizer for the auxiliary problem. Let

x be an admissible point. If the norm of x is su�ciently small, then |ξ(x)| is also small. Moreover,

the inclusion −Cx ∈ K, implies the inequality ξ(x) ≤ 0. Therefore ξ(x) is an admissible point for the

auxiliary problem and J(x) ≥ 0. 2

Example 3.2 Consider the problem∫ 1

0

x(t)dt−
(∫ 1

0

x(t)dt

)2

→ min,

x(t) ≥ 0.

Zero is a local minimizer.

Proof. Set X = Z = L2([0, 1], R), C = I, z∗ = 1, and

ξ(x) =

∫ 1

0

x(t)dt.

Obviously ξ = 0 is a solution to the problem

ξ − ξ2 → min,

ξ ≥ 0. 2

We shall deal with the problem

J(x) + 〈g, x〉 → min,

x ∈ Ω.

Set BX = {x ∈ X | |x| ≤ 1}

Proposition 3.5 Assume that there exist ε > 0, y∗ ∈ Y ∗ and z∗ ∈ K∗ such that

1. A∗y∗ + C∗z∗ + g = 0,
2. J(x) ≥ 0, x ∈ Ω ∩ εBX .

Then J(x) + 〈g, x〉 ≥ 0 whenever x ∈ Ω ∩ εBX .
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Proof. Indeed, if x ∈ Ω ∩ εBX , then we have

J(x) + 〈g, x〉 ≥ 〈g, x〉 = −〈Cx, z∗〉 ≥ 0. 2

The second condition can be deduced from Proposition 3.4, for example. Indeed, consider the problem

I(x) =
1

2
〈ξ(x), V ξ(x)〉+ 〈v, ξ(x)〉+ 〈g, x〉 → min,

Λξ(x) = 0,

Ax = 0,

−Cx ∈ K.

The following result is an immediate consequence of Propositions 3.4 and 3.5

Proposition 3.6 Assume that there exist ε > 0, y∗ ∈ Y ∗, and z∗ ⊂ K∗ such that

1. A∗y∗ + C∗z∗ + g = 0,
2. condition of Proposition 3.4 are satis�ed.

Then I(x) ≥ 0 whenever x ∈ Ω ∩ εBX .

The following example shows that if the second condition of Proposition 3.4 is not satis�ed then

there can exist local directional minimizers that are not local minimizers.

Example 3.3 Consider the problem ∫ 1

0

φ(s)ds− φ2(1)→ min,

φ̇ = u, φ(0) = 0,

φ(s) ≥ 0.

Zero is a local directional minimizer but not a local minimizer.

Proof. The problem can be written in the following form:

J(x(·)) =

∫ 1

0

∫ s

0

x(r)drds−
(∫ 1

0

x(s)ds

)2

→ min,∫ s

0

x(r)dr ≥ 0.

Here X = L2([0, 1], R), Z = C([0, 1], R), Z∗ = BV ([0, 1], R), A = 0, C = −
∫ s
0
, K = {z(·) ∈

C([0, 1], R) | z(s) ≥ 0, s ∈ [0, 1]}, L = {0}, and condition (C0) is satis�ed with z∗ = dµ(s) = ds.

Indeed, if ∫ s

0

q(r)dr ≥ 0 and q(·) 6= 0, then ∃ s ∈ [0, 1] :

∫ s

0

q(r)dr > 0,

because ∫ s

0

q(r)dr = 0, s ∈ [0, 1],

implies q(·) = 0. By Proposition 3.1 zero is a local directional minimizer. Consider the sequence

xn(s) =

{
0, t ∈ [0, 1− 1/n[,√
n, s ∈ [1− 1/n, 1].

Obviously, |xn(·)|L2
= 1 and J(txn(·)) = t

n

(
1

2
√
n
− t
)
≥ 0, only if t ≤ 1

2
√
n
. 2
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4 Su�cient conditions of optimality for control of hydro-electric power stations

In this section, motivated by the previous considerations, we deduce su�cient conditions of optimality

for control of hydro-electric power stations.

