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"Drink wine, and you will sleep well. Sleep, and you will not sin.  
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Resumo 
Este trabalho visou a obtenção de novas prodelfinidinas, o desenvolvimento de um 

método analítico de deteção de prodelfinidinas e a sua aplicação em matrizes 

alimentares. 

Um dos objetivos deste trabalho prendeu-se com a síntese de novas prodelfinidinas. 

Para tal foi seguido um método de síntese de prodelfinidinas diméricas envolvendo a 

proteção das unidades monoméricas, benzilação em C4 da unidade superior, a 

condensação a baixa temperatura na presença de um ácido de Lewis e a 

hidrogenação do composto dimérico obtido. A rutura da ligação interflavânica 

aquando das reações de hidrogenação limitou todo o processo de síntese. Vários 

métodos e condições de hidrogenação foram testados, incluindo o dispositivo de H-

cube® na ISM - Institut des Sciences Moléculaires, Groupe Synthèse-Molécules 

Bioactives na Universidade de Bordéus I, embora com baixos rendimentos. 

Um segundo objetivo deste projeto foi o desenvolvimento de um novo método de 

LC-ESI-MS para a deteção de várias prodelfinidinas diméricas e triméricas em 

matrizes alimentares. Tal método não existia até então e a deteção deste tipo de 

compostos era apenas realizada através de outras técnicas que envolvem a rutura 

prévia da sua estrutura química. A partir da síntese de prodelfinidinas desenvolvida 

previamente, novos padrões valiosos foram obtidos e três novas prodelfinidinas 

diméricas podem agora ser identificadas. 

Este método foi posteriormente aplicado na análise de vinhos. Um vinho tinto da 

Região Demarcada do Douro de 2013 mostrou ter um teor de proantocianidinas 

quase 2,2 vezes superior ao de um vinho verde tinto da Região Demarcada dos 

Vinhos Verdes (sub-região do Lima) de 2012, sendo maioritariamente composto por 

dímeros de procianidinas. Este vinho verde tinto é constituído por 62,5% de 

procianidinas triméricas, 22,9% de procianidinas diméricas, 10,2% de prodelfinidinas 

diméricas e 4,39% de prodelfinidinas triméricas. Ao passo que, o vinho tinto de 2013 

do Douro é principalmente constituída por dímeros e trímeros de procianidinas 

(71,4% e 20,0%, respetivamente) e apenas 6,92% e 1,66% de dímeros e trímeros 

de prodelfinidinas. O conteúdo total de procianidinas no vinho verde tinto de 2012 é 

6 vezes maior do que o conteúdo total de prodelfinidinas, enquanto que no vinho 

tinto de 2013 é quase 11 vezes maior do que o conteúdo total de prodelfinidinas. No 

entanto, para este estudo, todos os dímeros ou trímeros cuja unidade superior seja 

epicatequina ou catequina foram considerados procianidinas e não prodelfinidinas. 

Uma última parte deste projeto visou o estudo do efeito de copigmentação com o 

propósito de analisar as interacções não covalentes de uma antocianina, a 



malvidina-3-glucósido ou oenina, utilizando outros polifenóis (incluindo as 

prodelfinidinas) como copigmentos. A partir deste estudo pode ser concluído que a 

presença de um grupo hidroxilo extra no anel B da estrutura do flavan-3-ol aumenta 

ligeiramente o potencial de copigmentação, o que pode contribuir para as 

propriedades organoléticas do vinho tinto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

Abstract 
This study aimed to obtain new prodelphinidins, the development of an analytical 

method for detection prodelphinidin and its application in food matrices. 

One of the goals of this work was the synthesis of new prodelphinidins. A dimeric 

prodelphinidin synthetic path involving the protection of the monomeric units, 

benzylation at C4 of the upper unit, condensation at low temperature in the presence 

of a Lewis acid and the obtained dimeric compound hydrogenolysis was followed. 

The interflavan bond rupture when the hydrogenolysis reactions were performed 

limited the entire prodelphinidin synthesis. Various hydrogenolysis methods and 

conditions were tested, including the H-cube® device at the ISM – Institut des 

Sciences Moléculaires, Groupe Synthèse-Molécules Bioactives at Bordeaux 

University I, although with low yields. 

Another goal of this work was the development of a new LC-ESI-MS method for the 

detection of several dimeric and trimeric prodelphinidins in food matrices. Such a 

method did not exist until then and the detection of this type of compounds was only 

performed by techniques that include prior rupture of their chemical structures. From 

the previously developed synthesis, new valuable standards were obtained and three 

new prodelphinidin dimers can now be identified. 

This method was later applied on wine analysis. A 2013 red wine from the 

Demarcated Region of Douro showed to have an almost 2.2 times higher content of 

proanthocyanidins than a 2012 red vinho verde wine from the Demarcated Region of 

Vinho Verde (Lima’s sub-region), mostly composed by PC dimers. This red vinho 

verde wine was constituted by 62.5% procyanidin trimers, 22.9% procyanidin dimers, 

10.2% prodelphinidin dimers and 4.39% prodelphinidin trimers. In the meantime, the 

2013 Douro red wine is mainly constituted by procyanidin dimers and trimers (71.4% 

and 20.0% respectively) and only 6.92% and 1.66% of prodelphinidin dimers and 

trimers. The total procyanidin content of the 2012 red vinho verde wine is only 6 

times higher than the total prodelphinidin content, while in the 2013 red wine is 11 

times higher than the total prodelphinidin content. However, all first unit 

epicatechin/catechin dimers or trimers were considered to be procyanidins and not 

prodelphinidins. 

A final part of this project aimed the studying of the copigmentação effect for the 

purpose of analysing non-covalent interactions of an anthocyanin, malvidin-3-

glucoside or oenin, using other polyphenols (including prodelphinidins) as 

copigments. From this study it could be concluded that the presence of an extra 

hydroxyl group in the B ring of the flavan-3-ol structure slightly increases the 



copimentation potential, which may contribute to the organoleptic properties of red 

wine. 
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1. General introduction 
 

Plant physiologists separate metabolism into two categories i.e. primary metabolism 

and secondary metabolism. All organisms possess metabolic pathways by which 

they synthesize and utilize certain essential chemical species: sugars, amino acids, 

common fatty acids, nucleotides and polymers derived from them (e.g. lipids, 

proteins and polysaccharides). This is known as the primary metabolism and these 

compounds, which are essential for the survival and well being of the organisms, are 

called primary metabolites. Most organisms also utilize other metabolic pathways, 

producing compounds for the purposes other than primary physiological functions, 

these are secondary metabolites also known as natural products and the pathways 

for their synthesis and utilization constitute the secondary metabolism. Many of these 

secondary metabolites found in plants, animals and microorganisms possess 

pharmacological properties.  

 

1.1. Polyphenolic compounds 
 

Polyphenols are secondary metabolites of plants and are generally involved in 

defence against ultraviolet radiation or aggression by pathogens (Beckman, 2000). In 

food, polyphenols may contribute to the bitterness, astringency, color, flavour, odour 

and oxidative stability. Epidemiological studies and associated meta-analyses 

performed in the late 20th century, strongly suggested that long term consumption of 

diets rich in plant polyphenols offered some protection against development of 

cancers, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative 

diseases (Arts & Hollman, 2005; Graf, Milbury, & Blumberg, 2005). 

Fruits like grapes, apple, pear, cherries and berries contains up to 200–300 mg 

polyphenols per 100 grams fresh weight. Typically, a glass of red wine or a cup of 

tea or coffee contains about 100 mg polyphenols. Cereals, dry legumes and 

chocolate also contribute to the polyphenolic intake (Scalbert, Manach, Morand, 

Rémésy, & Jiménez, 2005; Spencer, Abd El Mohsen, Minihane, & Mathers, 2008). 

The total dietary intake is about 1 g/d. It is much higher than that of all other known 

dietary antioxidants, about 10 times higher than that of vitamin C and 100 times 

higher than those of vitamin E and carotenoids (Scalbert & Williamson, 2000). 

Distribution of phenolics in plants at the tissue, cellular and sub cellular levels is not 

uniform. Insoluble phenolics are found in cell walls, while soluble phenolics are 
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present within the plant cell vacuoles (Wink, 1997). Polyphenolic compounds are 

commonly divided in two groups: non-flavonoids and flavonoids. 

 

1.1.1. Non-flavonoid compounds 
 

Non-flavonoids are divided into hydroxybenzoic and hydroxycinnamic acids, volatile 

phenols and stilbenes (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Non-flavonoid polyphenol structure examples 

 

One of the most common phenolic acids is caffeic acid, present in many fruits and 

vegetables, most often esterified with quinic acid as in chlorogenic acid, which is the 

major phenolic compound in coffee. Another common phenolic acid is ferulic acid, 

which is present in cereals and is esterified to hemicelluloses in the cell wall. 

Vanillin is a phenolic aldehyde most commonly associated with the vanilla notes in 

wines that have been aged in oak. Trace amounts of vanillin are found naturally in 

grapes, but they are most prominent in the lignin structure of oak barrels. 

 

1.1.2. Flavonoid compounds 
 

Flavonoids are distributed among several classes: flavones, flavonols, flavanones, 

flavanols and anthocyanins (Figure 2). 
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Figure 2. Flavonoid polyphenol structure examples 

 

The flavanoid skeleton, the standard letters to identify the rings and the numbering 

are shown in figure 3.  

 

 

 

 

 
 

Figure 3. Flavanoid skeleton 
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1.1.2.1. Proanthocyanidins 
 

Proanthocyanidin (PA) or condensed tannins are known for their astringent taste. 

They have the ability to complex and to form precipitates with macromolecules such 

as proteins and polysaccharides, with alkaloids and with heavy metals (Tarascou, 

Barathieu, André, Pianet, Dufourc, & Fouquet, 2006; Yoneda, Kawamoto, & 

Nakatsubo, 1997). The word “proanthocyanidin” refers to their ability to form red 

pigments in concentrated acids upon heating.  

 

 

 

 

 

 
Figure 4. Bate-Smith reaction 

 

According to their structure, tannins can be broadly divided into two classes of 

macromolecules, termed hydrolysable tannins and condensed tannins (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Examples of hydrolysable tannins (left) and condensed tannins (polymeric flavan-3-ols, right). 
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Hydrolysable tannins comprise numerous polygalloyl esters of glucose (so-called 

gallotannins), and esters of ellagic acid (ellagitannins and complex tannins). 

Hydrolysable gallotannins present in wine have been extracted from oak, or were 

added as oenotannins during winemaking (traditionally to remove undesirable 

proteins).  

As opposed to hydrolysable tannins (such as gallo- and ellagitannins), all grape-

derived tannins having enological importance are condensed tannins. Condensed 

tannins are large macromolecules formed by polymerisation of flavan-3-ol subunits 

(Figure 5). The subunit composition varies among tannins from grape skins, seeds 

and stems (Prieur, Rigaud, Cheynier, & Moutounet, 1994; Souquet, Cheynier, 

Brossaud, & Moutounet, 1996; Souquet, Labarbe, Le Guernevé, Cheynier, & 

Moutounet, 2000). 

The most studied condensed tannins are based on the flavan-3-ols (+)-catechin (C) 

and (-)-epicatechin (EC). The addition of a third hydroxyl group to the B ring yields 

gallocatechin (GC) and epigallocatechin (EGC). Much less common are flavan-3-ols 

with only one hydroxyl group on the ring B (afzelechin and epiafzelechin). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Chemical structures of (gallo)catechin and epi(gallo)catechin 

 

These monomers can also be present in the esterified form at the ring-C O-3 position 

with gallic acid (galloylated) or glycosylated. 
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Figure 7. Chemical structure of epicatechin-3-O-gallate 

 

Freudenberg and Weinges designated all the colourless material isolated from plants 

and which form anthocyanidins when heated with acid as proanthocyanidins (PAs) 

(Freudenberg, Böhme, & Purrmann, 1922; Freudenberg & Weinges, 1960). Later, 

Weinges reserved the term leucoanthocyanidin for the monomeric PAs such as 

flavan-3,4-diols and the name condensed PCs for the various flavan-3-ol dimers and 

higher oligomers (Weinges, Bhr, Ebert, Goritz, & Mark, 1969). 

PAs, especially those that yield cyanidin and delphinidin upon acid treatment, were 

the condensed tannins characterized in first place. They are linked via a carbon-

carbon bond between C4 of the extender unit and C8 (C4-C8) of the terminal unit or 

by C4 of the extender unit and C6 of the terminal unit (C4-C6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Chemical structures of B type dimeric procyanidins 
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PAs exist as oligomers, containing two to five or six units, and polymers. 

Polymerization leads to C4-C8 polymers and less common C4-C6 and both C4-C6 

and C4-C8 linkages.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 9. Chemical structures of polymeric proanthocyanidins 

 

The PA initial studies were based on extraction and identification from fresh plant 

tissues. Weinges and his group were the first to identify B-type dimeric procyanidin 

(PC) PCB1, PCB2, PCB3 and PCB4 as their peracetates (Weinges & Perner, 1967). 

Later Haslam and his colleagues were able to identify their free phenolic forms 

(Thompson, Jacques, Haslam, & Tanner, 1972). In the late 1980’s, a group led by 

Porter created the nomenclature still used nowadays: 
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PCC1: epicatechin-(4β�8)-epicatechin-(4β�8)-epicatechin 

PCC2: catechin-(4α�8)-catechin-(4α�8)-catechin 

 

Prodelphinidins (PDs) were first reported in 1929 (Romero & Bakker, 1999) and later 

in 1957 by Roux (Roux & Maihs, 1958) when reporting condensed tannins present in 

black wattle or commercial “mimosa” extracts from the bark of Acacia mollissima. 

However, only in 1978 was possible to isolate and characterize two naturally 

occurring dimeric PDs with stereochemistry based on GC (Foo & Porter, 1978). 

PAs can also adopt a called A-type conformation when, besides a B-type 

interflavanolic linkage, it has a C-O linkage between C2 of the upper unit and the 

hydroxyl group of C7’s lower unit (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Chemical structure of A-type dimeric procyanidin 

 

1.1.2.2. Anthocyanins 
 

Anthocyanins are flavonoid compounds and are responsible for colours ranging from 

pale pink to red to purple and deep blue. They are most prevalent in the epidermal 

and hypodermal layers of the fruit skin, but may also occur throughout the fruit (many 

berries), in tissues surrounding seeds or pip (pomegranate and peach, respectively), 

or may be confined to the flesh (blood orange) (Gross, 1987). 

Structurally they are flavylium cation derivatives with different methylation degrees in 

the B ring and different number of hydroxyl groups (Figure 11). The principal 

naturally occurring anthocyanidins are listed in table 1. 
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Figure 11. Chemical structure of the flavylium cation 

 

Table 1. Principal naturally occurring anthocyanidins

Anthocyanidin R1 R2 
Pelargonidin H H 

Cyanidin OH H 

Delphinidin OH OH 

Peonidin OMe H 

Petunidin OMe OH 

Malvidin OMe OMe 
       Figure 12. Anthocyanidin basic structure 

Anthocyanins are anthocyanidins with at least one sugar group. The most common 

are 3-glucosides and 3,5-diglucosides of anthocyanidins (Andersen & Jordheim, 

2001). Glycosyl groups (i.e. glucose, galactose, xylose, glucuronic acid, and 

arabinose) linked to anthocyanidins are frequently further glycosylated and/or 

acylated (Figure 13). 

 

 

 

 

 

 

Figure 13. Chemical structure of anthocyanidins 3-monoglucoside 

 

Glycosylation is an important modification for increasing the hydrophilicity and 

stability of hydrophobic flavonoids. It is also essential for color stability because the 

aromatic acylation that plays a key role in color stability is generally linked to glycosyl 

groups of anthocyanins.  
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Anthocyanins co-exist in aqueous solution in equilibrium between five species 

depending on the solution’s pH: flavylium cation, carbinol base, chalcone, 

quinonoidal base and anionic quinonoidal base (Brouillard, 1982; Brouillard & 

Bernard Delaporte, 1977; Brouillard & Dubois, 1977; Brouillard & Lang, 1990; Mistry, 

Cai, Lilley, & Haslam, 1991) (Brouillard and Delaporte 1977; Brouillard and Dubois 

1977; Brouillard and Lang 1990; Brouillard 1982; Mistry et al. 1991) (Figure 14).  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14. Structural transformations of anthocyanins in aqueous solutions depending on pH 
 (Brouillard & Lang, 1990) 
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maximum absorption wavelengths causing a “blue-ing” effect of the color through the 

formation of weak complexes with anthocyanins. This ability of anthocyanins to 

interact with colourless copigments is extremely relevant to the color stability in 

solution as it has been considered to be the first step in the formation of new 

anthocyanin-derived pigments (Brouillard & Dangles, 1994). 

Concerning the natural sources of these pigments, grapes are amongst the best 

sources of anthocyanins. Table 2 summarizes the amount of anthocyanins in some 

foodstuffs.  
 

  Table 2. Average amount of anthocyanins in some foodstuffs (Clifford, 2000) 

Anthocyanin source Amount (mg.L-1 or mg.kg-1) 
Blackberry 1150 

Blueberry 825 - 4200 

Boisenberry 1609 

Cherry 20 – 4500 

Chokeberry 5060 – 10000 

Cranberry 600 - 2000 

Cowberry 1000 

Black currant 1300 - 4000 

Elderberry 2000 – 10000 

Red grapes 300 – 7500 

Blood orange 2000 

Plum 20 – 250 

Sloe 1600 

Strawberry 150 – 350 

Black raspberry 1700 – 4277 

Eggplant 7500 

Onion Up to 250 

Rhubarb Up to 2000 

Red cabbage 250 

Red wine 240 – 350 

Port wine 140 – 1100 

 

Red wine is probably the foodstuff that presents the highest structural diversity of 

polyphenolic pigments. Structural changes of anthocyanins in red wines have been 

extensively studied over the last century aiming to comprehend red wine color 
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evolution. The levels of anthocyanins found in young red wines and their reaction 

with many other chemical compounds present in wines favours the occurrence of 

newly formed anthocyanin-derived pigments. Indeed, anthocyanins are likely to react 

with other colourless polyphenols and non-polyphenolic compounds present in the 

wine such as ketonic compounds, metals, proteins, carbohydrates, etc…  

These pigments are very reactive mainly due to the electronic deficiency of their 

flavylium nuclei but also by having some positions that are likely to react with 

different nucleophilic and electrophilic compounds (Figure 15). Anthocyanins can 

undergo a nucleophilic attack at the positively charge carbons C2 and C4 of the 

pyranic ring C (hydration in C2 gives rise to the colourless hemiacetal form). Despite 

its positive charge, anthocyanins were also shown to react with electrophilic 

compounds through its hydroxyl groups as well as carbons C6 and C8 of the 

phloroglucinol ring A, probably involving the uncharged hemiacetal form. The 

presence of a free C5-OH group is crucial for the reactivity of anthocyanins with other 

compounds in red wine.  

 

 

 

 

 

Figure 15. Schematic representation of the main reactive position of anthocyanin structures 
 (de Freitas & Mateus, 2006) 
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 a1) Anthocyanin-pyruvic acid adducts (carboxypyranoanthocyanins) 

(Fulcrand, Benabdeljalil, Rigaud, Cheynier, & Moutounet, 1998);  

 a2) Pyranoanthocyanins (Vitisin B) (Bakker & Timberlake, 1985);  

 a3) Pyranoanthocyanin-phenol pigments (Fulcrand, dos Santos, Sarni-

Manchado, Cheynier, & Favre-Bonvin, 1996; Schwarz, Wabnitz, & Winterhalter, 

2003); 

b) Condensation between anthocyanins and flavanols mediated by aldehydes (e.g. 

acetaldehyde): 

 b1) Anthocyanin-ethyl-flavanol pigments (Timberlake & Bridle, 1976);  

 b2) Pyranoanthocyanin-flavanol pigments (Francia-Aricha, Guerra, Rivas-

Gonzalo, & Santos-Buelga, 1997; Mateus, Carvalho, Carvalho, Melo, González-

Paramás, Santos-Buelga, et al., 2003; Mateus, Pascual-Teresa, Rivas-Gonzalo, 

Santos-Buelga, & de Freitas, 2002; Vivar-Quintana, Santos-Buelga, Francia-Aricha, 

& Rivas-Gonzalo, 1999); 

c) Direct condensation between anthocyanins and flavanols (Remy, Fulcrand, 

Labarbe, Cheynier, & Moutounet, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Structure of: a1) malvidin-3-glucoside-pyruvic acid adducts; a2) vitisin B; a3) pyranomalvidin-3-glucoside-

phenol pigments; b1) malvidin-3-glucoside-ethyl-flavanol; b2) Pyranomalvidin-3-glucoside-flavanol;  
c) Catechin-Mv3glc (F-A+) dimer pigments (Mv3glc = malvidin-3-O-glucoside) 
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Later, other pigment classes were synthetized and identified in wines. Portisins (as 

these pigments were first and only reported in Port wines) may be synthetized 

through reacting anthocyanin-pyruvic acid adducts and flavanols in the presence of 

acetaldehyde (Figure 17) (Mateus, Oliveira, Haettich-Motta, & de Freitas, 2004).  

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Structure of: a) vinylpyrano-mv3glc-p-phenol, b) vinylpyrano-mv3glc-phloroglucinol,  

and c) vinylpyrano-mv3glc-catechin portisins  
 

And pyranoanthocyanin dimers, a new family of turquoise blue anthocyanin-derived 

pigments also found in Port Wine. These compounds can be synthetized through a 

reaction between a carboxypyranoanthocyanin and a methylpyranoanthocyanin 

(Figure 18) (Oliveira, Azevedo, Silva, Teixeira, Cruz, Mateus, et al., 2010).  

 

 

 

 

 

 

 
Figure 18. Structure of a pyranoanthocyanin dimer 
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1.2. The interest of polyphenols 
 

The initial spark of interest into these compounds came from the discovery that they 

were involved in the defence mechanisms of many plants. The astringent nature of 

these materials caused an unpalatable taste in the mouths of predators thereby 

insuring the plants survival. The reason behind this was identified as being due to the 

complexation of plant proanthocyanidins with salivary proteins. Allied to this 

discovery was the realization that these compounds also demonstrated anti-microbial 

and anti-viral properties in plants. Because these compounds are found in the human 

diet this was an important discovery.  

The basis of many oriental herbal remedies has been shown to be due to the 

presence of proanthocyanidins. For example these compounds have demonstrated a 

positive effect against streptococcus mutans, the primary causative agent of plaque 

and dental cavities, by limiting the adhesion of the microbe on the smooth dental 

surface (Kakiuchi, Hattori, Nishizawa, Yamagushi, Okuda, & Namba, 1986). As a 

result many commercially available mouthwashes contain proanthocyanidins.  

The anti-fungal properties of these compounds have been known since the 1910’s 

when Knudson demonstrated that very few fungi could survive in the presence of 2% 

(V/V) tannin solutions (Knudson, 1913). Studies into the anti-viral capacity of these 

compounds have also been undertaken. Cadman reasoned that polyphenols 

complexed with the virus thus making it non-infective (Cadman, 1960). 

 

1.2.1. Industry applications 
 

The Food and Beverage Industry have a major interest in the area of PAs. Since 

these compounds are found in numerous plant and fruit types, they form part of the 

human food chain and are thus important in this Industry. Polyphenols contribute to 

the taste and flavour of foods and their presence or absence must be controlled.  

Colour appearance of food products is one of the major concerns of the food 

industry. Colour is also the first attribute to be perceived in foods and beverages and 

is usually positively correlated with standards of quality by the consumer. Within the 

Food Industry there has been a trend away from synthetic colorants due to possible 

toxic effects associated with these chemicals. Anthocyanins are compounds that are 

known to possess colouring capability and also may be of pharmaceutical 

importance. The stability of these compounds is based upon several factors: pH, 

temperature, partial oxygen pressure, types of co-product present, light radiation and 
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glycosylation, as well as the nature of the heterocyclic rings. The development of 

commercial processes to isolate and purify these compounds is of great importance. 

 

1.2.2. The prevention of diseases 
 

Polyphenols and other food phenolics are the subject of increasing scientific interest 

because of their possible beneficial effects on human health. Bioavailability is the 

proportion of the nutrient that is digested, absorbed and metabolized through normal 

pathways. Bioavailability of each and every polyphenol differs and there is no relation 

between the quantity of polyphenols in food and their bioavailability in human body. 

As antioxidants, polyphenols may protect cell constituents against oxidative damage 

and, therefore, limit the risk of various degenerative diseases associated to oxidative 

stress. Antioxidant capacity of the plasma is related to dietary intake of antioxidants; 

it has been found that the intake of antioxidant rich diet is effective in reducing the 

deleterious effects of aging and behaviour. Several researches suggest that the 

combination of antioxidant/anti-inflammatory polyphenolic compounds found in fruits 

and vegetables may show efficacy as anti-aging compounds (Cao, Booth, Sadowski, 

& Prior, 1998). Oxidative damage to cell components, DNA, proteins, and lipids 

accumulates with age and contributes to the degeneration of the somatic cells and to 

the pathogenesis of these diseases. Antioxidants present in food can help limit this 

damage by acting directly on reactive oxygen species or by stimulating endogenous 

defence systems. The phenolic groups in polyphenols can accept an electron to form 

relatively stable phenoxyl radicals, thereby disrupting chain oxidation reactions in 

cellular components. 

Many studies have demonstrated that consumption of polyphenols limits the 

incidence of coronary heart diseases (Dubick, Michael, Omaye, & Stanley, 2001; 

Nardini, Natella, & Scaccini, 2007; Renaud & de Lorgeril, 1992). Atherosclerosis is a 

chronic inflammatory disease that develops in lesion-prone regions of medium-sized 

arteries. Atherosclerotic lesions may be present and clinically silent for decades 

before becoming active and producing pathological conditions such as acute 

myocardial infarction, unstable angina or sudden cardiac death (Vita, 2005). 

Polyphenols are potent inhibitors of LDL oxidation and this type of oxidation is 

considered to be a key mechanism in development of atherosclerosis (Aviram, 

Dornfeld, Rosenblat, Volkova, Kaplan, Coleman, et al., 2000). Other mechanisms by 

which polyphenols may be protective against cardiovascular diseases are 

antioxidant, anti-platelet, anti-inflammatory effects as well as increasing HDL, and 



FCUP 
Study of Prodelphinidins: synthesis, detection, identification and reactivity with anthocyanins 

17 

 
 
improving endothelial function (García-Lafuente, Guillamón, Villares, Rostagno, & 

Martínez, 2009). 

Polyphenols, when given to rats or mice before and/or after the administration of a 

carcinogenic agent or the implantation of a human cancer cell line, are most often 

protective and induce a reduction of the number of tumours or of their growth (Yang, 

Landau, Huang, & Newmark, 2001). These effects have been observed at various 

sites, including mouth, stomach, duodenum, colon, liver, lung, mammary, or skin. 

Many polyphenols, such as quercetin, catechins, isoflavones, lignans, flavanones, 

ellagic acid, red wine polyphenols, resveratrol, or curcumin, were tested; all of them 

showed protective effects in some models. 

Neurodegenerative diseases represent an increasing concern to our aging societies. 

About 15% of the population over 65 years old are afflicted by Alzheimer’s disease 

and 1% by Parkinson’s disease, not including other type of dementia resulting from 

ischemic injury (Cantuti-Castelvetri, Shukitt-Hale, & Joseph, 2000). Such diseases 

are dependent of oxidative stress, which particularly affects brain tissues (Halliwell, 

2001), and antioxidants may, therefore, contribute to their prevention (Cantuti-

Castelvetri, Shukitt-Hale, & Joseph, 2000). Feeding aging rats a diet supplemented 

with aqueous extracts of spinach, strawberry, or blueberry rich in polyphenols 

improved their cognitive functions and neuronal signal transduction (James A. 

