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Abstract. Resampling methodologies, like the generalised jackknife and the bootstrap

are important tools for a reliable semi-parametric estimation of parameters of extreme

or even rare events. Among these parameters we mention the extreme value index,

denoted ξ, the primary parameter in statistics of extremes, and the extremal index,

denoted θ, a measure of clustering of extreme events. Most of the semi-parametric

estimators of these parameters show the same type of behaviour: nice asymptotic

properties, but a high variance for small k, the number of upper order statistics used in

the estimation, a high bias for large k, and the need for an adequate choice of k. After

a brief reference to some estimators of the aforementioned parameters and their as-

ymptotic properties we present algorithms for an adaptive reliable estimation of ξ and θ.

Keywords and phrases. Bootstrap and jackknife methodologies; semi-parametric es-

timation; statistics of extremes.

1. Introduction

Resampling methodologies have recently revealed to be extremely fruitful in the field

of statistics of extremes. Among others, we mention the importance of the generalized

jackknife (GJ) (Gray and Schucany, 1972) and the bootstrap (Efron, 1979) for a reliable

semi-parametric estimation of any parameter of extreme or even rare events, like a high

quantile, the expected shortfall, the return period of a high level or the two primary

parameters of extreme events, the extreme value index (EVI) and the extremal index

(EI).

In order to illustrate such topics, we consider essentially a GJ minimum-variance

reduced-bias (MVRB) class of estimators of a positive EVI. The MVRV EVI-estimators

were introduced and studied in Caeiro et al. (2005). The GJ-MVRB EVI-estimators were

studied in Gomes et al. (2013). We further consider a GJ Leadbetter-Nandagopalan EI-

estimator, introduced and studied in Gomes et al. (2008c). In Section 2, we begin with a

brief introduction to extreme value theory (EVT). Both the EVI and the EI are defined,
1
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and first, second and third-order conditions in EVT are made explicit. In Section 3, a set

of classical and reduced-bias EVI and EI-estimators is presented. Section 4 is dedicated

to a brief reference to resampling methodologies and its use in a reliable EVI and EI-

estimation. In Sections 5 and 6 we respectively present a few illustrative case-studies

and some overall conclusions.

2. EVT—a brief introduction

2.1. The EVI. We shall use the notation ξ for the EVI for maxima, the shape parameter

in the extreme value (EV) cumulative distribution function (cdf),

(1) EVξ(x) =

{
exp(−(1 + ξx)−1/ξ), 1 + ξx > 0 if ξ 6= 0

exp(− exp(−x), x ∈ R if ξ = 0,

and we shall consider models with a heavy right-tail, i.e. an underlying right tail or

survival function,

F := 1− F ∈ R−1/ξ, for some ξ > 0,

where the notation Rα stands for the class of regularly-varying functions with an index

of regular variation equal to α, i.e., positive measurable functions g(·) such that for all

x > 0, g(tx)/g(t)→ xα, as t→∞ (see Bingham et al., 1987).

2.2. First, second and third-order frameworks. Then (Gnedenko, 1943), F is

in the domain of attraction for maxima of a Fréchet-type extreme value cdf, i.e.

an EVξ cdf with ξ > 0, in the sense that given a sequence of random samples,

(X1, . . . , Xn), it is possible to linearly normalise the sequence of maximum values

{Xn:n := max(X1, . . . , Xn)}n≥1 and get convergence to a non-degenerate random vari-

able (rv), with cdf EVξ, defined in (1), with ξ > 0. We then write

F ∈ DM(EVξ>0) =: DM+.

In this same context of heavy right-tails, and with the notation

U(t) = F←(1− 1/t), t ≥ 1,

F←(y) = inf{x : F (x) ≥ y} the generalized inverse function of the underlying model F ,

we can further say (de Haan, 1984) that

(2) F ∈ DM
+ ⇐⇒ F ∈ R−1/ξ ⇐⇒ U ∈ Rξ,

the so-called first-order conditions.
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For consistent semi-parametric EVI-estimation, in the whole D+
M , we merely need to

assume the validity of one of the first-order conditions, like U ∈ Rξ, and to work with

adequate functionals, dependent on an intermediate tuning parameter k, the number of

top order statistics (os’s) involved in the estimation. This means that k needs to be such

that

(3) k = kn →∞ and kn = o(n), as n→∞.

To obtain information on the non-degenerate asymptotic behaviour of semi-parametric

EVI-estimators, we need further assuming a second-order condition, ruling the rate of

convergence in any of the first-order conditions in (2). The second-order parameter, ρ

(≤ 0), rules such a rate of convergence, and it is the parameter appearing in the limiting

result,

(4) lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=
xρ − 1

ρ
,

where we are using the interpretation of the Box-Cox transformation as the logarithm

when the power equals zero. We often assume that (4) holds for every x > 0. Then,

|A| must compulsory be in Rρ (Geluk and de Haan, 1987). For technical simplicity, we

usually further assume that ρ < 0, writing

(5) A(t) =: ξβtρ,

dependent on the vector (β, ρ) of second-order parameters.

To obtain full information on the asymptotic bias of any corrected-bias EVI-estimator,

it is often necessary to further assume a general third-order condition, ruling now the

rate of convergence in the second-order condition in (4), which guarantees that, for all

x > 0,

(6) lim
t→∞

lnU(tx)−lnU(t)−ξ lnx
A(t)

− xρ−1
ρ

B(t)
=
xρ+ρ

′ − 1

ρ+ ρ′
,

where |B| must then be in Rρ′ .