Using (1) the cost function can be written as

J(u(·), V (·)) =
N∑
k=1

∫ T

0

c(t)

−V̇k(t) +Ak +
∑

m∈M(k)

um(t)


×
(
Vk(t)

Sk
+Hk −

Vj(k)(t)

Sj(k)
−Hj(k)

)
dt. (3)

Lemma 4.1 The following equality holds:

∫ T

0

N∑
k=1

c(t)

Vk(t)

Sk

∑
m∈M(k)

um(t)− uk(t)
Vj(k)(t)

Sj(k)

 dt = 0.

Proof. If m ∈ M(k) then k ∈ j(m). Moreover j(k) is empty or has only one element. Therefore we

have ∫ T

0

N∑
k=1

c(t)

Vk(t)

Sk

∑
m∈M(k)

um(t)− uk(t)
Vj(k)(t)

Sj(k)

 dt

=

∫ T

0

c(t)

 N∑
m=1

∑
k∈j(m)

Vk(t)

Sk
um(t)−

N∑
k=1

Vj(k)(t)

Sj(k)
uk(t)

 dt

=

∫ T

0

c(t)

 N∑
k=1

∑
m∈j(k)

Vm(t)

Sm
uk(t)−

N∑
k=1

Vj(k)(t)

Sj(k)
uk(t)

 dt

=

∫ T

0

c(t)

(
N∑
k=1

Vj(k)(t)

Sj(k)
uk(t)−

N∑
k=1

Vj(k)(t)

Sj(k)
uk(t)

)
dt = 0. 2

We assume that c(·) ∈ BV ([0, T ], R), c(·) is right continuous and c(0) = c(T ).
Without changing the notation for the cost function J , we convert the maximization problem into a

minimization one. Integrating (3) by parts and using Lemma 4.1 we obtain the following problem:

minimize J(u(·), V (·)) =

= −
N∑
k=1

[
Ak
Sk

∫ T

0

c(t)Vk(t)dt + (Hk −Hj(k))

∫
(0,T ]

Vk(t) +
∑

m∈M(k)

Vm(t)

 dc(t)

+
1

2Sk

∫
(0,T ]

V 2
k (t) dc(t)

]
,

V̇k(t) = Ak − uk(t) +
∑

m∈M(k)

um(t),

Vk(0) = Vk(T ), Vk(t) ∈ [Vmk , VMk ], uk(t) ∈ [umk , u
M
k ].

LetM(k) be the set containing the indices corresponding to all upstream reservoirs appearing in cascade

before reservoir k.

First we deduce su�cient conditions for local directional minima.
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Theorem 4.1 Let (ûk(·), V̂k(·)), k = 1, N , be a control process. Assume that the following conditions

are satis�ed:

1. there exist right continuous functions pk(·) ∈ BV ([0, T ], R) and µk(·) ∈ BV ([0, T ], R), k = 1, N ,

satisfying

dpk(t) = −Ak
Sk

c(t)dt− (Hk −Hj(k)) dc(t)

−
∑

l∈M−1(k)

(Hl −Hj(l))dc(t)−
V̂k(t)

Sk
dc(t) + dµk(t), (4)

pk(0) = pk(T );

2. the equality

max
uk∈[um

k ,u
M
k ], k=1,N

N∑
k=1

pk(t)

−uk +
∑

m∈M(k)

um


=

N∑
k=1

pk(t)

−ûk(t) +
∑

m∈M(k)

ûm(t)

 ,

holds;

3. the functions µk(·), k = 1, N , satisfy the inequalities

dµk(t) ≤ 0, if V̂k(t) = Vmk ; dµk(t) ≥ 0, if V̂k(t) = VMk ;

dµk(t) = 0, if V̂k(t) ∈]Vmk , VMk [;

4. if dc(t) > 0, then the functions µk(·), k = 1, N , satisfy the inequalities

dµk(t) < 0, if V̂k(t) = Vmk ; dµk(t) > 0, if V̂k(t) = VMk ;

5. if V̂ (t) ∈]Vm, VM [, then dc(t) ≤ 0.

Then J(û(·) + hū(·), V̂ (·) + hV̄ (·)) ≥ J(û(·), V̂ (·)) wherever (ûk(·) + ūk(·), V̂k(·) + V̄k(·)), k = 1, N , is

an admissible process and h > 0 is su�ciently small.