Joseph, Shukitt-Hale, Denisova, Bielinski, Martin, McEwen, et al., 1999; J. A. 

Joseph, Shukitt-Hale, Denisova, Prior, Cao, Martin, et al., 1998). Blueberries rich in 

anthocyanins were particularly effective. These effects were not explained by a 

sparing of vitamins E and C in the brain (Martin, Prior, Shukitt-Hale, Cao, & Joseph, 

2000); a direct implication of polyphenols as antioxidants is, therefore, suspected. 

Numerous studies report the antidiabetic effects of polyphenols. Polyphenols may 

affect glycemia through different mechanisms, including the inhibition of glucose 

absorption in the gut or of its uptake by peripheral tissues. Caffeic acid and isoferulic 

acid, when administered intravenously to rats, reduce the fasting glycemia and 

attenuate the increase of plasma glucose in an intravenous glucose tolerance test 

(Hsu, Chen, & Cheng, 2000). More interestingly, some hypoglycemic effects were 

also observed with polyphenols administered orally, shortly before consumption of 

the glucose source. An ill-defined leucodelphinidin (probably a mixture of PDs) 

reduced fasting glycemia in rats and lowered the plasma glucose peak in a glucose 

tolerance test (Geetha, Mathew, & Augusti, 1994). Similar effects were observed with 
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4-hydroxybenzoic acid (Peungvicha, Temsiririrkkul, Prasain, Tezuka, Kadota, 

Thirawarapan, et al., 1998). 

All scientific data on the effects of polyphenols on diseases have increased the 

general consumer awareness about polyphenols and led to the marketing of new 

polyphenol dietary supplements and polyphenol-rich food products. Although no 

claims have been attached to these products, different polyphenols have been 

proposed to limit oxidative stress and aging, and isoflavones have been 

recommended to limit hot flushes and to improve bone health in post-menopausal 

women. The consumption of such products leads to increase the intake of particular 

polyphenols beyond common levels of exposure associated to the diet. It is often 

said that polyphenols consumed in high amounts could have pro-oxidant effects, so 

caution is recommended. The first epidemiological data on polyphenols intake were 

published around 10 years ago and the progress has been slow due to the lack of 

food composition tables an lack of validated biomarkers. A table for flavonoids based 

on available literature was published by the United States Department of Agriculture 

(Bhagwat, Haytowitz, & Holden, 2013) but more research is still needed to cover 

missing polyphenols and food sources. Only then the real evaluation of the 

consumption of polyphenols in populations can be made. 

 

1.3. Prodelphinidin identification in natural sources 
 

Polyphenols show highly diverse structures and over 500 different molecules are 

known in foods (Neveu, Perez-Jiménez, Vos, Crespy, du Chaffaut, Mennen, et al., 

2010; Pérez-Jiménez, Neveu, Vos, & Scalbert, 2010). This diversity must be taken 

into account when considering bioavailability, biological properties and health effects, 

as the latter largely depend on their specific chemical structures (Loke, Proudfoot, 

Stewart, McKinley, Needs, Kroon, et al., 2008; Manach, Williamson, Morand, 

Scalbert, & Rémésy, 2005). The diversity of polyphenols also makes it difficult to 

estimate the total polyphenol content of foods, an important fact for food and nutrition 

researchers and the food industry. 

In most cases, natural sources contain complex mixtures of polyphenols. Numerous 

factors affect the polyphenol content of plants including the degree of ripeness at the 

time of harvest, environmental factors, processing and storage. Other environmental 

factors like soil type, sun exposure, rainfall, etc… also can affect the polyphenol 

content. The next section will focus on PD (and other PAs) content of cereals, 

vegetables and fruits. Table 3 summarizes all published data on their PD content. 
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1.3.1. Barley and Hop 
 

Outtrup et al. were among the first workers to characterize the individual PAs present 

in barley (Hordeum vulgare) (Outtrup, 1981a, 1981b; Outtrup & Schaumburg, 1981). 

They identified three types of PCs and one PD. Reverse phase HPLC was employed 

to isolate and purify these compounds and their characterization was carried out by 

270MHz 1H-NMR of their acetylated derivatives, because the compounds in their free 

form were observed to be sensitive to oxidation and hence were considered to be 

unstable. 

Barley grains contain a range of flavan-3-ols from monomeric, dimeric, and trimeric 

PAs to higher molecular weight condensed tannins. These include (+)-C, (−)-EC, 

dimeric PDB3 and PCB3, as well as trimeric PCC2 and three trimeric PDs (Goupy, 

Hugues, Boivin, & Amiot, 1999; McMurrough, Loughrey, & Hennigan, 1983; 

McMurrough, Madigan, & Smyth, 1996).  

Medium values show that the concentration of C is 1.23 mg/100 g FW (fresh weight), 

for PCB3 it is 10.90 mg/100 g FW and for PDB3 it is 23.07 mg/100 g FW (Madigan, 

McMurrough, & Smyth, 1994). In 2008 Dvorakova et al. proceeded to the 

characterization and quantification of flavan-3-ols and concluded that C is present at 

an average concentration of 3.01 mg/100 g FW, PCB3 at 3.35 mg/100 g FW, PCB2 

at 0.84 mg/100 g FW, PCC2 at 1.43 mg/100 g FW and PDB3 at 12.97 mg/100 g FW 

(Dvorakova, Moreira, Dostalek, Skulilova, Guido, & Barros, 2008). This study also 

identified other PD trimers, namely: two trimers GC-C-GC, five trimers GC-C-C and 

C-glc (catechin-7-O-glucoside (Wolfgang Friedrich & Galensa, 2002)). Another 

group, in 1999, reported an average concentration of PDB3 of 4.85 mg/100 g and 

0.84 for trimers (expressed as equivalents of C) (Goupy, Hugues, Boivin, & Amiot, 

1999). The concentration of each compound, however, depends greatly on the barley 

variety. This 2008 study, for instance, shows concentration values for PDB3 from 8.7 

to 19.7 mg/100 g. 

Hop (Humulus lupulus) is used exclusively to give beer its characteristic aroma, 

bitterness, foam and light stability. The estimated amount of total hop PAs ranges 

from 0.5 to 5% on a dry weight basis, depending on the variety, geographic origin, 

freshness, and harvesting procedure. Previous studies have also shown that up to 

30% of the PAs present in beer is derived from hops (Callemien, Jerkovic, 

Rozenberg, & Collin, 2004; Stevens, Miranda, Wolthers, Schimerlik, Deinzer, & 

Buhler, 2002). The chemical structures of hop PAs consist of C, EC, GC, PCB1, 



20 FCUP 
Study of Prodelphinidins: synthesis, detection, identification and reactivity with anthocyanins 
 
 
PCB2, PCB3, PCB4, PDB3, GC-(4α�6)-C, C-(4α�8)-GC, C-(4α�6)-GC, 

Afzelechin-(4α�8)-C, PCC2, EC-(4β�8)-C-(4α�8)-C, EC-(4β�8)-EC-(4β�8)-C, C-

(4α�8)-GC-(4α�8)-C, and GC-(4α�8)-GC-(4α�8)-C (Li & Deinzer, 2006).  

 

1.3.2. Broad beans, Peas and Lentils 
 

Vicia faba L. (broad, fava or faba bean) today is extensively cultivated for their edible 

seeds, being used green or dried, fresh or canned (Jensen, Peoples, & Hauggaard-

Nielsen, 2010). Seven isomers of (E)GC–(E)GC, six isomers of (E)GC–(E)C, five PC 

dimers (dimers B1, B2, B3, B4, and B6) and five isomers of (E)C–(E)GC were 

identified by UHPLC-ESI-QTOF-MS. In a similar way, six trimers formed by two 

(E)GCs and a (E)C or a (E)GC and two (E)Cs and three PC dimers (including C1 and 

C2) were also characterized (Abu-Reidah, del Mar Contreras, Arráez-Román, 

Fernández-Gutiérrez, & Segura-Carretero, 2014).  

According to De Pascual-Teresa et al., 2000 (de Pascual-Teresa, Santos-Buelga, & 

Rivas-Gonzalo, 2000), Spanish broad bean contains 23.50 mg of PDB3, 8.17 mg of 

PCB3, 11.26 mg of PCB1, 18.47 mg of PCB4, 12.08 mg of PCB2 and 0.13 mg of 

PCC1. In terms of monomers, it was quantified 9.68 mg of GC, 17.38 mg of EGC, 

16.23 mg of C and 37.55 mg of EC. All these values are expressed as mg/100g of 

FW. PCB6, PD GC-GC and PC C-GC were also detected but not quantified due to 

the lack of standards. In total, the average flavanol concentration in broad beans was 

154.5 mg total flavanols/100 g FW. 

Lentils (Lens culinaris) seem to be much less rich in flavanols. The average 

concentrations include 0.28 mg/100 g FW of C, 3.15 mg/100 g FW of C-3-O-glc, 0.14 

mg/100 g FW GC, 0.10 mg/100 g FW of EC, 0.34 mg/100 g FW of PCB2, 0.71 

mg/100 g FW of PCB3 and 0.45 mg/100 g FW of PDB3 (de Pascual-Teresa, Santos-

Buelga, & Rivas-Gonzalo, 2000; Dueñas, Hernández, & Estrella, 2007).  

Another study describes the total PA concentration in two different species of mature 

seeds of pea (Pisum sativum) being 367 and 294 mg/100 g FW, lentils 269 to 378 

mg/100 g FW and faba bean 654 mg/100 g FW fresh weight. These data also shows, 

once more, that variation in seed PA content occurs within and among species (Jin, 

Ozga, Lopes-Lutz, Schieber, & Reinecke, 2012).  
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1.3.3. Redcurrants, Blackcurrants, Raspberries and Sea buckthorn  
 

Black currant (Ribes nigrum) and red currant (Ribes rubrum) are widely cultivated in 

Europe and North America for berry production. Berries are traditionally used for 

producing juices, jams, jellies and syrups and for pastry and culinary purposes. Red 

currants contain, in average, 1.27 mg/ 100 g FW of C, 1.28 mg/ 100 g FW of GC, 

0.08 mg/ 100 g FW of EC, 0.15 mg/ 100 g FW of EGC, 0.20 mg/ 100 g FW of PCB3 

and 1.70 mg/ 100 g FW of PDB3 (Arts, van de Putte, & Hollman, 2000; Sonia de 

Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). 

In 2004, Wu, X. et al., showed by mass spectrometric data that black currants 

contained both PCs and PDs. Total PAs in six cultivars of black currant ranged from 

120.6 to 165.8 mg/100 g FW. Gooseberries and red currant had profiles of PAs 

similar to that for black currant but lower concentrations. They contained PCs and 

PDs, and the predominant PAs were in the polymeric form. Chokeberry contained 

only PCs. Unlike other berries, elderberry contained no detectable higher oligomers 

and polymers. In 2011, Mattila et al. studied the polyphenol and vitamin C contents in 

European commercial blackcurrant juice products and concluded that PAs in all 

samples were always mixtures of PCs and PDs; thus, they were constituted of both 

(E)C and (E)GC subunits. In most cases, (E)GC (i.e. PDs) dominated and made up 

over 60% of the structural flavan-3-ols (Mattila, Hellström, McDougall, Dobson, 

Pihlava, Tiirikka, et al., 2011). Later, in 2014, P. Liu et al. identified, by HPLC-ESI-

MS, one PD dimer and four PD trimers in black currant buds and leaves (Liu, Kallio, 

& Yang, 2014). C and GC were also detected and quantified in white currants in 0.30 

and 0.70 mg/ 100 g fresh weight respectively (Arts, van de Putte, & Hollman, 2000). 

Raspberries (Rubus idaeus) are reported containing 0.01 mg/100 g FW of GC, 0.03 

mg/100 g FW of PCB3, 0.05 mg/100 g FW of C, 1.11 mg/100 g FW of EGC, 2.79 

mg/100 g FW of PCB2, 1.78 mg/100 g FW of EC, 0.18 mg/100 g FW of PCB7 and 

0.30 mg/100 g FW of PCC1. No PDs were detected so far. 

Sea buckthorn (Hippophae rhamnoides) exists nowadays in various regions of Asia, 

Europe, and North America. It has been used as a medicinal plant in Tibet since 900 

AD (Lu, 1992). Sea buckthorn seeds were extracted, fractionated by Sephadex LH20 

and analyzed by HPLC–ESI-MS after thiolysis with benzyl mercaptan. Nine dimeric 

PAs were identified in one of the fractions: two (E)GC-(E)GC, one (E)GC-(E)C, three 

(E)C-(E)GC, one (E)C-(E)C and PCB3 and PCB4. The structural composition and 

characteristic data obtained by thiolysis degradation of each of the PA fractions 
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showed that PD units predominated in the extended chains and were the major 

components of all tannin fractions. The %PD range was between 51.4 and 88.5 (Fan, 

Ding, & Gu, 2007). 

 

1.3.4. Cranberries and Blueberries 
 

Whole cranberries (Vaccinium oxycoccos) contain approximately 1.7 mg/100 g of 

total PA, while only 2.16 to 2.23 mg/L of total PCs are found in cranberry juices 

(Prior, Lazarus, Cao, Muccitelli, & Hammerstone, 2001). 63% of the total PAs in 

cranberries are polymeric PAs (Gu, Kelm, Hammerstone, Beecher, Cunningham, 

Vannozzi, et al., 2002). Foo and Porter (Foo & Porter, 1980) reported that the ratio of 

PCs to PDs is 78:22 in European cranberries. 20 years later, Foo et al. (Foo, Lu, 

Howell, & Vorsa, 2000) isolated and identified three PA trimers with A-type doubly 

linked interflavonoid linkages in ripe American cranberry fruits. Subsequently, Prior et 

al. (Prior, Lazarus, Cao, Muccitelli, & Hammerstone, 2001) reported that EC and its 

dimers and A-type trimers (A1, A2, C1, C2) are the predominant PAs in cranberries. 

These authors also detected trace amounts of B-type (single linked interflavonoid 

linkages) and A-type tetramers. In 2002, Kandil et al. (Kandil, Smith, Rogers, Pépin, 

Song, Pezzuto, et al., 2002) detected EC, C, GC and EGC as well as higher 

molecular weight PAs in American cranberries.  
Blueberries (Vaccinium myrtillus) are around 5 times richer in flavanols, having 5.27 

mg/100 g FW of total flavanols. This value includes 0.59 mg/100 g FW of GC, 0.08 

mg/100 g FW of PCB3, 0.81 mg/100 g FW of C, 0.75 mg/100 g FW of PCB1, 0.37 

mg/100 g FW of EGC, 0.37 mg/100 g FW of PCB4, 0.19 mg/100 g FW of PCB2, 0.30 

mg/100 g FW of EC, 0.27 mg/100 g FW of PCB7 and 0.71 mg/100 g FW of PCC1. 

GC-GC, C-GC and PCB6 were also detected but not quantified (de Pascual-Teresa, 

Santos-Buelga, & Rivas-Gonzalo, 2000). 

 

1.3.5. Strawberries and Strawberry tree fruit 
 

The strawberry tree fruit (Arbutus unedo) is a red berry with 1–2 cm diameter, with a 

rough surface, maturing 12 months at the same time as the next flowering. It is 

widespread in the Mediterranean region and it is has a total flavanol concentration of 

20.47 mg/100 g FW. This value includes 1.60 mg/100 g FW of GC, 7.48 mg/100 g 

FW of C and 1.11 mg/100 g FW of EC. In terms of dimers and trimers, it includes an 

average concentration of 1.99 mg/100 g FW of PDB3, 1.69 mg/100 g FW of PCB3, 
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1.72 mg/100 g FW of PCB1, 0.43 mg/100 g FW of PCB4, 0.22 mg/100 g FW of PC 

trimer EC-EC-C. PD GC-GC, PCB6 and PC C-GC were also detected (Sonia de 

Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). 

As for the more known strawberries (Fragaria ananassa), no PD dimers were yet 

detected, but they have, in average, 0.05 mg/100 g FW of GC and 0.06 mg/100 g 

FW of EGC. In addition to these monomers they also have 6.36 mg/100 g FW of C, 

0.0075 mg/100 g FW of EC and 0.28 mg/100 g FW of ECG. In terms of PC dimers 

and trimers, it was detected 0.62 mg/100 g FW of PCB1, 0.03 mg/100 g FW of 

PCB2, 1.10 mg/100 g FW of PCB3, 0.13 mg/100 g FW of PCB4 and 0.50 mg/100 g 

FW of EC-EC-C (Arts, van de Putte, & Hollman, 2000; de Pascual-Teresa, Santos-

Buelga, & Rivas-Gonzalo, 2000; Määttä-Riihinen, Kamal-Eldin, & Törrönen, 2004). 

 

1.3.6. Bananas, Pomegranates and Quinces 
 

Some researchers think that the banana (Musa) peel has compounds and nutrients 

important for food and for food industry and should be utilized. The banana peel is 

rich in dietary fiber, protein, essential amino acids, polyunsaturated fatty acids and 

potassium (Happi Emaga, Andrianaivo, Wathelet, Tchango, & Paquot, 2007). It also 

contains antioxidant compounds including polyphenols, catecholamines and 

carotenoids. In average, bananas have 1.34 mg/100 g FW of C, 0.11 mg/100 g FW 

of EC, 0.00214 mg/100 g FW of EGC and 0.10 mg/100 g FW of PDB3 (Arts, van de 

Putte, & Hollman, 2000; de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000; 

Harnly, Doherty, Beecher, Holden, Haytowitz, Bhagwat, et al., 2006). 

Pomegranates (Punica granatum) contain high levels of flavonoids and polyphenols, 

potent antioxidants offering protection against many diseases. A glass of 

pomegranate juice has more antioxidants than red wine, green tea, blueberries, and 

cranberries (Seeram, Aviram, Zhang, Henning, Feng, Dreher, et al., 2008). PD 

dimers were detected in pomegranates, namely: PDB3 and PD GC-GC, but not 

quantified. The average concentration for compounds identified and quantified are:   

0.17 mg/100 g FW for GC, 0.16 mg/100 g FW for PCB3, 0.40 mg/100 g FW for C, 

0.13 mg/100 g FW for PCB1, 0.16 mg/100 g FW for EGC and 0.08 mg/100 g FW for 

EC. It were also detected PC C-GC and PCB6 (de Pascual-Teresa, Santos-Buelga, 

& Rivas-Gonzalo, 2000). 

Because quince (Cydonia oblonga) is a hard, acid, and astringent, it is not edible 

unprocessed. Nevertheless, it is often used to prepare jam, jelly, liqueur, and 

marmalade, as well as applied in canning and for aromatic distillation (Wojdyło, 
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Oszmiański, & Bielicki, 2013). Its flavan-3-ol content includes 0.08 mg/100 g FW of 

PDB3, 0.10 mg/100 g FW of PCB3, 0.75 mg/100 g FW of C, 0.73 mg/100 g FW of 

PCB1, 0.28 mg/100 g FW of EC-EC-C, 0.24 mg/100 g FW of PCB4, 1.34 mg/100 g 

FW of PCB2, 0.67 mg/100 g FW of EC, 0.94 mg/100 g FW of PCC1 and 0.12 

mg/100 g FW of PCB5; making total flavan-3-ol concentration in quinces 5.24 

mg/100 g FW (de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). 

 

1.3.7. Persimmons, Mangosteen and Cashew apple 
 

The persimmon (Diospyros kaki L.) is a widely consumed fruit that is characterized 

by its high PA content (Piretti, 1991) with a more potent antioxidant than apple or 

grape seed PA (Ahn, Jeon, Lee, Hwang, Lim, & Park, 2002). Persimmon PAs consist 

of C, EGCG, and myricetin terminal units and EGC, (E)GCG, C, and (E)CG as 

extension units. Myricetin is slightly more common than the flavan-3-ol terminals. 

PDs are about 58% of the total crude tannins.  

In 2010, Li et al. identified two A-linked dimers: (E)GCG-(C2-O-C7)-(E)GCG and 

(E)C-(C2-O-C7)-(E)C (Li, Leverence, Trombley, Xu, Yang, Tian, et al., 2010). 

According to De Pascual-Teresa et al., 2000 (de Pascual-Teresa, Santos-Buelga, & 

Rivas-Gonzalo, 2000), persimmons have, in average, 0.17 mg/100 g FW of GC, 0.30 

mg/100 g FW of PDB3, 0.01 mg/100 g FW of PCB3, 0.63 mg/100 g FW of C, 0.13 

mg/100 g FW of PCB1 and 0.04 mg/100 g FW of PC trimer EC-EC-C. The PC C-GC 

was also detected in this study, but not quantified. 

Garcinia mangostana L., commonly known as mangosteen, is a slow-growing 

tropical evergreen tree with leathery, glabrous leaves. The tree can attain 6–25 m in 

height and is mainly distributed in India, Myanmar, Sri Lanka, and Thailand. 

Reversed-phase HPLC followed the thiolysis analysis revealed that epicatechin 

predominately occurred as both terminal and extension units. Normal-phase HPLC-

ESI-MS showed the heterogeneity of mangosteen tannins in constituent units, the 

interflavan linkages (A-type linkage) and the presence of polymers with less than 10 

units. Condensed tannins fractions from mangosteen pericarp were characterized by 

MALDI-TOF-MS to further determine the polymer chain length and the sequential 

succession of monomer units in individual chains. In each fraction the dominating 

mass was correspondent to (E)C, but another strongly repeated pattern within each 

main set of peaks was the signals separated by 16 Da difference. These masses 

were produced by the early detected heterogeneity of flavan-3-ol units that showing 

the different masses among (E)Afz, (E)C and (E)GC (Reed, Krueger, & Vestling, 
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2005). These findings suggested the coexistence of propelargonidin, PC and PD 

units, with a significant amount of propelargonidin units but much lower signals of 

PDs units (Zhou, Lin, Wei, & Tam, 2011). 

The cashew apple (Anacardium occidentale) is a fruit native to northeast Brazil, 

whose pulp can be processed into a sweet, astringent fruit drink or distilled into 

liqueur. The cashew nut is served as a snack or used in recipes, like other nuts, 

although it is actually a seed. Depolymerization by thiolysis has been proved to be an 

efficient method for determining the nature of the flavan-3-ol units within condensed 

tannins (and for determining the mean degree of polymerization (mDP)). In the 

thiolysis reaction, terminal units from condensed tannins are released as free 

flavonoids. When applying this method to tannin extracts from cashew apples it was 

concluded that tannins were mainly built of EGC (and/or GC) associated with some 

EC (and/or C) units. In fact, HPLC analysis of depolymerization products of skin and 

flesh tannins in acidic methanol with the presence of (NH4)2Fe(SO4)2 revealed 

strongly dominant proportions of delphinidin along with lower amounts of cyanidin, in 

average ~85% and 15%, respectively (Michodjehoun-Mestres, Souquet, Fulcrand, 

Meudec, Reynes, & Brillouet, 2009).  

 

1.3.8. Pecan nuts 
 

The pecan nut (Carya illinoinensis) is native to Mexico and the south central and 

southeastern regions of the United States. The total content of phenolics in Stuart 

and Schley pecan varieties ranges from 7.80 to 14.20 mg/g of kernel. Total flavanol 

content is between 2.78 and 4.43 mg/g of kernel (Senter, Forbus, & Smit, 1978).  

Tannins present in pecans may affect the color of nutmeats as well as their flavour 

quality and consumer acceptability. Polles et al. (Polles, Hanny, & Harvey, 1981) 

determined the content of condensed tannins in 31 types of pecan nut kernels. Their 

content of tannins ranged from 0.70 to 1.71%, thus indicating a significant difference 

among different cultivars. Using carbon-13 cross-polarization magic-angle spinning 

NMR, Preston and Sayer (Preston & Sayer, 1992) later detected only PD polymer in 

the packing tissue inside pecan shells.  

In terms of flavan-3-ol concentrations, pecan nuts have 7.20 mg/100 g FW of C, 0.80 

mg/100 g FW of GCG and EC, 5.60 mg/100 g FW of EGC and 2.30 mg/100 g FW of 

EGCG (Perez-Jimenez, Neveu, Vos, & Scalbert, 2010). 
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1.3.9. Grapes 
 

PA content and composition in grape berries depend on different factors such as 

climatic and geographical conditions, cultivation practices as well as stages of 

ripeness (de Andrés-de Prado, Yuste-Rojas, Sort, Andrés-Lacueva, Torres, & 

Lamuela-Raventós, 2007; Mateus, Proença, Ribeiro, Machado, & De Freitas, 2001; 

Pérez-Magariño & González-San José, 2006). Moreover, grape variety has also an 

important contribution on grape phenolic contents and composition. The mean 

degree of polymerization for PAs isolated from the seeds of grapes (cv. Cabernet 

franc) ranges from 4.7 to 17.4 mg/kg. For those isolated from grape skin, it is 

between 9.3 and 73.8 and for those extracted from grape stems between 4.9 and 

27.6 mg/kg (Labarbe, Cheynier, Brossaud, Souquet, & Moutounet, 1999; Souquet, 

Labarbe, Le Guernevé, Cheynier, & Moutounet, 2000).  

So far no PD have been quantified in grape skins but, in terms of PCs, the average 

concentrations that have been described are: PCB1 0.43 mg/100 g, PCB2 0.36 

mg/100 g, PCB3 0.12 mg/100 g, PCB4 0.33 mg/100 g and PCC1 0.38 mg/100 g (de 

Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). In terms of monomers 

there have been reported 5.46 mg/100 g of C, 5.24 mg/100 g of EC, 1.68 mg/100 g 

of ECG and 0.03 mg/100 g of EGC (Arts, van de Putte, & Hollman, 2000; de 

Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). De Pascual-Teresa et al. 

also found PD GC-GC, PC C-GC and PCB6 in white grapes, but didn’t quantified 

them due to the lack of standards. 

 

1.4. Phenolic Compounds of Beverages  
 

Popular beverages in the world include tea, coffee, cocoa, beer, wine and fruit juices; 

all of these beverages contain phenolic compounds. The content of phenolics in 

beverages depends on species, degree of maturity and processing and climatic 

factors of the starting materials.  

 

1.4.1.Tea 
 

Polyphenolic compounds constitute up to 35% of dry weight of tea. The major 

constituents of tea polyphenolics are flavanols, such as ECG, EGC, EGCG, EC, C 

(Figures 6 and 7), and their derivatives, flavonols (quercetin, kaempferol and their 

glycosides), flavones (vitexin, isovitexin), phenolic acids, gallic acid, chlorogenic acid 
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and theogallin (Balentine, Wiseman, & Bouwens, 1997; Finger, Engelhardt, & Wray, 

1991; Harbowy, Balentine, Davies, & Cai, 1997; Wickremasinghe, 1978).  

According to Haslam (Edwin Haslam, 1989), tea flush (the immature vegetative 

portions of the tea plant) may contain up to 30% polyphenols, of which the major 

components are flavan-3-ols. However, their composition may vary depending on the 

variety of tea, its geographical origin, and environmental conditions, as well as the 

agronomic situation. Using tannase hydrolysis and thiolytic degradation it was 

possible to identify the following PAs: EC-(4β→8)-EC-3-O-G, EC-3-O-G-(4β→8)-

EGC-3-O-G, C-(4α→8)-EGC-3-O-G, PD B4-3'-O-G, EC-3-O-G-(4β→6)-EGC-3-O-G, 

EGC-3-O-G-(4β→6)-EC-3-O-G, epiafzelechin-3-O-G-(4β→6)-EGC-3-O-G and PD 

B2-3'-O-G (Hashimoto, Nonaka, & Nishioka, 1989). 

