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UNRAMIFIED COVERS AND BRANES ON THE HITCHIN SYSTEM
EMILIO FRANCO, PETER B. GOTHEN, ANDRE OLIVEIRA, AND ANA PEON-NIETO

ABSTRACT. We study the locus of the moduli space of GL(n, C)-Higgs bundles on a curve given
by those Higgs bundles obtained by pushforward under a connected unramified cover. We equip
these loci with a hyperholomorphic bundle so that they can be viewed as BBB-branes, and we
introduce corresponding BAA-branes which can be described via Hecke modifications. We
then show how these branes are naturally dual via explicit Fourier-Mukai transform (recall
that GL(n,C) is Langlands self dual). It is noteworthy that these branes lie over the singular
locus of the Hitchin fibration.

As a particular case, our construction describes the behavior under mirror symmetry of the
fixed loci for the action of tensorization by a line bundle of order n. These loci play a key role
in the work of Hausel and Thaddeus on topological mirror symmetry for Higgs moduli spaces.
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1. INTRODUCTION

1.1. In a nutshell. Among the many fundamental contributions of Narasimhan and Ramanan
to the study of moduli of vector bundles on curves are the Hecke correspondence | ) ]
and the study of generalized Prym varieties as fixed points | |. In this paper we use these
ideas to explore mirror symmetry for the moduli space of Higgs bundles in the spirit of the
seminal work of A. Kapustin and E. Witten | |. More precisely, we exhibit pairs of dual
branes for the Langlands self dual group GL(n,C). The interest of our construction relies on
two aspects: firstly the branes we consider are sheaves (rather than just submanifolds) and the
duality is realized via an explicit Fourier—Mukai transform; secondly, we are making progress
in the understanding of mirror symmetry in the singular locus of the Hitchin system, since the
branes lie entirely over this locus. As far as we know, this is the first example of dual branes
lying over the singular locus, where mirror symmetry is explicitly realized by a Fourier-Mukai
transform. Finally, it is also important to note that among the branes we construct are the
fixed loci under tensorization by an order n line bundle, central in the work of Hausel and
Thaddeus [HT] on topological mirror symmetry, so our construction ought to be important in
a deeper understanding of the topological mirror symmetry phenomenon. In the remainder of
this section, we explain our constructions and results in more detail.

1.2. Context. N. Hitchin introduced in [Hil] Higgs bundles over a smooth projective complex
curve X of genus g > 2 as solutions to certain equations obtained by dimensional reduction
of the self-dual equations on a 4-manifold. These are pairs (E, ), where E is a holomorphic
vector bundle over X and ¢ is a holomorphic one-form with values in End(E). The moduli
space Mx (n,d) of Higgs bundles of rank n and degree d is a holomorphic symplectic manifold
carrying a hyperkahler metric. Moreover, it admits the structure of an algebraically completely
integrable system given by the Hitchin map hx,: Mx(n,d) — Bx,. Here the Hitchin base
By, is an affine space whose dimension is half that of Mx(n,d), and the components of hx
are the coefficients of the characteristic polynomial of ¢. The fiber of hx , over a generic point
of the Hitchin base is a torsor for an abelian variety, namely the Jacobian of an associated
spectral curve.

The concept of a G-Higgs bundle can be defined for any complex (and even real) reductive
Lie group G. In these terms, the above definition becomes that of a GL(n,C)-Higgs bundle.
The Hitchin map can also be defined in this generality, and it has been shown that it is an
algebraically completely integrable system for any complex reductive Lie group G [Hi2, Fa, ,

].
A new development arose with the discovery by T. Hausel and M. Thaddeus [HT] of a close
relation between Higgs bundles, mirror symmetry and the Langlands correspondence. They
proved that the moduli spaces of Higgs bundles for the group SL(n,C) and its Langlands dual
group PSL(n,C) form a pair of SYZ-mirror partners | |, in the sense that the respective
Hitchin maps have naturally isomorphic bases and their fibers over corresponding points are,
generically, half-dimensional torsors for a pair of dual abelian varieties. This was subsequently
generalized by N. Hitchin [Hi4] for the self-dual group G5 and then by R. Donagi and T. Pantev
[DP] for any pair (G, “G) of Langlands dual groups. The duality is reflected by a Fourier-Mukai
transform between the moduli spaces interchanging fibers of the Hitchin map over corresponding
points in the base. These dualities were obtained over the locus of the Hitchin base where the
corresponding spectral curves are smooth.

As mentioned above, the moduli space M x(n,d) is hyperkéahler. This means that it carries
three natural complex structures I1, Is and I3 verifying the quaternionic relations and a metric
which is Kahler with respect to all three holomorphic structures. In the present case, I is the
natural complex structure on the moduli space of Higgs bundles M x (n, d), while the complex
structures I and I3 = I [ arise via the non-abelian Hodge Theorem, which identifies M x (n, d)
with the moduli space of projectively flat GL(n, C)-connections (see [Hil, Sil]).

A. Kapustin and E. Witten considered in [IKX\W] certain special subvarieties of Mx (n,d),
equipped with special sheaves. The pair composed by such a subvariety and the corresponding
sheaf is called a brane. For each of the complex structures on Mx(n,d) a brane is classified
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as follows: it is of type A if it is a Lagrangian subvariety with respect to the corresponding
Kaéhler form and the sheaf over it is equipped with a flat connection, and it is of type B if it is a
holomorphic subvariety and the sheaf over it is also holomorphic. Thus, for instance, a (BBB)-
brane is a subvariety equipped with a sheaf, holomorphic with respect to all three complex
structures I7, Iy and I3; in other words, it is a hyperholomorphic subvariety equipped with a
hyperholomorphic sheaf (this is a sheaf with a connection whose curvature is of type (1,1) with
respect to all complex structures). A (BAA)-brane is a subvariety which is holomorphic with
respect to I;, and Lagrangian with respect to the Kahler forms wy and w3 associated to I and
I3 (hence complex Lagrangian for € = we +iws), and which in addition supports a flat vector
bundle. There are only two other possible types of branes on Mx(n,d), namely (ABA)- and
(AAB)-branes. Again all this holds for any complex Lie group and not just GL(n, C).
According to [[{W], mirror symmetry conjecturally interchanges (BBB)-branes and (BAA)-
branes, and mathematically this duality should again be realised via a Fourier—Mukai transform
(in complex structure I). The support of the (BAA)-brane should depend not only on the
support of the dual (BBB)-brane but also on the hyperholomophic sheaf over it (and vice-
versa). A similar story holds for pairs of (ABA)-branes and also for pairs of (AAB)-branes.
Since Kapustin and Witten’s paper—and because of it—an intense study of several kinds of
branes on Higgs bundle moduli spaces has been carried out. Some examples may be found in

[Hi5, , , , , , Ga, FJ, , FP, B, | (see also [ ] for a survey
on this subject). Most of these works mainly focus either on the smooth locus of the Hitchin
system (exceptions are [B52, P, B]) or only deal with the support of the branes and not with

the sheaves on it (exceptions are [Hi5, , Ga, FJ, FP)).

1.3. Our construction. Starting from a connected unramified cover p : C' — X of degree n
and Galois group I, we introduce in this paper new types of (BBB)-branes and (BAA)-branes
on Mx (n,d), the moduli space for the self-dual group GL(n,C). As required in the general
picture, our (BBB)-branes come equipped with flat, hence hyperholomorphic, bundles. We
explicitly prove (when d = 0) that their (fiberwise) Fourier-Mukai transform generically yields
a sheaf supported exactly over the support of our (BAA)-brane. As expected, the support of
the (BAA)-brane depends on the hyperholomorphic bundle over the (BBB)-brane.

These branes are supported on a subspace B < Bx, of the singular locus of the Hitchin
system. For a dense open subset BY. < B of nodal and integral spectral curves, the normaliza-
tion of these curves is C' itself. Since p: C — X is unramified, B?, is, by definition, contained
in the so-called endoscopic locus of hx , (cf. | ) ]). So our construction (more precisely,
its analogue for the Langlands dual groups SL(n,C) and PSL(n,C)) may eventually be relevant
in the context of geometric endoscopy, introduced by E. Frenkel and E. Witten in [F'W].

In the following we outline our construction in more detail, starting with the (BBB)-branes.
Fix the rank n to coincide with the degree of p and set Mx(n,d)P to be the locus of Higgs
bundles obtained as a pushforward under p of Higgs bundles in M¢(1,d) = T* Jac!(C). Let
BP be the image of Mx(n,d)? under the Hitchin map hx,: Mx(n,d) — Bx,. As a direct
consequence of non-abelian Hodge theory, one concludes that M x (n, d)P is a hyperholomorphic
subvariety. The pushforward by p yields an isomorphism between M x (n, d)P and the quotient of
T*J acd(C) by the Galois group, acting by pullback. From this, one defines a hyperholomorphic
line bundle .Z over M x (n, d)?, naturally associated to a flat line bundle £ on X. We call the pair
(Mx (n,d)?,.%) a rank 1 Narasimhan—Ramanan (BBB)-brane. We represent it by (BBB)%. and

write (BBB)I;’iL for its restriction to BY.. More generally, we can construct a rank n coherent
and hyperholomorphic sheaf .% on Mx (n, d)P which canonically associated to a flat line bundle
F over C, and we call the pair (Mx (n,d)?,.#) a rank n Narasimhan—Ramanan (BBB)-brane
and represent it by (BBB).

Let p: C — X be a Galois Z,-cover, and let £ € Z,, be the standard generator. Parallel
transport of the lifts from X to C provides a line bundle L¢ € Jac®(X ) of order n. In this
case, it basically follows from [NR3] that the locus Mx (n,d)P coincides with the subvariety
My (n,d)¢ = Mx(n,d) of points (E, ¢) fixed by tensorization of by Lg, i.e. (E, ) = (EQLg, ¢).
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The study of Mx (n,d)¢ was our original motivation. So this justifies the name chosen for the
(BBB)-branes appearing in this paper.

If our (BBB)-branes are intimately related to the work of Narasimhan-Ramanan in | ],
the construction of our (BAA)-branes is closely linked to their work on Hecke modifications of
vector bundles published in | , |. Hecke modifications in the context of Higgs bundles
have previously appeared in several papers; see, for example, [Ii7, , Ra, , W]. Before
describing the construction, we recall that under certain assumptions on the values of the rank
and the degree, there exists a Hitchin section on the moduli space M (r,d + §) constructed
out of a line bundle 7 € Jac?*?(C). The pushforward under p defines a Hitchin-type section of
Mx (n,d+06)? — BP. We define the subvariety NR’;’ij c Mx(n,d) of those Higgs bundles over
BP. obtained as Hecke modifications of this Hitchin—type section at the divisor of singularities
of the corresponding integral and nodal spectral curve (which has length §) classified by B”..
The notation we use for this subvarieties is chosen to recognize the pioneer work Narasimhan
and Ramanan on Hecke modifications. We prove next that the subvarieties NRZI’I’{ are complex
Lagrangian with respect the holomorphic symplectic form Q; = wy + iws on My (n,d). This
shows that this subvariety is the support of a (BAA)-brane on Mx (n,d), when endowed with
a flat bundle.

Our construction of NRi’ij (for d = 0 and p of degree n) was aimed at obtaining the support
of a (BAA)-brane dual to the rank 1 (BBB)-brane (BBB))., for an appropriate choice of the
line bundle J. Towards this goal, we provide an extensive study of the spectral data of the
Higgs bundles appearing in NRZ;I’ij and in Mx (n,d)?, the support of (BBB)%.. For a given
be Bzr’li, let X3 be the corresponding spectral curve and vy, : C — X} the normalization. Over
the Hitchin fiber associated to Xp, the spectral data in NR 1;1’1‘7 are those contained in the closure
of the preimage of J by the pull-back under v5. On the other hand, the spectral data contained
in Mx (n,d)P are those given by pushforward under 4. This paves the way for our main result,
Theorem 6.5, which is described below.

Theorem. Let p : C —> X be a connected unramified n-cover. Consider the moduli space
Mx (n,0).

(i) Let J = p*(L.® KE?_U/Q). The (fiberwisewise) dual of the rank 1 Narasimhan-Ramanan
(BBB)-brane (BBB). (restricted to the locus of nodal and irreducible spectral curves) is

the (BAA)-brane supported on NRII){{, and whose flat bundle satisfies (6.28).

(ii) Let J = .7-"®p*K§(n_1)/2. The (fiberwise) dual of the rank n Narasimhan-Ramanan (BBB)-
brane (BBB)Y. (restricted to the locus of nodal and irreducible spectral curves) is the

(BAA)-brane supported on Ner’l’ij, and whose flat bundle satisfies (6.30) .

It is important to note that this duality is proved by an explicit fiberwise Fourier—Mukai
transform, on the fibers over B?., mapping the hyperholomorphic sheaf to a sheaf supported

on NRi’ij . This Fourier—-Mukai transform is carried out using the autoduality of compactified
Jacobians of integral curves with planar singularities, from the general results of D. Arinkin [Ar].

It uses a Hitchin section (which embeds B”. as a subvariety of NR”:) to identify Eé(Xb)

with the corresponding EO(XI,), and then apply Arinkin’s Fourier—-Mukai functor. In order to
explicitly do it, we relate this functor with the classical Fourier-Mukai functor of Jac®(C), via
the pullback and the pushforward maps induced by the normalization morphism v, : C — Xj,.

It is worth noticing in this case that (BBB)'- appears as the pushforward of (BBB)-brane
(Z#,V#) — Mc(1,0) supported over the whole moduli space, where .% is the pullback under
Mc(1,0) —> Jac®(X) of the flat line bundle over Jac’(X) associated to F —> X. Mirror
symmetry conjectures that (%#,Vz) — Mc¢(1,0) is dual to the (BAA)-brane given by the
Hitchin section associated to F. As we said before, (BAA)I;’iJT can be interpreted in terms of
Hecke modifications of the pushforward of this Hitchin section. This suggests a deep relation
between duality of branes in M x(n, 0), duality in M¢(1,0) and the Hecke operators appearing
in geometric Langlands conjecture (see [DP]). For d non-multiple of n a similar result should
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hold, but the duality should require a gerbe to work out properly. We also note that the results
in this paper provide evidence for the dualities suggested in [F'P].

Remark 1.1. We actually construct the support of the (BBB)-brane (and describe its spectral
data) in a wider generality, namely in the case where the unramified cover p : C' — X is of
degree m not necessarily equal to the rank n. In such a case, one must consider polystable
Higgs bundles over C' of rank r, such that n = mr. It is however unclear how to endow such
(BBB)-branes with hyperholomorphic bundles.

Similarly, we construct NRZ’{ in the more general setup of a degree m cover p: C — X. In
the absence of a Hitchin section on M¢(r,d) we make use of very stable bundles on C', which
define natural complex Lagrangian multisections of the Hitchin fibration. We explore this in
Section 7.

As mentioned above, when the Galois group is cyclic, the support of our (BBB)-branes is
MX(n,d)g. It is interesting to notice that MX(n,d)5 plays a central role in the proof by T.

Hausel and M. Thaddeus [[{T] of topological mirror symmetry for the moduli spaces of Higgs
bundles for the Langlands dual groups SL(n,C) and PSL(n,C) for n = 2,3 (the general case
has recently been proved by M. Groechenig, D. Wyss and P. Ziegler | |, and, more recently,

by D. Maulik and J. Shen [\MS]). One might thus hope that further study of our dual branes in
this setting would provide a better geometric understanding of the calculation by Hausel and
Thaddeus. We hope to come back to this question in a future article.