Note. In equation (4) we use the notation dν(t) = f(t) dϕ(t) to express the relationship ν(t)−ν(0) =∫
(0,t]

f(t) dϕ(t), this integral being a Lebesgue-Stieltjes integral. Also in 3., 4. and 5. the conditions

dν(t) ≥ 0 (≤ 0,= 0), for t ∈ E, mean that
∫
E
f(t)dν(t) ≥ 0 (≤ 0,= 0) for every nonnegative continuous

function f .

Proof. Let (ûk(·) + ūk(·), V̂k(·) + V̄k(·)), k = 1, N , be an admissible process, and let h > 0 be

su�ciently small. Then we have

∆J = J(û(·) + hū(·), V̂ (·) + hV̄ (·))− J(û(·), V̂ (·))

= −
N∑
k=1

[
h

∫ T

0

Ak
Sk

c(t)V̄k(t) dt+ h

∫
(0,T ]

(
(Hk −Hj(k)) +

V̂k(t)

Sk

)
V̄k(t) dc(t)

+h
∑

m∈M(k)

(Hk −Hj(k))

∫
(0,T ]

V̄m(t) dc(t) +
h2

2Sk

∫
(0,T ]

V̄ 2
k (t) dc(t)

 .
Using (4) we get

∆J =
N∑
k=1

h
∫

(0,T ]

V̄k(t) dpk(t) +
∑

l∈M−1(k)

(Hl −Hj(l))
∫

(0,T ]

V̄k(t) dc(t)
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−
∫

(0,T ]

V̄k(t)dµk(t)

)
− h

∑
m∈M(k)

(Hk −Hj(k))

∫
(0,T ]

V̄m(t) dc(t)

− h2

2Sk

∫
(0,T ]

V̄ 2
k (t) dc(t)

]
.

Observe that
N∑
k=1

∑
l∈M−1(k)

=
∑

(l,k)∈grphM
=

N∑
l=1

∑
k∈M(l)

.

From this we obtain

∆J =
N∑
k=1

[
h

(∫
(0,T ]

V̄k(t) dpk(t)−
∫

(0,T ]

V̄k(t) dµk(t)

)
− h2

2Sk

∫
(0,T ]

V̄ 2
k (t) dc(t)

]
.

Integrating by parts and using periodicity conditions we get

∆J =
N∑
k=1

h∫ T

0

pk(t)

ūk(t)−
∑

m∈M(k)

ūm(t)

 dt

−h
∫

(0,T ]

V̄k(t) dµk(t)− h2

2Sk

∫
(0,T ]

V̄ 2
k (t) dc(t)

]
≥ 0. 2

Under some additional conditions on the structure of the problem we can prove su�cient conditions

for local minima. Consider a partition of the interval [0, T ], 0 = τ0 < τ1 < . . . < τQ = T . Assume that

the price is a piecewise constant function:

c(t) = cq, t ∈ [τq, τq+1[, q = 0, Q− 1.

(We set cQ = c0.)

Theorem 4.2 Let (ûk(·), V̂k(·)), k = 1, N , be a control process. Assume that the following conditions

are satis�ed:

1. there exist right continuous functions pk(·) ∈ BV ([0, T ], R) and piecewise absolutely continuous

functions µk(·), k = 1, N , satisfying

dpk(t) = −Ak
Sk

c(t) dt− (Hk −Hj(k)) dc(t)

−
∑

l∈M−1(k)

(Hl −Hj(l))dc(t)−
V̂k(t)

Sk
dc(t) + dµk,

pk(0) = pk(T ),

µk(t) = νk(t) +

Q∑
q=1

δµk(τq)H(t− τq),

where νk(·) ∈ AC([0, T ], R) and H(·) stands for the Heaviside step function;

2. the equality

max
uk∈[um

k ,u
M
k ], k=1,N

N∑
k=1

pk(t)

−uk +
∑

m∈M(k)

um


=

N∑
k=1

pk(t)

−ûk(t) +
∑

m∈M(k)

ûm(t)

 ,

holds;
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3. the functions νk(·), k = 1, N , satisfy the inequalities

dνk(t) ≤ 0, if V̂k(t) = Vmk , dνk(t) ≥ 0, if V̂k(t) = VMk ;

dνk(t) = 0, if V̂k(t) ∈]Vmk , VMk [;

4. if cq−1 < cq, for some q = 0, Q then for all k = 1, N , the inequalities

∆µk(τq) < 0, if V̂k(τq) = Vmk and ∆µk(τq) > 0, if V̂k(τq) = VMk ,

hold;

5. if V̂k(t) ∈]Vm, VM [, then dc(t) ≤ 0.