For production of good quality tea fermentation takes place, leading to the formation 

of orange-yellow to red-brown pigments and volatile flavour compounds (Balentine, 

Wiseman, & Bouwens, 1997). During this process, the polyphenolic compounds 

present in tea leaves are oxidised to their corresponding o-quinones. This oxidation 

leads to the formation of theaflavins and therubigins (Figure 19), responsible for the 

formation of the characteristic colour and flavour of fermented tea (black tea) 

(Robertson, 1992). Fermentation significantly reduces the total content of flavanols in 

processed tea. 

 

 

 

 

 

 

 

 

 

 
Figure 19. Structure of a theaflavin and a therubigin 

 

Green tea has, in average, 43.83 mg total flavanols/100 g fresh weight, while black 

tea has only 26.80 mg (de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). 

Average numbers also indicates that green tea has 0.70 mg/100 mL (of infusion) of 

C, 2.26 mg/100 mL of GC, 0.47 mg/100 mL of GCG, 7.93 mg/100 mL of EC, 7.50 

mg/100 mL of ECG, 19.68 mg/100 mL of EGC, 27.16 mg/100 mL of EGCG, 0.56 
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mg/100 mL of PCB1, 0.75 mg/100 mL of PCB2, 0.37 mg/100 mL of PCB3, 1.83 

mg/100 mL of PCB4, 0.63 mg/100 mL of PCB7, 1.07 mg/100 mL of PCC1 and 0.27 

of PDB3 (de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000; Khokhar & 

Magnusdottir, 2002; Lin, Juan, Chen, Liang, & Lin, 1996). PD GC-GC and PC C-GC 

were also detected but not quantified.  

For black tea the values are quite distinct: 2.45 mg/100 mL of C, 4.74 mg/100 mL of 

CG, 14.01 mg/100 mL of GC, 0.67 mg/100 mL of GCG, 3.94 mg/100 mL of EC, 7.34 

mg/100 mL of ECG, 7.19 mg/100 mL of EGC, 9.12 mg/100 mL of EGCG, 3.70 

mg/100 mL of PCB1, 2.51 mg/100 mL of PCB2, 0.49 mg/100 mL of PCB3, 1.80 

mg/100 mL of PCB4, 0.01 mg/100 mL of PCB5, 0.46 mg/100 mL of PCB7, 0.76 

mg/100 mL of PCC1 and 1.65 mg/100 mL of PDB3. It were also detected PD GC-GC 

and PC C-GC (de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000; Khokhar 

& Magnusdottir, 2002; Liang, Lu, Zhang, Wu, & Wu, 2003; Lin, Juan, Chen, Liang, & 

Lin, 1996). 

 

1.4.2. Beer 
 

The production of beer involves malting, mashing, fermentation and storage. Yeasts 

are added to the wort and utilize nutrients present in it to produce ethanol, carbon 

dioxide, and other by-products. The characteristic flavour of beer arises from malt. 

Beer contains 283 ± 3 mg/L of non-tannin and non-flavonoid phenolic compounds 

and 31 ± 3 mg/L of tannins (Fantozzi, Montanari, Mancini, Gasbarrini, Addolorato, 

Simoncini, et al., 1998). Some 67 different phenolic compounds have been identified 

in beer. Simple phenolics, aromatic carboxylic- and phenol carboxylic acids, 

hydroxycoumarins, catechins, leucoanthocyanidins, anthocyanidins, flavonols, 

flavanones, flavones, prenylated flavonoids and phenolic glycosides are included in 

this list (Bohm, 1989; Stevens, Taylor, Clawson, & Deinzer, 1999; Stevens, Taylor, & 

Deinzer, 1999).  

Polyphenols in beer may contribute to the formation of haze (Bamforth, 1999; 

Siebert, 1999; Siebert, Troukhanova, & Lynn, 1996), which may contain up to 55% 

polyphenols. About 90% of polyphenolic compounds found in aged beer have a 

molecular weight of 500 to 10,000 Da; only trace quantities of phenolics have a 

molecular weight over 10,000 Da (Sogawa, 1972). Due to their chemical character 

and reactivity, polyphenols may undergo oxidative and acid-catalysed polymerization 

in beer upon storage (Gramshaw, 1968).  

PAs from hops and malt have a tremendous influence on haze development. Among 
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them where identified: two monomeric flavan-3-ols (C and EC), a few B-type (with a 

single C4–C8 bond between successive units) PC and PD dimers (B3 and B9), and 

two A-type (with a single C4–C8 or C4–C6 bond and an additional ether bond 

between C2 and O–C7 or O–C5) PD dimers (Figure 20) (Delcour & Tuytens, 1984; 

Madigan, McMurrough, & Smyth, 1994; McMurrough & Baert, 1994; McMurrough, 

Madigan, Kelly, & Smyth, 1996). 

 

 

 

 

 

 

 

 

Figure 20. A-type dimer prodelphinidins: a) epigallocatechin-(4α-8, 2α-O-7)- catechin  
and b) epigallocatechin-(4α-6, 2α-O-7)-catechin 

 

Quantification of beer flavan-3-ols shows that the average concentrations are: C 0.11 

mg/100 mL, EC 0.06 mg/100 mL, PCB3 0.16 mg/100 mL, PCC2 0.03 mg/100 mL, 

PDB3 0.18 mg/100 mL, PC C-GC-C 0.02 mg/100 mL, PD GC-C-C 0.01 mg/100 mL 

and PD GC-GC-C 0.04 mg/100 mL (McMurrough & Baert, 1994; McMurrough, 

Madigan, & Smyth, 1996). Besides these compounds, de Pascual-Teresa et al. also 

found GC 0.10 mg/100 mL, PCB2 0.16 mg/100 mL and PCC1 0.07 mg/100 mL. It 

was also detected PD GC-GC and PC C-GC. 

 

1.4.3. Wine 
 

Phenolic compounds are important components of wine as they contribute to sensory 

characteristics such as color, flavour, astringency and hardness of wine directly or by 

interaction with proteins, polysaccharides, or other phenolic compounds (García-

Viguera, Bakker, Bellworthy, Reader, Watkins, & Bridle, 1997; Lee & Jaworski, 

1987). The total content of phenolics in wine depends on a number of factors, for 

example: grape variety, nature of crushing, possible inclusion or elimination of stems, 

skins and seeds prior to fermentation, vinification process, maceration time, aging. 
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After fermentation, wine usually is matured first in barrels or tanks. This maturation 

process from end of vinification to bottling typically lasts 12 to 24 months. Following 

this, the wine can be further aged in bottles to reduce contact with oxygen. The 

presence of oxygen induces the chemical transformation of phenolics and affects the 

flavour and color of wine (Auw, Blanco, O'Keefe, & Sims, 1996; Constantinos Dallas 

& Laureano, 1994; Dallas & Laureno, 1994; Gómez-Plaza, Gil-Muñoz, López-Roca, 

& Martínez, 2000; Somers & Evans, 1986; Somers & Pocock, 1990; Zoecklein, 

Jasinski, & McMahon, 1998). 

Condensed tannins contribute to astringency, browning and turbidity in wines and 

also participate in the aging processes of wine (Haslam, Lilley, & Butler, 1988). 

Young wines contain mainly low to medium molecular weight phenolics while aged 

wines are relatively higher in polymerized phenolics. Typical Italian red and white 

wines contain 203 to 805 and 11 to 49 mg/L of flavanols, respectively. Furthermore, 

the concentration of (+)-C and (−)-EC in French wines ranges from 32.8 to 209.8 

mg/L and from 22.1 to 130.7 mg/L, respectively. The level of PCs in these wines is 

between 7.8 and 39.1 mg/L for PCB1, 18.3 to 93 mg/L for PCB2, 21.4 to 215.6 mg/L 

for PCB3, 20.2 to 107.2 mg/L for PCB4, 8.6 to 36.9 mg/L for PCC1 and 26.7 to 79.3 

mg/L for PCT2 (Carando, Teissedre, Pascual-Martinez, & Cabanis, 1999). 

Usually the flavan-3-ol monomers (C, EC, ECG, GC) a few dimers (B1, B2, B3, B4) 

and one or two trimers are identified and quantified, but PA characteristics are mainly 

determined using other ways such as mean degree of polymerization (mDP), 

percentage of galloylation (%G) and percentage of PD (%PD). Red wine contains on 

average 6.81 mg/100 mL of C, 3.78 mg/100 mL of EC, 0.77 mg/100 mL of ECG, 0.08 

mg/100 mL of GC and 0.06 mg/100 mL of EGC (Arts, van de Putte, & Hollman, 2000; 

de Pascual-Teresa, Rivas-Gonzalo, & Santos-Buelga, 2000; Goldberg, 

Karumanchiri, Tsang, & Soleas, 1998). Only 5 PC dimers were quantified: PCB1, 

PCB2, PCB3, PCB4 and PCB7 where detected on an average of 4.14 mg/100 mL, 

4.97 mg/100 mL, 9.47 mg/100 mL, 7.29 mg/100 mL and 0.27 mg/100 mL 

respectively. PCC1 trimer was found at 2.56 mg/100 mL and PCT2 at 6.71 mg/100 

mL. In terms of PDs, only PDB3 was found with an average concentration of 0.11 

mg/100 mL (Carando, Teissedre, Pascual-Martinez, & Cabanis, 1999; de Pascual-

Teresa, Rivas-Gonzalo, & Santos-Buelga, 2000; Teissedre & Landrault, 2000). de 

Pascual-Teresa et al. also found PD GC-GC, PC C-GC and PCB6 in red wines. 
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Table 3. Average concentrations of PD, PC and monomeric flavan-3-ols. The values are expressed in mg/100 g of fresh weight or mg/100mL. a) Neveu, Perez-Jiménez, Vos, Crespy, du Chaffaut, 	
Mennen, et al., 2010. 

n.q. – not quantified 

 

 

Food/Beverage C EC GC EGC ECG GCG EGCG PCB1 PCB2 PCB3 PCB4 PCB5 PCB6 PCB7 
Barley 1.23 -- -- -- -- -- -- -- -- 10.90 -- -- -- -- 

Broad Beans 16.23 37.55 17.38 -- -- -- -- 11.26 12.08 8.17 18.47 -- n.q. -- 
Lentils 0.28 0.10 0.14 -- -- -- -- -- 0.34 0.71 -- -- -- -- 

Red Currant 1.27 0.08 1.28 0.15 -- -- -- -- -- 0.20 -- -- -- -- 
Raspberries 0.05 1.78 0.01 1.11 -- -- -- -- 2.79 0.03 -- -- -- 0.18 
Cranberries -- 4.20 -- -- -- -- -- -- -- -- -- -- -- -- 
Blueberries -- 0.30 0.59 0.37 -- -- -- 0.75 0.19 0.81 0.37 -- -- 0.27 
Strawberry  

tree fruit 7.48 1.11 1.60 -- -- -- -- 1.72 -- 1.69 0.43 -- n.q. -- 

Strawberry 6.36 0.0075 0.05 0.06 0.28 -- -- -- 0.03 1.10 0.13 -- -- -- 
Banana 1.34 0.11 -- 0.0021 -- -- -- -- -- -- -- -- -- -- 

Pomegranate 0.40 0.08 0.17 0.16 -- -- -- 0.13 -- 0.16 -- -- -- -- 
Quince 0.75 0.67 -- -- -- -- -- 0.73 1.34 0.10 0.24 0.12 -- -- 

Persimmon 0.63 -- 0.17 -- -- -- -- 0.13 -- 0.01 -- -- -- -- 
Pecan nuts 7.20 0.80 -- 5.60 -- 0.80 2.30 -- -- -- -- -- -- -- 

Grapes 5.46 5.24 -- 0.03 1.68 -- -- 0.43 0.36 0.12 0.33 -- n.q. -- 
Green Tea 0.70 7.93 2.26 19.68 7.50 0.47 27.16 0.56 0.75 0.37 1.83 -- -- 0.63 
Black Tea 2.45 3.94 14.01 7.19 7.34 0.67 9.12 3.70 2.51 0.49 1.80 0.01 -- 0.46 

Beer 0.11 0.06 0.10 -- -- -- -- -- 0.16 0.16 -- -- -- -- 
Red Wine a) 6.81 3.78 0.08  0.06 0.77 -- -- 4.14 4.97 9.47 7.29 -- n.q. 0.27 
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Table 3 (cont.). Average concentrations of PD, PC and monomeric flavan-3-ols. The values are expressed in mg/100 g of fresh weight or mg/100mL. a) Neveu, Perez-Jiménez, Vos, Crespy, du 

Chaffaut, Mennen, et al., 2010.	
 

Food/Beverage PCC1 PC C-GC PC EC-EC-C PDB3 PD GC-GC PCC2 PC C-GC-C PD GC-C-C PD GC-GC-C 
Barley -- -- -- 23.07 -- -- -- -- -- 

Broad Beans 0.13 n.q. -- 23.50 n.q. -- -- -- -- 
Lentils -- -- -- 0.45 -- -- -- -- -- 

Red Currant -- -- -- 1.70 -- -- -- -- -- 
Raspberries 0.30 -- -- -- -- -- -- -- -- 
Cranberries -- -- -- -- -- -- -- -- -- 
Blueberries 0.71 -- -- -- -- -- -- -- -- 
Strawberry  

tree fruit -- n.q. 0.22 1.99 n.q. -- -- -- -- 

Strawberry 0.62 -- 0.50 -- -- -- -- -- -- 
Banana -- -- -- 0.10 -- -- -- -- -- 

Pomegranate -- -- -- n.q. n.q. -- -- -- -- 
Quince 0.94 -- 0.28 0.08 -- -- -- -- -- 

Persimmon -- n.q. 0.04 0.30 -- -- -- -- -- 
Pecan nuts -- -- -- -- -- -- -- -- -- 

Grapes 0.38 n.q. -- -- n.q. -- -- -- -- 
Green Tea 1.07 n.q. -- 0.27 n.q. -- -- -- -- 
Black Tea 0.76 -- -- 1.65 -- -- -- -- -- 

Beer 0.07 n.q. -- 0.18 n.q. 0.03 0.02 0.01 0.04 
Red Wine a) 2.56 n.q. -- 0.11 n.q. -- -- -- -- 

n.q. – not quantified 
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2. Synthesis of Prodelphinidins 

 

2.1. Introduction 
 

Up until the 1980's much of the isolation and characterization of PAs had been 

carried out on compounds extracted from various plant sources, since little was 

known on their synthesis. 

One of the most important aspects in the chemistry of polyphenols is their sensitivity. 

Like other phenols, they are susceptible to complex free-radical oxidation reactions 

by air and reactive oxygen species, especially in the presence of bases. This is the 

reason why this class of compounds has been so thoroughly investigated with regard 

to their antioxidant capabilities in biological systems. On the other hand, they are 

subjected to a reversible opening of their ring-C by way of a transient quinone 

methide at elevated temperatures or in the presence of bases. This can lead to 

stereochemical scrambling at C2 (Foo & Porter, 1983) or, after ring closure involving 

different hydroxyl groups or aromatic carbon atoms, to rearrangement products 

(Burger, Kolodziej, Hemingway, Steynberg, Young, & Ferreira, 1990; Laks, 

Hemingway, & Conner, 1987; Steynberg, Bezuidenhoudt, Burger, Young, & Ferreira, 

1990). With this information in mind, it is advisable to perform all requisite synthetic 

steps and separations on protected precursors and to de-protect pure precursors at 

the very end of the synthesis under the mildest possible conditions. 

 

2.1.1. Earlier synthetic work 
 

PD synthesis has always been linked to the synthesis of PCs due to chemical 

structure resemblance and PC widespread detection and identification in natural 

sources. The first synthesis of PCs was performed by Geissman in 1966 (Geissman 

& Yoshimura, 1966). In this work, the interflavan link was created under acidic 

conditions (aqueous HCl, 0.1 N) between a unit protected flavan-diol, tetra-O-methyl-

3',4',5,7-tetrahydroxyflavan-3,4-diol and (+)-C. Two inseparable major products were 

recovered with a yield of 67%. Geissman et al. suggested that the formation of two 

products in equivalent amounts is induced by an epimerization at C4. 

Later, PA synthesis involved complex natural PCs thiolysis giving 4-benzylthioflavan-

3-ols and acid-catalysed condensation of unprotected monomers with building blocks 

that bear a good leaving group in C4 position. An example of the latter reaction is the 
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reduction of (2R,3R)-dihydroquercetin ((+)-taxifolin) with sodium borohydride in 

ethanol, under nitrogen, in the presence of a molar equivalent of (+)-catechin, and 

adjustment of the solution to pH 5 after the addition of an equal volume of water 

(Eastmond, 1974). Inherent characteristics of this synthetic approach are the 

formation of regioisomers in inter-flavan bonds from either the C6 or the C8 position 

of the nucleophile acceptor, as well as the re-entry of already formed oligomers into 

the process to generate higher oligomers, even if an excess of the nucleophile 

acceptor is employed (Delcour, Ferreira, & Roux, 1983). Moreover, although it is a 

rapid method, the resulting mixtures are sensitive to oxidation, sometimes the formed 

compounds are not easily isolated and there is still no better reasonably priced 

electrophile building block. 

So far, all of the synthetic work had mainly focused on the PCs with little attention 

being paid to the PDs. After a work on PDs synthesis was presented at the 

Phytochemical Society of Europe International Symposium in 1981 (Outtrup, 1981b), 

Delcour et al. proposed a method for the direct synthesis of PDs using (+)-catechin 

and (+)-dihydromyricetin as precursors (Delcour & Vercruysse, 1986). The same 

group also identified trimers with both (C4-C8 and C4-C6) linked units which they 

identified as PCC2, PDC2 and a trimer comprised of (4,8:4,8)-(+)-GC-(+)-C-(+)-C, as 

well as (4,8:4,8)-(+)-C-(+)-GC-(+)-C.  

 

 

 

 

 

 

 

 

 
 

Figure 21. Chemical structures of dihydroquercetin and dihydromyricetin 
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2.1.2. Protecting groups 
 

In 1974 Sears et al. (Sears, Casebier, Hergert, Stout, & McCandlish, 1974) and, 

later, Laks et al. (Laks, Hemingway, & Conner, 1987) performed studies on base 

reactions leading to an intra rearrangement of (+)-C yielding catechinic acid and 

isocatechinic acid. This acid was shown to be an enolic form of (+)-C-(+)-

phloroglucinol (Figure 22 a)). Since this occurred for (+)-C it was postulated that the 

same could occur in higher oligomeric compounds. Polymeric PCs were reacted with 

phloroglucinol at pH 12.0 at 23°C and 50°C. It was found that both the interflavanyl 

bond and the pyrane ring underwent rapid cleavage to form a reactive quinone 

methide that, through an intramolecular condensation and rearrangement, leads to 

the 6-phloroglucinol adduct b) in figure 22. It also can undergo an epimerization 

reaction after C ring opening. 

		 

 

 

 

 

Figure 22. Chemical structure of: a) catechinic acid and  
b) 6-(3,4-dihydroxyphenyl)-7-hydroxy-6-(2,4,6-trihydroxyphenyl)-bicyclo[3,3,1]-nonane-2,4,9-trione 

 

Meanwhile, when extracted in acid solution, polymerization reactions take place, 

making catechins unstable compounds outside of pH 5-8. They are equally sensitive 

to oxidation reactions where, in the presence of oxygen, the hydroxyl groups are 

transformed in quinones, leading to the formation of brown compounds (Es-Safi, Le 

Guernevé, Cheynier, & Moutounet, 2000). 

Given the disadvantages of synthesis from unprotected precursors, many efforts 

have been made from protected precursors. The flavanol hydroxyl group has indeed 

a nucleophilic character, acidic nature (pKa 10-18) and high potential for oxidation. 

The difference in acidity of phenol functions with that of the alcohol in position C3 

protects the four phenol functions without protecting the alcohol and thus leaves this 

position free for future functionalization as the galloylation (Figure 23). 

 

 

 

a) b) 
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Figure 23. Protonation constants of alcohols and phenols functions  

(Kennedy, Munro, Powell, Porter, & Foo, 1984; Slabbert, 1977). 
 

Methylation of the phenolic hydroxyls has commonly been employed for PC 

characterization purposes, and in a few cases methylated building blocks have been 

entered into oligomer-forming condensation reactions. However it is difficult to cleave 

methyl ethers without breaking the inter-flavan bond and, thereby, renders methyl 

unsuitable as a protecting group for PCs (Kolodziej, Ferreira, & Roux, 1984; Sweeny 

& Iacobucci, 1979).  

Other protective groups include acetylation with acetic anhydride and pyridine 

(Kawamoto, Tanaka, Nakatsubo, & Murakami, 1993; Kolodziej, Ferreira, & Roux, 

1984); silylation using tert-butyldimethylsilyl and trimethylsilyl derivatives (Corey & 

Venkateswarlu, 1972; Kendall, Johnson, & Cook, 1979); and benzylation (Kawamoto, 

Nakatsubo, & Murakami, 1991; Kawamoto, Tanaka, Nakatsubo, & Murakami, 1993). 

Protection with benzyl functions remains the preferred choice because of their 

stability in acid/basic medium, but mainly because of the easy de-protection in 

neutral medium by hydrogenolysis (Deme, 1976; Haruo Kawamoto, Nakatsubo, & 

Murakami, 1989).  

 

2.1.3. Inter-flavan bond formation using benzyl-protected building 

blocks  
 

The first synthesis of PCs involving a coupling via an organometallic was conducted 

in 1967 by Weinges (Weinges & Perner, 1967). The electrophile unit 1 was obtained 

after methylation of taxifolin hydroxyl groups (Figure 24). The second 2 was obtained 

from catechin after protection of the hydroxyl groups by methoxyl groups and 

bromination at C8 to produce the halogen-metal exchange. After the protection of the 

alcohol at C3 by a benzyl group, the lithium derivative 3 was formed to react with the 

electrophilic unit 1. After catalytic hydrogenolysis and acetylation of the hydroxyl in 
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C3, the dimer 4 was obtained with a yield of 20%. 

 

 

 

 

 

 

		 

 

 

 

 

 
Figure 24. First synthesis of procyanidins involving a coupling via an organometallic. 

a) nBuLi; b) H2 – Pt; c) Ac2O, pyridine. 
 

Later, Kozikowski et al. developed another method for coupling via an organometallic 

(Kozikowski, Tückmantel, & Hu, 2001). After the obtainment of the electrophilic unit 

5, where all hydroxyl groups are protected with benzyl groups and the hydroxyl group 

at C3 either protected by benzylation or by silylation, C4 is oxidized with 2,3-dichloro-

5,6-dicyano-1,4-benzoquinone (DDQ) and the resulting alcohol 6 oxidized to form the 

ketone 7 (Figure 25). The nucleophilic unit 8 is initially prepared like the electrophilic 

unit 5, but then is brominated at C8 to allow the metal-halogen exchange. Treatment 

of the nucleophilic unit by tert-butyllithium (tertBuLi), followed by addition of the 

electrophilic unit leads to the formation of a dimer (9) as a single isomer. After 

reduction and deprotection the EC-(4α-8)-EC dimer was obtained. 
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Figure 25. Synthesis of procyanidins developed by Kozikowski et al. a) DDQ, H2O, THF;  
b) NMMO, cat. TPAP, CH2Cl2; c) tertBuLi, THF; d) nBu3SnH, CF3COOH, CH2Cl2;  

e) R = TBDMS: 48% HF, CH3CN; f) 1 bar H2, 20% Pd(OH)2/C, EtOAc/MeOH. 

 

DDQ oxidation of the EC derivative in dichloromethane/ methanol (CHCl3/MeOH) 

gave generally low yield, and improved result was obtained by the use of ethylene 

glycol instead of MeOH to give flavan-3,4-diol hydroxy ethyl ether derivatives in 52% 

yield. Saito et al. re-examined the benzylic DDQ oxidation of a C derivative (5,7,3’,4’-

tetrabenzylcatechin) using five alcohols as nucleophiles (Saito, Nakajima, Tanaka, & 

Ubukata, 2002). Among them, benzyl alcohol (BnOH) reacted in 86% yield to give 
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the 4-O-benzyl derivative. This reaction was performed at 0ºC because, at room 

temperature, it led to the formation of many by-products including bis-oxidized 

products. 

The first synthesis involving cationic coupling activated by a Lewis acid was 

described in 1989 by Kawamoto (Kawamoto, Nakatsubo, & Murakami, 1989). The 

coupling between a flavan-diol (5,7,3’,4’-tetrabenzylflavan-3,4-diol) and 

phloroglucinol was performed in the presence of titanium tetrachloride (TiCl4). Since 

then, many researchers use this synthetic route to obtain PCs: in the presence of a 

Lewis acid, a nucleophilic unit is coupled with an electrophilic unit, which doesn’t 

necessarily have to be protected at C3 and/or C8 but always activated at C4. 

Until some years ago, only Tuckmantel (Tuckmantel, Kozikowski, & Romanczyk, 

1999), Saito (Saito, Nakajima, Tanaka, & Ubukata, 2002; Saito, Noriyuki, Akira, & 

Ubukata, 2003) and Fouquet (Tarascou, Barathieu, André, Pianet, Dufourc, & 

Fouquet, 2006) were the only ones that had complete control of the stereoselectivity 

of the interflavan link upon condensation. In most cases, the control is achieved 

through the use of a large excess of the nucleophilic unit. Blocking the C8-position of 

the electrophilic unit prevents electrophilic unit respond to C8 of the formed dimer, 

thus blocking all access to higher order oligomers. 

 

2.1.4. Deprotection of the benzyl groups 

 

The deprotection step must be carried out under mild and neutral conditions to avoid 

both breaking the interflavan link and the degradation of the native dimer obtained by 

ring opening and/or epimerization. The various methods in the literature offer 

catalytic hydrogenolysis that differ in the nature of the catalyst, the hydrogen donor 

solvent or the reaction temperature. Using palladium on charcoal and a hydrogen 

source: H2 (Kawamoto, Nakatsubo, & Murakami, 1989; Kawamoto, Nakatsubo, & 

Murakami, 1991), 1,4-cyclohexadiene (Felix, Heimer, Lambros, Tzougraki, & 

Meienhofer, 1978) and acetic acid (Deme, 1976); and the nature of the solvent: 

dioxane (Kawamoto, Tanaka, Nakatsubo, & Murakami, 1993; Tuckmantel, 

Kozikowski, & Romanczyk, 1999), ethanol/THF 1/5 (Yoneda, Kawamoto, & 

Nakatsubo, 1997) and methanol, debenzylation is not complete. Best results are 

obtained with another palladium catalyst: Pearlman's catalyst, Pd(OH)2 on charcoal 

(Pd(OH)2/C). This catalyst allows debenzylation in various solvent systems: THF/H2O 

(Arnaudinaud, Nay, Vergé, Nuhrich, Deffieux, Mérillon, et al., 2001), THF/MeOH/H2O 

(Saito, Doi, Tanaka, Matsuura, Ubukata, & Nakajima, 2004; Saito, Tanaka, Ubukata, 
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& Nakajima, 2004), AcOEt/MeOH (Kozikowski, Tückmantel, & Hu, 2001; Tarascou, 

Barathieu, André, Pianet, Dufourc, & Fouquet, 2006). 

 

2.2. Studies involving prodelphinidins 
 

The antioxidant properties of PD dimers from pomegranate peel were studied using 

two methods: inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine 

liposomes; and scavenging of the radical cation of 2,2-azinobis (3-ethyl-

benzothiazoline-6-sulphonate, ABTS) relative to the water-soluble vitamin E 

analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). 