1.4. Organization of the paper. Here is a brief description of the organization of the paper.
In Section 2 we recall some background material on the Hitchin system. In Section 3 we study the
locus M x (n, d)?, including the corresponding spectral data, for p an unramified cover of degree
m, with m dividing n. Section 4 deals with the construction and description of the Narasimhan—
Ramanan (BBB)-branes. In Section 5 we construct the complex Lagrangian subvarieties NR z;uj ,
which support (BAA)-branes. In Section 6, after recalling some background facts on the Fourier—
Mukai transform for compactified Jacobians of integral curves and describing in Section 6.2 the
role of the normalization of the curve in the transform, we prove our main duality result, namely
Theorem 6.5. Finally, in Section 7, we generalize parts of the previous study to the case where

p: C —> X has degree strictly less than n and no Hitchin section exists on Mg (r, d).

Acknowledgments. The authors thank D. Arinkin, B. Collier, O. Garcia-Prada, T. Hausel, N.
Hitchin, C. Pauly and R. Wentworth for their interest and useful discussions, and also thank
the referee for helpful remarks and corrections.

2. HIGGS BUNDLES AND THE HITCHIN SYSTEM

The purpose of this section is to recall the basics on Higgs bundle moduli spaces which will
be used in the remaining part of the paper.

2.1. Higgs bundles and their moduli space. Let X be a smooth projective curve over C,
of genus g = 2. A Higgs bundle over X is a pair (E, ) given by a holomorphic vector bundle
E — X, and ¢ € H(X,End(E) ® Kx), where K is the canonical bundle. The section ¢
is called the Higgs field. The rank and degree of a Higgs bundle are those of the underlying
vector bundle E. Such a rank n Higgs bundle is also said to be a GL(n,C)-Higgs bundle.
Occasionally, we shall refer to SL(n,C)-Higgs bundles, in which E is required to have a fixed
given determinant bundle and ¢ to be traceless.

Let Mx(n,d) denote the moduli space os S-equivalence classes of semistable rank n and
degree d Higgs bundles on X. Its points are represented by the unique polystable representative
of the corresponding S-equivalence class. It is a quasi-projective variety of complex dimension

(2.1) dim My (n,d) = 2n*(g — 1) + 2.
The closely related de Rham moduli space M%R(n,d) is the moduli space of connections with

constant central curvature on a fixed C'* vector bundle over X of rank n and degree d. Non-
abelian Hodge theory [Hil, , , , Co] establishes the existence of a homeomorphism
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between these spaces, My (n,d) = M48(n,d). This homeomorphism restricts to a diffeomor-
phism on the smooth locus of Mx (n,d), whose underlying manifold is a hyperkahler manifold
[Hil] with complex structures

Il, IQ and Ig 211[2.
Here I; is the complex structure coming from M (n, d) and I is the one coming from M$(n, d).
Let also w; be the Kahler form associated to I; and 2x; = wjt1 + iw;—1 the corresponding
holomorphic symplectic form.

2.2. The Hitchin system. We recall here the spectral construction given in [Hi2, ]. Let
(Pr,...,Py) be a basis of GL(n,C)-invariant polynomials with deg(F;) = i; for instance, we
could take P;(z) = (—1)"tr(A'z). The Hitchin map or Hitchin fibration is
hxn: Mx(n,d) — Bxn:=@. H (X KX)

(E,0)  —  (Pu(@);-- Palp)-
Note that dim(Bx,,) = n?(g — 1) + 1 = 1 dim(Mx (n, d)).

Consider the total space |Kx| of the canonical bundle and the surjective morphism 7 :
|Kx| — X. The pullback bundle 7*Kx — |Kx| has a tautological section \. Given an
element b € Bx p, with b = (b1,...,by), the spectral curve X, < |Kx| is the vanishing locus of
the section of 7* K% given by
(2.3) N TN b, N+ b, € HY(|K x|, mF K.

The restriction of 7: |[Kx| — X to X}, yields a ramified degree n cover denoted by
(2.4) mp: Xp — X.

(2.2)

For generic b, the spectral curve X is smooth. For any b, the (arithmetic) genus of Xj, is [[i2]
9(Xp) =n*(g—1) + L.
Additionally, m, . Ox, = Ox @ K;(l @D K)l{", thus
deg(m, +Ox,) = —n(n —1)(g — 1).

Notation 2.1. For the remainder of the paper, let us denote the degree of the ramification divisor
of the spectral curve X, — X in Bx ,, by

(2.5) d:=n(n—1)(g—1).
Given a rank 1 torsion-free sheaf F over Xj of degree d + §, we have that
(2.6) Er :=mF

is a vector bundle on X of rank n and degree d. Tensorization by the tautological section yields
MF ./T"®—)\> f@ﬂ';KX

Since 7 is an affine morphism, pr corresponds to a Higgs field

(2.7) oF i=mpspr: BEr — Er @ Kx

on Er with characteristic polynomial determined by b € Bx,, | , Schy, Si3]. The pair (X3, F)
is said to be the spectral datum of the Higgs bundle (Er, pr). This establishes a one-to-one
correspondence, sometimes called spectral correspondence, between the Hitchin fiber h)_(ln(b)
and the moduli space of rank 1 torsion-free sheaves on X; of degree d + § and linearization

naturally induced from the base [5i3, Corollary 6.9], and so
(2.8) hyl (b) = Jac " (Xy).
The construction of EdH(Xb) follows from [Si2, Theorem 1.21] and it is a compactification

of the Jacobian Jac9T(X}) of degree d + & line bundles on Xj, hence we refer to it as the
compactified Jacobian. Denote by 2 — Bx, the family of n-to-1 spectral curves inside
|Kx| and endow it with a linearization induced from a linearization on X. Thanks again to

[512, Theorem 1.21] one can consider the relative compactified Jacobian Egli(% ). The
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spectral correspondence promotes to the whole moduli space [5i3, Section 6], giving rise to the
isomorphism

—d+0
(2.9) Sxom: JacBX’n(l%”) —> Mx(n,d)

F— Xy, — (Er,¢F).

When the degree is a multiple of the rank, d = nd’, the Hitchin fibration hx ,, : Mx(n,nd’) —

Bx,, admits a so-called Hitchin section associated to any line bundle £ € Jacd/+5/”(X). This
section is constructed by assigning to each b € B the Higgs bundle whose spectral datum is
given by the line bundle 7 £ — Xj;. In other words, we have a morphism

oxr: Bx, — Mx (n,nd")
2.10 ’ ’
(2.10) b (M Ly ettt )
Hitchin [Hi3] considered such sections for £ = Kggl_l)/ ?. In this case we omit the reference to

the line bundle in our notation and we simply denote the corresponding Hitchin section by ox.

3. UNRAMIFIED COVERS AND HIGGS BUNDLES

3.1. Unramified covers and hyperholomorphic subvarieties in the moduli space. Let
p: C —> X be a connected unramified cover of degree m and Galois group I'. In this section,
we study the subvarieties that arise in the moduli space of Higgs bundles out of this geometrical
setting. Some of the following results have been already obtained in | ]

Let K¢ be the canonical bundle of C, and let

n:|Ke| — C
be the corresponding projection. As p is unramified
(3.1) KC = p*KX

and
|Kc| = |Kx| xx C,

hence we have a Cartesian diagram

(3.2) |K¢| ——C

Q\L ‘/p
|Kx| —— X,

g being the obvious projection. In particular, ¢ is an unramified I'-cover and 7n: |K¢| — C
is I'-equivariant. Note that the automorphism ~ : C' — C, associated to any element of the
Galois group, gives rise to an automorphism v : |K¢| — |K¢| that we still denote by ~ by
abuse of notation.

By (3.1), the pullback under p: C' — X of a Higgs bundle is again a Higgs bundle. Moreover,
polystability is preserved (e.g. because it sends solutions to the Hitchin equations on X to

solutions to the Hitchin equations on C, cf. [Hil]). So we have a morphism
(3 3) p: Mx (’I’L, d) — Mc¢ (’I’L, md)
' (E,p)  — (0B, p*p)

between the moduli spaces.

Remark 3.1. The image of p lies in M (n, md)", the fixed point locus under the induced Galois
group action on M¢(n, md) by pullback.

By the projection formula and (3.1), if (F,¢) is a Higgs bundle over C of rank r, then
(p«F,px@) is a rank n = mr Higgs bundle over X. Since p is unramified and X and C are
proper, p is finite, so by | , Lemma 2.1 (ii)] we have

(3.4) P*ps(F,6) = D (F, ¢).

~yel
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Consider the moduli space M¢(r,d) of rank r and degree d Higgs bundles over C.

Proposition 3.2. Let p: C — X be a connected unramified m-cover with Galois group I' and
let n = mr. The pushforward under p,

p: Mc(r, d) —  Mx(n, d)
(F7 (b) [— (p*F7 p*(b)a

is a hyperholomorphic finite morphism. Moreover, two rank r Higgs bundles over C have the
same image if and only if they are in the same orbit under the I'-action by pullback, so

Mx (n,d)? :=Im(p) =~ Mc(r,d)/T.

(3.5)

Proof. 1t follows from [ , Proposition 3.1] that p has image contained in the semistable
locus and so it is well defined. Moreover, it is hyperholomorphic because it corresponds to
pushforward of projectively flat bundles under the Non-abelian Hodge Theorem.

Since p is unramified, it is obvious that two rank r Higgs bundles over C in the same orbit
under the T'-action by pullback will give the same image under p. Thanks to (3.4), we see
that they have the same image only if they lie in the same I'-orbit, so Mx (n,d)? =~ M¢(r,d)/T.
Note that M (r, d)/T is naturally a geometric quotient since M¢(r, d) is quasi-projective, hence
Mc(r,d) — Mc(r,d)/T is finite. Thus p is a finite morphism as it commutes with the
composition of the isomorphism Mx (n,d)? =~ M¢(r,d)/T" with the finite quotient, which is a
finite morphism. O

3.2. The Hitchin map and unramified covers. Fix a connected unramified cover p : C —>
X of degree m, with Galois group I'. In this section we study the restriction of the Hitchin map
to Mx(n,d)?, with n a multiple of m. Let B? := hx,(Mx(n,d)?) € Bx, to be the image
under the Hitchin map of the image of p.

Notation 3.3. Let r = n/m. We shall employ the same notation for the Hitchin system in
M (r,d) as the one used in Section 2.2. So let

he,y : Me(r,d) — Be,r = @ H(C, K
i=1

be the Hitchin map. For any given a = (ai,...,a,) € B¢, denote by C, the corresponding
spectral curve in |K¢|, with projection map

(3'6) Na = 77\0(1 :Cq — C,
where 7 is defined in (3.2). The curve C, is defined by the equation
(3.7) N+ o N T+ nta, = 0,

with A th tautologlcal section of n*KC Set y(a) := y*a for every element v € I, and write
v(a) = (y(a)1, ..., v(a);) where y(a); € HO(C, K¢,).

The next proposition establishes the behavior of the Hitchin map under pullback by the
Galois group.

Proposition 3.4. The Hitchin map hc, : Mc(r,d) — Bg, is equivariant for the action of
the Galois group I' of p : C — X by pullback. Furthermore, for any a € Bc,., one has the
Cartesian diagram

(3.8) Cota) —— Ca

M (a) l lna

C C.

In particular, for any v €T, the spectral curves Cy ) and C, are isomorphic.
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Proof. Let (F,¢) be a Higgs bundle in M¢(r,d) such that hc,(F,¢) = a € Bc,. Let P; be
an invariant polynomial of degree i, and observe that P;(v*¢) = v*P;(¢). It then follows that
he (v (F, ¢)) = v*he(F, ¢) and the first part follows.

Since the spectral curve C, < |K¢| is given by the vanishing of (3.7), then C,, is given by
the vanishing of the pullback of (3.7) under . Note that (vy(a)); = v*a; and that the embedding
Cy — |Kc| is T-equivariant (so that n*y* = *n*). Therefore, given y € C,(4), by definition of
pullback, one has that

(5\” (e AT 4+ n*(w*a)r) (y) =0
is equivalent to
<X" + ()N T n*ar) (v(y) =0

because \ is D-invariant, since A = ¢*, where q : |Kc| — |K x| and A is the tautological section
of m*Kx. Thus 7(y) € C, and the commutativity of (3.8) holds. The rest of the proposition
follows from this. O

Consider the moduli space of rank n and degree d Higgs bundles on C' and its associated
Hitchin map

n
hen : Me(n,d) — Be, = @ HY(C, K¢).
i=1
By (3.1), it follows that p induces
(3.9) p*: Bx;n — Bopn.

Lemma 3.5. The induced map p*: Bx,, —> Bcy is injective and the following diagram com-
mutes, where p is defined in (3.3):

Mx (n, d) —> Mc(n, md)

hX,nl lhc,n
*

P

BX,n(—> Cmn-
Proof. Since p is a local isomorphism, p* : H(X, K% ) — H%(C, K},) is injective for every 1,
so p*: Bx, — Bc,y, is injective as well. The commutativity of the diagram is immediate from
functoriality of pullback. O

Proposition 3.6. Let b € Bx, and b = p*b € Bey. Let Xy < |Kx| and Cj < |K¢| be the
corresponding spectral curves. Then

Cp=Xyxx C
and there is a Cartesian diagram
(3.10) C; —sC
!
Xy == X,

where q;, 1 and m, are the restrictions of the maps from (3.2). In particular,
(i) Xy is reduced if and only if C; is reduced,
(ii) q;: C; — Xj is a connected unramified I'-cover, and
(iii) m; is a I'-equivariant ramified degree n cover, whose ramification locus is the pullback of
that of my.

Proof. View the curve X}, as a divisor in |Kx|. First we prove that the pullback by ¢ : |K¢| —
|Kx| of this divisor is Cj. Write b = (Pi(¢),...,P.(¢)) for some Higgs bundle (£, ) in the
Hitchin fiber of b. Then X, c |Kx| is defined by

A+ TP o)A 4 1P (0) = 0
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where we recall that A € HO(|Kx|,7*Kx) is the tautological section. Thanks to Lemma 3.5,
Cj is defined by

(3.11) 34y PN 4 Pal) =0,
where A € HO(|K¢|,n* K¢) is the tautological section. Clearly A = ¢*\ and so, in view of (3.2),
the equation defining Cj is

CN + FTFP) N 4+ T Pa(@) = 0.

This shows that C; = ¢* X}, as desired.

Viewing X, x x C inside |Kx| xx C = |K¢| one readily sees that it satisfies (3.11) and,
therefore, by the universal property of the fiber product, it is isomorphic to ¢*X;. The rest of
the lemma follows from this observation. O

We now study the relation of pop : Mg (r,d) — M (n, md) with the corresponding Hitchin
maps (recall that n = mr).

Proposition 3.7. Let (F, ¢) be a Higgs bundle of rank r over C' and consider p o p(F,¢). Let
a € Bc,y and b e Be,, be the image under the Hitchin map of (F, ¢) and pop(F, ¢) respectively.
Then, the spectral curve C; < |K¢| is given by the vanishing of the section

1—[ <5\r 4 77*’7(@)15‘7471 4 n*ry(a)r> € H0(|KC|,77*K2‘)-
vyel’

In particular C;, is reduced if and only if C, is reduced and y(a) # ~'(a) for all distinct v,v" €T
(i.e., if a € Be, is not fized by any non-trivial element of the Galois group). In that case C; is
reductble and

(3.12) C; = Oy

el

Proof. From (3.4), one has that C; is given by the vanishing of
A"+ Py ( @W*QS) g n*Pn(@7*¢)

~el ~el
i.e., of
] (5\” + Py )N T 4+ U*Pr(7*¢)) -
~yell
The rest of the proposition follows immediately. O

We can now describe the subspace BP = hy ,(Mx(n,d)P) € Bx p.

