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a b s t r a c t

In this work, we perform creeping-flow simulations of upper-convected Maxwell and simplified Phan-Thien–

Tanner fluids to study the purely-elastic steady bifurcation and transition to time-dependent flow in three-

dimensional planar cross-slots. By analysing the flow in geometries with aspect ratios ranging from the near

Hele-Shaw flow like limit, up to the very deep, two-dimensional limit, we are able to characterize the mech-

anism of the cross-slot bifurcation with significant detail. We conclude that the bifurcation mechanism is

similar to a buckling instability, by which fluid is redirected via paths of least resistance, resulting in the

emergence of peripheral stagnation points, above and below the central stagnation point. The intake of mat-

ter at the centre via the inlet axis is thus reduced, being compensated by fluid flowing through low resistance

corridors along the central vertical axis, above and below the central point. Furthermore, we propose and lo-

cally compute a modified Pakdel–McKinley criterion, thereby producing a scalar stability field and suggesting

emergent peripheral stagnation points also indirectly contribute to the onset of time-dependent flow.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

Elastic instabilities have been known to occur in several viscoelas-

ic flows, such as Taylor–Couette flow and flow in extrusion devices,

o name a few (see [1,2] for historical context). These instabilities,

hich may occur at vanishingly low Reynolds number (Re) flows, in

hich case the designation purely-elastic applies, may either be peri-

dic time-dependent, as in the examples listed above, chaotic as ob-

erved in so-called elastic turbulence [3,4], or stationary, namely the

symmetric steady flow patterns observed in cross-slot geometries

5,6]. The steady asymmetries observed in two-dimensional cross-

lots are known to result from a bifurcation, and lead to decreased

ow resistance and thus a reduction in dissipated energy [7,8]. De-

ending on fluid rheology, the two-dimensional flow may also tran-

ition from a steady symmetric to a time-dependent state [9]. Al-

hough the steady flow bifurcation has been extensively studied from

two-dimensional (2D) perspective and results show energy dissi-

ation decrease in the form of a reduced pressure drop, a mechanis-

ic understanding of the phenomenon may benefit from an explo-

ation of the three-dimensional (3D) nature of the flow bifurcation.
∗ Corresponding author. Tel. +351 225081680; fax: +351 22 5081449.

E-mail address: mmalves@fe.up.pt (M.A. Alves).
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lthough there is a computational study which considers a 3D six-

rm variant of the standard cross-slot [10], the mechanism of the

ifurcation phenomenon is not explored in depth and the geome-

ry per se is inherently not the same as the conventional four-arm

lanar cross-slot typically used in microfluidic devices. Furthermore,

o the best of our knowledge, no other studies have attempted to

haracterize the 3D nature of the cross-slot bifurcation. However,

tationary viscoelastic creeping-flow bifurcations are not unique to

ross-slot geometries, and have been studied experimentally [11,12]

nd computationally [13] for flow past a confined cylinder, in flow-

ocusing devices [14], in T-shaped microchannels [15] and in mixing-

eparating cells [16]. Notably, the three-dimensional nature of the

henomenon in the flow past a confined cylinder has been explored

n detail, and experimental studies report the formation of steady

D flow cells in the cylinder wake upon bifurcation [11–13], with

ubsequent transition to time-dependent flow for increasing Deb-

rah number (De), as also observed for cross-slot geometries [5-

]. The cellular structure found in the cylinder wake is character-

zed by spanwise, spatial-periodic asymmetries relative to the neu-

ral axis of the wake and the convergence of streamlines into bun-

les, also arranged in a spatial-periodic manner (cf. Fig. 4 in Ref.

13]). This would indicate the fluid, upon steady bifurcation, se-

ects a set of optimal flow paths, an idea consistent with the lower
r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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energy dissipation observed in bifurcated 2D cross-slot creeping-

flow, and which may hint at the mechanism of bifurcation in 3D

cross-slots. Furthermore, McKinley et al. [11] have shown that the

critical bifurcation De decreases as the cylinder blockage ratio in-

creases, an observation suggesting an aspect ratio (AR) – defined as

height/width – dependence of critical conditions for 3D cross-slots.

Here, the cylinder blockage ratio and the cross-slot aspect ratio are

compared on the basis that the fluid is forced through a narrower

gap for higher cylinder blockage ratios or lower cross-slot aspect ra-

tios, therefore producing increased shear-rates. In fact, earlier com-

putational work [17] has lead us to anticipate a possible linear re-

lation between the critical De and aspect ratio (AR), for AR < 1, im-

plicitly invoking the Pakdel–McKinley criterion [18,19] due to the

progressively larger tensile stress and velocity gradient near the

cross-slot corners as the channel depth decreases. It should be noted

however that for AR < 1, usually the flow field transitions directly

from a steady symmetric to a time-dependent state, omitting the in-

termediate, stationary asymmetric configuration. Incidentally, it was

also previously shown, for electro-osmotic viscoelastic flows in 2D

cross-slots, that the stability of flow can be explained by a simpli-
Fig. 1. (a) Schematic of the three-dimensional planar cross-slot geometry. (b, c) Zoomed-in, b

from ARn = 0.2 to ARn = 1.0. Mesh (c) is used for ARn = 0.01 and ARn = 0.1; note the loc

coarsening away from the walls; care was taken to preserve cell density along the centreline

direction towards the inlets and outlets.
ed model of flow around corners and application of the Pakdel–

cKinley criterion therein [20].