The results revealed that they are potent antioxidants in the aqueous phase, being 

much more effective than the GC monomer. However, in the lipid phase, only one of 

the dimers (GC-(4-8)-C) was significantly more effective than the GC monomers in 

the inhibition of lipid peroxidation of phosphatidylcholine vesicles (Plumb, de 

Pascual-Teresa, Santos-Buelga, Rivas-Gonzalo, & Williamson, 2002). 

In a chemical investigation with several flavan-3-ols isolated from the testa of faba 

beans, including the PDs GC-(4α�8)-C, GC-(4α�8)-EC and GC-(4α�8)-EGC. PA 

samples were compared for their trypsin inhibitory activity and the results suggest 

that the degree of polymerization, the number of phenolic hydroxyl groups and the 

2,3-stereochemistry of the constituent units affect remarkably the strength of the 

inhibition. PDs showed trypsin inhibitor activity values of 4.7±0.5 to 9.5±0.9 for 

bovine trypsin and 9.5±3.1 to 13.9±2.1 for porcine trypsin against values around 2 

and 4 for PCs (values expressed as mg trypsin inhibited per g test sample) (Helsper, 

Hoogendijk, van Norel, & Kolodziej, 1993). 

PDs B3, T1, T2 and T3 isolated from a polyphenol extract from barley bran induced 

26-40% nitro blue tetrazolium (NBT)-positive cells and 22-32% alpha-naphthyl 

butyrate esterase-positive cells in HL60 human myeloid leukemia cells (Tamagawa, 

Fukushima, Kobori, Shinmoto, & Tsushida, 1998). 

Green tea extract is well known to reduce the risk of a variety of diseases. Studies on 

structure-activity relationship using five of PDs of green tea revealed that the galloyl 

moiety might have anti-inflammatory properties through blocking mitogen-activated 

protein kinase (MAPK)-mediated cyclooxygenase-2 (COX-2) expression (Hou, 

Masuzaki, Hashimoto, Uto, Tanigawa, Fujii, et al., 2007). 

Luobuma tea, prepared from the leaves of Apocynum venetum L., is a popular 

beverage in China. Fractionation of this extract allowed to identify seven polyphenolic 
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compounds: GC, EGC, C, EC, PD EGC-(4β�8)-EC, PC EC-(4β�8)-GC, and PCB2. 

The activity of Luobuma leaf extract and its components against the formation of 

advanced glycation endproducts (AGEs), which are largely involved in the 

pathogenesis of diabetic vascular complications, was examined using the in vitro 

glycation reaction. Inhibition of AGEs is considered to be one promising approach for 

the prevention and treatment of diabetic vascular diseases and strong inhibitory 

activity against the formation of AGEs was shown by Luobuma aqueous extract. 

These identified compounds (after purification) also exerted inhibitory activities that 

were more potent than the positive control, aminoguanidine (Yokozawa & Nakagawa, 

2004). 

PDB2-3′-O-G isolated from green tea leaf, was investigated for its anti-proliferative 

activity in human non-small cell lung cancer A549 cells. The results showed that not 

also inhibited the proliferation of A549 cells but also showed no detectable toxic 

effects on normal WI-38 cells. In addition, PDB2-3′-O-G effectively induced A549 cell 

apoptosis as determined by assessing the nucleosome level in cytoplasm (Kuo, Hsu, 

Lin, & Lin, 2004; Kuo, Hsu, Lin, & Lin, 2005). 

Fujii and co-workers have focused their interest on examining the antitumor activities 

of newly synthesized PDs. The synthesis of PDB3 and PDC2 allowed obtaining 

sufficient quantities of purified compounds to screen against PC-3 prostate cancer 

cell lines together with PCB3, PCC1 and PCC2 (Figure 26). 

EGCG was used as a positive control. EGCG and all PDs exhibited significant 

cytotoxic activity suggesting that these were clearly associated with the presence of 

the pyrogallol moiety of the B ring. Treatment of PC-3 prostate cancer cells with 50 

µM of PDB3 for 48 h induced a G1/G0 phase population (cells first growth/cells 

resting phase) increase from 62.88% to 74.50%, blocking the PC-3 prostate cancer 

cell cycle partly at the G1/ G0 phase within these 48 h; and an S phase fraction (DNA 

replication phase) decrease from 16.06% to 8.67%, indicating a slower cell division 

and growing tumor. EGCG and the rest PDs showed a similar effect. On the other 

hand, no effect from PCB3, PCC1 or PCC2 was observed. PDB1, PDB2, and PDB4, 

which have two pyrogallol moieties, seemed to have stronger activity than PDB3, 

which has one pyrogallol moiety. Therefore, the additional pyrogallol moieties might 

enhance the cytotoxic effects. EGCG has two pyrogallol moieties but one of them is 

esterified; this might be the reason for a weaker cytotoxic activity than PDB1, PDB2, 

and PDB4 (Fujii, Toda, Matsumoto, Kawaguchi, Kawahara, Hattori, et al., 2013). 
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Figure 26. The chemical structures of PDB1, PDB2, PDB3, PDB4, PCB3, PDC2, PCC1 and PCC2. 

 

Compounds which promote cell apoptosis and inhibit proliferation of cancer cells, are 

likely to be good candidates as antitumor agents (Zi & Agarwal, 1999). These 

findings suggest that PDs might be promising chemopreventive agents against 

prostate cancer (Fujii, Toda, Kawaguchi, Kawahara, Katoh, Hattori, et al., 2013). 

 

2.3. Synthesis of new Prodelphinidins 
 

Synthetic studies on PDs are quite limited. It was decided to follow a synthesis 

pathway proposed by Krohn and co-workers (Krohn, Ahmed, & John, 2009; Krohn, 

Ahmed, John, Letzel, & Kuck, 2010). Initially the idea was to follow their exact steps 

(Figure 27). After the obtainment of methyl-tribenzyloxybenzoate 10, this was 

reduced by lithium aluminium hydride (LAH) in tetrahydrofuran (THF) for 21 hours at 

PDB3: R1 = OH; R2 = OH; R3 = H; R4 = OH 
PDB4: R1 = OH; R2 = OH; R3 = OH; R4 = H 
PCB3: R1 = H; R2 = H; R3 = H; R4 = OH 
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room temperature and for 5 hours in reflux (Meuzelaar, van Vliet, Maat, & Sheldon, 

1999; Zhao, Hao, Lu, Cai, Yu, Sevnet, et al., 2002), yielding 

tribenzyloxybenzylalcohol 11. Next the tribenzyloxybenzaldehyde 12 was obtained by 

oxidation of the alcohol by pyridinium chlorochromate
 
in dichloromethane at 0 °C for 

6h. 

 

 

 

 

 

 

 
Figure 27. Synthesis of benzylated aldehyde 12 

 

The second reagent needed was the benzylated acetophenone 15. Phloroglucinol 

(13) was subjected to Friedel-Crafts acetylation (Mateeva, Kode, & Redda, 2002). 

Trihydroxyacetophenone (14) was obtained by treating equimolar amount of 

phloroglucinol 13 and acetic anhydride with 2.5 times molar excess of boron 

trifluoride solution in ether at 50-60 °C for 20 minutes (Figure 28). 

Trihydroxyacetophenone (14) was protected as the benzyl ether by reaction with 4.4 

eq of potassium carbonate and 2.8 eq of benzyl bromide, in DMF, at 60-70ºC.	 
 

 

 

 

 

 
Figure 28. Synthesis of acetophenone 15 

 

Since this approach was consuming a lot of time and the authors of the method also 

experienced a few problems with the obtaining of the electrophile part (due to 

racemic mixtures) and, since the monomers that constitute the dimers building parts 

are available commercially, it was decided to continue from here. 

 

The overall description of the synthesis of new PDs is described in figure 29 
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Figure 29. Synthesis of prodelphinidin epigallocatechin-(4β�8)-catechin (EGC-C) 26, epigallocatechin-(4β�8)-	

epigallocatechin (EGC-EGC) 27 and epigallocatechin-(4β�8)-epigallocatechin gallate (EGC-EGCG) 28. 

 

2.4. Materials and Methods 
 

(+)-Catechin (C) and (-)-epicatechin (EC), were purchased from Sigma-Aldrich® 

(Madrid, Spain). (-)-Epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) 

were purchased from Biopurify Phytochemicals Ltd (Sichuan, China).  

The identity and purity of the compounds was achieved by LC-MS-ESI and NMR (1H 

NMR and 13C NMR spectra were measured in CDDl3 or D2O on a Bruker Avance 400 

spectrometer). 1H NMR spectra performed at ISM – Institut des Sciences 

Moléculaires, Groupe Synthèse-Molécules Bioactives at Bordeaux University, were 

measured in CDDl3 or CDDl3/MeOD 1:1 on a Bruker 200 MHz spectrometer. 

All LC-ESI-MS analysis were performed in a Finnigan Surveyor Plus HPLC system 

fitted with a PDA Plus detector, an autosampler Plus and a LC quaternary pump plus 

R1 = H

R2 = O
OH

OH
OH

R1 = OH

R1 = OH

R2 = OH

R2 = OH

16 

17 

18 

O

OR2

OH

OH

R1

OH

HO

R2 = O
OBn

OBn
OBn

R1 = H

R1 = OBn

R1 = OBn

R2 = OH

R2 = OH

19 

20 

21 

O

OR2

OBn

OBn

R1

OBn

BnO

+	

22 

O

OH

OBn

OBn

OBn

OBn

BnO

OBn

19, 20 or 22 

O

OR2

OBn

OBn

R1

OBn

BnO

R2 = O
OBn

OBn
OBn

R1 = H

R1 = OBn

R1 = OBn

R2 = OH

R2 = OH
23 

24 

25 

O

OH

OBn

OBn

OBn

OBn

BnO

O

OR2

OBn

OBn

R1

OBn

BnO

R1 = H

R2 = O
OH

OH
OH

R1 = OH

R1 = OH

R2 = OH

R2 = OH
26 

27 

28 

O

OH

OH

OH

OH

OH

HO

O

OR2

OH

OH

R1

OH

HO



FCUP 
Study of Prodelphinidins: synthesis, detection, identification and reactivity with anthocyanins 

47 

 
 
coupled to a Finnigan LCQ Deca XP Plus mass detector equipped with a ESI source 

and an ion trap quadrupole equipped with an atmospheric pressure ionization (API) 

source. The stationary phase was a Thermo Finnigan Hypersil Gold column (150 x 

4.6 mm i.d., 5 mm). The mass spectrometer was operated in the negative-ion mode 

with source, with a capillary temperature of 275ºC and capillary voltages of 4.5 kV. 

The mass spectra were recorded between 250 and 2000 m/z. The mobile phase was 

composed by solvent A, 0.1% (v/v) formic acid, and solvent B, 100% (v/v) methanol. 

The flow rate was 0.20 mL/min and the gradient method started with a linear gradient 

ranging from 90% A to 60% A in 90 minutes, then reaching 100% B in 5 minutes and 

a final isocratic gradient of 100% B during 5 minutes. 

HPLC analysis were performed on a Thermo® Scientific HPLC with a Thermo® 

Scientific Spectra System P4000 pump using a 250 × 4.6 mm i.d. reversed-phase 

C18 column (Merck®, Darmstadt) at 25 °C. The detection was carried out between 

200 and 800 nm using a Thermo® Scientific Spectra System UV8000 diode array 

detector; 30 µl of each sample was injected using an autosampler Thermo® 

Scientific Spectra System AS3000. The solvents were A: water/acetic acid (2.5%), 

and B: 20% solvent A and 80% acetonitrile. The gradient consisted of an isocratic 

gradient 7% B for 5 minutes, followed by 7–20% B for 85 min and 20-100% in 5 

minutes and a final isocratic gradient of 100% B for 5 minutes at a flow rate of 

1.0 ml/min. 

 

2.4.1. Benzylation of monomeric flavan-3-ols 

2.4.1.1. Using benzyl chloride (BnCl) 
 

To a stirred suspension of sodium hydride (NaH) (4.25 eq for 16 and 8.25 eq for 17) 

in anhydrous dimethylformamide (DMF) under nitrogen at -78°C in a sealed reaction 

flask, was sequentially added a solution of (+)-C 16 and (-)-EGC 17 (1 eq) in dry 

DMF and BnCl (5 eq for 16 and 8 eq for 17) in one batch via a syringe. The mixture 

was stirred at this temperature for 15 minutes, the acetone bath removed and stirring 

continued at room temperature for 7 hours. The reactions were quenched by adding 

1N HCl (2 mL) and water (10 mL). The aqueous layer was extracted with ethyl 

acetate (EtOAc) and the organic layer washed with hexane to remove mineral oil and 

water to remove acid. The organic layer was dried over sodium sulphate (Na2SO4), 

and evaporated to dryness. The O-benzylated products were purified by silica gel 

column chromatography using hexane/EtOAc (2:1, v/v) as eluent. 
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2.4.1.2. Using benzyl bromide (BnBr) 
 

To a stirred solution of (+)-C 16, (-)-EGC 17 and (-)-EGCG 18 in dry DMF, under 

argon, was added potassium carbonate (K2CO3) (6 eq for 16; 10 eq for 17; 17.6 eq 

for 18) and BnBr (4.3 eq for 16; 7.7 eq for 17; 13.6 eq for 18). The solution was 

stirred at 0ºC for 2 hours and left at room temperature for 48 hours for 16, 72 hours 

for 17 and 24 hours for 18. The mixture was extracted with ethyl acetate and water, 

dried over Na2SO4, filtered and concentrated. The crude product was purified with 

silica gel column chromatography (dichloromethane (CH2Cl2) for 19 and 20 and 

hexane/ EtOAc 2:1 for 21). 

 

2.4.2. Benzylation at C4 
 

To a solution of EGC5Bn 20 and benzyl alcohol (BnOH) (10.3 eq) in CH2Cl2 was 

slowly added, at 0ºC, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (2.3 eq). 

After reacting overnight at room temperature, it was added 4-dimethylaminopyridine 

(DMAP) (2,4 eq) at 0ºC and left to react for 30 minutes. Then the mixture was filtered 

and washed with water and brine, dried over Na2SO4, filtered and concentrated. The 

crude product was purified with silica gel column chromatography with EtOAc 2:1 as 

eluent to afford EGC5Bn(Bn) 22. 

 

2.4.3. Condensation 
 

EGC5Bn(Bn) 22 and C4Bn 19 (4 eq), EGC5Bn 20 (4 eq) or EGCG8Bn 21 (4 eq) 

were dissolved in CH2Cl2 and trimethylsilyl trifluoromethanesulfonate (TMSOTf) (0.5 

M solution in CH2Cl2, 1.5 eq) was added dropwise at -78ºC. Therefore the proper 

time of reaction was tested by following each reaction by TLC. At first the solutions 

were left to react for 5 min, following the method described by Krohn et al. (Krohn, 

Ahmed, John, Letzel, & Kuck, 2010). However, after that period of time and after 

checking the reaction products by TLC, it was observed that the upper unit (and 

limiting reagent) EGC5Bn(Bn) was still present in good quantity. Thereby, the 

solutions were left stirring for 60, 120 and 90 min respectively (reaching -22ºC), and 

left to reach 0ºC for 2h 20 min, 80 min and 3h 30 min. The reactions were then 

quenched by addition of saturated aqueous sodium bicarbonate (Na2HCO3) (1 mL). 

The mixture was extracted with chloroform and the organic phase was washed with 

water and brine, dried over Na2SO4, filtered and concentrated. The crude product 
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was purified with silica gel column chromatography with hexane/ethyl acetate 1:1, 

hexane/EtOAc 2:1 and CH2Cl2, respectively, as eluent to afford EGC-C9Bn 23, EGC-

EGC10Bn 24 or EGC-EGCG13Bn 25.  

 

2.4.4. Hydrogenolysis 

2.4.4.1. Hydrogenolysis with palladium on carbon 
 

General procedure using a hydrogen reactor. A solution of EGC-C9Bn 23 (under 

argon) and 0.5 eq for each removing group of 10% palladium-charcoal catalyst (Pd/C 

10%) (10-20% by weight), in THF/MeOH/H2O 20/20/1 (V/V), were placed in a 

hydrogen reactor. The reaction proceeded at 1.5 bar of H2 (g) pressure for 3 hours. 

When the reaction was complete, each mixture was filtered through a 0.20 mm PET 

Chromafil® syringe filter and the solvent was evaporated under vacuum. 

 

General procedure at atmospheric pressure. A solution of EGC-C9Bn 23 (under 

argon) and 0.5 eq for each removing group of Pd/C 10%, in THF/MeOH/H2O 20/20/1 

(V/V), were placed in a schlenk flask. A balloon attached to the flask provided the 

hydrogen. When the reaction was complete, each mixture was filtered through a 0.20 

mm PET Chromafil® syringe filter and the solvent was evaporated under vacuum. 

 

 

2.4.4.2. Hydrogenolysis with palladium hydroxide on carbon 
 

General procedure using a hydrogen reactor. A solution of EGC-C9Bn 23 (under 

argon) and 0.5 eq of Pd(OH)2/C 20% for each removing group, in THF/MeOH/H2O 

20/20/1 (V/V), were placed in a hydrogen reactor. The reaction proceeded at 1.5 bar 

of H2 (g) pressure. When the reaction was complete, each mixture was filtered 

through a 0.20 mm PET Chromafil® syringe filter and the solvent was evaporated 

under vacuum. 

 

General procedure at atmospheric pressure. A solution of EGC-C9Bn 23 and 

EGC-EGC10Bn 24 (under argon) and 0.5 eq of Pd(OH)2/C 20% for each removing 

group, in THF/MeOH/H2O 20/20/1 (V/V), were placed in a schlenk flask. A double 

balloon attached to the flask provided the hydrogen. When the reaction was 

complete, each mixture was filtered through a 0.20 mm PET Chromafil® syringe filter 
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and the solvent was evaporated under vacuum. 

Later this reaction was tested with 100% (m/m) of Pd(OH)2/C 20% . The catalyst and 

the compound were placed (under argon for 10 min) in a glass balloon with a rubber 

septum with two needles. Then it was added 1-2 mL of MeOH/THF/AcOEt 1:1:1 and 

placed the double layer balloon filled with H2 (g) attached to a long needle. The H2 

was left to bubble for 3-4 min to saturate the catalyst and then the needle was lifted 

to the headspace of the glass balloon. The outlet needle was then removed. 

 

2.4.4.3. Hydrogenolysis in situ 
 

To a stirred solution of EGC-C9Bn 23 and EGC-EGCG13Bn 25 under argon and 

Pd/C 10% in MeOH (2-3 mL) was added neat triethylsilane (TES) (10 mmol for each 

removing group). A few drops of THF were added to dissolve the reagents. When the 

reaction was complete (TLC), each mixture was filtered through a 0.20 mm PET 

Chromafil® syringe filter and the solvent was evaporated under vacuum. 

 

2.4.4.1. Hydrogenolysis in situ using the H-cube® equipment 
 

The following hydrogenolysiss were performed at the ISM – Institut des Sciences 

Moléculaires, Groupe Synthèse-Molécules Bioactives at Bordeaux University I, under 

the supervision of Professor Eric Fouquet and Professor Philippe Garrigues. 

EGC-C9Bn 23, EGC-EGC10Bn 24 and EGC-EGCG13Bn 25 were dissolved in 

THF/AcOEt/MeOH 1:1:1 and filtered through a 0.45 mm PET Chromafil® syringe 

filter. Then the solutions were injected in the H-cube® and the resulting product 

collected at the equipment outlet. 

 

2.5. Results and Discussion 

2.5.1. Benzylation of monomeric flavan-3-ols 
 

Benzyl chloride was used to protect the starting monomers C (16), EGC (17) and 

EGCG (18) in the presence of potassium carbonate as a weak base and DMF as a 

solvent. Benzyl ethers are stable under basic or mildly acidic conditions. 
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2.5.1.1. Using BnCl 
 

Following a method described by Mustafa et al. (Mustafa, Khan, Khan, & Ferreira, 

2004), they describe a 90% yield for C 16 and a 85% yield for EGC 17. However, 

ESI-MS and 1H-NMR analysis did not allow to detect the presence of the respective 

O-benzylated compounds 19 and 20. In fact, TLC analysis to the reaction mixture 

revealed the presence of various other compounds, including unreacted BnCl. 

Krohn et al. performed this catechin benzylation at 120-130°C in the presence of 

K2CO3 in DMF and it was completed within 5 hours with 80 % yield. However, it 

yielded 5% of pentabenzylated catechin (C5Bn) as side product (Ahmed, 2007). 

 

2.5.1.2. Using BnBr 
 

The compounds C4Bn 19, EGC5Bn 20 and EGCG8Bn 21 were prepared by simple 

protection of the phenol functions of C 16, EGC 17 and EGCG 18 using BnBr. It 

followed a method described by Fabre (Fabre, 2009) for C4Bn obtainment. The 

reaction time for the protection of EGC 17 and EGCG 18 were tested and 72 hours 

for 17 and 24 hours for 18 revealed to be the most appropriate. 

This method yielded much better results then the previous one. 

 

5,7,3’,4’-Tetra-O-benzylcatechin (C4Bn) (19). Amorphous white solid, yield 95.3%. 

ESI-MS found [M+H]+: 651. 1H NMR (CDCl3) δ/ppm: 2.64 (H4α, dd, J=5.6; 16.4 Hz), 

3.09 (H4β, dd, J=9.0; 16.4 Hz), 4.62 (H2, d, J=8.1 Hz), 4.05 (H3, m), 5.02, 5.03, 5.15, 

5.16 (OCH2Bn, 4s), 6.21 (H6, d, J=2.3 Hz), 6.26 (H8, d, J=2.3 Hz), 6.94 (H5’ and H6’, 

br s), 7.02 (H2’, br s), 7.27-7.44 (H-Ar, m); 13C NMR (CDCl3) δ/ppm: 27.58 (C4), 

65.32 (C3), 68.11, 69.87, 70.10, 71.18, 71.24 (OCH2Bn), 81.54 (C2), 93.79 (C6), 

94.37 (C8), 102.26 (C4a), 113.82 (C2’), 114.85 (C5’), 120.56 (C6’), 130.93 (C1’), 

126.99-128.51, 136.82-137.09 (C-Ar), 149.05 (C3’), 149.30 (C4’), 155.27 (C8a), 

157.78 (C5), 158.76 (C7). 

 

5,7,3’,4’,5’-Penta-O-benzylepigallocatechin (EGC5Bn) (20). Amorphous buff solid, 

yield 83.9%. ESI-MS found [M+H]+: 757. 1H NMR (CDCl3) δ/ppm: 2.98 (H4, ABX), 

4.20 (H3, br), 4.88 (H2, s), 5.01, 5.06, 5.13 (OCH2Bn, 3s), 6.28 (H6 and H8, s), 6.81 

(H2’ and H6’, s), 7.23-7.43 (H-Ar, m); 13C NMR (CDCl3) δ/ppm: 28.12 (C4), 66.30 

(C3), 69.88, 70.08, 71.23 (OCH2Bn), 78.63 (C2), 94.17 (C8), 94.75 (C6), 101.14 
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(C4a), 106.16 (C2’ and C6’), 126.90-138.20 (C-Ar), 140.99 (C4’), 152.96 (C3’ and 

C5’), 155.21 (C5), 158.27 (C8a), 158.78 (C7). 

 

5,7,3’,4’,5’-Penta-O-benzyl-3-O-(3,4,5-tri-O-benzylgalloyl)epigallocatechin 

(EGCG8Bn) (21). Amorphous yellow solid, yield 97.2%. ESI-MS found [M+H]+: 1179. 
1H NMR (CDCl3) δ/ppm: 3.22 (H4, ABX), 4.25 (H3, br), 5.05 (H2, s) 5.10-5.16 

(OCH2Bn, m), 6.87 (H2’’ and H6’’, br s), 6.54 (H2’ and H6’, s), 7.24-7.51 (H-Ar, m); 
13C NMR (CDCl3) δ/ppm: 26.32 (C4), 68.55 (C3), 70.16, 70.30, 71.20, 71.33, 75.16, 

75.25 (OCH2Bn), 78.03 (C2), 94.23 (C6), 94.92 (C8), 101.25 (C4a), 106.94 (C2’ and 

C6’), 109.29 (C2’’ and C6’’), 127.35-128.69 (C-Ar), 130.01 (C1’), 136.57 (C1’’), 

136.93-138.61 (C-Ar), 142.90 (C4’’), 152.58 (C3’ and C5’), 153.07 (C3’’ and C5’’), 

133.40 (C4’), 155.84 (C8a), 158.19 (C5), 159.04 (C7), 164.94 (CO). 

 

2.5.2. Benzylation at C4 
 

The abbreviation chosen for this compound was EGC5Bn(Bn) instead of EGC6Bn to 

illustrate that an extra –OBn group is added to the molecule and does not occur 

another benzylation of a pre-existing hydroxyl group. 

The oxidation of benzylic C–H bonds by DDQ gives quinol ethers that have been 

reported previously (Foster & Horman, 1966; Wallace, Gibb, Cottrell, Kennedy, 

Brands, & Dolling, 2001). Batista et al. have isolated benzylic ethers resulting from 

the oxidative C–H activation of arylmethanes by DDQ (Batista, Crabtree, Konezny, 

Luca, & Praetorius, 2012). A combination of experimental and computational studies 

suggests that this C–H activation occurs through hydride abstraction by DDQ. It is, in 

fact, an oxidative nucleophilic substitution (Lemaire, Doussot, & Guy, 1988). DMAP it 

is a useful nucleophilic catalyst for a variety of reactions. 

The activation at C4 of the upper unit with a good leaving group is essential for the 

cationic coupling activated with a Lewis acid that will follow next. This step can be 

performed by functionalization with a heteroatom such as a bromine, sulphur or 

oxygen (Hemingway & Foo, 1983; Steenkamp, Ferreira, & Roux, 1985; Steynberg, 

Nel, van Rensburg, Bezuidenhoudt, & Ferreira, 1998). According to this method, 

multiple nucleophilic such as water or alcohols can be used. 

The electrophile 22 was prepared from his corresponding EGC5Bn 20 by treatment 

with DDQ for benzylic oxidation. DDQ oxidation at C4 was performed with benzyl 

alcohol as the nucleophile and DMAP as nucleophilic catalyst. The reaction 

proceeded smoothly to give EGC5Bn(Bn) 22 in 98.3% isolated yield. 
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4,5,7,3’,4’,5’-Hexa-O-benzylepigallocatechin ((EGC5Bn)Bn) (22). Amorphous buff 

solid, yield 98.3%. ESI-MS found [M+H]+: 863. 1H NMR (CDCl3) δ/ppm: 3.93 (H3, m), 

4.22 (H4, m), 4.73 (OCH2Bn, d, J=1.8 Hz), 5.04 (OCH2Bn, d, J=4.5 Hz), 5.13 

(OCH2Bn, s), 5.22 (H2, s), 6.28 (H8, d, J=2.3 Hz), 6.31 (H6, d, J=2.2 Hz), 6.77 (H2’ 

and H6’, s), 7.25-7.44 (H-Ar); 13C NMR (CDCl3) δ/ppm: 28.91 (C4), 70.18 (C3), 

70.46, 70.57, 71.44, 72.17, 75.11, 75.38 (OCH2Bn), 94.21 (C6), 94.52 (C8), 106.32 

(C2’ and C6’), 127.66-129.09 (C-Ar), 133.44 (C1’), 134.53, 136.46, 136.77, 137.11, 

137.92, 138.34 (C-Ar), 139.04 (C4’), 153.13 (C5’), 156.04 (C3’), 159.90 (C5), 160.77 

(C7). 