Proposition 3.8. There exists a map,

C : BC,T‘ - Bp7
making the I'-equivariant diagram
(3.13) M (r, d) P Mx(n,d)?
hC,rl th,n
Be,, c BP

commutative, with T acting by pullback on Mc¢(r,d) and Bc,, and trivially on Mx(n,d)P and
BP. The map ¢ induces an isomorphism

(3.14) BP ~ B¢, /T
Hence,

(3.15) dim(B?) = rn(g—1) + 1.
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Proof. By Proposition 3.4, p o p induces the morphism B¢, — B¢, defined by

(P(@),- Po(6)) = (Pl(@v*qb),...,Pn(@Fv*qb)).

The image of this morphism is clearly contained in p*(BP), and by Lemma 3.5, p* is injective,
so the previous map defines the map ¢ : B¢, — BP. Explicitly,

C(PL(), -, Pr(9) = (PL(p+®), - - -, PL(P«9))-

The commutativity of (3.13) is immediate from construction, and so is (3.14).
Since BP is isomorphic to the finite quotient B¢ /I", its dimension is

dim(BP) = dim(Bc¢,,) = r*(g(C) — 1) + 1.

As C — X is an unramified m-cover, the genus of C' equals g(C) = m(g — 1) + 1 and (3.15)
holds. (]

Definition 3.9. Let Bgn; be the dense open subset of B¢, given by those points a € B¢, whose
associated spectral curve C, is smooth. Let us also consider the I'-invariant subset Bictﬂ, to be
the open subset of B given by those elements where I' acts freely. Next, define B&ir c Bét’r
as the subset given by those curves C, whose intersection with C,,) has nodal singularities, for
every v € I, and such that CynClyq) NCyr(q) = & for all o/ € T'\{1,~}. Set as well B, := Bgﬂ,/F
and BY. := Bgfr/F. Finally, define

Mx(n,d)lzli = Mx(n, d)p X Bp Bzr)11

and
M (r,d) ni := Me(r,d) xp,,, ngr.

Remark 3.10. Note that B, parametrizes reduced curves by Propositions 3.7 and 3.6 (i). By
Theorem 3.11 (v) below, such spectral curves are integral, explaining the notation. The notation
used for BY. stands for nodal and integral.

Recall that we defined § in (2.5) as the degree of the ramification divisor of the spectral curves
in Bx,. Accordingly, we define p to be the degree of the ramification divisor of the spectral
curves Cq — C'in Bg,,

(3.16) p=rr—1)(g(C)—=1)=n(r—1)(g —1).

Next, we describe the geometry of the spectral curves Xj, when b lies in BY,. For the statement
of the following theorem, recall the notation of the Cartesian diagrams (3.10) and (3.13).

Theorem 3.11. Let a € Bgr and consider b = ((a) € B’i’t and b = p*be Bop.

(i) The spectral curve Cy is reduced, connected, withm = |T| irreducible components {C. ) }rer
all isomorphic to each other. The singular divisor sing(C;) of C; is given by the intersec-
tions of distinct components, and has degree n*(m — 1)(g — 1). The Galois group T of q;
permutes the components of Cj.

(i) The spectral curve Xy is reduced but singular. Its singular divisor sing(Xp) satisfies
q;sing(Xp) = sing(Cy). In particular

(3.17) deg(sing(Xp)) =0 —p=n(n—r)(g—1).

If v € Xy is a singularity, and y € Cyqy N Cynqy (with ' #+") is a singular point on Cj
mapping to x, then the m singularities of Cy mapping to x are precisely the ones of the
form v(y) € C\yr(a) N Cyyr(ay, for all yeT.

(iii) Let C, = Cj be an irreducible component. Let q : |Kc| — |Kx| be as in (3.2). Then
Q(Ca) = Qa(ca) = Xy and

(3.18) Vg i=¢q : Cqy — X
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is a mormalization fitting in the commutative diagram

(3.19) C, =~ C

l lp

Xb Tb> X.
In addition,

(3.20) Vi(a) = Gy(a) = Va © -
(iv) The (disconnected) curve in |KC| x Bc, given by

|_| ~v(a) X{7 )}

vyell

is the normalization of C;, where the normalization morphism vy : 5’5 — Cj is given by
projecting onto the first factor. Furthermore, the diagram

(3.21) C; ——~C;

wl |

CaTa>Xb

is Cartesian, where G, is the unramified T-cover given by §.(z,v(a)) = v~ 1(2).
(v) The spectral curve Xy is integral.

Proof. Since a is taken in B(ijtvr, Cj, satisfies the hypothesis of the second part of Proposition 3.7.
Then, Cj is reduced and reducible, decomposing as described in (3.12). Again by hypothesis,
Cq is smooth and therefore irreducible. Furthermore, C, = C.(,) by Proposition 3.4. Therefore,
(3.12) is, in fact, a decomposition of Cj into its irreducible components and the singularities of
Cj, are the intersections of the distinct components,

sing(C: U Cya (a)-
y#EY!
Note that all the C,,) lie in the linear system rC' inside |K¢|. This has two important con-
sequences. The first one is that we can perform the count of the intersection divisor taking a
generic element of BY, without triple intersections of the components Cy(a)- The second one is
that two distinct components, C. ) and C.(,, lie in the linear system of rC' inside |K¢/|, so
their intersection is

(3.22) 2. (C)? = r?(g(C) — 1) = 2nr(g — 1).

Hence,
deg(sing(Cy)) = @) omr(g — 1) = n®(m — 1)(g — 1).

It follows from Proposition 3.4 that the Galois group permutes the C, . This completes the
proof of (i).

For (ii), note that by (i) and Proposition 3.6 (i), X} is reduced. The rest follows from the
fact that ¢; : (5 — Xj is an unramified I'-cover, as we have shown in Proposition 3.6 (ii).

To see (iii), we start by observing that (3.20) follows from (3.8). Then, the maps {gy) =

a) J~er, have all the same image. From this, in view of (i) and the fact that ¢; : C; — X
is surjective, we conclude that q,(q) = v4(q) is surjective for each v € I'. Since Cj, is smooth, in
order to prove that the maps v,(,) are normalization morphisms, it now suffices to show that
one of them (say v,) is generically injective. If z € X} does not belong to the ramification locus
sing(Xp) then, by (i) and (ii), each point inside the fiber g;° Y(z) lies in a different irreducible
component of C;. So v, is injective over the smooth locus of X;. The commutativity of (3.10)
concludes the proof of (iii).
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Consider now (iv). The map 7; : C~' — (5 is a normalization morphism by the description
of C; and its singularities given in (i). To see that (3.21) is Cartesian, note that by the universal
property of fibered products there is a morphism

6’5—>Cd XXbCE'

Since any morphism of principal bundles is an isomorphism, the statement follows.
Finally, for (v), we already know that Xj is reduced. Since C, is smooth, it is irreducible,
thus Xj, is irreducible by (iii). O

Remark 3.12. For every b e Blft the corresponding spectral curve Xj is normalized by a smooth
spectral curve C, in Bgrﬂ

We introduce some notation to describe the fibers of the Hitchin map restricted to the sub-
variety Mx (n,d)P. Recall that p is defined in (3.16) as the degree of the ramification divisor
of the spectral curves C, — C'. Consider the pushforward under the normalization morphism

Vg : Cq —> X} defined in (3.18),

. —d+0
(3.23) Vo JacttP(Cp) — TJac"(Xp)
L i Va,*L,

where 6 — p = deg(sing(X3)) by (ii) of Theorem 3.11. Any other y(a) also projects to b under
the map ¢ : Bg, — BP, defined in Proposition 3.8, and for such vy(a), a similar map Uy (a)
exists as well. Furthermore, (3.20) implies that all these morphisms share the same image,
Im(ﬁa) = Im(D,Y(a)).
Recall the morphism p in (3.5). The following proposition describes the fibers of the Hitchin
map over B restricted to Mx (n, d)P.

Proposition 3.13. Let be B, and pick a € BCr such that ((a) =b. Then,

(i) the first line of diagram (3.13) restricts to
(3.24) | | Jac?(Cay) 22 b, (b) A Mix(n, )P,
~yell

and Py 1s an unramified cover, with the Galois group I' acting by pullback, hence permuting
the connected components of the domain.
(ii) the intersection of Mx (n,d)P with the Hitchin fiber is

(3.25) Ayl (b) A M (n,d)P = | | Jact#(Cy()/T = Jactt?(C,) = Im () < Jac "™ (X,).
~yel’

where the inverse of the second isomorphism is defined by assigning to L € Jacd(Ca) its
D-orbit, which can be naturally identified with an element of | | 1 Jachrp(Cy(a))/I’.

Proof. The first statement in (i) is clear by Propomtlon 3.8. The union is disjoint since a is not
fixed by any element of I', by definition of B/¥,. This also shows that  is an unramified cover
with Galois group I' acting by pullback. 7

To see that (3.25) holds, by (i) we have

hy () " Mx(n,d)P =~ <|_|Jacp+d () ))/F,

~yell

hence, recalling that C,,) = C, by Proposition 3.4, we can choose a representative and
hx' () A Mx (n,d)P = Jac?™(C,).
Since the restriction of Py to Jacp+d(Ca) coincides with 7,, (3.25) follows. O

We finish the section with an observation that will be useful in Sections 5.3 and 7.



14 E. FRANCO, P. B. GOTHEN, A. OLIVEIRA, AND ANA PEON-NIETO

Remark 3.14. Tt follows from (3.4) that the image of the map p o p is contained in the Levi
subgroup Ly, .,y = GL(r, C)*™ associated to the parabolic subgroup P ...,y = Narmn,c)(Lerm))-
Denote the unipotent radical of Py, ,,,) by U.,,) and recall that P, .,y = Lz m) X U ). Note
that Ly ) is the Cartan subgroup of GL(n,C) while P(; ;) is the Borel subgroup.

Before stating the following corollary, we need to briefly introduce some notation from [F'P].
Denote by My, ,,) < M (n,md’) the image of the moduli space of L(y,m)-Higgs bundles of
multidegree (d',...,d"). When r = 1 and m = n, L(1,n) is the Cartan subgroup and M )
is called in [F'P] the Cartan locus of Ma(n,nd’) (and, as proved in loc. cit., it supports a
(BBB)-brane). Let V|, ) © Bc,n be the image of My, ,,,) under the Hitchin map hc,p.

Corollary 3.15. The commutative diagram of Lemma 3.5 restricts to

MX (n, nd’)p —p> M(r,m)

hX,n l l hC,n
*

pre_ P

(r;m)-
Proof. It is enough to prove that p maps Mx (n,d)? to M, ,,,) and this follows from (3.4). [

3.3. Cyclic covers and tensorization by torsion line bundles. We study in this section
the fixed point subvariety of M x (n, d) under tensorization by a fixed line bundle of order n. For
the moduli of vector bundles, Narasimhan and Ramanan | ] proved that bundles on X which
are in the image of the pushforward map from C are fixed by tensorization with all line bundles
associated to characters of the Galois group I'. When I satisfies a certain technical condition
(which is the case, for example, of cyclic covers, see | , Lemma 2.5]), the converse is also
true for simple bundles. Nasser [Na] proved that when I' = 7Z,, is cyclic, the converse holds also
for non simple bundles. The study of these fixed points in the moduli of vector bundles with
fixed determinant, has also been carried out in [ | and, in detail in rank n = 2, in | I
Let Jac(X)[n] be the subgroup of n-torsion points of the Jacobian Jac(X) = Jac®(X) of X,

Jac(X)[n] := {L € Jac(X) | L" = Ox} = Z%.
For convenience of notation, we shall use different symbols for an element £ € Jac(X)[n] as an
abstract group and for the corresponding order n line bundle L¢ € Jac(X)[n] on X.
This group acts on Mx(n,d) by tensorization,
¢: Mx(n,d) — Mx(n,d)
(E,QD) i (E®L§’SD)'
Denote by Mx (n,d)¢ the subvariety of points fixed by & € Jac(X)[n]. It is a hyperholomorphic
subvariety since tensorization by a flat line bundle is holomorphic in the three complex structures

of Mx(n,d) (see [GR2] for a proof in the case of SL(n,C)-Higgs bundles, which also applies to
the case of GL(n,C)).

Notation 3.16. Let m be the order of L¢ in Jac(X)[n], and set r = n/m.

Then L¢ € Jac(X)[m] is a primitive element. Consider the projection pg : |L¢| — X and let
A¢ ¢ |Le| — pg L¢ be the tautological section. Define C¢ to be the curve in the total space | L]

given by the zero locus of the section A" — pgl € HO(|L¢|, O\Ld)' Denote the restriction to Cg
of the projection morphism by the same symbol,

(326) Pbe - Cg — X.
Then, (3.26) is a connected unramified regular cover of X with Galois group Z,,.

Remark 3.17. Reciprocally, a connected unramified regular Z,,-cover p : C' — X defines a line
bundle L, — X of order m by setting the holonomy of L, to be given by parallel transport of
the lifts from X to C.

We next describe all the points fixed by any & € Jac(X)[n].
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Proposition 3.18. Let & € Jac(X)[n] be of order m and let r = n/m. A semistable Higgs
bundle (E, ) € Mx(n,d) is fized under £ if and only if it is the pushforward of an element in
MCg (T’ d) :

Proof. Since semistability and degree are preserved under pushforward by pe (cf. | , Lemma 3.1])
and since points in the image of the pushforward are fixed (this is a direct consequence of the
projection formula), all we need to prove is that all fixed points are in such image.

Let then (E, ) € Mx(n,d)s. Then there exists an isomorphism

fiESEQL
such that
e®Idy, = f®IdL, opo f
We can then treat the pair (E, f) as an L¢-twisted Higgs bundle of rank n (i.e. the Higgs field
f is twisted by L¢ instead of Kx). The spectral correspondence described in section 2.2 also
holds for L¢-twisted Higgs bundles | , |, hence establishing a one-to-one correspondence

between isomorphism classes of pairs (F, f) and their spectral datum, £ — C’, where L is a
rank one torsion free sheaf on the corresponding spectral curve C’ < |Lg/|, given by the vanishing

of the section Z?zlpz‘si)\?fi of pfL¢ = O\, — |L¢|, where s; € HO(X, LE) Since L¢ has no

global sections unless it is trivial, in which case all the global sections are constant, we find that
(' is given by the vanishing of

(3.27) AT+ pgsm)\gm'(r*l) + e PESmrs
where s; € H(X, Lgm(r*i)) = C. We can recover f: E — E® L¢ as the pushforward of the

A
tensorization morphism py, : L &% L@p*Le.
Consider now the curve Cj < |L{"| = |Ox| given by

(3.28) Ao +p$81)\671 + o 4 PGS,

where po : |Ox| — X and )¢ € HO(|OX|,O\OX\) is the tautological section. Note that Cj is
naturally identified with the characteristic polynomial of f : F — F.