In this work, we systematically study numerically the three-

imensional nature of the cross-slot steady flow bifurcation and also

ttempt to provide insights into the steady-unsteady transition. Using

pper-convected Maxwell (UCM) [21] and Phan-Thien–Tanner (PTT)

22] constitutive equations, under creeping-flow conditions (Re→0),

e simulate flow in planar, four-arm cross-slots, with aspect ratios

anging from close to the shallow, Hele-Shaw flow limit [23] up to

ery deep channels.

. Numerical methods

We assume inertialess (Re→0), isothermal and incompressible

hree-dimensional flow. The governing equations are the continuity

quation,

· u = 0, (1)

he momentum equation,

∇p + ∇ · τ + ηs∇2u = 0, (2)
ird’s eye view of the computational meshes. Mesh (b) is used for aspect ratios ranging

al refinement near the corners and lateral walls, obtained at the expense of a local

s of the x- and y-axes. Cells in the four arms are progressively larger in the streamwise
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nd a constitutive equation needed for the computation of the poly-

eric extra stress-tensor τ ,(
1 + λ0ε

ηp,0

Tr(τ)

)
τ + λ0

[
∂τ

∂t
+ ∇ · uτ

]

= ηp,0

(∇u + ∇u†
)

+ λ0

(
τ · ∇u + ∇u† · τ

)
, (3)

epresentative of the simplified Phan-Thien–Tanner model with lin-

ar stress function, henceforth denoted sPTT [22,24], where λ0 is the

ero-shear-rate polymeric relaxation time, ηp ,0 is the zero-shear-rate

olymer viscosity, ηs is the solvent viscosity and ε is the extensibility

arameter. Should the extensibility parameter ε be equal to zero, i.e.

olymer chains with unlimited extensibilities, the constitutive model

implifies to an Oldroyd-B fluid [21], which is further simplified to the

CM model for solvent viscosity ηs equal to zero. Only two consti-

utive models are investigated in this work, the UCM fluid and the

PTT fluid with ε = 0.02 and β = 1/9, where β is the solvent vis-

osity ratio, defined as β = ηs/(ηs + ηp,0) = ηs/η0, with η0 being the
ig. 2. Example of creeping-flow of the UCM fluid in a cross-slot channel with normalized a

symmetric at De = 0.4. Panels (a, c) show the XY centre plane, at z = 0, with streamlines s

anels (b, d) show the corresponding three-dimensional iso-surface at N1/(η0U/D) = 50 and

entral z-axis at various heights. The streamlines in panels (a, c) do not leave the centre plane
ero-shear-rate solution viscosity. We note here the shear-thinning

ehaviour of the sPTT formulation, expressed by λeff = λ0/g(τ) and

p,e f f = ηp,0/g(τ), with the subscript eff denoting effective values

nd the function g(τ) given by

(τ) = 1 + λ0ε

ηp,0

Tr(τ). (4)

An implicit, second-order, finite volume numerical method is used

o solve the governing equations, as extensively described elsewhere

25–27], and to improve numerical stability the log-conformation

echnique [28] is applied. For each constitutive model-geometry

air, simulations were performed at progressively higher Deborah

umbers, De = λ0U/D, where U is the average velocity in the four

rms and D is the channel width, until unsteady flow conditions

re attained. Viscometric flow is assumed near the walls, fully-

eveloped velocity and stress profiles are given at the inlets and

eumann boundary conditions are assumed at the outlets for all vari-

bles, except pressure which is linearly extrapolated from the two
spect ratio ARn = 0.7. The flow is (a, b) steady symmetric at De = 0.2 and (c, d) steady

uperimposed onto contour plots of the first normal stress difference, N1 = τyy − τxx .

streamlines originating on the y = 0 plane inside the inlet channel and crossing the

.
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upstream cells. No finite disturbances are introduced in the simu-

lations to induce the onset of flow asymmetries or other instabili-

ties. Instead, these solutions develop naturally from accumulation of

round-off error at machine level precision – double precision FOR-

TRAN is used for all calculations. A total of eleven meshes are used,

all with the basic geometry given in Fig. 1(a). Each mesh has a differ-

ent aspect ratio AR, defined as the ratio of height-to-width, AR = H/D,

and is composed of five blocks, one for each arm and a fifth block

for the central slot, each with 513 control volumes, totalling 663,255

computational cells. All meshes have the same total number of cells.