 

2.5.3. Condensation 
 

At first the solutions were left to react for 10-15 min, following the method described 

by Krohn et al. (Krohn, Ahmed, John, Letzel, & Kuck, 2010). However, after that 

period of time and after checking the reaction products by TLC, it was observed that 

the upper unit (and limiting reagent) EGC5Bn(Bn) 22 was still present in good 

quantity. Therefore, the solutions were left stirring for 60, 120 and 90 min 

respectively (reaching -22ºC), and left to reach 0ºC for 2h 20 min, 90 min and 3h 

30min, respectively. 

Couplings of monomeric flavans are usually performed in Friedel-Crafts-type 

reactions. Electron-rich aromatics such as the C4Bn 19, EGC5Bn 20 and EGCG8Bn 

21 represent the nucleophilic units, whereas their benzyloxylated counterparts 22, 

after activation with a Lewis acid (TMSOTf), act as the electrophiles (see figure 29). 

Higher oligomer formation cannot be avoided completely but it could be minimized by 

adding the nucleophilic unit 19, 20 or 21 in excess (which later can be recovered). By 

using the nucleophilic unit in excess it also prevents the need for protection at the 

electrophile C8 position. 

From this condensation reaction, two possible isomers may result at the C4 position 

of the electrophile i.e. 4α or 4β flavanyl linkage. This linkage is controlled by the 

neighboring group participation of the OH present at the C3. NMR studies showed 

two rotational isomers at C4 to C8 position. These rotamers are not separable and 

these are in the ratio of 2:1 in CD3Cl. Condensation at lower temperature increased 

this ratio up to 55:1 (Ahmed, 2007). In fact, the use of a solution of TMSOTf in 

CH2Cl2 (0.5M) followed the procedure of Saito et al. (Saito, Tanaka, Ubukata, & 

Nakajima, 2004), because it has been reported that the TMSOTf-catalyzed 

intermolecular condensation is very specific for the formation of the natural 3,4-trans 
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isomers.  

 

5,7,3’,4’,5’-Penta-O-benzylepigallocatechin(4�8)5,7,3’,4’-Tetra-O-benzylcate-

chin (EGC-C9Bn) (23). Amorphous white solid, yield 66.9%. ESI-MS found [M+H]+: 

1407. 1H NMR (CDCl3) δ/ppm: 2.58-2.66 (H-4F, m), 3.80-3.86 (H-3F, m), 3.89-3.95 

(H-3C, m), 4.06 (H-4C, d, J=7.0 Hz), 3.08 (H-2F, d, J=5.3 Hz), 4.58 (H-2C, d, J=7.6 

Hz), 4.92-5.00 (H-Ar, m), 5.15 (OCH2Bn, s), 6.20 (H-6C, d, J=2.3 Hz), 6.24 (H-6F, s), 

6.25 (H-8C, d, J=2.3 Hz), 6.89 (H-2’C and H-6’C, s), 7.00 (H-6’F and H-5’F, br s), 

7.03 (H-2’F, s), 7.20-7.41 (H-Ar, m); 13C NMR (CDCl3) δ/ppm: 27.72 (C-4F), 28.81 

(C-4C), 68.14 (C-3F), 69.95, 70.08, 70.15, 70.61, 71.12, 71.25, 71.34, 77.38 

(OCH2Bn), 71.28 (C-3C), 81.41 (C-2C), 81.59 (C-2F), 91.34 (C-6F), 93.91 (C-6C), 

102.42 (C-2’C and C-6’C), 102.62 (C-4aF and C-4aC), 110.38 (C-8F), 114.02 (C-

2’F), 115.01 (C-5’F), 120.63 (C-6’F), 129.96 (C-1’C), 131.15 (C-1’F), 131.53 (C-4’C), 

127.18-128.98, 136.98-137.43 (C-Ar), 149.09 (C-3’F), 149.10 (C-4’F), 149.33 (C-

3’C), 153.11 (C-8aF), 155.36 (C-7C), 155.69 (C-8aC), 155.95 (C-7F), 157.83 (C-5F), 

158.86 (C-5C). 

 

5,7,3’,4’,5’-Penta-O-benzylepigallocatechin(4�8)5,7,3’,4’-Tetra-O-benzylcate-

chin (EGC-EGC10Bn) (24). Amorphous pale yellow solid, yield 55.3%. ESI-MS 

found [M+H]+: 1511. 1H NMR (CDCl3) δ/ppm: 3.37-3.45 (H-4F, m), 3.71 (OH, br), 3.89 

(H-4C, d, J=4.1 Hz), 4.35 (H-3F, m), 4.67 (H-3C, tr), 4.89 (H-2C and H-2F, d, J=4.0 

Hz), 4.98-5.08 (OCH2Bn, m), 5.56 (H-6F, s), 5.72 (H-6C and H-8C, s), 6.41 (H-2’C, 

H-6’C, H-2’F and H-6’F, s), 7.10-7.44 (H-Ar, m); 13C NMR (CDCl3) δ/ppm: 14.12 (C-

4F), 15.67 (C-4C), 19.56 (C-3F), 20.90, 21.34, 29.68 (OCH2Bn), 28.90 (C-3C), 66.25 

(C-2C), 69.92 (C-2F), 71.26 (C-6F and C-6C), 75.26 (C-8C), 94.12 (C-2’C and C-

6’C), 94.77 (C-2’F and C-6’F), 101.07 (C-4aF and C-4aC), 105.61 (C-8F), 127.14-

128.83, 137.61 (C-Ar), 134.53 (C-1’C), 136.33 (C-1’F), 136.92 (C-4’C and C-4’F), 

152.91 (C-3’F, C-5’F, C-3’C and C-5’C), 155.11 (C-8aF), 158.21 (C-7C and C-5F), 

158.71 (C-8aC and C-7F), 160.60 (C-5C). 

 

5,7,3’,4’,5’-Penta-O-benzylepigallocatechin(4�8)5,7,3’,4’-Tetra-O-benzylcate-

chin (EGC-EGCG13Bn) (25). Yellow oil, yield 92.1%. ESI-MS found [M+H]+: 1935. 
1H NMR (CDCl3) δ/ppm: 4.12 (H-4C, br), 4.39 (H-3C, br), 4.60 (H-2C, d, J=1.9 Hz), 

4.73-5.00 (OCH2Bn, m), 5.44 (H-3F, m), 5.81 (H-2F, d, J=2.2 Hz), 6.15 (H-6F, s), 

6.23 (H-8C and H-6C, s), 6.42 (H-2’C, H-6’C, H-2’F and H-6’F, s), 6.97 (H-2G and H-

6G, s), 7.04-7.24 (H-Ar, m); 13C NMR (CDCl3) δ/ppm: 15.51 (C-4F and C-4C), 19.72 
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(C-3F and C3), 20.81, 21.41 (OCH2Bn), 28.87 (C-2C and C-2F), 71.41 (C-2’F and C-

2’C), 75.00 (C-8F, C-2G and C-6G), 125.73, 126.00, 127.76, 128.06, 128.82 (C-Ar), 

127.05 (C-1G), 128.21 (C-1’F, C-4’F, C-1’C and C-4’C), 129.50 (C-4G), 129.74 (C-

3’C, C-5’C, C-3’F, C-5’F, C-3G and C-5G), 134.50 (C-8aF), 136.34 (C-8aC), 137.53 

(C-5F, C-7F and C-7C), 144.07 (C-5C), 153.06 (CO). 

 

2.5.4. Hydrogenolysis 

2.5.4.1. Hydrogenolysis with palladium on carbon 
 

Palladium on activated carbon 10 wt.% (Pd/C 10%) is extensively used as a 

heterogeneous catalyst for hydrogenolysis in synthetic organic chemistry because of 

its high catalyst activity, cost efficiency and easy separation from the reaction 

mixture. 

Concerning safety and the possibility of using a thigh vessel with air and pressure 

control, we decided to use a hydrogen reactor. The gaseous H2 pressure was set at 

1.5 bar and EGC-C9Bn 23 was de-benzylated for 3 hours. After ESI-MS analysis by 

direct injection it was concluded that the de-benzylation was not completed and it 

yielded basically C 16. This demonstrates that a rupture of the interflavan bond of the 

desired EGC-C 26 dimer occurred. This procedure was carefully repeated but the 

result was the same. 

 

2.5.4.2. Hydrogenolysis with palladium hydroxide on carbon 
 

The palladium hydroxide on carbon, Pd(OH)2/C 20 wt.%, is generally known as 

Pearlman's catalyst. This is probably the most used catalyst for PA debenzylation 

(Arnaudinaud, et al., 2001; Ferreira & Coleman, 2011; Ferreira & Slade, 2002; Mohri, 

Sagehashi, Yamada, Hattori, Morimura, Kamo, et al., 2007; Saito, Nakajima, Tanaka, 

& Ubukata, 2003). The use of Pd(OH)2/C in THF/H2O at room temperature, instead of 

Pd/C 10% in dioxanne at 90°C, for deprotection, allowed Arnaudinaud et al. to avoid 

the formation of benzylated catechin by-product resulting from the cleavage of the 

interflavanolic linkage (Arnaudinaud, et al., 2001). Tarascou et al. first attempts using 

Pd/C 10% leaded to partial debenzylation and Pearlman’s catalyst was found to be 

far more efficient (Tarascou, Barathieu, André, Pianet, Dufourc, & Fouquet, 2006). 

Various solvents were tried, including alcohols, ethyl acetate and THF, and a 1:1 

mixture of MeOH/AcOEt was found to offer a good dissolution of the starting and final 
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compounds. 

This reaction was tested for compound 23 using the hydrogen reactor, according with 

the procedure earlier described. After 4 hours, the reaction was stopped and 

analyzed by LC-ESI-MS (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. LC-ESI-MS chromatogram for EGC-C9Bn 23 hydrogenolysis with Pd(OH)2/C  

using the hydrogen reactor 

 

The result was a mixture of C 16 (in larger amount), EGC-C 26 and other by-

products. The presence of C 16 demonstrates, again, that a rupture of the interflavan 

bond occurred. 

Next, we tested this reaction with EGC-EGC10Bn 24 but this time using a schlenk 

flask and gaseous H2 provided by a double layer balloon. After 3h 30 min of reaction, 

and again after 21 hours, the initial compound was still detected, along with EGC 17 

and EGC-EGC 27. After 26 hours, the reaction mixture was analysed by ESI-MS by 

direct injection. The pseudomolecular ions with m/z [M]- 305 and 609 corresponding 

to EGC 17 and EGC-EGC 27 were again detected as well as the pseudomolecular 

ion with m/z [M]- 782, probably corresponding to EGC-EGC2Bn (since the TLC also 

revealed the presence of benzylated compounds), demonstrating that this was not a 

complete reaction. 

Kozikowski et al. reported that it was advisable to perform this reaction in 

bicarbonate-washed glassware, as partial fragmentation to lower oligomers was 

occasionally observed without this precaution, quite probably as a consequence of 

an acidic reaction of the glass surface of the reaction flask (Jacques, Haslam, 

Bedford, & Greatbanks, 1974; Kozikowski, Tückmantel, Böttcher, & Romanczyk, 

2002). Therefore we decided to rinse the hydrogen reactor with a sodium 
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bicarbonate solution. After 15 min an aliquot was taken for ESI-MS analysis by direct 

injection and it were detected pseudomolecular ion with m/z [M]- 305 corresponding 

to EGC 17, m/z [M]- 607 probably corresponding to the oxidize form of EGC-EGC 27 

and m/z [M]- 1513 corresponding to the initial compound EGC-EGC10Bn 24. After 30 

min all compounds were degradated. 

Tarascou et al. worked with benzylated compounds bromated at the C8 of the initial 

monomer unit to prevent oligomerization reactions. The first attempt to de-benzylate 

the compounds with Pd(OH)2 led to a mixture of partially debrominated procyanidin 

dimers. Then they optimized the reaction by using triethylamine (Tarascou, 

Barathieu, André, Pianet, Dufourc, & Fouquet, 2006). The amine first activates the 

catalyst by reducing it in situ to Pd0, but also traps the generated hydrobromic acid, 

thus avoiding premature degradation of the native procyanidin dimers. Therefore we 

decided to try to de-benzylate our compounds adding 1 drop of triethylamine (Et3N) 

to the mixture. 

A comparative study was carried out using EGC-C9Bn 23. Starting with equal 

amounts of compound 23 and adding 5.22 eq of Pd(OH)2/C 20% in equal amounts of 

AcOEt and MeOH (with a drop of Et3N), one reaction took place in the hydrogen 

reactor and the other on a schlenk flask. After 1 hour no de-benzylation was noticed 

and after 3 hours of reaction only C 16 was detected by ESI-MS analysis by direct 

injection. 

Later, we decided to try to increase the amount of catalyst. Therefore we used not 

0.5 eq of Pd(OH)2/C for each removing group but 100% (m/m) of Pd(OH)2/C. 

 

2.5.4.3. Hydrogenolysis in situ 
 

In situ generation of molecular hydrogen by addition of TES to Pd-C catalyst results 

in rapid and efficient reduction of multiple bonds, azides, imines, and nitro groups, as 

well as benzyl group and allyl group deprotection under mild, neutral conditions. The 

reactions are carried out at room temperature and are rapid, often complete in 10 

min or less using excess TES and 10-20% Pd/C (by weight) in MeOH. The 

conditions are neutral, and thus acid- or base-sensitive substrates can be reduced 

without damage (Mandal & McMurray, 2007). 

This method was first tested with C4Bn 19. It was used 15% by weight of Pd/C 10% 

and 40 eq of TES. After 17 hours reacting, still not all the amount of reagent was de-

benzylated. It was decided to add another 1.5 mg of Pd/C 10% and 80 eq of TES. 
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After 2 hours there was no sign of any benzylated C, but degradation products 

started to appear. This behavior was again reported when starting with 25% by 

weight of Pd/C 10% and 80 eq of TES. 

Meanwhile it was also tested for PCB3-8Bn. It was used 10% by weight of Pd/C 10% 

and 80 eq of TES. After 16 hours it was added another 80 eq of TES, and repeated 

after 18 hours plus 2 mg of Pd/C 10%. The result was analyzed by HPLC (Figure 31) 

and, by comparing the chromatogram with standards, it was possible to identify 

PCB3 and C 16. 

 

 

 

 

 

 

 

 

 

 

 
Figure 31. HPLC chromatogram for PCB3-8Bn hydrogenolysis in situ 

 

When trying this method for C4Bn(Bn) de-benzylation, it was mostly obtained C 16, 

but also PCB3 and C-4-OH (Figure 32). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32. HPLC chromatogram for C4Bn(Bn) hydrogenolysis in situ 
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Next we tested this in situ method with EGC-C9Bn 23. It was used 12% by weight of 

Pd/C 10% and 90 eq of TES. After reacting 18 hours, a control TLC was done to 

confirm if more TES was needed. Then the reaction mixture was filtered through a 

0.20 mm PET Chromafil® syringe filter, the solvent evaporated under vacuum and 

analyzed by HPLC (Figure 33). 

 

 

 

 

 

 

 

 

 

 

 
Figure 33. HPLC chromatogram for EGC-C9Bn 23 hydrogenolysis in situ at λ = 280 nm 

 

This procedure was repeated in larger scale and immediately applied to a TSK 

Toyopearl HW40(s) gel (Tosoh, Japan) chromatography column (250 x 16 mm i.d.) 

connected to a ultraviolet (UV) detector. The eluent used was MeOH. The first peak 

was registered after 120 min and the second after 200 min. 

ESI-MS analysis by direct injection revealed that the first peak corresponds to C 16 

and the second peak to EGC-C 26. This means that this procedure leaded to the 

breaking of the interflavan link and almost all the desired final compound was 

reduced to its low monomeric unit. The isolated amount was not enough for NMR 

analysis. 

 

The same procedure was repeated with EGC-EGCG13Bn 25. Again, it was noticed 

that the breaking of the interflavan link did occurred, as well as degradation products. 

However it was possible to obtain 6.4 mg of EGC-EGCG 28 and analyse it by NMR. 
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Epigallocatechin(4�8)epigallocatechin gallate (EGC-EGCG) (28). White powder, 

yield 6%. ESI-MS found [M+H]-: 761. The 1H and 13C-NMR chemical shifts are 

reported in table 4 and COSY correlations in figure 34. 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. COSY correlations of EGC-EGCG 28. 
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Table 4. 1H and 13C-NMR data and HMBC and HSQC correlations of EGC-EGCG 28, determined in MeOD. 

Position δ  1H (ppm) J (Hz) δ  13C (ppm) HMBC HSQC NOESY 
2C 5.20; br 79.1 H-2’C; H-6’C H-2C -- 
3C 4.58; tr, 3.3 69.2 H-2C -- H-4C; H-2C; H-6F 
4C 4.19; d, 3.1 29.4 H-2C -- -- 

4aC -- 102.5 -- -- -- 
5C -- 154.9 -- -- -- 
6C 6.08; br d 98.8 -- H-6C -- 
7C -- 150.1-152.3 -- -- -- 
8C 6.10; br d 98.8 -- H-8C -- 

8aC -- 150.1-152.3 -- -- -- 
1’C -- 130.5 H-2’C -- -- 

2’C 6.77; s 105.9 H-2C; H-4C; 
H-6’C H-2’C -- 

3’C -- 145.2 H-2’C -- -- 
4’C -- 133.2 H-2’C -- -- 
5’C -- 145.2 H-6’C -- -- 

6’C 6.77; s 105.9 H-2C; H-4C; 
H-2’C H-6’C -- 

2F 5.71; br d 79.1 H-4F; H-2’F; 
H-6’F -- -- 

3F 5.68; br 66.7 H-4F H-3F -- 

4F 2.99; dd, 17.8 
3.09; dd, 17.5 22.8 -- H-4F H-2C; H-6C 

4aF -- 102.5 H-4F -- -- 
5F -- 154.9 -- -- -- 
6F 6.21; s 98.8 -- H-6F -- 
7F -- 150.1-152.3 -- -- -- 
8F -- 128.0 -- -- -- 

8aF -- 150.1-152.3 -- -- -- 
1’F -- 130.5 H-2’F -- -- 
2’F 6.77; s 100.7 H-6’F -- -- 
3’F -- 145.2 H-2’F -- -- 
4’F -- 133.2 H-2’F -- -- 
5’F -- 145.2 H-6’F -- -- 
6’F 6.77; s 100.7 H-2’F -- -- 
1G -- 119.7 -- -- -- 
2G 6.85; s 108.9 -- H-2G -- 
3G -- 139.6 H-2G -- -- 
4G -- 141.8 -- -- -- 
5G -- 139.6 H-6G -- -- 
6G 6.85; s 108.9 -- H-6G -- 

C=O -- 166.5 H-2G; H-6G -- -- 
OH 4.99; br -- -- -- -- 

3C-OH 4.04; br -- -- -- -- 
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2.5.4.4. Hydrogenolysis in situ using the H-cube equipment 
 

The H-Cube® is a bench-top hydrogenolysis reactor for continuous hydrogenolysis 

reactions using a disposable catalyst cartridge system. The hydrogenolysis reactions 

are performed in a flow system where the necessary hydrogen gas for the reaction is 

generated in-situ from the electrolysis of water. Reactions take place on disposable 

proprietary CatCarts®, packed catalyst columns modelled after conventional HPLC 

systems (Jones, Godorhazy, Varga, Szalay, Urge, & Darvas, 2006). 

 

 

 

 

 

 

 

 

 

 

 
Figure 35. H-cube® scheme. A – pump; B – Manual injector; C – inlet pressure sensor; D – gas-liquid mixing 

chamber; E – bubble detector; F – CarCart® holder and heating unit; G – outlet pressure sensor; H – back pressure 

regulator; I - touch screen panel. Arrows indicate the flow direction. Adapted from (Bryan, Wernick, Hein, Petersen, 

Eschelbach, & Doherty, 2011) 
 

The hydrogen/substrate mixture can be heated and pressurized up to 100°C (212°F) 

and 100 bar (1450 psi). The mixture is passed through a packed catalyst cartridge 

(CatCart®), where the reaction takes place, and the product continuously elutes out 

of the CatCart® and into a collection vial. No external storage of hydrogen is 

necessary and no catalyst filtration or direct catalyst handling. Pressure and 

temperature can then be changed to optimize product conversion to 100%. 

According to the manufacture (and previous known studies with PCs), it allows fast 

and cost-efficient hydrogenolysis with superior yield when compared to conventional 

methods (Fabre, 2009). 

The H-cube® can be used in three different modes: no H2 (where no H2 will be 

produced), full H2 and controlled mode. In the full H2 mode, the maximum amount of 

H2 that can be produced by the electrolytic cell (25 mL/min) is delivered into the gas 

mixing chamber with no back pressure at the outlet of the system. When running in 
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full H2 mode, the system pressure is normally working at 0-1 bar, but it can be raised 

manually. The flow rate of hydrogen in the controlled mode is dependent upon the 

liquid back pressure. The controlled mode settings (10-100 bar) are used to set the 

total back pressure while the system maintains a roughly constant pressure 

differential between the H2 inlet pressure (internal sensor) and the liquid inlet 

pressure. As a consequence, setting the system to the controlled mode introduces 

less H2 into the reactant stream than in the full H2 mode setting (Bryan, Wernick, 

Hein, Petersen, Eschelbach, & Doherty, 2011). 

All experiments were conducted using EGC-C9Bn 23 and the resulted compound 

analysed by TLC and 1H-NMR. First, we tried to hydrogenate using the CarCart® 

Pd(OH)2/C 20% cartridge in full H2 mode with a pressure of 7-8 bar. The flow rate 

was kept at 0.5 mL/min. TLC were performed at the outlet to ensure that the entire 

amount of compound passed through the device. After collecting for 40 min, the 

result was only C 16. This result was confirmed by LC-ESI-MS. 

Next we decided to use the CarCart® Pd/C 10% cartridge with a pressure of 8-10 

bar, again in full H2 mode at 0.5 mL/min. After 20 minutes the result was a mixture of 

benzylated and de-benzylated compounds. Then, the collected sample was 

concentrated and re-passed through the H-cube® in the same conditions but in 

controlled mode at 20 bar of pressure. Since the result was the same, we decided to 

re-pass a third time in full H2 mode (8-10 bar) with the CarCart® Pd(OH)2/C 20% 

cartridge with a flow rate of 1 mL/min. After 25 min the benzylated compounds were 

still present. 

Finally we used the CarCart® Pd(OH)2/C 20% cartridge in controlled mode at 20 bar 

with a flow rate of 1 mL/min.  After 10 min it resulted in a mixture of benzylated and 

de-benzylated compounds (especially C 16). The collected mixture was re-passed 

two more times in the same conditions, but at a pressure of 30 bar. No changes were 

detected. 

 

2.5.4.5. Hydrogenolysis methods comparison 
 

Besides all these hydrogenolysis methods, it was also tested EGC-C9Bn 23 

debenzylation with boron tribromide (BBr3) (McOmie & West, 1973) and 

tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3). However it only resulted in the 

obtainment of C 16. This later reaction was compared to a simultaneous 

hydrogenolysis of EGC-C9Bn 23 with Pd/C 10%, held on a schlenk flask. The result 

was a mixture of EGC-C 26, C 16 and many other compounds (Figure 36). 
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Figure 36. LC-ESI-MS chromatogram for EGC-C9Bn 23 hydrogenolysis with Pd/C 10% 

 

Two other comparative studies to perform the deprotection of EGC-C9Bn 23 were 

performed simultaneously. The first study took place between hydrogenolysis in situ 

with TES and with Pd/C 10% in the hydrogen reactor. After 5h 30 min the reaction 

with Pd/C 10% did not show any benzylated compounds but the compound in larger 

amount was C 16. On the other hand, the reaction with TES only yielded C 16. 

The second study was performed with Pd/C 10%. One of the reactions was 

conducted in the hydrogen reactor and the other on a schlenk flask with a drop of 

Et3N. Both reactions were followed by ESI-MS by direct injection. After 3 hours, both 

reaction vessels showed the presence of C4Bn 19 and little amount of EGC-C 26. 

After 5 h 30 min reaction mixture in the hydrogen reactor showed the presence of C 

16 but no PD dimer, while the reaction with Et3N did not show any familiar 

compounds. After 24 h the reaction in the hydrogen reactor showed the presence of 

EGC-C 26 and C 16. 

As it has been described, later we took a different and more careful approach to the 

hydrogenolysis using Pd(OH)2/C 20%. We used the catalyst in the same mass 

amount as the compound to hydrogenate and the H2 (g) was placed to bubble in the 

solvent, to avoid any chances that the gas would not diffuse into the solvent. The 

glass balloon was covered with a rubber septum.  

After the hydrogenolysis, to obtain a readily soluble polyphenol, it was necessary to 

dilute the filtered solution of the crude product with water, to evaporate only partially 

so as to remove most of the organic solvents, and to lyophilize the residual solution. 

If the crude polyphenol solutions are directly evaporated to dryness, partially yellow-

brown insoluble materials result, indicating that some decomposition has occurred. 
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EGC-C9Bn 23, EGC-EGC10Bn 24 and EGC-EGCG13Bn 25 were dissolved in 

THF/AcOEt/MeOH 1:1:1 and hydrogenated for 2 h for compound 23 and 1 h 30 min 

for compounds 24 and 25. The solvent was filtered through a 0.20 mm PET 

Chromafil® syringe filter and then evaporated. The crude extract was purified by 

semi-preparative HPLC using the LC-MS-ESI method described forward with an Elite 

LaChrom L-2130 quaternary pump and an Elite LaChrom L-2420 detector. 

The idea of using this catalyst quantity was to try to avoid the compound degradation 

by completing the reaction faster. The result was always a mixture of the desired PD 

dimer with the respective low monomer unit (and also gallic acid in the case of EGC-

EGCG13Bn 25) and degradation by-products. 

To try to realise what was happening we decided to repeat an EGC-C9Bn 23 

hydrogenolysis and follow it by ESI-MS by direct injection. After 5 min of reaction 

there was a mixture of the initial compound in diverse states of benzylation, C 16 and 

little amount of EGC-C 26. 

 

2.6. Conclusions 
 

All benzylations of monomeric units, benzylations at C4 and condensation reactions 

proceeded without major problems with good yields. When using benzylated 

commercially available enantiomerically pure compounds, enantiomerically pure 

coupling products can reasonably be expected. The TMSOTf-catalyzed 

condensation proceeded smoothly in all reactions tested, supposedly to afford a 

mixture of 4α and 4β in a 50:1 ratio. However, all coupling products should be 

carefully checked by chiral HPLC. 

It has been already reported that hydrogenolysis using Pd/C with H2 (g) is quite harsh 

for this type of molecule because a lot of benzylic positions are available. In fact, 

while trying to obtain PCB3 and PCC2, a mixture of dimer, trimer along with 

monomeric C 16 was observed (Ahmed, 2007). This means that this procedure can 

also break to some extent the interflavanyl bond to yield the monomeric C (16). 

Pearlman’s catalyst i.e. Pd(OH)2, is considered to be a milder reagent for 

hydrogenolysis and suitable for deprotection of PC dimers and trimers (Saito, 

Tanaka, Ubukata, & Nakajima, 2004). However that was not what was observed in 

this study with PDs. 

The various performed hydrogenolysiss resulted, in the best cases, in a mixture of 

PD dimers and their respective low monomeric units. Even performing this reaction 

with 100% (m/m) of the most used catalyst to avoid degradation, the result, after 
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HPLC-preparative isolation, is a 6% yield for EGC-EGC 27 and a 2% yield for EGC-

EGCG 28. The key interflavan bond rupture limits the entire PD synthesis.  