Since Lf" = Ox, there is a morphism |L¢| — |Lg"| given by tensorization with itself m-times.
Under this morphism, C” is sent to C{,. Fixing a trivialization Ox =~ X x C, since the sections
s; are constant, one has Cj) =~ X x D, where D = ). {;d; with deg D = r is the divisor of the
points in C defined by the zeros of the polynomial associated to (3.28). It follows that (3.27)

can be rewritten as
t

[ O —p*dy)s.

j=1

Since f is an isomorphism it follows that det(f) = H§:1 dﬁj # 0, so all the d; are non-zero.

Then, the vanishing locus of A — p*d; is naturally isomorphic to C¢ after scaling. It then

follows that C" = |_|§:1 Céj , where Céj is the possibly non reduced curve given by the vanishing
of ()\2” — p*dj)lﬂ' . As a consequence C’ projects onto Cg and the following diagram commutes

' == Cs
PN
p/
X.
Then, setting E’ := u4L one has that
p&*E/ ~ F.

~ A
Taking f': E' —> E' ® pf L¢ to be the pushforward under u of £ & r ® (pe o t)*Le, one also
has

p&,*f/ = f
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Since p¢ is unramified, one has that p’g"E is given by m copies of E’ although we denote them
by

m—1

(3.29) PiE = @0 E' @ piLy,
1=

where we recall that pgLe is isomorphic to Oc,. Note also that p{[f is given by copies of 1
permuting cyclically the factors of pZ‘E,

f' B ®@piLg — E' @pi L.
After (3.29), the pullback p’gcp can be described in terms of a m x m matrix pg‘ap = (gogj),
where ¢}, : E' ®pZ‘L2 — E’@p’gLé ® K¢. Taking a Jordan-Holder filtration of (p{ E, pf¢) one
can always write p’gcp in a upper diagonal form, i.e. with cpgj = 01if ¢ < j. Observe that pZ‘ f

corresponds with the permutation of the factors of pZE by i — ¢+ 1. Since ¢ and f commute,
so do pfp and p f, and therefore ¢}; = 0 for any i # j and ¢j; = ¢;. Picking ¢ = ¢};, one has

that ¢ = p¢ «¢. O
The following is the fundamental result describing the fixed point subvariety My (n, d)¢ for
any & € Jac(X)[n]. This generalizes the description given in [HT] for r and d coprime.

Theorem 3.19. Let £ € Jac(X)[m] be of order m with n = mr. Then pushforward under
pe : C¢ — X induces a hyperholomorphic isomorphism

My (n,d)* = Mx (n,d)’¢ = Mc,(r,d)/Zn,
with the Galois group Z., acting by pullback.
Proof. Straightforward from Propositions 3.2 and 3.18. U

4. NARASIMHAN-RAMANAN (BBB)-BRANES FOR COVERS OF MAXIMAL DEGREE

By definition (cf. [I[XW]), a (BBB)-brane on a hyperkdhler manifold M is a pair
(N, (#.Vz)),
where:

e N c M is a hyperholomorphic subvariety, i.e. a subvariety which is holomorphic with
respect to the three complex structures Iy, I and I3.

o (#,Vg) is a hyperholomorphic sheaf supported on N, i.e. a locally free sheaf % of
finite rank over the ring of C*®-functions on N equipped with a connection V& whose
curvature is of type (1,1) in the complex structures Iy, I and I3.

In this section we construct natural (BBB)-branes on the moduli space of Higgs bundles
supported on the image under p. We shall construct two different hyperholomorphic sheaves
on this subvariety. Our constructions depend on the choice of a flat line bundle either on
X (yielding a rank 1 (BBB)-brane, in Gukov’s [Gu] terminology) or on C (yielding a rank n
(BBB)-brane).

Assumption 1. From now on, until the end of this section, we will be assuming that the rank n
coincides with the order of the unramified cover p : C — X. So, in the notation of Proposition
3.2, m =n and r = 1. In this case we say that the cover p is of maximal degree (note that for
fixed rank n, the degree of p : C — X yielding Narasimhan-Ramanan branes in Mx (n,d) is
bounded by n).

Under this assumption p: C' — X is a connected unramified n-cover of X, with genus
(4.1) g(C)=n(g—1)+1
and
ﬁ : MC(L d) - MX (TL, d)p
is the finite morphism (3.5).
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Since the moduli space of rank 1 Higgs bundles is the cotangent bundle of the Jacobian of
C, we have the natural projection

(4.2) B:Mc(1,d) = T*Jac’(C) — Jact(C),

which is I'-equivariant.

Remark 4.1. The support of our (BBB)-branes will be N = My (n,d)? = M¢(1,d)/I". Over the
generic locus, it is smooth, so it makes sense to speak of a hyperholomorphic sheaf on a dense

open subset of N. Moreover, it will be clear from our construction that the branes extend to
coherent sheaves (in complex structure I7) on Mx(n,d), supported on N.

Let
(F,Vr)—C

be a flat line bundle on C. Since 71(Jac?(C)) is the abelianization of 7 (C), there is a unique
flat line bundle

(4.3) (F,V5) — Jac’(C)

which restricts to (F,Vx) on C < Jacd(C’)7 viewed as subspace under the Abel-Jacobi map.
Define

(4.4) (F,Vz) = pB*(F,Vr)

Then (#,V.#) is a rank n coherent sheaf over Mx (n,d)P. Since p is hyperholomorphic and
ﬁ*(]—v" ,Vr) is flat (thus with curvature trivially of type (1,1) in any complex structure), it is
also hyperholomorphic, and then so is (.%#,V.#). Hence the pair (Mx(n,d)?,(#,Vz)) is a
(BBB)-brane.

Definition 4.2. Let p: C — X be a connected unramified n-cover and let (F,Vz) be a flat
line bundle on C. The rank n Narasimhan—-Ramanan (BBB)-brane is

(BBB)IJ)T = Mx(n,d)?,(#,Vz)).
We will omit the cover from the name when it is clear from the context.

The brane just constructed is a rank n brane in Gukov’s language [Gu]. Next we construct
a rank 1 brane arising from a flat line bundle on the base curve X. Since § in (4.2) is I'-
equivariant and the norm map Nm : Jacd(C) — Jacd(X ) of p is I'-invariant, their composition
is also I'-invariant, and we have the following quotient maps (denoted by a bar).

(4.5) a: My(n,d)” = Mo(1,d)/T 2 Jacd(€)/T X2 Jacd(X),
where the isomorphism is given by Theorem 3.19.

Remark 4.3. The map a: Mx(n,d)? — Jac?(X) can be interpreted as a twisted determi-
nant map. Indeed, if (E,p) = p«(F,¢) with F € Jac?(C), then det(E) = det(psF) =
Nm(F') det(p«O¢), so

o(E, p) = det(E) det(psOc) L.
Let now (£,Vz) — X be any flat line bundle on the base curve X and let

(4.6) (£, V) — Jac(X)
be the associated flat line bundle as above. Define the flat line bundle on Mx (n,d)? by
(4.7) (L, Vg)i=a*(L, V).

Definition 4.4. Let p: C — X be a connected unramified n-cover and let (£, V) be a flat
line bundle on X. The associated rank 1 Narasimhan—Ramanan (BBB)-brane is

(BBB)”. := (Mx(n,d)?, (£, V).
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In the remaining part of this section we shall study the restriction of the branes (BBB)%
and (BBB)% to a certain Hitchin fiber. Recall that m = n so r = 1 in our case. Then,
Béef% = Bélfl =B = Bca = H%(C, K¢). Therefore BY, = B?. by Proposition 3.7. Also, note
that Bicﬁ1 is just the subset of elements with free I'-orbits,

(4.8) HY(C,K¢)™ .= {¢p € H'(C, K¢) such that v(¢) # ¢ for any v € T'}.

Proposition 3.8 and Theorem 3.11 imply that, in this particular case, BY, = H°(C, K¢)free )T
Moreover, for b € BY. such that b = ((¢) € B, for ¢ € H(C, K )™, the spectral curve X, is

singular and integral, with deg(sing(X;)) = 0. Furthermore, using the notation of (3.10),
(4.9) vy = qp: C — X

is a normalization morphism and the following diagram commutes:

In addition, the same statement holds for v 4) = g (¢) = Yo vy : C —> Xy, for every v € I.

Remark 4.5. Notice that in this case, namely when the cover p : C' — X has degree n, the
normalization of the spectral curve X;, with b in B is Cj, the spectral curve for the moduli
of rank 1 Higgs bundles over C, associated to ¢. But Cy is isomorphic to C via the section
$:C > Cy < |Kc|, so all spectral curves share (up to isomorphism) the same normalization
C'. This justifies the slightly different notation for the normalization morphism in (4.9), when
compared with (3.18). We have implicitly used the identification Cy =~ C in (4.9), so that,
strictly speaking, vy = g4 © ¢.

In this case, we denote the pushforward morphism (3.23) by

d+s
(

(4.10) g Jact(C) < Jac™ " (Xy),

and Proposition 3.13 (ii) reads as follows

(4.11) Rk, (5) " Mx(n, d) = <|_| (Jac(C) x {fy(¢)})) /T = Jack(C) = Im(y)  Jac (X)),

with the inverse of the second isomorphism defined by choosing one representative ¢ in the
T"-orbit given by b, and taking

(4.12) fo(L) =T (L, 9)

for L € Jac?(C).

For each v € T, let 4 : Jac?(C) — Jac?(C) denote the pullback map associated to the
covering automorphism of C' determined by ~. In the following proposition we study how #
and ., defining the Narasimhan-Ramanan (BBB)-branes, restrict to a Hitchin fiber in B”..

Proposition 4.6. Let b € B?., and let £ and .F be the hyperholomorphic bundles defined

ni’

in (4.6) and (4.4) respectively. The restrictions of £ and of F to h;(,ln(b) N Mx (n,d)P are
identified, under the isomorphism (4.11), with the bundles Nm*£ and @vel“ &*}v" respectively.
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Proof. Pick some ¢ € H°(C, K¢ )T such that ¢(¢) = b and consider the following commutative
diagram

Jacl(C) = Jach(C) x {$} s T* Jack(C) = Mo (1, d) —2— Jact(C)

] | .

B, () A Moy (n, dP > T* Jac(C) /T = Mix (n, d)? —> Jac(X),

where left vertical isomorphism is the one given in (4.11), and i,1 are the obvious inclusions.
By definition, . = oL hence, by commutativity of the diagram and the fact that S0z = 17ac,
it follows that i*.Z is identified, via the isomorphism (4.11), with E*ﬁ*Nm*ﬁv = Nm*ﬁv7 as
claimed. _
Recall from (4.4) that .% = p,B*F. Now, by Proposition 3.13 we have a commutative
diagram

i

Jach(C) = Jac!(C) x {8} L ep Jac(C) x {(6)}—— Mc(1,d)

S ip

Bt () 0 Mix (n, d)P——= M (n, d)P.

where the diagonal isomorphism is the one given by (4.11), the rightmost square is Cartesian
and the central downward arrow is the unramified I'-cover py : | | op Jact(C) x {y(¢)} —
h;(,ln(b) N Mx (n,d), whose action of the Galois group in the bundle factor is given by the
pullback 4 associated to each v € I'. Under the isomorphism (4.11), i*.7 is identified with
*p*.# and, since o = 1j,c,

vyel’ vyel’ vel’
completing the proof. O

Remark 4.7. In [I'P], the first and fourth authors constructed a brane Car(L) supported on the
Cartan locus M, ,,) € Mc(n,nd). Recall from Remark 3.14 that p(Mx (n,d)P) is contained
in M ,,. One can check that the hyperholomorphic sheaf in Car(L) pulls-back under p to
that of (BBB)7.. Note that moreover Car(L) =: Mx/(n,d)? for the trivial Z,-Galois cover
p:||X — X. In that case however Theorem 3.19 fails.

5. NARASIMHAN—RAMANAN DUAL (BAA)-BRANES

We have seen in Section 2.1 that Mx(n,d) is a hyperkéhler variety with Kéhler structures
(I, w1), (I2,w2), (I3,ws3)). Following [[KW], a (BAA)-brane on Mx(n,d) is, by definition, a
pair (3, (W, Vw)), where:

e X is a subvariety of Mx(n,d), which is a complex Lagrangian for the holomorphic
symplectic form € = ws + iws.
e (W,Vy) is a flat bundle supported on .

The purpose of the present section is to construct a natural collection of complex Lagrangian
subvarieties, whose image by the Hitchin fibration hx, — Bx, is B{’li (cf. Definition 3.9).
Each of these subvarieties depends on the unramified cover p : C — X and on a holomorphic
line bundle J on C, and will henceforth be denoted by NRI;’iJ . We will also see that the Higgs
bundles lying in NR’;’ij can be constructed from Hecke modifications of a Hitchin section of

Mx (n,d+6)? — BP constructed out of 7. Up to the choice of a flat bundle on it, NR 1;11‘7 is thus
the support of a (BAA)-brane, the Narasimhan—Ramanan dual (BAA)-brane. In Section 6 will
be shown that these branes are the (fiberwise) mirror transform of the Narasimhan-Ramanan
(BBB)-branes. This justifies the notation for these subvarieties, as well as their name.
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5.1. Construction of the support. In this section we construct certain subvarieties that later
will be shown to be complex Lagrangian, hence the support of a (BAA)-brane after the choice
of a flat bundle on them.

Donagi and Pantev defined in [DP] the abelianized Hecke correspondence. For the general
linear group GL(n,C), this correspondence is given by tensorizing the spectral data by the dual
of the ideal of a point on the corresponding spectral curve. In the following lines we generalize
this correspondence to 0-dimensional subschemes of length £ as it constitutes the first ingredient
of our construction.

Recall the family of spectral curves 2~ — Bx, and consider its restriction to the subset
B?. © Bx,, that parametrizes nodal curves. The existence of the Jacobian Jac BY i(ﬁ&” ) follows
by the seminal work of Grothendieck [GGr2; Thm. 3.1]. The existence of the relative compact-
ified Jacobian EB’;(% ) follows by Altman and Kleiman’s work [AI, Theorem 3.1], being a
compactification of Jacgr (2Z7), inducing the fiberwise compactification of the Jacobian by rank
one torsion-free sheaves. We define the tensorization morphism

¢ Jack (27) x g Hilby, (27) — Tacy' (2)
(F,Tz) —  FIY.

Since we are considering nodal curves, hence Cohen—Macaulay, the sheaves Z; are Cohen—
Macaulay too. In that case the dual sheaves 7y are Cohen-Macaulay as well, so torsion—free as
we are working on curves. Furthermore, one can see that the Z; are semistable (hence stable
since we our spectral curves are integral). It follows that 7 ® Z is semistable and torsion—free
provided that F is, proving that tf) is well defined.

Remark 5.1. Recall the Abel-Jacobi map ay : Hilb*(X;) — EZ(XI)), Z7 — 1. The preimage
ay ' (F') is identified with the open set of P(H"(Xy, F')) of injective sections and the identifi-
cation is done by considering the short exact sequence 0 — Oy, 2 F— 07 — 0. It
then follows that the preimage (tf;)_l (F") consists on the pairs (F,Zy) fitting in the short exact
sequence

0—FE 0,0

Recall the isomorphism (2.9) provided by the spectral correspondence. One can define the
p-adapted length £ abelianized Hecke morphism by setting the morphism
f)f; = Sxno0 tf; o (S)_(}n X L),
bl : Mx (n,d) x gy, HileBai(%) — Mx(n,d+¢) xp,, B,
The second ingredient of the construction of the Narasimhan—Ramanan dual branes is a

section of the structural morphisms of the relative Hilbert scheme Hilb‘;}’? (2Z) — BP. given

by the singularities of the spectral curves. Recall from (ii) Theorem 3.11 tilllat for every be BY.,

associated to the spectral curve X, = 27|, one has that the singularity divisor sing(Xj) is
reduced and has length § — p. Hence, one can construct the section

sing”. : BY. — Hﬂb‘;:f(%)
b +——  sing(Xp).
We denote the image of this section by
Sing®, := Im (sing®,) .
One obviously have a natural isomorphism provided by the structural projection
(5.1) My (n,d) x gy, Sing?; = Mx(n,d) xp,, B%;.