To facilitate the representation of the widest possible range of aspect

ratios, a normalized aspect ratio ARn is defined,

ARn = AR

AR + 1
= H

H + D
. (5)

The limits ARn→0 and ARn→1 correspond to the shallow and

deep cross-slots, respectively. The former is the Hele-Shaw flow limit,
Fig. 3. Example of creeping-flow of the sPTT fluid with ε = 0.02 and β = 1/9 in a cross-slo

De = 0.5 and (c, d) steady asymmetric at De = 1.1. Panels (a, c) show the XY centre plane, at z

stress difference, N1 = τyy − τxx. Panels (b, d) show the corresponding three-dimensional iso-

inlet channel and crossing the central z-axis at various heights. The streamlines in panels (a,
hile the latter is nominally equivalent to a 2D geometry. We distin-

uish truly 2D simulations as ARn = 1.0 and 3D simulations in deep

hannels as ARn → 1. The exact range of aspect ratios covered is given

n Table 1 along with other mesh characteristics. For the shallow-

st geometries, ARn = 0.01 and ARn = 0.1, acceptable resolution of

elocity gradients near the cross-slot corners requires localized mesh

efinement (Fig. 1(c)).

To facilitate the assessment of several important flow parame-

ers, we compute the eigenvalues and eigenvectors of the tensor

(∇u†)i j = ∂ui/∂x j at the stagnation point located at the geometric

entre of the cross-slot. Assuming a linear velocity field in the vicinity

f the central stagnation point, u = ∇u† · x, the unit eigenvectors v̂n

nd eigenvalues ξn of ∇u† represent the directions of the stagnation

treamlines and the corresponding velocity gradients in streamline

oordinates d‖u‖/dsn.

For incompressible creeping Newtonian flow, the three eigenvec-

ors are the Cartesian unit vectors (î, ĵ, k̂) and the corresponding
t channel with normalized aspect ratio ARn = 0.7. Flow is (a, b) steady symmetric at

= 0, with streamlines superimposed onto contour plots of the polymeric first normal

surface at N1/(η0U/D) = 50 and streamlines originating on the y = 0 plane inside the

c) do not leave the centre plane.
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Table 1

Characteristics of the computational meshes. All

meshes are composed of five blocks, each with

513 cells, for a total of 663,255 cells. Cells along

the z-direction are uniformly spaced, see Fig. 1 for

cell spacing along the x- and y-directions.

ARn AR 	z/D

0.01 0.010 0.00020

0.1 0.11 0.0022

0.2 0.25 0.0049

0.3 0.43 0.0084

0.4 0.67 0.013

0.5 1.0 0.020

0.6 1.5 0.029

0.7 2.3 0.046

0.8 4.0 0.078

0.9 9.0 0.18

1.0 → ∞ 2D
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train-rates are (−ε̇stretch, ε̇stretch, 0) for inlets along the x-direction

nd outlets along the y-direction, as sketched in Fig. 1. Furthermore,

he continuity equation dictates that the sum of the three eigenval-

es is equal to zero, regardless of flow configuration, and thus it is

ossible that up to two of the strain-rates are either positive or nega-

ive, implying the potential for stretching in more than one direction.

e use the second eigenvalue ξ2, along outlet direction ĵ for New-

onian flow or symmetric viscoelastic flow, as the magnitude of the

xtension-rate ε̇ . In the following, we refer to k̂ along the z-axis
stretch

ig. 4. Stability diagram for UCM fluid. Values are given for the cosine of the angle between

ines are a guide to the eye.
s the vertical direction, with the 3D cross-slot orientated in the XY

entre plane as shown in Fig. 1. We note that the coordinate system

efined by the eigenvectors (v̂1, v̂2, v̂3) of ∇u† can be distinct from

he standard Cartesian unit vectors (î, ĵ, k̂), specifically if the flow

eld is asymmetric at the central stagnation point. It should be noted,

owever, that at the central stagnation point k̂ ≡ v̂3 across our data

ange.

. Numerical results and discussion

.1. Qualitative analysis of results and stability maps

Figs. 2 and 3 illustrate typical results for both UCM and sPTT

odels, respectively, presented for the same normalized aspect ra-

io (ARn = 0.7) to facilitate comparison. Represented are streamlines

long the XY centre plane (z = 0) and crossing the central vertical

xis at various heights, as well as the polymeric component of the

rst normal stress difference, N1 = τyy − τxx, in dimensionless form.

he highest De flows for this aspect ratio are represented, both prior

o the steady bifurcation – (a) and (b) in both figures – and to the

nset of time-dependent flow – (c) and (d).

