
Towards early
detection of faults
and failures in
complex systems
Christopher Harrison
Doutoramento em Ciência de Computadores
Departamento de Ciência de Computadores
2024

Orientador
Prof. Dra. Inês Dutra, Faculdade de Ciências, Departamento de Ciência de
Computadores

Coorientador
Prof. Dr. Vitor Santos Costa, Faculdade de Ciências, Departamento de Ciência
de Computadores

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

DOCTORAL THESIS

Towards early detection of faults and failures
in complex systems

Author:

Christopher Harrison

Supervisor:

Inês Dutra

Co-supervisor:

Vitor Santos Costa

A thesis submitted in fulfilment of the requirements

for the degree of Programa Doutoramento em Ciência de Computadores

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

September 2024

mailto:harrison@glsan.com
mailto:ines@dcc.fc.up.pt
mailto:vsc@dcc.fc.up.pt

“Everything must be made as simple as possible ”

Albert Einstein

“ Life is a journey thats not measured in miles or years, but in experiences”

Jimmy Buffett

“I can’t change the direction of the wind, but I can adjust my sails

to always reach my destination”

Jimmy Buffett

Acknowledgements

What an incredible journey filed with growth and life experiences that shaped me in pro-

found ways. My journey would not have been possible without support.

To my rock, Huimin: Your sacrifices throughout my journey have been immense.

While I haven’t always expressed how deeply I appreciate it, you are, and always will be,

my inspiration, joy, and light. May these words be a humble beginning towards express-

ing my true appreciation for your unwavering support. I love you and thank you!

Sophia and Alexis, my constant inspiration: I embarked on this PhD journey when

Sophia was just 6 and Alexis wasn’t even born. Alexis, you’ve only ever known me as

a PhD student. This journey has always been for both of you. I’ve never lost this sight.

You will both learn and grow, and I too will continue to learn and grow alongside you

(hopefully not physically wider!). This journey has been an experience for all of us. I

thank you for sharing it with me, allowing me to share this journey with you. Here’s to

our continuous growth together as amazing individuals. Alexis and Sophia, I love you

both with all my heart!

To my advisor’s Inês Dutra and Vitor Santos Costa, you both are amazing. From my

first steps in Porto, to a case of MRSA, walks in the city and movies, you both provided

an environment that goes way beyond an advisors scholastic support and have become

like family. Obrigado!

To my lab mates, friends and collaborators along the way, especially: Sündüz Keleş,

Henish Balu, David Aparı̀cio, Çaǧrl Zafer Soylu, Christine Kirkpatrick and Paul Gunther.

Your friendship, support and occasional shared libations carried me through the valleys.

Thank you!

To my parents; My gratitude goes to you for the support you’ve provided throughout

the years. You’ve played a vital role in shaping who I am today, and I hope my accom-

plishment brings you pride. To my siblings, Tim, Jamie, and Lindsay; Thank you!

To the Faculdade de Ciências da Universidade do Porto for having me as a student

during all these years. Last but not least, to my external reviewers Barton Miller and

Irene Ong, Thank you!

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Programa Doutoramento em Ciência de Computadores

Towards early detection of faults and failures in complex systems

by Christopher Harrison

Our research investigates the operational challenges of building and managing com-

putational clusters. Through experience in constructing a cluster for searching the atSNP

dataset, we evaluate databases for big data, develop data loading methods, and imple-

ment genomic visualizations. Operational issue emerge, in managing our cluster, that

leading us to investigate hard drive failure prediction and explore user-submitted cluster

task failures. Using machine learning, we try to understand and develop proactive mit-

igation techniques to address operational issues. Overall, our research aims to enhance

the efficiency and reliability of computational cluster operations. Our contributes are in

the fields of genomics and computational cluster operations.

mailto:harrison@glsan.com

Contents

Acknowledgements v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xv

List of Terms xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Research Contribution . 3

1.2.1 atSNP Search . 3
1.2.2 Hard disk drive faults and failures . 3
1.2.3 Computational cluster task failure prediction 4

1.3 Organization of the Dissertation . 4

2 Concepts and Terminology 5
2.1 atSNP Search . 5

2.1.1 atSNP Biological Terms . 6
2.1.2 atSNP statistical model . 10
2.1.3 Sequence alignment . 14
2.1.4 atSNP Computational Infrastructure Terms 16
2.1.5 atSNP Database Types . 18

2.2 Hard disk drive faults and failures . 20
2.2.1 Disk failure . 20
2.2.2 Physical (or Mechanical) Failure . 20
2.2.3 Logical Failure . 20
2.2.4 S.M.A.R.T . 21
2.2.5 Backblaze dataset . 21
2.2.6 Failure Mode and Effective Analysis (FMEA) 21
2.2.7 Root Cause Analysis (RCA) . 23
2.2.8 Failure . 23

ix

x TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

2.2.9 Faults . 23
2.3 Computational cluster task failures . 25

2.3.1 Tasks . 25
2.3.2 High Throughput Computing . 25
2.3.3 Computational Cluster task scheduling 26
2.3.4 Biomedical Computing Group’s Computational Cluster 26

3 atSNP Search Background and Related Work 29
3.1 SNP motif databases: Comparison . 30
3.2 Infrastructure: database comparisons . 30
3.3 Prior Performance Comparisons: A Mixed Bag 31
3.4 Focus on ETL Performance . 31
3.5 Motif Logo plots libraries . 31
3.6 Extraction Transformation Loading data . 32
3.7 Hadoop . 32
3.8 Supportability and System Selection . 33
3.9 Cluster Failure and Distributed Metadata . 33
3.10 Load Balancing and Failure Prediction in NoSQL Databases 34
3.11 Addressing Batch-Correlated Disk Failures 34

4 atSNP Search 37
4.1 atSNP data . 39
4.2 Database survey and feasibility objective . 40

4.2.1 Apache Cassandra . 42
4.2.2 MySQL . 43
4.2.3 Elasticsearch . 44

4.3 atSNP Search results . 45
4.4 Discussion . 47

4.4.1 Survey . 48
4.4.2 Composite Logo Plots . 49
4.4.3 ETL with HTCondor . 50

4.5 Conclusions . 52
4.6 Failures new motivation . 54

5 Hard Disk Drive Faults and Failures and Cluster Task Failures; Background and
Related Work 57
5.1 Hard disk drives faults and failures . 57

5.1.1 Disk Failures . 58
5.1.2 S.M.A.R.T. Attributes . 60
5.1.3 Data Mining . 63
5.1.4 Machine Learning . 64
5.1.5 Classification Algorithms . 65
5.1.6 Time Series . 67
5.1.7 Vector Auto Regression . 68
5.1.8 Imbalanced domain learning . 69
5.1.9 Evaluation Metrics . 70
5.1.10 Cascading Failures - COME BACK IF TIME PERMITS 71

CONTENTS xi

5.1.11 Backblaze dataset and related work 72
5.2 Computational cluster task failures . 73

5.2.1 Anomaly detection in recent works 78

6 Hard Disk Drive Faults and Failures 81
6.1 Dataset exploration . 83

6.1.1 Cleaning the Data . 88
6.1.2 Methodology . 89

6.2 Classification Algorithms . 92
6.3 VAR Model . 97
6.4 Discussion . 101
6.5 Conclusions . 102

7 Computational Cluster Task Failures 105
7.1 Dataset exploration . 106
7.2 Methodology . 110
7.3 Discussion . 113

8 Conclusions 117
8.1 atSNP Search . 117
8.2 Hard Disk Drive Faults and Failures . 118
8.3 Computational Cluster Task Failures . 118

9 Future work and Final thoughts 121
9.1 atSNP Search . 121
9.2 Hard Disk Drive failures, faults and misbehavior’s 122
9.3 Computational Cluster task failure prediction 123
9.4 Final Thoughts . 123

A AtSNP Search Journal Papers 125

B AtSNP infrastructure Conference Paper 133

C Predicting Hard Disk Drive faults, failures and associated misbehaviors 143

D Hard Disk failure prediction tables and results 155

E Computational Cluster Batch Task Profiling with Machine Learning for Failure
Prediction 169

Bibliography 179

List of Figures

2.1 SNP plus motif results in a composite logo plot with the atSNP Markov
model . 11

2.2 How to read the Position Weight Matrix (PWM) of a logo plot, rs117959046
is the position of the reference gene, GATA2 is the Transcription Factor . . . 12

2.3 Example from Illumina sequencing of Escherichia coli str. K-12 substr.
MG1655 genomic paired-end library[14] . 14

2.4 A typical analysis process pipeline for primary analysis of the FastQ file
follows the sequence . 14

3.1 Batch correlated disk failure event sequence [93] 35

4.1 The test cluster . 41
4.2 atSNP search web site example . 46
4.3 Example logo plot . 47
4.4 Internal MySQL database architecture with storage engines example [106] . 49
4.5 Example Composite Logo Plot . 50
4.6 atSNP search infrastructure . 54

5.1 HDD components . 58
5.2 Bathtub curve [123] . 60
5.3 Backblaze leaking bathtub curve (red line = failure rate, dotted line = trend-

line) [122] . 61
5.4 Overview of the KDD steps . 64
5.5 Random Forest . 66
5.6 Support Vector Machine . 66
5.7 Time Series Movements . 68
5.8 Time Series Movements . 69
5.9 Undersampling and Oversampling . 70
5.10 Confusion Matrix . 71
5.11 Evaluation Metrics . 71
5.12 Efficient job run state on cluster node . 76

6.1 Dataset Example . 83
6.2 Diagram of Failed and Healthy Disks . 83
6.3 Pre-Processing Diagram . 89
6.4 Data set assembly for our Hard Disk Drive Model (HDDM) classification

model . 90
6.5 Data set assembly for our HDDM Vector Auto Regression (VAR) model . . 91
6.6 Random Forest from HDDM ST12000NM0007 96

xiii

xiv TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

6.7 Forecast for the first Healthy disk (predicted value in red-dashed line) . . . 100
6.8 Real Values for the first Healthy disk (actual values of the predicted valued

in red-dashed line) . 100

7.1 Number for tasks per cluster submission . 108
7.2 Task Failure Class-Ad Variable Importance 112
7.3 AUC curve . 112
7.4 Random Forest class-ad Submission success, failure prediction 113

D.1 Smart 3 for the failed disks along time . 161
D.2 Smart 3 for the healthy disks along time . 161
D.3 Smart 7 for the failed disks along time . 162
D.4 Smart 7 for the healthy disks along time . 162
D.5 Smart 194 for the failed disks along time . 163
D.6 Smart 194 for the healthy disks along time 163

List of Tables

4.1 Our first generation test Elasticsearch cluster composition 40
4.2 atSNP evaluation matrix . 45
4.3 Comparison of motif-based regulatory SNP discovery databases 52

5.1 S.M.A.R.T. Attributes . 61
5.2 SVM Kernel Types . 67
5.3 Li’s result from the Decision Trees (DT) and Gradient Boosted Regression

Trees (GBRT) . 73
5.4 UW Madison Biomedical Computing Group (BCG) High-Throughput Com-

puting (HTC) vs Argonne Theta High-Performance Computing (HPC) clus-
ter, Theta includes time limited tasks . 74

6.1 Backblaze data considerations . 82
6.2 Metadata and drive identifiers Backblaze provides in each dataset 83
6.3 S.M.A.R.T. Attributes by vendor. 84
6.4 All disk vendors and models with their respective frequencies in Back-

blaze’s data center provided our 3 month window 85
6.5 HDDM and their numbers available in the Backblaze Storage dataset with

failed drive count. 88
6.6 Euclidean distances between the healthy and failed disks 90
6.7 Metrics Results for HDDM ST12000NM0007 92
6.8 Confusion Matrix HDDM ST12000NM0007 92
6.9 Metrics Results for HDDM ST4000DM000 . 92
6.10 Confusion Matrix HDDM ST4000DM000 . 93
6.11 Metrics Results for HDDM ST8000NM0055 93
6.12 Confusion Matrix HDDM ST8000NM0055 . 93
6.13 Metrics Results for HDDM ST12000NM0008 93
6.14 Confusion Matrix HDDM ST12000NM0008 93
6.15 Metrics Results for HDDM TOSHIBA MQ01ABF050 94
6.16 Confusion Matrix HDDM TOSHIBA MQ01ABF050 94
6.17 Random Forest Features Importance for each HDDM 95
6.18 ST12000NM0007 RF Importance . 95
6.19 ST4000DM000 RF Importance . 95
6.20 ST8000NM0055 RF Importance . 95
6.21 ST12000NM0008 RF Importance . 95
6.22 TOSHIBA MQ01ABF050 RF Importance . 95
6.23 TOSHIBA MG07ACA14TA RF Importance 95
6.24 Decision Tree S.M.A.R.T. variable description 96

xv

xvi TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

6.25 Correlation Matrix for failed disk from HDDM ST12000NM0007 97
6.26 Correlation Matrix for healthy disk from HDDM ST12000NM0007 98
6.27 Correlation Matrix for failed disk from HDDM ST4000DM000 98
6.28 Correlation Matrix for healthy disk from HDDM ST4000DM000 98
6.29 Correlation Matrix for failed disk from HDDM ST8000NM0055 98
6.30 Correlation Matrix for healthy disk from HDDM ST8000NM0055 99
6.31 Correlation Matrix for failed HDDM ST12000NM0008 99
6.32 Correlation Matrix for healthy disk from HDDM ST12000NM0008 99

7.1 Full cluster submitted Task Breakdown . 107
7.2 Submitted tasks with errors breakdown . 107
7.3 Cluster task usage in hours . 108
7.4 Multi-task submitted with failed task breakdown 108
7.5 HTCondor Class Ad attributes examples . 109
7.6 Cluster submissions breakdown . 110
7.7 List of class-ad feature importance in predicting task failures 114
7.8 Confusion Matrix task submission failure . 114

D.1 Failed Disks Dataset Description . 155
D.2 Healthy Disks Dataset Description . 158
D.3 Correlation Matrix for failed disk from model ST12000NM0007 - ZCH0A7G6164
D.4 Correlation Matrix for failed disk from model ST12000NM0007 - ZCH0A7G6164
D.5 Correlation Matrix for healthy disk from model ST12000NM0007 - ZCH056VR164
D.6 Correlation Matrix for failed disk from model ST12000NM0007 - ZCH0AL23 164
D.7 Correlation Matrix for healthy disk from model ST12000NM0007 - ZJV10J45 165
D.8 Correlation Matrix for failed disk from model ST12000NM0007 - ZJV03NQB 165
D.9 Correlation Matrix for healthy disk from model ST12000NM0007 - ZCH06HY1165
D.10 Correlation Matrix for failed disk from model ST12000NM0007 - ZCH097GA165
D.11 Correlation Matrix for healthy disk from model ST12000NM0007 - ZCH0BCML165
D.12 Correlation Matrix for failed disk from model ST12000NM0007 - ZJV00F20 . 166
D.13 Correlation Matrix for healthy disk from model ST12000NM0007 - ZJV501TY166
D.14 Correlation Matrix for failed disk from model ST12000NM0007 - ZJV00C88 166
D.15 Correlation Matrix for healthy disk from model ST12000NM0007 - ZCH0CDWV166
D.16 Correlation Matrix for failed disk from model ST12000NM0007 - ZJV03JDV 166
D.17 Correlation Matrix for healthy disk from model ST12000NM0007 167
D.18 Correlation Matrix for failed disk from model ST4000DM000 167
D.19 Correlation Matrix for healthy disk from model ST4000DM000 167
D.20 Correlation Matrix for failed disk from model ST8000NM0055 167
D.21 Correlation Matrix for healthy disk from model ST8000NM0055 167

Abbreviations

BCG Biomedical Computing Group. xv, 26, 27, 74, 105, 113, 118

BMI Department of Biostatistics and Medical Informatics. 26, 27, 105, 113

CPG Cost Per Gigabyte. 58

CPU Central Processing Unit. 2, 25–27, 37, 47, 49, 52, 75–77, 113

DNA DeoxyriboNucleic Acid. 2, 3, 5–9, 12, 13, 15, 31, 37–39, 44, 45, 53

ECC Error Correction Codes. 72

ETL Extract Transform Load. 29, 32, 33, 38–44, 48, 49, 51–53, 107, 108

FAR False Alarm Rate. 73

FDR Failure Detection Rate. 73

FMEA Failure Mode and Effective Analysis. 21, 22, 122, 123

GPGPU General Purpose Graphical Processing Unit. 123

GWAS Genomic Wide Association Study. 5, 10, 15, 123

HDD Hard Disk Drive. 21, 40, 54, 55, 57–61, 63, 72, 73, 81, 82, 84, 87–90, 92, 102, 103, 110,

118, 122, 155

HDDM Hard Disk Drive Model. xiii, xv, xvi, 4, 54, 63, 72, 87, 88, 90–94, 97–99, 101–103,

118, 122

HPC High-Performance Computing. xv, 25, 74–78, 118, 121

HPE Hewlett Packard Enterprise. 27, 78

xvii

HTC High-Throughput Computing. xv, 25, 74–77, 118, 121

HTCondor High Throughput Condor. 3, 25, 26, 33, 38, 47, 49, 51–53, 105–108, 110, 114,

118, 119

JSON JavaScript Object Notation. 51, 106

LMM Linear Mixed effect Model. 15

MLM Machine Learning Method. 4, 59, 72, 73, 91, 92, 97, 101–103, 113, 115, 118, 119, 122,

155

MTTF Mean Time To Failure. 75

PCA Principal Component Analysis. 111

PWM Position Weight Matrix. xiii, 2, 3, 5, 11–13, 15, 37–39, 45–47, 49, 50, 52, 53, 117

RAID Redundant Array of Inexpensive Drives. 17, 72

RCA Root Cause Analysis. 23, 71, 122, 123

RDBMS Relational DataBase Management System. 39, 40, 43

S.M.A.R.T. Self-Monitoring, Analysis, and Reporting Technology. 21, 57, 60, 61, 63, 72,

84, 91, 97, 101–103, 118, 121

SNP Single Nucleotide Polymorphism. 2, 3, 5, 7–13, 15, 29, 30, 37–40, 45–49, 52, 53, 117

SNP-PWM Single Nucleotide Polymorphism - Position Weight Matrix. 37, 46, 47

SQL Structured Query Language. 43

SSD Solid-State Disks. 21, 35, 58

SVG Scalable Vector Graphics. 50

SVM Support Vector Machine. 65–67, 72, 92

TB TeraByte. 27, 37, 39, 40, 50

TF Transcription Factors. 2, 3, 5, 7–10, 12, 13, 29, 37, 38, 45, 52, 53

LIST OF TABLES xix

VAR Vector Auto Regression. xiii, 68, 90, 91, 101–103

With deepest gratitude, I dedicate this thesis to my family for their

unwavering love and support.

Chapter 1

Introduction

Computational clusters, which combine the processing power of multiple computers,

have expanded the boundaries of knowledge. Clusters enable previously impossible sci-

entific inquiries and have fundamentally altered the scientific landscape. They achieve

this by their size and parallel processing capabilities.

We examine the architectural and operational nuances of building a computational

cluster that supports the atSNP search [1] database. In our work, we compare database

options; identify methods to load billions of records; and provide a method to display the

data easily to genomic researchers. A cluster is a powerful tool because of its ability to

handle numerous tasks and search billions of records.

Although the potential of computational clusters is undeniable, the inner workings

of their operations remain somewhat of a mystery due to their complex nature. There

exists a significant knowledge gap in the field of cluster operations management, with

numerous critical open questions. Although specific hardware, storage systems, and use

cases may differ, the operational issues that plague these clusters often share a common

thread. A research theme emerges, as the effective management of these complex systems

presents a series of significant challenges.

We address computational cluster operational challenges through motivating events

and tie these events to our research. Our work is motivated by actual events and the

operational issues presented are personal experiences.

1

2 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

1.1 Motivation

We investigate the challenges of constructing and maintaining a computational cluster.

To do so, we initially build a cluster that provides genomic researchers with the ability to

search genomic data.

Building on work done by atSNP [2], our computational cluster helps genomic re-

searchers identify and quantify the best gene sequence match to Transcription Factors

(TF) and PWMs in a small window around the Single Nucleotide Polymorphism (SNP)

location [1]. Addressing a demonstrated need within the genomic research community,

we build a cluster that supports the advancement of genomic research.

We relied on the atSNP R package to sample the statistical significance of a given SNP-

PWM within a DeoxyriboNucleic Acid (DNA) segment of two major human genomic

repositories, JASPER and ENCODE. The SNP-Position Weight Matrix for Transcription

Factors was calculated during the generation of the atSNP data set. This analysis matched

all 132,946,852 known SNPs to the JASPAR and ENCODE, resulting in 307 billion SNP-

PWM records. Generating the data set on the Open Science Grid required a total of 115,000

Central Processing Unit (CPU) hours to complete.

Our work is motivated by personally experienced actual events. We observed com-

putational clusters are subjected to faults and failures that affect system integrity. For

example, system integrity requires reliability in data disk storage systems, as they are the

cornerstone of data integrity in computing. But in the course of our work, we experienced

hard disk failures that lead to a data loss event. Thus, we explore historical data patterns

and failure indicators to prevent these types of failures.

Preventing data loss is a key motivation of our work. Developing predictive models

to anticipate hard disk failures can significantly enhance the resilience and reliability of

data storage systems, thereby safeguarding critical data.

Beyond disk failures, we extend our research scope to understanding why user-sub-

mitted cluster tasks fail. In our work, we experienced failures in our genomic cluster data

loading process, which was done as a user-submitted cluster task. We noticed that not all

the data that we expected to be loaded was actually loaded. In trying to understand what

happened, we found some of our cluster-scheduled data loading tasks failed without ex-

planation.

1. INTRODUCTION 3

A task failure event can result in computational inefficiencies and, more importantly,

wasted user time trying to understand the nature of the failure event. Thus, we seek to un-

derstand these types of cluster tasks failures. Specifically, we examine the corresponding

compute task failures from the cluster user submissions. Our work investigates various

factors that contribute to task failures and employs a machine learning model to identify

these factors in the hope of proactively mitigating them.

Motivated by the operational needs and challenges of computational cluster opera-

tions, we address cascading disk failures by improving hard disk drive reliability and

investigate compute task efficiencies in computational clusters. This research contributes

to the field of genomics and computer science.

1.2 Research Contribution

Our research introduces several novel contributions. Our contributions have three major

areas. The first area is searching and making genomic research faster by implementing

the genomic atSNP search database. The second, is understanding and predicting hard

disk drive failures. The last, is understanding computational cluster tasks failures. We

have a chapter for each area that discusses our contributions and the Appendix contains

our published papers. We can summarize our contributions in this area as the following:

1.2.1 atSNP Search

• a genomic search tool that provides the knowledge of human SNPs on TF-DNA

interactions based on PWM

• a comparison of MySQL, Apache Cassandra and Elasticsearch for use as a genomic

SNP-PWM motif databases

• a big data loading method to extract transform and load genomic data using High

Throughput Condor (HTCondor) [3] for ingestion into a database

• a generation visualization library producing composite motif logo plots

1.2.2 Hard disk drive faults and failures

• a technique to partition by Hard Disk Drive Models (HDDM), instead of the com-

mon all-in-one bucket approach

4 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

• a new Machine Learning Method (MLM) that produces accurate predictive model

for HDDM

• identified failure attribute predictors which have not been mentioned previously in

the literature

1.2.3 Computational cluster task failure prediction

• provide an overview of task submission success/failure rates within a production

computational cluster

• identified key contributors to cluster task failures through MLM techniques of fea-

ture extraction

1.3 Organization of the Dissertation

Our work is organized to highlight our contributions and showcase that this body of work

is the beginning of a journey, not the end. Although this work showcases our novel con-

tributions to the field, it should be viewed as a step towards answering a larger question

in the field of failure and fault prediction in computational systems. As such, we start

our story by first explaining terms that will be used in later chapters. These definitions

will be used in later chapters. We hope that the definition chapter will provide context to

the importance of our work. This context is important, especially since our work spans

numerous disciplines, from life sciences to distributed computational infrastructure to

failure and fault prediction.

Our body of work is organized as follows: Concepts and Terminology; atSNP back-

ground and related work; atSNP search contributions and results; Hard disk drive faults

and failures and cluster task failures; background and related work; Hard disk drive faults

and failures contributions and results; Computational cluster task failure contributions

and results; Conclusions; Future Work; Appendices; and Bibliography.

The appendices contain our peer reviewed published papers, with the exception being

the last paper in the appendix. The last appendix is a work in progress, but has been

published at arxiv.

Chapter 2

Concepts and Terminology

Preamble

In this chapter, we present concepts and terminology related to our work. Our work

encompasses numerous domains, so this work will use terms spanning these domains

including: Computer Science, Computer Engineering, Genetics, and Bioinformatics. This

chapter will help in understanding our work through knowledge of existing domain-

specific terms and background.

This chapter is organized as follows: atSNP Search; hard disk drive failures, faults;

and computational cluster task failures.

2.1 atSNP Search

Our first contribution, atSNP search [1], is a genomic search engine database that allows re-

searchers to better understand gene expression. Specifically, this genomic database helps

researchers identify and quantify the best DNA sequence matches to a TF PWM. Our

work attempts to simplify many of the biological terms and focuses on the computational

terms used by the atSNP search project. Although biological terms and processes have

little to do with computing, the terms are used as a way to refer to complex relationships

and describe the results of the biological processes and the corresponding genomic data

analysis. As such, the key concepts are: DNA, Genomic Wide Association Study (GWAS),

SNP, TF, DNA sequencing, binding affinities, and PWM.

5

6 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

2.1.1 atSNP Biological Terms

2.1.1.1 Nucleotide

The most basic building block of the hereditary material used by all living species. Each

nucleotide consists of three key components:

• Nitrogenous base: This can be either a purine (double-ringed structure) or a pyrimi-

dine (single-ringed structure). The specific type of base determines how nucleotides

pair with each other in DNA and RNA.

• Pentose sugar: This is a five-carbon sugar molecule, either ribose (in RNA) or de-

oxyribose (in DNA). The presence or absence of an oxygen atom in the second car-

bon distinguishes these two sugars.

• Phosphate group: This phosphate group provides a chemical linkage between nu-

cleotides, allowing them to form long chains, which is the essential structure of nu-

cleic acids.

The specific combination of these three components determines the unique identity and

function of each nucleotide [4]. They play a vital role in the storage of genetic information.

Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C],

guanine [G], adenine [A], or thymine [T]), a sugar called deoxyribose, and a phosphate

group.

2.1.1.2 DeoxyriboNucleic Acid (DNA)

DNA is the foundational hereditary material used by all living species [5]. Often de-

scribed as the biological library or blueprint of life [6], DNA is a polymer composed of

two poly-nucleotide chains that twist around each other to form a double helix, as de-

scribed by Watson and Crick [7]. This double helix carries the genetic information of all

organisms. The length of the double helix is not fixed and is broken down into physical

units called chromosomes.

DNA encode genes. Genes are the instructions for building proteins and molecules.

Genes are not simply continuous stretches of DNA. They are organized into regions with

distinct functions:

• exons: These are the coding regions of a gene, containing the instructions for protein

synthesis.

2. CONCEPTS AND TERMINOLOGY 7

• introns: These are non-coding regions that interrupt exons and are spliced out dur-

ing gene expression.

• regulating regions: These regions flank genes (Section 2.1.1.11) and contain short

specific DNA sequences called motifs. These motifs act as binding sites for proteins

called TF.

TF bind to specific motifs based on the unique arrangement of nucleotides within the mo-

tif. This binding can either activate or repress the gene’s transcription (copying DNA into

RNA). By coordinating the binding of multiple TF to different motifs within regulating

regions, cells can fine-tune gene expression, ensuring that the right proteins are produced

at the right time and in the right amounts.

2.1.1.3 Transcription Factors (TF)

Transcription Factors are specialized proteins, also known as sequence-specific DNA bind-

ing factor, that bind to specific short DNA sequences called motifs within the regulatory

regions of genes. These motifs act as control elements, influencing whether or not a gene

is transcribed into RNA. By binding to motifs, transcription factors can activate or repress

gene expression, regulating the production of cellular products encoded by genes.

2.1.1.4 Single Nucleotide Polymorphism (SNP)

A DNA sequence variation that occurs when a single nucleotide is altered in the genome

sequence and the particular alteration is present in at least 1% of the population. It is

important to understand that a SNP is a single letter change in a DNA sequence. SNP

provide the basis of genetic variation and impacts the heterogeneity of a given species.

Most DNA of a given species is almost all identical to each other, except for small

variations in the DNA sequence locations. Individuals within a species or subspecies can

be traced and tracked by the unique SNP in their DNA sequence and comparing these

changes with another individual of the same species.

Some single nucleotide changes can also exhibit phenotypic variation, such as skin,

eye, or hair color. SNPs are the most common type of genetic variation, where a single

nucleotide differs between individuals at the same position on the chromosome. These

8 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

variations are identified by unique IDs prefixed with ”rs,” followed by a number indicat-

ing the specific change in the DNA sequence. The impact of an SNP on the phenotype

depends on its location within a gene and its variant allele:

• coding region (exon): If a SNP alters a nucleotide within a coding region (exon), it

can change the coded amino acid in the resulting protein. This change in amino acid

sequence can affect the protein’s shape, stability, or function, potentially leading

to altered cellular processes and ultimately influencing an individual’s phenotype.

For example, five SNPs have been associated with human hair color in the Polish

population [8].

• regulatory region: SNPs located outside the coding region but within regulatory re-

gions upstream of the gene can affect gene expression by altering the binding affinity

of TF. TF are proteins that bind to specific DNA sequences (motifs) and regulate the

initiation of gene transcription. A SNP within a motif can strengthen or weaken the

binding of a TF, leading to changes in the level of gene expression and potentially

affecting the production of the encoded protein. This, in turn, can influence various

cellular processes and contribute to phenotypic variation. An example of this can

be seen in the association between brown eye color in rs12913832 individuals and

SNPs in genes: TYR, TYRP1, and SLC24A4 [9].

Therefore, the location of a SNP within a gene plays a crucial role in determining its po-

tential impact on protein function and, ultimately, on an individual’s phenotype.

2.1.1.5 Exon

The coding region that can change the sequence of coded amino acids in the resulting

protein. This change in amino acid sequence can affect the protein’s shape, stability, or

function, potentially leading to altered cellular processes and ultimately influencing an

individual’s observable traits.

2.1.1.6 Introns

These are non-coding regions that interrupt exons and are spliced out during gene ex-

pression.

2. CONCEPTS AND TERMINOLOGY 9

2.1.1.7 Regulatory region

SNPs located outside the coding region, but within regulatory regions upstream of the

gene, can affect gene expression by altering transcription factor binding.

2.1.1.8 Motifs

Short, specific DNA sequences located within regulatory regions of genes. These motifs

act as binding sites for TF. The specific sequence of a motif determines which TF can bind

to it, allowing targeted regulation of gene expression.

2.1.1.9 Alleles

Gene variants and are usually inherited from each parent. These variations arise from

differences in the DNA sequence. Variations can range from SNPs to larger insertions

or deletions of DNA segments. a variant of the sequence of nucleotides at a particular

location, or locus, on a DNA molecule. The coded region provided the sequence to build

a protein or an RNA molecule. An allele can differ in a single position through SNP or

can also have insertions and deletions of up to several thousand DNA base pairs. Alleles

2.1.1.10 Phenotypic variation

Refers to the observable differences in traits among individuals within a population of

the same species. These traits can encompass an organism’s physical form (morphology),

physiological and biochemical properties, behavior, and even the products of behavior.

The underlying causes of phenotypic variation can be attributed to two main factors: ge-

netic variation and environmental influences.

2.1.1.11 Genes

The fundamental units of heredity, residing on chromosomes and composed of deoxyri-

bonucleic acid (DNA). Genes carry instructions for building proteins or RNA molecules.

The coded instructions, the specific sequence of nucleotides on a DNA molecule to build

a protein or an RNA molecule. They exist in different versions, called alleles. Imagine a

gene as a blueprint for building a protein. Alleles represent variations in this blueprint

that arise from differences in the DNA sequence at a specific location (locus) on a chro-

mosome.

10 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

These variations can be as subtle as a single misplaced nucleotide or as dramatic as

the insertion or deletion of larger DNA segments. An individual inherits two alleles for

each gene, one from each biological parent. The specific combination of alleles that an

individual has for a particular gene can influence the expression and function of the gene,

which can lead to phenotypic variation.

2.1.1.12 Biological term relationships summary

• Genes are composed of DNA and exist in different versions called alleles

• Alleles can arise due to variations in the DNA sequence, including SNPs

• SNPs within regulatory regions can influence how TF bind to motifs, ultimately

affecting gene expression

• TF regulate gene expression by binding to specific motifs within regulatory regions

of genes

• The interactions between DNA sequence variation (SNPs and alleles) and transcrip-

tion factor binding to motifs plays a crucial role in determining which genes are

expressed and at what level, influencing cellular function and phenotypic variation

2.1.2 atSNP statistical model

The affinity testing for impact of a SNP’s (atSNP) on the TF binding in human genome

is a statistical algorithm for binding affinity scores. atSNP was originally developed by

Zuo [2], refined by Sunyoung Shin and Sündüz Keleş. This work was motivated by

GWAS, that revealed that most disease-associated SNPs are located in regulatory regions

within introns or in regions between genes [10]. Regulatory SNPs (rSNPs) are SNPs that

affect gene regulation by changing the TF binding affinities of genomic sequences. Iden-

tifying potential rSNPs is crucial to understanding the mechanisms of disease. In silico

methods that evaluate the impact of SNPs on TF binding affinities are not scalable for

large-scale analysis.

Specifically, the atSNP statistical method is an affinity testing technique of regulatory

SNP’s. It was developed as an R bioconductor package [2] for identifying regulatory SNPs

to test and identify regulatory SNPs. This method implements an importance sampling

algorithm coupled with a first-order Markov model for background nucleotide sequences

2. CONCEPTS AND TERMINOLOGY 11

to test the significance of affinity scores and SNP-driven changes in these scores [2], as can

be seen in Figure 2.1. It offers three key functionalities:

• Binding Affinity Score Calculation: atSNP calculates binding affinity scores for both

the reference allele (the most common DNA sequence at a specific location) and

the SNP allele (a variation of the reference allele) using position weight matrices

(PWMs). These PWMs represent the likelihood of specific DNA sequences binding

to transcription factors (proteins that regulate gene expression)

• Allele-Specific p-value Estimation: atSNP computes p-values for the binding affin-

ity scores of each allele. A p-value indicates the probability of observing a score

as extreme as the one calculated, assuming there’s no real difference between the

reference and SNP alleles

• Affinity Score Change Significance Testing: atSNP calculates p-values specifically

for the changes in binding affinity scores between the reference and SNP alleles. This

allows researchers to identify SNPs that potentially disrupt or enhance the binding

of transcription factors to regulatory regions in DNA.

FIGURE 2.1: SNP plus motif results in a composite logo plot with the atSNP Markov
model

2.1.2.1 Logo Plots

The PWM is visualized as a sequence motif, where the letter heights are scaled based on

their information content. The thick letters are the best match and the thin letters are from

12 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

the reference or SNP allele. These plots reveal a SNP gain or loss of function based on

their height and stacked letters.

FIGURE 2.2: How to read the PWM of a logo plot, rs117959046 is the position of the
reference gene, GATA2 is the Transcription Factor

2.1.2.2 JASPER

The JASPAR database contains a curated, non-redundant set of profiles, derived from

published collections of experimentally defined transcription factor binding sites for eu-

karyotes. The primary difference to similar resources such as TRANSFAC [11]. For our

work, we are specifically using the 2014 homosapien (aka human) dataset from JASPER [12]

mainly due to the open data access, non-redundancy and quality [12]. JASPAR contains

205 motifs that are used to calculate PWM of SNPs potentially affecting TF bindings.

2.1.2.3 ENCODE

The ENCyclopedia Of DNA Elements (ENC-O-D-E) is a public research consortium of

human and mouse genomes. The encyclopedia has gone through numerous revisions.

For our research, we used ENCODE revision 3. ENCODE contains 2065 motifs that are

used to calculate PWM of SNPs potentially affecting TF bindings.

2. CONCEPTS AND TERMINOLOGY 13

2.1.2.4 Affinity Testing

Affinity Testing is a method to score individual SNP based on the TF binding affinity of a

given SNP to a motif.

2.1.2.5 Position Weight Matrix (PWM)

Also known as a position-specific weight matrix (PSWM) or a position-specific scoring

matrix (PSSM), PWM is a commonly used representation of motifs in biological sequences.

In this context, they are calculated from data generated from a DNA sequencer. The re-

sulting data is based on the sequence surrounding a SNP and represents the distribution

of nucleotides (A,T,C,G) as a position-specific scoring matrix. A motif descriptor attempts

to capture the intrinsic variability characteristic of position-specific sequence patterns. A

sequence weighted position profile is derived from the resulting set of aligned sequences

that is functionally related, see Figure 2.2.

2.1.2.6 DNA sequencing

Obtaining an individual organism’s unique DNA fingerprint or sequence is done through

a process called DNA sequencing. The process follows these steps: cellular DNA extrac-

tion, library preparation, DNA sequencing on a Next Generation DNA Sequencer (NGS),

alignment and data analysis.

The science and the bench science process of NGS DNA sequencing fall outside the

scope of this body of work. Although bench science is outside the scope of this work, the

end result of the NGS is a digital representation file containing fragments of DNA in no

specific order. A typical digital file format produced by an NGS is FastQ [13]. An exam-

ple of this file type and content can be seen in Figure 2.3. FastQ files contain thousands

of outputs for short read sequences and their corresponding quality scores. (Short read

sequences are an artifact of the methods used in DNA sequencing.)

Sequence reads from FastQ files are aligned to a reference genome, which is a col-

lection of merged genomes of the same species. A reference genome is the basis for

understanding the resulting Variant Call File [15] (VCF), which is a collection of Single

Nucleotide Polymorphism sequence variants or mutations.

14 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Example FastQ file contents
@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=72
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCC
TTAACAACTTAAGGGTTTTCAAATAGA
+SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=72
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9ICIIIIIIIIIIIIIIIIIIIIDIIIIIII IIIIII
@SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=72
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGAAGCAGAAGT
CGATGATAATACGCGTCGTTTTATCAT
+SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=72
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII6IBIIIIIIIIIIIIIIIIIIIIIIIGII IIIII-I)8I

FIGURE 2.3: Example from Illumina sequencing of Escherichia coli str. K-12 substr.
MG1655 genomic paired-end library[14]

AlignmentFastQ VCF File

FIGURE 2.4: A typical analysis process pipeline for primary analysis of the FastQ file
follows the sequence

2.1.3 Sequence alignment

Sequence alignment is a way to compare the order of nucleotides in two or more DNA

sequences. There are two main types of alignment methods:

• Pairwise alignment: Compares only two DNA sequences. This is useful for detailed

comparison of closely related genes

• Multiple sequence alignment: Aligns multiple sequences simultaneously. This helps

identify conserved regions across a group of related genes or species

Alignment follows this generalized algorithmic order:

1. Arranging Sequences: DNA sequences are displayed in rows, with corresponding

nucleotides aligned in columns

2. Gaps: Insertions and deletions (indels) in one sequence compared to another are

represented by dashes (-) to maintain alignment

3. Scoring: Alignment algorithms consider matches, mismatches, and gaps when scor-

ing the alignment. A good alignment maximizes matches and minimizes mismatches

and gaps

2. CONCEPTS AND TERMINOLOGY 15

2.1.3.1 Genome Wide Association Studies

GWAS are an analytical technique for understanding the impact of genetic variation on

the phenotypic traits of individuals. These studies use hundreds, thousands or even mil-

lions of individuals DNA sequences and associate SNP’s to individuals with particular

phenotypic traits. To obtain results, statistical analysis techniques, such as Linkage dis-

equilibrium estimation [16], are performed on all individuals in a studied population.

With a large enough population, Linear Mixed Effect Models estimations can be applied

to determine statistically significant direct associations to a SNP or multiple nucleotide

polymorphisms.

2.1.3.2 Linear Mixed effect Models (LMM)

Generalized Linear Mixed Effect Models are a combination of a Generalized Linear model

with Monte Carlo Markov Chain functionality [17]. These models are used for analyzing

data that have fixed and random effects. The fixed effects are constants and represent

the systematic part of the model, such as the overall mean or the effect of a specific treat-

ment, while the random effects account for random variability, typically associated with

individual subjects or experimental units. They are particularly useful in dealing with

clustered or hierarchical data or in situations where observations are not independent,

but grouped. By incorporating fixed and random components, Linear Mixed effect Model

(LMM)s provide a more nuanced understanding of the data, allowing analysis of complex

data structures and exploration of variation at both the population and group / individ-

ual levels. This approach also helps in handling missing data and balancing the trade-off

between bias and variance, making it a powerful tool for longitudinal and multi-level

data analysis. This statistical method provides Bayesian analysis functionality and is suit-

able for random sampling errors [17].The linear mixed effect model is especially useful

for GWAS analysis.

2.1.3.3 Binding Affinity Score

The Binding Affinity Score is a statistical weight used by atSNP for calculating a PWM as

parameter to compute log likelihoods for all sub-sequences overlapping of SNP locations

that have the same length as the input motif. The best matches are those with the highest

logarithmic likelihood with both the SNP and reference alleles.

16 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

2.1.4 atSNP Computational Infrastructure Terms

2.1.4.1 Computational Cluster

Computational clusters are complex systems organized to optimize performance. These

clusters consist of numerous systems arranged in a distributed manner such that each

member of the distributed system is independent but acts in synchrony as a group. These

systems are typically managed through a cluster scheduler that is responsible for send-

ing tasks to nodes and having these tasks run on the nodes in parallel. The behaviors

of these computational cluster systems mimic the behaviors of other complex systems in

nature [18]. Computational clusters, as well as other complex systems, are specifically sus-

ceptible to connectivity loss and synchrony issues. This connectivity loss and synchrony

issue is typically referred to as the Consistency, Availability, and Partition-able Theorem,

aka Brewer’s Theorem [19]. According to the theorem, any distributed system or data

store can simultaneously provide only two of three guarantees: consistency, availability,

and partition tolerance. Various cluster schedules attempt to address Brewer’s Theorem

by making the trade-off between consistency, availability, and partition tolerance.

2.1.4.2 RPM based Linux system

Based on the Linux operating system, originally developed by Linus Torvalds [20]. Red-

hat Package Manager (RPM) is a way of compressing and packing application code in a

contained verifiable process complete with a full listing or manifest of all the files within

the package. These packages are often versioned and often contain, within the manifest

file, a listing of package sub-dependencies.

2.1.4.3 Divide and conquer

The process of dividing a problem or application into a smaller and more manageable

domain space. For each broken apart, smaller, more manageable pieces that are then ana-

lyzed independently. Utilizing this method provides a pathway towards scalable comput-

ing by utilizing the parallel and independent characteristics of each broken apart piece.

Several strategies for designing divide-and-conquer algorithms arise and are used to de-

rive algorithms for sorting a list of numbers, forming the Cartesian product of two sets,

and finding the convex hull of a set of planar points [21]. This technique is used heavily

in computational clusters.

2. CONCEPTS AND TERMINOLOGY 17

2.1.4.4 Replication

Replication is used when data is copied to another location, whether it is another system

or a different location on the same computational system. Replication is used to provide

a level of resilience for data by helping to recover from failures by providing multiple in-

dependent data copies. Other examples include Redundant Array of Inexpensive Drives

(RAID) [22] and Erasure coding [23]. Erasure coding is a forward type error coding using

separate locations [24]. Replication is a common practice for disaster recovery; data that

have been replicated can be used should a disaster occur. Replication can occur at multi-

ple levels within a system. These levels include the data block (i.e., lowest OS level), file

system level, or application level.

2.1.4.5 Data sharding

Data sharding is a partitioning architecture technique used to manage extremely large

data sets. The data is broken into small pieces, or partitions, that form the basis of a

data shard. These shards, in turn, are stored in locations on separate database servers

and perhaps in different physical locations [25]. There are numerous advantages to data

partitioning through data sharding; specifically, databases and files are divided and dis-

tributed among multiple servers, reducing the total number of rows of files retained on

each server. Multiple shards can be placed on multiple machines, forming a many-to-

many relationship. This enables the distribution of data over a large number of machines,

greatly improving performance. The disadvantages of data sharding include complexity,

data consistency, and slower performance during shard rebalancing.

2.1.4.6 Extraction Transformation Loading

Extraction Transformation Loading is a technique used frequently to populate databases

and data warehouses. This technique is used to Extract the data from the original dataset,

Transform it into a database format, and Load it into the database. Map Reduce is a

specific case of ETL. Map Reduce will map the entire dataset to a format that is expected

and then filter the mapped data set to a smaller size (which is why it reduces) [26].

18 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

2.1.5 atSNP Database Types

2.1.5.1 Databases for large scale datasets

Large datasets are defined as any dataset that cannot be stored, indexed, and searched

by one system in a practical manner. Large datasets may contain billions or more records

and the insert, search, and indexing capabilities are beyond the scope of any single system.

Therefore, multiple computers are needed to distribute and search records from these data

sources.

2.1.5.2 Relational databases System (RDBMS)

A relational database system is defined as a database that stores data in tables and ta-

bles use these tables to implement relational algebraic equations for queries and provides

ACID (Atomicity, Consistency, Isolation, Durability). The ACID properties of database

transactions that are intended to guarantee the validity of the data despite errors, power

failures, and other mishaps[27]. Data is accessed in these systems using the algebraic re-

lationship method originally proposed by Codd[28]. Functionality exists in these RDBMs

systems, such as select, joins, unions, excludes, through relationship joins from multiple

data tables. Each data table is connected or ”joined” to other data tables through a special-

ized first order logic algebric based language known as Standard Query Language (SQL).

Using SQL results in a dataset list from the joined data tables. For our work, we focus on

the MySQL RDBMS systems [29].

2.1.5.3 MyISAM

MyISAM is a MySQL storage engine and it was the original MySQL database engine until

version 5.5 [30]. It uses table-level locking, where operations on one part of the table pre-

vent access to the rest, potentially hindering performance in table updates in high-write

environments. MyISAM does not support transactions, meaning that it cannot group op-

erations into single atomic units, which is a drawback for applications that require strong

data integrity. However, it excels at full text indexing and searching, making it suitable for

applications such as search engines. MyISAM stores data and indices in separate files that

require applications to manage data relationships. Due to these characteristics, MyISAM

is often chosen for scenarios for high performance, heavy read operations, and minimal

2. CONCEPTS AND TERMINOLOGY 19

concurrent writes, but its limitations in transaction support and concurrency have led

many to prefer other engines like InnoDB for more complex applications.

2.1.5.4 InnoDB

InnoDB is a MySQL storage engine, known for its robust data integrity and support for

ACID-compliant transactions. It became the default storage engine from MySQL version

5.5 onward. In contrast to MyISAM, InnoDB supports row-level locking, allowing for

more efficient processing of concurrent data operations, making it well suited for high-

transaction environments. It also provides foreign key constraints, ensuring referential

integrity across different tables. InnoDB’s design focuses on reliability and consistency,

with features such as crash recovery and automatic rollback to safeguard data [31]. Its

ability to handle large volumes of data and support for full ACID compliance make Inn-

oDB a preferred choice for applications that require secure and reliable data management,

particularly for business and enterprise-level applications.

2.1.5.5 NoSQL Document Stores

NoSQL document store databases are non-tabular databases that store data outside of

a traditional relational database table structure. A NoSQL database provides a flexible

schema often based on a grouping of key, value objects and typically scales with data size

and high user loads.

2.1.5.6 NoSQL Big Table Stores

NoSQL Big Table stores are largely based on the original Google BigTable [32]. These

databases are presented as matrix style spreadsheet tables with data structures based on

row, column, and data. The row, column, data; data structure format is called a triple,

and this structure can scale beyond what can be hosed within a given desktop spread-

sheet application. Current example databases include: Apache Cassandra [33], Apache

HBase [34], and Google BigTable.

20 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

2.2 Hard disk drive faults and failures

2.2.1 Disk failure

A hard disk failure event refers to the malfunctioning or breakdown of a hard disk drive

(HDD), which is a primary storage device in computers and servers. This type of failure

can result from a variety of factors and causes the hard disk to be unable to perform its

normal operations, potentially resulting in the loss of data stored on the disk.

A common type of disk failure event is block corruption. Block corruption can man-

ifest itself as either a physical or a logical failure event. This type of corruption can be

caused by physical damage or by software bugs that miscalculate block location bound-

aries.

There are two main types of hard disk failure, physical and logical.

2.2.2 Physical (or Mechanical) Failure

Physical failures occur when the physical components of the hard disk, such as the spin-

dle motor, read/write head, or platters (where data is stored), become damaged or wear

out over time. Causes can include mechanical wear, exposure to extreme temperatures,

physical shocks (such as dropping the device), or manufacturing defects. Symptoms may

include unusual noises (like clicking or grinding sounds), overheating, or complete non-

functionality.

2.2.3 Logical Failure

Logical failures occur when the problem is related to the software or file system of the

disk, rather than its physical components. It can be caused by malware, accidental dele-

tion of critical system files, software corruption, or errors in the disk’s filesystem. Al-

though the disk hardware might be physically intact, the data on the disk can become

inaccessible or corrupt.