The third ingredient of the construction of the Narasimhan—Ramanan dual brane is a Hitchin
section on M¢(r,d + d — p). Such a section will only exists under certain conditions.

Assumption 2. From now on, until the end of Section 6, we will be assuming that d is a
multiple of r, hence d = rd’ for some integer d'.
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Remark 5.2. Note that Assumption 1 forces r = 1, so it implies Assumption 2.

As we have anticipated, the reason behind requiring Assumption 2 is because in this case one
can construct a Hitchin section associated to any J € Jac® ¢ (0),

oc.7: Bor — Mc(r,rd + 6 — p).
Recall (2.10) and (2.7) from Section 2.2, and compose the Hitchin section with the pushforward

map p,
poocyg: Boy — My (n,rd + 8§ — p)P.

Thanks to Proposition 3.8, p o o¢, s factors through a Hitchin section for Mx (n, rd + 6 — p)?,
Op,J - B — Mx(nﬂ”d/ +(5—p)p,

satisfying o, 7 0 ( = pooc,g.
As before, we use capital letters to denote their image,

Ye,7 :=1Im(oc7) € Mc(r,rd + 6 — p)
and

Y7 :=1Im(0p7) € Mx(n,rd + 8§ — p)*.
Note that for every v € I' one has that o, 7 = 0, 7, hence

YipJ = Vp kg
only depends on the class of J under the action of I" by pull-back.

Definition 5.3. For each [J]r € Jac®/"+%(C)/T', define the subvariety NR’;’{ of Mx(n,rd'),
closed in Mx (n,7d’) X gy, Bh;, as the image under under the isomorphism (5.1) of the restriction

to Mx(n,d) x gr_Sing?. of the preimage of ¥, 7 = p(X¢,7) under the p-adapted length (§ — p)
abelianized Hecke morphism, i.e.

-1
NR?Y = ((h,@—p)) (5, J)) A (Mx (n,rd)?, x gy, Sing?,) .

Remark 5.4. The justification for the notation used for this subvariety will be clear from Theo-
rem 6.5 below, where we show that NR’;’ij supports the (BAA)-brane dual to the Narasimhan—
Ramanan (BBB)-brane.

We next turn to the description of the spectral data of NR 1:1’1‘7 in terms of Hecke modifications
of suitable Higgs bundles. These have been considered in several works, such as in [Hi7, ,

, , W]. Let D be a reduced effective divisor on X, E — X a vector bundle and «, € E;‘
for each point ¥ in the support of D. This defines

0—F —E%0p—0

where £’ depends on D and on the projective class of a. The bundle E’ is said to be a Hecke
modification of E (along D and associated to «). If E is equipped with a Higgs field 1, then
a Hecke modification of the Higgs bundle (E, ) is a Higgs bundle (E’, p) where E’ is a Hecke
modification of E which is compatible with ¢ and ¢, i.e. such that the restriction of ) to E’
equals .

The following theorem gives a description of NRlzl’ij in terms of Hecke modifications of the
Higgs bundles parametrized by the section o, 7. Note that m(sing(X})) is a reduced effective
divisor of length § — p, whenever b € B? ..

Theorem 5.5. Let (E,¢) € Mx(n,d), with d = rd', and let be BY.. The following conditions
are equivalent:

(1) (E,p) € NRLT i, (b);
(2) (E,p) is a Hecke modification of the Higgs bundle
(Eg:%75) = 0p,7(b) € Mx(n,rd + 6 — p)"
along the divisor m(sing(Xp)) on X.
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Proof. Choose a € BJl such that b = ((a). By construction, we have Ezj = putja«niJ.
Recalling the commuting diagram (3.19) (with v = 1), one has

(5.2) Egp = o, J -
As for the Higgs field, by definition (cf. (2.7)),
VTb = Pellashyzg  Egp — Egp @ Kx.
Then, ¥ p = Th «Va,xlyx 7 thanks to the commutativity of (3.19) (with v = 1). Recall also that
P 7 1s defined by the tensorization under the tautological section A:Cy—> niKc,

A
pr g i T S5 nET @K
Let F — X, be the spectral datum of (E, ). Recalling Remark 5.1 the first condition is
equivalent to F fitting in the exact sequence

(5.3) 0 — F — vaun; T — Osing(x,) — 0,

for any choice of a € Bair such that b = ((a).
By definition, the second condition above is equivalent to saying that E is given by the short
exact sequence

(5.4) 0— E— E7p—> O sing(x;) — 0
and the Higgs field is obtained by the restriction, i.e.
(5.5) o =1vglE

We can easily see that the first condition implies the second. Since m, is a finite morphism,
pushing forward the exact sequence (5.3) to X yields the exact sequence (5.4) after the identi-
fication (5.2), hence a Hecke modification of vector bundles.

Recall that A = ¢; A, where X is the tautological section of 7; Kx, and that K¢ =~ p*Kx.
Since p o1, = m, 0 g4 and since ¢, = v, by definition, then

A
pr g e T E5 T @uiniKx.
Then, by the projection formula, one has that
A
Vol 7 = Bvaant ) * Vasllsd 2 Vouns T @ T3 Kx
on Xy, so

(5.6) VT b = T vy it T)-

Since tensorization by A restricts to subsheaves and F is a subsheaf of v, .7} J, it is clear that

HF = H(ye wn*T) |]-"-

Taking the pushforward under 7, yields ¢ = ¥ 3| by (5.6), proving (5.5).
For the converse statement, suppose (E, ) is a Hecke modification of (Ezp,1%.7), so that
we have (5.4) and (5.5). If F — X}, is again the spectral datum, then (5.4) is the same as

0— 7Tb,*-7: E— Wb,*Va,*n::j B Owb(sing(Xb)) — 0.

Recall from | , 512] that the m, ,Ox,-module structure on £ and on Ey is precisely given
by the corresponding Higgs fields, then (5.5) implies that this an exact sequence of m, . Ox, -
modules.

Since 7, is a finite morphism, 7, . is an exact functor (as the higher direct image sheaves
vanish because its fibers are zero dimensional) from the category of Ox,-modules to the category
of m, «Ox,-modules. Moreover, since 7, is affine, this is an equivalence of categories (cf. [Ha,
ex. 5.17 p.128], so the previous sequence holds if and only if we have that (5.3) holds and hence

(E,¢) e NR2T ~ hil (b). O

We finish the section showing that NR’;’{ lies in the smooth locus.
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Proposition 5.6. The subvariety NRZ;I’ij is contained in the stable locus of Mx (n,rd').

Proof. NR?Y maps to B2, under the Hitchin map, hence every Higgs bundle in NR?Y corre-
sponds to an irreducible (and reduced) spectral curve, by (v) of Theorem 3.11. But a destabi-
lizing Higgs subbundle of a strictly polystable Higgs bundle gives rise to a proper component
of the corresponding spectral curve, which hence is not irreducible. O

5.2. Spectral data and parabolic modules. We shall now provide the spectral description
of the subvarieties NRi’ij . The use of parabolic modules (cf. [Re, C1, €2, Bh]) will be crucial
along this section, as they provide a convenient way to relate rank one torsion-free sheaves on
a singular curve with line bundles over its normalization.

Given a nodal curve Xj, where b = ((a) € B?. for some a € B&ir, its normalization is Cj, with
Vg : Cq —> X being the normalization morphism, as described in (3.18). One can consider the
pull-back morphism,

Ue s Jacdto(Xy) — Jactt(C,)
L — vrL.

d+s
(

(5.7)
X3). One of the motivations to introduce parabolic

Note that 7, does not extend to Jac

modules is that their moduli space is a compactification of Jac49(X,) (different to EdM(Xb))
where 7, extends naturally.
Consider

~

Dy = v, ! (sing(Xy)).

Decompose the singular divisor as sing(Xp) = D,} + -+ Dy, in such a way that each sub-
divisor Dj is supported on the reduced point x; € sing(X}), with x; # x;. This induces the
decomposition D, = D! + --- + D, where each subdivisor is D! := v 1(D?).

Definition 5.7. A (rank 1) parabolic module over C, associated to 5a, of degree d+ 0 and type
€= (ly,..., L), is a pair (M, V) where M € Jac?*°(C,) and V is a vector subspace of M®Op,
such that:
(1) Vis@;_, V' with Vi ¢ (M ®Op, );
(2) for every i, the vector space Vi ha; dimension ¢; > 0;
(3) V' is an Oy,-submodule of M ® Op: via pushforward under v, i.e. via the inclusion
Ox, = vax0c,- )

See [C'1, C2] for more details.

Write PModgM(Ca, 5a) for the moduli space of parabolic modules over C, associated to ﬁa,
of degree d + § and type £. It is an integral and projective variety (see [C'1]).

Recall that we have defined B(I}ir as the open subset of Bét , such that the intersection of C,
with any C,(,) as only nodal singﬁlari‘cies. 7

Proposition 5.8. Take a € B&l | then deg(D,) = 2deg(sing(X,)) and D, —> sing(X,) is a
2:1 cover.

Proof. Since a is chosen in Bgir, it follows that Cj has only nodal singularities given by the
intersection of two irreducible components. Since g; is a connected unramified cover by Propo-
sition 3.6 (ii) and the normalization v, is the restriction of ¢; to the irreducible component C,

of C;, one has that D, = v (sing(X})) can be described as
Dy =Cqn sing(Cj)

and so we have that D, is the union of the nodal intersections C, N Cy(a), for all vy € T'. Then,
it follows from (3.22) that

deg(Dy) = 2nr(m —1)(g — 1),
which is twice deg(sing(X})). Consider now a singular point z of Xp. If y € Cy 0 Cy(q) maps
under g; to x so does vy e Cy-1(q) N Cy. Since the action of I' is free in €, we conclude that
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y # 7 Y(y). If there is another 7/ # ~ in I' such that (7/)~'(y) € C, then y € Cy(a) as well, so
y € Cq 0 Cyq) N Cy(q) is a triple intersection which it is excluded as a € Bair. We conclude
that among the nodal singularities of C; mapping to z under g;, there are exactly two which

lie in C,, so the projection D, —> sing(Xp) is a 2-cover. O

For the rest of the section we take a € Bél,ir and b = ((a) € BY
nodal singularities by Theorem 3.11. Observe that in this case deg(D!) = 1, deg(D%) = 2 and
s = deg(sing(Xp)). Set also £ = (1,...,1). We are under the assumptions considered in [C2],
80, by Theorem 1 in loc. cit., there is a finite morphism

so X, is irreducible with

(5.8) 70 PMod(C,, D,) — TJac'(Xy),
' (M, V) — F

where F is defined by the short exact sequence
(5.9) 0—F — vgsM — v0x (M ®Op_/V) — 0,

and the second map is the composition v4 « M — Vg « (M@Of) ) — Vg (M@Oﬁ /V) Note
that deg(va,«(M ® Op,)/V") =1, so

(5.10) Vai (M ® O V) = Osing(x,)-

By definition of V', the quotient M ® O B /V is an Ox,-module, so F inherits an Ox,-module
structure as well. In addition, deg(vq«M) = d+6+deg(sing(Xp)) and deg (v« (M@OEQ/V)) =
deg(sing(Xp)), thus indeed deg(F) = d + 6.

Let 79 denote the restriction of 7 to 7! (Jac®™?(X})). From [('2, Theorem 1] we know that
it is an isomorphism

(5.11) 70 1 7 (Jactt (X)) — JactT(Xy),

so Jac?9(X;) can be seen as a dense open subspace of PModgM(Ca, D,) via 75 ' In other words,
Pl\/[odzlJF‘S(C'a7 ZN)G) is a compactification of Jac?™ (X)), which is different from EdM(Xb).

d+6
(

Lemma 5.9. The morphism T : PModgM(C’a,lN)a) — Jac" 7 (Xy) is surjective.

Proof. Tt follows from [ATK] that EdH(Xb) is irreducible. The restriction 7y is surjective,
hence the lemma is an immediate consequence of the compactness of PMod‘ZJ”S(Ca,Da) and

irreducibility of EdJré(Xb). O

Consider the projection onto the first factor,

Vo1 PModd*(C,,D,) — Jact*(C,)

(5.12) (M, V) — M.

This is a fiber bundle, with projective fibers given by products of closed subschemes of Grass-
manians [('1]. The restriction of this morphism to Jac?*?(X}) < PModzH‘s(Ca,Da) coincides
with 7, from (5.7), i.e. the diagram

(5.13) Jac®t(X,)

PMod{%(C,, Dy) —= Jac®(C,)

commutes. So Pl\/Iod;lJ”s(Ca7 ZN)G) is a compactification of J acd+5(Xb) to which the pullback map

d+o
(

U, extends, in contrast to what happens with Jac X3). The next lemma relates the closure

of the fiber of 7, with the fiber of v,.
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Lemma 5.10. Let M € Jac?*°(C,). Then

(5.14) va (M) = (i (M),
and it classifies those F € Edﬂs(

(5.15) 0— F — g sM — Ogipg(x,) — 0.

Xp) fitting in the short exact sequence

Furthermore, the restriction of T to v, (M) is a closed embedding.

Proof. First of all, the image under 7 of the fiber of 7, over M is given by F fitting in (5.9).
Then, it follows from (5.10) that (&, *(M)) is given by those F fitting in (5.15).
We now address (5.14). The commutative diagram (5.13) can be completed as

Pa (M) Jac "’ (X,)

Of course, 77, ! is the identity on Jac?™°(X,). Now, since 7 is a closed morphism, 7(; ' (M)) is
closed in EdM(Xb); clearly, it contains 7(7; ' (751 (M))) = 031 (M), so g (M) = 7(v5 1 (M)).

Conversely, given any parabolic module (M, V) € v, 1(M), we know that there is a sequence
of elements (p;); in Jac?*?(X}) such that its image under 7, converges to (M, V). We can
find such a sequence in 75 (7, 1(M)) as follows (so that PMod4+(C,, D,) is actually fiberwise
compactification of Jac?*°(X,)). The pullback map 2, : Jac®°(X,) — Jac?*°(C,) is a locally
trivial fibration, with the fiber F' being isomorphic to products of powers of C* and of C.
Trivialize this fibration on an open set U around M € J acd+5(Ca), hence becoming a product
U x F. On this product, project the sequence (p;); onto a sequence (g;); on {M} x F (i.e. via
the map U x F' — {M} x F, (L,2) — (M, z)). So (g;); is a sequence on 9, ' (M) and, since
(5.13) commutes, (7, '(g;)); is a sequence in 7, }(M), which converges to the same point as
(75 ' (pj));, namely (M,V). Now, taking the image under the closed morphism 7, we see that
that 7(M, V) = lim ¢;, thus 7(M, V) € 95 * (M), and therefore ¥, (M) > (v, 1 (M)).