Several observations may be drawn from Figs. 2 and 3, which

re qualitatively similar, so the following applies to both. In panel

a), the predominantly extensional nature of the flow is notice-

ble along the outlet axis (v̂2 direction). Accordingly, in panel (b)

here is a well-defined region of large N1, with the approximate

hape of an ellipsoid, aligned with the YZ centre plane. Furthermore,
non-vertical eigenvectors (v̂1, v̂2) of ∇u† at the centre of the cross-slot. The dashed
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streamlines drawn along the vertical central axis show a redirec-

tion of matter away from the stagnation point (ξ3 > 0), as expected

in a vertical stretch scenario. Regions of large normal stresses are

also seen around the corners in panel (b). In a bifurcated state, the

flow structure changes significantly. From the streamline distribu-

tion along the vertical axis in panel (d), two additional stagnation

points are visible, one in the upper half (z > 0) and the other in the

lower half (z < 0) of the slot. In-between these peripheral stagnation

points and the centre of the channel, along the vertical z-direction,

streamlines appear to show a redirection of matter towards the cen-

tre, which, by continuity, implies flow along the XY centre plane will

have a tendency to avoid the principal stagnation point. Interestingly,

despite the asymmetries along the horizontal middle-plane, verti-

cal symmetry is seen relative to z = 0. Furthermore, large regions of

high N1 are seen in panel (d). The above mentioned birefringence el-

lipsoid strand has rotated around the z-axis to be aligned with the

asymmetric flow pattern, and regions of high normal stresses around

the corners have expanded significantly, especially on the concave

side of the asymmetry. Notably, the central region of large N1 is now

caused primarily by shear at the interface between the two domi-

nant flow branches, which although a fundamentally different flow

type from the previously symmetric extensional flow, is also capa-

ble of stretching polymer molecules, thus generating large normal

stresses. On that note, one of the few differences between Figs. 2 and

3 is the increase/decrease in size of the N1 iso-surface, respectively,

likely due to the stress unbounded nature of the UCM model in exten-
Fig. 5. Stability diagram for sPTT fluid with ε = 0.02 and β = 1/9. Values are given for the c

the cross-slot. The dashed lines are a guide to the eye.
ional flows vs. the bounded extensional viscosity and shear-thinning

ehaviour for the sPTT fluid.

The qualitative picture described above is consistent throughout

he simulated parameter space, so further plots as given in Figs. 2 and

for different ARn would be redundant. Understanding the bifurca-

ion mechanism thus requires the computation of characteristic pa-

ameters such as those given in Ref. [8]. Critically, a quantitative mea-

ure of flow asymmetry is needed. However, the absence of a scalar

treamfunction in 3D flows invalidates the straightforward computa-

ion of the asymmetry parameter DQ proposed in Ref. [8]. Consider-

ng the vertical symmetry about the XY middle-plane, observed for

ll simulations in this work, and taking advantage of the eigenvec-

or/eigenvalue calculations described in Section 2, a suitable asym-

etry parameter is the cosine of the angle between the two non-

ertical eigenvectors of ∇u† at the central stagnation point, cos(θ ) =
ˆ1 · v̂2. For symmetric flow, these correspond to the Cartesian unit

ectors (î, ĵ) and cos(θ ) = 0. Stability diagrams are provided in

igs. 4 and 5, for the UCM and sPTT models, respectively. The se-

uence of flow states, types of transitions and corresponding Decrit

trongly depends on the aspect ratio of the cross-slot. Roughly, for

oth models, at ARn > 0.5, two types of flow transition are present:

teady bifurcation and, at higher De, onset of time-dependent flow.

owever, for ARn < 0.5, approximately, there is a single, direct tran-

ition from steady symmetric flow to unsteady flow. This is an inter-

sting cut-off, since it separates geometries in two broad categories:

eep channels, H > D and shallow channels, H < D.
osine of the angle between non-vertical eigenvectors (v̂1, v̂2) of ∇u† at the centre of
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Looking specifically at the UCM model, in Fig. 4, for the shal-

ow half of the stability diagram, the single Decrit appears to vary

pproximately linearly with the normalized aspect ratio, suggesting a

rogressively lower Decrit as AR → 0, that is, viscoelastic flow is highly

rone to instabilities for very shallow channels, a prediction which

ay be experimentally tested using e.g. a highly elastic Boger fluid

29] in a Hele-Shaw cell [23]. Indeed, in their studies of viscoelastic

reeping-flow past a cylinder, McKinley and co-workers [11] used a

ighly elastic polyisobutylene solution – colloquially known as the

IT Boger fluid and extensively characterized elsewhere [30] – and

howed a progressively lower Decrit with increased blockage ratio,

r in other words, with decreased cylinder-to-wall gap and there-

ore elevated shear-rate, similar to what is observed for progressively

hallower planar cross-slots. This relation between Decrit and block-

ge ratio is further demonstrated in Ref. [19], where it is shown that

/Decrit = ã + b̃/�, � being the inverse blockage ratio and ã and b̃

onstants determined by data fitting. For clarity, we underline this

omparison between blockage ratio in flow past a cylinder and as-

ect ratio in a cross-slot is made on the basis of similar shear-rate

rends: if � → 1, the shear-rate increases in the cylinder-to-wall gap;

f AR → 0, the shear-rate increases in a cross-slot; in both geome-
Fig. 6. Extra pressure drop, as indicated by the Couette correction C, for the stead
ries, the additional shear-rate leads to instability. As for the deep

alf (ARn > 0.5) of the stability map in Fig. 4, the borders sepa-

ating the symmetric-asymmetric and the asymmetric-unsteady re-

ions appear, although with some variance, to have a constant Decrit .

nce the channel is sufficiently deep, it seems the UCM fluid behaves

s though the channel were infinitely deep. This observed response

bove a certain AR for UCM-like or more generally Oldroyd-B type

uids may be one of the reasons why three-dimensional effects have

enerally gone unreported, since microfluidic channels usually are

ot very shallow (see [31] for examples of five different geometries).