When a hard disk failure event occurs, it can have significant consequences and can

result in data loss. Additionally, failure events can produce events beyond the immediate

hard disk failure. Often hard disk drives share communication pathways, aka bus, with

other hard disk drives and a failure disk drive may cause other disks on the same commu-

nication pathway to become unresponsive or have unreliable communication patterns.

2. CONCEPTS AND TERMINOLOGY 21

2.2.4 S.M.A.R.T

Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T) is a monitoring sys-

tem that is integrated into Hard Disk Drive (HDD) and Solid-State Disks (SSD). This tech-

nology is designed to detect and report various indicators of drive reliability with the

intention of anticipating imminent hardware failures.

Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.) functions by con-

tinuously monitoring several key indicators of drive performance and health, such as

read error rates, spin-up time, and temperature. Each of these indicators is referred to as

a S.M.A.R.T. attribute, and each attribute has a specific threshold value determined by the

drive manufacturer.

S.M.A.R.T. data can be accessed through various software tools, allowing system ad-

ministrators to monitor the health status of HDDs and SSDs. This technology is widely

used in both personal and enterprise computing environments as part of a comprehensive

approach to hardware reliability and data integrity management.

2.2.5 Backblaze dataset

The Backblaze data set consists of a collection of S.M.A.R.T. attributes snapshot. These

snapshots are taken once a day from every operational hard disk on all servers hosted at

Backblaze data centers located in Sacramento, California; Stockton, California; Phoenix,

Arizona; Reston, Virginia; and Amsterdam, The Netherlands. The data includes basic

drive information along with S.M.A.R.T. attributes for each drive. The information of

each disk drive is collected and homogenized into a comma separated value file with

each row representing one disk drives data per day.

Backblaze is a company founded in 2007 as a business-to-business cloud storage and

computer backup service. They provide services to clients in both business and direct-to-

customer markets. In 2013, Backblaze started publishing their dataset and statistics for

insights to the general public. Their data sets are available here [35].

2.2.6 Failure Mode and Effective Analysis (FMEA)

Failure Mode and Effective Analysis is a powerful technique used to proactively manage

risk in computer systems. Imagine that you are building a new server to store customer

data. A Failure Mode and Effective Analysis (FMEA) analysis would not wait for the

22 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

server to crash before taking action; instead, it would help you identify potential weak-

nesses beforehand.

Here’s how FMEA works in this scenario:

• Identifying failure modes: The first step involves brainstorming all the ways the

server could potentially fail. This might include hardware malfunctions such as

a failed hard drive, software bugs that corrupt data, or even a power outage that

disrupts operations.

• Analyzing effects: For each identified failure mode, FMEA looks at the potential

consequences. A failing hard drive could lead to data loss, while a software bug

might cause the server to crash and become unavailable. Understanding these ef-

fects helps prioritize which failures are most critical.

• Assessing likelihood and detectability: FMEA goes beyond just listing problems. It

also considers how likely each failure mode is to occur (occurrence ranking) and

how easily we can detect it before it causes a major issue (detection ranking). For

instance, a server with redundant hard drives might have a lower likelihood of data

loss from a single drive failure compared to a server with just one drive. Similarly,

having monitoring systems in place can help detect a software bug before it leads to

a crash.

• Prioritizing risks: By taking into account the severity of the effects, the likelihood of

occurrence, and the ease of detection, FMEA assigns a risk priority number (RPN)

to each failure mode. This score helps focus our efforts on the weaknesses that pose

the greatest threat.

• Developing corrective actions: Once the most critical failure modes are identified,

FMEA guides the development of corrective actions to prevent them or minimize

their impact. This could involve using redundant storage systems for critical data,

implementing regular software updates to fix bugs, or having backup power sup-

plies to ensure uninterrupted operation during outages.

By following these steps, FMEA helps create a more robust and reliable computer sys-

tem. It is a proactive approach that can prevent costly downtime, data loss, and security

breaches. FMEA is a valuable tool used throughout the computing industry, from design-

ing hardware components to developing complex software applications.

2. CONCEPTS AND TERMINOLOGY 23

2.2.7 Root Cause Analysis (RCA)

Root Cause Analysis is a structured investigation that aims to identify the true cause of

a problem and the actions necessary to eliminate it [36]. The primary goal of Root Cause

Analysis (RCA) [36] is to determine the underlying reasons why a problem occurred in

the first place. By pinpointing these root causes, rather than simply addressing the imme-

diate symptoms, more effective and long-lasting solutions can be developed to prevent

the recurrence of the problem. RCA is a post-event reactive type of analysis instead of a

proactive type, where an event has not yet occurred.

In practice, RCA involves collecting data, analyzing information, and identifying the

relationships between the contributing factors and the problematic outcome. The process

often involves asking a series of ”why” questions to drill down to the core issue. This

method helps to move beyond the treatment of superficial symptoms and instead focuses

on implementing changes that address the deeper issues within a system or process.

RCA is widely used in various fields, including engineering, healthcare, information

technology, and business process improvement. It is a key component of problem-solving

and quality management initiatives, as it helps organizations learn from failures or near-

misses; thereby, improving operations and reducing the likelihood of future problems.

2.2.8 Failure

Failure refers to the state or condition in which a system or component ceases to perform

its intended function correctly or completely. These disruptions can occur at various lev-

els, from the hardware components themselves to the software applications running on

them. Failures are unrecoverable error states.

Failure in computing systems can manifest itself in various forms, such as system

crashes, data loss, incorrect data processing, or unresponsiveness [37]. The nature of these

failures can be transient, recoverable, or permanent, depending on the severity of the issue

and the system’s ability to manage or rectify the problem.

2.2.9 Faults

A ”fault” refers to an abnormal condition or defect at the component, equipment, or sub-

system level which may lead to failure. This concept is crucial in understanding and man-

aging the reliability and stability of computing systems. A fault in a computing system

24 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

can arise from various sources, such as errors in code, hardware malfunctions, incorrect

user input, or environmental factors impacting the system’s operation.

When including time as a factor, faults fall into the following three categories [38]:

• Transient faults: This type of fault occurs for a short time period and then disappears

without physical damage to the processor. It is often induced by electromagnetic

interference and cosmic radiation.

• Intermittent faults: This type of fault occurs frequently, and it is difficult to detect

because after its occurrence the system operates correctly.

• Permanent faults: This type of fault results from hardware component failure or

manufacturing defects. Recovery from this kind of fault is only possible by replacing

or repairing the faulty component.

Understanding and mitigating faults is crucial to ensure the reliability, availability,

and security of computational systems. Here we breakdown the fault by type:

• Hardware Faults: These are physical malfunctions within the hardware components

of a computer system, such as memory errors, processor malfunctions, or disk drive

failures [39].

• Software Faults: These are errors or bugs in the software code that can lead to un-

expected behavior or system crashes. Software faults can be introduced during the

development process or arise due to external factors like unexpected inputs or de-

liberately [40].

• Environmental Faults: These are external factors that can disrupt the operation of a

computer system, such as power outages, extreme temperatures, or electromagnetic

interference [38].

Faults are typically considered the root causes of failure of a system to perform its

intended function. They can be latent, exist in the system without immediate effect, or

active, where their presence is immediately apparent through the system behavior. In

the context of software, faults might include bugs or glitches in programming, while in

hardware, they could encompass a wide range of physical or electronic issues.

Identification and fault management are a critical part of system design and main-

tenance. This involves not only detecting and correcting existing faults, but also antici-

pating potential faults through robust design and testing practices. In many computing

2. CONCEPTS AND TERMINOLOGY 25

systems, particularly critical applications, fault tolerance is an essential feature. This in-

volves designing the system in such a way that it can continue to operate, possibly at a

reduced level, even in the presence of faults.

2.3 Computational cluster task failures

2.3.1 Tasks

A computational task, otherwise known as a job or process, is an operation or a series of

operations assigned to a computer for execution. These tasks are designed with specific

objectives, such as data processing, calculation, or system management. Each task comes

with defined input data or instructions and is expected to produce specific outputs or

results. The execution of these tasks requires the consumption of computational resources,

including CPU time, memory, and storage.

The duration of a computational task can vary significantly, ranging from a few mil-

liseconds for simple operations to several hours or days for more complex ones. Tasks

can be independent, capable of being executed in isolation, or interdependent, where

they form part of a larger set of operations and may rely on the output of other tasks. In

resource-limited environments such as distributed networks and cloud computing, tasks

must be efficiently scheduled and prioritized based on resource availability, urgency, and

dependencies.

2.3.2 High Throughput Computing

HTC is a computing paradigm focused on the efficient execution of a large number of in-

dependent tasks. Unlike HPC, which is optimized to execute a few highly intensive com-

putations with task inter-dependencies requiring synchronization (like in simulations),

HTC is designed to process a vast number of tasks that, individually, may not require

much computational power but collectively represent a significant workload.

The most recognized system for implementing HTC is HTCondor [41]. Developed

by the University of Wisconsin-Madison, HTCondor is a workload management system

for compute-intensive jobs. It effectively harnesses underutilized CPU power from net-

worked desktop workstations and dedicated clusters to perform distributed batch pro-

cessing. It provides job queueing, scheduling, submission, and monitoring, aimed pri-

marily at the effective use of distributed computing resources.

26 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

The system is designed to dynamically allocate and realocate computational tasks.

HTCondor operates by managing a pool of processors, directing jobs to available re-

sources while ensuring that tasks are completed in a timely manner.

A key feature of HTCondor is its ability to schedule jobs based on the resource re-

quirements and policies defined by users and administrators. Implements a matchmak-

ing algorithm that pairs submitted jobs with available resources, making efficient use of

the computing infrastructure. This matchmaking process takes into account the specific

needs of each job and the current state of available resources, with the aim of maximizing

overall throughput.

2.3.3 Computational Cluster task scheduling

A computational cluster task schedule is a system that orchestrates the execution of tasks

on a cluster of interconnected computers. This schedule determines how tasks are as-

signed to various nodes, considering the specific requirements of each task and the capa-

bilities of each node.

Effective task scheduling ensures that the workload is evenly distributed across the

cluster, maintaining a balance, and preventing scenarios where some nodes are over-

whelmed while others are underutilized. It involves managing the priorities and depen-

dencies of tasks and ensuring that tasks of higher importance or those that are prerequi-

sites for others are executed in an appropriate sequence.

The task schedule is responsible for the efficient use of the clusters resources, includ-

ing CPU , memory, and storage. This involves not just maximizing the performance of

individual tasks, but also improving the overall throughput of the system, which is par-

ticularly crucial in high-throughput environments where the goal is to process a large

number of tasks within a given time frame.

In addition, the schedule might incorporate mechanisms for fault tolerance and re-

silience, enabling the system to handle node failures or other disruptions smoothly by

rerouting tasks as necessary. This capability ensures consistent operation and minimizes

downtime.

2.3.4 Biomedical Computing Group’s Computational Cluster

Our work depended on a computational cluster designed and build by BCG within the

Department of Biostatistics and Medical Informatics (BMI) at the University of Wisconsin

2. CONCEPTS AND TERMINOLOGY 27

Madison. This cluster was used as the source of data for the failure predictions of the

cluster computation jobs.

The cluster comprises 240 nodes of 64 bit multicore x86 systems, with a mixture of

hardware vendors and CPU brands. Hardware manufacturers used in the cluster include:

Dell, Cisco, Hewlett Packard Enterprise (HPE) and Supermicro. Here is a list of cluster

resources:

• 2,875 CPU cores

• 11.8 TeraByte (TB) system RAM

• 590.2 TB disk storage

• 6 compute racks

• OS - Redhat Package Manager based Linux

All BMI BCG computational cluster tasks are submitted by biostatisticians or medical

informaticians and require compliance or have data set restrictions that prevent them

from running on other infrastructures such as the Open Science Grid [42].

Chapter 3

atSNP Search Background and

Related Work

In this chapter, we present background and related work to atSNP search. We will dis-

cuss the current state-of-the-art and how the current state-of-the-art relates to the later

showcasing of our contributions.

We discuss computational systems, their implementation, and work being done to ad-

dress these issues. We examine the prior art in distributed NoSQL databases for genomic

storage. We examine SNP, TF, and logo plot motifs, Extract Transform Load (ETL) data,

and methods for a genomic search engine we built called atSNP search.

Bio-informatics human genomic SNP databases are a relatively small but important

cross-domain knowledge intersection between statistics, high-performance computing

and genetics. This emerging domain used genetic data sets, statistical methodologies, and

scalable computing algorithms. The computing power and statistical knowledge required

to perform variant assessments and variant alterations of SNP interactions is generally be-

yond the reach of the average genetic researcher.

”Affinity Test for regulatory SNP detection (atSNP) is a bioinformatics tool to calculate

and test large-scale motif-SNP interactions” [2]. Tools such as FIMO [43] and is-rSNP [44]

are computationally expensive analytical methods to calculate the p-value. atSNP uses

the importance sampling algorithm. To estimate p-values accurately without evaluating

the entire probability space, which grows exponentially with motif length. This signifi-

cantly reduces the analysis time, making atSNP a powerful tool for large-scale studies of

regulatory SNP interactions.

29

30 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

3.1 SNP motif databases: Comparison

Several SNP motif-based resources are currently available to quantify the regulatory im-

pacts of human SNPs. We identified and evaluated three SNP databases with compatible

attributes SNP2TFBS [45], Raven [46] and OncoCis [47]. SNP2TFBS, which is a SNP cat-

alog from the 1000 Genomes project [48], was our closest comparable. SNP2TFBS itself

contains a much smaller subset of variant-motif pairs that survive at the p-value cutoff

3106. Furthermore, the limitation of SNP2TFBS is a function of the evaluated SNP dataset

used, JASPAR. We also evaluated Raven, which pre-computed the results and made the

results available on a web server. OncoCis implements motif searches using the Possum

tool by Haverty et al. [49] for their data generation.

Numerous other examples of SNP databases [50] exist across the web with exam-

ples ranging from dbSNP [51] to dbGAP [52]. For example, the Genome Variation Map

database [53] recently published its current implementation, which contains a total of

about 4.9 billion variations using a MySQL database [29]. dbSNP also utilizes a Re-

lational Database Management System (RDBMS) [54], an entity-relation database [55],

which consists of well over 100 relational tables. These SNP databases differ from SNP

motif databases as they are not focused on the regulatory regions and their potential im-

pact on gene expression.

3.2 Infrastructure: database comparisons

Real-time searching of large datasets has been an active area of research, with numer-

ous NoSQL big data databases being produced for different use cases. These NoSQL

databases vary in type and purpose, with four main types being column-oriented, doc-

ument stores, key-value, and graph databases [56]. Each type of NoSQL database has

benefits and limitations, with individual NoSQL implementations choosing specific opti-

mizations based on the database domain.

NoSQL databases often house hundreds of billions of records. Netflix has a NoSQL

Cassandra [57] deployment consisting of 2,500 nodes hosting 420 TB of data. The Netflix

database handles over a trillion requests per day [58]. LinkedIn utilized Voldemort [59],

a key/value store. Google, often credited with starting the big data movement, created

the original BigTable NoSQL Engine [60]. It has been demonstrated that NoSQL databases

have been successfully deployed with hundreds of millions or billions of records and ”can

3. ATSNP SEARCH BACKGROUND AND RELATED WORK 31

result in a dramatic performance difference against RDBMS while dealing with hundreds

of millions or billions of records” [61]. It should be noted that none of these NoSQL

databases has been used for genomic genomic data.

Although the algorithmic implementation for each NoSQL sharded database varies,

each shares a divide-and-conquer approach through their distributed data storage en-

gine [62].

3.3 Prior Performance Comparisons: A Mixed Bag

Previous research comparing RDBMS and NoSQL databases [63] has yielded inconclusive

results [64]. Some studies, such as Puangsaijai et al. [65] found that NoSQL databases can

offer significant performance advantages. Their work showed that inserting data using

ETL pipelines into Redis (a NoSQL database) was more than 20 times faster than MariaDB

(an RDBMS similar to MySQL). Interestingly, the same study found that select operations

were comparable between both systems for most queries, except for a few simple equality

checks.

Another comparison, between MySQL and Cassandra, highlighted specific use cases

where Cassandra excelled [66]. However, this study did not explore ETL times. Puang-

saijai et al. also investigated range queries (greater than/less than) and found that the

NoSQL database outperformed MariaDB by a factor of 2.

3.4 Focus on ETL Performance

While surveys have evaluated performance characteristics like replication and query times

for databases like MySQL (considered similar to MariaDB) and Elasticsearch, they have

not explicitly focused on data ingestion (ETL) properties and processing times. Our study

aims to address this gap by specifically investigating the performance of ETL processes in

RDBMS and NoSQL databases.

3.5 Motif Logo plots libraries

DNA motif logo plot are frequently used to convey important information about the DNA

sequence characteristics. These motif libraries have been used largely by bioinformatics

32 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

professionals who frequently use tools such as R [67] and bioconductor [68]. Numerous li-

braries provide easy access to programmatically generate motif logo plots from within an

R program. Examples of such libraries include EDLogo plot [69], motifStack Vignette [70],

memes [71]. Work has also been done with applications such as weblogo [70], which uses

a server-side scripting language and Ghostscript [72] to generate motif logo plots.

In our development of the atSNP search web application platform, we searched the

literature for a JavaScript library to generate motif logo plots. At the time, no library

for web motif logo plot generation existed. Therefore, we developed a novel method

for displaying motif logo plots for consumption by our end users without relying on a

sub-application of R to generate each plot independently. Our work in 2017 included

developing a library to dynamically generate motif logo plots. This plot library is similar

to LogoJS [73] of today. However, LogoJS was first released in 2019 a full 2 years after our

atSNP search platform was released.

3.6 Extraction Transformation Loading data

BigDimETL [74] proposed a method of big dimensional ETL through a big data ETL

methodology; however, this work focused mainly on ETL of unstructured data through

Map-Reduce.

Recently, ETL for NoSQL has gained popularity especially in big dimensional ETL.

This was discussed in Mallek [74] in which they applied an adaptive ETL process to mul-

tidimensional data structures.

More recent research by Yulianto et al. [75] provided a demonstration of an ETL pro-

cess for distributed databases not built on Hadoop [76]. This work was built on Simit-

sis et al. [77], which proposed a real-time partitioning method for ETL workflows. This

partitioning workflow provided an original algorithmic approach for real-time data pro-

cessing. This work is notable because it addresses a specific challenge in academic data

warehouses (slow ETL with distributed faculty data) and proposes a detailed ETL process

with data quality checks and a multidimensional model creation approach.

3.7 Hadoop

This body of work would be incomplete if we did not explicitly mention the Hadoop

framework for Map Reduce. Hadoop’s Map Reduce [78] is a big data framework for

3. ATSNP SEARCH BACKGROUND AND RELATED WORK 33

data manipulation that sits atop the Hadoop storage layer. Hadoop’s storage layer is

a clustered file system that provides a library for directly manipulating data within the

clustered file system to applications using this library at a storage node layer. The idea is

to reduce data movement on a network by combining compute and storage into a more

powerful system after realizing that data movement costs are the limiting factor for data

manipulations [78].

High-throughput methods have been extensively used within the Hadoop commu-

nity, but this requires applications to use the Hadoop library to manipulate the data within

the clustered file system. Hadoop Map-Reduce has been compared in greater detail to

other ETL tools and has proven to be significantly more efficient than other commercial

technologies [79] [80].

One major criticism of Hadoop is the administrative cost and expertise required for

setup and deployment. Therefore, using Hadoop for an ETL that is a one-off seems exces-

sive. Investigating ETL tools, we found that no one has used HTCondor as a platform for

ETL even though it is well suited for the task as a massively parallel ETL tool for NoSQL

databases.

3.8 Supportability and System Selection

Product supportability is crucial for project success. Therefore, we only consider systems

with an install base exceeding 7,000 units and a paid support option available.

• Apache Cassandra: According to Enlyft [81], Cassandra boasts an install base of

7,668

• MySQL: Chowdera reports a massive install base of 360,600,000 for MySQL [82]

• Elasticsearch: Based on data from paid customers, Elasticsearch has an install base

exceeding 17,000 [83]

3.9 Cluster Failure and Distributed Metadata

Previous research by Cha et al. [84] explored the prediction of faults and failures within

clusters, specifically focusing on distributed metadata. Their study revealed that a meta-

data server cluster with initially uniform metadata distribution becomes unbalanced over

time due to constant changes within the cluster. This imbalance worsens progressively. In

34 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

addition, restoring balanced metadata placement requires rebalancing among the servers.

However, rebalancing presents several challenges:

• Performance degradation of the metadata service during rebalance operations

• Rebalancing typically requires stopping applications on the filesystem, causing in-

convenience

• Potential cluster saturation leading to unexpected termination.

• Minimizing failed metadata operations during rebalance becomes increasingly dif-

ficult as the database size increases

3.10 Load Balancing and Failure Prediction in NoSQL Databases

Literature suggests a strong focus on load-balancing techniques for NoSQL databases

[85] [86]. Object storage systems, a related field, show relevant work in hard disk fail-

ure prediction for CephFS [87]. However, understanding faults and failures within the

NoSQL database system itself reveals a research gap [88] [89].

Yuan et al. [90] investigated user-reported failures in distributed systems, including

NoSQL databases such as HBase and Cassandra. Their findings highlight the importance

of simple testing to prevent critical failures. They further demonstrate the complex nature

of error manifestation sequences, which often require unusual combinations of events and

specific input parameters to trigger system failures [90].

Although Yuan’s work acknowledges the possibility of system failures arising from

complex sequences of events, it also emphasizes that 92% of the examined failures stemmed

from improper handling of non-fatal errors [90]. This suggests potential benefits in im-

proving the monitoring and response to events. Machine learning might provide a valu-

able tool for handling non-fatal faults that could otherwise overwhelm system adminis-

trators with excessive notifications.

In particular, 8% of these failures were deemed unavoidable by standard determin-

istic monitoring systems [90].

3.11 Addressing Batch-Correlated Disk Failures

Recent work by Ke et al. [91] proposes a ”Fractional-Overlap Declustered Parity” policy

to address batch-correlated disk failures (see Figure 3.1). Their approach involves adding

3. ATSNP SEARCH BACKGROUND AND RELATED WORK 35

an additional drive to each clustered server, potentially reducing the chance of cluster

failure by 99%. However, concerns exist about the feasibility of this method due to con-

solidation within the HDD storage market. After a recent merger of Hitachi and Western

Digital, there are now only three major HDD manufacturers (Seagate, Toshiba, and West-

ern Digital) [92]. This limited vendor landscape weakens the effectiveness of Ke et al.’s

multi-vendor approach, as Original Equipment Manufacturers (OEMs) often share simi-

lar hardware across their drives.

The SSD market presents a slightly more diverse landscape, with seven major ven-

dors controlling flash memory controllers (Greenliant Systems, Hyperstone, Kioxia, Mi-

cro, Samsung, SanDisk, and SK hynix) [92]. However, this limited competition still raises

concerns about the generalizability of Ke et al.’s multivendor strategy.

FIGURE 3.1: Batch correlated disk failure event sequence [93]

Chapter 4

atSNP Search

In this chapter, we present our atSNP search and attempt to answer the following ques-

tion: Is it possible to build a motif genomic database for SNP to PWM analysis that can

search and retrieve data from the entire human genome using atSNP data in real time?

This chapter also lays the foundation for work in other chapters. Specifically, in the pro-

cess of managing the atSNP Search system, we experienced a cascading failure event that

caused us to investigate additional areas of cluster operations.

We introduce the Affinity Testing SNP (atSNP) Search, a system designed for searching

billions of motif Single Nucleotide Polymorphism - Position Weight Matrix (SNP-PWM)

for helping genomic researchers determine TF binding affinities.

atSNP [2] can accurately estimate the p-values without evaluating the entire probabil-

ity space, so it is possible to evaluate the full human genome. The search engine data set

was produced using the atSNP R package. This package of atSNP R was used to sam-

ple the statistical significance of a given within a DNA segment of two human genomic

databases JASPER and ENCODE. The SNPPWM for TF was calculated during the gener-

ation of the atSNP data set. The analysis matched all 132,946,852 SNPs to the JASPAR and

ENCODE 2,270 motifs, totaling 307 billion (396 TB) SNP-PWM records. The data set gen-

erated on the Open Science Grid required 115,000 CPU hours which is 13.12 computing

years to complete.

The functional goals of atSNP Search included the search affinity scores by SNP ID,

chromosome, P-values, and SNPlocations. Within our data, we represented P-values as

floating-point numeric which needed to be searched as a range around a given P-values.

Thus, for atSNP Search the data set calculated the P-values and the affinity testing score

of each SNPPWM motif for each SNP. Specifically, we focus on the human genome from

37

38 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

dbSNP [51] Build 144 [94] of the human genome assembly GRCh38hg38 [95]. Therefore, to

access the result set for computing all these SNPs we created atSNP search infrastructure.

atSNP Search is tailored to explore, analyze, and interpret 37 billion SNP records. The

infrastructure is characterized by its commitment to precision, its ability to manage large

datasets, and its emphasis on user accessibility. As the genomic data landscape continues

to accumulate data at an exponential rate, the relevance of infrastructure such as atSNP

Search is becoming increasingly critical.

The atSNP Search web resource platform was motivated by the need for:

• providing genomic researchers atSNP statistics of the entire human genome through

a web interface

• a more comprehensive motif-based discovery of regulatory variants beyond the cur-

rent state-of-the-art

• statistical quantification of SNPPWM motif matches and changes in motif matches

and

• a convenient graphical depiction of potential TF on SNP-PWM via motif logo plots

This chapter describes the core components of the atSNP Search, outlining its design

principles, architectural framework, and functional capabilities. It also contextualizes the

infrastructure within the broader landscape of genomic research, highlighting the specific

needs and challenges that it addresses.

At the onset of our building atSNP Search, our goal was to provide access to atSNP

human genomic statistics with motif match without the user needing to individually com-

pute their own affinity testing of each SNP.

This chapter discusses the challenges of atSNP, a survey of databases, a novel ETL

method, and an overview of the final search engine. Our novel contributions to the field

include:

• a genomic search tool that provides the knowledge of human SNPs on TF-DNA

interactions based on PWM

• a comparison of MySQL, Apache Cassandra and Elasticsearch for use as a genomic

SNP-PWM motif databases

• a big data loading method to extract transform and load genomic data using HT-

Condor [3] for ingestion into a database

4. ATSNP SEARCH 39

• a generation visualization library producing composite motif logo plots

4.1 atSNP data

The search of genetic and genomic datasets at the SNP level presents considerable chal-

lenges due to the vast domain space. These data sets contain billions of minor sequence

variations, each contributing to the multitude of observed phenotypic variations [96].

DNA analysis in this context is heavily based on statistical probabilities, focusing on

specific sub regions within the DNA strand to understand phenotypic traits at a popu-

lation level. Notably, a single DNA base, known as a SNP, is pivotal in this analysis.

These SNPs are individual base-pairs in DNA segments that are produced from sequenc-

ing techniques such as the shotgun approach to DNA sequencing [97].

Our data set evaluated 133 million SNPs from the National Center for Biotechnology

Information’s (NCBI) database of genetic variation, against 2,270 PWMs sourced from

two primary transcription factor position weight matrix libraries: JASPAR and ENCODE

motif libraries. The analysis utilized in-silico calculations based on the atSNP statistical R

package, a method developed by Zuo et al.

We encountered significant challenges with data set size, rendering it impractical to

load from a single system. The JASPAR datasets, when compressed, had a compression

of 19.8x. However, the uncompressed size of the raw datasets necessitated a reevalua-

tion of standard ETL methods for a traditional Relational DataBase Management System

(RDBMS). The uncompressed raw data set from JASPAR was approximately 35.64 TB,

which, under our infrastructure constraints, would have required approximately eight

hours per day for a single system to simply transfer the data between systems using a 10-

gigabit network without any ETL processing. The actual wire speed of the data transfer

rate was further hindered by rate limits imposed by the data storage system, affecting our

ability to achieve wire speed for data ingestion.

The JASPAR dataset presented unique challenges to traditional RDBMS systems. The

sheer number of records posed an additional challenge. The upper bound on the number

of rows that could be stored in a single table of a traditional RDBMS was exceeded in our

case [98].

The ENCODE motif library, another critical component of our dataset, is a compressed

dataset of 19 TB. Decompressed, this expands to 362.39 TB, based on a compression ra-

tio of 19.07x. This ENCODE dataset result consists of approximately 279 billion records.

40 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Having such a large dataset, 309 billion records between both dataset results, totaling

398.03 TB.

We explored the feasibility of using open source, community-supported database en-

gines better suited to handle our specific requirements. This exploration aimed to identify

a database engine capable of effectively managing the large scale of our datasets.

We focused on evaluating the feasibility of distributed database systems, comparing

RDBMS and NoSQL databases.

4.2 Database survey and feasibility objective

In this section, we present our analysis of three prominent databases for managing and

querying up to 309 billion records. Our performance assessment included the MySQL

RDBMS, Apache Cassandra NoSQL large table, and Elasticsearch NoSQL document store.

The databases for our study were selected for their extensive open source community

base. Our assessment took into account data structures while simultaneously weighing

the practicality and efficacy of temporal ETL operations in addition to the latency of data

retrieval. Preliminary tests were performed using the atSNP test infrastructure, depicted

in Figure 4.1.

Providing 398.03 TB of SNP affinity scores with motif data with queryable parameters

in real time requires analysis of the data structures to optimize searchability. Furthermore,

data loading 398.03 TB of records can cause additional issues, such as throughput, as

loading times become a bottleneck.

Our first configuration, as seen in Figure 4.1, used three production servers augmented

with additional storage: 7200 rpm 4 TB hard drives. Two systems operated with three

HDD and one system operated with five drives. We used this configuration because these

were not running production compute tasks.

Machine RAM (GB) #Processors Total HDD (TB)
atsnp-db1 24 4 12
atsnp-db2 24 4 12
atsnp-db3 32 8 20
TOTAL 80 16 44

TABLE 4.1: Our first generation test Elasticsearch cluster composition

Our survey concentrated on evaluating the functional and operational viability of

database engines, with a specific focus on comparing MySQL RDBMS, with two distinct

4. ATSNP SEARCH 41

FIGURE 4.1: The test cluster

types of NoSQL databases: one based on a wide-column model and the other on a doc-

ument store model. Each database node was tested with the default minimal installation

configurations a RPM-based Linux system. The test setup included three nodes, as de-

tailed in Table 4.1. The key parameters assessed in our evaluation included ETL speeds,

search retrieval times (targeted within a 5-second window), estimated system administra-

tion effort for ongoing maintenance, scalability, and failure recovery capabilities.

To effectively evaluate our test cluster ETL process, we selected a data set size that was

large enough to meaningfully assess ETL times but small enough to be manageable. For

this purpose, a dataset comprising 1 million records was used for testing. This quantity

was arbitrary, but intuitively seemed adequate to meet our ETL requirements while also

allowing for effective SNP-specific and range queries against the database.

42 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

In the following sections, we present the results of our database survey. The results

involved loading, storing, and retrieving genomic datasets using three widely supported

and using databases: Apache Cassandra, MySQL, and Elasticsearch.

4.2.1 Apache Cassandra

Apache Cassandra is an open-source distributed NoSQL database management system

that is notable for its scalability and performance in managing large volumes of data

across multiple servers. This distributed NoSQL architecture uses a wide-column NoSQL

database engine. The wide-column NoSQL database architecture has been shown to per-

form better for ETL and retrieval than other databases [99].

Apache Cassandra is recognized for its scalability and performance, yet it encounters

significant challenges with full-table searches, especially for range queries. This database

system, designed for rapid writes and accessing data via specific keys, faces difficulties

with queries that require scanning extensive sections of a table. Performing full table

scans in Cassandra means reading every row to locate needed information, a process

that can lead to problematic response times. Such queries often become inefficient and

consume substantial resources, primarily due to the absence of traditional indexing found

in conventional relational databases.

We validated our first test with Apache Cassandra version 2.4. Our results showed

that Apache Cassandra had the best ETL speeds of any of our evaluated databases. Our

data were able to enter ETL into the test database at a rate of 14,664.2 records per sec-

ond and as seen in Table 4.2. We compare our results with the literature and find them

to be similar to the University of Toronto NoSQL benchmarks, suggesting that our work

was in line with others’ results for database ETL performance characteristics for data im-

port [100].

In addition to ETL, we evaluated a few other factors to select a successful database for

our atSNP search platform. These factors included data set scalability for data loading,

storage, and retrieval. For the first two, Apache Cassandra performed well. However,

data retrieval caused problems for this database choice.

A notable limitation of Apache Cassandra lies in the architecture choices made be-

tween hash table speed in key-value matches against sequential range matches, also known

as range queries. To execute range queries, which involve finding all values within a de-

fined upper and lower limit, Cassandra must perform a full table scan for each range

4. ATSNP SEARCH 43

and subrange query. Consequently, response times can vary significantly, ranging from a

second to several hundred seconds. This variability had a substantial impact on the user

experience of the atSNP search.

The nature of the queries played a crucial role, especially for range queries. The re-

sulting query-time variability caused response times that exceeded acceptable limits for

our users. Thus, due to these extended query durations, Apache Cassandra was ruled out

as a viable option for our needs based on this artifact.

4.2.2 MySQL

MySQL is a widely-used open-source RDBMS that functions as a server providing access

to databases. It is built on the Structured Query Language (SQL) which is used to add,

remove, and modify information in the database. MySQL is known to be reliable, robust,

and easy to use. MySQL has been in active development for almost 30 years and has a

robust development and contribution community.

One of the core strengths of MySQL is its high performance for data processing and re-

trieval, which it achieves through a unique storage engine framework that allows system

administrators to configure the MySQL database server for performance based on specific

applications. Examples of storage engines include MyISAM and InnoDB. Our evaluation

focused on the MyISAM high performance storage engine, MyISAM.

We tested MySQL with MyISAM to quantify ETL times for our data. As our database

increased in size, both disk and memory usage increased linearly and resulted in a signif-

icant decrease in ETL after ingesting one million records. We reached the point where the

database engine became completely unresponsive. Attempts to address unresponsive-

ness by forcing a database engine restart were futile, and our database engine memory

footprint consumed all available memory. In debugging the situation, we were able to

determine that the system memory usage was being consumed by database index tables.

Once the MySQL database entered the consume-all-memory state, any additional ETL

operations caused the database to become unresponsive.

Throughout the MySQL ETL phase, our average input was 1023 records per second.

We were able to verify that these are expected result by comparing work to work done by

kvs.io [101].

44 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

4.2.3 Elasticsearch

Elasticsearch is an open source search and analytic engine built on Apache Lucene [102].

This database provides powerful search and indexing features and advanced analysis ca-

pabilities. It excels at managing and retrieving large volumes of data and it is particularly

adept at performing fast range queries, a capability that makes it the preferred choice for

various data-intensive applications.

At the heart of Elasticsearch’s efficiency for range queries is a sharded multi-file index,

derived from Lucene, which enables it to quickly locate and retrieve the range of data

requested. This indexing mechanism is optimized for speed, allowing Elasticsearch to

perform range queries much faster than other database systems.

Elasticsearch also has impressive data load times. The engine is designed to ingest and

index data swiftly, which means new data can be made available for search and analysis

almost immediately after it is entered into the system. This quick data ingestion is facil-

itated by Elasticsearch’s distributed nature, where data is spread across multiple nodes,

enabling parallel processing and, consequently, faster indexing.

Elasticsearch’s architecture also contributes to its quick data load times. It breaks

the data down into data shards, more manageable pieces of a larger data set that can

be processed independently and in parallel. This sharding mechanism, combined with

Elasticsearch’s ability to run on multiple nodes, ensures that the system can handle large

volumes of data without a significant drop in performance.

The relevance of Elasticsearch’s quick range queries and data load times is especially

significant in temporal log-analysis systems, where vast amounts of log data need to be

ingested and queried rapidly for monitoring and troubleshooting purposes. The temporal

search of range queries makes Elasticsearch especially interesting for searching segments

of DNA as our use case will require searches of DNA string sub-sections locations.

We expected that the Elasticsearch database ETL would perform significantly faster

than the other options, as it is optimized for log ingestion (timestamp range query data).

Our system experienced ETL at an average rate of 11,944.5 records per second. Although

performance times are significantly faster than MySQL (Table 4.2), we found it surpris-

ing that the resulting ETL performed worse than Apache Cassandra. To evaluate Elas-

ticsearch lookups of address range queries, we loaded 1,012,032 samples (≈ 1 million

records) to prove the feasibility of the range query. The initial tests query times are less

than 5 ms.

4. ATSNP SEARCH 45

Our final choice for the atSNP search database engine is based on our objectives for

our feasibility evaluation matrix (Table 4.2).

Database
Loading
(rec/sec)

Loading
(days)

Rebalance
data

Range
query
support

Team
knowledge

Cassandra 14,664 29.2 Yes No No
MySQL 1023 418.6 No Yes Yes
Elasticsearch 11,944 35.9 Yes Yes No

TABLE 4.2: atSNP evaluation matrix

4.3 atSNP Search results

atSNP analysis identified and quantified the best DNA sequence matches to the TF for

PWM’s with both the reference and the SNP alleles. atSNP accomplishes this by analyzing

a small genomic region surrounding the SNP site, extending up to +/- 30 base pairs and

encompassing sub-sequences that span the SNP position. For each SNP, atSNP evaluates

the statistical significance by comparing the match scores of each allele and calculating

the significance of the difference in scores between the best matches for the reference and

SNP alleles (Figure 4.2).

The process of discovering the best matches is carried out separately for the reference

and SNP alleles. Consequently, the genomic sub-sequences that provide the best match

for each allele may differ. This variation in match quality between the reference and SNP

alleles provides insights into the potential in-silica impact of the SNPs on the binding

ability of TF to DNA, a key aspect in understanding genetic regulation.

Furthermore, atSNP Search offers a composite logo plot (Figure 4.3) for a more in-

tuitive visualization of the quality of the match between the reference and SNP allele

matches to the PWM, and the consequential influences of SNPs on these matches. This

visualization aids in the easier interpretation and understanding of the SNPs impact on

TFDNA interactions.

Addressing the affinity scores of SNPs necessitates the handling of large volumes

of data to determine probabilistic significance. Consequently, generating and analyzing

these SNP affinity scores required significant compute resources. Hence, our desire to dis-

seminating the SNP affinity scores to the scientific community. This dissemination would

mitigate the redundant effort of other groups engaged in identifying optimal SNP affinity

46 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 4.2: atSNP search web site example

scores. Our approach was based on a run-once, share-with-many philosophy for PWM

motif data [103].

We encountered challenges related to data set size, including the costs associated with

hosting and storage. To balance cost considerations with impact, a threshold strategy was

used, using a cutoff value of P of 0.05 for SNP impact. Implementing this cutoff effectively

reduced the size of the data set and, consequently, the search size to 11.97% of its original

volume, equating to 37 billion SNP-PWM record pairs for the final atSNP Search platform.

This refinement enables the atSNP Search platform to traverse 37 billion records instead

4. ATSNP SEARCH 47

FIGURE 4.3: Example logo plot

of the initial 309 billion SNP-PWM evaluation.

The initial generation of the PWM affinity scores was carried out using the atSNP [2]

R package [104]. To process the complete data from JASPAR and ENCODE, a distributed

divide-and-conquer methodology was applied. The combined effort of HTCondor in-

volving 132,946,852 SNPs and 2,270 PWMs, yielded SNP-PWM combination records and

necessitated 115,500 CPU hours.

Previous research involving genomic databases had limitations specific to its func-

tionality and usage. Our atSNP database was developed to address the need for a com-

prehensive, queryable resource consolidating all possible SNPs from a given organism in

a single location and is searchable on the Web, obviating the requirement of additional

external references.

Our final implementation of the atSNP database encompassed a database engine em-

ploying data sharding, which involves the partitioning and distribution of data for queries

across extensive datasets. This architectural choice facilitated efficient query processing

over the large-scale, especially with vast SNP-PWM data points.

4.4 Discussion

In this section, we discuss the atSNP database survey and our contributions.

48 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

4.4.1 Survey

At the beginning of our investigation, we recognized the need to compare various database

systems to determine the most suitable for our specific requirements. During our pre-

liminary research, we identified a gap in the existing literature regarding comprehensive

comparisons of our shortlisted databases. This led us to conduct a comparative evaluation

between MySQL, Cassandra, and Elasticsearch, particularly focusing on their capabilities

to meet our specific functional needs for building and deploying a database capable of

managing the anticipated data volumes for the atSNP data search engine.

In formulating our evaluation criteria, we factored data search functionality into our

requirements. We anticipated the need for searches involving range queries across genome

sections, based on parameters such as the P-value, genomic location, and chromosome lo-

cations. Furthermore, we anticipated requirements for direct searches of specific genomic

sections and SNP segments. Thus, we recognized the need to integrate multiple search

functionality, including key lookups, range queries, and sorted lists, to meet our end-

users’ expectations.

Our testing indicated that our initially preferred database, Cassandra, encountered

significant challenges in providing efficient search functionality for a range of values.

Upon further investigation, we discovered that the range query implementation in Cas-

sandra’s lacked efficiency. Specifically, range queries required each database node to

scan all its data for any rows that met the range criteria, regardless of indexing [105].

This limitation in range query performance ultimately rendered Cassandra unsuitable for

our atSNP genomic database, particularly given our requirement for efficient range value

searches and indexed range queries.

Moreover, our selection of MyISAM, the then default storage engine for MySQL as

detailed in Figure 4.4, revealed that while it performed adequately for range queries, it

fell short in other search and ETL functions. This finding further informed our decision-

making process in the selection of the database for the atSNP Search platform.

Elasticsearch demonstrated consistent performance across all dimensions of our test-

ing, without particularly excelling in any specific task. Its generalized functionality emerged

as a robust option, leading to its selection as the preferred system for the needs of our

work. This choice was influenced by its overall balanced performance profile, which

aligned well with the diverse requirements of our testing criteria.

4. ATSNP SEARCH 49

FIGURE 4.4: Internal MySQL database architecture with storage engines example [106]

Our test setup for the atSNP system revealed that the primary factors that influenced

our test scenarios were the ETL process and the response times of the queries. Conse-

quently, our ETL survey aimed to juxtapose these database systems. Our initial survey

was limited by time constraints and was not intended to be exhaustive. However, a re-

view of existing literature, as detailed in Chapter 3, underscored the necessity for a thor-

ough ETL evaluation. Although numerous studies have compared the performance of

these databases, we noted a lack of literature on ETL using HTCondor.

4.4.2 Composite Logo Plots

Composite logo plots provide a visualization of the region around the SNP and the se-

quence matches to the PWM. This logo plot helps with the interpretation of the PWM

based on the corresponding SNP Allele with the SNP sequence as seen in Figure 4.5.

The composite logo plot PWM and corresponding p-values were generated by the

initial run of the JASPAR and ENCODE datasets with the atSNP R package (consuming

115,000 CPU hours). In generating the p-values we initially believed that the Composite

50 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 4.5: Example Composite Logo Plot

Logo Plot could be generated and stored as static images, as originally developed in the

atSNP R package. However, when considering the number of images we would need to

store (37 billion), storing and retrieving these images would have become cost prohibitive.

Additionally, similar work was already being done by cloud vendors using blob storage

infrastructures such as [107]. Therefore, we attempted to address the data storage need

and provide dynamic generation of the Logo Plot.

Our implementation of dynamically generated Composite Logo Plots helped address

our disk space consumption for pre-generated logo plots requirement. We addressed the

disk space consumption issue through the use of d3.js [108] and Scalable Vector Graphics

(SVG) [109]. Our novel logo plot generation technique moved the need of pre-computing

the Composite Logo Plots beforehand and storing these images by moving the computing

to the endpoint. At the endpoint, the web browser is able to render the images by using

the existing atsnp datum’s and calculate each logo plot based on the individual datum

PWM. The JavaScript libraries and display logic that we developed to produce the logo

plots is available here [110].

4.4.3 ETL with HTCondor

We required a method to quickly load 37 TB of data into a database. We developed cus-

tom Python code to evaluate each combination and verify if a given record and the cor-

responding P-value score were above a predetermined threshold. The parallel indepen-

dent characteristics of this task and the data provided an ideal use case to be run in a

4. ATSNP SEARCH 51

distributed computational cluster environment. After we refined our process, we used

HTCondor [3] to distribute the ETL pipeline processes.

When searching the literature, we could not find any instances of using HTCondor to

populate NoSQL databases. Our original plan was to ETL data from 309 billion records.

We tried to ETL the data using one computer but realized that the time would be exces-

sive. As a result, we used a divide-and-conquer methodology that is typically used in a

dataset analysis.

Our custom Python ETL script involved preprocessing the data by sampling smaller

subsets. We split the data set into smaller files for faster transfer to individual HTCondor

compute nodes. These smaller partitions reduced latency during data transfer.

However, our HTCondor cluster is a shared resource, so a four-day delay for the entire

ETL process was impractical. Therefore, we limited the execution time of our Python

ETL code itself to four hours. This script focused on loading data into an Elasticsearch

database.

Following the ETL process, a separate script parsed the data attributes. This script

transformed the data into JavaScript Object Notation (JSON) format for efficient insertion

into the Elasticsearch database using its official API [111].

We initially assumed our Python code would run smoothly on HTCondor because it

executed locally without problems. However, submitting the tasks to HTCondor resulted

in numerous failures.

This led to a time-consuming troubleshooting process. We had to manually identify

the failed tasks and then rerun the code specifically on the problematic subset of atSNP

data outside of the HTCondor cluster scheduler. After numerous attempts and failures

we realized this event was more frequent than anticipated and prompted a further inves-

tigation.

Our work repurposed a widely adopted strategy for telemetry and time series appli-

cations that involves the concurrent transmission of multiple data streams to a database,

known as the multi-node push method [112]. We adapt this method for our purposes,

employing HTCondor as an intermediary for ETL operations. This method proved to be

effective, and upon reviewing the existing literature, we identified our use of HTCondor

in tandem with our script for database ETL purposes as a new contribution to the field.

In the initial test in the test cluster with three nodes, each node could maintain six

52 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

concurrent ETL scripts per node (corresponding to the number of CPUs per host) with-

out experiencing a ”Bulk queue full” error. Since the cluster was built with fifteen data

search nodes and three management aggregation nodes, an assignment of the ETL task

was submitted to HTCondor using these parameters.

4.5 Conclusions

Database JASPAR ENCODE hg version # initial SNPs Pre-computed data
atSNP Search ✓ ✓ hg38 133M ✓
SNP2TFBS ✓ hg19 85M ✓
Raven ✓ hg17 30K ✓
OncoCis ✓ hg19 N/A

TABLE 4.3: Comparison of motif-based regulatory SNP discovery databases

The Affinity Testing SNP (atSNP) Search platform was designed to address the chal-

lenges posed to genomic researchers. This system addressed the challenges of searching

a vast domain space for TF from SNP-PWM by providing a database to search the tens of

billions of SNP.

We set out to satisfy our motivation for the atSNP Search web resource platform.

Our work compared the resources of existing regulatory motif based TF SNP regulatory

databases and found that the existing resources were insufficient (Table 4.3). Therefore,

we were motivated by the following:

• providing genomic researchers atSNP statistics of the entire human genome through

a web interface

• a more comprehensive motif-based discovery of regulatory variants beyond the cur-

rent state-of-the-art

• statistical quantification of SNPacPWM motif matches and changes in motif matches

and

• a convenient graphical depiction of potential TF on SNP-PWM via motif logo plots

Our case study demonstrated the feasibility of using NoSQL database engines for

large-scale user searchable genomic SNP databases. Our successful implementation is

proof that the systems were feasible and we achieved our goal to provide an atSNP Search

4. ATSNP SEARCH 53

platform a database engine. We achieved the objectives described, and our final cluster

architecture can be seen in Figure 4.6

During our development, additional factors that we were constrained by included

financial, personnel time, speed to discovery, and operational domain knowledge. The

operational domain knowledge was an even larger contributing factor when we took into

account our needs for: administrators support-ability, the physical data-center footprint,

and the network speed.

The implementation time frame of our work was constrained and we encountered a

series of unexpected challenges. However, during the development process, we faced

limitations due to range query performance issues. This led to the addition of search

functionality as a selection criterion in our feasibility study of database infrastructures.

To overcome our unforeseen issues, new techniques were developed. For example,

we introduced a new ETL method for distributed NoSQL databases using HTCondor.

Additionally, we were the first to develop a motif logo plot in a JavaScript library.

The deployment of the atSNP Search platform, whose architecture can be seen in Fig-

ure 4.6, successfully provides a genomic researchers a motif database resource for TF

in the human genomes from SNPPWM. Despite limitations imposed by financial con-

straints, we developed a scalable effective system for searching and viewing atSNP data

set. Our core contributions from this chapter are as follows.

• a genomic search tool that provides the knowledge of human SNPs on TF-DNA

interactions based on PWM

• a comparison of MySQL, Apache Cassandra and Elasticsearch for use as a genomic

SNP-PWM motif databases

• a big data loading method to extract transform and load genomic data using HT-

Condor [3] for ingestion into a database

• a generation visualization library producing composite motif logo plots

To this end, we showcased our ability to execute novel research while also producing

a functional operational resource.

54 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 4.6: atSNP search infrastructure

4.6 Failures new motivation

As time progressed and after the atSNP Search platform was put into production for active

search, the failure conditions began to affect the system. These failures cause a rebalance

of the storage shards of the data. Unfortunately, the shard rebalance process caused addi-

tional failures by write amplify during the copy and rebalancing of the data on the cluster.