It remains to prove the last claim 4.e. to prove that 7 restricted to ©; !(M) is injective. Take
(M,V) and (M,V') in v, *(M), both mapping to F under 7. It follows that both V and V'
must be isomorphic to F ® Oging(x,), hence (M, V) = (M, V). O

Remark 5.11. The previous lemma shows that, for a fixed M, we can identify g 1(M ) and
v Y (M) via 7. However, the map 7 is not generally injective, as there are M % M’ such that
(Y (M) n 7(v; (M) is non-empty, that is, the closures of v, (M) and of o, }(M') will
intersect; cf. | , Example 5.4] for an example of this phenomenon for A-type singularities.

a
We finish this section describing the restriction of the Hitchin map to NR ’I’Hj .
Theorem 5.12. Let b e BY; and a € BY), such that b = ((a), then

(5.16) hyl () ANREY = | ) Sxn (ﬁ; Yp (T ))),
y*JEN(T)

where T'(J) denotes the T'-orbit of J. Furthermore,
(5.17) dim (h;(}n(b) A NR’;’ij) —6—p=n(n-r)g—1).

Proof. As we have seen in the proof of Theorem 5.5, the points h)_(ln(b) N NR’;’{ are those
Higgs bundles whose spectral data F fit in the exact sequence (5.3) for any choice of a € Bgir
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such that b = ((a). Observing that n:/k(a)j =n¥(v*T), if we fix a € Bair, we can understand
hy (b) N NR%J as the set of F fitting in
00— F — Va,*UZV*j - Osing(Xb) — 0,

for every v € I'(J). Then, the first statement follows from Lemma 5.10. It then follows that
dim (bl (b) 0 NRET) = dim (25 1(2.7) ) = dim (7, (5:.7)) -

We can find in [Gr1] a description of the fibers of 7,, being a torsor for H°(Xj, O;ng(xb)).

Since,

dim (HO(Xb7 Osing(Xb))) = deg(sing(Xyp)),
the second statement follows from (ii) of Theorem 3.11. O
Remark 5.13. In particular, if J is pulled back from a line bundle over X then I'(J) = {J},
thus (5.16) just becomes Sx p, <ﬁ;1(j)>. Notice that this condition on J € Jac® "% (C) is only

possible if d’ is a multiple of m.

5.3. A complex Lagrangian subvariety. Keeping J € Jac?/ ”d,(C’) fixed, we now study

some properties of NR z;uj . Particularly relevant is the proof that NR 1:11‘7 is a complex Lagrangian
subvariety of My (n,rd’).

Recall that B denotes the Borel subgroup of GL(n,C) and U its unipotent subgroup. Fix a
square root K é/ 2 of K, ¢o. We now study the relation of our subvariety NR 1;1‘7 with the unipotent

locus in M (n,nd’), as defined in [F']°, Section 4] out of a line bundle £L — C' of degree d’,
doe H'(X,E/B) :
(5.18) Unic (£) = { (E,¢) € Mc(n,nd) | ¢€ H(X,Es(b) ® Kx); :

EO—/U ~ @?=1 £Kén+1—2i)/2.

The relevant line bundles for us are those of the orbit I'(J) = {y*J for v € T'}, and for
each of them the corresponding unipotent locus will be denoted by Unic(v*7) € M¢(n,nd').
Recall the Cartan locus M ;) of Mc¢(n,nd'), introduced before Corollary 3.15, and let V be
hen(M ). Then hep(Uni(y>* 7)) = V, for every i (cf. [FP]).

Recall the pullback map p : Mx (n,rd") — Mc¢(n,nd') from (3.3).

Proposition 5.14. Consider the open subvariety NRS’;;Z ofNRI;’iJ defined as the intersection of
NRI;’iJ with the open subset Jac®™(Xy) of every Hitchin fiber h;(,ln(b) Then NRIJ);Z is mapped
under the pullback map (3.3) to the union of Unic(y*J), for y €T, i.e.

P (NR@;;Z) c || Unic(r*7).
P*TET ()

Proof. By the spectral correspondence, the proposition can be proved by showing that the
pullback of the spectral data'of any Higgs bundle in NR ?;‘Z gives the spectral data of a Higgs
bundle in | | « 7ep(7) Unic(7"* 7).

Take b € B < BP and let b = p*b. Then Cj is integral and has nodal singularities.

p,J

Furthermore, by Corollary 3.15, be V. So, if (E, ) represents a point in NR mapping to b,

Jac

then p(E, p) maps to b € V. By Theorem 5.12, the spectral datum of (E,¢) is given by a line
bundle L € Jac?(X}) such that v*L =~ ~*7 for some « € I'. Using the commutative diagram
of Theorem 3.11 (iv), we see that ﬁg‘qli’;L ~ ¢*y*J is the exterior product of all the elements
in the orbit I'(J). Recall that C; is a disconnected curve, whose connected components are all
isomorphic to C. We see that the spectral datum of p((E,¢)) is a line bundle on Cj (namely

~

qu) which pulls back under the normalization map 7} : Cj — Cj to the exterior product of
all the elements in the orbit I'(J). By Proposition 4.5 (4.14) of [F'P], this is the spectral datum
of an element of Unic(~v*J), proving that p(E, ¢) € Unic(~7*7). O
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Given a Higgs bundle (E, ¢), the associated deformation complez is defined by

(5.19) Clpyy - End(E) 25 Bnd(B) @ K.

Its hypercohomology H*(C?,. ) fits in the long exact sequence

(Ep)
(5.20)
0 — H°(C(p.,y) — H°(X,End(E)) — H°(X,End(E) ® Kx) — H'(C(y ) —

— H'(X,End(E)) — H'(X,End(E) ® Kx) — H*(C{g,,)) — 0.

If (E,p) is a stable Higgs bundle, then it represents a smooth point of the moduli space
Mx (n,d), with tangent space isomorphic to HI(C('E g0)).
Recall from Section 2.1 the holomorphic symplectic form Qx; = wy + iws on Mx (n,rd’)

associated to the complex structure I;. We can now prove the main result of this section.
Theorem 5.15. NRI;’ij is a Lagrangian subvariety of Mx (n,rd") with respect to Qx ;.

Proof. First we prove that NR’;’{ is isotropic. Recall the open subset NR ?;‘Z c NR’;’ij defined
in the previous proposition. It is enough to show that the symplectic form €x ; vanishes on

NRp’j

Jac *

Let (E,p) € NR?;‘Z. It is a smooth point of Mx(n,d), by Proposition 5.6. Consider the
polystable Higgs bundle (E, @) := p(E,¢) = (p*E,p*p) over C. By Proposition 5.14, (E, @) €
Unic(7*J) € Mc(n,nd') for some v*7 € T'(J). In addition, by [P, Proposition 4.5], (E, )
is stable, thus also represents a smooth point of Mg (n, nd’).

As (E, ¢) represents a smooth point of the moduli space, the corresponding tangent space is

isomorphic to Hl(C('E 90))’ where Cf ) is the complex given by (5.19). Since Hl(C('E 90)) fits
in (5.20), any tangent vector in T(g ,\Mx(n,rd") = Hl(C('E 90)) is determined by an element

in H°(X,End(F) ® Kx) =~ H"°(X,End(E)) (providing the deformation of the Higgs field)
and by an element in H'(X,End(E)) =~ H%'(X,End(E)) (providing the deformation of the
holomorphic structure of E). Thus, every v,w € T(E#,)Mx(n,rd’), may be represented as
v = (a1,2) and w = (B, B2), with ay, 81 € QY(X,End(E)) and as, 3 € Q¥1(X,End(E)).
Then [Hil],

(5.21) Qx (v, w) = fx tr(ag A B2 —ag A f1) € C.

Pick the holomorphic symplectic form Q¢ 1 on M¢(n,nd’). Analogous statements hold for any
pair of tangent vectors v, w € T{z Mc(n,nd') = HY(C®, . ), where C® _ is the deformation

5 ¢) (E,8) (E.8)
complex of (E, @), defined in (5.19). Thus,
(5.22) Q.1 (0,w) = L(dl APy —ado A Br)eC.

If 5 = dp(v) and W = dp(w), then & = p*a; and f; = p*B;, for i = 1,2, hence (5.21) and
(5.22) imply that

(523) ]5* QC71 = dﬁt QC,l = mQX71

because p : C' — X is a degree m map.

Assume now that v, w are tangent vectors to NRS’;‘Z. By Proposition 5.14, we have that
dp(v) and dp(w) are tangent vectors to the unipotent locus of M (n,nd'), which is isotropic,
by Proposition 4.2 of [I'I’]. Hence Q¢ 1(dp(v), dp(w)) = 0, so Qx 1(v,w) = 0 by (5.23), proving

that NR27, thus NR?, is isotropic.

Jac? ni
It remains to prove that NR’;’{ is a mid-dimensional subvariety of Mx (n,rd’), that is,
dim(NR?7) = n2(g — 1) + 1, after (2.1). Since NR?Y lies in the smooth locus of Mx (n, rd’)
after Proposition 5.6, its dimension can be computed through the Hitchin map restricted to
NRPY namely by adding the dimension of B?. to the dimension of any fiber h;(}n(b) N NRZ’ij .

ni
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From (3.15) we have that dim B?. = dim B? = rn(g — 1) + 1. On the other hand, by (5.17),
one has that dim(h;(,ln(b) N NRI;’iJ) =n(n —r)(g —1). Then, their sum equals

dim B + dim(h;(’ln(b) ANR?TY = rp(g—1) + 1+ n(n—r)(g — 1).
Adding up yields dim(NRi’ij) =n?(g—1) + 1 as claimed. O

6. MIRROR SYMMETRY AND BRANES

In two preceding sections we constructed the Narasimhan-Ramanan (BBB)-branes (BBB)'-

and (BBB), (cf. Definitions 4.2 and 4.4) and the complex Lagrangian subvarieties NRI;’iJ (cf.
Definition 5.3). Recall that the Definitions 4.2 and 4.4 required Assumption 1, thus » = 1. Note
as well that, by construction, both branes (BBB)?. and (BBB)". determine coherent sheaves
on Mx (n,d) (with respect to the complex structure I7), and their support fiber (via the Hitchin
map) over the locus BP. On the other hand NRi’ij is only constructed over the open dense
subspace BY. — BP parametrizing integral and nodal spectral curves there.

Mirror symmetry predicts that a (BBB)-brane ought to be dual to a (BAA)-brane. It is
expected that such duality is realized via a Fourier—Mukai transform relative to a Lagrangian
fibration associated to the complex structure I;. In this section we prove that (the restriction
to B, of) the coherent sheaf on Mx (n,d) given by the Narasimhan—Ramanan (BBB)-brane
(BBB)% is Fourier—-Mukai transformed into a sheaf supported over NR zr){lj , for an explicit choice
of J depending on £. We obtain an explicit relation on this transformed sheaf which is enough
to find its support, but we do not have a full description of it. The only missing piece to
produce the complete (fiberwise) mirror symmetry is a global description of the corresponding
flat bundle over NR’;’{ ; we have partial information on it, but not a global one. Starting with
(BBB)% instead, we obtain a similar duality statement.

We address only the case of degree d = 0 (thus the case of d multiple of n also follows),
because in this case we have the Hitchin sections [Hi3] as global Lagrangian sections of the
Hitchin fibration hx, : Mx(n,0) — Bx . This allow us to perform the fiberwise Fourier—
Mukai transform without using a gerbe (or using a trivial one). For d non-multiple of n, then
hx, has no such global Lagrangian section, hence a gerbe is required to properly perform the
relative Fourier—Mukai (cf. [HH'T]). On the other hand, we expect that all the analysis in the
preceding sections generalizes to the setting of parabolic Higgs bundles, and there, under mild
assumptions, the Fourier—Mukai duality can be performed for any degree d without the need for
a gerbe. This is because, for an appropriate choice of parabolic weights, the Hitchin fibration
always admits a Hitchin section (cf. [ 1)-

6.1. Review of autoduality of compactified Jacobians of integral curves. In this section
we review autoduality of compactified Jacobians of integral curves with planar singularities and
the associated Fourier—Mukai transform given by Arinkin in [Ar]. Since spectral curves are
contained in the surface |K x|, his construction applies to any integral spectral curve Xj, in
particular to all curves for b € BY. by Theorem 3.11 (v). In this context, Arinkin’s autoduality
statement becomes becomes the autoduality of the corresponding Hitchin fibers h}}n(b)

Take an integral curve with planar singularities X, and consider an integer §. Then every
semistable rank 1 torsion-free sheaf on X, is indeed stable, and Eé(Xb) is therefore a fine
moduli space with universal family U, — X x E(S(Xb). Denote by L{l? its restriction to
X3, x Jac®(X,). Before constructing the Poincaré sheaf, we first construct the Poincaré bundle
using Uy, and UY. Choose a point ox(b) in Eé(Xb) and let U, and Uy be normalized with
respect to ox (b).

Given a flat morphism f : Y — S whose geometric fibers are curves, we can define the
determinant of cohomology (see [KX\] and [I's, Section 6.1]) as follows. If £ is an S-flat sheaf
on Y, the determinant of cohomology Df(£) is an invertible sheaf on S, constructed locally
as the determinant of complexes of free sheaves, which is locally quasi-isomorphic to Rf.&.
Consider the triple product X, x Eé(Xb) x Jac®(X,) and the projection faz : Xj x Eé(Xb) X
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Jac®(X,) — Eé(Xb) x Jac?(Xy), which is flat and whose fibers are curves. Consider as well

the corresponding projections f12 and fi3. The Poincaré line bundle P, — E(S(Xb) x Jac®(Xp)
is the invertible sheaf

(6'1) Py = Df23 (f1*2ub & ff?;ul?)il ® Df23 (f1*3ul9) ® Df23 (f1*2ub) .

The restriction of the Poincaré bundle P to the point associated to M € J ac5(Xb), that is,

Py rr i= Pl is the line bundle over Eé(Xb) given by

Tac” (Xy)x (M}’
(6.2) Pt = Dy, (Uy @ f{ M)~ @ Dy, (M) @ Dy, (Us),
where we have considered the projections fi : X x Eé(Xb) — Xpand fo: Xp x Eé(Xb) —
Tac’ (X3).

Our Poincaré bundle is constructed over Eé(Xb) x Jac?®(Xp). A similar construction can

be performed over Jac®(X;) x Eé(Xb), which coincides with P, after restricting both to
Jac?(X3) x Jac?(X}). Gluing both line bundles over Jac®(X;) x Jac®(Xj), one can define the
line bundle

(6.3 Pi— (Tae () x Tac" (X))

where
(6.4) (E‘S (Xp) x Jac® (Xb))ﬁ = <Jac‘5(Xb) x Jac’ (X,,)) o (E‘S (Xy) x Jac® (Xb)> .

Arinkin [Ar] extended this construction to the compactified Jacobian, obtaining the Poincaré
sheaf
Py — Jac' (Xp) x Jac' (Xp),

showing as well that it is a Cohen-Macaulay sheaf. Therefore, considering the injection

— S i S N
(6.5) VE (Jacé(Xb) X Jacé(Xb)) — Jacé(Xb) X Jac(s(Xb)7
one has that the Poincaré sheaf satisfies [Ar, Lemma 6.1 (2)]
(6.6) Py = ju Py

Taking the projections 71, m onto the first and second factors

(6.7) Tac’ (X)) x Jac’ (Xp)

/ \
—30 -
Jac (Xp) Jac (Xp),
and using P}, as a kernel, we consider the Fourier-Mukai functor on the bounded derived category
of coherent sheaves on Eé(Xb),
68) 0,: D (E‘S(xb)) . DY (E‘S(Xb))
F* — R (TFF* @ Py).