More restrictively, and equivalently to the aforementioned condition in (6) with ρ =

ρ′ < 0, we often consider a Pareto third-order condition, i.e., a Pareto-type class of

models, with a tail function

(7) 1− F (x) = Cx−1/ξ
(
1 +D1x

ρ/ξ +D2x
2ρ/ξ + o

(
x2ρ/ξ

))
,

as x→∞, with C > 0, D1, D2 6= 0, ρ < 0.
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Then we can choose in the aforementioned general third-order condition, in (6),

(8) B(t) = β′ tρ =
β′A(t)

βξ
=:

ζ A(t)

ξ
, β, β′ 6= 0, ζ =

β′

β
,

with β and β′ ‘scale’ second and third-order parameters, respectively, and A the function

in (5).

2.3. The EI. The EI is a parameter of extreme events related to the clustering of

exceedances of high thresholds, a situation that occurs with stationary sequences (Lead-

better, 1973). We thus assume to be working with a strictly stationary sequence of

rv’s, {Xn}n≥1, from F , under the long range dependence condition D (Leadbetter et al.,

1983) and the local dependence condition D” (Leadbetter and Nandagopalan, 1989).

Definition 1. The stationary sequence {Xn}n≥1 from an underlying model F is said to

have an extremal index θ (0 < θ ≤ 1) if, for all τ > 0, we can find a sequence of levels

un = un(τ) such that, with {Yn}n≥1 the associated independent, identically distributed

(iid) sequence (i.e., an iid sequence from the same F ),

P (Yn:n ≤ un) = F n(un) −→
n→∞

e−τ and P (Xn:n ≤ un) −→
n→∞

e−θτ .

Remark 2. D and D” are straightforwardly valid for iid data, and θ = 1.

For dependent sequences there can thus appear a ‘shrinkage’ of maximum values, but

the limiting cdf of Xn:n, linearly normalized, is still an EV cdf, i.e. from the cdf EVξ

family, in (1).

The extremal index can also in most cases be defined as:

θ =
1

limiting mean size of clusters

= lim
n→∞

P(X2 ≤ un|X1 > un) = lim
n→∞

P(X1 ≤ un|X2 > un),

un : F (un) = 1− τ/n+ o(1/n), as n→∞, with τ > 0, fixed.
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The ARMAX processes will be the ones used here for illustration. Such processes are

based on an iid sequence of innovations {Zi}i≥1, with cdf H, and are defined through

the relation,

Xi := βmax(Xi−1, Zi), i ≥ 1, 0 < β < 1.

The ARMAX sequences have a stationary distribution F , dependent on H through

the stationarity equation F (βx)/F (x) = H(x) (Alpuim, 1989). Conditions D and D”

hold for these sequences and they can possess an extremal index θ < 1.

For illustration, we shall consider ARMAX processes with Fréchet innovations. If

H(x) = Φβ−1/ξ−1
ξ (x), then F (x) = Φξ(x) = exp

(
−x−1/ξ

)
, x ≥ 0, and θ = 1− β1/ξ.

! = 0.5 ! = 0.2

0

5

10

15

20

0 10 20 30 40 50

0

5

10

15

20

0 10 20 30 40 50

! = 0.2! = 0.5

Figure 1. Sample paths of ARMAX processes with extremal index θ =

0.5 (left) and 0.2 (right)

Notice the richness of these processes regarding clustering of exceedances. Note also

that for the same underlying model F there is a ‘shrinkage of maximum values’, together

with the exhibition of larger and larger ‘clusters of exceedances’ of high values, as θ

decreases.

3. EVI and EI-ESTIMATORS

3.1. Classical EVI-estimators. For models in D+
M, the classical EVI-estimators are

the Hill estimators (Hill, 1975), averages of the log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n,

i.e.,

(9) Hn(k) ≡ H(k) := 1
k

k∑
i=1

Vik, 1 ≤ k < n.
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But these EVI-estimators have often a strong asymptotic bias for moderate up to

large values of k, of the order of A(n/k), with A the function in (4), and the adequate

accommodation of this bias has recently been extensively addressed in the literature.

3.2. Second-order reduced-bias (SORB) EVI-estimators. We mention the pio-

neering papers by Peng (1998), Beirlant et al. (1999), Feuerverger and Hall (1999)

and Gomes et al. (2000; 2002), among others. In these papers, authors are led to

SORB EVI-estimators, with asymptotic variances larger than or equal to (ξ (1− ρ)/ρ)2,

where ρ(< 0) is the aforementioned ‘shape’ second-order parameter, in (4). Note that

(ξ (1− ρ)/ρ)2 is the minimal asymptotic variance of an ‘asymptotically unbiased’ EVI-

estimator in Drees’ class of functionals (Drees, 1998).

3.3. MVRB EVI-estimators. Recently, Caeiro et al. (2005), Gomes et al. (2007) and

Gomes et al. (2008b) considered, in different ways, the problem of corrected-bias EVI-

estimation, being able to reduce the bias without increasing the asymptotic variance,

which was shown to be kept at ξ2, the asymptotic variance of Hill’s estimator, the

maximum likelihood (ML) estimator of ξ for an underlying Pareto cdf, F
P

(x) = 1 −
(x/C)−1/ξ, x ≥ C. Those estimators, called MVRB, from minimum-variance reduced-

bias, are all based on an adequate ‘external’ consistent estimation of the pair of second-

order parameters, (β, ρ) ∈ (R,R−), in (5), done through estimators denoted (β̂, ρ̂), and

outperform the classical estimators for all k. We shall now consider the simplest class

of MVRB EVI-estimators in Caeiro et al. (2005), a corrected-Hill (CH) EVI-estimator

with the functional form

(10) H(k) ≡ Hβ̂,ρ̂(k) := H(k)
(

1− β̂

1− ρ̂

(n
k

)ρ̂ )
.