Regarding the stability map for the sPTT fluid (Fig. 5), for the shal-

ow segment of the map (ARn < 0.5), again there is a direct tran-

ition from steady symmetric to unsteady flow above a critical De,

hich also decreases concomitantly with the decrease of ARn. As for

he deep half (ARn > 0.5) of the stability map in Fig. 5, Decrit for

he symmetric-asymmetric transition is approximately constant for

Rn ≥ 0.7. For the steady-unsteady flow transition a different sce-

ario is observed. Although the stability map in Fig. 5 ranges from

e = 0 up to De = 1.8, further simulations for the two-dimensional,

Rn = 1.0 case show the steady-unsteady transition occurs at Decrit =
.75 ± 0.05. Since this transition occurs at De = 1.65 ± 0.05 for
crit

y state flow of (a) UCM fluid and (b) sPTT fluid with ε = 0.02 and β = 1/9.
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ARn = 0.9, it appears the stability boundary continues to evolve, even

for already fairly deep channels. In contrast, the UCM flow exhibits an

approximately constant Decrit starting at ARn = 0.5. Since the param-

eters of the sPTT model were set at ε = 0.02 and β = 1/9, ergo the

extensibility is large but not infinite and the solvent contribution to

viscosity is small but not zero, we conclude that the depth at which a

cross-slot channel may be considered a good approximation to a 2D

geometry is strongly dependent on the rheological properties of the

test fluid.

3.2. Bifurcation lowers resistance to flow

In previous publications concerning the viscoelastic cross-slot bi-

furcation, the observation that asymmetric flow states are accompa-

nied by a reduction of energy dissipation is often mentioned as a jus-

tification for the phenomenon [6,7,32]. If this is the case, a reduction

in energy dissipation upon bifurcation should occur regardless of as-

pect ratio. Data for the extra pressure drop is given in Fig. 6. The extra

energy dissipation due to the central slot, relative to the dissipation
Fig. 7. Strain-rate along the z-direction at the central stagnation point, normalized by the str

sPTT fluid, with ε = 0.02 and β = 1/9. Positive values indicate local stretching and negative v
ccurring in the arms is expressed via the Couette correction C,

= 	p − 	p f d

2τw, f d

, (6)

here the subscript fd refers to fully-developed flow, meaning 	p f d

ould be the pressure drop if the cross-slot had no central slot, i.e.

onsidering just fully-developed flow in the inlet and outlet arms.

he average corresponding wall shear stress τw, f d may be expressed

s,

τw, f d = D

∣∣∣∣	p

L

∣∣∣∣
f d

ARn, (7)

here |	p/L| f d denotes the constant pressure gradient in the in-

et and outlet arms, which are geometrically identical, implying

dp/dx| f d = |dp/dy| f d = |	p/L| f d; L is the distance over which 	p

s calculated. Inspection of Fig. 6 shows a decrease in excess pres-

ure drop upon bifurcation for all aspect ratios where the symmetric-

symmetric transition occurs, in agreement with previous literature.
etch on the central XY plane, for the steady state flow of (a) the UCM fluid and (b) the

alues represent local compression.
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Fig. 8. Velocity profiles along the vertical z-axis for the steady state flow of the UCM fluid. Newtonian flows are also shown at De = 0.0. Panels (a–j): vertical axes represent the

normalized velocity component wn = w/|w|max , and horizontal axes are the normalized position component zn = z/(H/2). Values of |w|max/U for each aspect ratio are given in

panel (k), with data point labels referring to the corresponding De; at ARn = 0.01, the missing De label is 0.001.
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.3. Mechanism of bifurcation in 3D cross-slots

The illustrative results in Figs. 2 and 3 show the emergence of pe-

ipheral stagnation points along the z-axis upon bifurcation, which

irect matter towards the central stagnation point along the verti-

al z-direction. By continuity, this implies some of the matter headed

owards the centre along the x-direction changes trajectory, with

treamlines buckling around it. A more consistent way to characterize

his 3D effect is to look at the strain-rate along the z-axis at the centre.