As mentioned before, the hydrogenolysis in situ using the H-cube® was previously 

used to hydrogenate PC dimers. For instance, PC B3BnBr was hydrogenated at 

20ºC in MeOH/AcOEt, with 40 bar of H2 pressure and a Pd(OH)2/C 20% cartridge at 

1 mL/min. After 10 minutes, PCB3 was obtained quantitatively (Fabre, 2009). This is 

a rapid method (10-15 minutes Vs 18 hours) and, in the end, no filtration is 

necessary. The problem is that, apparently, the H-cube® device is not effective to 

perform hydrogenolysiss on benzylated PD for, in most cases, it results in a mixture 

of benzylated and de-benzylated compounds. This involves evaporating the solvent, 

re-dissolving and re-passing the resulting mixture through the device, leading to 

compound degradation. The best conditions tested were using the CarCart® 

Pd(OH)2/C 20% cartridge in full H2 mode with a pressure of 7-8 bar and flow rate at 

0.5 mL/min. However the result was only C 16 and no EGC-C 26. 

The results indicate that the hydrogenolysis reactions led to the breaking of the 

interflavan link and the desired final PD dimers were reduced to their low monomeric 

units. 

By ESI-MS by direct injection following of the hydrogenolysis reaction, it was clear 

that the benzylated compounds degrade while benzyl groups are removed. In fact, 

not all benzyl groups were removed and the interflavan bond has already been 

broken, leading to the detection of the lower monomer unit of the desired PD dimer. 
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3. Prodelphinidin analyses in grapes and 

wines 
 

3.1. Introduction 
 

As previously referred, the PA composition of wines depends on climatic and 

geographical conditions, cultivation practices and stages of ripeness (de Andrés-de 

Prado, Yuste-Rojas, Sort, Andrés-Lacueva, Torres, & Lamuela-Raventós, 2007;  

Mateus, Proença, Ribeiro, Machado, & De Freitas, 2001; Pérez-Magariño & 

González-San José, 2006). Furthermore, it depends on grape variety for the phenolic 

content and composition may be specific to a certain grape variety.  

PAs are very difficult to extract and isolate from natural sources. The most usual 

technique for PAs detection is high-performance liquid chromatography (HPLC), 

normally coupled to an ultraviolet (UV) detector or a photodiode array detector (PDA) 

and reversed-phase columns. However, finding the right combination of 

acidic/organic solvents and gradient conditions is a hard task since these compounds 

usually exist with co-eluting substances present in higher amounts and/or with higher 

molar extinction coefficient. Moreover, their low stability, oxidation tendency and 

structural complexity make understanding their chemistry a challenge. Another 

problem is the proper compound identification of PAs that usually requires 

commercially non-available standards or difficult isolation from natural sources 

extracts. Among PAs, PDs are particularly difficult to detect because they elute 

earlier from reversed-phase columns, show lower UV extinction coefficient and are 

usually present at lower concentration than PCs (de Pascual-Teresa, Rivas-Gonzalo, 

& Santos-Buelga, 2000). 

 

3.1.1. Proanthocyanidins in grapes 
 

The annual growth cycle of the grapevine involves many processes and events in the 

vineyard each year. Annual growth of grapevines is frequently described using the 

following stages: budburst, flower cluster initiation, flowering, fruit set, berry 

development, harvest and dormancy.  

Berry development consists of two successive sigmoidal growth periods separated 

by a lag phase (Figure 37) (Coombe & McCarthy, 2000). The first period of growth 
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lasts from bloom to approximately 60 days afterward. During this first period, the 

berry expands in volume as tartaric and malic acids, hydroxycinnamic acids 

(Romeyer, Macheix, Goiffon, Reminiac, & Sapis, 1983), tannins (including the 

monomeric catechins) (Kennedy, Hayasaka, Vidal, Waters, & Jones, 2001; Kennedy, 

Troup, Pilbrow, Hutton, Hewitt, Hunter, et al., 2000), minerals (Possner & Kliewer, 

1985), amino acids (Stines, Grubb, Gockowiak, Henschke, HØJ, & van Heeswijck, 

2000), micronutrients, and aroma compounds accumulate.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 37. Diagram showing the development of grape berries (adapted from Jordan Koutroumanidins, Winetitles) 

 

The second phase of berry growth or fruit ripening (véraison) is characterized by 

softening and colouring of the berry. Overall, the berry approximately doubles in size 

and some compounds produced during the first period of growth are reduced on a 

per-berry basis, mainly malic acid. Tannins also decline considerably due to 

oxidation as the tannins become fixed to the seed coat (Kennedy, Matthews, & 

Waterhouse, 2000). There is also a fructose and sucrose accumulation and, in red 

grape varieties, anthocyanin production. 

Not all polyphenolic compounds are equally located in all grape parts. In terms of PA, 

grape seeds contain only the PCs (monomer, oligomers and polymers) while grape 

skins contain also PDs (Czochanska, Foo, & Porter, 1979; de Pascual-Teresa, 

Rivas-Gonzalo, & Santos-Buelga, 2000; Freitas & Glories, 1999). They both contain 

phenolic acids, but skins also contain anthocyanins being malvidin-3-glucoside the 

main anthocyanin in Vitis vinifera L. followed by peonidin-3-glucoside (Bakker & 

Timberlake, 1985;  Mateus, Proença, Ribeiro, Machado, & De Freitas, 2001). PCs in 

grape seeds can exist in their free form or esterified with gallic acid but always 

preferentially in their polymerized form (Edwin, 1980). 
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3.1.2. Proanthocyanidins in red wine 
 

PAs are one of the most important polyphenolic compounds in wine. They are 

extracted from grapes during winemaking operations (crushing, macerations and 

fermentation) and play a significant role in wine organoleptic evaluation. The total 

average PA content in red wines is around 175 mg/L (Sánchez-Moreno, Cao, Ou, & 

Prior, 2003) and it is approximately 20 times higher than that of white wines due to 

different grape material use and different enology practices.  

Among PAs, PD dimers and trimers have not been widely detected in wines due to 

the lack of available commercial standards and the difficulty to detect and isolate 

them from natural sources. PA constitutive units are usually determined by acid-

catalysed cleavage, in the presence of a nucleophilic agent. The more common 

nucleophiles include benzylhydrosulfide (syn. phenylmethanethiol, toluene-a-thiol), 

the method referred to as thiolysis (Thompson, Jacques, Haslam, & Tanner, 1972), 

and 1,3,5-trihydroxybenzene (syn. phloroglucinol) (Foo & Porter, 1978). Rupture of 

the interflavanoid bond in acidified methanol yields a carbocation from the upper and 

extension units of the molecule (initially substituted in C4) whereas the lower part 

(nonsubstituted in C4) is released as such. The generated carbocation the reacts 

with the nucleophiles to give a stable adduct (Figure 38). 

 

 

 

 

 

  

 

 

 

 
 

Figure 38. Reaction mechanism explaining the acid-catalyzed cleavage of proanthocyanidins. 
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When starting from the trimers, for instance, cleavage under mild conditions followed 

by HPLC analysis allows the distinction between constitutive dimers and monomers 

linked to the used nucleophile (Figure 39). The distinction between isomers can be 

achieved by comparing their retention times with standards (Ricardo da Silva, 

Rigaud, Cheynier, Cheminat, & Moutounet, 1991; Rigaud, Perez-Ilzarbe, Da Silva, & 

Cheynier, 1991; Shen, Haslam, Falshaw, & Begley, 1986). 

 

 

 

 

 

 

 

 

 
Figure 39. HPLC chromatogram of proanthocyanidin cleavage products from (A) Chardonnay grape seed and (B) 

Chardonnay grape skin following acid-catalysis in the presence of phloroglucinol. 1- epigallocatechin-(4β�2)- 

phloroglucinol; 2- epicatechin-(4β�2)-phloroglucinol; 3- catechin-(4α�2)-phloroglucinol; 4- epicatechin gallate-

(4β�2)-phloroglucinol; 5- epicatechin; 6- catechin; 7- epicatechin gallate (Kennedy & Jones, 2001). 

 

However, some epimerization, especially from (-)-EC (2,3 cis) to its trans isomer, 

may take place when the reaction is carried out at high temperature. Besides that, no 

information is available on the linkage position in dimeric species. Acylation with 

gallic acid is maintained under the mild acidic conditions used in thiolysis and 

phloroglucinolysis so that galloylated units present either in upper or in terminal 

positions can be determined (Boukharta, Girardin, & Metche, 1988).  

Application of thiolysis to grape PA polymers showed that those extracted from 

seeds are partly galloylated PCs whereas those of skins and stems consist of both 

PCs and PDs (confirming earlier results obtained by 13C NMR) (Czochanska, Foo, 

Newman, Porter, Thomas, & Jones, 1979; Prieur, Rigaud, Cheynier, & Moutounet, 

1994; Souquet, Cheynier, Brossaud, & Moutounet, 1996; Souquet, Labarbe, Le 

Guernevé, Cheynier, & Moutounet, 2000). The major constitutive extension units of 

grape skin PAs are EC and EGC. Their 3-gallates are also encountered as extension 

units whereas C and GC are relatively more abundant in the terminal positions. Skin 

PAs possess a much higher degree of polymerization around 30 units (Souquet, 

Cheynier, Brossaud, & Moutounet, 1996), while seeds (Prieur, Rigaud, Cheynier, & 

Moutounet, 1994) and stems (Souquet, Labarbe, Le Guernevé, Cheynier, & 
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Moutounet, 2000) only have PAs around 10 units. The proportions of galloylated 

units are also quite different in skins (5%), stems (15%), and seeds (30%). 

Another PA constitutive units determination method is the reaction with p-

dimethylaminocinnamaldehyde (DMACA). The use of this reagent gives coloured 

adducts with flavanols showing maximum absorption between 632 and 640 nm in 

HPLC analysis (Figure 40). At these wavelengths no interference of other coloured 

compounds that might be present in the same extracts (such as anthocyanins) is 

detected (Treutter, 1989; Treutter, Feucht, & Santos-Buelga, 1994; Treutter, Santos-

Buelga, Gutmann, & Kolodziej, 1994). 

 

 

 

 

 

 

 

 

 
Figure 40. Reaction between flavan-3-ols and DMACA in acidic media  
 (R1 = H or OH). 
 

 

Information about the chemical structure of the compounds can be obtained from the 

ratio of their peak areas at 640 and 280 nm (Santos Buelga & Treutter, 1995; 

Treutter, Santos-Buelga, Gutmann, & Kolodziej, 1994). This characteristic is very 

useful for the identification of substances in chromatograms, especially when this 

information is combined with their chromatographic behaviour and the UV 

absorbance spectra measured prior reaction with a diode array detector. 

The results of individual PD identification and characterization are usually only 

presented as percentages of PDs (%PD). This kind of results only allows having a 

general idea about that same content. The aim of this work was to identify the PAs in 

tainturier red wine and achieve a useful PD analysis method that can prove that 

these compounds are not present only in residual quantities in wines. 
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3.2. HPLC-ESI-MS 
 

HPLC in combination with electrospray ionization mass spectrometric detection in the 

negative ion mode has been used successfully to investigate PAs from many 

extracts. The first application of HPLC–ESI-MS to grape polyphenols was published 

in 1995 (Baldi, Romani, Mulinacci, Vincieri, & Casetta, 1995).  

Electrospray (ESI) is a soft ionization technique that offers the possibility of 

generating only pseudomolecular ions without any fragmentation. Tandem mass 

spectrometry (MS–MS) and ion trap mass spectrometry (IT-MS, MSn), which permit 

fragmentation patterns to be obtained on selected individual ions, are progressively 

replacing the classical ESI-quadrupole mass spectrometers in HPLC–MS coupling. 

Fragmentation patterns also provided insight on the sequences of flavanol units in 

proanthocyanidin oligomers (de Pascual-Teresa, Rivas-Gonzalo, & Santos-Buelga, 

2000) and of anthocyanin and flavanol units in flavanol–anthocyanin adducts (Salas, 

Fulcrand, Meudec, & Cheynier, 2003). As with other mass spectrometric techniques 

no differentiation between stereoisomers is possible and no information about the 

position and stereochemistry of the interflavanoid linkage (4α�8 or 4β�6) is 

available.  

Before ESI, thermospray (TSP) and fast atom bombardment (FAB) were the most 

widespread, versatile and powerful interfaces in LC-MS coupling. With a TSP 

interface the structure elucidation of PAs has been well established, although the 

high degradation in the ion source often resulted in a very small pseudomolecular 

ion. The electrospray ionization (ESI) and atmospheric pressure ionization (API) 

replaced them. This is a soft ionization technique at atmospheric pressure that 

produce ions even from thermally labile, non-volatile, polar compounds with high 

sensitivity. Normally, only the pseudomolecular ion is produced, without any 

fragmentation (Aramendía, García, Lafont, & Marinas, 1995; Cheynier, Doco, 

Fulcrand, et al., 1997; Maillard, Giampaoli, & Cuvelier, 1996).  

Ions can be measured in the positive ion mode as well as in negative ion mode. 

Polyphenols are weakly acidic compounds, indicating that dissociation is easier than 

protonation. Using acetic acid as one of the HPLC eluents has advantages for 

chromatographic resolution and ion formation efficiency, but leads to acetate and 

phenolate adducts which in some cases complicate the interpretation in the negative 

ion mode (Whittle, Eldridge, Bartley, & Organ, 1999). This is why most users prefer 

measuring in the positive mode. On the other hand, better sensitivity and selectivity 

have been described when the mass spectrometer was operated in negative 
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ionization mode (Poon, 1998; Whittle, Eldridge, Bartley, & Organ, 1999). Acetic acid 

can be substituted by formic acid but it can form dimerization in the equipment 

source, especially when analyzing flavan-3-ol monomers. 

A general LC-ESI-MS with ion trap equipped with an API source consists of an 

interface to generate ions, ion optical elements to guide the ions from the interface to 

the mass analyser (ion trap), an ion trap to collect the ions and then release them 

according to mass-to-charge ratio, ion detector (and its electronics and software) to 

convert the ions to a mass spectrum) and vacuum pumps to keep the system at low 

pressure to ensure efficient ion transmission and detection (Figure 41). 

 

 
 
 
 
 
 
 

 

 

  

 

 
Figure 41. Trap mass spectrometer for ion transmission and detection 

 

The electrospray interface generates ions in a spray chamber. The system then 

transports the ions into the ion trap mass analyser. Electrospray ionization (ESI) 

consists of four steps: formation of ions, nebulization, desolvation and ion 

evaporation.  

Ion formation in API-electrospray occurs through more than one mechanism. When 

possible, ions can be generated in solution before nebulization. This results in high 

analyte ion concentration and good API-electrospray sensitivity. However, analytes 

that do not ionize in solution can still be analysed. The process of nebulization, 

desolvation, and ion evaporation creates a strong electrical charge on the surface of 

the spray droplets. This can induce ionization in analyte molecules at the surface of 

the droplets. 
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Nebulization (aerosol generation) starts with the sample solution entering the spray 

chamber through a grounded needle. For high flow electrospray, nebulizing gas 

enters the spray chamber concentrically through a tube that surrounds the needle. 

The combination of strong shear forces generated by the nebulizing gas and the 

strong voltage (2-6 kV) at the mesh electrode and end plate in the spray chamber 

draws out the sample solution and breaks it into droplets. As the droplets disperse, 

ions of one polarity preferentially migrate to the droplet surface due to electrostatic 

forces. Consequently, the sample is simultaneously charged and dispersed into a 

fine spray of charged droplets, hence the name electrospray. 

Before the ions can be analysed, the solvent must be removed to yield bare ions. A 

counter current of neutral, heated drying gas (typically nitrogen) evaporates the 

solvent, decreasing the droplet diameter and forcing the predominantly like surface 

charges closer together. When the force of the Coulomb repulsion equals that of the 

surface tension of the droplet, the droplet explodes, producing smaller charged 

droplets that are subject to further evaporation. 

The choice of solvents and buffers is a key to successful ionization with electrospray. 

Solvents like methanol that have lower heat capacity, surface tension, and dielectric 

constant, promote nebulization and desolvation. Because the sample solution is not 

heated when the aerosol is created, ESI does not thermally decompose most 

analytes. 

 

3.3. Materials and methods 
 

 (+)-Catechin (C) and (-)-epicatechin (EC), were purchased from Sigma-Aldrich® 

(Madrid, Spain). (-)-Epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) 

were purchased from Biopurify Phytochemicals Ltd (Sichuan, China).  

PCB3 and PDB3 were extracted from barley. The barley was finely ground and the 

ground sample extracted twice with a mixture of methanol/acetone/water 2:1.5:2 

(V/V). Then it was filtered with glass wool and centrifuged at 2500 rpm for 5 minutes. 

The supernatant was collected and evaporated under vacuum at 35ºC for methanol 

and acetone removal. Then the sample was extracted with C18 gel on a G3 glass 

Buckner funnel and recovered with methanol. After evaporation under vacuum at 

35ºC, it was resolved in water, re-dissolved in water and freeze-dried. This 

polyphenol extract was latter purified by column chromatography (250 x 16 mm i.d.) 

in a TSK Toyopearl HW40(s) gel (Tosoh, Japan) column connected to a ultraviolet 

(UV) detector. The required dimers were then re-purified by semi-preparative HPLC 
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using an Elite LaChrom L-2130 quaternary pump and an Elite LaChrom L-2420 

detector. The column used was a reversed-phase C18 column (250 x 4.6 mm i.d.) 

and the mobile phase was composed by solvent A, 2.5% (v/v) EtOAc, and solvent B, 

20% (v/v) solvent A and 80% (v/v) acetonitrile. The flow rate was 1 mL/min and the 

gradient method started with an isocratic gradient of 93% A during 5 minutes, 

followed by a linear gradient ranging from 93% A to 80% A in 90 minutes and a final 

isocratic gradient of 100% B during 10 minutes (Teixeira, Cruz, Brás, Mateus, 

Ramos, & de Freitas, 2013). The purified dimers were re-dissolved in water and 

freeze-dried for further use. The identity and purity of PCB3 and PDB3 was achieved 

by LC-MS-ESI (Finnigan Surveyor equipped with a Thermo Finnigan (Hypersil Gold) 

150 mm x 4.6 mm, 5mm, C18 reversed-phase column at 25 ºC; Finnigan LCQ DECA 

XP MAX mass detector (Finnigan Corp., San Jose, CA, USA) quadrupole ion trap 

equipped with an atmospheric pressure ionization source, using an electrospray 

ionization interface) and NMR (1H NMR spectra were measured in D2O on a Bruker 

Avance 400 spectrometer) by comparing with the literature data (Dvorakova, 

Moreira, Dostalek, Skulilova, Guido, & Barros, 2008). 

C-(4α�8)-EC (PCB4) and C-(4α�6)-C (PCB6) standards where synthetized from 

direct condensation with dihydroquercetin according to literature (Delcour, Ferreira, & 

Roux, 1983). PDs EGC-(4β�8)-C (PDB1) and EGC-(4β�8)-EGC (PDB10) were 

synthetized according to a procedure developed by Karsten Khron (Krohn, Ahmed, 

John, Letzel, & Kuck, 2010) as described in chapter 2. PCs EC-(4β�8)-EC (PCB2), 

and trimer EC-(4β�8)-EC-(4β�8)-EC (PCC1) standards were extracted from 

lyophilized grape seed with the same purification steps as PCB3 and PDB3. 

The identity and purity of the compounds was achieved by LC-MS-ESI and NMR (1H 

NMR and 13C NMR spectra were measured in CDCl3 or D2O on a Bruker Avance 400 

spectrometer). 

 

3.3.1. Wine sample preparation 
 

For this study four samples of 2012 red vinho verde from the Demarcated Region of 

Vinho Verde (Lima’s sub-region) and three samples of 2013 red wine from the 

Demarcated Region of Douro. The red Vinho Verde wines analysed in this study are 

mainly “Vinhão” cultivar and the Douro region red wine mainly “Sousão” cultivar. 

These are actually the same grape variety, which originates from the northern Minho 

region of Portugal, and is appreciated for its colour properties. 
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20 mL of each wine were extracted three times with 20 mL of EtOAc and fractionated 

according to the procedure described elsewhere (Freitas & Glories, 1999). 

 

3.3.2. LC-MS-ESI analysis 
 

All samples were analysed by LC-ESI-MS performed in a Finnigan Surveyor Plus 

HPLC system fitted with a PDA Plus detector, an autosampler Plus and a LC 

quaternary pump plus coupled to a Finnigan LCQ Deca XP Plus mass detector 

equipped with a ESI source and an ion trap quadrupole equipped with an 

atmospheric pressure ionization (API) source. The stationary phase was a Thermo 

Finnigan Hypersil Gold column (150 x 4.6 mm i.d., 5 mm). The mass spectrometer 

was operated in the negative-ion mode with source, with a capillary temperature of 

275ºC and capillary voltages of 4.5 kV. The mass spectra were recorded between 

250 and 2000 m/z. The mobile phase was composed by solvent A, 0.1% (v/v) formic 

acid, and solvent B, 100% (v/v) MeOH. The flow rate was 0.20 mL/min and the 

gradient method started with a linear gradient ranging from 90% A to 60% A in 90 

minutes, then reaching 100% B in 5 minutes and a final isocratic gradient of 100% B 

during 5 minutes. 

 

3.4. Results and Discussion 

3.4.1. PAs standard analysis 
 

The synthetized and isolated compounds were analysed by LC-ESI-MS, using the 

analytic conditions described earlier, for standard distribution determination and 

retention time reference. The resulting chromatograms are shown in figure 42. Later 

a catechin calibration curve was calculated for compound quantification and 

comparison. 

LC-ESI-MS with the right chromatographic conditions has proved to be a powerful 

tool for detection and identification of PAs in complex samples with no need to 

perform excessively compound isolation. Tandem mass spectrometry (MS/MS) with 

ion trap provided additional information about the structures of these compounds 

through the fragmentation patterns of the pseudomolecular ions. Analysis of dimeric 

PAs with constitutive units showing different molecular weights demonstrates that 

RDA (retro-Diels-Alder) fission takes place specifically on the upper unit (substituted 

only in C4) and thus can be used to determine the sequence (de Pascual-Teresa, 

Rivas-Gonzalo, & Santos-Buelga, 2000; Friedrich, Eberhardt, & Galensa, 2000).  
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Figure 42. Proanthocyanidins PDB3, PCB3, PCB2, PCB4, PCB6, PCC1, EGC-C 11, EGC-EGC 12  

and EGC-EGCG 13 negative mass chromatograms by LC-ESI-MS. 

 

3.4.2. Wine fractionation and analysis 
 

Like in the grape skin extracts, the red wine samples were extracted with ethyl 

acetate and thereafter fractionated by Toyopearl gel column chromatography yielding 

two fractions: fraction A that consists in low molecular weight compounds including 

PAs monomers and fraction B that consists mainly in PAs dimers and trimers. 

 

3.4.2.1. Fraction A 
 

Table 5 shows the PA monomeric units detected in the fraction A of the analysed 

wines. Scheme 1 shows all the possible fragmentations this compounds can 

undergo. 
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Scheme 1. Mass fragmentation patterns of flavan-3-ol monomers 

 
Table 5. HPLC-MS retention times, molecular ions [M-H]- and Mass Spectrometric Fragments of the fraction A of 

2013 red wine from the Demarcated Region of Vinho Verde (Lima’s sub-region). 

Compound Rt (min) m/z [M]- Product ions m/z [M-H]- 
GC 38.41 305 221;219;261;137;287 

EGC 61.35 305 219;221;261;287;137 
C 63.53 289 245;205;179;203;231;271 

EC 83.34 289 245;205;179;231;271;203 
 

The analysed wines revealed similar qualitative composition and showed the 

presence of the four flavan-3-ol monomers in the following order: GC at 39.14 min, 

EGC at 61.46 min, C at 62.78 min and EC at 83.69 min (Figure 43a). This 

observation shows once more that, when using reversed-phase columns, ring-B 

trihydroxylated monomers elute earlier that the corresponding dihydroxylated ones, 

and 2,3-trans earlier than 2,3-cis, i.e. (G)C earlier then E(G)C. No galloyl derivatives 

were found suggesting that they are likely degraded during the wine-making process 

(de Pascual-Teresa, Rivas-Gonzalo, & Santos-Buelga, 2000) and/or they are difficult 

to extract from grape seeds (which contain most of the gallate forms) and grape 

skins. 
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Figure 43. a) HPLC chromatogram at λ = 280 nm, b) SIM-MS (selected ion monitory – mass spectrometry) 

chromatogram of the fraction A of 2012 red vinho verde wine from the  

Demarcated Region of Vinho Verde (Lima’s sub-region). 

 

3.4.2.2. Fraction B 
 

The LC-ESI-MS analysis of Wine fraction B allowed 3 dimeric PAs to be identified 

with m/z product ions [M]- 609, 8 dimeric PAs with m/z [M]- 593, 6 dimeric PAs with 

m/z [M]- 577, 3 trimeric PAs with m/z [M]- 897 (only in 2012 red Vinho Verde from the 

Demarcated Region of Vinho Verde), 10 trimeric PAs with m/z [M]- 881 and 11 

trimeric PAs with m/z [M]- 865 making a total of 41 different PAs. The 2012 red Vinho 

Verde from the Demarcated Region of Vinho Verde (Lima’s sub-region) presented 37 

different PAs and the 2013 red wine from the Demarcated Region of Douro only 28 

different PAs and both wines have 24 PAs in common. 
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Figure 44 and 45 show a LC-ESI-MS chromatogram of the B fraction for each wine 

type analysed where each number corresponds to a different PA. Table 6 and 7 

shows the retention times (Rt), negative pseudomolecular ion (m/z [M]-) and the 

product ions of the main fragments obtained for each compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 44. HPLC chromatogram at λ = 280 nm, b) SIM-MS (selected ion monitory – mass spectrometry) 

chromatogram of the fraction B of 2012 red vinho verde wine from the  

Demarcated Region of Vinho Verde (Lima’s sub-region). 
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Figure 45.	HPLC chromatogram at λ = 280 nm, b) SIM-MS chromatogram of the fraction B of 2013 red wine from the 

Demarcated Region of Douro.	
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Table 6. HPLC-MS retention times, pseudomolecular ions m/z [M]- and Mass Spectrometric Product ions of the 

fraction B of 2012 red vinho verde wine from the Demarcated Region of Vinho Verde (Lima’s sub-region). 