For the estimation of (β, ρ), and following Gomes and Pestana (2007) (see also Gomes

et al., 2014, among others), we consider the following:

Algorithm 3.1 (Second-order parameters’ estimation).

Given xn := (x1, . . . , xn), an observed value of the random sample Xn := (X1, . . . , Xn),

S1: Compute, for the tuning parameters τ = 0 and τ = 1 the observed values of

the simplest ρ-estimator in Fraga Alves et al. (2003),

ρ̂τ (k) ≡ ρ̂τ (k; Xn) := −
∣∣∣∣3(Vτ (k; Xn)− 1)

Vτ (k; Xn)− 3

∣∣∣∣ ,
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where

Vτ (k; Xn) :=



(
M

(1)
n (k;Xn)

)τ
−
(
M

(2)
n (k;Xn)/2

)τ/2
(
M

(2)
n (k;Xn)/2

)τ/2
−
(
M

(3)
n (k;Xn)/6

)τ/3 , if τ 6= 0,

lnM
(1)
n (k;Xn)−ln

(
M

(2)
n (k;Xn)/2

)
/2

ln
(
M

(2)
n (k;Xn)/2

)
/2−ln

(
M

(3)
n (k;Xn)/6

)
/3
, if τ = 0,

is defined for any tuning parameter τ ∈ R, with

M (j)
n (k; Xn) :=

1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n)j , j = 1, 2, 3.

With bxc denoting the integer part of x, consider {ρ̂τ (k)}k∈K, with K =(
bn0.995c, bn0.999c

)
, compute their median, denoted χτ , and further compute

Iτ :=
∑

k∈K (ρ̂τ (k)− χτ )2, τ = 0, 1. Next choose the tuning parameter τ ∗ = 0

if I0 ≤ I1; otherwise, choose τ ∗ = 1.

S2: Work with ρ̂ ≡ ρ̂τ∗(k1) and β̂ = β̂ρ̂(k1), where

k1 =
⌊
n1−ε⌋ , ε = 0.001,

and with

dα(k) :=
1

k

k∑
i=1

(
i

k

)−α
, Dα(k) :=

1

k

k∑
i=1

(
i

k

)−α
i ln

Xn−i+1:n

Xn−i:n
, α ∈ R,

β̂ρ̂(k) ≡ β̂ρ̂(k; Xn) :=

(
k

n

)ρ̂
dρ̂(k) D0(k)−Dρ̂(k)

dρ̂(k) Dρ̂(k)−D2ρ̂(k)

is the β-estimator introduced and studied in Gomes and Martins (2002).

For recent overviews on reduced-bias EVI-estimation see Reiss and Thomas (2007, Chap-

ter 6), Gomes et al. (2008a), Beirlant et al. (2012) and Gomes and Guillou (2014).

3.4. Asymptotic comparison of classical and MVRB EVI-estimators. The Hill

estimator reveals usually a high asymptotic bias. Indeed, with N (µ, σ2) denoting a

normal rv with mean value µ and variance σ2, it follows from the results of de Haan and

Peng (1998) that under the general second-order condition, in (4),

√
k (H(k)− ξ) d

= N (0, σ2
H

) + b
H

√
kA(n/k) + op

(√
kA(n/k)

)
,

where σ2
H

= ξ2, and for ρ < 0 and A(t) = ξβtρ, already defined in (5), the bias

b
H

√
kA(n/k) = ξ β

√
k (n/k)ρ/(1 − ρ) can be very large (going to infinity), moder-

ate (going to a constant) or small (going to zero) as n → ∞, depending on the rate of

increase of the sequence kn with n.
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This non-null asymptotic bias of the order of A(n/k), together with a rate of conver-

gence of the order of 1/
√
k, leads to sample paths with a high variance for small k, a

high bias for large k, and a very sharp mean square error (MSE) pattern, as a function

of k.

Under the same conditions as before,
√
k
(
H(k)− ξ

)
is asymptotically normal with

variance also equal to ξ2 but with a null mean value. Indeed, from the results in Caeiro et

al. (2005), we know that it is possible to adequately estimate the second-order parameters

β and ρ, through for instance Algorithm 3.1, so that we get

√
k
(
H(k)− ξ

) d
= N (0, ξ2) + op

(√
kA(n/k)

)
.

Consequently, H(k) outperforms H(k) for all k. Under the validity of the aforementioned

third-order condition related to Pareto-type class of models, i.e. the condition in (7),

and with ζ defined in (8), we can then adequately estimate the vector of second-order

parameters, (β, ρ), and write (Caeiro et al., 2009)

√
k
(
H(k)− ξ

) d
= N (0, ξ2) + b

H

√
kA2(n/k) + op

(√
kA2(n/k)

)
,

b
H

=
1

ξ

(
ζ

1− 2ρ
− 1

(1− 2ρ)2

)
,

i.e. the bias is now of the order of A2(n/k).

3.5. Classical EI-estimators. Given a sample (X1, . . . , Xn) and chosen a suitable

threshold u, with IA the indicator function of A, a possible estimator of θ (Leadbetter

and Nandagopalan, 1989) is given by

θ̂Nn = θ̂Nn (u) :=

n−1∑
j=1

I[Xj>u,Xj+1≤u]

n∑
j=1

I[Xj>u]

=

n−1∑
j=1

I[Xj≤u<Xj+1]

n∑
j=1

I[Xj>u]

.