The following is due to Arinkin in the case of X integral.

Theorem 6.1 ([Ar]). Let Xy be an integral curve with planar singularities and § an integer.

The moduli space of rank 1 torsion-free sheaves over Eé(Xb) 18 Eé(Xb) itself. Furthermore
the Fourier—Mukai functor ©y is a derived equivalence.
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6.2. Fourier—Mukai and normalization. Let us consider the normalization v, : C, — X,
of an integral curve X; with nodal singularities, and denote by d — p the degree of the singular
divisor sing(X}), where § and p are integers. In this section we study the interplay of v, with
the Fourier-Mukai transform constructed by Arinkin'.

Since C, is smooth, the Jacobian Jac®(C,) is a smooth abelian variety known to be autodual.
Choosing a point in Jac®(C,) and Jac?(Cy) provides an isomorphism from the abelian variety
Jac%(C,) to the torsors Jac®(C,) and Jac?(C,). Using this isomorphism, we naturally obtain
a Poincaré line bundle

Py — JacP(C,) x Jac’(C,)
from the Poincaré line bundle over Jac?(C,) x Jac®(C,). Then P, is a universal family of
topologically trivial line bundles over Jac?(C,) parametrized by Jac®(Cy).
Consider the pushforward morphism
Dy : JacP(Cy) —> Jac’ (Xp)
induced from the normalization map v, : C;, — Xj, and the pullback map
D = Jac? (Xp) — Jac®(Cy).
Let 17~ and 1jac be the identity morphisms in Jac” (Cy) and Jac‘s(Xb) respectively. Recall

from (6.6) that the Poincaré sheaf P}, on Eé(Xb) X Eé(Xb) is constructed from the Poincaré
line bundle

Py —> Jac' (Xp) x Jacd(X;)
given in (6.1). Then both (7, X 1yac)* Py and (155 X 4)*P, are bundles over Jac?(C,) X
Jac®(Xp). The next result shows that they differ from a line bundle which is a pullback from a

line bundle over Jac®(Xp).
Consider the projections

Jac?(C,) x Jac®(Xy)

/ K
Jac?(Cy) Jac®(Xp).

Proposition 6.2. Let v, : C;, —> X} be normalization of an integral curve Xy with planar
singularities. Then we have that

(Da X 1Jac)*73b = (1355 X ﬁa)*Pa &® (Wé)*w,
for some line bundle W — Jac®(Xp).
Proof. After a certain adaptation, the proof is analogous to that of [F'P’, Lemma 5.2]. We include
it here for the sake of clarity. First note that (7, x 1y.c)* P, is a family of topologically trivial
line bundles over Jac?(C,) parametrized by Jac®(X}). Since P, — Jac?(C,) x Jac®(C,) is a
universal family for such objects, there exists a morphism

g :Jac’(X}) — Jac®(Cy),

such that
(69) (Da X 1Jac)*7)b = (1~ X g)*Pa &® (Wé)*Wb,

Jac

for some line bundle W, — JaC‘S(Xb). We claim that ¢ = 7,. In order to prove it, we shall
need several preliminary statements.
Recall the description of Py ps given in (6.2),

Port = Dy, (U @ fF M) @Dy, (ff M) @ Dy, (Us),

IThe results contained in this section were previously known to D. Arinkin, to whom we are indebted for
conversations.
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for each M € Jac®(X}), where
=—4 =—4 =—4
fi:Xp xJac (Xp) — Xp  and  fo: X x Jac (Xp) — Jac (Xp).

Take also the projections

f1:Cy x Jac?(Cy) — Cy, fo:C, % Jac?(Cy) —> Jac’(C,)

and
f1: Xy x JacP(Cy) — Xy f5: Xp x Jac?(C,) —> Jac?(C,).
Obviously
1Xb><l7a _6

(6.10) Xp x Jac?(Cy) Xp x Jac (Xp)

;

fl

Xb

cominutes.

The following diagram is also obviously Cartesian,

lbeDa

Xp x Jac?(Cy) X, x Eé(Xb)

N P}

Jac?(Cy) Tac’ (Xy),
thus, since we know from [I\s, Proposition 44 (1)] that the determinant of cohomology commutes
with base change,
(611) D:'DfQ = ng(le X Da)*.

Let U, — C, x Jac”(C,) be the universal bundle of topologically trivial line bundles over
C,. Since C, is smooth, we may apply (6.2), so that the Poincaré bundle P, satisfies

(6.12) Pan = Dj,Us ® [fN) ' @Dy, (fiN) ® Dy, (Ua),

for any N € Jac®(C,). Recall that U, — X; x E(S(Xb) is the universal sheaf of degree
d torsion-free sheaves on X; and consider the pullback (1x, X 7g)*U, which is a sheaf over
Xp x Jac?(C,). Observe that (vg x 135-)«U, is a family of rank 1 torsion-free sheaves of degree §

over Xp. Then, by the universality property, there exists a morphism h : Jac?(C,) — Eé(Xb)
and a line bundle W, — Jac”(C,) such that

(1x, x h)*Up = (Vo X 155):la ® (f5)*W,.
Note that h coincides pointwise with 77,, since Jac”(C,) is smooth it follows that h = ,. Then,

(6.13) (1x, X Ug)*Up = (Vg X 17=)lhy ® (f5)* W

Jac

Since the diagram

Vg X1—~

Cy x Jac?(Cp) ——> X, x Jac?(C,)
s
f2
Jac?(Cy),
commutes, the definition of the determinant of cohomology ensures that

(6.14) ’Dfé(l/a X 13;0)* = ng'
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Finally,
C, x Jac?(Cy)

Xy Xp x JaCP(Ca) Jac?(C,).
i fa

also commutes, so f1((f3) " (U)) = vafi(f5 {(U)) for every open subset U < Jac?(C,). It then
follows that for each M € Jac®(X}) and each open set U < Jac?(Cy),
)« (f)*M)(U) = lim MW
P =l (W)

= lim M(W)
Wovafi(fy ' (U))

=((f2)«(va 0 f1)*M)(U),
50 (f5)«(f1)* = (fa)s(va © f1)*. As a consequence of this identification, we have
(6.15) Dy (f1)* = Dﬁff‘u*
Using the projection formula and (6.9)(6.15), we have that, for any M € Jac®(X,),
Pa,g(m) = Uy Po.ur
> 5 (Dr, Uy ® Ff M)~ @ Dy, (i M) @Dy, U))
~ 0Dy, Uy ® [T M) @Dy, (fFM) @ Dy, ()
~ Dy ((1x, x 7a)* (U ® fF M) @Dy ((1x, % 7a)*(fF M) @ Dy (1, X Va)*Us)
=Dy ((Lx, % 7)*Upy ® (f1)" M) @Dy ((1)*M)) ® Dy (Lx, * 7))
=Dy, ((va x 1Jac)*u ® fl) M® (f5)*Wa) ' ®
® Dy ((f1 )@Df/(uax 152 )ulda ® (f2)*Wa)
=Dy ((va X 155):la ®(f1) M) oW '®
® Dy ((f1)*M)) ® Dy ((Va X 15 )aulla) W,
=Dy, ((va x 15 (%@f{*v;“M)) @Dy, ((f)*M)) ®Dyy (va x 152)ulha)
> D; (Us ® fiviM) ™ @Dy, (FiviM) @D, )

= PI/;‘M

= Pa,va (M)
This implies that g(M) = 0, (M) for any M € Jac®(X,). Since Jac®(X,) is smooth, this suffices
to state that g = 0, thus completing the proof. O

Consider now the projections

(6.16) Jac?(C,) x Jac®(Cy)

/ K
Jac?(Cy) Jac®(C,).

Using the Poincaré line bundle P, — Jac?(Cy) x Jac®(C,) as kernel, define the Fourier-Mukai
functor

Ou: DP(Jac?(C,)) —>  D(Jac’(C,))

6.17
( ) E* — R« (NfE° @ P,).
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Mukai [Mu, Theorem 2.2] proved in this classical setting that the above functor is a derived
equivalence. Note also that it is the particular case of Arinkin’s Theorem 6.1 for smooth curves.

The next theorem establishes a relation between the Fourier-Mukai functors ©; in (6.8) and
O, in (6.17), for complexes arising as pushforward via 7,. Recall the moduli space of parabolic
modules PModg(Ca, l~7a) of degree 6 and type £ = (1,...,1), and let Opyjoq be the corresponding
structure sheaf. Recall also the morphisms 7 in (5.8) and 74 in (5.12).

Theorem 6.3. Let v, : C, — X be normalization of an integral curve Xp with planar
singularities and let £ be a complex in D(Jac”(C,)). Then there is an isomorphism

@b(RDa,*g.) ® 7% OpMod = RT*’);@a(g.) ®fb‘{l/a,*(’)ca}><ﬁ'

Proof. Consider the pullback of the Poincaré sheaf to E(S(Xb) x PMod?(C,, D,),

(6.18) Py i= (1= x 7)*Py.

Jac
Applying the projection formula yields
(6.19) (1555 X T)Po = Pp ® (1552 X 7)xO9mcy priod-

Consider the projections,

(6.20) TJac’ (Xp) x PModS(Cy, D)
Tac’ (X;) PMod$(Cy, Dy)

. . —6 . . .
and notice that, since Jac (Xj3) is projective, connected and reduced,

72,5 OTacx PMod = OPMod-
Note also that

Mo (1o x7)=7Tome and 7 =m o (1 xT7),

where 7 and my are the projections defined in (6.7). Now, recalling (6.8) and using these
relations, the identity (6.19), and the projection formula and the fact that the derived direct

image is functorial with respect to compositions, we have that, for F* € D° (Eé(Xb)),
RryRirg s (77 F* @ Py) = Rmaw R(150s % T)u (1502 X 7)* 11 F* @ Py)
>~ Ro . (m] F* ® (15 % 7')*7%)
(6.21) ~ Rmo (i F* @Pp) ® 72,4 (1550 X T)+OFac s PMod
= Ro 4 (17 F* ® Pp) ® T72,4OJac xpriod
= 0y(F*) ® 7 OpMod-
The next step consists of establishing a relation between Py and P,. As Py parametrizes rank

1 torsion-free sheaves over E(S(Xb), then
(Da X 1pM0d)*7jb — Jan(Ca) X PMOd?(Ca,f)a)

is a family of rank 1 torsion-free sheaves over Jac”(C,) (i.e. line bundles on Jac?(C,,)) parametrized
by PMod)(C,, D,). Since P, — Jac?(Cy)x Jac’(C,) is a universal bundle, there is a morphism

g : PMod)(Cy, Dy) — Jac®(Cy),
such that
(o X 1pMod)*Po = (1= x g)* Py ® (75)*W.

Jac
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where 7} is the projection given by

(6.22) Jac?(C,) x PMod?(Cy, Dy)
/ w)
Jac?(C,) PMod}(Cl, Do),

and W' is some line bundle on PMod9(C,, D,).

Thanks to (6.6) and to the definition of P, given in (6.18), we see that that restricting it
to Jac®(X,) — T(]_lPModg(Ca,]_N?a) gives 7jb|ExJac =~ Pp. Then, with |5~ , = denoting the
restriction to Jac?(C,) x Jac?(Xy) via 75 !,

(135\15 X g)*’P“|j;c><Jac® (ﬂ-g)*W/LEEXJaC = (D“ X 1PM0d)*Pb|j;c><Jac = (ﬂa X lJaC)*Pb'
So Proposition 6.2 shows that
(15m %X 9" Palsm s g0e ® (M)W 5 oo = (L5 X 00)*Pa ® (15)* W,
Then the diagram
(

PMod)(C,, ) 4, Jac‘;(Ca)
commutes hence we conclude from (5.13) that g = 7, as both coincide in the dense open subset
Jac?(X3). As a consequence, we obtain
(6.23) (Pa % 1pMod) Py 2= (152 X 1) Pa ® (m5)*W'.

Restricting (6.23) to {O¢, } x PMod)(C,, Dy) yields

~

W' = (70 % 1pMod)* Po)l{0c, jxPMod = Pol{ve 100, }xPMod:
because P, is normalized as in (6.27). But P, is the pullback of P, under (1
(6.24) W' = 7 (Poly,,, o, xTm0)-
Combining this description with (6.23), we conclude that
(6.25) (7a X Lpnod)*Po = (155 X 7a)*Pa ® (m5)* 7 (Pblyy,, 00, 1 xTac) -

We now address the last part of the proof. Recall the projections 77 and 74 from (6.22), 7
and 7y from (6.20) and finally 1, and 72 from (6.16), and observe that

Jac X T), SO

Ty = 720 (Vg X 1pMod),

(6:26) m = m o (135 X va)-
Moreover,
Jac?(C,) x PMod?(Cy, Dy) Wll/ Jac?(C,)
Va X 1pMod lﬂ \[I)a
TJac’ (X3) x PMod?(Cy, Dy) —— - Tac’ (Xp),
and
Jac?(C,) x PMod?(Cy, Dy) _Lmete | Jac?(Cy) x Jac®(C,)

”'z'l lm
PMod)(Cy, Dy) Jaco(C,)

are Cartesian diagrams.
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The derived direct image and pullback are functorial with respect to compositions. Further-
more, the base-change formula applies to the two previous Cartesian diagrams. So, starting
from (6.21) and using these facts, together with (6.25) and with the projection formula, finally
yields

Op(RivqE") @ T OpMod =RT4 Rty 4 (7 Rivg +E° ® 7'317)
~R7.Ro 4 (R(ﬂa X 1pMod )« (7] ) E® ®7jb)
> Rr Rty « R(Va % Lpnod)« ((7])*E° & (Va X Lpmoa)*Ps)
~Rr. Rl , (7])*E° @ (Ve % Lpntod)*Ph)
~Rr. Ry, (( o X Va)*Pa ® (my)* 7" (ﬁb|{ya,*00a}xﬁ))
~Rr.Rmy . (( X Ug)*Pa) ®§b|{ya,*00a}xﬁ
;RﬂkRW%*(ljavC X Ua)* (M E° @ Pa) ®ﬁb|{ua,*00a}xﬁ
~R7 i R« (NTE° @ Py) ® ﬁb|{ya’*00a}xﬁ
2R7,0304(E%) @ Polyy, 00, 1 xTac

T)*E ® (1
T)*E* ® (1

Jac

as claimed. O

6.3. Branes and Fourier—-Mukai transform. We are now at the last step towards the goal
of proving the duality statement between the branes we constructed.

Along this section we fix the degree to be trivial, d = 0. We require also Assumption 1, so
p:C — X has order m = n (hence r = 1 and p = 0) and the spectral data of M x (n,d)? is as
described in (4.11). In particular, the normalization of the spectral curves is always C' and B,
coincides with B?., the subset parametrizing integral and nodal curves.