Then J(û(·) + ū(·), V̂ (·) + V̄ (·)) ≥ J(û(·), V̂ (·)) wherever (ûk(·) + ūk(·), V̂k(·) + V̄k(·)), k = 1, N , is an

admissible process and maxq=0,Q,k=1,N V̄k(τq) is su�ciently small.

Proof. Let (ûk(·) + ūk(·), V̂k(·) + V̄k(·)), k = 1, N , be an admissible process. Arguing as in the proof

of the previous theorem we get

∆J =
N∑
k=1

∫ T

0

pk(t)

ūk(t)−
∑

m∈M(k)

ūm(t)

 dt−
∫

(0,T ]

V̄k(t) dνk(t)

−
Q∑
q=0

V̄k(τq)∆µk(τq)−
1

2Sk

Q∑
q=0

(cq − cq−1)V̄ 2
k (τq)

]
≥ 0,

whenever maxq=0,Q,k=1,N V̄k(τq) is su�ciently small. 2

Assume that the price c(t) is a T -periodic function. We shall show that in this case the optimal

process is a T -periodic extension of the process optimal on the interval [0, T ]. Let S > 1 be an integer.

Consider the problem

maximize J(u(·), V (·)) =
N∑
k=1

∫ ST

0

c(t) uk(t)

(
Vk(t)

Sk
+Hk −

Vj(k)(t)

Sj(k)
−Hj(k)

)
dt.

V̇k(t) = Ak − uk(t) +
∑

m∈M(k)

um(t), t ∈ [0, ST ], k = 1, N,

Vk(0) = Vk(ST ), Vk(t) ∈ [Vmk , VMk ], uk(t) ∈ [umk , u
M
k ].

Theorem 4.3 Let (ûk(·), V̂k(·)), k = 1, N , be a control process satisfying conditions of Theorem 4.1 or

4.2 on the interval [0, T ]. Then its T -periodic continuation to the interval [0, ST ] is a local directional

minimizer (local minimizer) for the above problem.

Proof. It su�ces to take the functions µk(·) satisfying the conditions µk(t) = µk(t− sT ) + µk(sT ),
t ∈ [sT, (s+ 1)T ], s = 1, S − 1, and follow the proof of Theorem 4.1 or 4.2. 2
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5 Case of one power station

Here we analyze the case of a system with one power station. We consider a simpli�ed model for real

case systems with reversible turbines like the Alqueva dam in Guadiana river in south of Portugal. The

Alqueva dam constitutes one of the largest dams and arti�cial lakes, 250km2, in Western Europe.

Consider the case of one power station with single incoming �ow A. Assume that um < 0 < A < uM .

Let τ, c1, c2 be constants such that τ ∈]0, T [ and c1 < c2. Take

c(t) =


c1, t ∈ [0, τ [,
c2, t ∈ [τ, T [,
c1, t = T.

(5)

A direct method, i.e. with no intervention of multipliers, allow us to exclude the possibility of the

optimal solution û(t) = A, V̂ (t) = VM for the problem. In particular, this implies that the use of

reversible turbines always improves the pro�t.

Let the price be as in (5). Consider the problem (P ):

Minimize J(u(·), V (·)) = −
∫ T

0

c(t)u(t)

(
V (t)

S
+H

)
dt,

or equivalently,

Minimize J(u(·), V (·)) = −c1A
S

∫ τ

0

V (t) dt− c2A

S

∫ T

τ

V (t) dt

+H(c2 − c1)V (0) +
1

2S
(c2 − c1)V 2(0) +H(c1 − c2)V (τ) +

1

2S
(c1 − c2)V 2(τ)

subject to

V̇ (t) = A− u(t),

V (0) = V (T ),

V (t) ∈ [Vm, VM ],

u(t) ∈ [um, uM ].