At this point, the atSNP Search platform was experiencing a text book ”batch-correlated

disk failures” [113] [114]. We attributed these failures to using one HDDM for HDD stor-

age and the purchase of these drives all at the same time. In experiencing such a failure,

data slowly corrupted and was no longer available from the search results (original data

was stored in a secondary location for future re-import). What we experienced is typically

4. ATSNP SEARCH 55

considered a catastrophic failure and one that we did not expect. This caused us to ask

additional questions.

We had considered node failure rate estimates within the cluster on a per node basis

and had calculated node availability based on system component failure statistics, specif-

ically: RAM, power supply and disk failures. However, our initial estimates proved to be

naive as these estimates failed to take into account batch-failure events. We built a com-

putational cluster that was composed of eighteen nodes and is considerably smaller than

other computational clusters such as Biostat; however, our HDD failure rates for our data

storage disk drives was high by all available metrics (>30% failure rate within a year).

In practice, batch-correlated disk failures are rare events. These events can signifi-

cantly challenge a cluster’s resiliency and lead to unexpected data loss and failures. Our

cluster experienced numerous disk failure events that were followed by cluster rebalance

events. Thus, the cluster rebalancing caused additional disk failure events, which lead to

a cascading failure event.

We were motivated to explore existing research to gain insight into the prevention and

management of cascading failures.

We embarked on an in-depth exploration of HDD failures. Thus, our investigation

aimed to understand the underlying causes and implications of such cascading failure

events in complex computing environments. The forthcoming chapter will focus on an-

alyzing HDD failures, incorporating a predictive element to these events. This analysis

aims to improve our understanding of HDD failures and contribute to the development

of strategies to predict and mitigate such incidents in complex computing systems.

Chapter 5

Hard Disk Drive Faults and Failures

and Cluster Task Failures;

Background and Related Work

In this chapter, we present an overview on HDD concepts and S.M.A.R.T. attributes. Next,

we present some data mining techniques, followed by exploring machine learning algo-

rithms and time series concepts.

The last area of focus is the prediction of the failure of computation cluster tasks. We

focus on data collection and state-of-the-art system monitoring applications currently in

use. Beyond computational cluster and system monitoring applications, we explore cur-

rent works in anomaly detection as it relates to computational system faults.

This section of our work was motivated by our prior work in atSNP search and specif-

ically that our monitoring system missed cascading failure event. Realizing fault and fail-

ure events can be problematic and cause cluster failures. We explore background work in

this field to better understand existing work and shape our own.

5.1 Hard disk drives faults and failures

The hard disk industry has been around for more than half a century, with the first HDD

manufactured in 1956 by IBM. This drive had only 5 MB of capacity. Today, anyone has

access to a HDD on their computer, but a few decades ago, a HDD was a gigantic device

that was the size of a washing machine. The ever-growing demand for digital data storage

57

58 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

has fueled rapid advances in the field in recent years. The ability to meet this demand at

a relatively low cost makes the HDD the undisputed candidate for online storage [115].

A HDD is a magnetic data storage device that uses one or more rotating disks (platters)

coated with magnetic material, as seen in Figure 5.1. The components of a HDD can be

classified into four categories: magnetic, mechanical, electromechanical, and electronic.

The disks are paired with magnetic heads that can read and write information on the

surfaces of the disk. Data is written and read from the HDD in chunks of data or data

blocks, and each block is assigned to a specific addressable location on the HDD. These

blocks are the smallest unit of storage on any given HDD. HDDs can be connected to

systems via PATA (Parallel Advanced Technology Attachment), SATA (Serial Advanced

Technology Attachment), USB (Universal Serial Bus) or SAS (Serial Attached SCSI) cables

[115]. Figure 5.1 illustrates some HDD essential components.

Magnetic HDDs are a critical component for large-scale data systems due to their cost

effectiveness. Even though the Cost Per Gigabyte (CPG) of non-magnetic SSD continues

to fall, HDD CPG remains highly economical due to a confluence of factors around the

component technologies employed. Thus, HDD continues to be used as a core component

in large-scale storage systems. As a core component, its faults and failures can greatly

affect the usability and performance of the system [116].

center the figure

FIGURE 5.1: HDD components. [115]

5.1.1 Disk Failures

Failures can be categorized into two main groups, predictable and unpredictable [117].

Unpredictable failures, such as electronic and some mechanical problems, occur quickly

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 59

without any chance of control from the user. For example, a power surge may cause chip

or circuit damage. Predictable failures are characterized by degradation over time. All

mechanical components undergo degradation over their useful life. Therefore, attributes

can be monitored, making it possible to use predictive failure analysis to predict a failure

before it fails [117]. Our work was partially inspired by the work of Velasco et al. [93] who

showed that MLM could be applied to peripheral components in optical networks. Since

both optical networks and HDDs transmit data across a bus, we show that this work can

be applied to HDDs.

Understanding a failure is dependent on what constitutes the failure. Schroeder et

al. [118] argues that HDD vendors use different definitions of what a fault is than cus-

tomers. A disk misbehavior may consist of a read operation taking longer to complete

than usual. For vendors, this may not be alarming because a HDD’s internal performance

threshold has not been crossed. Furthering this case, Elerath and Shah found [119] ”The

drive manufacturer would count only 36 of all the drives returned from customers in their

failure rate calculations.” Elerath and Shah study is even more revealing since they stud-

ied the server class disk drives, which are typically reserved for servers and theoretically

have higher standards. These server class drives often become members of a Redundant

Array of Independent Disks (RAID) that provided data protections through redundancy.

Validating Elerath and Shah, Pinheiro et al. [120] found, drive manufacturers often quote

yearly failure rates below 2%, while user studies have seen rates as high as 6%.

The study by Schroder et al. also states that even if two HDD are of the same model,

they can differ in their behavior because disks are manufactured using processes and parts

that can change. A simple change in a drive’s firmware or in a hardware component, or

even in the assembly line on which a drive was manufactured, can change the failure

behavior of a disk.

According to the Backblaze Company, a disk is considered failed when [121]:

”it is removed from a Storage Pod and replaced because it has 1) totally stopped working, or 2)

because it has shown evidence of failing soon. A drive is considered to have stopped working when

the drive appears physically dead (e.g. won’t power up), doesn’t respond to console commands or

the RAID system tells us that the drive can’t be read or written.”

60 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Backblaze conducted a study to understand the failure rates by HDD age [122]. Back-

blaze theorized defects come from three factors: factory defects, resulting in infant mor-

tality ; random failures; and parts that wear out resulting in failures after much use. Fig-

ure 5.2 shows how these factors are expected to contribute to a failure rate and the result-

ing factors produce a failure rate bathtub-curve. In comparing the theory bathtub curve

to the data Backblaze found the bathtub to be leaking, as the left side of the bathtub curve

(decreasing failure rate) and was much lower and more consistent with a constant failure

rate, Figure 5.3.

DecreasingFailureRate ConstantFailureRate IncreasingFailureRate

Fa
il

ur
e

R
at

e

Wear OutFailures

Early ”Infant Mortality” Failure

Constant (Random)Failures

Observed FailureRate

Time

FIGURE 5.2: Bathtub curve [123]

5.1.2 S.M.A.R.T. Attributes

S.M.A.R.T. emerged from the need to protect critical information stored on disk drives. As

system storage capacity requirements increased, the industry identified the importance of

creating an early warning system that would allow enough lead time to back up data if

failure was imminent, preventing catastrophic data loss [117].

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 61

FIGURE 5.3: Backblaze leaking bathtub curve (red line = failure rate, dotted line = trend-
line) [122]

S.M.A.R.T. includes a series of attributes chosen specifically for each drive model. This

individualism is important because HDD architectures vary from model to model. At-

tributes and thresholds that detect failure for one model may not be effective for another

model.

Table 5.1 presents some of the S.M.A.R.T. attributes and their meaning.

TABLE 5.1: S.M.A.R.T. Attributes

ID Attribute Name Description

smart 1

Read Error Rate Rate of hardware read errors that occurred when

reading data from a disk surface.

smart 2 Throughput Performance Throughput performance of a hard disk drive.

62 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE 5.1: S.M.A.R.T. Attributes (Cont.)

ID Attribute Name Description

smart 3 Spin-Up Time Average time of spindle spin up (from zero RPM

to fully operational [milliseconds]).

smart 4 Start/Stop Count A tally of spindle start/stop cycles.

smart 5 Reallocated Sectors Count Count of reallocated sectors.

smart 7 Seek Error Rate Rate of seek errors of the magnetic heads.

smart 8 Seek Time Performance Average performance of seek operations of the

magnetic heads.

smart 9 Power-On Hours Count of hours in power-on state.

smart 10 Spin Retry Count A total count of the spin start attempts to reach

the fully operational speed.

smart 11 Recalibration Retries A count that recalibration was requested.

smart 12 Power Cycle Count A count of full hard disk power on/off cycles.

smart 184 End-to-End error A count of parity errors which occur in the data

path to the media via the drive’s cache RAM.

smart 187 Reported Uncorrectable Errors The count of errors that could not be recovered

using hardware ECC

smart 188 Command Timeout The count of aborted operations due to HDD

timeout.

smart 189 High Fly Writes This attribute indicates the count of rewritten or

reallocated information over the lifetime of the

drive.

smart 190 Temperature Difference Value is equal to (100-temp. C), allowing manu-

facturer to set a minimum threshold which corre-

sponds to a maximum temperature.

smart 191 G-sense Error Rate The count of errors resulting from externally in-

duced shock and vibration.

smart 192 Power-off Retract Count Number of power-off or emergency retract cycles.

smart 193 Load Cycle Count Count of load/unload cycles into head landing

zone position.

smart 194 Temperature Indicates the device temperature.

smart 195 Hardware ECC Recovered

smart 196 Reallocation Event Count A count of attempts to transfer data from reallo-

cated sectors to a spare area. Both successful and

unsuccessful attempts are counted.

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 63

TABLE 5.1: S.M.A.R.T. Attributes (Cont.)

ID Attribute Name Description

smart 197 Current Pending Sector Count Count of ”unstable” sectors (waiting to be

remapped, because of unrecoverable read errors).

smart 198 Uncorrectable Sector Count The total count of uncorrectable errors when

reading/writing a sector.

smart 199 UltraDMA CRC Error Count The count of errors in data transfer via the in-

terface cable as determined by ICRC (Interface

Cyclic Redundancy Check).

smart 200 Multi-Zone Error Rate The count of errors found when writing a sector.

smart 201 Soft Read Error Rate Count indicates the number of uncorrectable soft-

ware read errors.

smart 223 Load/Unload Retry Count Count of times head changes position.

smart 240 Head Flying Hours Time spent during the positioning of the drive

heads.

Some variables are considered critical by the literature in predicting failure events;

these variables include 5, 12, 187, 188, 189, 190, 198, 199 and 200 [124]. Our work at-

tempts to validate the existing literature and to pay attention to other variables that are

not observed.

Many S.M.A.R.T. attributes are normalized by the HDDM from their raw values. There

is no standard for how manufacturers convert raw attribute values to normalized ones: it

can be a linear, exponential, logarithmic, or any other range normalization. The range is

normally 0-100 and for some attributes 0-255. Generally, S.M.A.R.T. attributes with higher

values are always better (except for the temperature in some HDDM). As a result, it is dif-

ficult to have a clear overview of a HDD behavior on a cloud storage system, since they

usually use dozens of different disk models.

5.1.3 Data Mining

The technological boom has created a lot of information in the digital world. These data

are a great source of knowledge extraction for all companies. The constant need to inter-

pret data and discover relevant information has caused data analysis to develop rapidly

in recent years.

64 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Fayyad et al. [125] described the necessary steps to extract relevant information from

databases. The KDD (Knowledge Discovery in Databases) process is a set of continuous

activities that share the knowledge discovered from data. According to Fayyad et al. this

set is composed of five steps: data selection, preprocessing and data cleaning, processing

of data, data mining, interpretation, and evaluation of results (Figure 5.4).

FIGURE 5.4: An overview of the KDD steps [125]

5.1.4 Machine Learning

Machine learning’s principal objective is to understand the way data is related. It is based

on algorithms that can learn models from data and make predictions on unseen data. Ma-

chine learning tasks can be classified as supervised, unsupervised, or semi-supervised. In

supervised learning, the goal is to train the machine using data that is already labeled in

order to learn the distribution of the data to be able to predict future events. In this case,

the labeled values correspond to what is called the target variable. In unsupervised learn-

ing, examples do not have a target variable associated, so the objective is to group sim-

ilar observations without knowing what is represented by each group. Semi-supervised

learning is a task that uses both labeled and unlabeled cases.

Supervised learning tasks can be split into two categories of algorithms: classification

and regression. Classification is a form of data analysis that extracts models that describe

important data classes. Such models, called classifiers, predict categorical class labels.

The classification model is built from the analysis of the training data set and is used

to predict the class label for observations that are not categorized. Regression is used

to predict numeric or continuous values. Regression is a statistical methodology that is

most often used for numeric prediction, so it is used to predict missing or unavailable

numerical data values rather than (discrete) class labels [126].

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 65

The work of Flup et al. [127] demonstrated an ML approach to predict failure events

based on the computational system logs.

5.1.5 Classification Algorithms

In the development of this work, two machine learning algorithms were used for the

classification task Random Forests and Support Vector Machine (SVM). In the following,

the algorithms are described in more detail and in Table 5.2 showing the mathematical

principles of various SVM kernels.

The goal of a classification task is to obtain a good approximation of the unknown

function that maps predictor variables to the target value. The unknown function can be

defined as Y = f (X1, X2, ..., Xp), where Y is the target variable, X1, X2, ..., Xp are features,

and f () is the unknown function we want to approximate. This approximation is obtained

using a training data set D =
{〈

xi, yi
〉}n

i=1

5.1.5.1 Random Forest

The Random Forest algorithm was first introduced by Breiman [128] and is defined as an

ensemble method. An ensemble is a set of multiple models, in this case, a set of deci-

sion trees. As the name suggests, this algorithm creates a forest with a large number of

decision trees, where each considers a distinct random subset of features when forming

the decision nodes while accessing a subset of the training data. Each classifier tree is a

predictor component.

In classification, Random Forest constructs its decision by counting the votes of the

predictor components in each class and then selects the winning class by checking the

number of votes accumulated. The process of this algorithm is represented in Figure 5.5,

the first phase consists of training each decision tree with data subsets from the training

set. The test cases are then classified by majority vote.

66 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 5.5: Random Forest example [129]

5.1.5.2 Support Vector Machine

Support Vector Machine SVM was originally proposed by Boser et al. [130] in 1992. His

method tries to find the largest margin that separates different classes of data. The objec-

tive of the SVM is to construct an optimal hyperplane that can separate different classes

of data. In Figure 5.6, it is possible to see how SVM works. There are several straight lines

that can be drawn to separate the data. The support vectors are data points that are closer

to the hyperplanes and they serve to choose the best one, represented by the filled points.

center the figure

FIGURE 5.6: SVM example [131]

Data can not always be separable in a linear way. In these cases, the SVM maps the

data to a space of higher dimension. At this point, the concepts of soft margin and kernel

trick are introduced. The main idea of a soft margin is to allow some examples to be placed

on the wrong side of the dividing hyperplane. The kernel transforms non-separable data

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 67

to separable data by adding more dimensions. Nonlinear kernel functions were proposed

by Boser et al. [132] so SVM could be applied to data that could not be divided by linear

hyperplanes. Table 5.2 provides some of the kernel functions.

TABLE 5.2: SVM Kernel Types

Kernel Type Formula
Polynomial kernel (xi, xj) = (xi ∗ xj + r)p, r ≥ 0

RBF kernel (xi, xj) = exp(−γ||xi − xj||2), γ > 0
Sigmoid kernel (xi, xj) = tanh(ηxi ∗ xj + v)

5.1.6 Time Series

In almost every scientific field, measurements are performed over time [133]. The pur-

pose of time-series models is to extract the most meaningful knowledge from the shape

of the temporal data. A time series is a collection of observations obtained chronologi-

cally. Time series can be regular if there is an equally spaced interval of time between the

observations, and irregular if the opposite occurs.

The values are typically measured at equal time intervals (e.g.,every minute, hour, or

day). This type of data can be characterized in four different movements [126]:

• Trend or long-term movements: These indicate the general direction in which a

time series graph is moving over time.

• Cyclic movements: Are the long-term oscillations about a trend line or curve.

• Seasonal variations: Are nearly identical patterns that a time series appears to fol-

low during seasons of successive time.

• Random movements: As the name refers to, these are random movements with no

pattern associated.

Figure 5.7 depicts the four different types of movements.

These movements referred to above can also be grouped into two types of data, sta-

tionary and non-stationary. In stationary data, the time series values do not depend on the

time that the observations were collected, therefore it will not have predictable patterns

in the long term. Non-stationary data typically have some kind of trend or seasonality

over time [135]. In Figure 5.8 it is possible to better see the differences between these two

types.

68 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

center the figure

FIGURE 5.7: Time Series Types [134]

5.1.7 Vector Auto Regression

Lütkepohl et al. [135] say that if time series observations are available for a variable of

interest and the past observations contain information about the future development of a

feature, it is worth using the feature as a forecast.

The VAR model expresses each variable as a linear function of its own past values, the

past values of all other variables considered, and a serially uncorrelated error term [137].

Each variable has an equation describing its progression over time. This equation includes

the lagged (past) values of the variable, the lagged values of the other variables in the

model, and an error term.

To better understand the VAR, we simplified to a two-variable or bivariate autoregres-

sion [138]. Where the α’s and δ’s are the coefficients of the linear projection of yt onto a

constant and past values of yy and xt, and the lag length m is sufficiently large to ensure

that ut is a white noise error term. Although it is not essential that the lag lengths for y

and x are equal, we follow typical practice by assuming that they are identical. We can

visualize the bivariate autoregression in the Equation 5.1.

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 69

center the figure

FIGURE 5.8: Stationary and non-stationary data [136]

yt = α0 +
m

∑
l=1

αlyt−l +
m

∑
l=1

δlxt−l + ut (5.1)

5.1.8 Imbalanced domain learning

This project faces an imbalanced domain learning problem. This occurs whenever the user

has an interest in cases that are rare in the training set. This can create several obstacles

in the learning methods that are applied. The models created by standard learning algo-

rithms tend to be biased towards the majority class, and because of that, the evaluation

metrics will not capture the completeness of the models for relevant cases.

70 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Han et al. [126] describe this imbalance: ”given two-class data, the data are class-

imbalanced if the main class of interest (the positive class) is represented by only a few

tuples, while the majority of tuples represent the negative class.”

Therefore, it is important to pay close attention to this type of data and take the neces-

sary steps to prevent getting wrong information from the data mining processes that are

used.

Two of the methods utilized to handle imbalanced data are oversampling and un-

dersampling. Oversampling works by resampling positive tuples so that the training set

contains an equal number of positive and negative tuples. Undersampling works by de-

creasing the number of negative tuples. It randomly eliminates tuples from the majority

(negative) class until there is an equal number of positive and negative tuples [126].

In Figure 5.9 we can see a clear example of these two sampling methods:

center the figure

FIGURE 5.9: Undersampling and Oversampling examples. [139]

5.1.9 Evaluation Metrics

In machine learning, the terms of positive tuples (tuples of the class of interest) and neg-

ative tuples (all the other tuples) are normally used. Four more terms are used, and they

are the base-line of many evaluation metrics used. In the following, each of the terms is

explained [126]:

• True positives (TP): Positive tuples that were correctly labeled by the classifier.

• True negatives (TN): Negative tuples that were correctly labeled by the classifier.

• False positives (FP): Negative tuples that were incorrectly labeled as positive.

• False negatives (FN): Positive tuples that were incorrectly labeled as negative.

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 71

With these four definitions, we can build a confusion matrix. It is a square matrix with

as many rows and columns as there are classes of the data. Each row represents the actual

class of the observation, while each column represents the predicted class. This matrix

serves as a source of information for most of the metrics used. An example of a confusion

matrix can be seen in Figure 5.10.

center the figure

FIGURE 5.10: Confusion Matrix. [140]

In Figure 5.11 we can see the metrics that are the most used to evaluate learning mod-

els.

center the figure

FIGURE 5.11: Evaluation Metrics. [141]

5.1.10 Cascading Failures - COME BACK IF TIME PERMITS

The literature has numerous examples [142] [143] [144] [145] [146] of network-centric cas-

cading failures. Each of these examples includes statistical modeling and RCA from base

components up to the management layer.

72 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Wang et al. [143] [145] proposed a network cascading failure mitigation strategy that

involves allowing overloaded edges to redistribute some of their load to neighboring

edges before they completely fail. The goal was to improve the robustness of the network

against cascading failures. Their findings suggest that the mitigation strategy can be a

simple and useful tool to improve the reliability and security of complex infrastructure

networks.

5.1.11 Backblaze dataset and related work

Much existing work on hard drive failure prediction uses the Backblaze dataset. This data

set aggregates S.M.A.R.T. variables [124] [147] on more than 100,000 HDD daily.

Aussel et al. [124] say that the existing predictive MLM do not perform sufficiently

well in the Backblaze dataset due to the extremely unbalanced ratio of 5000: 1 between

healthy and failing HDDs. For that reason, they selected MLM for classification, like SVM,

Random Forests and Gradient Boosting Trees. They achieved results of 95 precision and

67 recall with the Random Forests MLM and 94 precision and 67 recall with Gradient

Boosting Trees. The SVM performance had a precision below 1%.

Wang et al. [147] argue that reactive fault-tolerant measures, like RAID’s and Error

Correction Codes (ECC) are not enough to mitigate or eliminate the negative effects of

the HDD’s failures. Proactive measures are more efficient because they predict failures

in advance. However, the built-in prediction MLM that the HDDM used have weak pre-

dictive power. To overcome these issues, Wang et al. proposed a neural network ar-

chitecture called Attention-augMENted Deep architEctuRe (Amender) [147]. Amender

used a layered neural network that was composed of a feature integration layer (com-

bined S.M.A.R.T. attributes into a single representation); a temporal dependency extrac-

tion layer (a recurrent neural network (RNN), specifically a gated recurrent unit (GRU) to

analyze how S.M.A.R.T. values change over time); an attention layer (focused on the most

important days in the S.M.A.R.T. data sequence for predicting failures); and finally a clas-

sification layer (takes the output from the attention layer and predicts the health status of

the hard drive and the likelihood of failure).

After analyzing the results, Wang et al. [147] concluded that different S.M.A.R.T. at-

tributes have different abilities to indicate failures. Compared to recurring neural net-

works (RNNs), the architecture improved by 8.3 in failure prediction and 90.2 in health

status assessment.

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 73

Shen et al. [148] proposed a Random Forest prediction model for failure prediction for

HDD’s. They show that most statistical approaches, machine learning, and deep learn-

ing technologies are good at identifying failures that occur more frequently but perform

poorly when faced with less known behavior. They used a clustering-based undersam-

pling method, so the data imbalance problem was solved and the quality of training im-

proved. The results show that the Random Forest model can achieve a Failure Detection

Rate (FDR) of over 97.67 with a False Alarm Rate (FAR) of 0.017%.

Li et al. [149] propose two predictive MLMs based on Decision Trees (DT) and Gradient

Boosted Regression Trees (GBRT) and apply them to two different real-world datasets

(one with 121,698 and the other with 39,091 hard disks). In data preparation and pre-

processing, they use quantile functions to select the more key features on healthy drives

and failed drives. Li’s results are referenced in Table 5.3.

Model dataset FDR FAR
DT Big 85.1 0.07
GBRT Big 79.7 0.02
DT Small 96.0 0.12
GBRT Small 86.0 0.02%

TABLE 5.3: Li’s result from the Decision Trees (DT) and Gradient Boosted Regression
Trees (GBRT)

Zhao et al. [150] believe that much of the previous research in the area failed to consider

the characteristics of the observed features over time and tend to make predictions based

on individual or a set of attributes. They also believe that attribute values observed over

time are not independent and that a sequence of observed values with certain patterns

might be a good indicator of whether a drive may fail soon. Therefore, they considered

the observations from the disks as a time series and applied a hidden Markov model and

a hidden semi-Markov model to build a predictive MLMs that could label disks as healthy

or pre-failing. Although their FDR results are not high (up to 46 for single attributes and

52 for multiple attributes), they achieve a FAR of zero in both cases.

5.2 Computational cluster task failures

Clusters use middleware that provides an interface (command line, API, or portal) for

submitting single or batch tasks. When submitting a task, you benefit from having knowl-

edge of the resource needs of the given task. Examples of each task’s requirements may

74 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

include expected execution time, expected memory usage, temporary data storage, and

number of cores. After all these constraints are taken into account, a submission is submit-

ted to the cluster and distributed through a cluster queuing management system. These

submissions correspond to the cluster task manager. The central task manager manages

the hosts on which the submitted tasks run and the number of hosts, from one to millions

of these tasks. Unfortunately, submitted tasks can fail to complete. These failure rates

are an impediment to optimal utilization of cluster resources and ultimately impact the

response time for results and the experience of the submitter.

Task failures are a problem on both HPC-HTC systems. As the following Table 5.4

shows, task failure rates are two different clusters. In the Table 5.4 UW-Biostat refers to

the BCG cluster at the University of Wisconsin - Madison and Argonne is the Argonne

National Laboratory, Argonne Leadership Computing Facility Theta [151] cluster.

Group Tasks % of tasks Completion status
UW-Biostat 106,695 82.2% success
UW-Biostat 23,159 17.8% failed
Argonne 39,508 62.8% success
Argonne 23,351 37.2% failed

TABLE 5.4: UW Madison BCG HTC vs Argonne Theta HPC cluster, Theta includes time
limited tasks

Computational cluster task schedulers, such as ones used in HPC/HTC systems, dis-

tribute tasks based on available HPC/HTC resources. These task schedulers match user

requested resources to expected available resources. If a task’s resource request is not

sufficient to complete the task, then a task will wait in a queue until resource allocations

are sufficient on schedulable cluster resources. The goal is to efficiently allocate resources

based on task-matched requested resources and optimize on requested resource task de-

mand. Re-balancing algorithms also appear in HPC and HTC systems use rebalancing to

handle node failures.

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 75

An HPC/HTC scheduler has two areas of optimization:

1. optimizing resource use based on measurement process needs: IO, CPU, network,

inter-task communications

2. cluster node temporal availability

Monitoring of the performance metrics system and on the job is essential to evaluate

resource allocation and utilization. Long-term trends based on system analysis compared

to base lines are widely used as justification for adding or reducing the number of re-

sources allocated over time. However, optimizing resources is difficult without access to

fine-grained resource job trends. Resource usage statistics and trend tools may lose fi-

delity over time due to the number of performance metrics and their stored monitoring

data. In addition, the amount of data collected for the metrics grows as a function of

the size of the cluster. A common method to string these collected metrics is to use of

Round-Robin Databases (RRDs) [152] results in degrading the signal value over time.

Numerous deterministic and heuristic tools, such as cacti [153], ganglia [154], na-

gios [155], and zabbix [156], to evaluate system utilization and track performance metrics.

These tools attempt to provide graphical representations of system performance metrics

using the network standard Simple Network Monitoring Protocol (SNMP) [157] to cluster

administrators who need to interpret the metrics to better administer the cluster.

Tracking metrics can address application bottlenecks such as application starvation or

over usage of memory, CPU , or IO, by allowing critical understanding of resource alloca-

tion starvation and optimization. These tools provide a general idea of the performance

of the system. They are useful for understanding cluster performance; however, they do

not provide the granular process level data which is useful for predicting failures at the

job level. Furthermore, according to Haider et al., understanding and adapting to fault

conditions can lead to improved dependability in HPC and cloud environments [158].

Larger scale system monitoring of HPC and the Open Science Grid [42] have used

systems such as OVIS [159] or TACC Stats [160]. For example, OVIS uses a Bayesian

inference scheme to dynamically infer models for the normal behavior of a system and

to determine bounds on the probability of values evinced in the system. OVIS addresses

hardware-related failure issues and system-level performance analysis on systems based

on Mean Time To Failure (MTTF) analysis.

76 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 5.12: Efficient job run state on cluster node

Efficiently utilizing computing resources within a cluster requires understanding the

resource needs of individual tasks, rather than just the overall system usage. This neces-

sitates measuring resource consumption on a per-task basis, as shown in Figure 5.12.

Research in fault prediction further emphasizes the importance of task-level resource

measurements. Guan et al. [161] proposed a Bayesian and decision tree approach for cloud

environments, demonstrating the potential of decision trees in this area [1]. This concept

was further explored by Gao et al. [162] who investigated deep neural networks for early

faults.

Although these studies offer valuable information, it is important to note that more

research has focused specifically on cloud computing environments [163] [164].

The work of Ibidunmoye et al. [165] showcased that machine learning techniques

could also be used to address performance bottlenecks in cloud systems. Although cloud

systems are similar to HPC and HTC systems; however, Ibidunmoye’s work never ex-

plored performance bottlenecks and failures and faults in HPC or HTC systems. For

outage prediction, the paper ”Outage Prediction and Diagnosis for Cloud Service Sys-

tems” [166] showcased a method for predicting outages in complex cloud environments

utilizing a similar approach to Guan et al. [161] with both methods utilizing Bayesian

networks as the predictive framework.

Modeling resource utilization as a means to make optimization predictions is needed

in both HPC and HTC. Even the newest-of-breed techniques, such as the use of Kuber-

netes [167] for cloud orchestration, only consider CPU in scheduling decisions. This is too

simplistic for true optimization. Newer models and software implementations are needed

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 77

to more effectively understand the usage and suggest future resource scheduling. Chang

et al. [168] suggested using multiple variables, such as memory and disk access, and cre-

ated a dynamic algorithm for containerized network operations centers, achieving better

resource allocation through comprehensive monitoring and user-defined algorithms. Wei

et al. [169] demonstrated a technique to allocate virtual machine (VM) resources based on

CPU and memory, albeit limited.

Other work in the area has been motivated by optimization based on energy savings.

Pinheiro et al. [170] notes that it is key to examine resource reconfiguration and keep a load

stable (relatively unchanged), as throughput loss can be resource intensive. Due to hetero-

geneous hardware and unpredictable loads in shared environments [171], cloud systems

may need predictive scheduling and optimization more than traditional, homogeneous

HPC clusters.

Bhavani et al. [172] stated that refusing to optimize in cloud systems is to ignore the

promise of the cloud as an elastic resource, capable of adjusting to computing loads in

ways previously limited by dedicated hardware. The work of Bhavani et al. is extendable

to heterogeneous HPC systems and in places where nodes are purchased over time [173].

Furthermore, their method also works well when users are able to bring their own nodes

to a cluster. Mateescu et al. [174] describe a technique where scheduling is done in part

based on the timing demands of the tasks and can use a combinations of HPC and Cloud

as a combined workflow, either managing at the node level (physical machine) or at the

VM level.

Although prior research [172][175][176][177] has explored various scheduling and op-

timization techniques, what distinguishes Rodrigo et al. approach is its use of machine

learning to recommend real-time workload optimizations applicable to various system

sizes and a wide range of applications. However, a key limitation of this work is its disre-

gard for predicting task failures across the cluster [178].

Rodrigo et al. attempted to address temporal and locality resource scheduling. This

approach is interesting, as it attempts to match multi-dimentional task workflows to re-

sources for data locality and increased throughput. However, the resource locality effect

is muted for clusters that do not have local resources (e.g.nodes without local disk for

scratch space), which affect scheduled tasks in a homogeneous HPC-HTC environment.

However, this work disregards predicting job failures across clusters.

78 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Juve et al. [179] tackles the complex issue of resource loss in cluster computing by

profiling tasks and considering how the loss affects overall resource utilization over time.

All submitted tasks are subject to ”spatio-temporal phenomena” [180], meaning their re-

source usage and execution times are influenced by both spatial factors (task location) and

temporal factors (task submission time and queue backlog).

Despite notable efforts to improve job and resource schedulers, job failure rates are still

too high according to a survey of the current state of the practice in this field conducted by

Jauk et al. [181]. Furthermore, Jauk et al. argues that ”regarding job failures, most works in

the literature report that these are due to memory, disk, GPU usage or application-level,

for example, users requesting more resources than the job actually needs” [181].

5.2.1 Anomaly detection in recent works

A more recent work in failure prediction and HPC has emerged with Das et al. on Dooms-

day [182]. Doomsday aggregates system events and system logs applying a technique to

predict which cluster system poses a challenge. The actual doomsday work was specific

to HPE and HPE Cray systems, which limited the generalizability. Even with limitations,

Doomsday was expanded by Bautista and Shasta [183] who built on the log aggregation

strategy with a deterministic algorithm.

The work of Aksar et al. [184] attempts to address anomaly detection in HPC systems.

Aksar et al. project, Prodigy, attempts to address anomalies in systems through an explain-

ability model. Specifically, Prodigy’s ”primary goal is to identify whether any compute

node within a system displays anomalous behavior that leads to performance variations.

We are particularly interested in detecting anomalies that cause performance variability

without resulting in program errors or premature termination, as such anomalies tend

to be more difficult to detect.” [184]. Although the end results may be similar, our work

focuses on failures and faults and removing these nodes from clusters before task event

impacts.

All this research attempts to address failures or anomalies in many ways. However,

stepping outside the computer science domain, we find a failure prediction associated

with specifically manufactured components. Specifically, Aljaz̆ Ferencek et al. [185] de-

scribe a method that uses machine learning to predict failures in components for product

failure prediction models. This specific work is interesting because it showcases models

5. HARD DISK DRIVE FAULTS AND FAILURES AND CLUSTER TASK FAILURES;
BACKGROUND AND RELATED WORK 79

for this type of failure classification and ”The results suggest show that the best perform-

ing models are Random Forest and AdaBoost and Linear Regression models”. However,

unfortunately the paper’s contributions were limited by ”even in the beginning of the

data preparation process, we realized that most of the attributes were unusable due to too

many missing and erroneous data entries”.

Chapter 6

Hard Disk Drive Faults and Failures

We present our Hard Disk Drive faults and failures body of our work, discussing our use

of machine learning to predict HDD failures. We attempt to answer the question: is it

possible to provide explainability for HDD faults and failures and can we predict failures

before they occur?

As the primary data storage devices in computational systems, HDDs are integral to

the functionality and efficiency of computing operations. Their role as the main storage

component in computational clusters underscores the importance of HDD performance

within the overall architecture of computational systems. The influence of HDDs on data

transfer speeds, throughput, and access reliability is significant, regardless of their specific

location within a computational architecture.

As a result of our work in atSNP, we experienced a rapid cascading system failure

event. These failures were caused by a rapid succession of multiple disk failures, which

caused additional stress on other cluster components. The additional stress in rebalancing

the clusters data causes additional failures.

As highlighted in previous chapters, cascading failures can lead to data loss and sig-

nificantly degrade overall system performance. Although such failures are relatively rare

in computing environments, their impact is disruptive. Experiencing a cascading failure

event showcases the importance of understanding the initial trigger that sets off such a

chain reaction.

Access to a relevant data set is essential to analyze HDD failures comprehensively. In

our approach to understanding HDD failures, we utilize the Backblaze data set. These

data sets are rich in features and contain the necessary parameters that we anticipated

to be critical in predicting HDD failures. Through these data, our objective is to develop

81

82 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

a more nuanced understanding of the failure mechanisms of HDDs, which is needed to

improve the reliability and resilience of computational systems.

Although we appreciate the access and community support that Backblaze offers the

community in providing its data set to us, this data set is not without challenges. Careful

consideration is needed be taken while working with this data, especially since the data is

in ”RAW” format and is taken directly from the HDD firmware. Figure 6.1 shows the type

of data being provided. With this type of RAW data come challenges, such as missing

data. We addressed these data concerns and discuss our methods for data cleansing in

Table 6.1. One feature of this data set is the metadata per drive included, as referenced in

Table 6.2.

Figure 6.1 shows the type of data being provided.

TABLE 6.1: Backblaze data considerations

Name Description
Blank Fields The daily snapshots record the SMART stats infor-

mation reported by the drive. Since most drives do
not report values for all SMART stats, there are blank
fields in every record. Also, different drives may re-
port different stats based on their model and/or man-
ufacturer.

Inconsistent Fields Reported stats for the same S.M.A.R.T. stats can vary
in meaning based on the drive manufacturer and the
drive model. Make sure you are comparing apples-
to-apples as drive manufacturers don’t generally dis-
close what their specific numbers mean.

Out-of-Bounds Values The values in the files are the values reported by the
drives. Sometimes, those values are out of whack.
For example, in a few cases, the RAW value of
SMART 9 (Drive life in hours) reported a value that
would make a drive 10+ years old, which was not
possible. In other words, its a good idea to have
bounds checks when you process the data.

The # of Drives Change When a drive fails, the ”Failure” field is set to ”1” on
the day it fails. The next day, the drive is removed
from the list and is no longer counted, reducing the
overall number of drives. On the other hand, new
drives are added on a regular basis increasing the
overall number of drives. In other words, count the
number of drives each day.

6. HARD DISK DRIVE FAULTS AND FAILURES 83

TABLE 6.2: Metadata and drive identifiers Backblaze provides in each dataset

Name Description
Date The day when the snapshot was taken in

yyyy-mm-dd format.
Serial Number The manufacturer-assigned serial num-

ber of the drive.
Model The manufacturer-assigned model num-

ber of the drive.
Capacity The drive capacity in bytes.
Failure Contains a 0 if the drive is OK. Contains

a 1 if this is the last day the drive was op-
erational before failing.

FIGURE 6.1: A dataset sample example

6.1 Dataset exploration

FIGURE 6.2: Diagram of Failed and Healthy Disks

The data set we used for our study includes data from 125,731 hard disk drives, with a

date from October 1 to December 31, 2019. This data set was obtained from Backblaze [35]

84 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

and is presented in Comma Separated Value format (CSV). During the observed period,

of the total of 127,731 hard disk drives, there were 678 instances of drive failure. This

translates to a failure rate of 0.54% for the quarter ending December 31, 2019, a rate shown

in Figure 6.2.

An added layer of complexity in the analysis of this data set arises from the fact that

different hard disk drive manufacturers employ different S.M.A.R.T. attributes. Table 6.3

provides a detailed breakdown of the S.M.A.R.T. attributes used by each vendor.

In addressing HDD storage failure rates, it is important to understand the inventory of

hard disk drives in production. These HDD and their in-use frequency can affect our pre-

diction abilities. Furthermore, each drive vendor populates different S.M.A.R.T. attributes

(Table 6.3). In Table 6.4, we show the number of hard disks with their corresponding fre-

quency in production.

TABLE 6.3: S.M.A.R.T. Attributes by vendor.

S.M.A.R.T. Vendors Toshiba Hitachi Seagate WDC

smart 1 ✓ ✓ ✓ ✓

smart 2 ✓ ✓ ✓

smart 3 ✓ ✓ ✓ ✓

smart 4 ✓ ✓ ✓ ✓

smart 5 ✓ ✓ ✓ ✓

smart 7 ✓ ✓ ✓ ✓

smart 8 ✓ ✓ ✓

smart 9 ✓ ✓ ✓ ✓

smart 10 ✓ ✓ ✓ ✓

smart 11 ✓ ✓

smart 12 ✓ ✓ ✓ ✓

smart 18 ✓

smart 22 ✓

smart 23 ✓

smart 24 ✓

smart 183 ✓

smart 184 ✓

smart 187 ✓

6. HARD DISK DRIVE FAULTS AND FAILURES 85

TABLE 6.3: S.M.A.R.T. Attributes by vendor. (cont)

S.M.A.R.T. Vendors Toshiba Hitachi Seagate WDC

smart 188 ✓

smart 189 ✓

smart 190 ✓

smart 191 ✓ ✓ ✓

smart 192 ✓ ✓ ✓ ✓

smart 193 ✓ ✓ ✓ ✓

smart 194 ✓ ✓ ✓ ✓

smart 195 ✓

smart 196 ✓ ✓ ✓ ✓

smart 197 ✓ ✓ ✓ ✓

smart 198 ✓ ✓ ✓ ✓

smart 199 ✓ ✓ ✓ ✓

smart 200 ✓ ✓

smart 220 ✓

smart 222 ✓

smart 223 ✓ ✓ ✓

smart 224 ✓

smart 225 ✓

smart 226 ✓

smart 240 ✓ ✓ ✓

smart 241 ✓ ✓

smart 242 ✓ ✓

smart 254 ✓

Total 26 21 34 19

TABLE 6.4: All disk vendors and models with their respective frequencies in Backblaze’s
data center provided our 3 month window

Vendor Disk model Number of Disks

HGST HMS5C4040BLE640 12758

HGST HUH721212ALN604 10866

86 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE 6.4: All disk vendors and models with their respective frequencies in Backblaze’s
data center provided our 3 month window (Cont.)

Vendor Disk model Number of Disks

HGST HMS5C4040ALE640 2833

HGST HUH721212ALE600 1561

HGST HUH728080ALE600 1002

HGST HUS726040ALE610 28

HGST HDS5C4040ALE630 26

HGST HUH721010ALE600 20

HGST HMS5C4040BLE641 1

HGST HDS5C4040ALE630 2

Seagate ST12000NM0007 37442

Seagate ST4000DM000 19330

Seagate ST8000NM0055 14502

Seagate ST8000DM002 9844

Seagate ST12000NM0008 7226

Seagate ST10000NM0086 1205

Seagate ST6000DX000 887

Seagate ST500LM012 HN 501

Seagate ST500LM030 259

Seagate BarraCuda ZA250CM10002 157

Seagate Generic SSD 107

Seagate ST16000NM001G 40

Seagate ST4000DM005 39

Seagate ST500LM021 33

Seagate ST8000DM005 25

Seagate BarraCuda ZA500CM10002 18

Seagate ST12000NM0117 15

Seagate ST6000DM001 4

Seagate BarraCuda ZA2000CM10002 4

Seagate ST8000DM004 3

Seagate ST1000LM024 HN 1

6. HARD DISK DRIVE FAULTS AND FAILURES 87

TABLE 6.4: All disk vendors and models with their respective frequencies in Backblaze’s
data center provided our 3 month window (Cont.)

Vendor Disk model Number of Disks

Seagate ST6000DM004 1

TOSHIBA MG07ACA14TA 3627

TOSHIBA MQ01ABF050 475

TOSHIBA MQ01ABF050M 425

TOSHIBA MD04ABA400V 99

TOSHIBA HDWF180 20

TOSHIBA HDWE160 4

WDC WD5000LPVX 214

WDC WD5000LPCX 54

WDC WD5000BPKT 10

WDC WD60EFRX 3

The data were fragmented into 92 separate daily records. This fragmentation required

us to aggregate individual daily data sets into a cohesive whole for a comprehensive anal-

ysis.

With such a small number of failed HDD, a huge disparity between the two classes of

disk categories (failed and working) must be overcome. To illustrate the imbalance and

provide a clearer understanding of the data distribution, we provide a visualization of

this disparity in Figure 6.2.

Backblaze’s unique position in the marketplace as a data storage provider contributes

an additional layer of complexity to our analysis. The company operates numerous stor-

age systems, each comprising a diverse array of HDDs from various manufacturers and

HDDMs. Table 6.5 lists the HDDs along with their corresponding failure numbers. This

table serves as a reference to understand the variety of storage devices included in our

study and their distribution between different manufacturers.

88 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE 6.5: HDDM and their numbers available in the Backblaze Storage dataset with
failed drive count.

Types of HDDM # of Disks # of failed Disks
HGST HDS5C4040ALE630 26 0
HGST HMS5C4040ALE640 2833 4
HGST HMS5C4040BLE640 12758 12
HGST HMS5C4040BLE641 1 0
HGST HUH721010ALE600 20 0
HGST HUH721212ALE600 1561 1
HGST HUH721212ALN604 10866 6
HGST HUH728080ALE600 1002 2
HGST HUS726040ALE610 28 0
Hitachi HDS5C4040ALE630 2 0
ST10000NM0086 1205 5
ST1000LM024 HN 1 0
ST12000NM0007 37442 364
ST12000NM0008 7226 9
ST12000NM0117 15 0
ST16000NM001G 40 0
ST4000DM000 19330 119
ST4000DM005 39 0
ST500LM012 HN 501 13
ST500LM021 33 0

Since not all vendors employ identical variables for their HDD, careful consideration

is required to determine which variables to be retained for analysis within our data set.

This selection process is essential to ensure consistency and reliability in our findings.

6.1.1 Cleaning the Data

To analyze this data set, we identified the day with the highest number of failures. We

then collected data on the failed disks, tracing their observations from the first day to

the selected day. This approach enabled the construction of a time series data set that

described the HDD behavior over time.

To balance the dataset, we employed an under-sampling method. This method in-

volved selecting healthy disks that remained operational up to the identified day and

gathering their respective observations for the same period. It was crucial to ensure that

these healthy disks were from the same HDDM as the failed disks. This consistency was

necessary for accurate comparisons, as different HDDMs use distinct variables. As a re-

sult, we created two separate datasets: one for healthy and another for failed HDD. Fig-

ure 6.3 provides a visual representation of this process, with blue indicating healthy disks

6. HARD DISK DRIVE FAULTS AND FAILURES 89

and red indicating failed disks. Our data set had a HDD models with no failed drives

over the three-month period; we excluded these HDD models.

FIGURE 6.3: Pre-Processing Diagram

6.1.2 Methodology

We conducted a temporal analysis is executed of both datasets (Healthy Disks and Failed

Disks) for a better visualization of the oscillations in the variable’s values and to explore

the differences between the healthy and failing disks. We calculated the Euclidean dis-

tances of the attribute values vs. time between the failed disks and the healthy ones

for every feature. With this distance, a better numerical perception was achieved and

helped in verifying our model’s high-ranking contribution features. Both processes will

help extract information from the data and turn the decision-making, before applying the

learning algorithms, more efficient and accurate. The temporal analysis is performed by

plotting the attributes of interest for failing disks and healthy disks.

The Euclidean distance is calculated for each variable. This distance helps to under-

stand how dispersed the values are between a healthy disk and a disk that ends up failing.

To better clarify this process, we compared the smart 1 vs. time of a healthy disk, against

90 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 6.4: Data set assembly for our HDDM classification model

the smart 1 vs. time of a failed disk. We verified that the comparison between the disks is

always done with the same HDD as seen in Table 6.6.

TABLE 6.6: Euclidean distances between the healthy and failed disks

EUCLIDEAN DISTANCES BETWEEN THE HEALTHY AND FAILED DISKS
smart 1 normalized smart 1 raw smart 7 normalized smart 7 raw smart 9 normalized smart 9 raw

ST12000NM0007 2.896801 3.141699 N/A 0.186010 3.000000 0.056366
ST12000NM0007 2.054655 2.665402 1.092906 0.532815 3.041381 0.064692
ST12000NM0007 1.964036 3.185758 2.403701 0.704135 3.000000 0.040648
ST12000NM0007 3.832814 2.756828 4.358899 1.431158 3.041381 0.066226
ST12000NM0007 1.991425 2.650050 4.845187 5.122032 2.645751 0.053915
ST12000NM0007 2.565644 3.179320 1.471768 0.574069 2.449490 0.046023
ST12000NM0007 2.885591 2.882519 3.122499 0.871523 3.000000 0.056832
ST12000NM0007 3.051245 2.747076 3.752777 0.313711 3.000000 0.050737
ST12000NM0007 1.454620 1.372290 2.373880 0.160891 N/A 0.107380

ST4000DM000 2.293516 3.111510 2.719062 3.947537 2.236068 0.050780
ST4000DM000 2.394414 2.934578 N/A 0.299613 3.000000 0.031744
ST8000NM0055 2.323827 3.176403 4.716991 0.275336 3.041381 0.056363
ST8000NM0055 3.533003 3.427996 3.464102 0.530212 3.041381 0.057715

ST12000NM0008 1.980921 2.321437 0.139754 0.056393 N/A 0.005388
TOSHIBA MG07ACA14TA N/A N/A N/A N/A 0.881917 0.039677

TOSHIBA MQ01ABF050 N/A N/A N/A N/A N/A 0.135676

To apply a VAR model, it was necessary to divide the two data sets, creating sub-

data sets that we grouped by serial number. Thus, the sub-data sets would only contain

observations over time of a given disk. In this way, it became possible to identical mod-

els of each disk and make a comparison between the healthy and the failing drives, see

Figure 6.5

6. HARD DISK DRIVE FAULTS AND FAILURES 91

FIGURE 6.5: Data set assembly for our HDDM VAR model

The observations from the last five days of each disk were removed so that we could

forecast and compare with the real values. The drive information that was added by

Backblaze is removed, except the Date values, so that the resulting data set only contains

S.M.A.R.T. variables, over time. This measure is taken because the VAR MLM performs

operations only on numeric variables and would not extract any information from the

textual variables that were added to describe the disk (e.g. Serial number).

Before the execution of the algorithms, we divided the data sets (healthy and failed)

into sub-data sets once more, but this time in sub-data sets grouped by HDDM. This is

done because we no longer need to have a temporal view of this data, so more than one

disk can be placed in the new data subset as seen in Figure 6.4. Then it is necessary to

add the class variable to all observations . The disks that fail will have the class equal to 1

and those that remain healthy will have the class equal to 0. In these algorithms, only the

S.M.A.R.T. attributes remain in the data frame, the rest of the variables are eliminated for

the same reasons referenced in the VAR model.

All features were normalized to values between 0 and 1, since the learning algorithms

had difficulties performing the operations on non-integer values. This normalization was

made after the disks were divided by HDDM, so the values range were not mixed up.