To have consistency, the high level u must be such that n(1−F (un)) = cnτ = τn, τn →∞
and τn/n → 0 (Nandagopalan, 1990). Indeed, the intermediate sequence kn, in (3), in

an EVI-estimation is being replaced, in an EI-estimation, by the sequence τn = cnτ with

cn →∞ as n→∞.

To make the semi-parametric EI-estimation closer to the semi-parametric EVI-

estimation, it is sensible to consider (see Gomes et al., 2008c) a deterministic level
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u ∈ [Xn−k:n, Xn−k+1:n) and the estimator

(11) θ̂Nn (k) ≡ θ̂Nn (u) :=
1

k

n−1∑
j=1

I[Xj≤Xn−k:n<Xj+1].

Bias assumption on the data structures. For iid data (θ = 1):

E
{
θ̂Nn (k)

}
= 1 +

(
1

2 k
− k

n

)
(1 + o(1)).

Moreover, for ARMAX processes, we get

E
{
θ̂Nn (k)

}
= θ −

(
θ(θ + 1)

2

(
k

n

)
− 3− 2 θ

2 k

)
(1 + o(1)).

We shall thus consider the EI-estimator as a function of k, the number of os’s higher

than the chosen threshold, as given in (11). Moreover, we shall further assume a sensible

structure for the asymptotic bias, given by

(12) Bias
{
θ̂Nn (k)

}
= ϕ1(θ)

(
k

n

)
+ ϕ2(θ)

(
1

k

)
+ o

(
1

k

)
+ o

(
k

n

)
,

as n→∞, and for any intermediate k (see Gomes et al., 2008c).

In the semi-parametric EI-estimation we have thus to cope with problems similar to

the ones appearing in the EVI-estimation: increasing bias, as the threshold decreases

and a high variance for high thresholds, and it is sensible to ask whether it is possible

to improve the performance of estimators through the use of resampling methods.

We are next interested in the use of the GJ methodology, in order to reduce the bias of

the MVRB EVI-estimators, in (10) and the classical EI-estimators, in (11). In statistics

we often put the question, “May the combination of information improve the quality of

estimators of a certain parameter or functional”? The jackknife or GJ are resampling

methodologies, which usually give a positive answer to such a question. Indeed, the

main objectives of the jackknife methodology are:

(1) Bias and variance estimation of a certain statistic, only through manipulation of

observed data x.

(2) The building of estimators with bias and MSE smaller than those of an initial

set of estimators.

4. Resampling methodologies

As mentioned in the very beginning of this article, the use of resampling methodologies

has revealed to be promising in the estimation of the nuisance parameter k, and in
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the reduction of bias of any estimator of a parameter of extreme events. If we ask

how to choose the tuning parameter k in the EVI-estimation, either through H(k) or

through H(k), given respectively in (9) and (10), we usually consider the estimation of

kH0 := arg mink MSE(H(k)) or kH0 = arg mink MSE(H(k)). To obtain estimates of kH0 and

kH0 one can then use a double-bootstrap method applied to an adequate auxiliary statistic

which tends to zero and has an asymptotic behaviour similar to the one of either H(k)

(Draisma et al., 1999, Gomes and Oliveira, 2001, Danielsson et al., 2001, among others)

or H(k) (Gomes, et al., 2011, 2012). See also, Gomes et al. (2014), for a short review on

the role of bootstrap in statistics of extremes.

But at such optimal levels, we still have a non-null asymptotic bias even when we

work with the CH EVI-estimator H, in (10). If we still want to remove such a bias,

we can make use of the GJ methodology. It is then enough to consider an adequate

pair of estimators of the parameter of extreme events under consideration, and to build

a reduced-bias affine combination of them. In Gomes et al. (2000; 2002), also among

others, we can find an application of this technique to the Hill estimator and in Gomes et

al. (2013) an application to the CH EVI-estimators, in (10). To illustrate here the use of

these methodologies in EVT, we again apply the GJ methodology to the aforementioned

MVRB estimators H(k) in Caeiro et al. (2005), just as performed in Gomes et al. (2013).

4.1. The jackknife methodology and bias reduction. The pioneering EVI reduced-

bias estimators are, in a certain sense, GJ estimators, i.e., affine combinations of well-

known estimators of ξ. The GJ statistic was introduced by Gray and Shucany (1972):

Let T
(1)
n and T

(2)
n be two biased estimators of ξ, with similar bias properties, i.e.,

Bias(T (i)
n ) = ξ + φ(ξ)di(n), i = 1, 2.

Then, if q = qn = d1(n)/d2(n) 6= 1, the affine combination

TG
n :=

(
T (1)
n − qT (2)

n

)
/(1− q)

is an unbiased estimator of ξ.

4.2. A GJ corrected-bias EVI-estimator. Given H, defined in (10), the most natural

GJ rv is the one associated to the random pair
(
H(k),H(bθkc)

)
, 0 < θ < 1, i.e.

H
GJ(q,θ)

(k) :=
H(k)− q H(bθkc)

1− q
, 0 < θ < 1,
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with

q = qn =
Bias∞

{
H(k)

}
Bias∞

{
H(bθkc)

} =
A2(n/k)

A2(n/bθkc)
−→

n/k→∞
θ2ρ.

It is thus sensible to consider q = θ2ρ, θ = 1/2, and, with ρ̂ a consistent estimator of ρ,

the GJ EVI-estimator,

(13) H
GJ

(k) :=
22ρ̂ H(k)− H(bk/2c)

22ρ̂ − 1
.