Lemma 5.1 If (û(·), V̂ (·)) is an optimal process for problem (P ) and V̂ (0) = VM , then V̂ (t) = VM ,

for all t ∈ [0, T ].

Proof. Let (û(·), V̂ (·)) be an optimal process for problem (P ) and V̂ (0) = VM . Then for every

admissible process (u(·), V (·)) satisfying V (0) = VM we have,

J(u(·), V (·)) = H(c2 − c1)VM +
1

2S
(c2 − c1)VM

−c1A
S

∫ τ

0

V (t) dt− c2A

S

∫ T

τ

V (t) dt+H(c1 − c2)V (τ) +
1

2S
(c1 − c2)V 2(τ)

≥ H(c2 − c1)VM +
1

2S
(c2 − c1)VM − c1A

S

∫ τ

0

VM dt− c2A

S

∫ T

τ

VM dt

+H(c1 − c2)VM +
1

2S
(c1 − c2)(VM )2.

If V (t) < VM on some subset, the above inequality is strict. Since the inequality is still valid for

(u(·), V (·)) = (û(·), V̂ (·)) and this process is optimal we obtain V̂ (t) = VM . 2

Lemma 5.2 The optimal process (û(·), V̂ (·)) for problem (P ) satis�es V̂ (0) < VM .
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Proof. Assume that V̂ (0) = VM . Then by Lemma 5.1 we have V̂ (t) ≡ VM . Moreover û(t) ≡ A.
Consider the family of processes (uy(·), Vy(·)), de�ned as

uy(t) =


um, if t ∈ [0, α[,

A, if t ∈ [α, β[,

uM , if t ∈ [β, T [,

and

Vy(t) =


y + (A− um)t, if t ∈ [0, α[,

VM , if t ∈ [α, β[,

VM + (A− uM )(t− β), if t ∈ [β, T [,

with

α =
VM − y
A− um and β = T − VM − y

uM −A
,

where VM − y > 0 is small enough to satisfy y > Vm and α < τ < β.

Then we have

J(uy(·), Vy(·))− J(û(·), V̂ (·)) =

= −c1A
S

(
yα+ (A− um)

α2

2
− VMα

)
− c2A

S

(
(A− uM )

(T − β)2

2

)
+H(c2 − c1)(y − VM ) +

1

2S
(c2 − c1)(y2 − (VM )2)

=
c1A

2S
α(VM − y)− c2A

S

(
(A− uM )

(T − β)2

2

)
+H(c2 − c1)(y − VM ) +

1

2S
(c2 − c1)(y2 − (VM )2)

=
c1A

2S

(VM − y)2

A− um +
c2A

2S

(VM − y)2

uM −A
+H(c2 − c1)(y − VM ) +

1

2S
(c2 − c1)(y2 − (VM )2)

= (VM − y)G(y)

where

G(y) =
c1A

2S

VM − y
A− um +

c2A

2S

VM − y
uM −A

−H(c2 − c1)− 1

2S
(c2 − c1)(y + VM ).

Since G(y) is linear in y and G(VM ) = −H(c2 − c1)− 1
S (c2 − c1)VM < 0, we have

J(uy(·), Vy(·)) < J(û(·), V̂ (·))

whenever y < VM is close to VM , a contradiction. 2

Theorem 5.1 Let (û(·), V̂ (·)) be an optimal process for problem (P ). Then û(t) < 0 on some non null

measure set.

Proof. By Lemma 5.2 we have V̂ (0) < VM . Consider the set of admissible trajectories V (·) satisfying
V (0) = V̂ (0). The associated cost is

J(u(·), V (·)) = H(c2 − c1)V̂ (0) +
1

2S
(c2 − c1)V̂ 2(0)

−c1A
S

∫ τ

0

V (t) dt− c2A

S

∫ T

τ

V (t) dt+H(c1 − c2)V (τ) +
1

2S
(c1 − c2)V 2(τ).

Suppose that û(t) ≥ 0, a.e. t ∈ [0, T ]. Take θ = min{s | V̂ (s) = max
t∈[0,τ ]

V̂ (t)}. Since c2 > c1, we have

max
t∈[0,T ]

V̂ (t) ≥ V̂ (0).
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Consider the process (ũ(·), Ṽ (·)), with Ṽ (0) = V̂ (0) and

ũ(t) =


um, if t ∈ [0, α[,

A, if t ∈ [α, θ[,

û(t), if t ∈ [θ, T ].