t the centre, one of the eigenvectors of ∇u† is always parallel to the

-axis, for all simulated cases, and the other two are normal to the z-

xis. The corresponding eigenvalue ε̇z,0 is given in Fig. 7, normalized

y ε̇stretch to provide an indication of the relative weight of this ver-

ical component. Furthermore, to illustrate the flow of matter along

he central z-axis, velocity profiles of the z-component of velocity are

iven in Figs. 8 and 9 for UCM and sPTT models, respectively, with

tagnation points identifiable by a change in the sign of this velocity
omponent. In general, ε̇z,0 → 0 for the Newtonian limit or the two-

imensional limit. For finite channel depth and fluid elasticity, flows

nitially have a single stagnation point and ε̇z,0 ≥ 0. As De increases,

he flow field may undergo a steady bifurcation, and at approxi-

ately the same De, ε̇z,0 becomes negative and peripheral stagnation

oints emerge. Furthermore, these peripheral stagnation points move

loser to the top/bottom walls for progressively higher De, eventu-

lly leading to the formation of two additional stagnation points,

o a total of five, as illustrated in Fig. 8(j) for De = 0.4 and Fig. 9(i)

or De = 1.3. Hypothetically, for very deep channels (ARn > 0.9), it

s possible that more stagnation points form, eventually merging in

stagnation axis, seen at the 2D limit. The second pair of peripheral

tagnation points also triggers a change in the sign of ε̇z,0 in an al-

eady bifurcated flow, e.g. De = 1.3 at ARn = 0.8 in Fig. 7(b). Addi-

ionally, although usually the steady bifurcation and the emergence

f peripheral stagnation points occur at the same De, in some in-

tances there is a delay between phenomena. For instance, peripheral
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Fig. 9. Velocity profiles along the vertical z-axis for the steady state flow of the sPTT fluid with ε = 0.02 and β = 1/9. For better visibility, only some De are shown. Panels (a–j):

vertical axes represent the normalized velocity component wn = w/|w|max , and horizontal axes are the normalized position component zn = z/(H/2). Values of |w|max/U for each

aspect ratio are given in panel (k), with data point labels referring to the corresponding De; at ARn = 0.01, the missing De label is 0.003.
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stagnation points start appearing prior to bifurcation for De = 0.4 in

Fig. 9(h)–(j), and bifurcation is seen to occur without the immediate

formation of peripheral stagnation points for De = 0.3 in Fig. 8(j) and

De = 1.0 in Fig. 9(g). That such delays show no bias towards either

phenomenon makes it difficult to establish a relation of cause and ef-

fect. Work on viscoelastic creeping-flow around cylinders [11–13] has

revealed the formation of steady-state, three-dimensional wake cel-

lular structures above a critical Deborah number, shown in [11] to be

a function of the cylinder blockage ratio. Furthermore, streamlines in

the wake form bundles along the neutral axis of the cylinder (cf. Fig.

26 in [11] and Fig. 4 in [13]). Thus, the fluid selects a set of paths along

which local, relative velocities become higher, as shown by the con-

vergence of streamlines. Considering the steady bifurcation in pla-

nar cross-slots is accompanied by a reduction in dissipated energy,

as shown by the reduced extra pressure drop (Fig. 6), the asymmet-

ric flow field necessarily favours paths of least resistance, in a man-

ner akin to the wake cells observed for creeping-flow around cylin-
ers. We hypothesize that the emergence of vertical flow upon steady

ifurcation relates to the global decrease in energy dissipation. Fur-

hermore, as shown in Fig. 10, gaps of low streamwise tensile stress

ss = u†τu/‖u‖2
, computed as a projection of the stress tensor τ onto

he local velocity field streamline direction, u/‖u‖, are present along

he central z-axis. Here ‖u‖ is the local velocity magnitude given by

u‖ =
√

u2 + v2 + w2. Since τss may be construed as an indicator of

esistance to flow, we speculate that the emergent vertical flow upon

ifurcation contributes, locally, to the observed global reduction in

xtra pressure drop.

.4. Local evaluation of the Pakdel–McKinley criterion

The strong flow curvature near the four cross-slot corners is po-

entially responsible for the second transition, to an unsteady flow

attern, and we therefore apply the ideas developed by McKinley

nd co-workers to investigate this possibility. The Pakdel–McKinley
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Fig. 10. Iso-surfaces and XY centre plane of the normalized streamwise stress τss/(η0U/D), for ARn = 0.7. (a) Symmetric UCM flow at De = 0.2. (b) Asymmetric UCM flow at

De = 0.4. (c) Symmetric sPTT flow at De = 0.5. (d) Asymmetric sPTT flow at De = 1.1. Iso-surfaces are drawn at τss/(η0U/D) = 80. sPTT fluid with ε = 0.02 and β = 1/9.
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riterion can be written as [19],

=
√

λ0U

R

τss

η0γ̇
, (8)

here λ0U = l is the characteristic length over which perturba-

ions to the base stress and velocity fields relax, R is the stream-

ine radius of curvature, τss is the streamwise tensile stress, η0

s the zero-shear-rate shear viscosity and γ̇ is the local deforma-

ion rate. Conversion of this definition of the criterion to a form

menable to local evaluation in three-dimensional flows requires

he substitution of characteristic values by local values. Consider-

ng the first non-dimensional group λ0U/R, λ0 is substituted by its

ffective counterpart – which in this work is evaluated as λeff =
0/g(τ) – given that depending on flow conditions and fluid rhe-

logy, the local relaxation time may vary. Likewise the characteris-

ic streamwise velocity U is substituted by the local velocity mag-

itude and the radius of curvature R is substituted by the local

treamline radius of curvature r, yielding, via the parametric def-

nition, r = ‖u‖3
/‖u × u̇‖. Here we note u̇ is the material deriva-

ive of the velocity vector, which reduces to u · ∇u for steady-state

ow. Regarding the second dimensionless group τss/(η γ̇ ), τss is
0
he streamwise tensile stress, as defined in the previous section.