Then (Gomes et al., 2013), and provided that ρ̂− ρ = op(1),

√
k
(

H
GJ

(k)− ξ
)

d
= N (0, σ2

GJ
) + op

(√
kA2(n/k)

)
,

with

σ2
GJ

= ξ2(1 + 1/(2−2ρ − 1)2).

We have thus the ‘old’ trade-off between variance and bias, as happened with all the

aforementioned SORB EVI-estimators associated with classical EVI-estimators. The

bias decreases, but the variance increases. However, at optimal levels in the sense of

minimal MSE, these third-order reduced-bias GJ EVI-estimators can often beat the

MVRB EVI-estimators.

4.3. Asymptotic bias and efficiency of an affine combination of corrected-

bias EVI-estimators. Just as mentioned before, the most obvious affine combination

associated with the CH EVI-estimator H(k), is

(14) H
GJ(a)

(k) := aH(bk/2c) + (1− a)H(k).

We have thus a class of estimators parameterized in the tuning parameter a, to be chosen

in the most adequate way.

We next refer the behaviour of the asymptotic bias and the efficiency of the affine

combination in (14), referring first their asymptotic properties for a possibly non-optimal

choice of a > 1. For a fixed level k, the reduction in the asymptotic bias of H
GJ(a)

(k)

comparatively with H(k) is measured by the indicator:

(15) ABRa := lim
n→∞

(∣∣∣∣∣ Bias∞
{
H(k)

}
Bias∞

{
H

GJ(a)
(k)
}
∣∣∣∣∣
)

=
1

|1− a(1− 22ρ)|
.

In Figure 2 we present, in the (a, ρ)-plane, the values of the indicator ABRa, in (15),

independent of the tail index ξ.
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0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-0.10 1.15 1.17 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.33 1.35 1.37 1.40 1.42 1.45 1.48 1.51 1.54 1.57 1.60 1.63

-0.20 1.32 1.36 1.41 1.46 1.51 1.57 1.63 1.70 1.77 1.85 1.94 2.03 2.14 2.26 2.39 2.53 2.70 2.89 3.11 3.36 3.66

-0.30 1.52 1.60 1.69 1.79 1.91 2.04 2.19 2.37 2.58 2.83 3.13 3.50 3.98 4.60 5.45 6.69 8.67 ### ### ### ###

-0.40 1.74 1.88 2.04 2.24 2.47 2.77 3.14 3.62 4.28 5.23 6.73 9.42 ### ### ### ### 9.37 6.70 5.21 4.27 3.61

-0.50 2.00 2.22 2.50 2.86 3.33 4.00 5.00 6.67 ### ### ### ### ### 6.67 5.00 4.00 3.33 2.86 2.50 2.22 2.00

-0.60 2.30 2.64 3.10 3.76 4.78 6.54 ### ### ### ### 7.73 5.38 4.13 3.35 2.81 2.43 2.14 1.91 1.72 1.57 1.44

-0.70 2.64 3.16 3.93 5.19 7.66 ### ### ### 8.48 5.55 4.13 3.29 2.73 2.33 2.04 1.81 1.63 1.48 1.35 1.25 1.16

-0.80 3.03 3.80 5.11 7.76 ### ### ### 7.18 4.85 3.66 2.94 2.46 2.11 1.85 1.64 1.48 1.35 1.24 1.14 1.06 0.99

-0.90 3.48 4.63 6.92 ### ### ### 7.12 4.72 3.53 2.82 2.35 2.01 1.76 1.56 1.41 1.28 1.17 1.08 1.00 0.94 0.88

-1.00 4.00 5.71 ### ### ### 8.00 5.00 3.64 2.86 2.35 2.00 1.74 1.54 1.38 1.25 1.14 1.05 0.98 0.91 0.85 0.80

-1.10 4.59 7.17 ### ### ### 5.76 3.97 3.03 2.45 2.06 1.77 1.56 1.39 1.25 1.14 1.05 0.97 0.90 0.84 0.79 0.74

-1.20 5.28 9.22 ### ### 7.42 4.63 3.37 2.65 2.18 1.85 1.61 1.42 1.28 1.16 1.06 0.97 0.90 0.84 0.79 0.74 0.70

-1.30 6.06 ### ### ### 5.91 3.96 2.98 2.38 1.99 1.70 1.49 1.33 1.19 1.09 1.00 0.92 0.85 0.80 0.75 0.70 0.66

-1.40 6.96 ### ### 8.82 5.03 3.51 2.70 2.19 1.85 1.59 1.40 1.25 1.13 1.03 0.95 0.88 0.82 0.76 0.72 0.67 0.64

-1.50 8.00 ### ### 7.27 4.44 3.20 2.50 2.05 1.74 1.51 1.33 1.19 1.08 0.99 0.91 0.84 0.78 0.73 0.69 0.65 0.62

-1.60 9.19 ### ### 6.31 4.04 2.97 2.35 1.94 1.66 1.44 1.28 1.15 1.04 0.95 0.88 0.81 0.76 0.71 0.67 0.63 0.60

-1.70 ### ### ### 5.65 3.74 2.79 2.23 1.86 1.59 1.39 1.23 1.11 1.01 0.92 0.85 0.79 0.74 0.69 0.65 0.62 0.58

-1.80 ### ### 9.90 5.19 3.51 2.66 2.14 1.79 1.53 1.35 1.20 1.08 0.98 0.90 0.83 0.77 0.72 0.68 0.64 0.60 0.57

-1.90 ### ### 8.78 4.84 3.34 2.55 2.06 1.73 1.49 1.31 1.17 1.05 0.96 0.88 0.81 0.76 0.71 0.66 0.63 0.59 0.56