Here α is chosen to satisfy Ṽ (α) = V̂ (θ). Therefore we have Aθ −
∫ θ

0

û(τ) dτ = α(A− um). Hence,

α =
Aθ −

∫ θ
0
û(τ) dτ

A− um ≤ Aθ

A− um < θ.

Since û(t) ≥ 0, by de�nition of ũ we have Ṽ (t) ≥ V̂ (t) on [0, θ] and Ṽ (t) = V̂ (t) on [θ, T ]. Comparing

cost functions we obtain

J(ũ(·), Ṽ (·))− J(û(·), V̂ (·)) = −c1A
S

∫ α

0

(Ṽ (t)− V̂ (t)) dt− c1A

S

∫ θ

α

(V̂ (θ)− V̂ (t)) dt < 0,

a contradiction. 2

Thus we see that the use of reversible turbines improves the pro�t.

Under an additional condition we can explicitly �nd an optimal process.

Theorem 5.2 Let Vm < VM − θ(A− um), where

θ =
uM −A
A− um (T − τ).

Assume that θ < τ . Then the process (û(·), V̂ (·)), where

û(t) =


um, t ∈ [0, θ],
A, t ∈]θ, τ ],

uM , t ∈]τ, T ],

and

V̂ (t) =


VM + (t− θ)(A− um), t ∈ [0, θ],

VM , t ∈]θ, τ ],

VM + (t− τ)(A− uM ), t ∈]τ, T ],

is optimal.

Proof. Consider also the functions

µ(t) =


0, t ∈ [0, θ[,
c1(t− θ)A/S, t ∈ [θ, τ [,
c1(τ − θ)A/S +∆µ, t ∈ [τ, T ],

and

p(t) =


(θ − t)c1A/S, t ∈ [0, θ[,
0, t ∈ [θ, τ [,
pτ − (t− τ)c2A/S, t ∈ [τ, T [,
p(T ) = θc1A/S, t = T,

where

∆µ = θ
c1A

S
+ (T − τ)

c2A

S
+
c2 − c1
S

(V̂ (τ)− V̂ (0))

and

pτ = −(c2 − c1)H − c2 − c1
S

V̂ (τ) +∆µ.

If pτ ≤ 0, then, since V̄ (τ) ≤ 0 and ∆µ > 0, from Theorem 4.2 we see that (û(·), V̂ (·)) is a local

minimizer for the problem. Note that in this case we have

∆J ≥ −∆µV̄ (τ)− c2 − c1
2S

V̄ 2(τ) ≥ 0,

whenever V̂ (·) + V̄ (·) is admissible and V̄ (τ) is su�ciently small. 2

Consider an illustrative example.
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Example 5.1 Let A = 1, T = 12, τ = 6, c1 = 2, c2 = 5, um = −1, uM = 2, Vm = 3, VM = 10,
S = 100. Then V̂ (0) = 4 and θ = 3. The condition pτ < 0 is satis�ed. The optimal process is shown in

Fig. 2.

Fig. 2 Optimal process

Note that û(t) = −1, t ∈ [0, 3], i.e. the water is pumped. In this way the station accumulates water

when the price is low to be used when the price is higher.

6 Conclusions

In this work we analysed an optimal control problem modeling a cascade of hydro-electric power stations

where some of the stations have reversible turbines and with objective the optimization of the pro�t

of power production. This is a problem of minimization of an in�nite-dimensional quadratic functional

subject to cone constraints. Results on this subject where deduced. Generally and for the considered

problems the minimum point may be not isolated or even it can be only a directional minimizer point.

In such cases su�cient conditions of optimality are much more e�ective when compared to necessary

conditions. Besides su�cient conditions of optimality for the problem of minimizing the pro�t on a

cascade of hydro-electric power stations, it was determined the structure of the solution for such problem

when the price is periodic. This can be important in real situations. The particular case of one power

station was studied in more detail. It was proved that the use of reversible turbines always improves the

pro�t in that case.
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