The validation method used a train-test-split ratio of 80 to 20.

92 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

6.2 Classification Algorithms

The classification MLM were applied to the sub-data sets created (12 data frames dis-

tinguished by HDDM). Both classification algorithms, SVM and Random Forest, were

executed using default parameters.

Table 6.7 presents the metric results of HDD Seagate ST12000NM0007 model along

with the respective Confusion Matrix. The tables present precision, recall, f1-score, and

accuracy. It is also possible to observe the support of each class, corresponding to how

many observations are labeled for each class. In the confusion matrices the predicted cases

for each classification algorithm are presented, so it is possible to evaluate the respective

performance. All the results presented are obtained from the test set.

TABLE 6.7: Metrics Results for HDDM ST12000NM0007

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 1.00 0.99 0.99 92 0.99 0.99 0.99 92
Failure 0.99 1.00 0.99 83 0.99 0.99 0.99 83

accuracy 0.99 175 0.99 175
macro avg 0.99 0.99 0.99 175 0.99 0.99 0.99 175

weighted avg 0.99 0.99 0.99 175 0.99 0.99 0.99 175

TABLE 6.8: Confusion Matrix HDDM ST12000NM0007

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual Healthy 91 1 91 1
Class Failure 0 83 1 82

TABLE 6.9: Metrics Results for HDDM ST4000DM000

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.83 1.00 0.91 20 0.95 1.00 0.98 20
Failure 1.00 0.80 0.89 20 1.00 0.95 0.97 20

accuracy 0.90 40 0.97 40
macro avg 0.92 0.90 0.90 40 0.98 0.97 0.97 40

weighted avg 0.92 0.90 0.90 40 0.98 0.97 0.97 40

6. HARD DISK DRIVE FAULTS AND FAILURES 93

TABLE 6.10: Confusion Matrix HDDM ST4000DM000

SVM RANDOM FOREST
Healthy Failure Healthy Failure

Actual Healthy 20 0 20 0
Class Failure 4 16 1 19

TABLE 6.11: Metrics Results for HDDM ST8000NM0055

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.95 1.00 0.98 20 1.00 1.00 1.00 20
Failure 1.00 0.95 0.98 21 1.00 1.00 1.00 21

accuracy 0.98 41 1.00 41
macro avg 0.98 0.98 0.98 41 1.00 1.00 1.00 41

weighted avg 0.98 0.98 0.98 41 1.00 1.00 1.00 41

TABLE 6.12: Confusion Matrix HDDM ST8000NM0055

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual Healthy 20 0 20 0
Class Failure 1 20 0 21

TABLE 6.13: Metrics Results for HDDM ST12000NM0008

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.40 0.40 0.40 5 0.50 0.40 0.44 5
Failure 0.25 0.25 0.25 4 0.40 0.50 0.44 4

accuracy 0.33 9 0.44 9
macro avg 0.33 0.33 0.33 9 0.45 0.45 0.44 9

weighted avg 0.33 0.33 0.33 9 0.46 0.44 0.44 9

TABLE 6.14: Confusion Matrix HDDM ST12000NM0008

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual Healthy 2 3 2 3
Class Failure 3 1 2 2

In Table 6.7 we observe that the ST12000NM0007 HDDM metrics values are very close

to 100%, demonstrating that our methodology is accurate. It is important to note that the

ST12000NM0008, TOSHIBA MQ01ABF050 and TOSHIBA MG07ACA14TA HDDM, do

not have a favorable support (i.e. exceptionally few observations and information from

past behaviors) for the execution of algorithms, and therefore their results are not the most

94 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE 6.15: Metrics Results for HDDM TOSHIBA MQ01ABF050

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.80 0.80 0.80 10 0.91 1.00 0.95 10
Failure 0.82 0.82 0.82 11 1.00 0.91 0.95 11

accuracy 0.81 21 0.95 21
macro avg 0.81 0.81 0.81 21 0.95 0.95 0.95 21

weighted avg 0.81 0.81 0.81 21 0.96 0.95 0.95 21

TABLE 6.16: Confusion Matrix HDDM TOSHIBA MQ01ABF050

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual Healthy 8 2 10 0
Class Failure 2 9 1 10

promising. In the future work section, we discuss some points that could improve these

results are discussed.

Note the importance that the Random Forest model gives to variables in its decision

making and in the tree’s creation. With this, it is easier to understand which features are

more important in helping the algorithm to predict if the disk will fail or if it will remain

healthy. Table 6.17 shows the importance ranking given to the six different HDDM’s.

6. HARD DISK DRIVE FAULTS AND FAILURES 95

TABLE 6.17: Random Forest Features Importance for each HDDM

ST12000NM0007
S.M.A.R.T. Variable importance

7 normalized 0.228980
193 raw 0.187561

3 normalized 0.165387
9 normalized 0.058750

9 raw 0.057293
241 raw 0.051673
7 raw 0.041517

240 raw 0.032224
12 raw 0.026624
242 raw 0.026087

TABLE 6.18:
ST12000NM0007 RF Importance

ST4000DM000
S.M.A.R.T. Variable importance

193 raw 0.156771
183 raw 0.127605

3 normalized 0.099825
190 normalized 0.083486
183 normalized 0.080752

194 raw 0.063729
194 normalized 0.061899

190 raw 0.056995
7 normalized 0.046583

240 raw 0.045435

TABLE 6.19:
ST4000DM000 RF Importance

ST8000NM0055
S.M.A.R.T. Variable importance

195 normalized 0.207715
1 normalized 0.182538

193 normalized 0.126374
191 raw 0.066237

7 normalized 0.060627
191 normalized 0.053196

192 raw 0.043330
190 raw 0.022044

194 normalized 0.021385

TABLE 6.20:
ST8000NM0055 RF Importance

ST12000NM0008
S.M.A.R.T. Variable importance

190 raw 0.165062
194 normalized 0.146380
190 normalized 0.139104

194 raw 0.130639
192 raw 0.061040

1 normalized 0.050796
240 raw 0.038349
7 raw 0.037081
9 raw 0.036924

TABLE 6.21:
ST12000NM0008 RF Importance

TOSHIBA MQ01ABF050
S.M.A.R.T. Variable importance

191 raw 0.400617
194 raw 0.286671
9 raw 0.134172

222 raw 0.125146
222 normalized 0.028102
9 normalized 0.025292

TABLE 6.22:
TOSHIBA MQ01ABF050

RF Importance

TOSHIBA MG07ACA14TA
S.M.A.R.T. Variable importance

226 raw 0.278620
222 raw 0.193245
9 raw 0.181570

220 raw 0.145886
194 raw 0.104060
193 raw 0.096619

TABLE 6.23:
TOSHIBA MG07ACA14TA

RF Importance

96 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 6.6: A Decision Tree from the Random Forest of the ST12000NM0007 HDDM

Figure 6.6 shows one of the trees created after the Random Forest algorithm was exe-

cuted on the ST12000NM0007 data set. As normal, the variables presented in the decision

tree are shown in the importance table, showing that the algorithm uses them to classify

the observations. In Table 6.24 the variables presented in the decision tree are described.

Note that this description was made after the variables were already normalized between

0 and 1. We use six digits of accuracy, which is the default output format of our model.

Our importance values are based on the model output and are not normalized as we did

to the values when we built the model.

TABLE 6.24: Decision Tree S.M.A.R.T. variable description

7 normalized 7 raw 9 normalized 9 raw 241 raw
count 699 699 699 699 699
mean 0.705797 0.476673 0.270684 0.739938 0.769213

std 0.184539 0.306533 0.301359 0.301370 0.266498
min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.600000 0.178866 0.100000 0.737158 0.804327
50% 0.685714 0.476555 0.150000 0.847509 0.853286
75% 0.900000 0.772911 0.263158 0.939120 0.925315
max 1.000000 1.000000 1.000000 1.000000 1.000000

6. HARD DISK DRIVE FAULTS AND FAILURES 97

6.3 VAR Model

We created 32 sub-data sets to apply the time series MLM, grouping the sub-data sets by

serial number. The algorithm could be applied individually and to calculate the respec-

tive correlation matrices and predicting the variables behavior over time.

We show correlation matrices for four different disk’s HDDM. These matrices are pre-

sented in Tables 6.25 - 6.32.

These correlations are important. The features are monitored together, not just those

that present critical values because their thresholds were exceeded. S.M.A.R.T. attributes

9 and 240 are present in all disks (healthy and failed), with correlations close to 1. This

happens because both are hour counters, with 9 being the number of hours in power-state

and 240 the time during the positioning of the drive heads.

It is possible to verify that higher correlations between variables (9-193) and (240-193)

also happen more frequently in the disks that fail from ST12000NM0007 HDDM. The high

correlation between these variables may alert us that a more careful observation of the

disks should be made. However, there are also healthy disks that show high correlations

between these variables, but there is no guarantee that the disk will remain healthy in the

future, so these disks may even already show some type of anomaly.

Even though there are not enough disks to draw a strong conclusion, the ST4000DM000

HDDM shows correlations between the variables (9−7) and (240−7) for the disks that fail,

and the ST12000NM0008 HDDM with correlations in the variables (1−193), (1−194) and

(193−194) also in the failing disks.

TABLE 6.25: Correlation Matrix for failed disk from HDDM ST12000NM0007

Failed Disk ST12000NM0007

(ZCH0C5JJ)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.253239 0.201611 -0.120629 -0.190959 0.187426

smart 7 raw 0.253239 1.000000 0.852643 0.696433 0.055252 0.849855

smart 9 raw 0.201611 0.852643 1.000000 0.923364 0.039857 0.998544

smart 193 raw -0.120629 0.696433 0.923364 1.000000 -0.040797 0.920185

smart 194 raw -0.190959 0.055252 0.039857 -0.040797 1.000000 0.068931

smart 240 raw 0.187426 0.849855 0.998544 0.920185 0.068931 1.000000

98 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE 6.26: Correlation Matrix for healthy disk from HDDM ST12000NM0007

Healthy Disk ST12000NM0007

(ZCH06YQ3)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.166218 -0.085673 -0.141543 0.260900 -0.001269

smart 7 raw 0.166218 1.000000 0.351067 -0.135600 -0.120242 0.392243

smart 9 raw -0.085673 0.351067 1.000000 0.254303 -0.457013 0.992656

smart 193 raw -0.141543 -0.135600 0.254303 1.000000 -0.546709 0.235824

smart 194 raw 0.260900 -0.120242 -0.457013 -0.546709 1.000000 -0.406834

smart 240 raw -0.001269 0.392243 0.992656 0.235824 -0.406834 1.000000

TABLE 6.27: Correlation Matrix for failed disk from HDDM ST4000DM000

Failed Disk ST4000DM000

(Z302T88S)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.557678 0.641922 0.054301 0.027109 0.612161

smart 7 raw 0.557678 1.000000 0.933525 -0.456721 0.200886 0.942728

smart 9 raw 0.641922 0.933525 1.000000 -0.262591 0.029598 0.998036

smart 193 raw 0.054301 -0.456721 -0.262591 1.000000 -0.332683 -0.271897

smart 194 raw 0.027109 0.200886 0.029598 -0.332683 1.000000 0.036335

smart 240 raw 0.612161 0.942728 0.998036 -0.271897 0.036335 1.000000

TABLE 6.28: Correlation Matrix for healthy disk from HDDM ST4000DM000

Healthy Disk ST4000DM000

(Z302DJZ6)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.105579 -0.208478 -0.153385 0.724605 -0.208246

smart 7 raw -0.105579 1.000000 0.458922 -0.102037 -0.192726 0.471757

smart 9 raw -0.208478 0.458922 1.000000 0.569640 -0.315389 0.998916

smart 193 raw -0.153385 -0.102037 0.569640 1.000000 -0.432104 0.559510

smart 194 raw 0.724605 -0.192726 -0.315389 -0.432104 1.000000 -0.336655

smart 240 raw -0.208246 0.471757 0.998916 0.559510 -0.336655 1.000000

TABLE 6.29: Correlation Matrix for failed disk from HDDM ST8000NM0055

Failed Disk ST8000NM0055

(ZA1819DM)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.257158 -0.061240 -0.286411 -0.268057 -0.022319

smart 7 raw 0.257158 1.000000 0.830599 -0.177065 -0.081025 0.844100

smart 9 raw -0.061240 0.830599 1.000000 0.161528 0.070777 0.995699

smart 193 raw -0.286411 -0.177065 0.161528 1.000000 0.370282 0.189769

smart 194 raw -0.268057 -0.081025 0.070777 0.370282 1.000000 0.100202

smart 240 raw -0.022319 0.844100 0.995699 0.189769 0.100202 1.000000

6. HARD DISK DRIVE FAULTS AND FAILURES 99

TABLE 6.30: Correlation Matrix for healthy disk from HDDM ST8000NM0055

Healthy Disk ST8000NM0055

(ZA18BTFV)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.455708 -0.264859 0.321201 0.271168 -0.249651

smart 7 raw -0.455708 1.000000 0.918986 0.235787 -0.325022 0.921027

smart 9 raw -0.264859 0.918986 1.000000 0.528043 -0.273634 0.999511

smart 193 raw 0.321201 0.235787 0.528043 1.000000 -0.302633 0.529167

smart 194 raw 0.271168 -0.325022 -0.273634 -0.302633 1.000000 -0.267527

smart 240 raw -0.249651 0.921027 0.999511 0.529167 -0.267527 1.000000

TABLE 6.31: Correlation Matrix for failed HDDM ST12000NM0008

Failed Disk ST12000NM0008

(ZHZ3MSH6)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.061050 0.395718 0.741040 0.703804 0.072431

smart 7 raw 0.061050 1.000000 0.922226 -0.374584 -0.446844 0.961005

smart 9 raw 0.395718 0.922226 1.000000 -0.097896 -0.156114 0.927476

smart 193 raw 0.741040 -0.374584 -0.097896 1.000000 0.863018 -0.457007

smart 194 raw 0.703804 -0.446844 -0.156114 0.863018 1.000000 -0.442773

smart 240 raw 0.072431 0.961005 0.927476 -0.457007 -0.442773 1.000000

TABLE 6.32: Correlation Matrix for healthy disk from HDDM ST12000NM0008

Healthy Disk ST12000NM0008

(ZHZ3PT1S)
smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.106104 -0.175308 -0.074616 0.041358 -0.206763

smart 7 raw -0.106104 1.000000 0.976768 -0.217435 0.040426 0.982719

smart 9 raw -0.175308 0.976768 1.000000 -0.054606 0.107858 0.960382

smart 193 raw -0.074616 -0.217435 -0.054606 1.000000 0.578504 -0.306347

smart 194 raw 0.041358 0.040426 0.107858 0.578504 1.000000 -0.096563

smart 240 raw -0.206763 0.982719 0.960382 -0.306347 -0.096563 1.000000

100 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 6.7: Forecast for the first healthy disk

FIGURE 6.8: Real Values for the first healthy disk

6. HARD DISK DRIVE FAULTS AND FAILURES 101

Our forecasted values (in the red dashed lines) in the Figure 6.7 include a two times

standard deviation from the predicted values at 95% confidence level. The top line is

the upper-bound standard deviation and the bottom line s the lower bound standard de-

viation that we expect the predicted value to lie within. We can see the actual values

in Figure 6.8 and notice some of the S.M.A.R.T. predicted values are more closely pre-

dicted, like S.M.A.R.T. 7, 9 and 240; however, other values are less obviously predictive

like S.M.A.R.T. 1 and 192 raw. These predictive values follows with our decision tree at-

tributes importance ranking. This also implies that these attributes are able to be predicted

and are predictive for failures.

Finally, the forecasting was done to predict the disks behavior over the time. In Fig-

ure 6.7, inside the red dashed line, a five−day forecast can be observed. We forecasted

each variable from a disk that fails and a disk considered healthy. In Figure 6.8 inside

this dashed line it is possible to see how the disks performed in the last five days before

being selected. The X axis represents a time scale, with daily periodicity and the Y axis

represents the values for each variable. It is important to notice that these five days were

removed from the datasets at the beginning of the learning HDDM, so now that they

could be compared with the respective forecasted values.

6.4 Discussion

Working with imbalanced data reduces the effectiveness of prediction MLM. Because of

this, it was necessary to take an overly cautious approach to the data, so little information

about the disks that could be useful, was not lost during the process.

One of the biggest beliefs in this project was that the pre-processing and statistical

analysis methods used to create the sub datasets were fundamental in the learning process

of the data. All prior studies made on this subject analyzed the disks all together without

splitting them by HDDM. This means that the variables standard values, the thresholds

and even the features normalization process are not distinguished between them.

Although, most sub datasets created during the project, did not have the ideal number

of observations, the metrics values for the classification MLM are quite promising, show-

ing values close to 100%, for the precision, recall and f-score of the evaluated HDDM.

The VAR MLM application, allowed to trace temporal correlation between the fea-

tures, showing that variables 9, 240 and 193 are related over time. The forecasting showed

102 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

a low forecasting error and may be an interesting method to predict the variables behavior

for storage companies.

We note that variables 7, 9 and 240 are often present in the results. Therefore, we

would expect in the future to monitored the variables more carefully and combine them

with ones that already labeled critical in the literature.

Over the course of our work, some obstacles appeared and had to be overcome. The

lack of perception about the variables, the difference between vendors references values

and the number of missing values presented in the dataset, made the decision making

difficult. Often our methods had to be redone from scratch. Since the VAR is an algorithm

that works with mathematical matrices, it proved to be a MLM with high complexity that

requires a lot of attention in the type of data that we used.

6.5 Conclusions

The objective of this chapter was to expand on the current state-of-the-art. Our work, set

out to measure if we could predict HDD’s failures and anomalies using S.M.A.R.T. data.

Over the time-frame we sampled, we believe we met our objective. We do note that with

a three month data set study period may be too short. We believe a larger dataset, over

a longer period of time, would help validate our results; we expect to do this in future

work.

We recognized from the outset that imbalanced data could hinder the effectiveness

of machine learning models (MLMs) for prediction. To address this challenge, we seg-

mented our data based on HDDM. This approach ensured that even small but potentially

valuable information about the disks wouldn’t be overshadowed by more frequent data

points during the machine learning process.

Our work used pre-processing and statistical analysis to create data subsets. It was

this pre-processing and segmentation that was fundamental for applying MLMs to learn

from our processed data. Our literature review showed almost all studies on our subject

used all HDDM together to build a MLM.

A core contribution of our work was the segmentation based on HDDM, which de-

viated from prior work that analyzed all the disks together and sometimes broken apart

by manufacturer. Limited prior art has attempted to splitting the HDD by model and

manufacturer and for this work an only attempted to use the split to showcase HDDM

failure rates. Other prior art did break out the variables, standard values, the thresholds

6. HARD DISK DRIVE FAULTS AND FAILURES 103

but never normalized the data so their work appeared unable to distinguished significant

features. No prior art applied a MLM at the individual manufacturer and model level as

our work had done.

When we created the data subsets for our work, unfortunately we had limited num-

bers of observations for failed HDD. We would have liked to have more failed HDD

for the metrics values for the classification models. Our classification models showed

promise in producing values really close to 100%, for the precision, recall and f-score of

certain HDD models. This was exciting and shows that our method of breaking out by

HDDM is promising.

When we applied VAR models it allowed us to trace temporal correlation matrices

between the features. This application of the VAR models showed that variables 9, 240

and 193 are related over time.

S.M.A.R.T. Variables, like smart 7, smart 9, and smart 193 as described in Table 5.1,

have a high importance in almost all disk MLM. As mentioned, some the S.M.A.R.T.

variables are considered critical in the literature and are the ones that the storage sys-

tems follow the most. We note that variables 7, 9 and 240 are present often in our results.

Therefore, these variables should be monitored together with the ones that are considered

already considered critical in the literature. As previously noted, S.M.A.R.T. attributes 7,9

and 240 all have a temporal components. These temporal components also correlate with

the ”bathtub” curve of HDD failures by age as seen in Figure 5.3.

Throughout our work, some obstacles appeared and had to be overcome. Working

with such a large and imbalanced dataset was a challenge.

We have included additional tables and graphics of our other evaluated HDDM in

Appendix D.

Chapter 7

Computational Cluster Task Failures

In this chapter, we discuss user submissions to computational clusters. Specifically, we

examine user submitted computational tasks and profile them for a domain specific use

case. Our goal is to understand the characteristics of the tasks submitted to the compu-

tational cluster submitted task characteristics and apply machine learning to predict if a

task will failure. The data for our use case was provided by the University of Wisconsin -

Madison, BCG.

Clusters of machines use a middle-ware to provide an interface (command line, API,

or portal) for submitting single or batch tasks.

To submit a task it is recommended that a submitter has knowledge of a given tasks’

needs.

The tasks that we used in our analyses originate from professors, students, staff at

the University of Wisconsin-Madison in the department of BMI. These tasks where sub-

mitted between October 5, 2016 and September 24, 2018. All submitted tasks are used

by biostatisticians or medical informaticians. The vast majority of the tasks required the

cluster to have HIPPA [186] regulatory compliance or specific dataset security restrictions.

These restrictions inhibit the tasks from utilizing general cloud compute infrastructures

or other academic focused computational infrastructures such as the OSG [42]. Therefore,

the tasks run within the cluster have unique and domain specific attributes to machine

learning and medical data analysis.

We used the HTCondor class-Ad history to provide logs of the historical information

about the tasks and their sub-tasks. For our work, we analyze the history 17,282 cluster

submissions, producing 129,854 tasks. This data was from the BCG computational cluster

running HTCondor.

105

106 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

We are motivated in this work to better understand cluster submitted task failure pat-

terns so we can help our users have less failed tasks and secondarily improve cluster

success rates. We attempt to detect patterns that could be used to proactively identify

areas that cause a task to fail. We expect patterns to emerge that will provide clues into

cluster adjustments for reducing failures and optimizing resource usage.

7.1 Dataset exploration

To understand why our tasks succeeded or failed, we need classifiers. We use HTCondor

class-ad attribute JobStatus as the classifier of successful and failed tasks. We found a com-

monality among the tasks that failed, indicated by a HTCondor class ad JobStatus=3, while

tasks that succeeded had a JobStatus=4. Beyond tasks we also identified two primary sub-

missions categories, those consisting of a single task and those comprising multiple tasks.

Combining task success and failures with submission categories results in the following.

We categorized all tasks into five groups:

1. tasks submissions of single tasks that finished successfully

2. tasks submissions of single tasks that failed

3. tasks with multiple task submission for which all tasks finished successfully

4. tasks with multiple task submission for which all tasks failed

5. tasks with multiple task submission for which some of the tasks succeeded and

some failed

While single task task submissions are common, these submissions only run one task,

which makes finding characteristics patterns difficult to find for this single task. There-

fore, we concentrated on the multiple submission tasks, these tasks share common exe-

cutable, executable parameters and the same resource requirements.

Users are allowed to submit tasks to the cluster from all cluster nodes. We combine

the task submissions from each cluster node into one dataset which represents all clus-

ter submissions from all nodes in the cluster. The task submission data was generated

through the use of condor history with the –json option which produced the Condor his-

tory data in JSON format. Using the HTCondor history data partitioned by individual

class-Ad and generating a separate file for each Condor submission node, we combine

7. COMPUTATIONAL CLUSTER TASK FAILURES 107

the data and import this data into a NoSQL database. MongoDB [187] was chosen as the

data store for exploring and analyzing the data due to its simple import procedures and

well established user base. In Table 7.1, we show a breakdown of the tasks by completion

state. Table 7.2 displays a breakdown of exit status events from the clusters failed tasks.

Number Percent Description

106695 82.2%
Complete successful,

no errors
23159 17.8% Task Error Issues

129854 100% All submitted task

TABLE 7.1: Full cluster submitted Task Breakdown

Number Percent Event

13,070 10.1%
User removed before
scheduled to cluster

9,183 7.1%
User defined task

attribute expression error
434 0.33% Failed to initialize user log
229 0.17% Out-of-memory event
160 0.11% Other

83 0.06% No such file or directory
23,159 17.8% Total Task Error Issues

TABLE 7.2: Submitted tasks with errors breakdown

The category, ”tasks with multiple task submission for which some of the tasks suc-

ceeded and some failed”, is especially interesting to us. We personally experienced these

failed tasks first hand in our ETL for atSNP search. It also was the cluster submission cat-

egory with the most number of tasks. With only 491 submissions, this cluster submission

category had a majority of the cluster tasks at 69.4%. We can compare this category group

(as highlighted in green) to other category groups in Table 7.3.

Table 7.4 breakdowns this category further and we see in this group: 14.3% failed and

85.7% succeeded tasks.

To analyze the data, we clustered the using the HTCondor class-Ad ClusterId and com-

bine it with the submission host part of the GlobalJobId field and use this as the unique

submission cluster key. Other class-Add attributes can be seen in Table 7.5.

Our cluster had 21,152 unique cluster submissions and 20,518 submissions where only

one task was submitted by the submission. A breakdown of cluster submission by task

results is found in Table 7.6 and we plot our data based on tasks-per-submission in Fig-

ure 7.1. Of the remaining 1,860 cluster submissions, 491 of these have greater than five

108 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Usage statistic Cumulative Average Max Min Description
CPU 978,394.3 7.53 11,975.6 0 Cumulative CPU time

per task
System CPU 43,848.3 .38 101.9 0 Cumulative CPU time

in system/kernel time
User CPU 671,066.3 5.8 5,466.4 0 Cumulative CPU time

in User space time
Suspension 40.8 .0003 3.6 0 Cumulative time

a task is suspend-
ed/held

∗Note: System and User CPU time are a subset of the total due to a
change in the way HTCondor collected dataset over the sample period.

TABLE 7.3: Cluster task usage in hours

Number Percent Description

77,183 85.7%
Complete successful,

no errors
12,879 14.3% Task error, issues
90,062 100% All multi-task submissions

TABLE 7.4: Multi-task submitted with failed task breakdown

FIGURE 7.1: Number for tasks per cluster submission

tasks submitted per cluster submission and have both failed and successful completed

task. Only 491 cluster submissions produced 69.4% of our cluster scheduled tasks. This

group had at least one failed task when other tasks in the same submission succeeded.

The task category group is the largest by cluster task numbers. Having previously expe-

rienced a submission with succeeded and failed tasks in our atSNP search ETL work. We

want to know why do tasks from the same submission both succeed and fail?

We observe, in Table 7.6 that our green highlighted cluster submission category group

averaged 256.4 tasks per submission. We focus this analysis on the submissions of ten

7. COMPUTATIONAL CLUSTER TASK FAILURES 109

Attribute Type Description
Args string Arguments passed to the job
ClusterId Int A group of tasks submitted

together, each with unique
task identifier but shared
cluster identifier

Cmd string The path a file name of the
task being run

CommittedTime Time(sec) Wall time allocated on a ma-
chine to the job

CommittedSlotTime Time(sec) CommittedTime * SlotWeight
CumulativeSlotTime Time(sec) RemoteWallClockTime *

slotweight
DiskUsage Int Amount of space used in the

exec directory by the job
HoldReason String message to why the task is in

a held state
HoldReasonCode Int int representing the task hold

reason
ImageSize Int Max observed virtual image

size of the job
JobStatus Int The current status of the

job: 1=idle, 2=Running,
3=Removed, 4=Completed,
5=Held, 6=Transferring Out-
put

Owner String user submitting the job
ProcId Int Id of a task within a submis-

sion
RemoteWallClockTime Time(sec) Cumulative number of sec-

onds of user CPU time the
task used on remote machine

TABLE 7.5: HTCondor Class Ad attributes examples

or more tasks with a combination of successful and failed tasks for multi-tasked submis-

sions. Submissions with less then ten can be run easily as individual tasks on individual

machines; however, at five tasks we experienced it is easier to run these tasks with a com-

putational cluster scheduler if available. Additionally, the number of task submissions in

the one >X <ten group is only 0.2% of the total cluster task submissions.

The task resource usage by submission grouping is described in Table 7.3.

110 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

#
submission

%
Submission # Task

%
Total Task

Submission
Type Description

14,337 67.7% 14,337 11.0% Single Success
6,181 29.2% 6,181 4.8% Single Failed

35 0.2% 148 0.1% 1>#tasks
<10

Both Success &
Failed

351 1.7% 57,843 44.6% >10 Multi-
task

All Successful

75 0.4% 6,996 5.4% >10 Multi-
task

All Failed

173 0.8% 44,349 34.2% >10 Multi-
task

Both Success &
Failed

21,152 100% 129,854 100% Total All Task Status

TABLE 7.6: Cluster submissions breakdown

7.2 Methodology

The data contains some evaluated equations where numeric values would be expected.

This data required us to evaluate the encountered text data and equate it from other

class-ad attributes. Not all tasks have all the required data and we address missing data

through interpolating from other existing data.

HTCondor evaluates text to determine matching attributes. Since the data does not

evaluate to numeric but instead maintains the original text, a step needed to be added to

address these concerns. Class-Ad attributes affected by text matching criteria included:

CmdHash, TransferInput, RequestDisk, ImageSize, RequestMemory. To address data issues

with text and numeric values in the same field, such as RequestDisk RequestMemory, we

evaluated the text to the actual numeric values based on the evaluated text of the class-ad

attribute value, specifically we evaluated the /EVAL/ value criteria.

Address any multi-modal, multi-class issues within our dataset we convert this data

by integrating numerical, binomial, and categorical data through a bucket normalization

process [188]. Thus, we organize commonality of data points through attribute value

proximity and evaluate the remaining data by the corresponding attribute. Bucketing

class-Ad attributes allows for temporal and high cardinally values to be grouped by near-

est values, similarly to our work with HDD 6.1.2. Each class-Ad attribute bucket we

implemented varied based on the type of data, for each type of data we used a different

bucketing techniques with the following categories: numeric, epoctime, taskruntime, and

dates. The implemented bucketing algorithm is as follows: numeric in buckets starting

at zero and incremented 2,622,144 per bucket; epoctimes buckets started at the minimum

7. COMPUTATIONAL CLUSTER TASK FAILURES 111

epoctime and had a maximum epoctime with 200 buckets equally spaced; taskruntimes

started at the minimum time and incremented by 3,600 sec (1 min), and dates was done

by individual day.

Some class-ad attributes provided no value since the data was empty. For all empty

class-ad attributes, we dropped the corresponding column from our dataset. Remaining

class-ad attributed which we could not convert to Numeric, Boolean’s, Strings or bucket

classifiers where removed from the data dataset. Class-ad attributes who’s value was

empty were also removed from the dataset.

After the cleaning process, we partitioned our data based on each task’s class-ad Job-

Status field with value three (3) being a failed task and four (4) being a successful task.

Next, we apply a random forest learning model [189] to produce a Principal Component

Analysis (PCA) of these tasks. The python library, scikit-learn [190], is used to product a

list of feature importance in determining failures and successes.

We randomly selected our tree depth and the number of estimators. Our final results

ran two thousand five hundred random forest iterations with nine cross validations with

a max tree depth of eight and sixty one estimators.

For our distribution function we utilized a multi-nomial distribution when building

our model. Lastly, we ignored columns when building our model, namely the columns:

RemoveReason, CompletionDate, TerminationPending, NumJobCompletions, LastVacateTime. Ad-

ditionally, we removed any class-ad attributes which contained all exact or null values.

112 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE 7.2: Task Failure Class-Ad Variable Importance

FIGURE 7.3: AUC curve

7. COMPUTATIONAL CLUSTER TASK FAILURES 113

7.3 Discussion

Task failures in computational clusters lead to resource wastage and often user dissat-

isfaction. Our work examined a medium sized heterogeneous cluster at the University

of Wisconsin - Madison, BMI BCG (Section 2.3.4). We witnessed a significant portion of

CPU time was allocated to tasks that ultimately failed. The cost implications of such fail-

ures become more pronounced, as each task failure represents a loss in cluster time. Our

MLM has demonstrated efficacy in identifying variables that correlate with task success

or failure with a degree of confidence.

Our model Random Forest model produced an Accuracy of 94.4%, Precision of 95%

and Recall of 96.8%. Our resulting Random Forest can be seen in Figure 7.4. We list our

class-ad feature importance in Table 7.7 and in graph format in Figure 7.2

For our SVM model our Accuracy was only 69.8% , Precision was 77.9% and Recall

was 94.1%.

FIGURE 7.4: Random Forest class-ad Submission success, failure prediction

The class-ad variable AutoClusterAttrs importance in determining a tasks success or

failure implies that the cluster schedule auto matches if a task does not specific an at-

tribute, the cluster will attempt to automatically assign a class-ad attribute value to this.

Interesting in that the task auto cluster attribute is the single largest contributor to cluster

114 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Class-ad Feature Importance
AutoClusterAttrs 0.139877
LastHoldReason 0.084341

LastHoldReasonCode bin 0.057216
CommittedTime bin 0.047076
AutoClusterId bin 0.041881
MemoryUsage bin 0.035518

GlobalJobId 0.031709
ResidentSetSize RAW bin 0.029498

StartdPrincipal 0.027925
ResidentSetSize bin 0.027252

JobCurrentStartExecutingDate bin 0.021230
User 0.020295

MachineAttrSlotWeight0 bin 0.019838
SubmissionUUID 0.017029

JobFinishedHookDone bin 0.015647
Requirements 0.015402

Err 0.014286
RecentStatsLifetimeStarter bin 0.013677

RemoteHost 0.013308
ReleaseReason 0.012465

TABLE 7.7: List of class-ad feature importance in predicting task failures

SVM RANDOM FOREST
Predicted Class Predicted Class
Success Failed Success Failed

Actual Success 1539 1834 3019 354
Class Failed 410 6486 221 6675

TABLE 7.8: Confusion Matrix task submission failure

task failures implies a potential cluster configuration issue. The second most important

class-ad attribute is the LastHoldReason, this makes sense if a task already failed once, the

chance of it failing again is higher.

The class-ad attribute StartdPrincipal showed to be important in distinguishing be-

tween failed and succeeded task. StartdPrincipal value is directly associated with the host

system the submission was made from and runs HTCondor scheduler daemon. An ex-

planation to the importance of this variable revolves around access to systems within the

cluster. Specifically, students are limited to a subset of cluster computers from which to

submit task. The results also show an important variable CommittedSlotTime which de-

scribes the amount of time a process spends running on a system.

As discussed CommittedSlotTime HTCondor attribute is also an important contributor

7. COMPUTATIONAL CLUSTER TASK FAILURES 115

to our MLM. The CommittedSlotTime attribute significance would imply a user submission

to the cluster may not be scheduled to run or ran for a very limited time on the cluster.

A possible explanations for the significance of the CommittedSlotTime attribute include

user task requirements misalignment (which may be resulting in zero scheduled time

CommittedSlotTime) or rapid task failure due to the task not being ready to run on the

cluster.

An interesting attribute is RemoteHost. The fact that is shows up suggests that the

task running host is important to the success of failure of the task. I also suggests that

there is a problem with the monitoring system and not detecting issues with systems. In

the cluster, each host is system monitored by a monitoring application. The monitoring

system detects if a host exhibits problematic behavior, flags it as unhealth it is removes

it from the cluster. However, unseen soft faults may still occur on cluster hosts which

is clearly impacting task success rates. Therefore, this explanation for the RemoteHost

importance factor is: a failing node which has not failed.

A node continuously shares to the schedule that it has resources for tasks but due to a

soft fault condition the task fails. Additionally, if we combine the RemoteHost soft failure

condition with CommittedSlotTime attribute contribution we can see a situation where a

task fails quickly and another task is rescheduled to the failing node. Following, this task

fails again and the cycle repeats. The cluster administrators have even stated that this

event condition has occurred numerous times. Now that we see the fail-reschedule to

same node-fail condition in the data, further exploration is needed to determine if it can

be used as predictor of a computational node failure.

Chapter 8

Conclusions

Our work addressed computational cluster operational issues. These issues are some of

the numerous types of issues experienced by computational systems engineer and dis-

tributed computational systems engineers over their careers.

8.1 atSNP Search

Our atSNP search showcased an ability to engineer a 37 billion record SNP-PWM Motif

database which was the most comprehensive motif-SNP database available at the time.

This work required a scalable database with query response times similar to other sites

with much smaller datasets. This led us to options and conclude that, of the databases

evaluated, a document store NoSQL database (Elasticsearch) was our best option. In

building atSNP search, we acquired drives at the same time (same batch) and from the

same manufacturer (Micron). Unfortunately for atSNP search, one of the drives failed

and the Elasticsearch database attempted to proactively repair the cluster, which resulted

in other drives failing.

Having experienced, with atSNP, a cascading failure event and subsequent data loss,

we explored an additional lines of inquiry. These lines of inquiry pointed toward two pri-

mary contributors, hard disk drives and the cluster scheduler, which caused the cascading

failure event.

117

118 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

8.2 Hard Disk Drive Faults and Failures

Exploring hard disk drive failures, we applied machine learning to understand and pre-

dict HDD failures. Using S.M.A.R.T. attributes, our results showcased MLMs Random

Forest and Support Vector Machines (SVM) algorithms can identify failure events.

We found that the S.M.A.R.T. attributes attributes 7 (Seek Error Rate), 9 (Power-On

Time Count), 193 (Load/Unload Cycle Count),240 (Head Flying Hours) had the most

predictive power in predicting hard disk failures. Interestingly, the highest predictive

power attributes are also correlated with the operational age of the drive. Specifically the

S.M.A.R.T. attributes 9 (Power-On Time Count) and 240 (Head Flying Hours) are directly

correlated to the operational age of a drive. It is known that time plays in role in HDD

failure events but prior work left these attributed unverified. Our work proves S.M.A.R.T.

attributes 9 and 240 are a strong indicator of a failure event. Additionally, our work does

not verify Blackblaze’s published S.M.A.R.T. attributes importance list for predicting hard

disk drive failures [122].

Taking the drives and segmenting them by HDDM had stronger alignments of the

S.M.A.R.T. attributes to the existing HDD failure data ‘bathtub curve‘ [123].

8.3 Computational Cluster Task Failures

Task profiling HTCondor cluster tasks allows cluster administrators to examine failed task

features, beyond application specific code errors. We expect our HTC feature examination

work to extend be useful for HPC cluster. HPC clusters have similar hardware profiles,

thus our HTCondor failed task features importance ranking is applicable other clusters.

Our HTC cluster allowed us to gain an understanding of a per task failure profile. These

per task failure profiles are difficult to obtain on HPC systems since these tasks have

interdependence’s on each scheduled task. Importantly, we notice that task failures are

major issue in HPC, Argonne’s Theta 5.4 system averaged 37.2% of all submission tasks

fail during the same time frame as our analysis which is similar to our studied cluster.

When we explored the HTCondor BCG dataset, we noticed StartdPrinciple class-ad

attribute is a top contributor to computational cluster task failures. Intuitively, this makes

sense as user parameterization of task requirements is prone to user error. Additionally,

we expect to refine our research to isolate failed tasks which can not be attributed to user

error. We already have a MLM which accurately predicts task failures generally. We also

8. CONCLUSIONS 119

note that our many predictive attributes for MLM are correlated to the submission system.

Therefore, we expect to reduce our dataset for training our next MLM by segmenting our

failed tasks by submission system.

Computational cluster task profiling on the cluster level provides a viewpoint beyond

traditional task trace logs. Our work demonstrated the use of MLM as a method for

explaining task failures within a computational cluster. HTCondor allowed us to explore

details of task submissions at a granular level and enabled us to produce a feature vector

of contributing factors for cluster task failures.

While our task failure prediction work showcases a need for better failure detection

in computational clusters. Our model Random Forest model produced an Accuracy of

94.4%, Precision of 95% and Recall of 96.8%. This predictive power is useful for under-

standing and adjusting the computational cluster as needed. Specifically, the class-ad

attribute RemoteHost is worrisome and implies an underlying issue with some computa-

tional hosts not being detected by system monitoring.

While our work did not definitively produce all answers to all task cluster failures, we

identified contributing factors which warrant further exploration. Furthermore, we have

an explainable model which can explain many of these task failures.

Chapter 9

Future work and Final thoughts

Our work is a beginning towards early detection of failures and faults. We laid the

groundwork towards a probabilistic system to early detect faults and failures in both

hardware systems and software applications. We expect to expand our line of inquiry to-

wards the future as failures continue to impact systems. Furthermore, as systems evolve,

we believe our work can be adapted to accommodate progress.

9.1 atSNP Search

Our atSNP Search work exposed a opportunity in failure prediction. However, we still

need to operationally address the data loss issue. While the data loss issue is more of an

house keeping then research topic, we still need to address the atSNP Search platform con-

dition. In other words, we NEVER want to experience a ”Batch-Correlated Disk Failures”

again. Therefore, we expect future work in applying our Hard Disk failure prediction

utilizing S.M.A.R.T. attributes to help predict failures within the atSNP Search cluster.

Further work for atSNP involves expanding the search scope to include additional

species beyond homo sapiens. We have had numerous inquires to increasing the number

and types of organisms available. Therefore, we plan on reviewing these requests and

addressing the inquires in order of number of requests.

The last area of future work is to expand telemetry monitoring. Temporal insights

into the performance characteristics of systems and applications running on computa-

tional clusters is core to our work. While kubernetes based cloud services have been

utilizing telemetry metric monitoring for some time, telemetry data use is relatively rare

in HPC/HTC environments and is often considered ”operations” which is not available

121

122 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

to researchers [191]. We believe that applying telemetry metric knowledge to the field of

computational clusters will have benefits and provide additional data points for applied

fault detection.

9.2 Hard Disk Drive failures, faults and misbehavior’s

While our initial 3 months worth of data is enough to draw conclusions. An expanded

time series dataset will provide more data points to sample from and enable additional

validation of our conclusions.

Expanding our time series dataset will also provide more data and we hope to find

an additional cascading failure event. Encountering such an event would be fantastic and

allow us to build a model based on additional events. We expect an outcome will provide

predictive analytics to help prevent catastrophic data storage failures in the future.

Our future research on HDD failures can be summarized by the following:

• Using a longer time scale, the disk information will also be bigger, and the learn-

ing MLM will prove to show a greater performance and better results for all disk

HDDM. This is because the processes executed by the algorithms will have a greater

support and show that the methodology used in this work can also be used in

datasets with a higher number of observations.

• studying and analyze the variable’s normalization, we expect this to improve the

state of the art and help future works to better understand the data.

• Using parallel methodology carried out in this project, a class variable that defines

the disks lifetime. This classification can be done through variable 9, that counts the

number of hours that the HDD was powered on.

• Apply MLMs built in this work to a more recent Backblaze disks observations.

Beyond HDD failures and faults, we expect our work to generalize to other complex

system components in other domains beyond computing. Thus, we expect our work

could be applied in other industries were failures and faults are costly or unacceptable. To

that end, we see additional applications for RCA (Section 2.2.7) and FMEA (Section 2.2.6).

Currently, much of the FMEA analysis is conducted through human intervention and

diagnostics. We expect our work, when applied to other components besides HDD, could

9. FUTURE WORK AND FINAL THOUGHTS 123

simplify the RCA and FMEA process. A longer term goal is to eventually eliminating

the need of a FMEA and RCA along with using a language model for the FMEA text

generation.

9.3 Computational Cluster task failure prediction

Computational cluster task scheduling has improved considerably; however, task failures

remain an open question. As such, we expect our research to eventually address user

scheduling issues and the scheduler problems known as ”the black hole” [192] problem.

Our methods could be further refined and extended through analysis of other clusters and

task profiles. In particular, we plan to apply our analysis techniques to private clouds. We

hope to better inform the task schedulers for better service delivery and optimization of

resources.

9.4 Final Thoughts

This work has taking me on a journey, both physically and mentally. I have experienced

the full series of researcher emotions; complete with the intrigue of new knowledge, suc-

cesses, disappointments, and of course failures. Through serendipity our PhD journey

ends with failures and fault prediction. The topic of failures within any research seem

foredoomed. Its human nature to want to talk about successes but failure discussions are

often taboo. In many ways our work showcases that a discussion of failures can be had

openly, without fear or stigma that a failure is personally attributable.

This journey was originally focused on answering a completely different research

question. Our original goal was to expand the parallelization of Linear Mixed effect’s

Models for GWAS (Section 2.1.3.2) genomic analysis. The goal was to utilize General Pur-

pose Graphical Processing Unit (GPGPU)s and distributed computing for GWAS analy-

sis. To this end, we developed code for 18 months and our GPGPUs code almost ready

for performance analysis. Our work had a generous $25,000 donation of cloud compute

credits from Microsoft to help move our GWAS work forward. Unfortunately, this work,

including the methods we were employing, was published in Nature [193] by another

research team. Around this time, our atSNP Search platform was experiencing numerous

disk failures. These two situations, occurring in concurrence, forced hard reflection on my

124 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

research direction. I personally began to feel like a failure because everything was going

wrong and quickly.

I took some time to reflect and I realized failures and faults happen. Our atSNP Search

platform failures lead me to look at disk failures and faults and failures more broadly as

a research topic. In fact, I had learned lessons from the disk failures so it seemed natural

to explore this area.

While part of our original motivation of our work was driven by the atSNP Search

platform. Our experience demonstrated the pressing need to address the technological

challenges in cluster management. By focusing on the atSNP search database and ad-

dressing ”batch-correlated disk failures” [113], we led an effort to improve hard disk drive

failure prediction. We also learned that improving compute task schedulers in computa-

tional clusters could lead to improved resource reliability.

In conclusion, our PhD thesis has addressed the challenges of constructing and main-

taining a big data database for genomics research, utilizing machine learning to predict

hard disk drive failures, and focused on understanding and forecasting compute task fail-

ures in medium-sized computational clusters. Our work has produced numerous novel

contributions to the field of computer science and advanced genomic data management

and research.

Appendix A

AtSNP Search Journal Papers

The following paper was accepted for publication by the journal of Bioinformatics with

supplementary data.

125

Genome analysis

atSNP Search: a web resource for statistically

evaluating influence of human genetic variation

on transcription factor binding

Sunyoung Shin1,*, Rebecca Hudson2, Christopher Harrison2,

Mark Craven2,3 and Sündüz Keleş2,4,*

1Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, USA, 2Department of

Biostatistics and Medical Informatics, 3Department of Computer Sciences and 4Department of Statistics,

University of Wisconsin-Madison, Madison, WI 53706, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on August 5, 2018; revised on November 13, 2018; editorial decision on December 4, 2018; accepted on December 6, 2018

Abstract

Summary: Understanding the regulatory roles of non-coding genetic variants has become a central

goal for interpreting results of genome-wide association studies. The regulatory significance of the

variants may be interrogated by assessing their influence on transcription factor binding. We have

developed atSNP Search, a comprehensive web database for evaluating motif matches to the

human genome with both reference and variant alleles and assessing the overall significance of

the variant alterations on the motif matches. Convenient search features, comprehensive search

outputs and a useful help menu are key components of atSNP Search. atSNP Search enables con-

venient interpretation of regulatory variants by statistical significance testing and composite logo

plots, which are graphical representations of motif matches with the reference and variant alleles.

Existing motif-based regulatory variant discovery tools only consider a limited pool of variants due

to storage or other limitations. In contrast, atSNP Search users can test more than 37 billion

variant-motif pairs with marginal significance in motif matches or match alteration. Computational

evidence from atSNP Search, when combined with experimental validation, may help with the dis-

covery of underlying disease mechanisms.

Availability and implementation: atSNP Search is freely available at http://atsnp.biostat.wisc.edu.

Contact: sunyoung.shin@utdallas.edu or keles@stat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies have provided overwhelming evi-

dence that a large number of potential causative genetic variants res-

ide in non-coding regions such as intronic or intergenic regions

(Nishizaki and Boyle, 2017). These variants might be involved in a

variety of regulatory mechanisms such as transcription factor bind-

ing, histone modifications or alternative splicing, and play a key role

in disease-specific regulatory networks. Significant efforts have been

made to identify such regulatory variants especially in the human

genome. Comprehensive web resources such as Haploreg and

regulomeDB explore functional annotations in human genome at

potential regulatory variants (Boyle et al., 2012; Ward and Kellis,

2016). While epigenomic annotations depend on the availability of

experimental data in the relevant experimental systems, annotating

and nominating genetic variants for their potential regulatory effect

on transcription factor binding can be achieved by in silico calcula-

tions (Zuo et al., 2015). In disrupting or enhancing transcription

factor binding to DNA, regulatory variants might modulate expres-

sion levels of disease genes. While the web resources statistically

quantify the transcription factor motif matches with both reference

and variant alleles, they only nominate a set of regulatory variants

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2657

Bioinformatics, 35(15), 2019, 2657–2659

doi: 10.1093/bioinformatics/bty1010

Advance Access Publication Date: 10 December 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/15/2657/5235626 by U
niversity of W

isconsin-M
adison Libraries user on 06 M

ay 2020

passing stringent thresholds and/or do not consider creation of new

binding sites by variants.

We built the atSNP Search web resource motivated by the need

for (i) a more comprehensive motif-based discovery of regulatory var-

iants; (ii) statistically well-justified quantification of motif matches

and changes in motif matches and (iii) their convenient graphical de-

piction. All the single nucleotide polymorphisms (SNPs) in dbSNP

build 144 for human genome assembly 38 (Sherry et al., 2001) were

initially examined against motifs from JASPAR (Mathelier et al.,

2014) and ENCODE (Kheradpour and Kellis, 2014) libraries by

atSNP (Zuo et al., 2015) testing. atSNP Search currently encompasses

the results for all SNP-motif combinations having a P-value � 0:05

for either motif matches with the reference or the SNP allele or

variant-led changes in motif matches. These statistical quantifications

are supplemented with composite sequence logo plots that depict the

motif matches with both alleles. None of the existing web databases

or software packages provide such automated visual depiction despite

the fact that rapid and automated access to sequence logos enables

visual exploration of impact of variants on the motif matches.