-2.00 ### ### 8.00 4.57 3.20 2.46 2.00 1.68 1.45 1.28 1.14 1.03 0.94 0.86 0.80 0.74 0.70 0.65 0.62 0.58 0.55

1 ! ABRa < 2 ABRa ! 2ABRa = 1

Figure 2. Asymptotic bias reduction (ABR) indicator

As usual, let us define the asymptotic efficiency of H
GJ(a)

(k) relatively to H(k) as the

quotient between the two asymptotic MSEs, computed at optimal levels. Provided that

a 6= 1/(1− 22ρ), we have the indicator

(16) AREFa :=
MSE∞

{
H(kH0 )

}
MSE∞

{
H

GJ(a)
(kH

GJ(a)

0 )
} =

(
(a2 + 1)2ρ

1− a(1− 22ρ)

) 2
1−4ρ

.

We next show, in Figure 3, and again in the (a, ρ)-plane, the values of the asymptotic

relative efficiency indicator, in (16), which becomes infinity for a = 1/(1−22ρ), the value

of a associated with the GJ rv.

Some general comments:

• The reduction in bias is achieved in a wide region of the (a, ρ)-plane, making

almost irrelevant a choice of the tuning parameter a.

• However, it is clear that for a reduction in MSE we indeed need to work close

to the line a = 1/(1 − 22ρ). This justifies the introduction of the GJ estimator

H
GJ

(k), in (13).



RESAMPLING METHODOLOGIES AND RELIABLE TAIL ESTIMATION 13

a 1
.0
0

1
.1
0

1
.2
0

1
.3
0

1
.4
0

1
.5
0

1
.6
0

1
.7
0

1
.8
0

1
.9
0

2
.0
0

2
.1
0

2
.2
0

2
.3
0

2
.4
0

2
.5
0

2
.6
0

2
.7
0

2
.8
0

2
.9
0

3
.0
0

!

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-0.10 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.02 1.03 1.05

-0.20 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.99 1.01 1.02 1.04 1.06 1.09 1.12 1.16 1.21 1.27 1.34 1.42 1.52

-0.30 1.00 0.99 0.99 0.99 1.00 1.01 1.02 1.05 1.08 1.12 1.17 1.24 1.34 1.47 1.65 1.91 2.33 3.09 4.88 14.96 9.66

-0.40 1.00 1.00 1.00 1.01 1.03 1.06 1.10 1.17 1.26 1.39 1.61 1.99 2.81 6.30 5.90 2.44 1.58 1.18 0.93 0.77 0.65

-0.50 1.00 1.00 1.02 1.04 1.08 1.15 1.25 1.43 1.77 2.66 #### 2.39 1.43 1.04 0.82 0.67 0.57 0.49 0.43 0.38 0.34

-0.60 1.00 1.01 1.04 1.08 1.17 1.31 1.62 2.55 4.03 1.59 1.07 0.82 0.66 0.56 0.48 0.42 0.37 0.33 0.30 0.27 0.24

-0.70 1.00 1.02 1.06 1.15 1.31 1.72 5.65 1.68 1.06 0.80 0.64 0.54 0.46 0.40 0.36 0.32 0.29 0.26 0.24 0.22 0.20

-0.80 1.00 1.03 1.10 1.25 1.65 4.99 1.33 0.91 0.71 0.58 0.49 0.42 0.37 0.33 0.30 0.27 0.24 0.22 0.20 0.19 0.17

-0.90 1.00 1.05 1.15 1.44 6.32 1.27 0.87 0.68 0.56 0.47 0.41 0.36 0.32 0.29 0.26 0.24 0.22 0.20 0.18 0.17 0.16

-1.00 1.00 1.06 1.23 1.98 1.39 0.89 0.69 0.57 0.48 0.41 0.36 0.32 0.29 0.26 0.24 0.22 0.20 0.18 0.17 0.16 0.14

-1.10 1.00 1.09 1.36 2.02 0.99 0.73 0.59 0.50 0.43 0.38 0.33 0.30 0.27 0.24 0.22 0.20 0.19 0.17 0.16 0.15 0.14

-1.20 1.00 1.12 1.65 1.21 0.81 0.64 0.53 0.45 0.40 0.35 0.31 0.28 0.25 0.23 0.21 0.19 0.18 0.16 0.15 0.14 0.13

-1.30 1.00 1.15 3.47 0.96 0.71 0.58 0.49 0.42 0.37 0.33 0.30 0.27 0.24 0.22 0.20 0.18 0.17 0.16 0.15 0.14 0.13

-1.40 1.00 1.21 1.39 0.84 0.65 0.54 0.46 0.40 0.35 0.31 0.28 0.26 0.23 0.21 0.19 0.18 0.17 0.15 0.14 0.13 0.12

-1.50 1.00 1.29 1.10 0.75 0.60 0.51 0.44 0.38 0.34 0.30 0.27 0.25 0.23 0.21 0.19 0.17 0.16 0.15 0.14 0.13 0.12

-1.60 1.00 1.46 0.95 0.70 0.57 0.48 0.42 0.37 0.33 0.29 0.27 0.24 0.22 0.20 0.18 0.17 0.16 0.15 0.14 0.13 0.12

-1.70 1.00 2.04 0.86 0.66 0.54 0.47 0.41 0.36 0.32 0.29 0.26 0.24 0.22 0.20 0.18 0.17 0.16 0.14 0.13 0.13 0.12

-1.80 1.00 1.56 0.80 0.63 0.52 0.45 0.39 0.35 0.31 0.28 0.25 0.23 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.12

-1.90 1.00 1.22 0.75 0.60 0.51 0.44 0.39 0.34 0.31 0.28 0.25 0.23 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.11

-2.00 1.00 1.07 0.72 0.58 0.49 0.43 0.38 0.34 0.30 0.27 0.25 0.22 0.21 0.19 0.17 0.16 0.15 0.14 0.13 0.12 0.11

1 ! AREFFa < 2 AREFFa ! 2AREFFa = 1

Figure 3. Asymptotic relative efficiency (AREFF) indicator

• There is then a high reduction in the MSE of the GJ H-estimators, at optimal

level, in the sense of minimal MSE as a function of k, comparatively with the

original H-estimators, also at optimal level.