Compound Rt (min) [M]- 

(m/z) Product ions (m/z) 

1 (E)C-(E)GC-(E)GC 15.70 897 609;483;745;305 
2 (E)GC-(E)C-(E)C 19.23 881 577;695;755;451;289 
3 (E)C-(E)C-(E)GC 20.81 881 593;711;575;467;423;755;287;863 
4 (E)GC-(E)GC 21.67 609 305;441;423;483;591;453 
5 (E)C-(E)C-(E)C 25.63 865 577;695;713;739;451;287 
6 (E)GC-(E)GC 27.95 609 305;441;423;591;483;453 
7 PDB1 33.49 593 289;467;425;407;303;575;205 
8 (E)GC-(E)C-(E)GC 35.64 897 593;711;771;729;603;879 
9 PDB3 37.11 593 289;467;425;245;303;437;575 

10 (E)C-(E)GC 38.91 593 305;423;467;441;575;221 
11 (E)C-(E)GC 40.90 593 305;423;441;467;575;453;219;287 
12 (E)GC-(E)GC-(E)C 41.72 897 593;711;729;771;407;289;879 
13 (E)C-(E)C-(E)GC 44.09 881 593;711;755;575;305;441;729;863 
14 (E)GC-(E)C-(E)C 45.52 881 577;695;755;451;425;303 
15 (E)GC-(E)C 47.41 593 289;467;425;303;575;407;245 
16 (E)C-(E)C-(E)GC 48.87 881 593;711;755;575;467;423;729;441;863;305;287 
17 (E)C-(E)C-(E)C 49.73 865 577;695;739;407;713;287 
18 PCB3 50.22 577 289;425;407;451;559;245 
19 (E)C-(E)C-(E)C 51.23 865 577;695;713;739;425;451;287 
20 (E)C-(E)C 52.60 577 289;425;407;451;559;245 
21 (E)GC-(E)C-(E)C 53.10 881 577;695;755;863;451;407;289 
22 (E)C-(E)C-(E)C 53.82 865 577;695;739;713;425;407;451;287;847 
23 (E)C-(E)C-(E)GC 55.03 881 593;755;711;575;863;467;729;423;305;441;287 
24 (E)C-(E)GC 56.02 593 305;423;441;467;575;221 
25 (E)C-(E)C-(E)C 58.74 865 577;695;739;713;425;407;847;289 
26 (E)GC-(E)C-(E)C 59.58 881 577;695;755;407;425;289;863 
27 PCB4 60.38 577 289;425;407;451;245;559 
28 (E)C-(E)C-(E)C 61.91 865 577;695;739;407;425;713;847;289 
29 (E)C-(E)GC 62.64 593 305;423;467;575;441;261;453 
30 (E)GC-(E)C 66.45 593 289;467;425;407;245;303;575 
31 PCB6 67.01 577 289;425;451;407;245;559 
32 (E)C-(E)GC-(E)C 67.93 881 593;711;755;729;425;407;863 
33 (E)C-(E)C-(E)C 71.48 865 577;695;739;713;425;407;451;289;847 
34 PCC1 72.21 865 577;695;739;407;425;451;713;245;287;847 
35 (E)GC-(E)C-(E)C 74.25 881 577;695;755;713;287;407;451 
36 (E)C-(E)C-(E)C 78.48 865 577;695;739;713;451;425;413;847 
37 (E)C-(E)C 81.13 577 289;425;407;451;559;245 
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Table 7. HPLC-MS retention times, pseudomolecular ions m/z [M]- and Mass Spectrometric Product ions of the 

fraction B of 2013 red wine from the Demarcated Region of Douro. 

Compound Rt (min) [M]- 

(m/z) Product ions (m/z) 

38 GC-GC 18.66 609 305;441;423;483;591 
4 (E)GC-(E)GC 21.46 609 305;441;423;483;591 

39 (E)C-(E)C-(E)C 23.63 865 695;713;575;739;425;287 
5 (E)C-(E)C-(E)C 25.05 865 577;695;713;739;425;287 
6 (E)GC-(E)GC 27.15 609 --- 
7 PDB1 33.23 593 289;467;425;303;203;245;575 
9 PDB3 36.87 593 289;467;425;407;303;575;245;437 

10 (E)C-(E)GC 39.00 593 305;467;423;441;575;261 
11 (E)C-(E)GC 40.92 593 305;467;441;423;575;221 
13 (E)C-(E)C-(E)GC 44.33 881 593;711;755;729;467;423;441;287 
14 (E)GC-(E)C-(E)C 46.05 881 577;695;755;425;863;407;451;303 
15 (E)GC-(E)C 48.25 593 289;425;467;407;303;575;203;245;437 
18 PCB3 50.82 577 289;425;407;451;559;205;245 
20 (E)C-(E)C 53.17 577 289;425;407;451;559;287;245 
22 (E)C-(E)C-(E)C 54.53 865 695;713;739;575;425;451;407;287;847 
24 (E)C-(E)GC 57.01 593 305;467;441;423;575;221;261;421 
25 (E)C-(E)C-(E)C 59.50 865 577;695;739;587;713;407;287;425;847 
27 PCB4 61.11 577 289;425;407;451;559;245 
28 (E)C-(E)C-(E)C 62.72 865 577;695;739;407;713;451;287;847 
29 (E)C-(E)GC 63.47 593 305;467;423;441;575;219 
30 (E)GC-(E)C 67.27 593 289;467;425;303;407;245;575;203 
31 PCB6 67.67 577 289;425;407;451;559;245 
40 PCB2 70.57 577 289;425;407;451;559;287;245;203 
34 PCC1 72.18 865 577;695;739;713;425;407;287 
41 (E)C-(E)C-(E)C 72.94 865 577;695;739;713;407;425;587;451 
35 (E)GC-(E)C-(E)C 74.97 881 577;695;755;407;713;289;425 
36 (E)C-(E)C-(E)C 79.21 865 577;695;739;713;587;407;425;847;451 
37 (E)C-(E)C 81.50 577 289;425;407;451;559;245;287 

 

 

3.4.2.2.1. Fraction B dimers 
 

Compounds 4, 6 and 38 presented pseudomolecular ions with m/z [M]- 609. The MS2 

spectra shows product ions with m/z 305 indicating C and D rings quinone methide 

fission (QMCD) (Scheme 2); m/z 441 indicating a retro Diels-Alder fission in the C ring 

(RDAC) and also a consequent loss of a water molecule originating the 

pseudomolecular ion m/z 423; m/z 483 indicating a heterocyclic ring fission in ring C 

(HRFC); and m/z 591 which corresponds to the loss of a water molecule and also a 
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consequent novel benzofuran-forming fission again in ring C (BFFC) originating the 

pseudomolecular ion m/z 453. These pseudomolecular ion values and 

fragmentations indicate that these compounds are PDs formed with two (E)GC units. 

None of them could be identified as the synthetized standard EGC-(4β�8)-EGC but, 

according to the literature (de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 

2000) and the previous results for monomers, it can be suggested that compound 4 

is GC-(4β�8)-GC, and compounds 6 and 38 GC-(4α�8)-EGC and EGC-(4β�8)-GC. 

 

	

	

	

	

	

	

	

	

	

	

	

	

 
Scheme 2. Mass fragmentation patterns of flavan-3-ol dimers (adapted from (Quideau, 2006)). 

 

Compounds 18, 20, 27, 31, 37 and 40 presented pseudomolecular ions with m/z [M]- 
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shows with m/z 289 and m/z 287 indicating QMCD fission; m/z 425 indicating RDAC 

and also a consequent loss of a water molecule originating the pseudomolecular ion 

m/z 407; m/z 451 indicating a HRFC; the loss of 18 m.u corresponding to a water 

molecule and originating the product ion m/z 559; and the product ions m/z 245 and 

m/z 203 corresponding to the loss of 44 and 86 m.u. from the lower unit after the 

QMCD fission. By comparing with PC dimers standards, it can be concluded that 

compound 18 is in fact PCB3, while compounds 27, 31 and 40 are PCB4, PCB6 and 

PCB2, respectively. In Figure 45b, PCB4 peak appears co-eluted with compound 26.  

Compounds 7, 9, 10, 11, 15, 24, 29 and 30 presented pseudomolecular ions with m/z 

[M]- 593 indicating they are B-type PAs formed with one (E)C unit and one (E)GC 

unit. The MS2 spectra show two types of fragmentation. One type of fragmentation 

for compounds 7, 9, 15, and 30 with product ions with m/z 289 (C or EC) indicating 

QMCD fission or a second fission after HRFC; m/z 425 indicating RDAC and m/z 407 

for a consequent loss of a water molecule; m/z 437 indicating the loss of a water 

molecule followed by a BFFC; m/z 205 and m/z 245 corresponding to the (E)C loss of 

84 and 44 m.u.; and m/z 303 corresponding to the oxidized upper unit residue when 

the dimer is formed with an (E)GC monomer in that unit. Another MS2 fragmentation 

type was identified for compounds 10, 11, 24 and 29 with product ions with m/z 305 

(GC or EGC) indicating QMCD fission; m/z 441 indicating RDAC and m/z 423 for a 

consequent loss of a water molecule; m/z 453 indicating the loss of a water molecule 

followed by a BFFC; m/z 221, m/z 219 and m/z 261 corresponding to the (E)GC loss 

of 84, 86 and 44 m.u.; and m/z 287 corresponding to the oxidized upper unit residue 

when the dimer is formed with an (E)C monomer in that unit. Both presented product 

ions with m/z 575 corresponding to the loss of a water molecule and m/z 467 

corresponding to a HRFC. According to the literature RDA fission can occur either in 

the upper or in the lower monomer subunit of the dimer. However, according to other 

studies (de Pascual-Teresa, Rivas-Gonzalo, & Santos-Buelga, 2000; Quideau, 2006) 

and with what was observed for the standards and synthetized PDs (data not 

shown), the RDA fission occurs fundamentally in the upper subunit of the PA dimer. 

Therefore, it can be concluded that compounds 7, 9, 15, and 30 are formed with (E)C 

in the upper subunit and (E)GC in the lower subunit, while compounds 10, 11, 24 and 

29 are formed the other way around. From the comparison with the standards 

previously obtained it can be concluded that compound 7 is in fact EGC-C and 

compound 9 PDB3.  

Usually, it is considered that the subunits of PCs are (+)-catechin and (-)-epicatechin, 

and the subunits of PDs are (-)-gallocatechin and (-)-epigallocatechin. However, if a 
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PC can be described as a compound that releases cyanidin in acid medium when 

heated (Bate-Smith, 1954) and a PD as a compound that releases delphinidin in the 

same conditions, then a catechin-epigallocatechin dimer can not be named a PD. 

Assuming this, there are more PCs in nature then the 8 already described. In fact, 

such compounds were detected in these wine analyses (compounds 10, 11, 24 and 

29). Table 8 presents a suggestion for PC and PD identification nomenclature taking 

into account the already adopted one. Considering this suggested identification the 

three PDs synthetized for the first time in this work are: PDB1 Epigallocatechin-

(4β�8)-Catechin 11, PDB10 Epigallocatechin-(4β�8)-Epigallocatechin 12 and 

PDB10G Epigallocatechin-(4β�8)-Epigallocatechin Gallate 13. 

 
Table 8. Suggested identification nomenclature for PCs and PDs. 

 

 

 

3.4.2.2.2. Fraction B trimers 
 

Compounds 5, 17, 19, 22, 25, 28, 33, 34, 36, 39 and 41 presented pseudomolecular 

ions with m/z [M]- 865 indicating they are C-type PCs formed with three (E)C 

subunits (Scheme 3). The MS2 spectra show product ions with m/z 577 (PC) 

indicating QMCD fission; m/z 287 corresponding to the trimer upper subunit after the 

QMCD fission; m/z 713 indicating RDAC and also a consequent loss of a water 

molecule originating the pseudomolecular ion m/z 695; m/z 739 corresponding to a 

Compound  PC PD 
B1 EC-(4β-8)-C EGC-(4β-8)-C 
B2 EC-(4β-8)-EC EGC-(4β-8)-EC 
B3 C-(4α-8)-C GC-(4α-8)-C 
B4 C-(4α-8)-EC GC-(4α-8)-EC 
B5 EC-(4β-6)-EC EGC-(4β-6)-EC 
B6 C-(4α-6)-C GC-(4α-6)-C 
B7 EC-(4β-6)-C EGC-(4β-6)-C 
B8 C-(4α-6)-EC GC-(4α-6)-EC 
B9 EC-(4β-8)-GC EGC-(4β-8)-GC 

B10 EC-(4β-8)-EGC EGC-(4β-8)-EGC 
B11 C-(4α-8)-GC GC-(4α-8)-GC 
B12 C-(4α-8)-EGC GC-(4α-8)-EGC 
B13 EC-(4β-6)-EGC EGC-(4β-6)-EGC 
B14 C-(4α-6)-GC GC-(4α-6)-GC 
B15 EC-(4β-6)-GC EGC-(4β-6)-GC 
B16 C-(4α-6)-EGC GC-(4α-6)-EGC 
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HRFC; m/z 847 corresponding to a water molecule; m/z 451 corresponding to a PC 

dimer HRFF, meaning that the PC with m/z 577 undergoes further fragmentation; m/z 

425 corresponding to a PC dimer RDAF and m/z 407 due to consequent loss of a 

water molecule; m/z 289 indicates a PC dimer QMFG fission and consequent loss of 

44 m.u. giving pseudomolecular ion m/z 245. It was concluded that compound 34 

corresponded to PCC1. 

Compounds 2, 3, 13, 14, 16, 21, 23, 26, 32 and 35 presented pseudomolecular ions 

with m/z [M]- 881 indicating they are C-type PCs or PDs formed with two (E)C 

subunits and one (E)GC subunit. The MS2 spectra show three types of 

fragmentation. One type of fragmentation for compounds 2, 14, 21, 26 and 35 with 

product ions with m/z 577, a dimeric PC, indicating a QMCD fission where the upper 

subunit is the pseudomolecular ion with m/z 303; m/z 713 corresponding to a RDAC 

and the consequent loss of a water molecule originating the pseudomolecular ion 

m/z 695. The rest of the pseudomolecular ions results from the dimeric PC direct 

fragmentation: m/z 451; m/z 425 corresponding to a RDAF and m/z 407 for its 

consequent loss of a water molecule; m/z 289 corresponding to a QMFG fission and 

m/z 287 its resulting upper subunit. This fragmentation pattern shows that these 

compounds are of the type (E)GC-(E)C-(E)C. 

The second type of fragmentation for compounds 3, 13, 16 and 23 with product ions 

with m/z 593, a dimeric PC or PD, indicating QMCD fission with pseudomolecular ion 

with m/z 287 as the upper released subunit; m/z 729 corresponding to a RDAC and 

the sequent loss of a water molecule originating the pseudomolecular ion m/z 711. 

Once again the rest of the pseudomolecular ions result from the dimeric PC or PD 

direct fragmentation: m/z 575 corresponding to the loss of a water molecule; m/z 467 

corresponding to a HRFF; m/z 305 corresponding to a QMFG fission and m/z 441 

corresponding to a RDAF and the consequent loss of a water molecule originating the 

pseudomolecular ion m/z 423. This fragmentation pattern shows that these 

compounds are of the type (E)C-(E)C-(E)GC. 
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Scheme 3. Mass fragmentation patterns of flavan-3-ol oligomers 

 

The third type of fragmentation was only detected in one compound. Compound 32 

shows product ions with m/z 593, again a dimeric PC or PD, indicating QMCD fission; 

m/z 729 corresponding to a RDAC and the consequent loss of a water molecule 

m/z 125 

R2 and R3 = H: m/z 713 
R2 or R3 = OH: m/z 729 
R2 and R3 = OH: m/z 745 

R2 and R3 = H: m/z 695 
R2 or R3 = OH: m/z 711 
R2 and R3 = OH: m/z 727 

-	H2O	

RDAC	

R1 = H: m/z 151 
R1 = OH: m/z 

+	

R1, R2 and R3 = H: m/z 865 
R1 or R2 or R3 = OH: m/z 881 
R1 =H, R2 and R3 = OH: m/z 897 

HRFC	

R1, R2 and R3 = H: m/z 739 
R1 or R2 or R3 = OH: m/z 755 
R1 =H, R2 and R3 = OH: m/z 771 

+	

R1, R2 and R3 = H: m/z 847 
R1 or R2 or R3 = OH: m/z 863 
R1 =H, R2 and R3 = OH: m/z 879 

		-	H2O	

QMCD	

RDAF	

R1 and R3 = H: m/z 587 
R1 = H, R3 = OH: m/z 603 
R1 and R3 = OH: m/z 619 

R1, R2 and R3 = H: m/z 577 
R1 or R2 or R3 = OH: m/z 593 
R1 =H, R2 and R3 = OH: m/z 609 

+	

R1 = H: m/z 287 
R1 = OH: m/z 303 

O

OH

-O

OH

OH

OH

R2

HO

OH

O

OH

OH

OH

R3



FCUP 
Study of Prodelphinidins: synthesis, detection, identification and reactivity with anthocyanins 

91 

 
 
originating the pseudomolecular ion m/z 711; and m/z 425 corresponding to a RDAF 

and the consequent loss of a water molecule originating the pseudomolecular ion 

m/z 407, proving that this trimer lower subunit is a (E)C, and so this compound is of 

the type (E)C-(E)GC-(E)C. All compounds with m/z [M]- 881 presented product ions 

with m/z 863 corresponding to the loss of a water molecule and m/z 755 

corresponding to a HRFC. 

Finally, compounds 1, 8 and 12 presented pseudomolecular ions with m/z [M]- 897 

indicating they are C-type PCs or PDs formed with two (E)GC subunits and one (E)C 

subunit. The MS2 spectra show three types of fragmentation for the three 

compounds. Compound 1 with product ions with m/z 609, a dimeric PD, indicating a 

QMCD fission; m/z 483 corresponding to a HRFC; m/z 745 corresponding to a RDAC; 

and m/z 305 corresponding to a QMFG fission. These fragmentations indicate that this 

compound is of type (E)C-(E)GC-(E)GC. Compounds 8 and 12 presented product 

ions with m/z 593 indicating a QMCD fission; m/z 771 corresponding to a HRFC; m/z 

729 corresponding to a RDAC and consequent lost of a water molecule originating 

m/z 711; m/z 879 indicating the initial trimer dehydration. Compound 8 also 

presented product ions with m/z 603 indicating a RDAF after the HRFC and 

compound 12 also presented product ions with m/z 407 corresponding to a RDAF 

followed by dehydration and m/z 289 corresponding to a QMFG. With this data, it can 

be concluded that compound 8 corresponds to a trimer type (E)GC-(E)C-(E)GC, 

while compound 12 to a trimer type (E)GC-(E)GC-(E)C. 

 

3.4.3. PA quantification 
 

Since we did not have standards for the most of the identified compounds, we 

decided to quantify them as equivalents of catechin (C-eq.). Table 9 and 10 

illustrates the results for both analysed wines. 

For some compounds the concentration was below the limit of quantification for the 

catechin calibration curve, especially compounds which presented pseudomolecular 

ions with m/z [M]- 897 and 609. 
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Table 9. HPLC-MS retention times, pseudomolecular ions m/z [M]- and concentration in catechin equivalents in 

mg/100mL of the fraction B of 2012 red vinho verde wine from the Demarcated Region of Vinho Verde (Lima’s sub-

region). 

Compound Rt (min) [M]- (m/z) Conc. (mg/100mL) 
1 (E)C-(E)GC-(E)GC 15.70 897 <LOQ 
2 (E)GC-(E)C-(E)C 19.23 881 <LOQ 
3 (E)C-(E)C-(E)GC 20.81 881 <LOQ 
4 (E)GC-(E)GC 21.67 609 <LOQ 
5 (E)C-(E)C-(E)C 25.63 865 0.00887 
6 (E)GC-(E)GC 27.95 609 <LOQ 
7 PDB1 33.49 593 0.0725 
8 (E)GC-(E)C-(E)GC 35.64 897 <LOQ 
9 PDB3 37.11 593 <LOQ 

10 (E)C-(E)GC 38.91 593 0.0552 
11 (E)C-(E)GC 40.90 593 0.00935 
12 (E)GC-(E)GC-(E)C 41.72 897 <LOQ 
13 (E)C-(E)C-(E)GC 44.09 881 0.00780 
14 (E)GC-(E)C-(E)C 45.52 881 0.0260 
15 (E)GC-(E)C 47.41 593 0.0114 
16 (E)C-(E)C-(E)GC 48.87 881 <LOQ 
17 (E)C-(E)C-(E)C 49.73 865 <LOQ 
18 PCB3 50.22 577 0.0729 
19 (E)C-(E)C-(E)C 51.23 865 <LOQ 
20 (E)C-(E)C 52.60 577 0.0603 
21 (E)GC-(E)C-(E)C 53.10 881 <LOQ 
22 (E)C-(E)C-(E)C 53.82 865 0.181 
23 (E)C-(E)C-(E)GC 55.03 881 <LOQ 
24 (E)C-(E)GC 56.02 593 <LOQ 
25 (E)C-(E)C-(E)C 58.74 865 0.0865 
26 (E)GC-(E)C-(E)C 59.58 881 <LOQ 
27 PCB4 60.38 577 <LOQ 
28 (E)C-(E)C-(E)C 61.91 865 0.0206 
29 (E)C-(E)GC 62.64 593 <LOQ 
30 (E)GC-(E)C 66.45 593 0.00648 
31 PCB6 67.01 577 <LOQ 
32 (E)C-(E)GC-(E)C 67.93 881 <LOQ 
33 (E)C-(E)C-(E)C 71.48 865 0.0563 
34 PCC1 72.21 865 0.136 
35 (E)GC-(E)C-(E)C 74.25 881 0.0130 
36 (E)C-(E)C-(E)C 78.48 865 0.0586 
37 (E)C-(E)C 81.13 577 0.00634 

<LOQ – concentration below the limit of quantification for the catechin calibration curve 
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Table 10. HPLC-MS retention times, pseudomolecular ions m/z [M]- and concentration in catechin equivalents in 

mg/100mL of the fraction B of 2013 red wine from the Demarcated Region of Douro. 

Compound Rt (min) [M]- (m/z) Conc. (mg/100mL) 
38 GC-GC 18.66 609 <LOQ 
4 (E)GC-(E)GC 21.46 609 <LOQ 

39 (E)C-(E)C-(E)C 23.63 865 <LOQ 
5 (E)C-(E)C-(E)C 25.05 865 0.0209 
6 (E)GC-(E)GC 27.15 609 <LOQ 
7 PDB1 33.23 593 0.125 
9 PDB3 36.87 593 0.00996 

10 (E)C-(E)GC 39.00 593 0.0601 
11 (E)C-(E)GC 40.92 593 <LOQ 
13 (E)C-(E)C-(E)GC 44.33 881 0.0127 
14 (E)GC-(E)C-(E)C 46.05 881 0.0180 
15 (E)GC-(E)C 48.25 593 <LOQ 
18 PCB3 50.82 577 0.191 
20 (E)C-(E)C 53.17 577 0.579 
22 (E)C-(E)C-(E)C 54.53 865 0.186 
24 (E)C-(E)GC 57.01 593 0.00973 
25 (E)C-(E)C-(E)C 59.50 865 <LOQ 
27 PCB4 61.11 577 0.0124 
28 (E)C-(E)C-(E)C 62.72 865 <LOQ 
29 (E)C-(E)GC 63.47 593 <LOQ 
30 (E)GC-(E)C 67.27 593 <LOQ 
31 PCB6 67.67 577 0.0303 
40 PCB2 70.57 577 0.396 
34 PCC1 72.18 865 0.0711 
41 (E)C-(E)C-(E)C 72.94 865 <LOQ 
35 (E)GC-(E)C-(E)C 74.97 881 0.0143 
36 (E)C-(E)C-(E)C 79.21 865 0.0982 
37 (E)C-(E)C 81.50 577 0.108 

<LOQ – concentration below the limit of quantification for the catechin calibration curve 

 

Fraction B of 2012 red vinho verde wine from the Demarcated Region of Vinho Verde 

(Lima’s sub-region – Table 9) shows a total concentration of PA of 0.890 mg/100 mL 

of C equivalents. PDB1 and PCB3 are present in the same amount and, in this case, 

PDs represent 10.2% of total PA concentration and PCs represent 22.9%. It should 

be notice that all (E)C-(E)GC dimer were considered to PCs and not PDs. Otherwise 

the PD concentration would represent 17.4%. 

In terms of trimer concentration, it can be notice that the concentration for 

compounds which presented pseudomolecular ions with m/z [M]- 881 was between 

0.00780 – 0.0260 mg/100 mL of C equivalents and 0.00887 – 0.181 mg/100 mL of C 
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equivalents for PC trimers (m/z [M]- 865). This represents 62.5% for PC trimers and 

4.39% for the other trimers. 

Meanwhile, the fraction B of 2013 red wine from the Demarcated Region of Douro 

(Table 10) shows a total concentration of PA of 1.94 mg/100 mL of C equivalents, 

almost 2.2 times higher than the 2012 red vinho verde wine. In this PC concentration 

represents 71.4% of total PA concentration while PD represents only 6.92%. 

PC trimers represent 20.0% of the total PA concentration and PD trimers only 1.66%. 

This wine has a much higher PA content but it is mainly due to PC dimer content. 

 

3.5. Conclusions 
 

The development of mild mass spectrometry techniques has led to further progress 

in the determination of PA size distribution. In particular, ESI-MS studies have 

demonstrated that PD and PC units coexist within the polymers, in an apparent 

random way. The aim of this work was to present a method to extract and identify 

PAs in wine samples, especially PDs, without the need to break interflavan bonds. 

This is the first time that an exhaustive wine PAs evaluation is achieved. 

In this case, with this LC-ESI-MS method, it was possible to detect several dimeric 

and trimeric PDs for the first time in wines. The detected dimeric PDs included not 

only (E)GC dimers but also (E)C-(E)GC and (E)GC-(E)C dimers. Among the PD 

trimers, (E)C-(E)GC-(E)GC, (E)GC-(E)GC-(E)C, (E)GC-(E)C-(E)GC, (E)GC-(E)C-

(E)C, (E)C-(E)C-(E)GC and (E)C-(E)GC-(E)C were detected. 

2013 red wine from the Demarcated Region of Douro has an almost 2.2 times higher 

PA content than 2012 red vinho verde wine from the Demarcated Region of Vinho 

Verde (Lima’s sub-region), mostly composed by PC dimers. The later wine main 

content of total PC content is 6 times higher than total PD content, while for the 

Douro wine is almost 11 times higher. 

It can be concluded that red vinho verde wine may be a good source of PDs and that 

the PD content in wines can now be more accurately analysed. 
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The next chapter refers to an already published paper (Teixeira, Azevedo, Mateus & 

de Freitas, 2016). My contribution to this specific work was all copigmentation assays 

and respective data processing, except the one assay using Oenin-(O)-catechin as 

copigment. 

 

4. Copigmentation 
 

4.1. Introduction 
 

Anthocyanins are natural pigments widespread in plant kingdom and are responsible 

for the colors of many flowers, fruits and beverages such as red wine. It is well 

known that the color exhibited by anthocyanins in aqueous solution is pH-dependent 

of the medium. At pH < 2, the red flavylium cation is predominant and, as the pH 

increases, the other anthocyanin forms (hemiketal, chalcones and quinonoidal 

bases) occur in equilibrium (Brouillard & Delaporte, 1977).Taking into account that 

the pKh of anthocyanins is between 2 and 3 in red wines (pH 3.2 - 4.0) it is 

expectable that anthocyanins occur largely as colorless hemiketals in equilibrium 

with other forms (> 70%). However, in nature, anthocyanins found some stabilizing 

mechanisms that allow them to exist mainly as flavylium cations and quinonoidal 

forms. Such mechanisms are described in the literature as resulting from non-

covalent interactions of anthocyanins with themselves (self-association), with metal 

cations (metal complexation), with their own acylated residues (intramolecular 

copigmentation) and with other polyphenols (e.g. catechins and procyanidins) acting 

as copigments (intermolecular copigmentation) (Asen, Stewart, & Norris, 1972a, 

1972b; Boulton, 2001; Dangles, 1997; Goto & Kondo, 1991; Haslam, 1998; Robinson 

& Robinson, 1931). The copigmentation phenomenon consists essentially in van der 

Waals interactions (vertical π-π stacking) between the planar polarizable nuclei of 

the anthocyanin and the copigment. The anthocyanin:copigment complexes adopt a 

sandwich-like structure that stabilizes the flavylium cation chromophore 

(benzopyrylium) and partially protects it from the nucleophilic attack of water, thus 

preventing color loss (Goto, 1987; Goto, Tamura, Kawai, Hoshino, Harada, & Kondo, 

1986; Santos-Buelga & De Freitas, 2009). Because flavonols generally have planar 

polyphenolic nucleus, they are excellent copigments that can interact with 

anthocyanins and protect them from water addition at C2 (the first step for 

anthocyanin discoloration) (Cruz, Brás, Teixeira, Mateus, Ramos, Dangles, et al., 
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2010; Furtado, Figueiredo, Chaves das Neves, & Pina, 1993) whereas flavan-3-ols 

are comparatively weak copigments. According to the literature flavan-3-ols do not 

have a good ability to act as copigments, probably due to their non-planar structure 

that does not allow a close access to the anthocyanin (Brouillard, Wigand, Dangles, 

& Cheminat, 1991; Gómez-Míguez, González-Manzano, Escribano-Bailón, Heredia, 

& Santos-Buelga, 2006). Nevertheless, EC is a better copigment than C (Brouillard, 

Wigand, Dangles, & Cheminat, 1991; Liao, Cai, & Haslam, 1992) due to its B ring 

conformation, allowing it to be approximately coplanar; PC dimers with C4-C6 

interflavanic linkages seem to be better copigments that their respective C4-C8 

dimers (Berké & de Freitas, 2005); the presence of more hydroxyl groups (Chen & 

Hrazdina, 1981) and galloylation at C3 (Berké & de Freitas, 2005) increases the 

copigmentation effect.  