SNP2TFBS, Raven and OncoCis are existing motif-based web data-

bases that nominate regulatory variants with numerical and graphical

summaries (Andersen et al., 2008; Kumar et al., 2017; Perera et al.,

2014). The Supplementary Material provides a point-by-point com-

parison of the atSNP Search to these resources.

2 Database contents

The current version of the atSNP Search provides statistical testing

results on 37 141 563 102 variant-motif pairs with P-values <0.05 in ei-

ther motif matches or the change in motif matches. SNPs with multiple

alleles are accommodated by comparing each of the alleles with the cor-

responding reference allele. The atSNP Search motif collection consists

of 205 JASPAR motifs and 2065 ENCODE motifs, which represent 792

unique transcription factors with motif lengths between 5 and 30.

3 Search features

The atSNP Search input form has search options with the following

queries: (i) a set of SNP rs numbers (RSIDs), (ii) an RSID with a

choice of window size around the variant for an extended search re-

gion, (iii) genomic coordinates (iv) a gene symbol with a choice of

window size for an extended search region around the gene and (v)

a transcription factor (Fig. 1). While the first four search types take

genomic regions as input, the transcription factor query performs

genome-wide searches, and identifies all variants that alter motif

matches for the query transcription factor. Prior to submitting a

search request, users can specify P-value thresholds for the changes

in motif matches, and motif matches with the SNP and reference

alleles. atSNP Search also allows the user to designate multi-level

sorting based on the P-values and the genomic coordinates to an

output table. Both the user-defined P-value cutoffs and sorting

options make the atSNP Search more flexible and convenient com-

pared to existing resources. Further, users may restrict searches to

variants that either enhance or disrupt binding, and filter out records

based on information contents of the motifs.

The atSNP Search output table provides summary statistics and

composite logo plots for variant-motif pairs that meet the search crite-

ria (Fig. 1). Each SNP ID is linked to its dbSNP webpage (Sherry et al.,

2001) and the UCSC Genome Browser webpage (Casper et al., 2017)

to display the genomic region around the variant position. Users can

also access the webpages for transcription factors curated in

Factorbook (Wang et al., 2013). Testing results for each variant-motif

pair are summarized with three P-values for motif matches with the

reference and SNP alleles (P-value Reference, P-value SNP) and the

changes in motif matches (P-value SNP Impact) along with the direc-

tion of the change. Corresponding composite logo plots display se-

quence logos aligned to best motif matches with the reference and SNP

alleles, and visually reveal the direction of the change in motif match.

Composite logo plots are especially useful to validate or reject matches

to nearly degenerate motifs. Both the tables and logo plots are down-

loadable in csv and png formats, respectively. atSNP Search further

provides detail pages displaying all statistical results of variant-motif

pairs, and hypertext links for JASPAR motifs (Mathelier et al., 2014).

In Supplementary Material, we provide a general purpose use-case

for the atSNP Search using variants in the UK Biobank Axiom Array

(Allen et al., 2012). This application showcases how such an analysis

can identify main transcription factors affected by regulatory SNPs.

Acknowledgements

We are grateful to Matt Ziegler for his guidance on designing the usability

test of atSNP Search and Danny Panyard, Kyle Hewitth and Makoto Ohash

for participating in the usability test and providing feedback. We also thank

the Keleş Research Group for their continuous feedback on atSNP Search.

Funding

This work was supported by National Institutes of Health BD2K grant [U54

AI117924]; National Institutes of Health/National Human Genome Research

Institute R01 grant [HG003747]; and U01 grant [HG007019].

Conflict of Interest: none declared.

Fig. 1. The atSNP Search input form and output table. atSNP Search evalu-

ates both strands of the reference and variant alleles around each SNP loca-

tion given a motif. The composite sequence logo plot depicts the best

matches of both alleles to the motif along with the strand information

2658 S.Shin et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/15/2657/5235626 by U
niversity of W

isconsin-M
adison Libraries user on 06 M

ay 2020

References

Allen,N. et al. (2012) UK Biobank: current status and what it means for epi-

demiology. Health Policy Technol., 1, 123–126.

Andersen,M.C. et al. (2008) In silico detection of sequence variations modify-

ing transcriptional regulation. PLoS Comput. Biol., 4, e5.

Boyle,A.P. et al. (2012) Annotation of functional variation in personal

genomes using RegulomeDB. Genome Res., 22, 1790–1797.

Casper,J. et al. (2017) The UCSC Genome Browser database: 2018 update.

Nucleic Acids Res., 46, D762–D769.

Kheradpour,P. and Kellis,M. (2014) Systematic discovery and characteriza-

tion of regulatory motifs in ENCODE TF binding experiments. Nucleic

Acids Res., 42, 2976–2987.

Kumar,S. et al. (2017) SNP2TFBS - a database of regulatory SNPs affecting predicted

transcription factor binding site affinity. Nucleic Acids Res., 45, D139–D144.

Mathelier,A. et al. (2014) JASPAR 2014: an extensively expanded and

updated open-access database of transcription factor binding profiles.

Nucleic Acids Res., 42, D142–D147.

Nishizaki,S.S. and Boyle,A.P. (2017) Mining the unknown: assigning function

to noncoding single nucleotide polymorphisms. Trends Genet., 33, 34–45.

Perera,D. et al. (2014) OncoCis: annotation of cis-regulatory mutations in

cancer. Genome Biol., 15, 485.

Sherry,S.T. et al. (2001) dbSNP: the NCBI database of genetic variation.

Nucleic Acids Res., 29, 308–311.

Wang,J. et al. (2013) Factorbook. org: a Wiki-based database for transcription

factor-binding data generated by the ENCODE consortium. Nucleic Acids

Res., 41, D171–D176.

Ward,L.D. and Kellis,M. (2016) HaploReg v4: systematic mining of putative

causal variants, cell types, regulators and target genes for human complex

traits and disease. Nucleic Acids Res., 44, D877–D881.

Zuo,C. et al. (2015) atSNP: transcription factor binding affinity testing for

regulatory SNP detection. Bioinformatics, 31, 3353–3355.

atSNP Search 2659

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/15/2657/5235626 by U
niversity of W

isconsin-M
adison Libraries user on 06 M

ay 2020

Bioinformatics
doi.10.1093/bioinformatics/bty1010

Advance Access Publication Date: 8 December 2018
Applications Note

Genome Analysis

Supplement Material for “atSNP Search: a web
resource for statistically evaluating influence of
human genetic variation on transcription factor
binding”
Sunyoung Shin, Rebecca Hudson, Christopher Harrison, Mark Craven, and
Sündüz Keleş

1 Comparison of the atSNP Search with existing
resources

Several motif-based web resources are currently available to quantify the
regulatory impacts of human SNPs, among which the atSNP Search is one
of the most comprehensive and up-to-date tools (Supplementary Table 1).
In generation of the atSNP Search contents, we matched all 132,946,852
SNPs in dbSNP 144 on hg 38 to 2,270 motifs in total. The initial SNP
set of SNP2TFBS is a SNP catalogue from 1000 Genomes project, which
contains approximately 64% of the initial SNP set of the atSNP Search.
The final database of SNP2TFBS itself contains a much smaller subset
of variant-motif pairs that survive at p-value cutoff of 3 × 10−6. While
the atSNP Search, SNP2TFBS, and Raven harbor pre-computed results
on web servers and return immediate search results, OncoCis implements
motif searches on the fly using the Possum tool (Haverty et al., 2004).

2 Additional database contents
The atSNP (Zuo et al., 2015) testing framework estimates a background
distribution to use as the null distribution for evaluating motif matches.
We paid special attention to the GC content in these evaluations because
GC content has been found to diversify mutation rates, as evidenced by
their explanatory power in human genome variability (Hellmann et al.,
2005). Specifically, we computed the GC content for all the 201-base-long
windows centered at the SNP positions on reference alleles and classified
each variant location into one of the two GC classes depicted with a mixture
of two normal distributions (Supplementary Figure 1). Then the first order
Markov models were fitted separately to the two sub-populations in order
to impose adjacent base dependencies. Next, for every SNP-motif pair, we
identified the best motif matches in the 61-base DNA sequence, centered at
the variant location with both the reference and SNP alleles and quantified
both the significance of the motif matches and the change in the motif
matches using a likelihood-based approach.

atSNP Search utilizes the p-value of the log rank statistic evaluated
at the best motif matches with both reference and SNP alleles, which
is named p-value SNP impact, as the key sequence-based measure of

Table 1. Comparison of motif-based regulatory SNP discovery tools

Tools JASPAR
ENCODE hg

version # initial

SNPs Pre-computed

data

atSNP Search X X hg38 133M X

SNP2TFBS X hg19 85M X

Raven X hg17 30K X

OncoCis X hg19 NA

Tools
Statistic

al

significance User-defined

thresholds Genome-wide

search given a motif

Graphics

atSNP Search X X X X

SNP2TFBS X X

Raven X

OncoCis

Annotation

atSNP Search UCSC Genome Browser hyperlink

SNP2TFBS RefSeq gene

Raven phastCons score

OncoCis Gene expression, phastCons score, Histon ChIP/DNase-seq peak
UCSC Genome Browser/DGIdb hyperlink

FANTOM5 enhancer/promoter TSS prediction

SNP2TFBS (Kumar et al., 2016), Raven (Andersen et al., 2008), OncoCis (Perera et al., 2014)

detecting regulatory variants. Statistical evidence for the regulatory roles
of variants is further assessed with three additional statistical hypothesis

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

2 Shin et al.

tests on the match alteration: (1) log likelihood ratio evaluated at the
best matches of both alleles, (2) log likelihood ratio evaluated at the
matches of both alleles at the best match position of the reference
allele, (3) log likelihood ratio evaluated at the matches of both alleles
at the best match position of the SNP allele. The p-values from these
calculations are named p-value Difference, p-value Condition Ref, and p-
value Condition SNP, respectively. The scores and p-values are reported
in the detail page. Users can quickly retrieve each detail page using
the intuitive URL, which is a combination of the motif ID, RSID,
and variant nucleotide, e.g., http://atsnp.biostat.wisc.edu/detail/motifID_
RSID_ N. This feature enables programmatic access to atSNP Search
results. For studying human variants other than SNPs or non-human
genetic variations, we suggest the R package atSNP, which is publicly
available at https://github.com/keleslab/atSNP.

3 Heterogeneity of GC content around genomic
locations of variants

Fig. 1. Grouping of SNPs based on their local neighborhood GC content with a mixture
modeling framework. The black curve denotes the observed GC content, whereas the red
curve is the fitted probability density function of the mixture of two normal distributions.
The curves labeled as Cluster 1 and 2 denote the two identified components.

Table 2. Estimated stationary distributions and transition
matrices of the two SNP groups based on their GC contents.

Cluster 1 Cluster 2
A C G T A C G T
0.34 0.16 0.16 0.34 0.26 0.24 0.24 0.26

A C G T A C G T
A 0.37 0.15 0.18 0.30 0.28 0.20 0.30 0.22
C 0.41 0.19 0.03 0.37 0.32 0.29 0.08 0.31
G 0.34 0.17 0.19 0.30 0.26 0.24 0.29 0.21
T 0.27 0.16 0.20 0.37 0.17 0.24 0.30 0.28

Supplementary Figure 1 displays the distribution of GC content in
the local neighbourhood of SNPs, i.e., a 201-base-long windows centered
at the SNPs, and the two mixture components that are identified. The

two groups have significantly different transition patterns, and in the
stationary state, the second cluster has higher GC content than the first
cluster (Supplementary Table 2).

4 The atSNP Search infrastructure

Fig. 2. The atSNP Search design.

atSNP Search is written with Django, a high-level Python Web
framework that encourages rapid development and pragmatic design
(Forcier et al., 2008). atSNP Search contents were first generated in
RData format using UW Madison HTCondor, an open-source high-
throughput computing software framework for coarse-grained distributed
parallelization of computationally intensive tasks (Thain et al., 2005).
“Years of compute hours” on the entire task are roughly 13 years (113,500
HTC hours) on a single core CPU machine with at least 7GB of disk
space and 10GB of memory. Records on variant-motif pairs with marginal
significance in motif matches or alteration were provided as input to the
atSNP Search server in JSON format. Custom Python scripts for ETL
(Extract, Transform and Load) were utilized for data loading (Harrison
et al., 2018). Elasticsearch, a NoSQL database, runs on the atSNP
Search server, utilizing a distributed scale-out system architecture for
large workloads (Gormley and Tong, 2015). It accomplishes the task
of search and retrieval by distributing requests for searches among the
scaled computing resources. As requirements for storage and performance
increase with user demand, we can scale out by adding more machines. A
restAPI (Masse, 2011) handles communication between the search page
and the Elasticsearch data store. The complete atSNP Search infrastructure
is illustrated in Supplementary Figure 2. Composite sequence logos are
generated on the fly using D3.js, which is a JavaScript library for dynamic
and interactive data visualizations on web (Bostock et al, 2011).

atSNP-Search 3

5 atSNP query response time

Table 3. Response time for SNPid List and SNPid Window Searches (in seconds).

SNPid List SNPid Window
of p-value Window p-value

SNP IDs 0.05 0.01 size 0.05 0.01
15 13.7-19.6 14.7-32.1 100 2.7-9.6 2.7-3.3
50 9.2-40.1 3.5-27.0 1K 2.7-9.6 2.7-3.3

100 29.7-32.5 13.6-14.4 10K 40.5-53.4 12.3-24.1
500 API timeout API timeout 100K API timeout API timeout

Table 4. Response time for Genomic Location and Gene Searches (in seconds).

Genomic Location Gene
Loscation p-value Window p-value

size 0.05 0.01 size 0.05 0.01
1K 3.9-12.5 3.1-5.2 100 4.9-11.5 2.2-2.7

10K 22.8-51.1 7.9-32.3 1K 9.5-29.3 2.6-7.3
50K 39.4-55.9 36.1-37.4 5K 46.7-61.2 24.5-33.2

100K API timeout API timeout 10K API timeout API timeout

Table 5. Response time for Transcription Factor
Search (in seconds).

Library Transcription p-value
Factor 0.05 0.0005

JASPAR ZNF263 2.3-4.7 2.5-2.6
CTCF 3.8-5.1 2.6-3.9

ENCODE AFP 2.7-3.3 1.7-5.4
GATA 40.3-47.7 27.9-43.6

Supplementary Tables 3-5 report response time for the five search types
under various combinations of query parameters and significance levels.
We performed two experimental runs under one combination of each
search type at a time and recorded both response times. Our empirical
studies suggest that, overall, both query type and size of query results
determine the response time albeit some exceptions exist. The four types
in Supplementary Tables 3-4 search through all variant-pairs which meet
the user-defined criteria within a collection of SNPs or a specified genomic
range. Transcription factor search, which needs no access to genomic
coordinates, returns thousands to hundreds of millions of variant-motif
pairs within a minute.

6 Enrichment analysis of acute myeloid leukemia
SNPs

UK Biobank genotyped 820,967 SNPs using the Affymetrix Axiom arrays,
a subset of which are annotated with disease genes in Online Mendelian
Inheritance in Man (OMIM) database (Hamosh et al., 2005). We used
atSNP Search to assess whether the 1,475 acute myeloid leukemia (AML)
SNPs in the UK Biobank are enriched for impact on a set of transcription
factors. To assess enrichment, we utilized the 21,529 non-AML cancer
SNPs in the biobank as the background set of SNPs. Binding enhancement
or disruption of a transcription factor by a SNP are assumed to occur when

Fig. 3. Proportions of SNPs impacting binding of the 23 transcription factors among non-
AML and AML SNP sets. For each transcription factor, the proportion of SNPs with
significant P-value SNP Impact (Bonferroni correction at level 0.05) for the AML SNPs
was compared to that for the background set of SNPs from non-AML cancers.

the SNP significantly impacts matches of at least one motif corresponding
to the transcription factor at the significance level of 0.05 after Bonferroni
multiple testing correction. Using atSNP Search queries to conduct this
analysis results in 13,578 non-AML cancer SNPs and 906 AML SNPs as
impacting at least one of the 102 transcription factors that have motifs with
high information content (median IC ≥ 1.1). For each transcription factor,
we evaluated whether the proportion of SNPs with significant impact
differed between the two SNP sets after constructing a contingency table.
Supplementary Figure 3 summarizes the results on 23 transcription factors,
the contingency tables of which have all expected cell frequencies larger
than or equal to 5. We found the proportion of SNPs impacting binding
of LEF1 and GATA2 significantly differ between the two groups at a false
discovery rate of 0.1.

Fig. 4. Differential expression level distribution of the 31 TCGA cancer types for the five
transcription factors from GEPIA. Red rhombi indicate differential expression levels in
AML tumor samples.

4 Shin et al.

We next asked whether expression of these transcription factors across
cancer types are supportive of this finding. Specifically, we computed
differences in their median expression levels in TPM (Transcripts Per
Million) between AML tumor samples and matched normal tissues with
the GEPIA web server (Tang et al., 2017). GATA2 is repressed in AML
compared to matched controls by 82.04 TPM, and LEF1 is repressed by
15.23 TPM (Supplementary Figure 4). Both differential repression levels
in AML are identified as outliers with respect to their distributions in all 31
TCGA cancer types, thus both transcription factors are considered having
AML-specific expressional differences. Furthermore, recent research on
GATA2 (Hsu et al., 2013; Johnson et al., 2012) showed that mutations
of a GATA2 intronic binding site cause a primary immunodeficiency
(MonoMAC) associated with myelodysplastic syndrome that progresses
to AML. PRRX2 and HOXA5, which are affected by a larger proportion
of AML SNPs compared to GATA2, exhibit less specificity to AML
compared to the rest of cancer types. OTX1 is more repressed in AML
tumor; however, overall differential OTX1 expression levels are marginal,
thus its AML-specificity may not be appreciable.

References
Andersen, M. C., Engström, P. G., Lithwick, S., Arenillas, D., Eriksson, P., Lenhard,

B., Wasserman, W. W., & Odeberg, J. (2008). In silico detection of sequence
variations modifying transcriptional regulation. PLoS computational biology, 4(1),
e5.

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12), 2301-2309.

Forcier, J., Bissex, P., & Chun, W. J. (2008). Python web development with Django.
Addison-Wesley Professional.

Gormley, C., & Tong, Z. (2015). Elasticsearch: The Definitive Guide: A Distributed
Real-Time Search and Analytics Engine. O’Reilly Media, Inc.

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005).
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes

and genetic disorders. Nucleic acids research, 33 (suppl_1), D514-D517.
Harrison, C., Keleş, S., Hudson, R., Shin, S., & Dutra, I. (2018). atSNPInfrastructure,

a case study for searching billions of records while providing significant cost
savings over cloud providers. In Proceedings of the 32nd IEEE International
Parallel and Distributed Processing Symposium Workshops, pp. 497-506.

Haverty, P. M., Hansen, U., & Weng, Z. (2004) Computational inference of
transcriptional regulatory networks from expression profiling and transcription
factor binding site identification. Nucleic acids research, 32, 179-188.

Hellmann, I., Prüfer, K., Ji, H., Zody, M. C., Pääbo, S., & Ptak, S. E. (2005). Why
do human diversity levels vary at a megabase scale?. Genome research, 15 (9),
1222-1231.

Hsu, A.P., Johnson, K.D., Falcone, E.L., Sanalkumar, R., Sanchez, L., Hickstein,
D.D., Cuellar-Rodriguez, J., Lemieux, J.E., Zerbe, C.S., Bresnick, E.H., &
Holland, S.M. (2013). GATA2 haploinsufficiency caused by mutations in a
conserved intronic element leads to MonoMAC syndrome. Blood, 121 (19),
3830-3837, S1-S7.

Johnson, K.D., Hsu, A.P., Ryu, M.J., Wang, J., Gao, X., Boyer, M.E., Liu, Y., Lee,
Y., Calvo, K.R., Keles, S., Zhang, J., Holland, S. M., & Bresnick E. H. (2012). Cis-
element mutated in GATA2- dependent immunodeficiency governs hematopoiesis
and vascular integrity. The Journal of clinical investigation, 122 (10), 3692-3704.

Kumar, S., Ambrosini, G., & Bucher, P. (2016). SNP2TFBS-a database of regulatory
SNPs affecting predicted transcription factor binding site affinity. Nucleic acids
research, 45(D1), D139-D144.

Masse, M. (2011). REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. O’Reilly Media, Inc.

Perera, D., Chacon, D., Thoms, J. A., Poulos, R. C., Shlien, A., Beck, D., Campbell,
P. J., Pimanda, J. E. & Wong, J. W. (2014). OncoCis: annotation of cis-regulatory
mutations in cancer. Genome biology, 15(10), 485.

Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: a web server
for cancer and normal gene expression profiling and interactive analyses. Nucleic
acids research, 45 (W1), W98-W102.

Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice:
the Condor experience. Concurrency and computation: practice and experience,
17(2-4), 323-356.

Zuo, C., Shin, S., & Keleş, S. (2015). atSNP: transcription factor binding affinity
testing for regulatory SNP detection. Bioinformatics, 31(20), 3353-3355.

Appendix B

AtSNP infrastructure Conference

Paper

The following paper was accepted for conference proceeding publication as a workshop

paper at IEEE International Parallel and Distributed Processing Symposium (IPDPS) in

2018.

133

atSNPInfrastructure, a case study for searching
billions of records while providing significant cost

savings over cloud providers
Christopher Harrison ∗†, Sündüz Keleş∗, Rebecca Hudson∗, Sunyoung Shin∗ and Inês Dutra†

∗ Department of Biostatistics and Medical Informatics
School of Medicine and Public Health

University of Wisconsin - Madison
Madison, Wisconsin USA

† Departamento de Ciência de Computadores
Faculdade de Ciências
Universidade do Porto

Porto, Portugal

Abstract—We explore the feasibility of a database
storage engine housing up to 307 billion genetic Single
Nucleotide Polymorphisms (SNP) for online access. We
evaluate database storage engines and implement a so-
lution utilizing factors such as dataset size, information
gain, cost and hardware constraints. Our solution provides
a full feature functional model for scalable storage and
query-ability for researchers exploring the SNP’s in the
human genome. We address the scalability problem by
building physical infrastructure and comparing final costs
to a major cloud provider.

Index Terms—NoSQL, Billion Records, SNP, Big Data,
Data Reduction, Distributed Computing, PWM, Edge
Computing, Economical Computing, Genomics, Cassan-
dra, MySQL, Elasticsearch

Introduction

Genome-wide association studies (GWAS) have been
important to identify Single Nucleotide Polymorphisms
(SNPs). In particular, regulatory SNPs (rSNPs) are the
ones that affect gene regulation by changing transcription
factor (TF) binding affinities to genomic sequences.
These changes are crucial for understanding disease
mechanisms. Affinity Testing SNP (atSNP) [1] is a
powerful and efficient R package which implements an
importance sampling algorithm coupled with a first-order
Markov model for the background nucleotide sequences
to test the significance of affinity scores and SNP-driven
changes in these scores. A standard �in silico approach
for identifying rSNPs is by evaluating how the NP-driven
nucleotide change impacts binding affinity of TFs to the
region surrounding the SNP. More specifically, the DNA

sequences around each SNP are scored against a library
of TF motifs with both the reference an the SNP alleles
using Position Weight Matrices (PWMs) of the motifs.
The process is very time-consuming and usually needs
to handle a large amount of input data and generates
huge output files. atSNP is considered the state-of-the-
art tool for handling such large-scale task. The output
files generated by atSNP can be inspected and analyzed
for SNP-motif interactions. However, given the size of
the files, it can be unfeasible to browse and visualize
the motif information, given current tools. We test and
analyze some solutions for this problem, using hardware
and software available in the literature. We evaluate the
feasibility of three major open source databases for: data
loading, storage and search; then implement a solution
based on our feasibility testing. Furthermore, we show-
case that our implementation: database choice, required
system hardware and network provide an extremely cost
effective option even against a major cloud provider.

This paper is organized as follows. In Section I we
discuss the problem in more detail and in Section II
we discuss solutions in the literature. In Section III
we present our data requirements, hardware, software
and evaluation method used in our analysis. Section IV
presents results. Finally, we close in Section V with
concluding remarks.

I. Background

Large scale real time searching is difficult for any sig-
nificantly large dataset. Genetics and genomics datasets
and searching domains are significantly larger as small

variations within a DNA sequence can produce numerous
phenotypic variations [2]. As such, DNA analysis is
still a domain ruled by statistically probabilities based
on a specific subregion within the DNA strand. The
subregions known as Single Nucleotide Polymorphisms
[3] (SNPs) are produced using a DNA sequencing tech-
nique commonly known as the shotgun approach to
DNA sequencing [4]. While the merits of the approach
are known and solidly accepted, the probability of any
given SNP occurring within a Genome-Wide Association
Study (GWAS) is lesser known. The atSNP R package
[1] attempts to address the probabilistic significance of
affinity scores in SNPs.

atSNP search provides statistical evaluation of impact
of SNPs on transcription factor-DNA interactions based
on PWMs. The current version is built on SNPs from the
dbSNP [5] Build 144 for the human genome assembly
GRCh38/hg38 [6]. atSNP search uses in silico calcula-
tions based on the statistical method developed by Zuo
et al. [1]. atSNP first-time users can start scanning vast
amounts of SNP-PWM combinations for potential gain
and loss of function with two key features:
• p-values quantifying the impact of SNP on the

PWM matches (p-value SNP impact)
• composite logo plots.
atSNP identifies and quantifies best DNA sequence

matches to the transcription factor PWMs with both the
reference and the SNP alleles in a small window around
the SNP location (up to +/- 30 base pairs and considering
sub-sequences spanning the SNP position). It evaluates
statistical significance of the match scores with each
allele and calculates statistical significance of the score
difference between the best matches with the reference
and SNP alleles.

The discovery of best matches with the reference
and SNP alleles are conducted separately. As a result,
genomic sub-sequences providing the best match with
each allele may be different. The change in goodness of
match between the reference and SNP alleles indicates
in silico impact of SNPs on transcription factor binding
ability to DNA. atSNP search also provides a composite
logo plot for easy visualization of the quality of the
reference and SNP allele matches to the PWM and the
influence of SNPs on the change in match.

Addressing GWAS SNP affinity scores requires ad-
dressing magnitudes of data to determine probabilistic
significance. After the generation and analysis of the
SNP affinity scores, sharing the affinity scores with the
community reduces the need to “reinvent the wheel” for
any group determining best SNP affinity scores complete

with Position Weight Matrix [7] (PWM) motif data
[1]. Run once and share with many allows for efficient
computational resource allocations for future projects.

The initial generation of the affinity score PWMs
was done in silico with the atSNP [1] R [8] package.
To complete the full data of JASPAR [9] and EN-
CODE [10] a distributed divide and conquer method
was applied. This research was performed using the
compute resources and assistance of the UW-Madison
Center For High Throughput Computing (CHTC) in
the Department of Computer Sciences. The CHTC is
supported by UW-Madison, the Advanced Computing
Initiative, the Wisconsin Alumni Research Foundation,
the Wisconsin Institutes for Discovery, and the National
Science Foundation, and is an active member of the
Open Science Grid, which is supported by the National
Science Foundation and the U.S. Department of Energy’s
Office of Science. Using HTCondor [11] and the CHTC
132,946,852 SNPs combined with 2,270 PWMs gener-
ated 3.02 × 1012 SNP-PWM combinations records and
required 115,500 CPU hours of computational power.
All the records weights are based on the p-values of:

The complete details for the data generated are de-
scribed in the atSNP method [1].

Our dataset will search based on p-value. Our p-
values are represented as floating point numbers and to
search our p-values we will need to utilize range queries.
Range queries are data searches of number fields within
a numeric range, less then or great then are using for
range queries.

II. RelatedWork

Numerous examples of SNP databases [12] exist
across the web with examples ranging from the dbSNP
[5] to dbGAP [13]. While these data are provided
through online web accessible database, they are a mag-
nitude smaller when compared with the atSNP-generated
data. For example, the Genome Variation Map database
[14] recently published their current implementation
which houses a total of about 4.9 billion variations
using a MySQL database [15]. dbSNP [5] also utilizes
a Relational Database Management System (RDBMS)
[16], an entity relational database [17], which consists
of well over 100 relational tables.

Example databases housing hundreds of billion
records are found utilizing NoSQL infrastructure. Net-
flix, for example, has a NoSQL Cassandra [18] deploy-
ment consisting of 2,500 nodes hosting 420 TB of data.
The Netflix database handles over a trillion requests per
day [19]. LinkedIn uses Voldemort [20], a key/value

TABLE I
atSNP p-values

atSNP p-values:

p-value SNP Impact

A significant p-value, e.g.
0.0001, statistically supports
the potential gain or loss of

function of the genomic
region with the SNP in terms
of transcription factor binding.

p-value Reference

p-value for score with the
reference allele (Log

Likelihood Reference). A
significant p-value indicates
that the match to the PWM
with the reference allele is

statistically supported.

p-value SNP

p-value for scores with the
SNP allele (Log Likelihood
SNP). A significant p-value

indicates that the match to the
PWM with the SNP allele is

statistically supported.

p-value Difference

p-value for the difference in
scores with the reference and

the SNP alleles (Log
Likelihood Ratio). This is

essentially the result from a
likelihood ratio test. While we
report this for completeness,
the final atSNP results are

based on p-value SNP impact
which quantifies the

significance of the Log Rank
Ratio.

p-value Condition Ref
Conditional p-value for scores
on the reference allele based

on Log Enhance Odds.

p-value Condition SNP
Conditional p-value for scores

on the SNP allele based on
Log Reduce Odds.

store for their critical infrastructure. Google, often cred-
ited with starting the big data movement, created their
own NoSQL engine BigTable [21]. Therefore, many ex-
amples of successful NoSQL database implementations
exist and they have proven the design for scale [22]. It
has been demonstrated [23] that NoSQL databases have
been successfully deployed with hundreds of millions
or billions of records and "can result in a dramatic
performance difference against RDBMS while dealing
with hundreds of millions or billions of records" [23].

Each of the NoSQL databases used by Netflix, Google,
and LinkedIn; utilize a different data sharding algorithm.
While the algorithmic implementation for each NoSQL
sharded database varies, each share a divide and conquer
approach through their distributed data storage engine

[24].

III. Design

The publicly searchable repository for SNP affinity
scores with PWM motifs (over 132,946,852 SNPs) com-
bined with 2,270 PWM generated 3.02 × 1012records.
Each record consumes 1,416 bytes (B) of data. The spe-
cific data, generated by atSNP [1], used in this work are
related with the human genome. The TF libraries used
by atSNP came from the JASPAR core motif library [9]
and from the ENCODE project [12]. After our analysis
the JASPAR [9] dataset comprised 2.81 × 1010 records
totaling 36.18 TeraBytes (TB), while the ENCODE [12]
dataset comprises 2.79×1011 records totaling 361.84 TB.
The total dataset is 3.02 × 1012 records and consumes
398.03 TB of data.

Providing 398.03 TB of SNP affinity scores with motif
data online with real time queryable parameters requires
advanced database techniques. Additionally, data loading
and searching for 398.03 TB at 3.02 × 1012 records can
cause additional issues as loading time and throughput
start to become a bottleneck. As an example, using a
gigabit ethernet (gigE) network interface to transfer 1 TB
of data takes around two and a half hours. We calculuate
transferring over our gigE network the complete 398.03
TB dataset will take 45 days.

In addition to the affinity score records, the corre-
sponding motif representation for a given SNP-PWM in
graphical representation is a multi-petabyte data storage
problem. The graphical representation for a given SNP
motif saved as a Portable Network Graphic (PNG) con-
sumes approximately 250 KiloBytes (KB) per image.
The full SNP database representation stored in PNG
format as a graphical motif requires 3.7 PetaBytes (PB)
of data storage.

Single computational systems supporting 398.03 TB
of online searching with 3.7 PB of additional storage
for images simply do not exist.

The problem domain decomposition starts with the
space defined by the SNP-PWM affinity scores. Our
full compressed JASPAR [9] dataset consuming 1.8
TB seems realistic for ETL (Extraction, Transformation
and Loading) into a traditional relational database (e.g.
MySQL, Oracle or Postgres). The problem expands
considerably when considering the 19.8x compression
ratio for each dataset. The 1.8 TB dataset, containing
2.81 × 1011 records, expands to 18.27 TB which can
stretch the boundaries of current RDBMS. An additional
19TB of compressed files from the ENCODE [12] motif
library contains 2.79×1012 records, which is 181.43 TB

after decompression. Individual RDBMS systems, with
only one host, housing dataset of 307 billion records
and store 398.03TB of data likely not feasible but we
will test RDBMS vs NoSQL databases for feasibility.
We consider a data model while evaluating feasible and
functionality with temporal ETL requirements and data
result query time. We hypothesise the final implemen-
tation to house the SNP-PWM data will consist of a
database engine utilizing data sharding or the partition-
ing/breaking apart data for distributed queries against the
large datasets.

Performance comparisons between RDBMS and
NoSQL database [25] show inconclusive results [26].
For our specifical use case, searching billions of records,
scalability to store billions of records was our primary
concern. In Puangsaijai2017 [27], we note that MariaDB
[28], a MySQL forked project which is feature complete
with MySQL [15], shows ETL insert times to be compa-
rable between NoSQL database Redis [29] to be a >20x
faster with pipelines over MariaDB [28]. Interesting [27]
also shows select operations to be comparable across
many simple and complex queries with the exception of
2 simple equals queries. More interesting are the tested
range queries (greater then and less then) [27] shows the
NoSQL database to out perform MariaDB by 2x.

We utilized a custom ETL script developed using
python for data loading [30]. The code was custom
developed for reading the SNP-PWM files and trans-
lating them to the specific database ETL format. For
our feasible testing we used one system to run our ETL
pipeline code. After we refined our process, we utilized
HTCondor [11] to distribute our ETL pipeline processes.

A. Hardware cost evaluation and failure estimating

Hardware and human resources costs were given con-
sideration. We evaluated the cost per hardware node
and compared a new machine vs a used machines.
These comparisons included similarly specifications,
cpu, memory, remote management, power supplies and
OS disk drives, etc. Additionally, we considered node
failure rates within the cluster and calcuate node availal-
ity based on system component failure statists, specif-
ically: RAM, Power supply and Disk failures. Using
the failure statistical model we estimate required write
endurance per drive accounting for node availality hard-
ware and cluster re-balancing. Provided by our failure
statistical model, we consider the cost per TB for our
cluster, amortizing the cost over 5 years. Comparing
new nodes vs used nodes vs Cloud hosting including:
addressing the Total Cost of Ownership (TOC), data

TABLE II
Our first generation Elasticsearch cluster composition

Machine RAM (GB) #Processors Total HDD (TB)
atsnp-db1 24 4 12
atsnp-db2 24 4 12
atsnp-db3 32 8 18
TOTAL 80 16 42

center floor space cost, power/cooling and system ad-
ministration time we demonstrate cost efficiency.

We evaluated the performance of MySQL, Cassandra
(a NOSQL database) and ElasticSearch as database
engines. In order to run these database engines, we
used two computational infrastructures: (1) a customized
in-house cluster and a (2) cloud provider. We tested
different configurations of clusters varying memory sizes
and disk sizes as well as number of disks. We ran the
experiments using a trial and refine approach while fol-
lowing agile methodologies. We tested each database for
feasibility, scalability and features which could support
our data search needs. Each database tested was tested
with default configurations using minimal install of Sci-
entific Linux 6, our test cluster was comprised of 3 nodes
described in table II. Feasible testing evaluation items
included: ETL speeds, search retrieval times(within 5
seconds), required on going system administrator time to
maintain, scalability and failure recovery. For testing, we
evaluated a database populated with 1̃ million records.

IV. Results and Evaluation

A. Cassandra

Our first test considered Cassandra [18], a Big Ta-
ble NoSQL database engine. Our data ETL times to
database import were 14,664.2 records per second, which
is similar to the University of Toronto NoSQL bench-
marks suggest [31]. Our data requires multiple range
queries which are not easily indexed within Cassandra.
The range queries in the implementation of Cassandra’s
instance of NoSQL required, every node to query all
data housed on the node for any row meeting the range
query parameter without indexes [32]. The lack of range
queries and on the performance penalty for evaluating
a data subset proved a fatal flaw in our first method of
genomic SNP data at scale using a NoSQL implementa-
tion. Our requirement for multiple range query through
the atSNP dataset using application and used defined
searches meant that Cassandra was not feasible for long
term use.

B. MySQL

Using our data with MySQL, after the first mil-
lion records our database was responsive (results on
the order of milliseconds). As our database started to
grow, efficiency started to drop. Once our database was
consuming all available ram for indexes any additional
record required the use of system swap space which
caused response times and ETL times to be unworkable.
Based on our ETL estimates approximately 1000 records
a second, which is similar to the 1023 records/sec
demonstrated in [33]. Therefore, if we continued ETL
with database transactions enabled by default to ETL
our data would have required 1:

3.02 × 1012

(1000 records
second ∗ 60 seconds ∗ 60 minutes ∗ 24 hours)

= 3, 553.2 days
(1)

10 years to ETL our data makes the use of a MySQL
database engine unfeasible.

Consideration for using the storage engines innodb
and NDB with clusters were not even considered, given
the limitations of MySQL [34]. Factors against distribut-
ing the load across multiple instances of MySQL using
partition tables (one per chromosome) in a MySQL
cluster were overridden because of a concern for the
long term support-ability of the database service and
system administration time overhead required. Specifi-
cally, concerns raised included: status checking, time to
maintain and migrate data when needed, updating the
application logic after a partition table migration and
system monitoring.

C. Elasticsearch

For the third test case, we used a distributed NoSQL
since we are validating the hypothesis of using shared
NoSQL database for genomic SNP data as a feasible
option for large scale storage and query-ability. This test
uses a shared NoSQL database engine, but optimized for
range queries. Specifically, we consider the Elasticsearch
database engine for its focus and utilization of range
queries for system log searches. To evaluate Elastic-
search lookups of address range queries, we loaded
1,012,032 samples (≈ 1 million records to prove range
query feasibility. Our initial tests passed with query times
less than 5 ms.

Database ETL issues arose in the ETL phase for
our Elasticsearch database. Our ETL times averaged
11,944.5 records per second or 1,040,000,000 records
per day which is significantly faster than the MySQL

Fig. 1. Our test cluster with final selection

TABLE III
Our evaluationMatrix

Database ETL
rec/sec

>5sec
search

system
admin
time

scala-
bility

failure
auto re-
covery

Cassandra 14,664 no ok yes yes
MySQL 1023 yes no no no
Elastic-
Search

11,944 yes ok yes yes

approach but not sufficient for our time-line. Given our
ETL rates the ETL process would have completed in
295 days to complete our ETL of the entire 3.02 × 1012

records. Additionally, our query search speed degraded
significantly while concurrently inserting ETL data;
therefore, additional I/O capacity was recommended.
Our first configuration utilized 3 prior used servers
augmented with additional storage: 7200 rpm 4 TB
hard drives. 2 systems operated with 3 HDD and 1
system operated with 5 drives. Having accomplished a
main feasibility objective, we were satisfied with the
Elasticsearch option.

D. Refinements to reduce cost

The atSNP output data was computed with high pre-
cision p-values for a given SNP evaluation. Addressing
each record and reducing the precision of the p-value

#drives ∗ 540MB
MBnode ∗ #nodes

Fig. 2. Datasearch for cluster based on SSD speed

nodes ∗ 10
1

Fig. 3. cluster excess capacity accounting for dram node failure rate

calculation, we were able to achieve a significant re-
duction in the record size from 1,416 to 300 bytes of
data. The reduction in data record size allowed us to
reduce the size of the data storage impact to 92.1 TB.
Our data size reduction however did not translate into an
overall database size reduction. Elasticsearch, like many
sharded NoSQL database engines, utilized internal data
partitioning to spread the dataset over the entire cluster.
The database internal partition schema provides cluster
redundancy in the case of individual system outages. Our
dataset total records equated 92.1 TB of data. However,
the default Elasticsearch replica factor of 3x ballooned
our database sizing requirements back to 276.3 TB.
Thus, any space saved in record size reduction was
consumed by the cluster redundancy schema.

Further consideration was done for the three key p-
values in atsnp search results are p-value SNP impact,
p-value reference, and p-value SNP. In a typical applica-
tion, users would want to identify SNP-TF combinations
for which p-value SNP impact is significant (e.g., p-
value SNP impact <= 0.05) along with significance of
either the p-value reference or the p-value SNP. To enable
this in the most liberal way, we included all SNP-TF
combinations with a p-value smaller than 0.05 for at least
one of the three p-values.

Our final p-value cutoff value of 0.05 enables querying
of these statistical evaluations which exhibit a significant
score change or a significant match with either the
reference or the SNP allele. The resulting 37 billion
SNP-PWM records total consumed 18.4 TB. With 18.4
TB we could utilize 2 data replicas for a total consumed
disk space of 60TB.

See cost breakdown in the Hardware Cost table IV:
To address our ETL time for our dataset, we uti-

lized HTCondor for additional throughput with the ETL
scripts. Distributing the ETL tasks in HTCondor proved
to be effective, however our cluster experienced overload
conditions. Elasticsearch was a feasible database engine
for our atSNP data; however, our ETL times were still
beyond functional for our needs. Our initial experiments

TABLE IV
Hardware Cost

Type SSD (TB) Node Cost ($) Node cost/yr ($)

new 1 5441 1088.2
new 2 5731 1146.2
new 4 6251 1250.2
used 1 1010 202
used 2 1300 260
used 4 1820 364

TABLE V
Running systems Cost

node $/yr pwr/clg ($) adm ($) monthly ($) yearly ($)
1088.2 206.64 1343 219.82 2637.84
1146.2 206.64 1343 224.65 2695.84
1250.2 206.64 1343 233.32 2799.84
202.0 206.64 1343 145.97 1751.64
260.0 206.64 1343 150.81 1809.64
364.0 206.64 1343 159.47 1913.64

nodes GB Cost/GB ($) monthly ($) yearly ($)
15 15360 0.216 3297.30 39567.60
15 30720 0.109 3369.75 40437.00
15 61440 0.057 3499.80 41997.60
15 15360 0.143 2189.55 26274.60
15 30720 0.078 2262.15 27145.80
15 61440 0.039 2392.05 28704.60
Hosted Hosted $0.135 varies varies

TABLE VI
Hosted vs Cloud

showed that our first generation cluster running nodes
in Taable II not sufficient to query and search the large
database at hand. ETL on our first generation test cluster,
we realized a node could maintain 6 ETL scripts per node
without experiencing a ‘"Bulk Queue Full‘" error excep-
tion. Addition considerations were needed to account for
query response times. We knew the maximum read speed
per SSD is between 530-540MB/sec [35], so a complete
scan all data per node can be represented by the data
scan equation in Figure 2. After our refinements we can
estimate the number of nodes our cluster requires, we
started with the equation in figure 2 for the raw Disk
I/O.

For each node, we followed Elasticsearch heap size
recommended to keep below 32GB [36]. Additionally,
following Elasticsearch "The standard recommendation
is to give 50% of the available memory to Elasticsearch
heap, while leaving the other 50% free" [36] this also
providing the Operating system with free memory for
data page tables. Thus, we concluded our optimized

RAM per node at 64 GB of RAM: 30GB for Heap,
30GB system paging, 4GB Kernel/OS.

We evaluated physical chassis and compared the cost
of buying new vs usedIV. The node cost hardware for
new $5,151.23 was based on a Dell quote from dell.com
for an R630 with 64 GB RAM, 2 x 8 core Intel Xeon
E5-2623 v4 2.6GHz, 10 MB Cache, 8.00 GT/s QPI,
Turbo, HT, 4C/8T. The cost per hardware node for used
$720 was based on a similar but one generation older
dell model, a R620, similarly configured with 64 GB of
RAM, 2x8 core Intel Xeon E5-2650 2.0 GHz, 20 MB
Cache, 8.00 GT/s QPI, Turbo, HT, 4C/8T. For both new
and used we did not select any extra extended warranties.

Our SSDs selection was a bit more complexity. Our
initial write endurance concerns where displaced after
examining the application data requirements, specifically
the static nature after the initial ETL stage.

Calculating the failure rates for a cluster node allows
us to model our cluster re-balancing. We modeled node
failure rates based on numerous factors, specifically:
Dynamic Random Access Memory (DRAM), Disk Drive
(Disk), Power Supply (PS), CPU, Motherboards (MB)
with MB including PCI Bus, SCSI Backplane, NIC, etc.
For DRAM our model used hard error rates between
1.7% to 2.3% [37] per month. Disk failure rates varied
greatly between Hard Disk Drives (HDD) and Solid
State Disk (SSD), within SSD’s there was additional
variations for where bo, power supplies, and , so write
endurance numbers based on manufactures specifications
and combining them with per month failure rates allows
us to select the we base our cost structure on the SSD
class enterprise vs desktop to purchase.

of drive throughput and endurance since our cluster
auto rebalances when a node fails. We use the equation
3 to determine

Since our application main purpose is a storage and
search engine; therefore, write endurance requirements
where considerably less then . The data per node based
on ETL was decided were based on crucial MX300
family of SSD, to simplify we compared only 1 and
2 TB SSDs. Each node provided 4 disk trays per server
2 for OS drives and 2 for data. To reduced costs by
shopping for the best SSD pricing and we found the best
cost for a crucial 300MX SSD 1 TB SSD at $289.99
[38] and 2 TB SSD $549.99 [39]. Addressing power
consumption and power cost/cooling costs over 95 days
time period a similar system consumed 192.1 KWh or
2.022 KWh/day/node, including cooling, we doubled this
cost to 4.044 KWh/day/node at a current KWh price
about $0.14KWh [40]. Systems administration time cost

Fig. 4. Final atSNPElasticsearch cluster

was based off the IBM TOC [41] for Application server
support and administration at $1,343/year for 5 years.

Based on 15 data nodes and the cost per gigabyte
equation, and using TableIV-D, we selected 2x 2TB
SSD’s for the data storage on each node which would
give us 60TB of usable search space across 15 data
nodes. Data storage per node also required knowing the
maximum read bandwidth per SSD is 540MB/sec with
90,000 Input/Outputs Per Second (IOPS)/second [35].
We dismissed Hard disk drives as an option due to the
required speed to completely scan the data [42].

Reducing storage through intelligent runtime

Further reducing scope involved a move away from
graphical representation of motif SNP-PWM. As previ-
ously stated to store the graphic files for each affinity
scored SNP would have required 3.7 PB of storage.
Having taken into consideration cost, we reduced our
scope to only using 11% of the total records. Therefore,
we were able to reduce the graphical storage to 11%
of the 3.7PB or 370TB. 370TB of storage for graphics
is cost prohibitive as data storage prices, while always
decreasing [43], is still at $369 for a 10TB drive. The
cost of storage is well known to be more than just the
cost per TB [44] but for simplicity a price per TB of raw
storage with no redundancy at $39/TB would still cost
$14,430.

Since cost is always an issue and the storage or
PNG files for the PWM motifs are computer generated

anyway, we decided against storage of the PWM motifs.
Instead we chose to build software to generate the a
Scalable Vector Graphic (SVG). The software module
utilizes javascript and the d3.js [45] library, which uses
the PWM data, for generating the Motif at runtime.

To stay consistent and allow us to render the proper
PWM motif for a given SNP-PWM record, we chose
to store the PWM motif data with each correspond-
ing record. Adjusting our approach from a centralized
storage of PNG motif PWM files to distributed edge
computing render model, provided savings. The dynamic
motif generation through edge computing in the client
web browser’s javascript engine allowed us to eliminate
all motif image storage. Thus, a data storage savings for
the application saved an additional 370TB when using
p-value cutoff 0.05 which resulted in a 89% reduction in
total storage required.

V. Conclusion
Our use case study has demonstrated the feasibility of

using NoSQL database engines for large scale real-time
searchable genomic SNP databases. The use of elastics
search and the successful implementation is proof that
our systems was feasible. Admittedly, our evaluation
of database engines is not a conclusive finding. Our
goal was to prove database engine feasibility and not
be conclusive or exhaustive study case. Factors which
impeded a more through database engine study included:
cost, personal, speed to implement, and domain knowl-
edge. Additional factors which played a roll in our
final implementation included: support-ability, system
administrator time to implement, datacenter rackspace
and networking.

Our time-frame for implement was limited and nu-
merous unforeseeable issues arose. At first we expected
to build a cluster based on 14 nodes as described in
Cassandra for Sysadmins slide 6 [46]. However, we re-
alized our quick turn-a-round times to a fully functional
web resource was limited by at first range queries, then
scalability (MySQL), until we agreed to utilize Elas-
ticsearch through our feasibility testing. Our successful
deployment exhibits 11% of the human genome SNP’s
with PWM. Barring financial resources constraints, we
believe our presented solution would continue to scale
and fully support the complete 307 billion records.

Our cost structure, based on purchasing and deploying
equipment, was validated as a highly competitive cost
effective option. For our do it ourselves Elasticsearch in-
frastructure, our cost saving showed a significant savings.

When comparing to Amazon’s Elasticsearch implemen-
tation, our 2x cost savings proved significant at $0.095
per GB cost savings.