• The sample paths of these corrected-bias estimators are usually quite stable. The

choice of the optimal level is thus of a smaller importance.

• But, even so, we can use the bootstrap methodology for the choice of such an

optimal level, as already mentioned in this article.

4.4. A GJ corrected-bias EI-estimator. Since the bias term of the aforementioned

classical EI-estimator reveals two main components of different orders, as can be seen

in (12), we need to use an affine combination of three EI-estimators, i.e. an order-2

GJ-statistic.

Let X = (X1, . . . , Xn) be a sample from F , and let Tn = Tn(X,F ) be an estimator

of a functional θ(F ), or of a parameter θ. If the bias of our estimator reveals two main
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terms that we would like to remove, the GJ methodology advises us to deal with three

estimators with the same type of bias:

Definition 3. Given three estimators T
(1)
n , T

(2)
n and T

(3)
n of θ, such that

E
{
T (i)
n − θ

}
= d1(θ) ϕ

(i)
1 (n) + d2(θ) ϕ

(i)
2 (n), i = 1, 2, 3,

the GJ-statistic (of order 2) is given by

TGJn :=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
T

(1)

n T
(2)

n T
(3)

n

ϕ
(1)

1 ϕ
(2)

1 ϕ
(3)

1

ϕ
(1)

2 ϕ
(2)

2 ϕ
(3)

2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ /
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 1 1

ϕ
(1)

1 ϕ
(2)

1 ϕ
(3)

1

ϕ
(1)

2 ϕ
(2)

2 ϕ
(3)

2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ ,
with ||A|| denoting, as usual, the determinant of the matrix A.

Straightforwardly, one may state:

Proposition 1. TGJ
n is unbiased for the estimation of θ.

Moreover, although the variance of TGJ
n is always larger than the variance of the

original estimators, the MSE of TGJ
n is often smaller than that of any of the statistics

T
(i)
n , i = 1, 2, 3.

Given the information on the bias of the extremal index estimator θ̂Nn (k), in (11), as

stated in (12), let us consider, just as in Gomes et al. (2008c), the levels k, bδkc+ 1 and

bδ2kc+ 1, dependent of a tuning parameter δ, 0 < δ < 1, and the class of estimators,

(17) θ̂GJ(δ)
n (k) :=

(δ2 + 1) θ̂Nn ([δk] + 1)− δ
(
θ̂Nn ([δ2k] + 1) + θ̂Nn (k)

)
(1− δ)2

.

Among the members of this class, the aforementioned authors have been heuristically

led to the choice δ = 1/4. Distributional properties of

(18) θ̂GJ
n (k) := θ̂GJ(1/4)

n (k)

have so far been obtained only through simulation techniques, and are next briefly

presented.

In Figure 4, we picture the sample paths of θ̂Nn (k), in (11), and θ̂GJ
n (k) ≡ θ̂

GJ(1/4)
n (k), in

(18), with θ̂
GJ(δ)
n (k) generally given in (17), for a stationary Fréchet(1) ARMAX sample

of size n = 5000, with θ = 0.5. Note the reasonably high stability around the target
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value θ = 0.5, of the sample path of the GJ EI-estimator for a wide range of k-values,

comparatively to that of Nandagopalan’s estimator.

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

ˆ ! n
N

(k)

ˆ ! n
GJ

(k )

k

! = 0.5

Figure 4. Sample paths of θ̂Nn (k) and θ̂GJ
n (k) ≡ θ̂

GJ(1/4)
n (k), for a station-

ary Fréchet(1) ARMAX sample of size n = 5000, with θ = 0.5

In Figure 5, to exhibit the influence of the tuning parameter δ in the GJ EI-estimator,

we present the expected values and MSEs of such an estimator, associated with

δ = 0.1, 0.4 and 0.5, for the same structure as before.
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! = 0.1
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! = 0.5
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E MSE

 

! = 0.5

 

! = 0.1

 

! = 0.4

 

! = 0.5

k k

Figure 5. Expected value (E) and MSE of θ̂
GJ(δ)
n (k), in (17), associated

with δ = 0.1, 0.4 and 0.5, for a stationary Fréchet(1) ARMAX sample of

size n = 5000, with θ = 0.5

Remark 4. The mean value stability around the target value θ, for a wide range of k-

levels, is true for all θ and for all models simulated in Gomes et al. (2008c). But the
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GJ EI-estimator, θ̂GJ
n , in (18), may be not able to overpass for small θ, the original EI-

estimator, θ̂Nn , in (11), regarding MSE at optimal levels. Extra investment is thus needed

on the ‘optimal choice’ of the three levels to be used in the building of a GJ EI-estimator

or on the use of extra resampling or sub-sampling techniques, as initially performed in

Gomes et al. (2008c). These authors have used simple subsampling techniques, briefly

sketched in the following, in order to attain a smaller MSE at optimal levels.