oncerning the shear viscosity, flow conditions and fluid rheology

ay result in local variations in viscosity, such that the effective shear

iscosity ηeff is better suited for local evaluation. For the purposes

f this study, ηeff is the shear viscosity evaluated at local conditions,

eff = ηs + ηp,0/g(τ) for the sPTT fluid. Lastly, the local deformation

ate may be expressed as the magnitude of the strain-rate tensor,

˙ = ‖γ̇‖ =
√

1/2γ̇ : γ̇†
.

A further issue when considering the local evaluation of M is the

otational nature of flow in certain regions not too far from the cor-

ers of the cross-slot. In these locations, the magnitude of the strain-

ate tensor approaches zero, leading to high values of M. However, the

ack of shear in solid-like rotational flows invalidates the microme-

hanical model of purely elastic instabilities proposed by Larson et al.

33]. Thus, large values of M in rotational flow regions do not neces-

arily imply proneness to instability. The problem may be remedied

y substitution of the term ηeff‖γ̇‖ by the magnitude of the stress

ensor ‖τ‖F . Here we use the Frobenius norm (‖ · ‖F ), so that the re-

ulting dimensionless group τss/‖τ‖F will vary between zero, when

ormal stresses are weak, and one, when the tensile normal stress τ
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dominates, as happens in highly elastic shear or extensional flows.

Therefore in strongly extensional flows, M∗ is approximately given

by
√

λeff‖u‖/r, such as in the optimized shape cross-slot extensional

rheometer [34], where extensional flow is attained for finite values of

r and therefore the criterion has a non-trivial value. To avoid confu-

sion, we use here the notation M∗ to represent the modified Pakdel–

McKinley criterion,

M∗ =
√

λeff‖u‖
r

τss

‖τ‖F

. (9)

With the standard Pakdel–McKinley criterion the instability due

to the coupling of tensile stresses along curved streamlines and the

base shear-flow sets in when M is larger than a critical value, which

depends on the flow geometry. Here, since M∗ is locally evaluated, the

critical condition defining a flow transition is given by the maximum

of the M∗ scalar field over the flow domain. Hence, for each consti-

tutive model-geometry pair, the maximum value of M∗ at the high-

est De immediately prior to each flow transition was assessed and is

given in Table 2. Critical values of the modified Pakdel–McKinley cri-

terion are consistent with available literature, in which the character-

istic range of M is approximately 1 − 10 for various model geometries
Fig. 11. Maximum value of the modified Pakdel–McKinley criterion M∗
max , for
18–20,35–37]. The steady bifurcation occurs at consistently lower
∗
crit

than the onset of time-dependent flow, regardless of whether

he flow field is in a symmetric or asymmetric configuration prior to

he latter transition. Furthermore, values of M∗
crit

pertaining specifi-

ally to the UCM fluid are somewhat insensitive to the aspect ratio

f the channel. The small variability of M∗
crit

indicates the usefulness

f this modified criterion in the prediction of critical flow transitions.

ig. 11 shows the progression of the highest value of M∗ for each ge-

metry and constitutive model. For the UCM model, the values of
∗
max increase monotonically, up to the transition to time-dependent

ow, seemingly ignoring the steady flow bifurcation. A similar sce-

ario is observed for the sPTT model in Fig. 11(b), although a momen-

ary decrease in M∗
max occurs between De = 0.6 and De = 0.8, regard-

ess of aspect ratio – so long as the flow is still steady – or whether

he flow field is in a symmetric or asymmetric configuration.

Local evaluation of M∗ allows the construction of scalar stability

aps, illustrated in Figs. 12 and 13, thus facilitating the location of

nstability-driving regions within the flow field. The highest value of
∗ is always located at the centre plane (z = 0), approximately along

he diagonals of the slot, closer to the corners than to the stagna-

ion point, but not adjacent to the former. Furthermore, concerning
the (a) UCM and (b) sPTT models, the latter with ε = 0.02 and β = 1/9.
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Fig. 12. Illustrative contour plots of the modified Pakdel–McKinley criterion M∗ with superimposed streamlines, for the transition from steady symmetric to unsteady flow. Plots

are given for the XY centre plane, at z = 0, for the highest simulated De prior to each transition. The constitutive model, Deborah number and normalized aspect ratio are indicated

in each of the four main panels. Panels (e), (f) and (g): slanted, 6× zoomed-in view of the southwest corner of the XY centre plane. Panel (g) corresponds to main panel (c), while