Acknowledgments

This work is supported by:
• NIH Big Data to Knowledge (BD2K) Initiative

under Award Number U54 AI117924
• Center for Predictive Computational Phenotyping

(CPCP)
• University of Wisconsin - Madison

References

[1] C. Zuo, S. Shin, and S. Kele, “atsnp: transcription factor binding
affinity testing for regulatory snp detection,” Bioinformatics,
vol. 31, no. 20, pp. 3353–3355, 2015. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btv328

[2] M. Kreitman, “Nucleotide polymorphism at the alcohol
dehydrogenase locus of drosophila melanogaster,” Nature,
vol. 304, pp. 412 EP –, Aug 1983. [Online]. Available:
http://dx.doi.org/10.1038/304412a0

[3] I. C. Gray, D. A. Campbell, and N. K. Spurr, “Single
nucleotide polymorphisms as tools in human genetics,” Human
Molecular Genetics, vol. 9, no. 16, pp. 2403–2408, 2000.
[Online]. Available: +http://dx.doi.org/10.1093/hmg/9.16.2403

[4] D. Altshuler, V. J. Pollara, C. R. Cowles, W. J. Van Etten,
J. Baldwin, L. Linton, and E. S. Lander, “An snp map of the
human genome generated by reduced representation shotgun
sequencing,” Nature, vol. 407, pp. 513 EP –, Sep 2000.
[Online]. Available: http://dx.doi.org/10.1038/35035083

[5] “dbsnp short genetic variations,” https://www.ncbi.nlm.nih.gov/
SNP/, accessed: 2018-01-03.

[6] “Genome reference consortium human build 38,”
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/,
accessed: 2016-05-05.

[7] G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht,
“Use of the ’perceptron’ algorithm to distinguish translational
initiation sites in e. coli,” Nucleic Acids Research, vol. 10,
no. 9, pp. 2997–3011, 1982. [Online]. Available: +http:
//dx.doi.org/10.1093/nar/10.9.2997

[8] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org/

[9] A. Mathelier, X. Zhao, A. W. Zhang, F. Parcy, R. Worsley-
Hunt, D. J. Arenillas, S. Buchman, C.-y. Chen, A. Chou,
H. Ienasescu, J. Lim, C. Shyr, G. Tan, M. Zhou, B. Lenhard,
A. Sandelin, and W. W. Wasserman, “Jaspar 2014: an
extensively expanded and updated open-access database of
transcription factor binding profiles,” Nucleic Acids Research,
vol. 42, no. D1, pp. D142–D147, 2014. [Online]. Available:
+http://dx.doi.org/10.1093/nar/gkt997

[10] T. E. P. Consortium, “An integrated encyclopedia of dna
elements in the human genome,” Nature, vol. 489, no. 7414,
pp. 57–74, Sep 2012, 22955616[pmid]. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439153/

[11] J. Basney and M. Livny, Deploying a High Throughput Com-
puting Cluster, R. Buyya, Ed. Prentice Hall PTR, 1999.

[12] S. D. Mooney, V. G. Krishnan, and U. S. Evani, “Bioinformatic
tools for identifying disease gene and snp candidates,” Methods
Mol Biol, vol. 628, pp. 307–319, 2010, 20238089[pmid].
[Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3957484/

[13] M. D. Mailman, M. Feolo, Y. Jin, M. Kimura, K. Tryka,
R. Bagoutdinov, L. Hao, A. Kiang, J. Paschall, L. Phan,
N. Popova, S. Pretel, L. Ziyabari, Y. Shao, Z. Y. Wang,
K. Sirotkin, M. Ward, M. Kholodov, K. Zbicz, J. Beck,
M. Kimelman, S. Shevelev, D. Preuss, E. Yaschenko,
A. Graeff, J. Ostell, and S. T. Sherry, “The ncbi dbgap database
of genotypes and phenotypes,” Nat Genet, vol. 39, no. 10, pp.
1181–1186, Oct 2007, 17898773[pmid]. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2031016/

[14] S. Song, D. Tian, C. Li, B. Tang, L. Dong, J. Xiao, Y. Bao,
W. Zhao, H. He, and Z. Zhang, “Genome variation map: a data
repository of genome variations in big data center,” Nucleic
Acids Research, vol. 46, no. D1, pp. D944–D949, 2018.
[Online]. Available: +http://dx.doi.org/10.1093/nar/gkx986

[15] “Mysql server,” https://www.mysql.com, accessed: 2018-01-28.
[16] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,

R. A. Lorie, and T. G. Price, “Access path selection in
a relational database management system,” in Proceedings
of the 1979 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’79. New York,
NY, USA: ACM, 1979, pp. 23–34. [Online]. Available:
http://doi.acm.org/10.1145/582095.582099

[17] P. P.-S. Chen, “The entity-relationship model—toward a unified
view of data,” ACM Transactions on Database Systems, vol. 1,
no. 1, pp. 9–36, march 1976.

[18] A. S. Foundation, “Cassandra.” [Online]. Available: http:
//cassandra.apache.org/

[19] “7 reasons why netflix uses cassandra databases,” https:
//www.jcount.com/7-reasons-netflix-uses-cassandra-databases/,
accessed: 2017-09-20.

[20] P. Voldemort, “Voldemort.” [Online]. Available: http://www.
project-voldemort.com/voldemort/

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
in 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 06). Seattle, WA: USENIX Association,
2006. [Online]. Available: https://www.usenix.org/conference/
osdi-06/bigtable-distributed-storage-system-structured-data

[22] “Relational databases are not designed for scale,” http://
www.marklogic.com/blog/relational-databases-scale/, accessed:
2018-01-15.

[23] G. Vaish, Getting Started with Nosql. Packt Publishing,
2013. [Online]. Available: https://books.google.com/books?id=
oPiT-V2eYTsC

[24] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Rec.,
vol. 39, no. 4, pp. 12–27, May 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978915.1978919

[25] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and
C. Matser, “Performance evaluation of nosql databases: A case
study,” in Proceedings of the 1st Workshop on Performance
Analysis of Big Data Systems, ser. PABS ’15. New York,
NY, USA: ACM, 2015, pp. 5–10. [Online]. Available:
http://doi.acm.org/10.1145/2694730.2694731

[26] Y. Li and S. Manoharan, “A performance comparison of sql
and nosql databases,” in 2013 IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing (PACRIM),
Aug 2013, pp. 15–19.

[27] W. Puangsaijai and S. Puntheeranurak, “A comparative study of
relational database and key-value database for big data applica-
tions,” in 2017 International Electrical Engineering Congress
(iEECON), 2017, pp. 1–4.

[28] “Mariadb server,” https://mariadb.com/, accessed: 2018-01-28.
[29] “Redis,” https://redis.io/, accessed: 2018-01-15.
[30] R. Hudson, “ss utility scripts.” [Online]. Available: https:

//github.com/RebeccaHudson/ss_utility_scripts
[31] “Apache cassandra nosql performance bench-

marks,” https://academy.datastax.com/planet-cassandra/
nosql-performance-benchmarks, accessed: 2017-01-20.

[32] P. Pirzadeh, J. Tatemura, O. Po, and H. Hacıgümüş,
“Performance evaluation of range queries in key value
stores,” Journal of Grid Computing, vol. 10, no. 1, pp.
109–132, Mar 2012. [Online]. Available: https://doi.org/10.
1007/s10723-012-9214-7

[33] “Improve mysql insert performance,” https://kvz.io/blog/2009/
03/31/improve-mysql-insert-performance/, accessed: 2017-06-
15.

[34] “Differences between the ndb and innodb storage
engines,” https://dev.mysql.com/doc/refman/5.7/en/
mysql-cluster-ndb-innodb-engines.html, accessed: 2017-06-15.

[35] “Crucial mx300 solid state drive,” http://www.crucial.com/usa/
en/storage-ssd-mx300, accessed: 2017-06-18.

[36] “Elasticsearch, heap sizing and swapping,” https://www.elastic.
co/guide/en/elasticsearch/guide/current/heap-sizing.html,
accessed: 2017-09-28.

[37] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in
the wild: A large-scale field study,” in SIGMETRICS, 2009.

[38] “Crucial mx300 2.5" 1tb sata iii 3d nand internal solid
state drive (ssd) ct1050mx300ssd1,” https://www.newegg.
com/Product/Product.aspx?item=N82E16820156152, accessed:
2017-06-10.

[39] “Crucial mx300 2tb sata 2.5" 7mm (with 9.5mm adapter)
internal ssd,” http://www.crucial.com/usa/en/ct2050mx300ssd1,
accessed: 2017-06-10.

[40] “Commercial and industrial (c&i) electric rates,” https:
//www.mge.com/customer-service/business/elec-rates-comm/,
accessed: 2017-06-30.

[41] “Tco for application servers: Comparing linux with windows
and solaris,” http://www-03.ibm.com/linux/whitepapers/
robertFrancesGroupLinuxTCOAnalysis05.pdf, accessed:
2017-06-30.

[42] “Comparing iops for ssds and hdds,” http://www.tvtechnology.
com/expertise/0003/comparing-iops-for-ssds-and-hdds/
276487, accessed: 2017-03-29.

[43] “Hard drive cost per gigabyte,” https://www.backblaze.com/
blog/hard-drive-cost-per-gigabyte/, accessed: 2017-09-15.

[44] “The true "cost" of enterprise storage -
understanding storage management,” https:
//www.zadarastorage.com/blog/industry-insights/
cost-of-enterprise-storage-understanding-storage-management/,
accessed: 2017-12-29.

[45] Mike Bostock, “D3: Data-driven documents - d3.js.” [Online].
Available: https://d3js.org

[46] “Cassandra 101 for sysem administrators,” https:
//www.slideshare.net/nmilford/cassandra-for-sysadmins,
accessed: 2017-02-02.

Appendix C

Predicting Hard Disk Drive faults,

failures and associated misbehaviors

The following paper was accepted for conference proceeding publication as a workshop

paper at IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2023.

143

Predicting Hard Disk Drive faults, failures and
associated misbehavior’s

Christopher Harrison
Department of Computer Science

Universidade do Porto
Porto, Portugal

Kairos Technologies
Madison, WI, USA

chris@kairostechnologies.us

Henish Balu
Porto Digital Association

Porto, Portugal
henish.balu@portodigital.pt

Inês Dutra
Department of Computer Science

Universidade do Porto
Porto, Portugal

ines@dcc.fc.up.pt

Abstract—Magnetic hard disk drives continue to be
heavily used to store global information. However, due to
the physical characteristics these components fatigue and
fail, sometimes in unexpected ways. A failing hard disk can
cause problems to a group of hard disks and result in sub-
optimal performance which impacts cloud providers. To
address failures, redundancies are put in place, but these
redundancies have a high cost. Utilizing Machine learning
we identify predictive failure features within a hard disk
vendor’s Hard Disk Drive Model line which can be used
as an early failure prediction method which may be used
to reduce redundancies in cloud storage infrastructures.

Index Terms—cloud fault detection, hard disk errors

I. INTRODUCTION

Magnetic Hard Disk Drives (HDD) store 59% of
all information produced worldwide [1]. The boom in
cloud computing, online services and big data appli-
cations, have moved data storage resources away from
individual computers into large capacity data centers.
Hyperscale computing systems’, like the ones used by
cloud providers, are increasingly prevalent with 49% of
the world’s data projected to reside in public clouds and
most of this data will be stored on Magnetic HDD[1].

All data center systems and public clouds must pro-
vide high quality reliable services for their customers.
These customers are highly dependent on the providers’
storage systems. Many service providers have Service
Level Agreements (SLA), which provide a guarantee of
service availability or monetary losses occur. To promise
SLA’s, providers implement numerous levels of redun-
dancies that insure against service disruption failures
and faults. However, Magnetic HDD, like all physically
moving components, suffers from component fatigue

which degrades performance over time and eventually
cause component failures.

Hard drives are reported to be the components that
most need to be replaced in storage systems. HDD
failures cause service delays and sometimes data loss,
costing companies millions of dollars per year. Accord-
ing to research [2], the average cost of data center down
time is $9,000/minute.

The motivation of our work is to reduce the impact
of faults and failure occurring to storage systems so
proactive maintenance and avoid fatal impact events. To
do so we consider several machine learning methods that
predict failures and faults by using data from a common
HDD telemetry reporting technique known as S.M.A.R.T.
(self-monitoring, analysis, and reporting technology).
Our results show promise for data center operators and
cloud providers.

Our contribution partitions the dataset by Hard Disk
Drive Models (HDDM), instead of the common all
in one bucket approach, to develop Machine Learning
Models (MLM) which produce highly accurate MLM
for HDDM. Additionally, our work found 4 additional
SMART attribute predictors which have not been men-
tioned previously in the literature. We organized this
paper as follows: background and related work, methods
and results, conclusions, and future work.

II. BACKGROUND

Magnetic hard disk drives HDD are a critical com-
ponent for large scale data systems, due to their cost
effectiveness. Even though the Cost Per Gigabyte CPG
of non-magnetic (aka Solid-State Disks) SSD continues
to fall, HDD CPG remain highly economical due to a
confluence of factors around the component technologies

employed. Thus, HDD continues to be used as a core
component in large scale storage systems. As a core
component their faults, failures and greatly affect a
systems usability and performance[3].

A. Disk Failures
Understanding a failure is dependent on what consti-

tutes the failure. Schroeder et al. [4] argues that HDD
vendors use different definitions of what is a fault than
HDD costumers. A disk misbehavior may consist in
a reading operation that takes longer to execute than
usual. For vendors, that value may not be an alarm to be
considered because the threshold is not being passed.
A disk manufacturer once published that 43% of all
disks returned by customers, because they found that the
disks had some problem, were considered healthy by the
vendors. While drive manufacturers often quote yearly
failure rates below 2%, user studies have seen rates as
high as 6% [5].

Failures can be categorized in two major groups,
predictable and unpredictable [6]. Unpredictable failures,
such as electronic and some mechanical problems, occur
quickly without any chance of control from the user.
For example, a power surge may cause chip or circuit
damage on the hard disk. On the other hand, pre-
dictable failures are characterized by degradation of an
attribute over time. Any mechanical component suffers
degradation over their lifetime. Therefore, attributes can
be monitored, making it possible for predictive-failure
analysis for the user to control the HDD components
more carefully before they fail [6].

The study made by Schroeder et al. [4] also refers that
even if the HDD is from the same HDDM, they can differ
on their behavior, because disks are manufactured using
processes and parts that may change. A simple change in
a drive’s firmware or in a hardware component, or even
in the assembly line on which a drive was manufactured,
can change the failure behavior of a disk.

According to the Backblaze Company, a disk is con-
sidered failed when [7]:

”it is removed from a Storage Pod and replaced
because it has 1) totally stopped working, or 2) because
it has shown evidence of failing soon. A drive is con-
sidered to have stopped working when the drive appears
physically dead (e.g., will not power up), do not respond
to console commands or the RAID system tells us that
the drive cannot be read or written.”

B. S.M.A.R.T. Attributes
S.M.A.R.T. emerged from the need to protect critical

information stored on disk drives. As system storage

capacity requirements increased, the industry identified
the importance of creating an early warning system that
would allow enough lead time to back up data if failure
were imminent, preventing catastrophic data loss [6].
However, these attributes have failed to live up to their
intended design goals

S.M.A.R.T. includes a series of attributes, chosen
specifically for each drive HDDM. This differentiation is
important because HDD architectures vary from HDDM
to HDDM. Attributes and thresholds that detect failure
for one HDDM may not be functional for another
HDDM or another vendor. We show important S.M.A.R.T
attributes in tableI.

The literature has flagged S.M.A.R.T. variables 5, 12,
187, 188, 189, 190, 198, 199 and 200 as important for
associations with failure events[8] and their descriptions
are here in Table I. In this study, pay attention to all
variables including those already flagged as important to
find new associations.

TABLE I
S.M.A.R.T. ATTRIBUTES

ID Attribute Name Description
5 Reallocated Sectors

Count
Count of reallocated sectors.

7 Seek Error Rate Rate of seek errors of the magnetic
heads.

9 Power-On Hours Count of hours in power-on state.
12 Power Cycle Count A count of full hard disk power

on/off cycles.
187 Reported

Uncorrectable
Errors

The count of errors that could not
be recovered using hardware ECC

188 Command Timeout The count of aborted operations
due to HDD timeout.

189 High Fly Writes This attribute indicates the count of
rewritten or reallocated information
over the lifetime of the drive.

190 Temperature
Difference

Value is equal to (100-temp. °C),
allowing manufacturer to set a min-
imum threshold which corresponds
to a maximum temperature.

193 Load Cycle Count Count of load/unload cycles into
head landing zone position.

194 Temperature Indicates the device temperature.
198 Uncorrectable Sec-

tor Count
The total count of uncorrectable er-
rors when reading/writing a sector.

199 UltraDMA CRC
Error Count

The count of errors in data transfer
via the interface cable as deter-
mined by ICRC (Interface Cyclic
Redundancy Check).

200 Multi-Zone Error
Rate

The count of errors found when
writing a sector.

240 Head Flying Hours Time spent during the positioning
of the drive heads.

Numeric attributes that are normalized by the vendors,
higher values are always better (except for temperature
in some manufactures). The range is usually 0-100
or 0-255. There is no standard on how manufacturers
convert the raw values to the normalized ones: it can
be a linear, exponential, logarithmic or any other range
normalization. That said, it is difficult to quickly perceive
the disks behavior on a cloud storage system, since they
usually use dozens of different HDDM.

C. Machine Learning

In the development of this work, two machine learning
algorithms were used for the classification task such as
Random Forests and SVM (Support Vector Machine). We
chose these methods for their robustness

The classification tasks goal is to obtain an approx-
imate for the unknown function that maps predictor
variables toward the target value. The unknown function
can be defined as Y = f(X1, X2, ..., Xp), where Y is
the target variable, X1, X2, ..., Xp are features and f()
is the unknown function we want to approximate. We
approximate the unknown function by using a training
dataset D = {⟨xi, yi⟩}ni=1

III. RELATED WORK

Most existing work about hard drive failure prediction
uses the Backblaze dataset, that gathers more than 100
thousand hard disk drives and reports their respective
S.M.A.R.T. variables daily [8], [9].

Aussel et al. [8] say that the existing predictive
MLM do not perform sufficiently well on the Backblaze
dataset due to the extremely high unbalanced ratio of
5000:1 between healthy and failure disks, and the lack of
control on the environment. For that reason, they selected
MLM for classification, like SVM, Random Forests and
Gradient Boosting Trees. They achieved results of 95%
precision and 67% recall with the Random Forests
MLM and 94% precision and 67% recall with Gradient
Boosting Trees. The SVM got a precision below 1%.

Wang et al. [9] defend that the reactive fault-tolerant
measures, like RAID’s (Redundant Array of Inexpensive
Drives) and ECC (error correction codes) are not enough
to mitigate or eliminate the negative effects of the HDD’s
failures. Proactive measures are more efficient because
they will predict failures in advance. However, the built-
in prediction MLM that the HDD’s manufactures are
using, have quite a weak prediction power, with only
4% of failure prediction rate. To overcome the issues and
obtain results, they proposed a deep architecture called
Amender (for Attention-augMENted Deep architEctuRe)

composed of a feature integration layer, a temporal
dependency extraction layer, an attention layer, and a
classification layer.

After analyzing the results, they concluded that dif-
ferent S.M.A.R.T. attributes have different abilities to
indicate failures. Compared with Recurrent Neural Net-
works (RNNs) the architecture proposed improves 8.3%
on failure-prediction and 90.2% in the health status
assessment. This will also help find the causes of HDD
failures.

Shen et al. [10] propose a Random Forest predict-
ing model capable of differentiating failure prediction
for HDD’s. They show that most of the statistical ap-
proaches, machine learning, and deep learning technolo-
gies are good at identifying failures that occur more fre-
quently but perform poorly when they face a less known
behavior. A clustering-based under-sampling method is
used, so the data imbalance problem is mitigated, and the
quality of training set is improved. The results show that
the Random Forest model can achieve a FDR (Failure
Detection Rate) of over 97.67% with a FAR (False Alarm
Rate) of 0.017%.

Li et al. [11] propose two prediction MLM based on
Decision Trees and Gradient Boosted Regression Trees
in two different real-world datasets (one with 121,698
and other with 39,091 hard disks). In data preparation
and pre-processing, they use quantile functions, to select
the more key features on healthy and drives that fail.

• Bigger dataset: The Decision Trees model, helps in
improving the hard drive failure prediction with a
93% FDR and a FAR under 0.01%. The Gradient
Boosted Regression Trees also contribute to evalu-
ating the health degree level and the results show a
90% FDR and a 0% FAR.

• Smaller dataset: Both MLM show steady prediction
performance, with failure detection rates of 80% to
96% and low false alarm rates of 0.006% to 0.31%.

They also mention an interesting point by using a
metric that calculates the expected number of data loss
events per petabyte used by year in these companies.

Zhao et al. [12] believe that many works done in the
area fail to consider the characteristics of the observed
features, over time, and tend to make the predictions
based on individual or a set of attributes. They also
believe that it is reasonable that attribute values ob-
served over time are not independent, and a sequence
of observed values with certain patterns may be a good
indicator on whether a drive may fail soon. Therefore,
they consider the observations from the disks as a time
series and apply a Hidden Markov Model and a Hidden

semi-Markov model to build prediction MLMs that could
label disks as healthy or pre-failing. Although their FDR
results are not high (up until 46% for single attributes
and 52% for multiple attributes), they achieve a FAR of
0% in both cases.

IV. DATASET AND METHODOLOGY

The data from the fourth quarter of 2019 will be
used. 92 datasets from the period of 01-October to 31-
December were downloaded from the Backblaze data
center. After a brief analysis of all files, 125,731 different
disks were identified during the three months.

Of the 125,731 disks, only 678 failed showing a failure
rate below 0.54%. This demonstrates a huge disparity
between the two classes that categorize the disks. In
Figure 1 it is possible to have a better visualization of
the data distribution.

Fig. 1. Diagram of Failed and Healthy Disks

The company has in its storage systems, dozens of
different HDD’s HDDM and from different vendors too.
In Table II, it is possible to see types of disks available
on this dataset.

a) : Not all vendors use the same variables, so it is
important to note which ones will be kept in the dataset.

A. Cleaning the Data

As the objective is to analyze the dataset in a temporal
way, a function was executed to determine the day with
most failures. After selecting it, the failed disks were
gathered, and the respective observations were collected
from day 1 to the selected day. With this, it is possible
to obtain a dataset in the form of a time series, to better
analyze the behavior of the disks over the days. From
now on, the under-sampling method is used to select

TABLE II
A SAMPLE OF HDDM AND THEIR NUMBERS AVAILABLE IN THE

BACKBLAZE STORAGE DATASET.

Types of HDDM # of Disks
DELLBOSS VD 60
HGST HDS5C4040ALE630 26
HGST HMS5C4040ALE640 2833
HGST HMS5C4040BLE640 12758
HGST HMS5C4040BLE641 1
HGST HUH721010ALE600 20
HGST HUH721212ALE600 1561
HGST HUH721212ALN604 10866
HGST HUH728080ALE600 1002
HGST HUS726040ALE610 28
Hitachi HDS5C4040ALE630 2
ST10000NM0086 1205
ST1000LM024 HN 1
ST12000NM0007 37442
ST12000NM0008 7226
ST12000NM0117 15
ST16000NM001G 40
ST4000DM000 19330
ST4000DM005 39
ST500LM012 HN 501
ST500LM021 33

the disks that were healthy until the day and collect the
respective observations over the period. It is important to
note that the healthy disks must be from the same HDDM
as the disks that failed, so that the comparison would be
correctly made, because as stated by Backblaze, different
HDDM make use of different variables. Therefore, 2
datasets are created: Healthy Disks and Failed Disks.
In Figure 2 it is possible to have a better visualization
of this process where blue corresponds to healthy disks
and red to the failed disks.

Fig. 2. Pre-Processing Diagram Example.

We remove HDDMs with less than 100 disks and
HDDMs that never failed over the 3 months, would
also be removed. This measure was taken because the

observations of these disks will never take our class of
interest into account, so it is not worth analyzing them.

B. Methodology

A temporal analysis is executed over both datasets
(Healthy Disks and Failed Disks) for a better visualiza-
tion of the oscillations in the variable’s values, so the
differences between the healthy and failing disks. Also,
the Euclidean distances, between the failed disks and
the healthy ones, are calculated for every feature. With
this, it is possible to obtain a better numerical perception.
Both processes will help extracting information from the
data and turning the decision making, before applying
the learning algorithms, more efficient and accurate.

The temporal analysis is performed by plotting the
variables of interest for failing disks and healthy disks.
The two graphs will be placed side by side for the
comparison to be made.

The Euclidean distance is calculated for each variable.
This distance helps understand how dispersed the values
are, of the same variables, between a healthy disk and a
disk that ends up failing. To better clarify this process,
the objective is to compare the smart 1, over time, of a
healthy disk, with the smart 1 over time of a disk that
will fail. To ensure that the execution of the algorithms
is well done, the comparison between the disks is always
done with the same HDDM.

To apply a Vector Auto Regression (VAR) model, it
was necessary to divide the two datasets created into sub
datasets that were grouped by serial number. Thus, sub
datasets would only contain observations over time of a
given disk. By this way it is possible to apply the HDDM
to each disk and make a comparison between the healthy
and the failing ones.

The observations from the last 5 days of each disk
were removed so when the forecast was executed, the
prediction could be compared with the real values.
The drive information that was added by Backblaze is
removed, except the Date values, so that the table is only
constituted with S.M.A.R.T. variables, over time. This
measure is taken, because the VAR MLM only performs
operations on numeric variables and would not extract
any information from the variables that were added only
to describe the disk (Ex: Serial number, HDDM).

The first thing to do before the execution of the
algorithms is to divide the datasets (Healthy and Failed)
into sub datasets once more, but this time, in sub datasets
grouped by HDDM. This can be done because there is
no need to have a temporal view of the data, so more
than 1 disk can be placed on the new sub dataset. Then it

is necessary to add the class variable to all observations.
The disks that fail will have the class equal to 1 and
those that remain healthy will have the class equal to 0.
In these algorithms, only the S.M.A.R.T. attributes remain
in the data frame, the rest of the variables are eliminated
for the same reasons referenced in the VAR model.

All features were normalized to values between 0 and
1, since the learning algorithms had difficulties perform-
ing the operations on standard values. This normalization
was made after the disks were divided by HDDM, so the
values range were not mixed up. The validation method
utilized was the train-test-split with an 80 to 20 ratio.
Both classification algorithms, SVM and Random Forest,
were executed using default parameters.

V. CLASSIFICATION ALGORITHMS

After all steps were executed, the classification MLM
were applied to the sub datasets created (12 data frames
distinguished by HDDM).

From Table III the metric results are presented along
with the respective Confusion Matrix. The tables present
metrics like precision, recall, f1-score, and accuracy. It is
also possible to observe each class’s support, correspond-
ing to how many observations are labeled for each class.
In the confusion matrices the predicted cases for each
classification algorithm are presented so it is possible to
evaluate the respective performance. All the presented
results are obtained from the test set.

TABLE III
METRICS RESULTS FOR HDDM ST12000NM0007

SVM RANDOM FOREST
precision recall f1-score support precision recall t tps://www.overleaf.com/project/63d750f0e20d2c150f0a88e7c—f1-score support

Healthy 1.00 0.99 0.99 92 0.99 0.99 0.99 92
Failure 0.99 1.00 0.99 83 0.99 0.99 0.99 83

accuracy 0.99 175 0.99 175
macro avg 0.99 0.99 0.99 175 0.99 0.99 0.99 175

weighted avg 0.99 0.99 0.99 175 0.99 0.99 0.99 175

TABLE IV
CONFUSION MATRIX HDDM ST12000NM0007

SVM RANDOM FOREST
Predicted Class Predicted Class

Healthy Failure Healthy Failure
Actual
Class

Healthy 91 1 91 1
Failure 0 83 1 82

TABLE V
METRICS RESULTS FOR HDDM ST4000DM000

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.83 1.00 0.91 20 0.95 1.00 0.98 20
Failure 1.00 0.80 0.89 20 1.00 0.95 0.97 20

accuracy 0.90 40 0.97 40
macro avg 0.92 0.90 0.90 40 0.98 0.97 0.97 40

weighted avg 0.92 0.90 0.90 40 0.98 0.97 0.97 40

TABLE VI
CONFUSION MATRIX HDDM ST4000DM000

SVM RANDOM FOREST
Predicted Class Predicted Class

Healthy Failure Healthy Failure
Actual
Class

Healthy 20 0 20 0
Failure 4 16 1 19

TABLE VII
METRICS RESULTS FOR HDDM ST8000NM0055

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.95 1.00 0.98 20 1.00 1.00 1.00 20
Failure 1.00 0.95 0.98 21 1.00 1.00 1.00 21

accuracy 0.98 41 1.00 41
macro avg 0.98 0.98 0.98 41 1.00 1.00 1.00 41

weighted avg 0.98 0.98 0.98 41 1.00 1.00 1.00 41

TABLE VIII
CONFUSION MATRIX HDDM ST8000NM0055

SVM RANDOM FOREST
Predicted Class Predicted Class

Healthy Failure Healthy Failure
Actual
Class

Healthy 20 0 20 0
Failure 1 20 0 21

TABLE IX
METRICS RESULTS FOR HDDM ST12000NM0008

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.40 0.40 0.40 5 0.50 0.40 0.44 5
Failure 0.25 0.25 0.25 4 0.40 0.50 0.44 4

accuracy 0.33 9 0.44 9
macro avg 0.33 0.33 0.33 9 0.45 0.45 0.44 9

weighted avg 0.33 0.33 0.33 9 0.46 0.44 0.44 9

TABLE X
CONFUSION MATRIX HDDM ST12000NM0008

SVM RANDOM FOREST
Predicted Class Predicted Class

Healthy Failure Healthy Failure
Actual
Class

Healthy 2 3 2 3
Failure 3 1 2 2

It is possible to observe in Table III that the

TABLE XI
METRICS RESULTS FOR HDDM TOSHIBA MQ01ABF050

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.80 0.80 0.80 10 0.91 1.00 0.95 10
Failure 0.82 0.82 0.82 11 1.00 0.91 0.95 11

accuracy 0.81 21 0.95 21
macro avg 0.81 0.81 0.81 21 0.95 0.95 0.95 21

weighted avg 0.81 0.81 0.81 21 0.96 0.95 0.95 21

TABLE XII
CONFUSION MATRIX HDDM TOSHIBA MQ01ABF050

SVM RANDOM FOREST
Predicted Class Predicted Class

Healthy Failure Healthy Failure
Actual
Class

Healthy 8 2 10 0
Failure 2 9 1 10

ST12000NM0007 HDDM shows metrics values
really close to 100%, this can demonstrate that the
methodology used may prove to be quite accurate. It is
important to note that the ST12000NM0008, TOSHIBA
MQ01ABF050 and TOSHIBA MG07ACA14TA
HDDM, do not have a favorable support (exceptionally
sparse number of observations and past behaviors
information) for the algorithms execution, and therefore
their results are not the most promising. In the future
work section, some points that could improve these
results are discussed.

It is essential to have a perception of the importance
that the Random Forest model gives to variables in its
decision making and in the tree’s creation. With this, it
is easier to understand which features weight more in
helping the algorithm to predict if the disk will fail or
remain healthy. Table XIII shows the importance ranking
given to the 6 different HDDM.

TABLE XIII
RANDOM FOREST FEATURES IMPORTANCE FOR EACH HDDM

ST12000NM0007 ST4000DM000 ST8000NM0055
importance importance importance

smart 7 normalized 0.228980 smart 193 raw 0.156771 smart 195 normalized 0.207715
smart 193 raw 0.187561 smart 183 raw 0.127605 smart 1 normalized 0.182538

smart 3 normalized 0.165387 smart 3 normalized 0.099825 smart 193 normalized 0.126374
smart 9 normalized 0.058750 smart 190 normalized 0.083486 smart 193 raw 0.075515

smart 9 raw 0.057293 smart 183 normalized 0.080752 smart 191 raw 0.066237
smart 241 raw 0.051673 smart 194 raw 0.063729 smart 7 normalized 0.060627
smart 7 raw 0.041517 smart 194 normalized 0.061899 smart 191 normalized 0.053196

smart 240 raw 0.032224 smart 190 raw 0.056995 smart 192 raw 0.043330
smart 12 raw 0.026624 smart 7 normalized 0.046583 smart 190 raw 0.022044
smart 242 raw 0.026087 smart 240 raw 0.045435 smart 194 normalized 0.021385

ST12000NM0008 TOSHIBA MQ01ABF050 TOSHIBA MG07ACA14TA
importance importance importance

smart 190 raw 0.165062 smart 191 raw 0.400617 smart 226 raw 0.278620
smart 194 normalized 0.146380 smart 194 raw 0.286671 smart 222 raw 0.193245
smart 190 normalized 0.139104 smart 9 raw 0.134172 smart 9 raw 0.181570

smart 194 raw 0.130639 smart 222 raw 0.125146 smart 220 raw 0.145886
smart 192 raw 0.061040 smart 222 normalized 0.028102 smart 194 raw 0.104060
smart 1 raw 0.059038 smart 9 normalized 0.025292 smart 193 raw 0.096619

smart 1 normalized 0.050796
smart 240 raw 0.038349
smart 7 raw 0.037081
smart 9 raw 0.036924

S.M.A.R.T. Variables, like smart 7, smart 9, and
smart 193 (described in Table I) have a high importance
in almost all disk MLM, so monitoring them more often,
is probably a good approach in the future. As mentioned,
the S.M.A.R.T. variables are considered critical by the
literature, are the ones that the storage systems follow the
most. So giving more attention to these features could
also help preventing some misbehavior.

Figure 3 shows one of the trees created after
the Random Forest algorithm was executed in the
ST12000NM0007 dataset. As is normal, the variables
presented in the Decision Tree are shown in the im-
portance table, showing that the algorithm uses them
to classify the observations. In Table XIV the variables
presented on the Decision Tree are described. It is
important to note that this description was made after
the variables were already normalized between 0 and 1.

TABLE XIV
DECISION TREE VARIABLES DESCRIPTION

smart 7 normalized smart 7 raw smart 9 normalized smart 9 raw smart 241 raw
count 699.000000 699.000000 699.000000 699.000000 699.000000
mean 0.705797 0.476673 0.270684 0.739938 0.769213

std 0.184539 0.306533 0.301359 0.301370 0.266498
min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.600000 0.178866 0.100000 0.737158 0.804327
50% 0.685714 0.476555 0.150000 0.847509 0.853286
75% 0.900000 0.772911 0.263158 0.939120 0.925315
max 1.000000 1.000000 1.000000 1.000000 1.000000

VI. VAR MODEL

As stated in the methodology, 32 subdatasets were
created to apply this time series MLM, all of them
grouped by serial number, so the algorithm could be
applied individually and could calculate the respective
correlation matrices and a possible prediction of the
variables behavior over time.

We show correlation matrices for 4 different disks
HDDM (one healthy and one failed) starting with
HDDM: ST12000NM0007 in Tables XV and XVI,
HDDM ST4000DM000 in Tables XVII and XVIII,
HDDM ST8000NM0055 in Tables XIX and XX, lastly
HDDM ST12000NM0008 in Tables XXI and XXII.

TABLE XV
CORRELATION MATRIX FOR FAILED DISK FROM HDDM

ST12000NM0007

Failed Disk ST12000NM0007
(ZCH0C5JJ) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.253239 0.201611 -0.120629 -0.190959 0.187426
smart 7 raw 0.253239 1.000000 0.852643 0.696433 0.055252 0.849855
smart 9 raw 0.201611 0.852643 1.000000 0.923364 0.039857 0.998544

smart 193 raw -0.120629 0.696433 0.923364 1.000000 -0.040797 0.920185
smart 194 raw -0.190959 0.055252 0.039857 -0.040797 1.000000 0.068931
smart 240 raw 0.187426 0.849855 0.998544 0.920185 0.068931 1.000000

Fig. 3. A Decision Tree from the Random Forest of the
ST12000NM0007 HDDM

TABLE XVI
CORRELATION MATRIX FOR HEALTHY DISK FROM HDDM

ST12000NM0007

Healthy Disk ST12000NM0007
(ZCH06YQ3) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.166218 -0.085673 -0.141543 0.260900 -0.001269
smart 7 raw 0.166218 1.000000 0.351067 -0.135600 -0.120242 0.392243
smart 9 raw -0.085673 0.351067 1.000000 0.254303 -0.457013 0.992656

smart 193 raw -0.141543 -0.135600 0.254303 1.000000 -0.546709 0.235824
smart 194 raw 0.260900 -0.120242 -0.457013 -0.546709 1.000000 -0.406834
smart 240 raw -0.001269 0.392243 0.992656 0.235824 -0.406834 1.000000

TABLE XVII
CORRELATION MATRIX FOR FAILED DISK FROM HDDM

ST4000DM000

Failed Disk ST4000DM000
(Z302T88S) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.557678 0.641922 0.054301 0.027109 0.612161
smart 7 raw 0.557678 1.000000 0.933525 -0.456721 0.200886 0.942728
smart 9 raw 0.641922 0.933525 1.000000 -0.262591 0.029598 0.998036

smart 193 raw 0.054301 -0.456721 -0.262591 1.000000 -0.332683 -0.271897
smart 194 raw 0.027109 0.200886 0.029598 -0.332683 1.000000 0.036335
smart 240 raw 0.612161 0.942728 0.998036 -0.271897 0.036335 1.000000

TABLE XVIII
CORRELATION MATRIX FOR HEALTHY DISK FROM HDDM

ST4000DM000

Healthy Disk ST4000DM000
(Z302DJZ6) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.105579 -0.208478 -0.153385 0.724605 -0.208246
smart 7 raw -0.105579 1.000000 0.458922 -0.102037 -0.192726 0.471757
smart 9 raw -0.208478 0.458922 1.000000 0.569640 -0.315389 0.998916

smart 193 raw -0.153385 -0.102037 0.569640 1.000000 -0.432104 0.559510
smart 194 raw 0.724605 -0.192726 -0.315389 -0.432104 1.000000 -0.336655
smart 240 raw -0.208246 0.471757 0.998916 0.559510 -0.336655 1.000000

These correlations are be important, so the features

TABLE XIX
CORRELATION MATRIX FOR FAILED DISK FROM HDDM

ST8000NM0055

Failed Disk ST8000NM0055
(ZA1819DM) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.257158 -0.061240 -0.286411 -0.268057 -0.022319
smart 7 raw 0.257158 1.000000 0.830599 -0.177065 -0.081025 0.844100
smart 9 raw -0.061240 0.830599 1.000000 0.161528 0.070777 0.995699

smart 193 raw -0.286411 -0.177065 0.161528 1.000000 0.370282 0.189769
smart 194 raw -0.268057 -0.081025 0.070777 0.370282 1.000000 0.100202
smart 240 raw -0.022319 0.844100 0.995699 0.189769 0.100202 1.000000

TABLE XX
CORRELATION MATRIX FOR HEALTHY DISK FROM HDDM

ST8000NM0055

Healthy Disk ST8000NM0055
(ZA18BTFV) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.455708 -0.264859 0.321201 0.271168 -0.249651
smart 7 raw -0.455708 1.000000 0.918986 0.235787 -0.325022 0.921027
smart 9 raw -0.264859 0.918986 1.000000 0.528043 -0.273634 0.999511

smart 193 raw 0.321201 0.235787 0.528043 1.000000 -0.302633 0.529167
smart 194 raw 0.271168 -0.325022 -0.273634 -0.302633 1.000000 -0.267527
smart 240 raw -0.249651 0.921027 0.999511 0.529167 -0.267527 1.000000

TABLE XXI
CORRELATION MATRIX FOR FAILED DISK FROM MODEL

ST12000NM0008

Failed Disk ST12000NM0008
(ZHZ3MSH6) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.061050 0.395718 0.741040 0.703804 0.072431
smart 7 raw 0.061050 1.000000 0.922226 -0.374584 -0.446844 0.961005
smart 9 raw 0.395718 0.922226 1.000000 -0.097896 -0.156114 0.927476

smart 193 raw 0.741040 -0.374584 -0.097896 1.000000 0.863018 -0.457007
smart 194 raw 0.703804 -0.446844 -0.156114 0.863018 1.000000 -0.442773
smart 240 raw 0.072431 0.961005 0.927476 -0.457007 -0.442773 1.000000

TABLE XXII
CORRELATION MATRIX FOR HEALTHY DISK FROM HDDM

ST12000NM0008

Healthy Disk ST12000NM0008
(ZHZ3PT1S) smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.106104 -0.175308 -0.074616 0.041358 -0.206763
smart 7 raw -0.106104 1.000000 0.976768 -0.217435 0.040426 0.982719
smart 9 raw -0.175308 0.976768 1.000000 -0.054606 0.107858 0.960382

smart 193 raw -0.074616 -0.217435 -0.054606 1.000000 0.578504 -0.306347
smart 194 raw 0.041358 0.040426 0.107858 0.578504 1.000000 -0.096563
smart 240 raw -0.206763 0.982719 0.960382 -0.306347 -0.096563 1.000000

are monitored together and not just those that present
critical values because their thresholds were exceeded.
Variables 9 and 240 show in all disks (healthy and
failed), correlations close to 1. This is happening because
both are hour counters, with 9 being the number of hours
in power-state and 240 the time during the positioning
of the drive heads.

It is possible to verify that higher correlations be-
tween variables (9-193) and (240-193) also happen more
frequently in the disks that fail from ST12000NM0007
HDDM. The high correlation between these variables
may alert us that a more careful observation of the disks
should be made. However, there are also healthy disks
that show high correlations between these variables, but
there is no guarantee that the disk will remain healthy in
the future, so these disks may even already show some
type of anomaly.

Fig. 4. Forecast for the first healthy disk with a FPE (failure
prediction error) of 4x10−22

Fig. 5. Real Values for the first healthy disk

Even though there are not enough disks to draw a
strong conclusion, the ST4000DM000 HDDM shows
correlations between the variables (9-7) and (240-7) for
the disks that fail, and the ST12000NM0008 HDDM
with correlations in the variables (1-193), (1-194) and
(193-194) also in the failing disks.

Finally, the forecasting was done to predict the disks
behavior over the time. In Figure 4 , inside the red
dashed line, a 5-day forecast can be observed, for each
variable, from a disk that fails, and a disk considered
healthy. In Figure 5 inside the dashed line, it is possible
to see how the disks performed in the last 5 days before
being selected. The X axis represents a time scale, with

daily periodicity and the Y axis represents the values for
each variable. It is important to notice that these 5 days
were removed from the datasets at the beginning of the
learning HDDM, so now that they could be compared
with the respective forecasted values.

VII. CONCLUSIONS AND FUTURE WORK

In short, satisfactory results were obtained, and the
predicted results are close to the real values.

Working with imbalanced data reduces the effec-
tiveness of prediction MLM. Because of this, it was
necessary to take an overly cautious approach to the data,
so little information about the disks that could be useful,
was not lost during the process.

One of the biggest beliefs in this project was that the
pre-processing and statistical analysis methods used to
create the sub datasets were fundamental in the learning
process of the data. All studies made on the subject
analyze the disks together, without splitting them by
HDDM and vendors. This means that the variables
standard values, the thresholds and even the features
normalization process are not distinguished between
them.

Although, most sub datasets created during the project,
did not have the ideal number of observations, the
metrics values for the classification MLM are quite
promising, showing values really close to 100%, for the
precision, recall and f-score of certain disk HDDM.

The VAR MLM application, allowed to trace temporal
correlation matrices between the features, showing that
variables 9, 240 and 193 are related over time. The
forecasting performed fulfilled the expectation, showing
a low forecasting error and may be an interesting method
to predict the variables behavior in storage companies.

It should also be noticed that variables 7, 9 and 240
are present quite often in the results, and therefore, they
must also be monitored carefully, together with the ones
that are critical by the literature.

During the project, some obstacles appeared and had
to be overcome. Working with such a large and imbal-
anced dataset was undoubtedly a great challenge and
helped to clarify the reality that in data science, the work
is done with data that is not perfect to apply learning
MLM. The lack of perception about the variables, the
difference between vendors references values and the
number of missing values presented in the dataset, made
the decision making difficult, and many times, some
methods had to be redone from scratch. Since the VAR
is an algorithm that works with mathematical matrices,

it proved to be a MLM with high complexity and that
requires a lot of attention in the type of data that is used.

A. Future work

Although the objectives have been achieved, we be-
lieve that some measures can be taken to improve the
results obtained and their reliability in future works:

• If a bigger time scale is used, the disk information
will also be bigger, and the learning MLM will
prove to show a greater performance and better
results for all disk HDDM. This is because the
processes executed by the algorithms will have a
greater support and show that the methodology used
in this work can also be used in datasets with a
higher number of observations.

• A further study and analysis on the variable’s nor-
malization should be done, to improve the state of
the art and help future works to better understand
the data.

• Use, in parallel with the methodology carried out in
this project, a class variable that defines the disks
lifetime. This classification can be done through
variable 9, that counts the number of hours that the
HDD was powered on.

• Apply the MLMs built in this work to more recent
Backblaze disks observations.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: the
digitization of the world from edge to core,” Seagate, 2018.

[2] P. Institute, “Cost of data center outages,” Traverse City, Michi-
gan 49686, USA, 2016.

[3] S. Antomarioni, F. E. Ciarapica, and M. Bevilacqua, “Data-
driven approach to predict the sequence of component failures:
a framework and a case study on a process industry,” Interna-
tional Journal of Quality & Reliability Management, 2022.

[4] S. Bianca and A. G. Garth, “Understanding disk failure rates:
What does an mttf of 1000000 hours mean to you?” Trans.
Storage, vol. 3, no. 3, p. 8, 2007.

[5] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in
a large disk drive population,” in Proceedings of the Conference
on File and Storage Technologies (FAST), 2007.

[6] S. P. Marketing, “Get smart for reliability,” Technical report,
Seagate Technology Paper, Tech. Rep., 1999.

[7] B. Beach, “Hard drive smart stats,” Sep 2020. [Online]. Avail-
able: https://www.backblaze.com/blog/hard-drive-smart-stats/

[8] N. Aussel, S. Jaulin, G. Gandon, Y. Petetin, E. Fazli, and
S. Chabridon, “Predictive models of hard drive failures based
on operational data,” in ICMLA 2017 : 16th IEEE International
Conference On Machine Learning And Applications. Cancun,
Mexico: IEEE Computer Society, 2017, pp. 619 – 625. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01703140

[9] J. Wang, W. Bao, L. Zheng, X. Zhu, and P. S. Yu,
“An attention-augmented deep architecture for hard drive
status monitoring in large-scale storage systems,” ACM Trans.
Storage, vol. 15, no. 3, Aug. 2019. [Online]. Available:
https://doi.org/10.1145/3340290

[10] J. Shen, J. Wan, S.-J. Lim, and L. Yu, “Random-forest-
based failure prediction for hard disk drives,” International
Journal of Distributed Sensor Networks, vol. 14, no. 11,
p. 1550147718806480, 2018. [Online]. Available: https:
//doi.org/10.1177/1550147718806480

[11] J. Li, R. J. Stones, G. Wang, X. Liu, Z. Li, and M. Xu,
“Hard drive failure prediction using decision trees,” Reliability
Engineering & System Safety, vol. 164, pp. 55–65, 2017.

[12] Y. Zhao, X. Liu, S. Gan, and W. Zheng, “Predicting disk failures
with hmm-and hsmm-based approaches,” in Advances in Data
Mining. Applications and Theoretical Aspects: 10th Industrial
Conference, ICDM 2010, Berlin, Germany, July 12-14, 2010.
Proceedings 10, vol. 6171. Springer, 2010, pp. 390–404.

Appendix D

Hard Disk failure prediction tables

and results

We have included our full HDD dataset by vendor and model to showcase our work in

HDD failure prediction. The following graphs are additional charts of all our vendors and

models we ran our MLM on.