Let us use the Hitchin section o¢ constructed from a spin structure K, é/ 2= p”‘K)l(/2 to choose
a point in Jac®(C). Consider associated the Poincaré bundle

P — Jac®(C) x Jac?(0).
If N € Jac’(C), then Py = Plyaco(cyx(ny is the line bundle over Jac®(C) corresponding to

the point N ® Kg(n_l)/Q of Jac®(C) under autoduality of Jac®(C). We can assume that P, is
normalized so that

(6.27) Pliogixsacsc) = Oracs(c)-

Let b € B?. and ¢ € HY(C,Kc)™ be a representative of b, and recall from (4.10) the
pushforward morphism 7, : Jac’(C) — Es(Xb). We wish to understand the Fourier-Mukai

transform of the sheaf 1)¢7*Nm*ﬁv over Eé(Xb) ~ hy' (b) under the derived equivalence

Oy : Db (Eé(Xb)) — Db (Eé(Xb)). Indeed, by Proposition 4.6, D¢,*Nm*z is supported on
Im(77,) = Jac’(C) and is the restriction to the Hitchin fiber over b (intersected with My (n,0)P)
of the hyperholomorphic line bundle . defining the rank 1 Narasimhan-Ramanan (BBB)-brane
(BBB)%. It is a classical fact that that the Fourier-Mukai of a line bundle over Jac?(C) is a
complex supported only in one degree (namely the genus of C), so it can be considered as a
sheaf as opposed to a complex. Hence, by Theorem 6.3, © (7 Nm* Ev) is a sheaf over ﬁé(Xb),
whose support is the intersection of the support of the dual (BAA)-brane with the Hitchin fiber
over b.

By considering the rank n Narasimhan-Ramanan (BBB)-brane (BBB)’., we conclude by the
same token that the support of the sheaf Gb(@'yef‘ D¢,*ﬁ*j:") determines the support of the dual
(BAA)-brane.

Theorem 6.4. Consider the moduli space Mx (n,0) and the Narasimhan-Ramanan (BBB)-
branes (BBB)Y. and (BBB)Y. on it associated to a connected unramified cover p : ¢ — X.
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Let b = C(¢) € BY, for some ¢ € HO(C, K¢)r. Let iy : Jac®(X}) —> Jac®(C) be the pullback
morphism associated to the normalization vy (thus corresponding to (5.7)).

(i) Let
L= p*ﬁ@K(Cn_l)/z € Jac5(C).
The Fourier—-Mukai transform of the hyperholomorphic sheaf $|h)_(1 ) = D¢,*Nm*ﬁv sat-

isfies the relation

(6.28) Op(75,sNmM* L) ® 74 O0priod = Pyl

{V¢>,*(90}><19;1(£)

and its support is

SUpp(Oy(7,«Nm*£)) = 7,1 (£) = NR%E A b, (b).
(ii) Analogously, let
~ n—1)/2
(6.29) F=FKIV

and let T'(F) be the orbit of F by the Galois group T’ of p. The Fourier—Mukai transform
of the hyperholomorphic sheaf ﬁ|h)_(1 ) = @«/eF Uy «YV*F satisfies the relation

(6.30) Oy < @F 17(15,*’3/*}:) ® 7+ OpMod = @F T*O,;gl(,y*j:) ® §b|{y¢7*(’)0}xﬁ
YE e

and its support is

Supp<9b<@l?¢,*’?*-7?)> - U 5'err = NR’if N h s, (0).

el ~v* Fel'(F)
Proof. By Theorem 6.3 we have
(6.31) O(7%,«Nm* £) ® 7, Opod = 7450 (Nm* L) ® Poliy, w00} xTac

so we need to compute ©(Nm*£); ¢f. (6.17), we have removed the index a since now all the C,
are isomorphic to C. This is the classical Fourier—-Mukai transform on an abelian variety, the
only difference being that © : Db(Jac®(C)) — D’(Jac®(C)) takes values in the derived category
of complexes over the torsor Jac’(C) and not over the actual abelian variety Jac®(C). So we
must use the identification we settled Jac®(C') = Jac?(C), by tensorization by K, (Cn_l)/ > Asis
well-known, @(Nm*ﬁv) is the skyscraper sheaf over the point of Jac‘s(C’) whose corresponding
point over Jac®(C) corresponds to the line bundle Nm*£ under the autoduality of Jac®(C).
Consider the commutative diagram

(6.32) C<L JacO(0)

| e

X Jac(X),
Ax

where the horizontal maps are the Abel-Jacobi maps determined by chosen base points on C,
and X, which correspond under p: C' — X. Since the isomorphisms yielding the autodu-
ality of Jac®(C) and Jac’(X) are given by pullback of the Abel-Jacobi maps, this yields the
commutative diagram

S
Q¥

Jac®(C)Y — Jac®(C) = Jac(C)
~ _®K(Cn71)/z
Nm* p*T
0 v = 0
Jac”(X) o Jac”(X)



UNRAMIFIED COVERS AND BRANES ON THE HITCHIN SYSTEM 37

(where the maps no longer depend on the choice of base points). Recall that by definition
L is the line bundle over Jac’(X) which corresponds to the flat line bundle £ over X under

autoduality, i.e. £ =~ A}‘(ﬁv So we conclude that @(Nm*ﬁv) ~ Op*L®K(Cn—1)/2 =0;.
Hence, T*I);@(Nm*ﬁ) >~ Ty (9071@). Since T is finite morphism, 7 Obfl(‘é) is a coherent sheaf,
¢ ¢

hence (cf. [Ha, ex. 5.5, 5.6, p.124]) its support in Eé(Xb) is closed and is the closure of

the image by 7 of the support of O, 7N (E) which, by Lemma 5.10, is l/¢ 1(E). In addition, by

the same lemma, the restriction of 7 to l/¢ 1(EA) is a closed embedding, thus we actually have
T*Ol-/;1(£) = Om.

Considering the transform just as a sheaf (thus ignoring the only degree where the complex
is non-zero), we then have, by (6.31),

@b(0¢7*Nm*£v) ® 7 OpMod = ﬁb|{y¢ £Octxi (L)
: ¢

The sheaf 7, Oppioq is supported in Eé(Xb), thus

supp(Oy(7,«Nm* L)) = i1, (£)

as claimed. Note finally that ﬁ;l(ﬁ) is indeed the spectral data of the intersection NR?: e

hy (b), by Theorem 5.12 (since £ = p*(L™' ® Kggl_l)p), then T'(£) = {£} in (5.16); cf.
Remark 5.13), completing the proof of (i).
For the proof of (ii), we have, again by Theorem 6.3,

9b<@’7¢,*’7*ﬁ) ® T4 OpMod = D) (Op(7p5* F) @ T Opoa)
vyell ~yell

= @7—* @ 7 ‘7: ®Pb|{u¢ +Oc}xJac
~yel'

and a similar argument to the one given above, proves ©(% *F ) = O,Y* #- Thus

@b(@yqb ol -7:) ® T+ OpMod = (‘DT* (7*]:) ®Pb|{y¢*(’)ca}xJaC
~yell ~yell

As in the preceding case, @ (’)ﬁ_%/* #) is supported in the (not necessarily disjoint) union
@

~yell Tx
Uv* Fer(F) 19;1(7*.7:" ), hence so is the right-hand side of the above isomorphism as 7,.Opyjoq is
supported on Eé(Xb). We conclude that

supp <9b<@ %,*W*Jt")) - U %'0*F

ver vk Fel (F)
which coincides with NRZ’iJ} N hy' (b) by Theorem 5.12. O

Since for each b € BY.. © is a derived equivalence by Theorem 6.1, the previous theorem
provides the following fiberwise duality statement as an immediate consequence.

Theorem 6.5. Let p : C — X be a connected unramified n-cover. Consider the moduli space
Mx (n,0) and let L and F as in Theorem 6.4.
(i) The (fiberwise) dual of the rank 1 Narasimhan-Ramanan (BBB)-brane (BBB)!. (over BY.)

is the (BAA)-brane supported on NRpl:, and whose flat bundle satisfies (6.28).
(i) The (fiberwise) dual of the rank n Narasimhan-Ramanan (BBB)-brane (BBB)% (over

BP?.) is the (BAA)-brane supported on NR’I’lif, and whose flat bundle satisfies (6.30) .
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Remark 6.6. In [I'P], duality is conjectured between the (BBB)-brane Car(L) (supported on the
Cartan locus My ,y € M¢(n,nd)) and the (BAA)-brane Uni(L) (supported on the unipotent
locus Unic(£) © Mg(n,nd)). Recall from Remark 4.7 that (BBB)Y. pulls-back to Car(L)

under p while NRI;’iL is sent to Unic(£) under p as we have seen in Proposition 5.14. Thus,
Theorem 6.5 give us some indications that the general principles of this conjecture seem to hold
true.

7. BRANES IN THE ABSENCE OF A HITCHIN SECTION

In Section 4 we worked under Assumption 1 to construct a family of (BBB)-branes supported

on Mx (n,d)P. In Section 5 we required Assumption 2, which is weaker than Assumption 1, to

P
ni

define the Lagrangian subvariety NRlzl’ij over the locus of Hitchin base B
curves whose normalization lives in B

A straight-forward observation is that, when Assumption 1 fails, one can always define a
(BBB)-brane on Mx (n,d)? by considering the trivial bundle on it.

Without Assumption 2 we face a problem for the construction of our Narasimhan—-Ramanan
dual (BAA)-branes, namely the lack of a section for the Hitchin fibration h¢c, : Mc(r,d) —
Bc,. Instead, we pick the Lagrangian multisection of the Hitchin fibration given by a very
stable bundle. With this multisection we define a Lagrangian subvariety which we study using
the branes associated with parabolic subgroups from [P, Section 6].

Given a stable bundle V — (|, one has that (V,¢) is a stable Higgs bundle for every
¢ e H(C,End(V) ® K¢). Then, we have a natural morphism

H(C,End(V)® K¢) — Mc(r,d)
o} — (V,9),

which is an embedding as V is simple. We denote by 3y, the image of this map. It is well-known
that this provides a Lagrangian subvariety.

of those spectral

Proposition 7.1. For every stable bundle V, Xy is Lagrangian.
Proof. Since V is stable it is simple, so one has that
dim Xy = dim H°(C,End(V) ® K¢) = % dim M¢(r, d).
Since the vector bundle is fixed along >y, note also that the projection
TSy — H'(C,End(V))
is constantly zero, so )¢ 1 vanishes there. O

After Laumon [La], a vector bundle V — C' is very stable if it has no non-zero nilpotent
Higgs field. It can be shown [L.a] that a very stable bundle is stable (provided g > 2) and that
the locus of very stable bundles is a dense open subset of the moduli space of vector bundles.
The fourth author and C. Pauly proved the following (see [’]’, Theorem 1.1 and Corollary 1.2]).

Theorem 7.2 ([PP]). Let V be a stable bundle. Then, V is very stable if and only if the
restriction hc,|s,, of the Hitchin fibration hc, to Xy is finite and surjective.

One thus easily deduces the following.

Corollary 7.3. Under the hypotheses of Theorem 7.2, ¥y, — Bc,, is a Lagrangian multisection
of heyr.

In view of Corollary 7.3 we provide the following definition analogous to Definition 5.3.

Definition 7.4. For any very stable bundle V — C' of rank r and degree d — p + §, define the
subvariety NR’;’iV of Mx(n,d) closed in Mx(n,d) x gy, Bh; as

NRY = <<h§fﬂ))_1 (zv)> o (Mx(n,rd Vo, x g, Sing? ) .
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As we did in Theorem 5.12 for NR?*Y, let us study the spectral datum for NRZ;I’iV . Let us

ni

denote by Xy , the fiber ¥y, — B¢, over a € B¢g,. Set also
g/,a = SE,lr(Ev,a),

note that, by definition of S¢, and Xy q4, for every J € X7, , < Jac d+5(Ca) one has

NaxTJ = V.
Proposition 7.5. Let be BY. and a € Bair such that b = ((a), then
(7.1) L) aNREY = ) Sk (5T 0r)))

Jexy, . v*Jel(J)
where T'(J) denotes the T'-orbit of J. Furthermore,

(7.2) dim <h)_(1n(b) N NR’;K) =d—p=nn—-r)(g—1)
and

1
(7.3) dimNR?Y = n?(g—1)+1 = 5 dim My (n, d).

Proof. After a trivial adaptation of the proof of Theorem 5.12 one gets the description given in
(7.1). The rest of the proposition follows from this fact, (7.2) is clear after the description of

the fibers of 7, given in [Grl] and (ii) of Theorem 3.11. The proof of (7.3) follows from (7.2)
and (3.15). O
In order to prove that the above manifold is isotropic we compare it with some complex
Lagrangian submanifolds inside M¢(n,dm) defined in [P, Section 6].
Let V — C of rank r and degree d — p + 0, and choose an ordering o € Ord(I") of the
elements of ', 0 = (Yo,1,-..,%,m). For each o and each ¢ = 1,...,m, define the vector bundle

r(m—i—1)

Voi =75V ® K c be vector bundles, and consider the variety

doe 1{0()(7 E/P(r,m)) :
(74)  Unil™ (V,0) = { (E,9) € Mo(n,dm) | @€ HU(X, Ey(p(rm) @ Kx); ¢,
EU/U(nm) = Vo,l DD Vo,m-

where we recall the notation introduced in Remark 3.14. These subvarieties are studied in |

Section 6] and it follows from [I'’, Theorem 6.7] that Unig’m) (V,0) is Lagrangian (in particular,
it is isotropic).

We prove a relation between NR’;’iV and Unig’m) (V, 0) analogous to that described in Propo-
sition 5.14.

Proposition 7.6. Let p : Mx(n,d) — Mc(n,md) be the pullback morphism. Consider the
open subvariety NRS’Q; of NRII){iV defined as its intersection with the open subset Jacd+6(Xb) of
every Hitchin fiber h;(ln(b). Then NR?Y is mapped under the pullback map (3.3) to the union

Jac

of Unig’m) (V,0) for all different o € Ord(T"), i.e.

p(NREY) =[] unifi™(v,0),
0e0rd(T)
Proof. We will check that the spectral datum of p*(E, ¢) satisfies the conditions of the spectral
datum of Unig’m) (V,0), which proves the statement.
Let L € Jac™(X}) be the spectral datum of (E,¢) € NRI;’iV. By Cartesianity of the square
in (3.10), we know that L = ¢ Le Jac(Xj) is the spectral datum for (E, @) := p*(E, ¢). Also,
Cartesianity of (3.21) implies that

vEL = GviL.
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By (7.1), v L equals v*J;, with J; € 3}, . So, choosing an ordering o € Ord(I"), we write
(7.5) L = Gy T = ((1017)* Tis - (Yom)* Ti).-
Since the spectral data L satisfies (7.5), it is then a line over Cy = Uyer

(@) 18 (7/7)*TJi- Then, using the order o we can set Z; = [J/2; and

Cy(a) Whose

restriction to any C,

Ej — ker(L — | z;)- This defines a filtration of Oc;
OCZ1cl~L2c---ch=z.

Taking the pushforward of this filtration to C provides a filtration
OCEN/’lcE’lc---CENJm:E’

preserved by the Higgs field, and whose graded part gr(E) is precise @, V; appearing in the

(r,m)

definition of Uniy™""(V, 0). Then, (E, ) lies in some Uni(cr’m) (V,0) and the proof is completed.
Alternatively, checking that the line bundles in (7.5) satisfy [P, Assumption 1|, we may
apply [P, Proposition 6.6] to conclude. O

We can finally prove the main theorem of this section, whose proof mimics that of Theo-
rem 5.15 and is thus omitted.

Theorem 7.7. The manifold NR gn’lv 1s Lagrangian.

Proof. Isotropicity is proved as in Theorem 5.15 making use in the proof of Proposition 7.6

instead of Proposition 5.14, and recalling that the subvarieties Unig’m) (V, 0) are isotropic. Then,

the proof follows from (7.3). O

The question of how to produce hyperholomorphic bundles M (r, d) dual to the (BAA)-brane
supported on a Lagrangian multisection 3.y, associated to a very stable bundle is being studied
by Hausel and Hitchin [HH].
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