(e) and (f) are given for De = 0.2 and De = 0.6, for the same fluid and geometry.
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z-direction.
he dip in the value of M∗
max between De = 0.6 and De = 0.8, shown

n Fig. 11(b), we can see from Fig. 12(e)–(g) the formation of three-

imensional structures analogous to 2D lip vortices. These structures

ause an increase in the radius of curvature of the flow in the re-

ions where M∗ is highest, lowering its maximum value, and are also

esponsible for shifting matter vertically near the corners. However,

ince their emergence is consistently at approximately De = 0.6 they

o not appear to directly influence the critical flow transitions stud-

ed elsewhere in this work. In Fig. 13, the M∗ field is shown at the
ame height as emerging peripheral stagnation points. Upon steady

ifurcation, in the z = 0 plane, the relative size of high M∗ regions

s enhanced on the concave side of the asymmetry and suppressed

n the convex side. Maximum values of M∗ near convex side corners

re shifted vertically, and appear in the same planes as peripheral

tagnation points - compare northwest or southeast cross-slot cor-

ers in Fig. 13(b), (c) and (e), (f). Thus it seems that a secondary effect

f bifurcation is the spreading of instability prone regions along the
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Table 2

Critical values of the modified, locally evaluated Pakdel–McKinley criterion M∗
crit

for all observed flow transitions. Types of

transitions: Sym–Unst, transition from a steady symmetric state to a time-dependent flow; Sym–Asym, flow remains steady,

but bifurcates from a symmetric to an asymmetric configuration; Asym–Unst, transition from a steady asymmetric state to

unsteady flow. Values are given for the last stable simulation prior to transition. STD: standard-deviation.

Model Transition ARn Decrit M∗
crit

M∗
crit

± STD

UCM Sym–Unst 0.01 0.001 1.2 1.7 ± 0.3

0.1 0.03 2.2

0.2 0.2 2.1

0.3 0.2 1.6

0.4 0.3 1.7

0.5 0.4 1.9

0.6 0.3 1.5

Sym–Asym 0.7 0.2 1.2 1.2 ± 0.2

0.8 0.2 1.1

0.9 0.2 1.1

1.0 0.3 1.5

Asym–Unst 0.7 0.4 1.9 1.8 ± 0.1

0.8 0.4 1.8

0.9 0.4 1.8

1.0 0.5 1.9

sPTT β = 1/9

ε = 0.02

Sym–Unst 0.01 0.003 2.4 2.6 ± 0.3

0.1 0.3 2.7

0.2 0.5 3.1

0.3 1.0 2.7

0.4 1.1 2.3

0.5 1.2 2.2

Sym–Asym 0.6 0.8 1.9 1.8 ± 0.3

0.7 0.5 2.2

0.8 0.4 1.6

0.9 0.4 1.5

1.0 0.5 1.8

Asym–Unst 0.6 1.1 3.1 2.7 ± 0.5

0.7 1.1 2.4

0.8 1.3 2.4

0.9 1.6 2.4

1.0 3.7 3.4

Fig. 13. Contour maps of the modified Pakdel–McKinley criterion M∗ for ARn = 0.7, at the highest simulated De prior to each flow transition. The constitutive model, Deborah

number and normalized height coordinate of each horizontal map, defined as zn = z/(H/2), are given in each panel. Maps are shown (a, d) prior to the steady bifurcation and (b,

e)–(c, f) prior to the onset of time-dependent flow. Maps drawn in (c, f) are centred at the location of a peripheral stagnation point; no streamlines are represented due to the

three-dimensional nature of flow in these planes.
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. Conclusions

Based on the evidence presented in this work, we propose the

echanism of three-dimensional planar cross-slot steady flow bifur-

ations is characterized by a buckling-type instability, by which flow

s redirected via paths of least resistance, therefore reducing energy

issipation. Since the path of highest resistance is given by a direct

pproach to the central stagnation point along the inlet axis, stream-

ines tend to curve around it along the XY plane when normal com-

ressive stresses increase concomitantly with De, as a consequence

f progressively larger elasticity. Consequently, the central stagnation

oint receives matter via newly formed, paired and symmetrically-

ocated peripheral stagnation points along the central vertical axis.

dditionally, based on the sequence of flow transitions, creeping-flow

f viscoelastic fluids in cross-slots may be divided in two regimes: the

hallow-channel regime for ARn < 0.5 and the deep-channel regime

or ARn > 0.5. In the shallow-channel regime, flow transitions di-

ectly from a steady symmetric pattern to a time-dependent flow. On

he other hand, in the deep-channel regime, which ultimately encom-

asses the limiting two-dimensional case, the flow first bifurcates

rom a steady symmetric to a steady asymmetric configuration, and

t higher De transitions to unsteady flow. Therefore, square-section

hannels, being at the intersection of the two regimes, may exhibit an

nclear sequence of transitions. Furthermore, an assessment of flow

tability via the local computation of a modified Pakdel–McKinley cri-

erion indicates the presence of potentially unstable flow regions ap-

roximately along the diagonals of the central XY plane. Peripheral

tagnation points generated by steady bifurcation may further con-

ribute to the destabilization of flow, as shown by the presence of

econdary instability prone regions in the corresponding z-planes.
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