TABLE D.1: Failed Disks Dataset Description

Disk Stat Smart 1 Smart 3 Smart 7 Smart 9 Smart 193 Smart 194

Disk1 count 46.0 46.0 46.0

mean 79.6 80.6 37.1

std 4.2 0.5 0.9

min 67.0 80.0 35.0

max 84.0 81.0 39.0

Disk2 count 46.0 46.0 46.0 46.0

mean 79.6 83.1 90.3 23.9

std 4.7 0.8 0.5 0.8

min 67.0 82.0 90.0 22.0

max 84.0 84.0 91.0 25.0

Disk3 count 46.0 46.0 46.0 46.0

mean 80.4 87.3 87.5 24.4

std 5.7 0.5 0.5 3.7

min 69.0 87.0 87.0 20.0

max 100.0 88.0 88.0 30.0

155

156 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE D.1: Failed Disks Dataset Description (cont)

Disk Stat Smart 1 Smart 3 Smart 7 Smart 9 Smart 193 Smart 194

Disk4 count 46.0 46.0 46.0 46.0

mean 79.2 89.5 80.6 35.3

std 4.4 0.5 0.5 1.1

min 64.0 89.0 80.0 33.0

max 84.0 90.0 81.0 38.0

Disk5 count 45.0 45.0 45.0 45.0

mean 80.3 80.6 83.5 21.9

std 3.8 8.5 0.5 1.0

min 65.0 60.0 83.0 20.0

max 84.0 90.0 84.0 24.0

Disk6 count 46.0 46.0 46.0 46.0 46.0

mean 79.5 96.4 78.7 99.5 27.8

std 4.4 1.5 4.6 0.5 0.8

min 68.0 95.0 63.0 99.0 26.0

max 84.0 98.0 83.0 100.0 29.0

Disk7 count 46.0 46.0 46.0 46.0

mean 79.8 87.8 82.6 30.0

std 3.9 0.4 0.5 0.9

min 68.0 87.0 82.0 28.0

max 84.0 88.0 83.0 32.0

Disk8 count 45.0 45.0 45.0 45.0

mean 79.4 79.9 82.6 25.4

std 5.6 1.7 0.5 0.7

min 67.0 76.0 82.0 24.0

max 100.0 82.0 83.0 27.0

Disk9 count 46.0 46.0 46.0 46.0

mean 79.3 78.7 99.6 22.8

std 4.4 4.8 0.5 1.1

min 69.0 63.0 99.0 21.0

max 84.0 83.0 100.0 25.0

Disk10 count 45.0 45.0 45.0 45.0

D. HARD DISK FAILURE PREDICTION TABLES AND RESULTS 157

TABLE D.1: Failed Disks Dataset Description (cont)

Disk Stat Smart 1 Smart 3 Smart 7 Smart 9 Smart 193 Smart 194

mean 115.2 74.8 53.4 17.1

std 4.0 4.9 0.5 0.4

min 102.0 63.0 53.0 16.0

max 120.0 90.0 54.0 18.0

Disk11 count 45.0 45.0 45.0

mean 114.4 63.2 33.6

std 4.8 0.4 1.0

min 102.0 62.0 32.0

max 120.0 64.0 35.0

Disk12 count 45.0 45.0 45.0 45.0 45.0

mean 80.1 88.3 78.7 88.3 33.6

std 3.5 0.7 0.4 0.4 0.6

min 69.0 87.0 78.0 88.0 33.0

max 84.0 89.0 79.0 89.0 35.0

Disk13 count 46.0 46.0 46.0 46.0 46.0

mean 79.8 90.7 77.5 96.2 36.0

std 3.7 0.5 0.5 0.4 0.9

min 70.0 90.0 77.0 96.0 35.0

max 84.0 91.0 78.0 97.0 38.0

Disk14 count 17.0 17.0 17.0

mean 80.4 71.6 30.6

std 3.4 5.3 2.4

min 73.0 63.0 25.0

max 83.0 77.0 32.0

Disk15 count 17.0

mean 100.0

std 0.0

min 100.0

max 100.0

158 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE D.2: Healthy Disks Dataset Description

Disk Stat Smart 1 Smart 3 Smart 7 Smart 9 Smart 193 Smart 194

Disk1 count 45.0 45.0 45.0 45.0

mean 80.4 88.8 85.9 26.9

std 4.7 1.0 0.5 1.2

min 65.0 88.0 85.0 25.0

max 100.0 90.0 87.0 29.0

Disk2 count 45.0 45.0 45.0 45.0 45.0

mean 80.2 91.3 80.8 82.9 26.5

std 3.9 1.4 1.3 0.4 1.0

min 65.0 90.0 78.0 82.0 22.0

max 84.0 93.0 83.0 84.0 28.0

Disk3 count 45.0 45.0 45.0 45.0

mean 81.3 84.4 82.9 37.7

std 5.0 1.1 0.5 1.3

min 72.0 83.0 82.0 35.0

max 100.0 86.0 84.0 40.0

Disk4 count 46.0 46.0 46.0 46.0

mean 81.7 89.1 85.2 36.5

std 4.9 0.3 0.4 1.1

min 73.0 89.0 85.0 35.0

max 100.0 90.0 86.0 39.0

Disk5 count 46.0 46.0 46.0 46.0 46.0

mean 79.9 89.6 88.3 82.6 30.6

std 3.5 0.5 0.5 0.5 1.5

min 68.0 89.0 88.0 82.0 28.0

max 84.0 90.0 89.0 83.0 33.0

Disk6 count 45.0 45.0 45.0 45.0

mean 80.0 86.2 82.6 26.4

std 4.0 0.6 0.5 1.3

min 67.0 85.0 82.0 24.0

max 84.0 87.0 83.0 29.0

Disk7 count 45.0 45.0 45.0 45.0 45.0

D. HARD DISK FAILURE PREDICTION TABLES AND RESULTS 159

TABLE D.2: Healthy Disks Dataset Description (cont)

Disk Stat Smart 1 Smart 3 Smart 7 Smart 9 Smart 193 Smart 194

mean 79.4 89.8 85.8 82.3 30.7

std 3.8 0.4 0.6 0.5 0.8

min 69.0 89.0 85.0 82.0 29.0

max 84.0 90.0 87.0 83.0 32.0

Disk8 count 46.0 46.0 46.0 46.0 46.0

mean 79.4 89.6 88.2 85.2 32.8

std 3.6 0.9 0.4 0.4 2.6

min 68.0 89.0 88.0 85.0 27.0

max 84.0 91.0 89.0 86.0 37.0

Disk9 count 10.0 10.0 10.0 10.0

mean 80.5 97.8 71.8 23.3

std 1.8 1.8 10.1 0.5

min 78.0 93.0 65.0 23.0

max 83.0 99.0 100.0 24.0

Disk10 count 45.0 45.0 45.0 45.0

mean 115.3 74.1 59.3 28.5

std 4.3 3.9 0.5 1.7

min 102.0 62.0 59.0 26.0

max 120.0 78.0 60.0 33.0

Disk11 count 45.0 45.0 45.0 45.0

mean 115.9 88.7 60.6 21.6

std 3.3 0.4 0.5 0.5

min 108.0 88.0 60.0 20.0

max 120.0 89.0 61.0 22.0

Disk12 count 46.0 46.0 46.0 46.0 46.0

mean 80.8 92.1 78.3 95.7 46.3

std 2.5 0.3 0.5 0.5 0.8

min 76.0 92.0 78.0 95.0 45.0

max 84.0 93.0 79.0 96.0 48.0

Disk13 count 46.0 46.0 46.0 46.0

mean 80.2 92.4 78.3 39.4

160 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE D.2: Healthy Disks Dataset Description (cont)

Disk Stat Smart 1 Smart 3 Smart 7 Smart 9 Smart 193 Smart 194

std 3.4 0.5 0.5 0.8

min 71.0 92.0 78.0 38.0

max 84.0 93.0 79.0 41.0

Disk14 count 17.0 17.0 17.0

mean 80.2 71.8 24.6

std 3.6 5.1 1.5

min 74.0 63.0 21.0

max 84.0 77.0 26.0

Disk15 count 17.0

mean 100.0

std 0.0

min 100.0

max 100.0

D. HARD DISK FAILURE PREDICTION TABLES AND RESULTS 161

Temporal Analysis

FIGURE D.1: Smart 3 for the failed disks along time

FIGURE D.2: Smart 3 for the healthy disks along time

162 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

FIGURE D.3: Smart 7 for the failed disks along time

FIGURE D.4: Smart 7 for the healthy disks along time

D. HARD DISK FAILURE PREDICTION TABLES AND RESULTS 163

FIGURE D.5: Smart 194 for the failed disks along time

FIGURE D.6: Smart 194 for the healthy disks along time

164 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Correlation Matrices

———————-

TABLE D.3: Correlation Matrix for failed disk from model ST12000NM0007 - ZCH0A7G6

Failed Disk ST12000NM0007
Serial # ZCH0A7G6 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.326879 0.470757 0.396524 0.429924 0.456820
smart 7 raw 0.326879 1.000000 0.539748 0.128281 0.585176 0.519329
smart 9 raw 0.470757 0.539748 1.000000 -0.020046 0.266706 0.997736

smart 193 raw 0.396524 0.128281 -0.020046 1.000000 0.335702 -0.079894
smart 194 raw 0.429924 0.585176 0.266706 0.335702 1.000000 0.228991
smart 240 raw 0.456820 0.519329 0.997736 -0.079894 0.228991 1.000000

———————

TABLE D.4: Correlation Matrix for failed disk from model ST12000NM0007 - ZCH0A7G6

Failed Disk ST12000NM0007
Serial # ZCH0A7G6 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.326879 0.470757 0.396524 0.429924 0.456820
smart 7 raw 0.326879 1.000000 0.539748 0.128281 0.585176 0.519329
smart 9 raw 0.470757 0.539748 1.000000 -0.020046 0.266706 0.997736

smart 193 raw 0.396524 0.128281 -0.020046 1.000000 0.335702 -0.079894
smart 194 raw 0.429924 0.585176 0.266706 0.335702 1.000000 0.228991
smart 240 raw 0.456820 0.519329 0.997736 -0.079894 0.228991 1.000000

TABLE D.5: Correlation Matrix for healthy disk from model ST12000NM0007 -
ZCH056VR

Healthy Disk ST12000NM0007
Serial # ZCH056VR smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.291492 0.040868 0.198374 -0.004008 0.046690
smart 7 raw -0.291492 1.000000 0.722485 0.455088 -0.064878 0.713665
smart 9 raw 0.040868 0.722485 1.000000 0.642411 -0.326361 0.999289

smart 193 raw 0.198374 0.455088 0.642411 1.000000 -0.510889 0.642498
smart 194 raw -0.004008 -0.064878 -0.326361 -0.510889 1.000000 -0.313906
smart 240 raw 0.046690 0.713665 0.999289 0.642498 -0.313906 1.000000

TABLE D.6: Correlation Matrix for failed disk from model ST12000NM0007 - ZCH0AL23

Failed Disk ST12000NM0007
Serial # ZCH0AL23 smart 1 raw smart 7 raw smart 9 raw smart 192 raw smart 193 raw smart 240 raw

smart 1 raw 1.000000 0.743022 0.503125 0.451996 0.344509 0.513814
smart 7 raw 0.743022 1.000000 0.500417 0.405775 0.167038 0.486951
smart 9 raw 0.503125 0.500417 1.000000 0.601211 0.839095 0.999076

smart 192 raw 0.451996 0.405775 0.601211 1.000000 0.759134 0.614697
smart 193 raw 0.344509 0.167038 0.839095 0.759134 1.000000 0.851500
smart 240 raw 0.513814 0.486951 0.999076 0.614697 0.851500 1.000000

D. HARD DISK FAILURE PREDICTION TABLES AND RESULTS 165

TABLE D.7: Correlation Matrix for healthy disk from model ST12000NM0007 - ZJV10J45

Healthy Disk ST12000NM0007
Serial # ZJV10J45 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.155619 -0.166672 -0.016085 -0.659190 -0.170055
smart 7 raw -0.155619 1.000000 0.173853 -0.020315 0.416513 0.191309
smart 9 raw -0.166672 0.173853 1.000000 0.575493 -0.062259 0.991522

smart 193 raw -0.016085 -0.020315 0.575493 1.000000 -0.311858 0.543125
smart 194 raw -0.659190 0.416513 -0.062259 -0.311858 1.000000 -0.079599
smart 240 raw -0.170055 0.191309 0.991522 0.543125 -0.079599 1.000000

TABLE D.8: Correlation Matrix for failed disk from model ST12000NM0007 - ZJV03NQB

Failed Disk ST12000NM0007
Serial # ZJV03NQB smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.544369 0.353490 -0.074066 0.373296 0.375813
smart 7 raw 0.544369 1.000000 -0.305087 0.011450 0.420312 -0.316823
smart 9 raw 0.353490 -0.305087 1.000000 0.018962 0.042215 0.993542

smart 193 raw -0.074066 0.011450 0.018962 1.000000 0.047066 -0.027482
smart 194 raw 0.373296 0.420312 0.042215 0.047066 1.000000 0.067022
smart 240 raw 0.375813 -0.316823 0.993542 -0.027482 0.067022 1.000000

TABLE D.9: Correlation Matrix for healthy disk from model ST12000NM0007 -
ZCH06HY1

Healthy Disk ST12000NM0007
Serial # ZCH06HY1 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.721362 0.020591 -0.832200 0.202707 0.005923
smart 7 raw -0.721362 1.000000 0.047877 0.809806 -0.043604 0.053896
smart 9 raw 0.020591 0.047877 1.000000 -0.087280 -0.063281 0.991122

smart 193 raw -0.832200 0.809806 -0.087280 1.000000 -0.129605 -0.072844
smart 194 raw 0.202707 -0.043604 -0.063281 -0.129605 1.000000 0.016449
smart 240 raw 0.005923 0.053896 0.991122 -0.072844 0.016449 1.000000

TABLE D.10: Correlation Matrix for failed disk from model ST12000NM0007 -
ZCH097GA

Failed Disk ST12000NM0007
Serial # ZCH097GA smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.090013 -0.559926 -0.414314 -0.284392 -0.554120
smart 7 raw -0.090013 1.000000 0.665603 0.419819 0.818138 0.673308
smart 9 raw -0.559926 0.665603 1.000000 0.842269 0.640534 0.999752

smart 193 raw -0.414314 0.419819 0.842269 1.000000 0.207130 0.839416
smart 194 raw -0.284392 0.818138 0.640534 0.207130 1.000000 0.649345
smart 240 raw -0.554120 0.673308 0.999752 0.839416 0.649345 1.000000

TABLE D.11: Correlation Matrix for healthy disk from model ST12000NM0007 -
ZCH0BCML

Healthy Disk ST12000NM0007
Serial # ZCH0BCML smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.265662 0.288319 -0.222821 -0.149011 0.285033
smart 7 raw 0.265662 1.000000 -0.147119 -0.247221 -0.699470 -0.170810
smart 9 raw 0.288319 -0.147119 1.000000 0.694975 0.378101 0.997797

smart 193 raw -0.222821 -0.247221 0.694975 1.000000 0.449099 0.677031
smart 194 raw -0.149011 -0.699470 0.378101 0.449099 1.000000 0.412304
smart 240 raw 0.285033 -0.170810 0.997797 0.677031 0.412304 1.000000

166 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

TABLE D.12: Correlation Matrix for failed disk from model ST12000NM0007 - ZJV00F20

Failed Disk ST12000NM0007
Serial # ZJV00F20 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.626566 -0.172211 -0.556303 0.240412 -0.109197
smart 7 raw -0.626566 1.000000 0.494762 0.598639 0.003462 0.468865
smart 9 raw -0.172211 0.494762 1.000000 0.531663 -0.138053 0.996179

smart 193 raw -0.556303 0.598639 0.531663 1.000000 -0.299230 0.488389
smart 194 raw 0.240412 0.003462 -0.138053 -0.299230 1.000000 -0.085365
smart 240 raw -0.109197 0.468865 0.996179 0.488389 -0.085365 1.000000

TABLE D.13: Correlation Matrix for healthy disk from model ST12000NM0007 -
ZJV501TY

Healthy Disk ST12000NM0007
Serial # ZJV501TY smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.221391 -0.503270 -0.396752 0.235408 -0.513900
smart 7 raw -0.221391 1.000000 0.885034 0.088399 -0.281677 0.896764
smart 9 raw -0.503270 0.885034 1.000000 0.032943 -0.346043 0.998117

smart 193 raw -0.396752 0.088399 0.032943 1.000000 -0.007978 0.048129
smart 194 raw 0.235408 -0.281677 -0.346043 -0.007978 1.000000 -0.362542
smart 240 raw -0.513900 0.896764 0.998117 0.048129 -0.362542 1.000000

TABLE D.14: Correlation Matrix for failed disk from model ST12000NM0007 - ZJV00C88

Failed Disk ST12000NM0007
Serial # ZJV00C88 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.550420 0.768246 0.703953 -0.156656 0.764068
smart 7 raw 0.550420 1.000000 0.923780 0.888632 -0.435427 0.921210
smart 9 raw 0.768246 0.923780 1.000000 0.933976 -0.430801 0.998644

smart 193 raw 0.703953 0.888632 0.933976 1.000000 -0.407332 0.916139
smart 194 raw -0.156656 -0.435427 -0.430801 -0.407332 1.000000 -0.425609
smart 240 raw 0.764068 0.921210 0.998644 0.916139 -0.425609 1.000000

TABLE D.15: Correlation Matrix for healthy disk from model ST12000NM0007 -
ZCH0CDWV

Healthy Disk ST12000NM0007
Serial # ZCH0CDWV smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.581867 -0.192267 0.126343 0.257818 -0.175353
smart 7 raw -0.581867 1.000000 0.184252 0.041591 -0.142339 0.168532
smart 9 raw -0.192267 0.184252 1.000000 0.805019 -0.560167 0.998472

smart 193 raw 0.126343 0.041591 0.805019 1.000000 -0.517995 0.793278
smart 194 raw 0.257818 -0.142339 -0.560167 -0.517995 1.000000 -0.547501
smart 240 raw -0.175353 0.168532 0.998472 0.793278 -0.547501 1.000000

TABLE D.16: Correlation Matrix for failed disk from model ST12000NM0007 - ZJV03JDV

Failed Disk ST12000NM0007
Serial # ZJV03JDV smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.037589 -0.556252 -0.159486 -0.407908 -0.525013
smart 7 raw -0.037589 1.000000 0.283011 0.049724 0.168751 0.261249
smart 9 raw -0.556252 0.283011 1.000000 0.495007 0.422434 0.998160

smart 193 raw -0.159486 0.049724 0.495007 1.000000 0.202369 0.487922
smart 194 raw -0.407908 0.168751 0.422434 0.202369 1.000000 0.410003
smart 240 raw -0.525013 0.261249 0.998160 0.487922 0.410003 1.000000

D. HARD DISK FAILURE PREDICTION TABLES AND RESULTS 167

TABLE D.17: Correlation Matrix for healthy disk from model ST12000NM0007

Healthy Disk ST12000NM0007
Serial # ZCH0D2V0 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.041900 0.071323 0.507615 -0.437712 0.077877
smart 7 raw -0.041900 1.000000 0.645153 0.122852 -0.205947 0.696068
smart 9 raw 0.071323 0.645153 1.000000 0.618001 -0.115715 0.994133

smart 193 raw 0.507615 0.122852 0.618001 1.000000 -0.289708 0.625184
smart 194 raw -0.437712 -0.205947 -0.115715 -0.289708 1.000000 -0.140796
smart 240 raw 0.077877 0.696068 0.994133 0.625184 -0.140796 1.000000

TABLE D.18: Correlation Matrix for failed disk from model ST4000DM000

Failed Disk ST4000DM000
Serial # S301P6Y6 smart 1 raw smart 7 raw smart 9 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.453119 0.366908 0.018715 0.365931
smart 7 raw 0.453119 1.000000 0.568157 -0.161762 0.558772
smart 9 raw 0.366908 0.568157 1.000000 -0.230670 0.999374

smart 194 raw 0.018715 -0.161762 -0.230670 1.000000 -0.234252
smart 240 raw 0.365931 0.558772 0.999374 -0.234252 1.000000

TABLE D.19: Correlation Matrix for healthy disk from model ST4000DM000

Healthy Disk ST4000DM000
Serial # Z305D2CY smart 1 raw smart 7 raw smart 9 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.285876 0.242102 -0.167771 0.237615
smart 7 raw -0.285876 1.000000 0.379360 -0.150866 0.374310
smart 9 raw 0.242102 0.379360 1.000000 -0.228496 0.999596

smart 194 raw -0.167771 -0.150866 -0.228496 1.000000 -0.233356
smart 240 raw 0.237615 0.374310 0.999596 -0.233356 1.000000

TABLE D.20: Correlation Matrix for failed disk from model ST8000NM0055

Failed Disk ST8000NM0055
Serial # ZA17ZNQ9 smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 0.141209 0.133120 0.681647 0.148984 0.146289
smart 7 raw 0.141209 1.000000 0.974040 0.146295 0.473009 0.972681
smart 9 raw 0.133120 0.974040 1.000000 0.256401 0.485871 0.999378

smart 193 raw 0.681647 0.146295 0.256401 1.000000 0.421099 0.266986
smart 194 raw 0.148984 0.473009 0.485871 0.421099 1.000000 0.501445
smart 240 raw 0.146289 0.972681 0.999378 0.266986 0.501445 1.000000

TABLE D.21: Correlation Matrix for healthy disk from model ST8000NM0055

Healthy Disk ST8000NM0055
Serial # ZA16YG7B smart 1 raw smart 7 raw smart 9 raw smart 193 raw smart 194 raw smart 240 raw

smart 1 raw 1.000000 -0.207226 -0.305566 -0.400377 -0.211327 -0.321603
smart 7 raw -0.207226 1.000000 0.907206 -0.212340 -0.541860 0.901361
smart 9 raw -0.305566 0.907206 1.000000 -0.216698 -0.650402 0.996615

smart 193 raw -0.400377 -0.212340 -0.216698 1.000000 -0.038489 -0.259011
smart 194 raw -0.211327 -0.541860 -0.650402 -0.038489 1.000000 -0.612920
smart 240 raw -0.321603 0.901361 0.996615 -0.259011 -0.612920 1.000000

Appendix E

Computational Cluster Batch Task

Profiling with Machine Learning for

Failure Prediction

The following paper was submitted to arXiv and is awaiting acceptance to a peer-review

publication. This paper has been cited by a peer-reviewed publication.

169

Bioinformatics Computational Cluster Batch Task
Profiling with Machine Learning for Failure

Prediction
Christopher Harrison∗† Christine R. Kirkpatrick‡† and Inês Dutra†

∗ Department of Biostatistics and Medical Informatics
School of Medicine and Public Health

University of Wisconsin - Madison
Madison, Wisconsin USA

† Departamento de Ciência de Computadores
Faculdade de Ciências
Universidade do Porto

Porto, Portugal
‡ San Diego Supercomputer Center
University of California San Diego

La Jolla, California USA

Abstract—Motivation: Traditional computational clus-
ter schedulers are based on user inputs and run time
needs request for memory and CPU, not IO. Heavily IO
bound task run times, like ones seen in many big data
and bioinformatics problems, are dependent on the IO
subsystems scheduling and are problematic for cluster
resource scheduling. The problematic rescheduling of IO
intensive and errant tasks is a lost resource. Understanding
the conditions in both successful and failed tasks and
differentiating them could provide knowledge to enhancing
cluster scheduling and intelligent resource optimization.

Results: We analyze a production computational cluster
contributing 6.7 thousand CPU hours to research over two
years. Through this analysis we develop a machine learning
task profiling agent for clusters that attempts to predict
failures between identically provision requested tasks.

Index Terms—Cluster scheduling, Cluster task failure
analysis, Computing clusters analysis, HPC, HTC, Ma-
chine learning cluster fault prediction, HTCondor cluster

I. INTRODUCTION

Resource allocation is a well studied problem. Solu-
tions have been sought for different kinds of applications
and platforms, ranging from multi-core centralized mem-
ory machines to distributed memory machines, passing
by many-core and GPGPUs. The objective is always
the same: to better allocate resources (CPU, memory
and storage) in order to improve some performance

metrics (response time, throughput, speedup, efficiency,
Quality of Service (QoS), among others). Due to specific
characteristics of applications and platforms, it is not
possible to devise one solution that fits all. It is also
not possible to devise solutions that simultaneously will
improve all metrics. With the ever growing use of cloud
computing platforms and their virtual machines, new
solutions have been studied. Monitoring tools have been
built that can help notify system administrators to ad-
dress jobs which need to be rescheduled, restart, create,
or destroy and these tools extend to virtual machines as a
way to also keep these systems running. These tools also
help operators justify the need for additional compute
resources.

Cloud computing platforms rely on clusters of ma-
chines to run users jobs and their middleware provides
an interface (command line, API or portal) to help
submitting single or batch jobs. Usually, users need
to specify their job’s requirements such as expected
execution time, expected memory usage, storage, number
of cores, among others. However, the fact is that since
the creation of the first parallel and distributed batch
platforms, most submitted jobs fail to complete for
several different reasons. The high rate of failure is
an impediment to the good use of resources. Statistical
analysis of trace logs were performed by Prodan and
Fahringer [1], and by Christodoulopoulos et al., among

ar
X

iv
:1

81
2.

09
53

7v
1

 [
cs

.D
C

]
 2

2
D

ec
 2

01
8

others, where conventional algorithmic solutions have
been used to improve resource allocation and prevent
failures. More sophisticated solutions, based on machine
learning techniques, have also been used to identify
patterns of success and failure and to optimize resource
usage [2]. We study traces of a two-year period of jobs
submitted using the Condor HTC tool with the objective
of understanding patterns of success and failure. These
jobs were all submitted by biostatisticians or medical
informatics groups. We analyzed all jobs and identi-
fied two kinds of submissions: jobs with a single task
submission and jobs with multiple tasks submissions.
While single task job submissions are very common, they
have very specific characteristics that make it difficult to
find patterns. Therefore, we concentrated on the multiple
tasks submissions jobs, since they tend to share common
characteristics such as the same command and possibly
the same requirements. We categorized these jobs in five
mainstream groups:

1) jobs submissions of single tasks which finished
successfully

2) jobs submissions of single tasks which failed
3) jobs with multiple task submission for which all

tasks finished successfully
4) jobs with multiple task submission for which all

tasks failed
5) jobs with multiple task submission for which some

of the tasks succeeded and some failed
With the last group, jobs with multiple task submission
for which some of the tasks succeeded and some failed,
we applied a machine learning technique to each job in
order to identify patterns of success and failure among
their tasks. The average number of tasks per job of this
kind is 182.3. Results show that an average of 14.3%
fail and 85.7% succeed. The jobs that fail all have in
common a HTCondor class ad ‘JobStatus=3‘ whereas
Jobs that succeed all have in common a HTCondor class
ad ‘JobStatus=4‘. By detecting such patterns, we expect
to use them to detect future new tasks likely to fail that
enter the system, and adjust or correct them in order to
minimize failures and optimize resource usage.

II. BACKGROUND

Computational Cluster task scheduling, such as ones
used in HPC/HTC systems, distribute tasks based on
available HPC/HTC resources. The task schedulers
match user requested resources per task to the expected
resource available. If a task resource request is not suf-
ficient to complete the task then additional task resource
allocations are made based on the scheduled cluster host

resource. The goal is to efficiently allocate resources
based on task matched resource requests and optimize
based on requested demand. As such, an HPC/HTC
scheduler has two optimization areas which are:

1) granular measurements of process needs: IO, CPU,
network, system wait times, etc.

2) enhancing the end user’s task estimating needs
based on a best guess.

System and task monitoring of performance metrics
are essential for evaluating resource allocation and uti-
lization. These long term trends based on system analysis
compared to base lines are widely used as a justification
for additional resources. However, optimization of re-
sources is difficult without granular resource task trends.
Resource usage statistics and trends tools are designed
to lose fidelity over time due to the amounts of data gen-
erated by performance metrics. Additionally, the amount
of data collected for metrics grows as a function to
cluster size. While HPC resource monitoring platforms
exist; such as ganglia [3], the value of their longitudinal
data decreases over time due to the application storage
formats of their metrics. Specifically RRD’s (Round-
Robin Databases) use results in degrading signal value
over time.

We monitor cluster resource utilization with granular
metrics for scheduling and running tasks. Our problem
is to optimize resources utilization through modeling of
failed tasks through monitoring and adaptively respond-
ing to task resource needs based on available cluster re-
sources. Similarly to Juve et al. [4], we profile our cluster
tasks while addressing resource loss as a function of time
and impact to total resource utilization. Specifically, we
focus on cluster resource loss as a function of failed
tasks which have identical attributes to other successful
tasks, also known as a same cluster submission job. Our
problem is complicated due to temporal computational
cluster resources utilization needs which fluctuates based
on scheduled running tasks, service outages, unplanned
outages, network anomalies, etc. All submitted tasks
are impacted by Spatio-temporal phenomena[5] with
time impacting usage, and queued demand impacting
temporal run time and scheduling.

Understanding and tracking performance metrics over
time with consistent time series granularity is resource
intensive. At scale, systems designed for simple collec-
tion and analysis of groups of systems cannot handle
the influx of 10 to 100 of thousands records a second
while being real time search-able. Inefficient resource
utilization equals wasted resources; therefore, gauging

improvements to application and system performance
will provide a baseline for resource optimization. Cluster
tasks requiring a reschedule are wasted resources due
to the cost of compute time on a cluster. Thus a need
for better failure prediction and cluster rescheduling
after task failure provides a pathway towards resource
optimization.

Human best guess estimates can often be wrong as can
be seen in baseball [6]. Individual users can misinterpret
the resources required for a given task and request more
or less resources which leads to a misallocation of cluster
resources and non optimal cluster utilization outcomes.

III. RELATED WORK

Task profiling and system performance metrics are
essential for effectively evaluating task allocations and
cluster resource utilization. Long term trends and in-
dividual analysis compared to base lines are widely
used as a justification for additional resources. When
evaluating HPC system utilization a baseline analysis
and long term trends are needed to justify additional
resource allocations. However, optimization of resources
is difficult without granular resource trends. Resource
usage statistics and trends lose fidelity over time due to
the amounts of data generated by performance metrics
and grows as a function to cluster size. While HPC
resource monitoring platforms exist such as ganglia [3],
the value of their longitudinal data decreases over time
due to the application storage formats of their metrics.
Specifically RRD’s (Round-Robin Databases) [7] use
results in degrading signal value over time.

Numerous tools, such as cacti [8], ganglia [3], na-
gios [9], and zabbix [10], exist to evaluate system utiliza-
tion and track performance metrics. These tools attempt
to prove graphical representations of system performance
metrics and utilize the network standard Simple Network
Monitoring Protocol (SNMP) [11]. Tracking metrics
can address application bottlenecks such as application
starvation or usage of memory, CPU, or IO by crit-
ically understanding resource allocation starvation and
optimization at starvation time.

OVIS [12] has attempted to address scheduling of
resources based on predictive failure analysis but not
on the user requested resource allocation. Addition-
ally, OVIS’s scope was limited to resource allocation
improvements to address task scheduling around node
failures not optimizing cluster resources. While a given
node’s failure will impact scheduling to that node and
is impacted by the Mean Time To Failure (MTTF), the
resource scheduling to a given node is a function of the

Fig. 1: Efficient task run state on cluster node

given node’s failure probability. Thus, OVIS attempts to
address the issue of resource failures within a cluster by
working around hardware failures at the node level.

Larger scale system monitoring of HPC and the
Open Science Grid [13] have used such systems as
OVIS [12] or TACC Stats [14]. OVIS uses a Bayesian
inference scheme to dynamically infer models for the
normal behavior of a system and to determine bounds
on the probability of values evinced in the system. OVIS
addresses hardware related failure issues and system
level performance analysis on systems based on MTTF
analysis of a given system.

Understanding system resource usage across a cluster,
based on a per scheduled task basis instead of an
entire system, requires an understanding of task profiling.
Given tasks profiles for CPU, memory, and disk have
been demonstrated [15] as a method for “choosing the
most suitable set of computers for the deployment of
the tasks” [15]. As such, computing resource usage
measurements are required to effectively and efficiently
utilize computing resources, Fig. 1.

Modeling resource utilization as a means for optimiza-
tion predictions is needed in both HPC and cloud (as
HTC) contexts. Even newest of breed techniques, such as
the use of Kubernetes for cloud orchestration, only con-
sider CPU in scheduling decisions. This is too simplistic
for true optimization. Newer models and software im-
plementations are needed to more effectively understand
usage and suggest future scheduling of resources. Chang
et al. suggested using multiple variables, such as memory
and disk access, and creates a dynamic algorithm that
can adjust to tasks in situ [16]. Wei et al. demonstrated a

technique for allocating Virtual Machine (VM) resources
based on CPU and memory [17], albeit limited. Along
with various approaches, systems and models schedule
using different parameters and thereby optimize usage
based on various priorities, such as deadline, cost min-
imization or maximization, such as for cloud providers,
to adhere to Service Level Agreements, and to reduce
power consumption [18]. Additional work in this area
has been motivated by optimization based on energy
savings, where Pinheiro notes that it is key to examine
resource reconfiguration and keeping a load stable (rela-
tively unchanged) as the throughput loss can be resource
intensive [19]. Because of the heterogeneous hardware
and unpredictable loads in shared environments [20],
cloud systems perhaps, need predictive scheduling and
optimization more than traditional, homogeneous HPC
clusters. To disregard optimization in cloud systems is to
ignore the promise of the cloud as an elastic resource,
made to adapt to computing loads in ways previously
limited by dedicated hardware [18]. This work can be
extended to heterogeneous HPC systems, as can occur
in condo storage models, where nodes are purchased
over time [21], as well as where users are able to bring
their own nodes to the cluster. Mateescu describes a
technique where scheduling is done in part based on the
timing demands of the tasks and can utilize combinations
of HPC and Cloud as a combined workflow, either
managing at the node level (physical machine) or at the
VM level [22].

Recently, Rodrigo et al. [23] proposed a
workflow aware scheduling algorithm specific to
slurmc̃iteyoo2003slurm which attempts to address
temporal and locality resource scheduling. This
approach is interesting as it attempts to match pipelines,
beyond individual tasks, to resources for data locality
and increased throughput. However, the resource
locality effect is muted for clusters that do not have
local resources (e.g., nodes without local disk for scratch
space), which affect scheduled tasks in a homogeneous
HPC/HTC environment. Considering previous work in
scheduling and optimization [18], what is unique about
this method is the use of machine learning to suggest
optimization for real-time workloads, that works across
various size systems, under a wide range of applications.

IV. METHODS

Following procedures originally used by Juve et al. [4]
we collect task statistics and compare our statistics
against the task’s requested cluster resources. Using Juve
et al. method we use the metric data polled directly

from the kernel through the procfs file system. We also
note that only a subset of the proc file system, of which
the kernel provides a non-intrusive task metric to gain
individual process statistics about performance and run
time state in real time, is used. A list of available procfs
metric’s is defined in I. The defined list is meant to be a
demonstration to the richness to which the kernel procfs
application level statistics can be distilled.
Procfs provides kernel counters on a per task basis.

However, these task based kernel counters have grown
organically over the years and have resulted in a less than
ideal task counter framework. Specifically, the procfs
counter files within the procfs file system are a mixture
of file formats and none are consistent.

A. Computational cluster

1) University of Wisconsin - Madison, Biostatistics
Computing Group: The cluster is a departmental level
cluster comprised of 240 64 bit multicore x86 systems
running a Redhat Package Management (RPM) [25]
based Linux variant, Scientific Linux 7 [26]. The cluster
is a heterogeneous mixture of hardware vendors and
CPU brands with approximately 2500 CPU cores and
11.8 TB of total memory across the cluster. Hardware
manufacturers used in the cluster include: Dell, Cisco,
HPC and Supermicro with x86 CPUs.

The cluster is comprised of shared use interactive ma-
chines and dedicated compute machines. Both types of
machines are part of a cluster which uses HTCondor [27]
as the cluster resource manager.

Profiling statistics from a system are generated
through the kernel. The Linux kernel procfs contains
task level runtime parameters which live reflect the task
runtime within the OS scheduler. Additionally, any task’s
sub task or children are also defined in the procfs, as
the Parent Process Id (PPID). Any subtask task which
is created by fork the system will register the child
process Id (pid) under the parent as defined in the procfs
path /proc/$ppid/task/$ppid/children. The procfs we
describe is used on the cluster installed Linux variant
Scientific Linux 7 [26] running a Linux kernel 3.10.x.

The focus of the tasks we used in our analysis are
all in support of the Department of Biostatistics and
Medical Informatics at the University of Wisconsin -
Madison. These tasks where submitted between epoch
times (1475644627 - 1537752190) or between October
5, 2016 to September 24, 2018. All submitted tasks are
used by biostatisticians or medical informaticians and
require compliance or have dataset restrictions which
inhibit them from running on across infrastructures such

file type description
children list numbers Child tasks process id (pid)

from the this task id
cmdline text full command line used to ex-

ecute this task with options
cwd simlink symbolic link to the current

working directory of the pro-
cess

environ text initial environment that was set
when the currently executing
program was started via execve

fd directory a subdirectory containing one
entry for each file which the
process has open, named by its
file descriptor, and which is a
symbolic link to the actual file

fdinfo directory a subdirectory containing one
entry for each file which the
process has open, named by its
file descriptor

io text contains I/O statistics for the
process

• rchar: characters read
• wchar: characters written
• syscr: read syscalls
• read bytes: bytes read
• write bytes: bytes writ-

ten
• cancelled write bytes:

The big inaccuracy here
is truncate.

mounts text lists all the filesystems cur-
rently mounted in the process’s
mount namespace

oom score int displays the current score that
the kernel gives to this process
for the purpose of selecting a
process for the OOM-killer

pagemap text the mapping of each of the pro-
cess’s virtual pages into physi-
cal page frames or swap area

smaps text shows memory consumption
for each of the process‘’s map-
pings

stat text Status information about the
process

statm text Provides information about
memory usage, measured in
pages

status text Provides much of the infor-
mation in /proc/[pid]/stat and
/proc/[pid]/statm in a format
that’s easier for humans to
parse

syscall text exposes the system call num-
ber and argument regis- ters
for the system call currently
being executed by the process,
followed by the values of the
stack pointer and pro- gram
counter registers

wchan text symbolic name corresponding
to the location in the kernel
where the process is sleeping

TABLE I: procfs task files [24]

Fig. 2: Number for tasks per cluster submission

number percent description
106695 82.2% Complete successful, no errors

23159 17.8% Task Error Issues
129854 100% All submitted tasks

TABLE II: Submitted Task Breakdown

as the OSG[13] or other open resources. Using the
HTCondor class-Ad history we analyze 17,282 clus-
ter submissions producing 129,854 tasks in the BCG
HTCondor[27] computational cluster. Table II shows a
complete breakdown of the total tasks by completion
state. Additionally, in Table III, we can see the full exit
status of tasks which did not complete successfully.

2) Data exploration: We produced our data as an
aggregate from all cluster nodes which are allowed to
submit to the cluster. The data was generated through
the use of condor history with the –json option which
produced the Condor history data in JSON format. Using
the preformatted JSON HTCondor history data parti-
tioned by individual class ad and generating a unique
file for each Condor submission node, we aggregate the
data by importing the data into a NoSQL database. Mon-
goDB [28] was chosen as the data store for exploring and
analyzing the data due to the simplistic import nature and
well established user base with a feature rich NoSQL
language.

To analyze the data we used the MongoDB internal

number percent event
13070 10.1% User removed before scheduled

to cluster
9183 7.1% User defined task attribute ex-

pression error
434 0.33% Failed to initialize user log
229 0.17% Out-of-memory event
160 0.11% Other

83 0.06% No such file or directory
23159 17.8% Total Task Error Issues

TABLE III: Submitted Tasks with errors breakdown

submission % submission # tasks % total tasks submission type description
10758 62.2% 10758 8.3% single successfully completed

4285 24.8% 4285 3.3% single failed
1860 10.8% 93908 72.3% multi combo success and failed

341 2.0% 16356 12.6% multi all successfully completed
38 0.2% 4547 3.5% multi all failed

17282 100% 129854 100% total cluster submissions

TABLE IV: Cluster submissions breakdown

language and were able to aggregate data clusters using
the condor class-Add ’ClusterId’ as the unique cluster
key. The cluster task resource breakdown by task and
totals are defined in V. For our final dataset, we apply
a split frame approach to randomly assign our data to
different buckets for use in the applied machine learning.
Specifically, we split frame our data based on the ratios
60%, 30%, 10%.

3) Feature selection: To understand why our tasks
either succeeded or failed by submission we applied
random forest [29], a well known machine learning
technique, as a classifier estimator. We utilize the ma-
chine learning platform H2O [30] to build our models.
In choosing the Random Forest algorithm, we address
the classification and regression predictions by using
the average prediction trees to make the final prediction
based on class or numerical values. Thus, we address
our multi-modal multi-class dataset without excessive
normalization’s so we can integrate: numerical, binomial,
and categorical data.

V. EXPERIMENT

Our cluster had a total of 15,043 unique cluster
submissions where only one task was submitted to the
cluster by the job submission. A breakdown of cluster
submission by task result(s) is found in IV and we plot
our data based on tasks per submission. Of the remaining
1,860 cluster submissions, 491 of these have greater
then 5 tasks submitted per cluster submission and have
both failed and successful completed tasks. We set the
cutoff at 5 tasks per submission so we have enough data
points to apply a machine learning algorithm, random
forest, for feature selection. We focus this analysis on the
submissions of 5 or more tasks with a combination of
successful and failed tasks for multi-tasked submissions,
the total number of tasks submitted with 5 or greater is
a subset from the last line in IV. The total number of
remaining tasks is 90,062 of the 93,908 or 69.4% of the
total cluster tasks. We use 90,062 as our base data from
which to train, validate, and test.

Fig. 3: ROC curve, cross validation

Fig. 4: Variable Importance

A. Prediction

To build our Random Forest we select 50 trees, each
with a max depth of 50. Number of variables randomly
sampled as candidates at each split was set at 5 (mtries)
from the active predictors requests within H2o.ai [31].

Usage statistic Cumulative total Average Max Min Description
CPU 3522219511 27124.45 43112204 0 Cumulative CPU time per task,

min
System CPU 157853822 1358.85 366756 0 Cumulative CPU time in sys-

tem/kernel time, min
User CPU 2415838569 20796.25 19679010 0 Cumulative CPU time in User

space time, min
Suspension 146800 1.13 12895 0 Cumulative time a task is sus-

pended/held, min
BytesSent 36400253248 295044.68 1475104768 0

Note: System and User CPU time are a subset of the total due to a HTCondor version change over the course
of the collected dataset.

TABLE V: Cluster task usage in minutes

Additionally, we chose to build histograms for numerical
columns and chose to use histogram bins at 1000. Ad-
dressing cross validation of our random forest trees we
chose a cross validate fold number of 5, with a random
fold assignment. The number of categorical and top level
histogram bins was set at 1024. For our distribution func-
tion we utilized a multinomial distribution when building
our model. Lastly, we ignored columns when build-
ing our model, namely the columns: id, AutoClusterId,
CommittedTime, CompletionDate, ExitCode, LastVacate-
Time, RemoteSysCpu, RemoteUserCpu, RemoveReason.
On our initial feature selections tests, these columns
confounded feature selection which heavily skew our
initial results.

Using our random forest model, we were able to
obtain a 99% precision for failed tasks and a 94%
precision for successful tasks. Of these tasks we had
an error rate of 11.6% for failed tasks and a 0.5%
error rate for successful tasks. For recall during our
cross validation we saw a 88% recall of failed tasks
and 1.0 for successful tasks. The total error rate was
4.6%. We were able to predict the relative importance of
each attribute within the HTCondor class-Ad with scaled
importance. Deterministically, our class-Ad attributes for
predicting failure vs. success is ranked by contribution
according to 4: StartdPrincipal (12.1%), Committed-
SlotTime (7.6%), CumulativeRemoteUserCPU (5.3%),
LastHoldReason (5.3%), NumJobCompletions (4.2%),
LastJobStatus (4%), RemoteHost (3.8%), NumShad-
owStarts (3.6%), NumJobStarts (3.4%), JobRunCount
(3.3%), BlockReads (2.9%), RecentBlockReadKbytes
(2.6%), JobLastStartDate (2.3%). CommittedSlotTime
(second most valuable feature) most likely would be zero
for tasks which where scheduled to a cluster node but
where unable to access the users data (network or file
system issue on a host). Thus, our proposed model may
still have internal feature selection confounding issues.

VI. CONCLUSIONS

Computational cluster analysis and failure prediction
is based on temporal events with identically provision
requested tasks is a significant concern. 72% of all muli-
task clusters submissions had at least one task fail on
our production cluster. Understanding why identically
provision requested tasks succeed or fail on a hetero-
geneous cluster has real world benefits for both our
cluster resource scheduling and to the end users. We
address the failure question through a machine learning
feature selection process. The feature selection is based
on the random forest algorithm and is unique due to
the significant number of production task submission we
use as data for our machine learning inputs. Our results
showcase an overall accurate model (95.4%) but lagged
in prediction for failed jobs at 88%. Our use of a feature
selection method provides a baseline for other production
computational cluster analysis. As with all real world
example cases, normal production clusters idiosyncrasies
likely impacted the specific results of our model.

VII. FUTURE WORK

This method could be further refined and extended
through the analysis of other clusters and job profiles
and address job/task confounding. In particular, we plan
to apply this technique to the analysis of other private
cloud (OpenStack), to inform better service delivery and
optimization of resources. With these resource recom-
mendations, further work should be done to implement
their use to combine cloud (HTC) and dynamic HPC
scheduling slots. Additionally, the linux procfs is a rich
source of task resource usage data which should be
explored further for resource usage scheduling optimiza-
tion. Lastly, further refinements to the feature selection
process and combining it with other temporal data should
result in a ‘job cluster effect‘ which will provide a more
generalizable model for cluster task scheduling.

REFERENCES

[1] R. Prodan and T. Fahringer, “Overhead analysis of scientific
workflows in grid environments,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 19, no. 3, pp. 378–393, March
2008.

[2] D. Zeinalipour-Yazti, K. Neocleous, C. Georgiou, and M. D.
Dikaiakos, “Identifying failures in grids through monitoring and
ranking,” in 2008 Seventh IEEE International Symposium on
Network Computing and Applications, July 2008, pp. 291–298.

[3] M. Massie, B. Li, B. Nicholes, V. Vuksan, R. Alexander,
J. Buchbinder, F. Costa, A. Dean, D. Josephsen, P. Phaal, and
D. Pocock, Monitoring with Ganglia, 1st ed. OŔeilly Media,
Inc., 2012.

[4] G. Juve, B. Tovar, R. F. d. Silva, D. Król, D. Thain, E. Deelman,
W. Allcock, and M. Livny, “Practical resource monitoring for
robust high throughput computing,” in 2015 IEEE International
Conference on Cluster Computing, Sept 2015, pp. 650–657.

[5] S. Yanchuk and G. Giacomelli, “Spatio-temporal phenomena
in complex systems with time delays,” Journal of Physics A:
Mathematical and Theoretical, vol. 50, no. 10, p. 103001,
2017. [Online]. Available: http://stacks.iop.org/1751-8121/50/
i=10/a=103001

[6] A. Houser, “Which baseball statistic is the most important when
determining team success?” The Park Place Economist, vol. 13,
pp. 29–36, 2005.

[7] D. Carder, “Rrdtool scalability,” http://net.doit.wisc.edu/
∼dwcarder/rrdcache/, 2007, online; Accessed 9-Sept-2018.

[8] I. The Cacti Group, “Cacti Monitoring Tool,” https://www.cacti.
net/, 2018, online; Accessed: 24-Sept-2018.

[9] W. Barth, Nagios: System and Network Monitoring. San
Francisco, CA, USA: No Starch Press, 2006.

[10] Zabbix LLC, “Zabbix monitoring system,” https://www.zabbix.
com/, 2018, online; Accessed 24-Sept-2018.

[11] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple
network management protocol (snmp),” Internet Requests for
Comments, Internet Engineering Task Force, RFC 1157, May
1990. [Online]. Available: http://www.ietf.org/rfc/rfc1157.txt?
number=1157

[12] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pebay, “Ovis:
a tool for intelligent, real-time monitoring of computational
clusters,” in Proceedings 20th IEEE International Parallel Dis-
tributed Processing Symposium, April 2006, pp. 8 pp.–.

[13] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny,
A. Roy, P. Avery, K. Blackburn, T. Wenaus, F. Würthwein,
I. Foster, R. Gardner, M. Wilde, A. Blatecky, J. McGee,
and R. Quick, “The open science grid,” Journal of Physics:
Conference Series, vol. 78, no. 1, p. 012057, 2007. [Online].
Available: http://stacks.iop.org/1742-6596/78/i=1/a=012057

[14] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R.
Furlani, S. M. Gallo, M. D. Jones, and A. K. Patra, “Com-
prehensive resource use monitoring for hpc systems with tacc
stats,” in 2014 First International Workshop on HPC User
Support Tools, Nov 2014, pp. 13–21.

[15] S. Seneviratne and D. C. Levy, “Task profiling model
for load profile prediction,” Future Gener. Comput. Syst.,

vol. 27, no. 3, pp. 245–255, Mar. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2010.09.004

[16] C. Chang, S. Yang, E. Yeh, P. Lin, and J. Jeng, “A kubernetes-
based monitoring platform for dynamic cloud resource provi-
sioning,” in GLOBECOM 2017 - 2017 IEEE Global Commu-
nications Conference, Dec 2017, pp. 1–6.

[17] L. Wei, C. H. Foh, B. He, and J. Cai, “Towards efficient resource
allocation for heterogeneous workloads in iaas clouds,” IEEE
Transactions on Cloud Computing, vol. 6, no. 1, pp. 264–275,
Jan 2018.

[18] H. S. Guruprasad and b. B H, “Resource provisioning tech-
niques in cloud computing environment: A survey,” Interna-
tional Journal of Research in Computer and Communication
Technology, vol. 3, pp. 395–401, 03 2014.

[19] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load
balancing and unbalancing for power and performance in
cluster-based systems,” 2001.

[20] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson,
Cloud Design Patterns: Prescriptive Architecture Guidance for
Cloud Applications. Microsoft patterns & practices, 2014.

[21] San Diego Supercomputer Center, UC San Diego, “Tscc
purchase program,” http://www.sdsc.edu/services/hpc/
tscc-purchase.html, 2018, online; Accessed 3-Dec-2018.