Usually copigmentation produces an increase in absorbance (hyperchromic effect) 

and a positive shift of the wavelength of the visible absorption maximum 

(bathochromic effect). Besides the pigment and copigment molecular structure and 

their relative concentration, copigmentation was shown to be dependent on ionic 

strength, pH, solvent, temperature and the presence of metal salts (Asen, Norris, & 

Stewart, 1972; Asen, Stewart, & Norris, 1971, 1972a; Brouillard & Dangles, 1994; 

Mistry, Cai, Lilley, & Haslam, 1991). 

The levels of polyphenols in red wines depend on the characteristics of the grape, 

environmental factors and the winemaking process. In general, it is assumed that 

flavan-3-ols and anthocyanins are the major phenolic components in red wines. Red 

wine color evolution during ageing and storage is in part attributed to copigmentation 

phenomena. These non-covalent interactions have been reported as the first step for 

the formation of covalent bonds between two molecules that result into new 

anthocyanin-derived pigments (Brouillard & Dangles, 1994; Cai, Lilley, & Haslam, 

1990; Liao, Cai, & Haslam, 1992). Indeed, during wine processing and ageing, 

several chemical reactions involving anthocyanins, flavan-3-ols and small molecules 

released by yeasts (e.g. pyruvic acid, acetaldehyde, acetoacetic acid, cinnamic 

acids) take place, yielding new families of anthocyanin-derived pigments, which will 

contribute to the modification of wine sensorial properties. Among them, direct and 

acetaldehyde-mediated condensations between anthocyanins and flavan-3-ols have 

been widely studied (Constantin Dallas, Ricardo-da-Silva, & Laureano, 1996; Es-

Safi, Fulcrand, Cheynier, & Moutounet, 1999; Hayasaka & Kennedy, 2003; Jurd, 

1969; Pissarra, Mateus, Rivas-Gonzalo, Santos Buelga, & De Freitas, 2003; Remy, 

Fulcrand, Labarbe, Cheynier, & Moutounet, 2000; Rivas-Gonzalo, Bravo-Haro, & 

Santos-Buelga, 1995; Somers, 1971; Timberlake & Bridle, 1976). Direct reactions 
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between anthocyanins and flavan-3-ols originate the dimeric-type Flavanol-(4,8)-

Anthocyanin (F-A) and Anthocyanin-(4,8)-Flavanol (A-F) adducts. A-F adducts 

formation in red wines is described in the literature to arise from a nucleophilic attack 

of flavanols (C6/C8) to the electropositive C4 of anthocyanin yielding a colorless 

product (flavene structure). This adduct could further evolve to the colorless bicyclic 

form (supplementary ether linkage type-A, A-(O)-F) or undergo oxidation to give the 

red pigment A+-F which could dehydrate to the orange-yellow xanthylium salt (Asen, 

Stewart, & Norris, 1972a; Dueñas, Salas, Cheynier, Dangles, & Fulcrand, 2005; Jurd, 

1969). Recently, the oenin-(O)-catechin dimeric adduct was hemisynthesized in 

model solution, isolated and structurally characterized (Cruz, Mateus, & de Freitas, 

2012), but its ability to act as a copigment with anthocyanins was never studied. 

The aim of this work was to study the previously obtained PDs to act as copigments 

of oenin (the main anthocyanin of red wine) by determination of the respective 

copigmentation binding constants and to compare it with other polyphenols present 

in wine. The relationship between copigmentation ability and the structure of 

complexes was evaluated. 

 

4.2. Material and methods 

4.2.1. Samples 
 

Oenin was purchased from Extrasynthèse (France). (+)-Catechin (C) and (-)-

epicatechin (EC) were purchased from Sigma-Aldrich® (Madrid, Spain). (-)-

epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) were purchased 

from Biopurify Phytochemicals Ltd (Sichuan, China).  

PCB3 and PDB3 were extracted from barley according to the procedure described 

elsewhere (see chapter 3.3). The identity and purity of PCB3 and PDB3 was 

achieved by LC-MS-ESI (Finnigan Surveyor equipped with a Thermo Finnigan 

(Hypersil Gold) 150 mm x 4.6 mm, 5mm, C18 reversed-phase column at 25 ºC; 

Finnigan LCQ DECA XP MAX mass detector (Finnigan Corp., San Jose, CA, USA) 

quadrupole ion trap equipped with an atmospheric pressure ionization source, using 

an electrospray ionization interface) and NMR (1H NMR spectra were measured in 

D2O on a Bruker Avance 400 spectrometer) by comparing with the literature data 

(Dvorakova, Moreira, Dostalek, Skulilova, Guido, & Barros, 2008).  

Oenin-(O)-catechin (Oenin-(O)-C) was obtained by hemisynthesis (Cruz, Mateus, & 

de Freitas, 2012). Briefly, a solution containing oenin (2.3 mM):(+)-catechin (molar 
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ratio of 1:20) was prepared in water (200 mL) at pH 2.5 (adjusted with dilute HCl or 

NaOH), protected from light and placed in the oven at 50 ºC. 

 

4.2.2. Copigmentation 
 

All solutions used were prepared in a citrate buffer solution with 12% ethanol (0.2 M) 

at pH 3.5, and the ionic strength was adjusted to 0.5 M by addition of sodium 

chloride. Each pigment:copigment solution was prepared by mixing a volume of 

pigment solution (10-4 M) with an aliquot of copigment solution to give the required 

pigment:copigment molar ratio of 1:0, 1:5, 1:10, 1:20, 1:30, 1:40. Each experiment 

was performed in triplicate. All the solutions were left to equilibrate for 30 min before 

spectroscopic measurements. The absorbance values were collected at the 

maximum absorption wavelength of free oenin at pH 3.5 (λmax 523 nm). Parameter r , 

which represents the ratio between the molar absorption coefficient of the complex 

(oenin:copigments molar ratio = 1:40) and the free flavylium ion (10-4 M), was 

determined in strongly acidic solutions (1 M aqueous HCl, pH ≈ 0) to assure that 

flavylium ion is the sole anthocyanin form. 

 

4.2.3. UV-Visible spectroscopy 
 

UV-visible spectra were recorded on a BIO-TEK Power Wave XS spectrophotometer 

at a constant temperature of 25 ºC from 360 to 830 nm (1 nm sampling interval) 

using a 1 cm path length cell. 

 

4.2.4. Data analysis 
 

The curve fittings were carried out on a PC using the Scientist program (MicroMath, 

Salt Lake City, UT). Curve fittings were achieved through least-squares regression 

method. Statistical analysis reported standard deviations and correlation coefficients. 

 

4.2.5. Molecular Dynamic Simulations 

 

The starting geometries of the copigment (EC, EGC, PCB3 and Oenin-(O)-C) and 

pigment (oenin) molecules were obtained at the HF/6-31G(d) level of calculation, 

using the Gaussian 09 package (Frisch, 2009). Atomic charges were further 
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recalculated using the RESP procedure (Bayly, Cieplak, Cornell, & Kollman, 1993). 

MD simulations were performed with GAFF (generalized amber force field) (Wang, 

Wolf, Caldwell, Kollman, & Case, 2004) and the TIP3P model for the solute and 

water, respectively. Explicit solvation was included as a truncated octahedral box 

with a 12 Å distance between the box faces and any atom of the compounds. Energy 

minimization occurred in two stages: first, the solute was kept fixed and only the 

position of the water molecules and counter-ion was optimized (500 steps using the 

steepest descent algorithm and 1,500 steps carried out using conjugate gradient); 

second, the full system was minimized (1,000 steps using the steepest descent 

algorithm and 2,000 steps carried out using conjugate gradient). Following a 100 ps 

equilibration procedure at constant volume and temperature, 30 ns MD simulations 

were carried out. The Langevin thermostat was used to control the temperature at 

303.15 K, (Izaguirre, Catarello, Wozniak, & Skeel, 2001) and all the simulations were 

carried out in the NPT ensemble with periodic boundary conditions. All MD 

simulations were carried out using the Sander module, implemented in the Amber 

10.0 simulations package (Case, 2008). Bond lengths involving H-atoms were 

constrained using the SHAKE algorithm, and the equations of motion were integrated 

with a 2 fs time step using the Verlet leapfrog algorithm (Ryckaert, Ciccotti, & 

Berendsen, 1977). Nonbonded interactions were truncated with a 12 Å cutoff. 

 

4.2.6. Calculation of binding free energies 

 

The MM_PBSA script (Molecular Mechanics−Poisson−Boltzmann Surface Area) 

(Huo, Massova, & Kollman, 2002; Kollman, Massova, Reyes, Kuhn, Huo, Chong, et 

al., 2000; Massova & Kollman, 2000) as implemented in Amber 10.0 simulations 

package (Case, 2008) was used to calculate the binding free energies (ΔGbinding) for 

all complexes. A series of 150 geometries was extracted every 100 steps of each 

simulation. The internal energy (bond, angle, and dihedral), the electrostatic and the 

van der Waals interactions were calculated using the Cornell force field (Cornell, 

Cieplak, Bayly, Gould, Merz, Ferguson, et al., 1995) with no cutoff. The electrostatic 

solvation free energy was calculated by solving the Poisson−Boltzmann equation 

with the PBSA program, implemented in the Amber 10.0 simulations package (Case, 

2008). The nonpolar contribution to the solvation free energy due to van der Waals 

interactions between the solute and the solvent and cavity formation was modelled 

as a term that is dependent on the solvent accessible surface area of the molecule. 

As these compounds possess similar structures and binding modes, the relative 
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binding energies (ΔΔGbinding) were calculated with respect to the most stable 

complex. 

 

4.3. Results and discussion 
 

In this work, oenin (malvidin-3-O-β-D-glucoside) was mixed with increasing 

concentrations of different copigments, namely: C, EC, EGC, EGCG, PDB3, PCB3 

and Oenin-(O)-C (Figure 46), for a quantitative evaluation of the corresponding 

copigmentation complexes. No copigmentation studies had been previously 

performed with compounds with the Oenin-(O)-C structure nor with PDB3 due to the 

difficulty in obtaining them from natural sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 46. Chemical structures of the pigment (oenin) and copigments used. 

 

The intermolecular copigmentation studies were performed with a concentration of 

pigment of 1x10-4 M to minimize any self-association effects. It is known that ethanol 

largely reduces the copigmentation effect (Dangles & Brouillard, 1992), however, its 

inclusion in the experimental conditions attempts to mimic red wine composition. 

Also, previous copigmentation studies were attempted using only aqueous citrate 

buffer but some copigments were found to be very difficult to dissolve properly and 

precipitated during the spectroscopic analysis. In weak acidic conditions (pH 3.5), the 

O

OH

OH

OH

HO

OH
H

A

B

C

EC

O

OH

OH

OH

HO

OH
H

A

B

C

C

O

OH

OH

OH

HO

OH
H

A

B

C

EGC

OH

O

O

OH

OH

OH

HO

O

OH

OH

HO

OH
A

B

C

DH

EGCG

O

OH

HO

OH

OH

OH

O

OH

HO

OH

OH

OH

OH

A C

B

D

E

F

PDB3

H

H

O

OH

HO

OH

OH

O

OH

HO

OH

OH

OH

OH

A C

B

D

E

F

PCB3

H

H

OHO

OH

O

OCH3

OH

OCH3
A

B

C

Oenin

O
HO

OH
OH

OH

O

OH

OH

O

OH
H

OHO

OH

O

OCH3

OH

OCH3
A

B

C

OH
D F

E

Oenin-(O)-C

O
HO

OH
OH

OH



FCUP 
Study of Prodelphinidins: synthesis, detection, identification and reactivity with anthocyanins 

103 

 
 
flavylium and hemiketal forms are the anthocyanin predominant species (pKh oenin = 

2.70 ± 0.01) (Dangles & Elhajji, 1994; Malien-Aubert, Dangles, & Amiot, 2002). The 

quinonoidal bases are only present in a very small extent (Brouillard & Delaporte, 

1977) and can be neglected (first pKa ≈ 4 (Brouillard & Delaporte, 1977; Macanita, 

Moreira, Lima, Quina, Yihwa, & Vautier-Giongo, 2002)).  

The copigmentation equilibrium is in competition with the hydration process, i.e., the 

copigment molecule competes with water for the flavylium ion. Bearing this, the 

copigmentation binding constants (𝐾) between oenin and the referred copigments 

could be evaluated from a general mathematical treatment that takes into account 

the thermodynamics of water addition onto the flavylium ion. Assuming a 1:1 

stoichiometry for the complex and no complexation between the copigment and the 

colourless forms, the variations of visible absorbance 𝐴 as a function of the total 

copigment concentration 𝐶𝑃! can be expressed as equation (1): 

𝐴 =
𝐴!

𝑎
𝑟 − 𝑎 +

1
𝑟 − 𝑎 .𝐾 .

1
𝐶𝑃!

+ 𝐴!                                                                                      (1) 

 

where 𝐴! is the visible absorbance of the pigment in the absence of copigment, 𝑟 is 

the ratio of the molar absorption coefficient of the complex to that of the free flavylium 

ion and 𝑎 = !
!!!!.!"!"

 (Malien-Aubert, Dangles, & Amiot, 2002). The absorbance 

values obtained for the oenin-copigment complexes at the maximum absorption 

wavelength of free oenin at pH 3.5 (λmax 523 nm) are presented in Table 11. 

 
Table 11. Absorbance values for the oenin/copigment complexes at the maximum wavelength (λmax 523 nm) 

 Oenin (10-4 M)   

r 0.953 0.956 0.897 0.884 0.958 0.964 0.891 

Pigment/copigment 
molar ratio C  EC EGC EGCG PDB3 PCB3 Oenin-

(O)-C 

1:0 (A!) 0.528 0.520 0.521 0.540 0.507 0.537 0.635 

1:5 0.564 0.538 0.569 0.586 0.525 0.549 0.715 

1:10 0.598 0.555 0.603 0.625 0.540 0.563 0.767 

1:20 0.648 0.605 0.649 0.679 0.560 0.576 0.922 

1:30 0.696 0.642 0.703 0.732 0.573 0.604 1.009 

1:40 0.737 0.680 0.784 0.757 0.603 0.616 1.150 
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The absorbance increase with the copigment concentration reflects the preferential 

binding of the copigment to the flavylium ion and the subsequent shift of the 

hydration equilibrium toward the coloured forms.  

For each selected copigment, a plot of absorbance as a function of wavelength was 

performed and the typical behaviour of copigmentation phenomena was observed: 

increase of absorbance (hyperchromic effect) and a slight batochromatic shift of λmax 

as the copigment concentration increased. Figure 47 shows the absorption spectra of 

free oenin and oenin-(O)-catechin:oenin complex obtained at different molar ratios 

(A) and the respective mathematical treatment to determine 𝐾 according equation (1) 

(B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 47. (A) Visible spectra of free oenin (1:0) and oenin:oenin-(O)-C solutions obtained at different molar ratios, 

(B) Plot of absorbance at 523 nm as a function of Oenin-(O)-C concentration. 
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Equation (1) was used for the curve fitting of 𝐴 = 𝑓 𝐶𝑃!  to the experimental data to 

obtain the optimized values for 𝐾  as the sole adjustable parameter. Statistical 

analysis gave good correlation coefficients and standard deviations for the 

copigmentation constants (K) (Table 12). 
Table 12. Copigmentation Constants for the Oenin/Copigment Complexesa 

Copigment K (M-1) R2 

C 136 (± 4) 0.998 

EC 99 (± 2) 0.999 

EGC 177 (± 7) 0.992 

EGCG 162 (± 10) 0.991 

PDB3 60 (± 3) 0.991 

PCB3 48 (± 2) 0.992 

Oenin-(O)-C 309 (± 7) 0.997 
aValues in parentheses are the standard deviations of the curve-fitting procedure 

 

The experimental results show that all copigments have a 𝑟 parameter close to 1 at 

523 nm with the solution of the complex copigment:oenin showing a slight 

discoloration at pH ≈ 0 comparatively to oenin. Oenin-(O)-C was found to be the 

copigment with the highest copigmentation binding constant in 12% ethanol, pH 3.5, 

followed by EGC, EGCG, C, EC, PDB3 and PCB3. The highest value of K obtained 

for oenin-(O)-C is probably due to the existence of an extra glucose unit, allowing 

more hydrophobic interactions between glucose residue and the pigment rings. This 

results in the flavylium stabilization and prevents its hydration and consequently color 

loss.  

The results obtained with EC, EGC, PDB3 and PCB3 showed that the presence of 

one more hydroxyl group in the B ring of the flavan-3-ol structure increases the 

copimentation potential. Futhermore, the presence of an additional OH group in ring 

B seems to be more efficient than the presence of a galloyl group, comparing the 

results for EC, EGC and EGCG. Despite the fact that esterification of the C3 hydroxyl 

function by gallic acid adds a well exposed planar π−π stacking (Berké & de Freitas, 

2005), some steric hindrance may occur. This also can explain the lower 𝐾 values 

obtained for dimers comparatively to monomers. 

Under the conditions chosen for this work, catechin seems to be more efficient to 

form copigment complexes with oenin than its isomer epicatechin. To confirm and 

better explain these experimental results, some computational studies were 

performed. 
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4.3.1. Computational Studies of four pigment−copigment 

complexes 
 

Molecular dynamics simulations were carried out for four distinct complexes, 

EC:oenin, EGC:oenin, PCB3:oenin and Oenin-(O)-C:oenin complexes, which 

allowed sampling of the potential hypersurface so as to identify several 

conformations for each copigmentation complex studied. The relative binding 

energies obtained by the MM_PBSA approach (Huo, Massova, & Kollman, 2002; 

Kollman, et al., 2000; Massova & Kollman, 2000) are in relatively good agreement 

with the experimental results (Table 13), which confirms the relevance of the MD 

procedure to provide an accurate picture for conformational analysis. It is noticed that 

the theoretical ΔΔGbinding values fit only qualitatively with the experimental values, 

whereas the small quantitative differences could be due to some approximations 

within the MM_PBSA methodology. The results reveal that the ΔGbinding energy of the 

Oenin-(O)-C:oenin complex is the most negative compared to the copigmentation 

complexes with EC, EGC and PCB3. Therefore, Oenin-(O)-C:oenin complex displays 

higher stability and its formation is thermodynamically favoured when compared to 

the other complexes. Although the tendency obtained for the binding free energies is 

Oenin-(O)-C > EGC > EC > PCB3, the small differences in ΔΔGbinding between Oenin-

(O)-C and EGC, as well as EC and PCB3 (0.14 and 0.16 kcal/ mol, respectively) 

reveal similar stability for the first two complexes and second two complexes. 

 
Table 13. Relative Binding Free Energies of the Copigmentation Complexes 

Complex Theoretical ΔΔGbinding 
(kcal/mol) 

Experimental ΔΔGbinding 
(kcal/mol)* 

EC:oenin 2.73 0.85 

EGC:oenin 0.14 0.51 

PCB3:oenin 2.89 1.28 

Oenin-(O)-C:oenin 0.00 0.00 
*Experimental values calculated from Table 11 using ΔΔG = RT ln(KOenin-(O)-C/KCPx) 

 

Figure 48 shows the closest geometries to the average structures for the four 

copigment:oenin complexes. It is well known that the formation of these complexes is 

driven by van der Waals interactions between the large planar surfaces of the 

pigment and copigment molecules and the concomitant release of high-energy water 

molecules from the solvation shells (hydrophobic effect). 



FCUP 
Study of Prodelphinidins: synthesis, detection, identification and reactivity with anthocyanins 

107 

 
 

	

	

	

	
	

	
	 	

 
Figure 48. Closest geometries to the average structures of the EC:oenin, EGC:oenin, PCB3:oenin and Oenin-(O)-

C:oenin complexes. Copigment structures are depicted with surface representation. 

 

As this kind of copigmentation systems has a large number of degrees of freedom, 

the steric hindrance does not allow optimized π-stacking arrangements. However, 

the binding could also be strengthened by H-bonding involving the numerous OH 

groups from glucose and phenolic units. Hence, the proximity between planar 

surfaces of the pigment and copigment molecules should reflect the stability of each 

complex. The interplanar distances between the benzopyrylium nucleus (AC), B ring 

and glucose unit of the oenin and the aromatic and pyran rings of each copigment 

were calculated during each MD simulation. The minimal distances thus obtained are 

shown in table 14. The results show that the AC rings of EGC and Oenin-(O)-C are 

the closest planes to the benzopyrylium nucleous of oenin (4.34 Å and 4.92 Å, 

respectively). Furthermore, the AC plane of Oenin-(O)-C and the B ring of EGC are 

the nearest planes to the B ring (4.76 Å and 4.33 Å, respectively). Although all 

copigment planes are very distant to the glucose residue, the minimal distances were 

EC:oenin	 EGC:oenin	

PCB3:oenin	 Oenin-(O)-C:oenin	
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obtained with the EGC and Oenin-(O)-C molecules (6.76 Å and 6.86 Å, respectively). 

As the intermolecular distances of about 4 Å are consistent with van der Waals 

contacts, these data reveal that the shortest copigment:oenin distances were 

obtained for the complexes with the Oenin-(O)-C and EGC copigments, which 

agrees with their highest stability constants (K). 

 
Table 14. Average minimal distances between approximately planar surfaces of the oenin and 

copigment molecules in the copigmentation complexes. 
 

 Average minimal distance (Å) 

Complex Benzopyrylium nucleus (AC) B ring Glc 

EC:oenin 5.06 (AC) 5.35 (AC) 6.97 (B) 

EGC:oenin 4.34 (AC) 4.76 (B) 6.76 (B) 

PCB3:oenin 5.01 (AC) 5.53 (AC) 7.32 (AC) 

Oenin-(O)-C:oenin 4.92 (AC) 4.33 (AC) 6.86 (Glc) 
 

Recently, the copigmentation between the 3-O-methycyanidin and quercetin 

compounds was computationally studied by Meo et al. (Di Meo, Sancho Garcia, 

Dangles, & Trouillas, 2012). According to their results, the contribution of 

copigmentation to color stability is dependent on the relative concentrations of 

pigment and copigment. It was verified that equal pigment and copigment 

concentrations results in complexes with high stability, that is the prevalent 

mechanism to avoid the hydration of the anthocyanin chromophore. The present 

results are in agreement with these data, and it was also verified that the driving 

force in the formation of copigmentation complexes appears to be dispersive 

interactions that greatly contribute to high stable complexes and prevents the 

hydration of the pigment. 

According to the structures of the four complexes shown in figure 48, it was observed 

that Oenin-(O)-C offers a very large planar surface for the establishment of multiple 

van der Waals interactions with the pigment. The untypical covalent interaction 

between the anthocyanin and catechin units observed in this copigment provides a 

huge roughly planar polarizable surface (AC-DF nucleus) that must be prone to 

strong π stacking interactions with the aromatic rings of oenin. In addition, it was 

observed that the benzopyrylium nucleus of EGC is strategically positioned in the 

middle of the pigment structure, establishing an accessible face and a closer contact 

with all planes of oenin. This fact contributes to a great binding of EGC and oenin 

molecules and thus to the also higher K values obtained for this complex. 
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For EC:oenin, it was observed that the AC nucleus of the copigment is 

perpendicularly located to the flavylium plane of oenin, which difficults the 

establishment of nonpolar contacts between both molecules. In relation to 

PCB3:oenin complex, it was noticed that the EGC has its catechin unit facing 

opposite sides that prevents a simultaneous interaction of both moieties with the 

flavylium nucleus of oenin. As the hydrophobic contacts with the flavylium nucleus of 

oenin are great contributions to the copigmentation driving force, it is expected that 

EC and PCB3 have the smallest copigmentation binding constants. 

All these structural data show that, within the complexes studied, Oenin-(O)-C and 

EGC are closer to the pigment molecule than EC and PCB3. This is in accordance 

with their highest copigmentation binding constants calculated experimentally.  

 

4.4. Conclusions 
 

The data yielded from this study allowed concluding that: a) the presence of a 

pyrogallol group in the B ring of the flavan-3-ol structure slightly increases the 

copimentation potential; and b) within all copigments tested oenin-(O)-catechin 

revealed to be the best. According to computational studies performed on 

epicatechin:oenin, epigallocatechin:oenin, procyanidin B3:oenin and oenin-(O)-

catechin:oenin complexes, the ΔGbinding energy of the oenin-(O)-catechin:oenin 

complex is the most negative comparatively to the other copigmentation complexes, 

hence being more stable and thermodynamically favoured. All structural data show 

that oenin-(O)-catechin and epigallocatechin are closer to the pigment molecule, 

which is in accordance with these two copigments having the highest experimental 

copigmentation binding constants for oenin. 
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5. General conclusions 
 

Polyphenols offer great hope for the prevention of chronic human diseases. This 

work contributes to the organic synthesis of PDs, an each day passing more 

important class of proanthocyanidins. Some of the earliest references of PA 

synthesis date back as far as the turn of the 20th century, indicating the importance 

with which this theme was viewed. Much of the synthetic work was derived from a 

need to be able to assign the absolute configurations of those compounds that were 

isolated from natural sources. This, coupled to the fact that these compounds show 

countless health benefits, it would appear to be a good indicator of the importance of 

such studies. It has also been demonstrated the difficulty involved in the isolation and 

purification of such compounds. With the growing pressures involved in the use of 

more natural food additives, allied to the industrial applications, it is not misplaced to 

affirm that the analysis of these compounds should continue to flourish in the future. 

A new LC-ESI-MS method was developed, allowing the detection of several dimeric 

and trimeric PDs in wines for the first time. This method was used to analyse and 

quantify the PA composition of a 2013 red wine from the Demarcated Region of 

Douro and a 2012 red vinho verde wine from the Demarcated Region of Vinho Verde 

(Lima’s sub-region). The PD content in wines can now be more accurately analysed 

and it can be concluded that the red vinho verde wine may be a good source of PDs. 

Copigmentation studies allowed concluding that the presence of a pyrogallol group in 

the B ring of the flavan-3-ol structure slightly increases the copimentation potential, 

but a A-type link between both monomeric units of a flavan-3-ol-anthocyanin dimer 

like oenin-(O)-catechin revealed to be the best among all tested compounds. This 

conclusion was supported by computational studies. 

 

Future perspectives 
 

Finishing this work, the most important thing still to be done is finding proper 

hydrogenolysis reaction conditions that do not allow the rupture of the key dimeric 

interflavan bond. We believe that this work does not involve finding new protection 

groups but perhaps finding new catalysts that work in even softer conditions and 

keep the regioselectivity of the debenzylation. By so, new prodelphinidins can be 

synthesized and also identified and quantified in food and beverages matrices. New 
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in vitro studies will also be possible, enlightening more the prodelphinidin potential 

concerning human health. 

It should also be interesting to analyse red vinho verde grapes in terms of 

prodelphinidin nature and concentration. It is important to verify if the prodelphinidin 

profile found in this study is due to the skin of the grapes or contact with grape stems 

during vinification. 
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