4.5. Effect of sampling frequency on the EI of an ARMAX process. From the

articles of Robison and Tawn (2000), Scotto et al. (2003) and Martins and Ferreira

(2004), among others, we get the following result for stationary sequences under D and

D” conditions: If we consider the sub-sample V =
{
X(n−1)T

}
n≥1 we have,

θV = θX + lim
n→∞

∑T−2
i=0 P (X0 ≤ u < X1, XT−i > u)

τ/n
.

For ARMAX sequences,

θV = 1− (1− θX)T ⇐⇒ θX = 1− (1− θV)1/T .

Sub-sampling may thus improve the performance of an EI-estimator. After the im-

plementation of different subsampling algorithms, we here advance with the following

simple algorithm.

Algorithm 4.1.

Fix T (possibly T = 2), and compute r = bn/T c;
S1: Consider, for i = 1, . . . , T , Vi =

(
Xi, XT+i, · · · , X(r−1)T+i

)
, the T subsamples

of size r, and compute the estimates θ̂GJ
Vi

(j), j = 1, 2, . . . , r − 1;

S2: Compute

θ̂GJ
sub|T (k) = 1− 1

T

T∑
i=1

(
1− θ̂GJ

Vi
(j)
)1/T

,

for thresholds k = (j − 1)T + 1, . . . , j T , j = 1, 2, . . . , r − 1.

The use of the previous algorithm in θ̂GJ, in (17), with δ = 1/4, enable us to achieve,

at optimal levels, a MSE smaller than that of θ̂GJ, even for small values of θ, the most

problematic ones, i.e., the ones for which the GJ EI-estimator had not been able to

overpass the original estimator, regarding MSE at optimal levels. For small θ (here

illustrated with θ = 0.2), we are able to overpass the original estimator at optimal

levels, when we consider the GJ statistic with δ = 1/4, defined in (18), together with

the use of subsampling techniques with T = 2 or 3.
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Figure 6. Behaviour of the GJ statistic with δ = 1/4, together with the

use of subsampling techniques with T = 2 or 3

5. Case studies

5.1. The GJ EVI-estimation applied to insurance data. We next consider an

illustration of the performance of the estimators under study, through the analysis of

automobile claim amounts exceeding 1,200,000 Euro over the period 1988-2001, gath-

ered from several European insurance companies co-operating with the same re-insurer

(Secura Belgian Re), with a size n = 371. This data set was already studied in Beirlant

et al. (2004; 2008) and Vandewalle and Beirlant (2006), as an example to excess-of-loss

reinsurance rating and heavy-tailed distributions in car insurance. It is clear from the

box-and-whiskers plot in Figure 7 that data have been left-censored and that the right

tail of the underlying model is quite heavy.

Regarding the EVI-estimation, note that whereas the Hill EVI-estimator is unbiased

for the estimation of ξ when the underlying model is a strict Pareto model, it always

exhibits a relevant bias when we have only Pareto-like tails, as happens here and can be

seen in Figure 8.

The corrected-bias estimators, which are ‘asymptotically unbiased’, have a smaller

bias, exhibit more stable sample paths as functions of k, and enable us to take a decision

upon the estimate of ξ to be used, even with the help of any heuristic stability criterion,

like the ‘largest run’ method suggested in Gomes and Figueiredo (2006). A bootstrap

algorithm, not detailed here, but fully sketched in Gomes et al. (2012), helps us to provide

an adaptive choice for corrected-bias EVI-estimators. We have got k̂
0|H = 56, k̂

0|H
= 158,
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Secura data

Figure 7. Box-and-whiskers plot associated with Secura data
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Figure 8. Estimates and 95% bootstrap confidence intervals of the ex-

treme value index ξ for the Secura Belgian Re data

k̂
0|HGJ

= 261, and the EVI-estimates H∗ = 0.286, H
∗

= 0.240 and H
GJ∗

= 0.236,

the values pictured in Figure 8. The associated bootstrap 95% confidence intervals

were (0.236, 0.346), (0.205, 0, 275) and (0.208, 0.264), with sizes 0.110, 0.070 and 0.056,

respectively for the Hill, the corrected-Hill and the generalized jackknife. Indeed, both

bootstrap confidence intervals and asymptotic confidence intervals are easily associated

with the estimates presented, the smallest size (with a high coverage probability) being

related to H
GJ∗

.

5.2. The GJ EI-estimation applied to financial data. We now consider the per-

formance of the above mentioned estimators in the analysis of Euro-UK Pound daily ex-

change rates from January 4, 1999 until December 14, 2004. Working with the n0 = 725
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positive log-returns, we picture as an illutration, and as already done in Gomes et al.

(2008c), the sample paths of θ̂N(k) and θ̂GJ(k), as functions of k.
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Figure 9. Sample paths of θ̂N(k) and θ̂GJ(k), as functions of k for the

Euro-UK Pound log-returns under study

6. Some overall conclusions

(1) The most attractive features of the GJ estimators are their stable sample paths

(for a wide region of k values), close to the target value, and the ‘bath-tube’ MSE

patterns.

(2) Regarding the EI-estimators, the choice δ = 1/4 (heuristically based) in θ̂
GJ(δ)
n (k),

defined in (17), provides sample paths with a high stability. However reduction

of MSE at optimal levels, relative to the original θ̂Nn is not always achieved. Such

an objective can be attained only with the extra use of a subsampling algorithm.

Further investment is thus welcome.

(3) Again: the insensitivity of the mean value and sample path to changes in k is

indeed the nicest feature of these GJ-estimators.

(4) And the tail bootstrap has revealed to be of high importance in the choice of the

optimal threshold, in the sense of minimal MSE.
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