[22] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid
computing—where hpc meets grid and cloud computing,”
Future Generation Computer Systems, vol. 27, no. 5, pp. 440 –
453, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X1000213X

[23] G. P. Rodrigo, E. Elmroth, P.-O. Östberg, and L. Ramakrishnan,
“Enabling workflow-aware scheduling on hpc systems,”
in Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC
’17. New York, NY, USA: ACM, 2017, pp. 3–14. [Online].
Available: http://doi.acm.org/10.1145/3078597.3078604

[24] Linux Foundation, “process information pseudo-file system,” in
Linux Man Pages, 2017, online; Accessed 25-Sept-2018.

[25] E. Troan, M. Ewing, and Red Hat, “Redhat package manage-
ment,” http://rpm.org/, 2018, online; Accessed: 24-Sept-2018.

[26] C. Sieh, “Scientific linux,” https://www.scientificlinux.org,
2018, [Online; Accessed 24-Sept-2018].

[27] M. Livny and R. Raman, “High-throughput resource manage-
ment,” in The Grid: Blueprint for a New Computing Infrastruc-
ture, I. Foster and C. Kesselman, Eds. Morgan Kaufmann,
1998.

[28] I. MongoDB, “MongoDB,” https://www.mongodb.com/, 2018,
online; Accessed: 14-Dec-2018.

[29] G. Louppe, “Understanding random forests: From theory to
practice,” Ph.D. dissertation, University of Liege, Belgium, 10
2014, arXiv:1407.7502.

[30] D. Cook, Practical machine learning with H2O: powerful,
scalable techniques for deep learning and AI. ” O’Reilly
Media, Inc.”, 2016.

[31] H2o Core Team, H2o: A Language and Environment for
Machine Learning, Vienna, Austria, 2013. [Online]. Available:
http://www.R-project.org/

Bibliography

[1] Sunyoung Shin, Rebecca Hudson, Christopher Harrison, Mark Craven, and Sündüz

Keleş. atSNP Search: a web resource for statistically evaluating influence of human

genetic variation on transcription factor binding. Bioinformatics, 35(15):2657–2659,

12 2018. [Cited on pages 1, 2, and 5.]

[2] Chandler Zuo, Sunyoung Shin, and Sndz Kele. atsnp: transcription factor binding

affinity testing for regulatory snp detection. Bioinformatics, 31(20):3353–3355, 2015.

[Cited on pages 2, 10, 11, 29, 37, and 47.]

[3] Jim Basney and Miron Livny. Deploying a High Throughput Computing Cluster. Pren-

tice Hall PTR, 1999. [Cited on pages 3, 38, 51, and 53.]

[4] NIGEL CHAFFEY. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and

Walter, P. Molecular biology of the cell. 4th edn. Annals of Botany, 91(3):401–401, 02

2003. [Cited on page 6.]

[5] Geoffrey M Cooper. The Cell: A Molecular Approach. 2nd edition. Sinauer Associates,

2000. [Cited on page 6.]

[6] D. G. Feitelson and M. Treinin. The blueprint for life? Computer, 35(7):34–40, 2002.

[Cited on page 6.]

[7] J. D. WATSON and F. H. C. CRICK. Molecular structure of nucleic acids: A structure

for deoxyribose nucleic acid. Nature, 171(4356):737–738, Apr 1953. [Cited on page 6.]

[8] A. Siewierska-Grska, A. Sitek, E. dziska, G. Bartosz, and D. Strapagiel. Association

of five snps with human hair colour in the polish population. HOMO, 68(2):134–144,

2017. [Cited on page 8.]

[9] Olivia S. Meyer, Maja M. B. Lunn, Sara L. Garcia, Anne B. Kjrbye, Niels Morling,

Claus Brsting, and Jeppe D. Andersen. Association between brown eye colour in

179

180 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

rs12913832:gg individuals and snps in tyr, tyrp1, and slc24a4. PLOS ONE, 15(9):1–

15, 09 2020. [Cited on page 8.]

[10] Marc A Schaub, Alan P Boyle, Anshul Kundaje, Serafim Batzoglou, and Michael

Snyder. Linking disease associations with regulatory information in the human

genome. Genome research, 22(9):1748–1759, 2012. [Cited on page 10.]

[11] Volker Matys, Olga V Kel-Margoulis, Ellen Fricke, Ines Liebich, Sigrid Land,

A Barre-Dirrie, Ingmar Reuter, D Chekmenev, Mathias Krull, Klaus Hornischer,

et al. Transfac® and its module transcompel®: transcriptional gene regulation in

eukaryotes. Nucleic acids research, 34(suppl 1):D108–D110, 2006. [Cited on page 12.]

[12] Anthony Mathelier, Xiaobei Zhao, Allen W. Zhang, Franois Parcy, Rebecca Worsley-

Hunt, David J. Arenillas, Sorana Buchman, Chih-yu Chen, Alice Chou, Hans Ien-

asescu, Jonathan Lim, Casper Shyr, Ge Tan, Michelle Zhou, Boris Lenhard, Albin

Sandelin, and Wyeth W. Wasserman. Jaspar 2014: an extensively expanded and

updated open-access database of transcription factor binding profiles. Nucleic Acids

Research, 42(D1):D142–D147, 2014. [Cited on page 12.]

[13] Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and Peter M.

Rice. The Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6):1767–1771, 12 2009.

[Cited on page 13.]

[14] Illumina Cambridge Ltd. (ILLUMINA). Illumina sequencing of escherichia coli str.

k-12 substr. mg1655 genomic paired-end library. https://www.ncbi.nlm.nih.gov/

sra/SRR001666, 2008. Access: 12-Aug-2022,Name: 500bp-insert library,Instrument:

Illumina Genome Analyzer, Strategy: WGS, Source: GENOMIC, Selection: RAN-

DOM,Layout: PAIRED. [Cited on pages xiii and 14.]

[15] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks,

Mark A DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T

Sherry, et al. The variant call format and vcftools. Bioinformatics, 27(15):2156–2158,

2011. [Cited on page 13.]

[16] David E Reich, Michele Cargill, Stacey Bolk, James Ireland, Pardis C Sabeti, Daniel J

Richter, Thomas Lavery, Rose Kouyoumjian, Shelli F Farhadian, Ryk Ward, et al.

https://www.ncbi.nlm.nih.gov/sra/SRR001666
https://www.ncbi.nlm.nih.gov/sra/SRR001666

BIBLIOGRAPHY 181

Linkage disequilibrium in the human genome. Nature, 411(6834):199–204, 2001.

[Cited on page 15.]

[17] David G Clayton. Generalized linear mixed models. Markov chain Monte Carlo in

practice, 1:275–302, 1996. [Cited on page 15.]

[18] MARK S. FOX. An organizational view of distributed systems. In Alan H. Bond

and Les Gasser, editors, Readings in Distributed Artificial Intelligence, pages 140–150.

Morgan Kaufmann, 1988. [Cited on page 16.]

[19] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the

Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’00,

page 7, New York, NY, USA, 2000. Association for Computing Machinery. [Cited

on page 16.]

[20] Linus Torvalds. Linux–a free unix-386 kernel, 1991. [Cited on page 16.]

[21] Douglas R. Smith. The design of divide and conquer algorithms. Science of Computer

Programming, 5:37–58, 1985. [Cited on page 16.]

[22] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays

of inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’88, page 109116, New York, NY, USA,

1988. Association for Computing Machinery. [Cited on page 17.]

[23] Rashmi Vinayak. Erasure Coding for Big-data Systems: Theory and Practice. PhD thesis,

EECS Department, University of California, Berkeley, Sep 2016. [Cited on page 17.]

[24] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman. Data replication strate-

gies in grid environments. In Fifth International Conference on Algorithms and Ar-

chitectures for Parallel Processing, 2002. Proceedings., pages 378–383, 2002. [Cited on

page 17.]

[25] Sikha Bagui and Loi Tang Nguyen. Database sharding: to provide fault tolerance

and scalability of big data on the cloud. International Journal of Cloud Applications

and Computing (IJCAC), 5(2):36–52, 2015. [Cited on page 17.]

[26] Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen. Mapreduce-based

dimensional etl made easy. Proceedings of the VLDB Endowment, 5(12):1882–1885,

2012. [Cited on page 17.]

182 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[27] Database basics: Acid transactions. https://towardsdatascience.com/

database-basics-acid-transactions-bf4d38bd8e26. Accessed: 12-Aug-2022.

[Cited on page 18.]

[28] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377387, jun 1970. [Cited on page 18.]

[29] Mysql server. https://www.mysql.com. Accessed: 2018-01-28. [Cited on pages 18

and 30.]

[30] Xiaojie Yang. Analysis of dbms: Mysql vs postgresql. The Bachelors Thesis Information

Technology program Kemi 2011, 2011. [Cited on page 18.]

[31] Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko. High performance MySQL: op-

timization, backups, and replication. ” O’Reilly Media, Inc.”, 2012. [Cited on page 19.]

[32] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:

A distributed storage system for structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):1–26, 2008. [Cited on page 19.]

[33] cloudduggu.com. Cassandra architecture, 2022. [Cited on page 19.]

[34] Lars George. HBase: the definitive guide: random access to your planet-size data. ”

O’Reilly Media, Inc.”, 2011. [Cited on page 19.]

[35] Backblaze. Hard drive data and stats, Sep 2020. [Cited on pages 21 and 83.]

[36] Bjorn Andersen and Tom Fagerhaug. Root cause analysis. Quality Press, 2006. [Cited

on page 23.]

[37] Christopher Kluse. Failure modes and effects analysis (fmea): Factors affecting

execution and implementation of the fmea and an alternate method for process risk

assessment. Journal of Management & Engineering Integration, 10(1):106–116, 2017.

[Cited on page 23.]

[38] Sepideh Safari, Mohsen Ansari, Heba Khdr, Pourya Gohari-Nazari, Sina Yari-Karin,

Amir Yeganeh-Khaksar, Shaahin Hessabi, Alireza Ejlali, and Jörg Henkel. A survey

of fault-tolerance techniques for embedded systems from the perspective of power,

energy, and thermal issues. IEEE Access, 10:12229–12251, 2022. [Cited on page 24.]

https://towardsdatascience.com/database-basics-acid-transactions-bf4d38bd8e26
https://towardsdatascience.com/database-basics-acid-transactions-bf4d38bd8e26
https://www.mysql.com

BIBLIOGRAPHY 183

[39] Ana Gainaru and Franck Cappello. Errors and Faults, pages 89–144. Springer Inter-

national Publishing, Cham, 2015. [Cited on page 24.]

[40] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing depend-

ability with software fault injection: A survey. ACM Comput. Surv., 48(3), feb 2016.

[Cited on page 24.]

[41] B Bockelman, T Cartwright, J Frey, E M Fajardo, B Lin, M Selmeci, T Tannenbaum,

and M Zvada. Commissioning the htcondor-ce for the open science grid. Journal of

Physics: Conference Series, 664(6):062003, 2015. [Cited on page 25.]

[42] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,

Paul Avery, Kent Blackburn, Torre Wenaus, Frank Wrthwein, Ian Foster, Rob Gard-

ner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. The open science

grid. Journal of Physics: Conference Series, 78(1):012057, 2007. [Cited on pages 27, 75,

and 105.]

[43] Charles E. Grant, Timothy L. Bailey, and William Stafford Noble. FIMO: scanning

for occurrences of a given motif. Bioinformatics, 27(7):1017–1018, 02 2011. [Cited on

page 29.]

[44] Geoff Macintyre, James Bailey, Izhak Haviv, and Adam Kowalczyk. is-rsnp: a novel

technique for in silico regulatory snp detection. Bioinformatics, 26(18):i524–i530,

2010. [Cited on page 29.]

[45] Sunil Kumar, Giovanna Ambrosini, and Philipp Bucher. Snp2tfbs–a database of

regulatory snps affecting predicted transcription factor binding site affinity. Nucleic

acids research, 45(D1):D139–D144, 2017. [Cited on page 30.]

[46] Malin C Andersen, Pär G Engström, Stuart Lithwick, David Arenillas, Per Eriksson,

Boris Lenhard, Wyeth W Wasserman, and Jacob Odeberg. In silico detection of se-

quence variations modifying transcriptional regulation. PLoS computational biology,

4(1):e5, 2008. [Cited on page 30.]

[47] Dilmi Perera, Diego Chacon, Julie AI Thoms, Rebecca C Poulos, Adam Shlien, Do-

minik Beck, Peter J Campbell, John E Pimanda, and Jason WH Wong. Oncocis: an-

notation of cis-regulatory mutations in cancer. Genome biology, 15:1–14, 2014. [Cited

on page 30.]

184 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[48] Laura Clarke, Xiangqun Zheng-Bradley, Richard Smith, Eugene Kulesha, Chun-

lin Xiao, Iliana Toneva, Brendan Vaughan, Don Preuss, Rasko Leinonen, Martin

Shumway, et al. The 1000 genomes project: data management and community ac-

cess. Nature methods, 9(5):459–462, 2012. [Cited on page 30.]

[49] Peter M Haverty, Ulla Hansen, and Zhiping Weng. Computational inference of tran-

scriptional regulatory networks from expression profiling and transcription factor

binding site identification. Nucleic acids research, 32(1):179–188, 2004. [Cited on

page 30.]

[50] Sean D. Mooney, Vidhya G. Krishnan, and Uday S. Evani. Bioinformatic tools for

identifying disease gene and snp candidates. Methods Mol Biol, 628:307–319, 2010.

20238089[pmid]. [Cited on page 30.]

[51] dbsnp short genetic variations. https://www.ncbi.nlm.nih.gov/SNP/. Accessed:

2018-01-03. [Cited on pages 30 and 38.]

[52] Matthew D. Mailman, Michael Feolo, Yumi Jin, Masato Kimura, Kimberly Tryka,

Rinat Bagoutdinov, Luning Hao, Anne Kiang, Justin Paschall, Lon Phan, Natalia

Popova, Stephanie Pretel, Lora Ziyabari, Yu Shao, Zhen Y. Wang, Karl Sirotkin,

Minghong Ward, Michael Kholodov, Kerry Zbicz, Jeffrey Beck, Michael Kimelman,

Sergey Shevelev, Don Preuss, Eugene Yaschenko, Alan Graeff, James Ostell, and

Stephen T. Sherry. The ncbi dbgap database of genotypes and phenotypes. Nat

Genet, 39(10):1181–1186, Oct 2007. 17898773[pmid]. [Cited on page 30.]

[53] Shuhui Song, Dongmei Tian, Cuiping Li, Bixia Tang, Lili Dong, Jingfa Xiao, Yim-

ing Bao, Wenming Zhao, Hang He, and Zhang Zhang. Genome variation map:

a data repository of genome variations in big data center. Nucleic Acids Research,

46(D1):D944–D949, 2018. [Cited on page 30.]

[54] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proceedings

of the 1979 ACM SIGMOD International Conference on Management of Data, SIGMOD

’79, pages 23–34, New York, NY, USA, 1979. ACM. [Cited on page 30.]

[55] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of

data. ACM Transactions on Database Systems, 1(1):9–36, march 1976. [Cited on

page 30.]

https://www.ncbi.nlm.nih.gov/SNP/

BIBLIOGRAPHY 185

[56] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of nosql databases and

its comparison with relational databases. International Journal of Applied Information

Systems, 5(4):16–19, 2013. [Cited on page 30.]

[57] Apache Software Foundation. Cassandra. http://cassandra.apache.org/. ac-

cessed: 12-Aug-2018, version: 2.1.14. [Cited on page 30.]

[58] 7 reasons why netflix uses cassandra databases. https://www.jcount.com/7-

reasons-netflix-uses-cassandra-databases/. Accessed: 2017-09-20. [Cited on

page 30.]

[59] Project Voldemort. Voldemort. http://www.project-voldemort.com/voldemort/.

date : 2017-08-30, version : 1.10.25. [Cited on page 30.]

[60] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:

A distributed storage system for structured data. In 7th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 06), Seattle, WA, 2006. USENIX

Association. [Cited on page 30.]

[61] G. Vaish. Getting Started with Nosql. Packt Publishing, 2013. [Cited on page 31.]

[62] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27, May

2011. [Cited on page 31.]

[63] John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham, and Chrisjan

Matser. Performance evaluation of nosql databases: A case study. In Proceedings

of the 1st Workshop on Performance Analysis of Big Data Systems, PABS ’15, pages 5–10,

New York, NY, USA, 2015. ACM. [Cited on page 31.]

[64] Y. Li and S. Manoharan. A performance comparison of sql and nosql databases. In

2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing

(PACRIM), pages 15–19, Aug 2013. [Cited on page 31.]

[65] W. Puangsaijai and S. Puntheeranurak. A comparative study of relational database

and key-value database for big data applications. In 2017 International Electrical

Engineering Congress (iEECON), pages 1–4, 2017. [Cited on page 31.]

http://cassandra.apache.org/
https://www.jcount.com/7-reasons-netflix-uses-cassandra-databases/
https://www.jcount.com/7-reasons-netflix-uses-cassandra-databases/
http://www.project-voldemort.com/voldemort/

186 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[66] A comparison between cassandra and mysql. https://adataanalyst.com/data-

analysis-resources/a-comparison-between-cassandra-and-mysql/, 2019. Ac-

cessed: 12-Aug-2022. [Cited on page 31.]

[67] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2021. [Cited on page 32.]

[68] Robert C Gentleman, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel Det-

tling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, et al.

Bioconductor: open software development for computational biology and bioinfor-

matics. Genome biology, 5(10):1–16, 2004. [Cited on page 32.]

[69] Kushal K Dey, Dongyue Xie, and Matthew Stephens. A new sequence logo plot to

highlight enrichment and depletion. BMC bioinformatics, 19(1):1–9, 2018. [Cited on

page 32.]

[70] Jianhong Ou, Scot A Wolfe, Michael H Brodsky, and Lihua Julie Zhu. motifstack for

the analysis of transcription factor binding site evolution. Nature methods, 15(1):8–9,

2018. [Cited on page 32.]

[71] Spencer L Nystrom and Daniel J McKay. Memes: A motif analysis environment in r

using tools from the meme suite. PLoS Computational Biology, 17(9):e1008991, 2021.

[Cited on page 32.]

[72] MJ Bly. Ghostscript–postscript interpreter/previewer. Starlink User Note, 197, 1997.

[Cited on page 32.]

[73] Henry Pratt and Zhiping Weng. Logojs: a javascript package for creating sequence

logos and embedding them in web applications. Bioinformatics, 36(11):3573–3575,

2020. [Cited on page 32.]

[74] Hana Mallek, Faiza Ghozzi, Olivier Teste, and Faiez Gargouri. Bigdimetl with nosql

database. Procedia Computer Science, 126:798–807, 2018. Knowledge-Based and In-

telligent Information & Engineering Systems: Proceedings of the 22nd International

Conference, KES-2018, Belgrade, Serbia. [Cited on page 32.]

[75] Ardhian Agung Yulianto. Extract transform load (etl) process in distributed

database academic data warehouse. APTIKOM Journal on Computer Science and In-

formation Technologies, 4(2):61–68, 2019. [Cited on page 32.]

https://adataanalyst.com/data-analysis-resources/a-comparison-between-cassandra-and-mysql/
https://adataanalyst.com/data-analysis-resources/a-comparison-between-cassandra-and-mysql/

BIBLIOGRAPHY 187

[76] Dhruba Borthakur. The hadoop distributed file system: Architecture and design.

Hadoop Project Website, 11(2007):21, 2007. [Cited on page 32.]

[77] Alkis Simitsis, Chetan Gupta, Song Wang, and Umeshwar Dayal. Partitioning real-

time etl workflows. In 2010 IEEE 26th International Conference on Data Engineering

Workshops (ICDEW 2010), pages 159–162. IEEE, 2010. [Cited on page 32.]

[78] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008. [Cited on pages 32

and 33.]

[79] Shruti Tekadpande and Mrs Leena Deshpande. A survey on hadoop technology

to develop etl for efficient datawarehouse. Journal Impact Factor, 6(1):11–17, 2015.

[Cited on page 33.]

[80] Amil Ahmad Ilham, Syahrul Usman, et al. Performance analysis of extract, trans-

form, load (etl) in apache hadoop atop nas storage using iscsi. In 2017 4th In-

ternational Conference on Computer Applications and Information Processing Technology

(CAIPT), pages 1–5. IEEE, 2017. [Cited on page 33.]

[81] enlyft. Companies using apache cassandra. https://enlyft.com/tech/products/

apache-cassandra, 2022. Online; Accessed: 12-Aug-2022. [Cited on page 33.]

[82] Ink Sky Wheel. How many mysql instances are running in the world? here’s a copy

of the data. https://chowdera.com/2022/168/202206171023055567.html, 2022.

Online; Accessed: 12-Aug-2022. [Cited on page 33.]

[83] Elastic Inc. Elastic reports strong second quarter fiscal 2022 financial results.

https://www.elastic.co/about/press/elastic-reports-strong-second-

quarter-fiscal-2022-financial-results, 2022. Online; Accessed: 12-Aug-

2022. [Cited on page 33.]

[84] Myung-Hoon Cha, Dong-Oh Kim, Hong-Yeon Kim, and Young-Kyun Kim. Adap-

tive metadata rebalance in exascale file system. The Journal of Supercomputing,

73(4):1337–1359, Apr 2017. [Cited on page 33.]

[85] Sudhakar K. and Shivendra Pandey. Advances in Intelligent Systems and Comput-

ing, volume 710, chapter An Approach to Improve Load Balancing in Distributed

https://enlyft.com/tech/products/apache-cassandra
https://enlyft.com/tech/products/apache-cassandra
https://chowdera.com/2022/168/202206171023055567.html
https://www.elastic.co/about/press/elastic-reports-strong-second-quarter-fiscal-2022-financial-results
https://www.elastic.co/about/press/elastic-reports-strong-second-quarter-fiscal-2022-financial-results

188 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Storage Systems for NoSQL Databases: MongoDB, pages 529–538. Proceedings of

ICCAN 2017, 04 2018. [Cited on page 34.]

[86] Xiangdong Huang, Jianmin Wang, Yu Zhong, and Philip S. Yu. Optimizing data

partition for nosql cluster. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and

Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015

IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Work-

shops (UIC-ATC-ScalCom), pages 962–969, 2015. [Cited on page 34.]

[87] Ceph Inc. Diskprediction module. https://docs.ceph.com/en/quincy/mgr/

diskprediction/, 2022. Online; Accessed: 12-Aug-2022. [Cited on page 34.]

[88] Spyridon Chouliaras and Stelios Sotiriadis. Real-time anomaly detection of nosql

systems based on resource usage monitoring. IEEE Transactions on Industrial Infor-

matics, 16(9):6042–6049, 2020. [Cited on page 34.]

[89] Flora Karniavoura and Kostas Magoutis. A measurement-based approach to per-

formance prediction in nosql systems. In 2017 IEEE 25th International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-

COTS), pages 255–262, 2017. [Cited on page 34.]

[90] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle

Zhang, Pranay U Jain, and Michael Stumm. Simple testing can prevent most critical

failures: An analysis of production failures in distributed {Data-Intensive} systems.

In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI

14), pages 249–265, 2014. [Cited on page 34.]

[91] Huan Ke, Haryadi S. Gunawi, Dominic Manno, David Bonnie, and Bradley W.

Settlemyer. Fractional-overlap declustered parity: Evaluating reliability for stor-

age systems. In 2020 IEEE/ACM Fifth International Parallel Data Systems Workshop

(PDSW), pages 1–6, 2020. [Cited on page 34.]

[92] Accessed: Jan 18 2024. [Cited on page 35.]

[93] Luis Velasco and Danish Rafique. Fault management based on machine learning. In

2019 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3. IEEE,

2019. [Cited on pages xiii, 35, and 59.]

https://docs.ceph.com/en/quincy/mgr/diskprediction/
https://docs.ceph.com/en/quincy/mgr/diskprediction/

BIBLIOGRAPHY 189

[94] NCBI dbSNP. dbsnp short genetic variations. https://www.ncbi.nlm.nih.gov/

projects/SNP/snp summary.cgi?view+summary=view+summary&build id=144,

2015. [Cited on page 38.]

[95] Genome reference consortium human build 38. https://www.ncbi.nlm.nih.gov/

assembly/GCF 000001405.26/. Accessed: 2016-05-05. [Cited on page 38.]

[96] Martin Kreitman. Nucleotide polymorphism at the alcohol dehydrogenase locus of

drosophila melanogaster. Nature, 304:412 EP –, Aug 1983. [Cited on page 39.]

[97] David Altshuler, Victor J. Pollara, Chris R. Cowles, William J. Van Etten, Jennifer

Baldwin, Lauren Linton, and Eric S. Lander. An snp map of the human genome

generated by reduced representation shotgun sequencing. Nature, 407:513 EP –,

Sep 2000. [Cited on page 39.]

[98] MySQL. Limits on table column count and row size. https://dev.mysql.com/doc/

mysql-reslimits-excerpt/5.7/en/column-count-limit.html. accessed: 12-

Aug-2022. [Cited on page 39.]

[99] Weiping Qu and Stefan Dessloch. Distributed snapshot maintenance in wide-

column nosql databases using partitioned incremental etl pipelines. Information

Systems, 70:48–58, 2017. Advances in databases and Information Systems. [Cited

on page 42.]

[100] Apache cassandra nosql performance benchmarks. https://academy.datastax.

com/planet-cassandra/nosql-performance-benchmarks. Accessed: 2017-01-20.

[Cited on page 42.]

[101] Improve mysql insert performance. https://kvz.io/blog/improve-mysql-

insert-performance.html. Accessed: 2024-07-08. [Cited on page 43.]

[102] Apache Software foundataion. Apache lucene. https://lucene.apache.org/. Ac-

cessed: 30-Nov-2023. [Cited on page 44.]

[103] Gary D. Stormo, Thomas D. Schneider, Larry Gold, and Andrzej Ehrenfeucht. Use

of the ’perceptron’ algorithm to distinguish translational initiation sites in e. coli.

Nucleic Acids Research, 10(9):2997–3011, 1982. [Cited on page 46.]

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summary&build_id=144
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summary&build_id=144
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.7/en/column-count-limit.html
https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.7/en/column-count-limit.html
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://kvz.io/blog/improve-mysql-insert-performance.html
https://kvz.io/blog/improve-mysql-insert-performance.html
https://lucene.apache.org/

190 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[104] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0. [Cited on

page 47.]

[105] Pouria Pirzadeh, Junichi Tatemura, Oliver Po, and Hakan Hacıgümüş. Performance

evaluation of range queries in key value stores. Journal of Grid Computing, 10(1):109–

132, Mar 2012. [Cited on page 48.]

[106] Understanding mysql architecture. https://www.rathishkumar.in/2016/04/understanding-

mysql-architecture.html. Accessed: 2023-10-30. [Cited on pages xiii and 49.]

[107] Amar Kapadia, Sreedhar Varma, and Kris Rajana. Implementing Cloud Storage with

OpenStack Swift. Packt Publishing Birmingham, UK, 2014. [Cited on page 50.]

[108] Elijah Meeks. D3. js in Action: Data visualization with JavaScript. Simon and Schuster,

2017. [Cited on page 50.]

[109] Ændrew H Rininsland, Michael Heydt, and Pablo Navarro Castillo. D3. js: cutting-

edge data visualization. Packt Publishing Ltd, 2017. [Cited on page 50.]

[110] Christopher Harrison and Rebecca Hudson. Source code for atsnp composite logo

plots. https://github.com/RebeccaHudson/ss search viewer. Accessed: 2023-

12-17. [Cited on page 50.]

[111] Elastic Inc. Rest apis. https://www.elastic.co/guide/en/elasticsearch/

reference/current/rest-apis.html. accessed: 12-Aug-2022. [Cited on page 51.]

[112] Bharat Singhal and Alok Aggarwal. Etl, elt and reverse etl: A business case study.

In 2022 Second International Conference on Advanced Technologies in Intelligent Control,

Environment, Computing & Communication Engineering (ICATIECE), pages 1–4, 2022.

[Cited on page 51.]

[113] Jehan-François Pâris and Darrell D. E. Long. Using device diversity to protect data

against batch-correlated disk failures. In Proceedings of the Second ACM Workshop

on Storage Security and Survivability, StorageSS ’06, page 4752, New York, NY, USA,

2006. Association for Computing Machinery. [Cited on pages 54 and 124.]

[114] Shujie Han, Patrick PC Lee, Fan Xu, Yi Liu, Cheng He, and Jiongzhou Liu. An {In-

Depth} study of correlated failures in production {SSD-Based} data centers. In 19th

https://github.com/RebeccaHudson/ss_search_viewer
https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html

BIBLIOGRAPHY 191

USENIX Conference on File and Storage Technologies (FAST 21), pages 417–429, 2021.

[Cited on page 54.]

[115] Abdullah Al Mamun, GuoXiao Guo, and Chao Bi. Hard disk drive: mechatronics and

control. CRC press, 2017. [Cited on page 58.]

[116] Sara Antomarioni, Filippo Emanuele Ciarapica, and Maurizio Bevilacqua. Data-

driven approach to predict the sequence of component failures: a framework and a

case study on a process industry. International Journal of Quality & Reliability Man-

agement, ahead-of-print, 01 2022. [Cited on page 58.]

[117] Seagate Product Marketing. Get smart for reliability. Technical report, Technical

report, Seagate Technology Paper, 1999. [Cited on pages 58, 59, and 60.]

[118] Bianca Schroeder and Garth A. Gibson. Understanding disk failure rates: What

does an mttf of 1,000,000 hours mean to you? ACM Trans. Storage, 3(3):8es, oct 2007.

[Cited on page 59.]

[119] J.G. Elerath and S. Shah. Server class disk drives: how reliable are they? In Annual

Symposium Reliability and Maintainability, 2004 - RAMS, pages 151–156, Jan 2004.

[Cited on page 59.]

[120] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure trends

in a large disk drive population. Proceedings of the Conference on File and Storage

Technologies (FAST), 2007. [Cited on page 59.]

[121] Brian Beach. Hard drive smart stats, Sep 2020. [Cited on page 59.]

[122] Andy Klein. How Long Do Disk Drives Last? — backblaze.com. https://www.

backblaze.com/blog/how-long-do-disk-drives-last/. [Accessed 25-06-2024].

[Cited on pages xiii, 60, 61, and 118.]

[123] Wyatts derivative work: McSush. File:Bathtub curve.svg - Wikimedia Com-

mons — commons.wikimedia.org. https://commons.wikimedia.org/wiki/File:

Bathtub curve.svg. [Accessed 25-06-2024]. [Cited on pages xiii, 60, and 118.]

[124] Nicolas Aussel, Samuel Jaulin, Guillaume Gandon, Yohan Petetin, Eriza Fazli, and

Sophie Chabridon. Predictive models of hard drive failures based on operational

data. In ICMLA 2017 : 16th IEEE International Conference On Machine Learning And

https://www.backblaze.com/blog/how-long-do-disk-drives-last/
https://www.backblaze.com/blog/how-long-do-disk-drives-last/
https://commons.wikimedia.org/wiki/File:Bathtub_curve.svg
https://commons.wikimedia.org/wiki/File:Bathtub_curve.svg

192 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

Applications, pages 619 – 625, Cancun, Mexico, 2017. IEEE Computer Society. [Cited

on pages 63 and 72.]

[125] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, et al. Knowledge

discovery and data mining: Towards a unifying framework. In KDD, volume 96,

pages 82–88, 1996. [Cited on page 64.]

[126] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.

Elsevier, 2011. [Cited on pages 64, 67, and 70.]

[127] Errin W Fulp, Glenn A Fink, and Jereme N Haack. Predicting computer system

failures using support vector machines. WASL, 8:5–5, 2008. [Cited on page 65.]

[128] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. [Cited on page 65.]

[129] Will Koehrsen. Random forest simple explanation, Aug 2020. [Cited on page 66.]

[130] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on

Computational Learning Theory, COLT ’92, page 144152, New York, NY, USA, 1992.

Association for Computing Machinery. [Cited on page 66.]

[131] Pier Paolo Ippolito. Support vector machines, Jun 2019. [Cited on page 66.]

[132] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on

Computational Learning Theory, COLT ’92, page 144152, New York, NY, USA, 1992.

Association for Computing Machinery. [Cited on page 67.]

[133] Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput. Surv.,

45(1), December 2012. [Cited on page 67.]

[134] Australian Transport Assessment and Planning. 6. forecasting and evaluation, Oct

2019. [Cited on page 68.]

[135] Helmut Lütkepohl. New introduction to multiple time series analysis. Springer Science

& Business Media, 2005. [Cited on pages 67 and 68.]

[136] Shay Palachy. Stationarity in time series analysis, Sep 2019. [Cited on page 69.]

BIBLIOGRAPHY 193

[137] James H Stock and Mark W Watson. Vector autoregressions. Journal of Economic

perspectives, 15(4):101–115, 2001. [Cited on page 68.]

[138] Douglas Holtz-Eakin, Whitney Newey, and Harvey S Rosen. Estimating vector au-

toregressions with panel data. Econometrica: Journal of the econometric society, pages

1371–1395, 1988. [Cited on page 68.]

[139] KDnuggets. The 5 most useful techniques to handle imbalanced datasets. [Cited on

page 70.]

[140] MC.AI. Confusion matrix no more confusing, Sep 2018. [Cited on page 71.]

[141] DeepAI. Evaluation metrics, May 2019. [Cited on page 71.]

[142] Alex Smolyak, Orr Levy, Irena Vodenska, Sergey Buldyrev, and Shlomo Havlin.

Mitigation of cascading failures in complex networks. Scientific reports, 10(1):16124,

2020. [Cited on page 71.]

[143] Jianwei Wang. Mitigation of cascading failures on complex networks. Nonlinear

Dynamics, 70:1959–1967, 2012. [Cited on pages 71 and 72.]

[144] Lucas D Valdez, Louis Shekhtman, Cristian E La Rocca, Xin Zhang, Sergey V

Buldyrev, Paul A Trunfio, Lidia A Braunstein, and Shlomo Havlin. Cascading fail-

ures in complex networks. Journal of Complex Networks, 8(2):cnaa013, 2020. [Cited

on page 71.]

[145] Jianwei Wang. Robustness of complex networks with the local protection strat-

egy against cascading failures. Safety Science, 53:219–225, 2013. [Cited on pages 71

and 72.]

[146] Ziyang Jin, Dongli Duan, and Ning Wang. Cascading failure of complex networks

based on load redistribution and epidemic process. Physica A: Statistical Mechanics

and its Applications, 606:128041, 2022. [Cited on page 71.]

[147] Ji Wang, Weidong Bao, Lei Zheng, Xiaomin Zhu, and Philip S. Yu. An attention-

augmented deep architecture for hard drive status monitoring in large-scale storage

systems. ACM Trans. Storage, 15(3), August 2019. [Cited on page 72.]

[148] Jing Shen, Jian Wan, Se-Jung Lim, and Lifeng Yu. Random-forest-based failure

prediction for hard disk drives. International Journal of Distributed Sensor Networks,

14(11):1550147718806480, 2018. [Cited on page 73.]

194 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[149] Jing Li, Rebecca J Stones, Gang Wang, Xiaoguang Liu, Zhongwei Li, and Ming Xu.

Hard drive failure prediction using decision trees. Reliability Engineering & System

Safety, 164:55–65, 2017. [Cited on page 73.]

[150] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng. Predicting disk failures

with hmm and hsmm-based approaches. In Predicting disk failures with HMM and

HSMM-based approaches, volume 6171, pages 390–404, 07 2010. [Cited on page 73.]

[151] Argonne National Laboratory. Argonne national laboratory - theta hpc cluster.

https://www.alcf.anl.gov/alcf-resources/theta, 2023. [Cited on page 74.]

[152] Dale Carder. Rrdtool scalability. http://net.doit.wisc.edu/~dwcarder/

rrdcache/, 2007. Online; Accessed 9-Sept-2018. [Cited on page 75.]

[153] Inc. The Cacti Group. Cacti Monitoring Tool. https://www.cacti.net/, 2018. On-

line; Accessed: 24-Sept-2018. [Cited on page 75.]

[154] Matt Massie, Bernard Li, Brad Nicholes, Vladimir Vuksan, Robert Alexander, Jeff

Buchbinder, Frederiko Costa, Alex Dean, Dave Josephsen, Peter Phaal, and Daniel

Pocock. Monitoring with Ganglia. OŔeilly Media, Inc., 1 edition, 2012. [Cited on

page 75.]

[155] Wolfgang Barth. Nagios: System and Network Monitoring. No Starch Press, San Fran-

cisco, CA, USA, 2006. [Cited on page 75.]

[156] Zabbix LLC. Zabbix monitoring system. https://www.zabbix.com/, 2018. Online;

Accessed 24-Sept-2018. [Cited on page 75.]

[157] J. Case, M. Fedor, M. Schoffstall, and J. Davin. Simple network management pro-

tocol (snmp). RFC 1157, Internet Engineering Task Force, May 1990. [Cited on

page 75.]

[158] Sajjad Haider and Babar Nazir. Fault tolerance in computational grids: perspec-

tives, challenges, and issues. SpringerPlus, 5, 12 2016. [Cited on page 75.]

[159] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pebay. Ovis: a tool for intelligent,

real-time monitoring of computational clusters. In Proceedings 20th IEEE Interna-

tional Parallel Distributed Processing Symposium, pages 8 pp.–, April 2006. [Cited on

page 75.]

http://net.doit.wisc.edu/~dwcarder/rrdcache/
http://net.doit.wisc.edu/~dwcarder/rrdcache/
https://www.cacti.net/
https://www.zabbix.com/

BIBLIOGRAPHY 195

[160] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani, S. M. Gallo, M. D.

Jones, and A. K. Patra. Comprehensive resource use monitoring for hpc systems

with tacc stats. In 2014 First International Workshop on HPC User Support Tools, pages

13–21, Nov 2014. [Cited on page 75.]

[161] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of bayesian predictors and

decision trees for proactive failure management in cloud computing systems. JCM,

7:52–61, 2012. [Cited on page 76.]

[162] Jiechao Gao, Haoyu Wang, and Haiying Shen. Task failure prediction in cloud data

centers using deep learning. IEEE Transactions on Services Computing, 15(3):1411–

1422, 2022. [Cited on page 76.]

[163] Carla Sauvanaud, Mohamed Kaniche, Karama Kanoun, Kahina Lazri, and Guthem-

berg Da Silva Silvestre. Anomaly detection and diagnosis for cloud services: Prac-

tical experiments and lessons learned. Journal of Systems and Software, 139:84–106,

2018. [Cited on page 76.]

[164] Teerat Pitakrat, Duan Okanovi, Andr van Hoorn, and Lars Grunske. Hora:

Architecture-aware online failure prediction. Journal of Systems and Software,

137:669–685, 2018. [Cited on page 76.]

[165] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. Per-

formance anomaly detection and bottleneck identification. ACM Computing Surveys

(CSUR), 48(1):1–35, 2015. [Cited on page 76.]

[166] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu,

Yingnong Dang, Dongmei Zhang, Hang Dong, Yong Xu, et al. Outage prediction

and diagnosis for cloud service systems. In The World Wide Web Conference, pages

2659–2665, 2019. [Cited on page 76.]

[167] Eric A Brewer. Kubernetes and the path to cloud native. In Proceedings of the sixth

ACM symposium on cloud computing, pages 167–167, 2015. [Cited on page 76.]

[168] C. Chang, S. Yang, E. Yeh, P. Lin, and J. Jeng. A kubernetes-based monitoring plat-

form for dynamic cloud resource provisioning. In GLOBECOM 2017 - 2017 IEEE

Global Communications Conference, pages 1–6, Dec 2017. [Cited on page 77.]

196 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[169] L. Wei, C. H. Foh, B. He, and J. Cai. Towards efficient resource allocation for hetero-

geneous workloads in iaas clouds. IEEE Transactions on Cloud Computing, 6(1):264–

275, Jan 2018. [Cited on page 77.]

[170] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver Heath. Load

balancing and unbalancing for power and performance in cluster-based systems,

2001. [Cited on page 77.]

[171] Alex Homer, John Sharp, Larry Brader, Masashi Narumoto, and Trent Swanson.

Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud Applications. Mi-

crosoft patterns & practices, 2014. [Cited on page 77.]

[172] H S Guruprasad and bhavani B H. Resource provisioning techniques in cloud com-

puting environment: A survey. International Journal of Research in Computer and Com-

munication Technology, 3:395–401, 03 2014. [Cited on page 77.]

[173] San Diego Supercomputer Center, UC San Diego. Tscc purchase program. http:

//www.sdsc.edu/services/hpc/tscc-purchase.html, 2018. Online; Accessed 3-

Dec-2018. [Cited on page 77.]

[174] Gabriel Mateescu, Wolfgang Gentzsch, and Calvin J. Ribbens. Hybrid computing-

where hpc meets grid and cloud computing. Future Generation Computer Systems,

27(5):440 – 453, 2011. [Cited on page 77.]

[175] Abel Souza, Kristiaan Pelckmans, and Johan Tordsson. A hpc co-scheduler with

reinforcement learning. In Workshop on Job Scheduling Strategies for Parallel Processing,

pages 126–148. Springer, 2021. [Cited on page 77.]

[176] Yuping Fan, Zhiling Lan, Taylor Childers, Paul Rich, William Allcock, and

Michael E Papka. Deep reinforcement agent for scheduling in hpc. In 2021 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages 807–816.

IEEE, 2021. [Cited on page 77.]

[177] Connor Imes, Steven Hofmeyr, and Henry Hoffmann. Energy-efficient application

resource scheduling using machine learning classifiers. In Proceedings of the 47th

International Conference on Parallel Processing, pages 1–11, 2018. [Cited on page 77.]

http://www.sdsc.edu/services/hpc/tscc-purchase.html
http://www.sdsc.edu/services/hpc/tscc-purchase.html

BIBLIOGRAPHY 197

[178] Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakrishnan.

Enabling workflow-aware scheduling on hpc systems. In Proceedings of the 26th In-

ternational Symposium on High-Performance Parallel and Distributed Computing, HPDC

’17, pages 3–14, New York, NY, USA, 2017. ACM. [Cited on page 77.]

[179] G. Juve, B. Tovar, R. F. d. Silva, D. Krl, D. Thain, E. Deelman, W. Allcock, and

M. Livny. Practical resource monitoring for robust high throughput computing. In

2015 IEEE International Conference on Cluster Computing, pages 650–657, Sept 2015.

[Cited on page 78.]

[180] Serhiy Yanchuk and Giovanni Giacomelli. Spatio-temporal phenomena in com-

plex systems with time delays. Journal of Physics A: Mathematical and Theoretical,

50(10):103001, 2017. [Cited on page 78.]

[181] David Jauk, Dai Yang, and Martin Schulz. Predicting faults in high performance

computing systems: An in-depth survey of the state-of-the-practice. In Proceedings

of the International Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[Cited on page 78.]

[182] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and Scott Baden.

Doomsday: predicting which node will fail when on supercomputers. In SC18: In-

ternational Conference for High Performance Computing, Networking, Storage and Analy-

sis, pages 108–121. IEEE, 2018. [Cited on page 78.]

[183] Elizabeth Bautista, Nitin Sukhija, and Siqi Deng. Shasta log aggregation, monitoring

and alerting in hpc environments with grafana loki and servicenow. In 2022 IEEE

International Conference on Cluster Computing (CLUSTER), pages 602–610. IEEE, 2022.

[Cited on page 78.]

[184] Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim

Brandt, Brian Kulis, Manuel Egele, and Ayse K Coskun. Prodigy: Towards un-

supervised anomaly detection in production hpc systems. In Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

pages 1–14, 2023. [Cited on page 78.]

198 TOWARDS EARLY DETECTION OF FAULTS AND FAILURES IN COMPLEX SYSTEMS

[185] Alja Ferencek and Mirjana Kljaji Bortnar. Data quality assessment in product fail-

ure prediction models. Journal of Decision Systems, 29(sup1):79–86, 2020. [Cited on

page 78.]

[186] 104th US. Congress. Health insurance portability and accountability act. In United

States of America,Federal Register, HIPAA Statute. United States of America, Federal

Statute, http://legislink.org/us/stat-110-1936, 1996. [Cited on page 105.]

[187] Inc. MongoDB. MongoDB. https://www.mongodb.com/, 2018. Online; Accessed:

14-Dec-2018. [Cited on page 107.]

[188] Moshe Dubiner. Bucketing coding and information theory for the statistical high-

dimensional nearest-neighbor problem. IEEE Transactions on Information Theory,

56(8):4166–4179, 2010. [Cited on page 110.]

[189] Gilles Louppe. Understanding Random Forests: From Theory to Practice. PhD thesis,

University of Liege, Belgium, 10 2014. arXiv:1407.7502. [Cited on page 111.]

[190] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011. [Cited on page 111.]

[191] Ryan Adamson, Tim Osborne, Corwin Lester, and Rachel Palumbo. Stream: A

scalable federated hpc telemetry platform. osti.gov, 5 2023. [Cited on page 122.]

[192] The black hole node syndrome: How to prevent a pro-

ductivity killer. https://www.hpcwire.com/2012/09/24/

the black hole node syndrome how to prevent a productivity killer/. Ac-

cessed: 2023-09-17. [Cited on page 123.]

[193] Po-Ru Loh, Gleb Kichaev, Steven Gazal, Armin P Schoech, and Alkes L Price.

Mixed-model association for biobank-scale datasets. Nature genetics, 50(7):906–908,

2018. [Cited on page 123.]

http://legislink.org/us/stat-110-1936
https://www.mongodb.com/
https://www.hpcwire.com/2012/09/24/the_black_hole_node_syndrome_how_to_prevent_a_productivity_killer/
https://www.hpcwire.com/2012/09/24/the_black_hole_node_syndrome_how_to_prevent_a_productivity_killer/

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Terms
	1 Introduction
	1.1 Motivation
	1.2 Research Contribution
	1.2.1 atSNP Search
	1.2.2 Hard disk drive faults and failures
	1.2.3 Computational cluster task failure prediction

	1.3 Organization of the Dissertation

	2 Concepts and Terminology
	2.1 atSNP Search
	2.1.1 atSNP Biological Terms
	2.1.2 atSNP statistical model
	2.1.3 Sequence alignment
	2.1.4 atSNP Computational Infrastructure Terms
	2.1.5 atSNP Database Types

	2.2 Hard disk drive faults and failures
	2.2.1 Disk failure
	2.2.2 Physical (or Mechanical) Failure
	2.2.3 Logical Failure
	2.2.4 S.M.A.R.T
	2.2.5 Backblaze dataset
	2.2.6 Failure Mode and Effective Analysis (FMEA)
	2.2.7 Root Cause Analysis (RCA)
	2.2.8 Failure
	2.2.9 Faults

	2.3 Computational cluster task failures
	2.3.1 Tasks
	2.3.2 High Throughput Computing
	2.3.3 Computational Cluster task scheduling
	2.3.4 Biomedical Computing Group's Computational Cluster

	3 atSNP Search Background and Related Work
	3.1 SNP motif databases: Comparison
	3.2 Infrastructure: database comparisons
	3.3 Prior Performance Comparisons: A Mixed Bag
	3.4 Focus on ETL Performance
	3.5 Motif Logo plots libraries
	3.6 Extraction Transformation Loading data
	3.7 Hadoop
	3.8 Supportability and System Selection
	3.9 Cluster Failure and Distributed Metadata
	3.10 Load Balancing and Failure Prediction in NoSQL Databases
	3.11 Addressing Batch-Correlated Disk Failures

	4 atSNP Search
	4.1 atSNP data
	4.2 Database survey and feasibility objective
	4.2.1 Apache Cassandra
	4.2.2 MySQL
	4.2.3 Elasticsearch

	4.3 atSNP Search results
	4.4 Discussion
	4.4.1 Survey
	4.4.2 Composite Logo Plots
	4.4.3 ETL with HTCondor

	4.5 Conclusions
	4.6 Failures new motivation

	5 Hard Disk Drive Faults and Failures and Cluster Task Failures; Background and Related Work
	5.1 Hard disk drives faults and failures
	5.1.1 Disk Failures
	5.1.2 S.M.A.R.T. Attributes
	5.1.3 Data Mining
	5.1.4 Machine Learning
	5.1.5 Classification Algorithms
	5.1.6 Time Series
	5.1.7 Vector Auto Regression
	5.1.8 Imbalanced domain learning
	5.1.9 Evaluation Metrics
	5.1.10 Cascading Failures - COME BACK IF TIME PERMITS
	5.1.11 Backblaze dataset and related work

	5.2 Computational cluster task failures
	5.2.1 Anomaly detection in recent works

	6 Hard Disk Drive Faults and Failures
	6.1 Dataset exploration
	6.1.1 Cleaning the Data
	6.1.2 Methodology

	6.2 Classification Algorithms
	6.3 VAR Model
	6.4 Discussion
	6.5 Conclusions

	7 Computational Cluster Task Failures
	7.1 Dataset exploration
	7.2 Methodology
	7.3 Discussion

	8 Conclusions
	8.1 atSNP Search
	8.2 Hard Disk Drive Faults and Failures
	8.3 Computational Cluster Task Failures

	9 Future work and Final thoughts
	9.1 atSNP Search
	9.2 Hard Disk Drive failures, faults and misbehavior's
	9.3 Computational Cluster task failure prediction
	9.4 Final Thoughts

	A AtSNP Search Journal Papers
	B AtSNP infrastructure Conference Paper
	C Predicting Hard Disk Drive faults, failures and associated misbehaviorâ��s
	D Hard Disk failure prediction tables and results
	E Computational Cluster Batch Task Profiling with Machine Learning for Failure Prediction
	Bibliography

