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UNRAMIFIED COVERS AND BRANES ON THE HITCHIN SYSTEM

EMILIO FRANCO, PETER B. GOTHEN, ANDRÉ OLIVEIRA, AND ANA PEÓN-NIETO

Abstract. We study the locus of the moduli space of GLpn,Cq-Higgs bundles on a curve given
by those Higgs bundles obtained by pushforward under a connected unramified cover. We equip
these loci with a hyperholomorphic bundle so that they can be viewed as BBB-branes, and we
introduce corresponding BAA-branes which can be described via Hecke modifications. We
then show how these branes are naturally dual via explicit Fourier–Mukai transform (recall
that GLpn,Cq is Langlands self dual). It is noteworthy that these branes lie over the singular
locus of the Hitchin fibration.

As a particular case, our construction describes the behavior under mirror symmetry of the
fixed loci for the action of tensorization by a line bundle of order n. These loci play a key role
in the work of Hausel and Thaddeus on topological mirror symmetry for Higgs moduli spaces.
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1. Introduction

1.1. In a nutshell. Among the many fundamental contributions of Narasimhan and Ramanan
to the study of moduli of vector bundles on curves are the Hecke correspondence [NR1, NR2]
and the study of generalized Prym varieties as fixed points [NR3]. In this paper we use these
ideas to explore mirror symmetry for the moduli space of Higgs bundles in the spirit of the
seminal work of A. Kapustin and E. Witten [KW]. More precisely, we exhibit pairs of dual
branes for the Langlands self dual group GLpn,Cq. The interest of our construction relies on
two aspects: firstly the branes we consider are sheaves (rather than just submanifolds) and the
duality is realized via an explicit Fourier–Mukai transform; secondly, we are making progress
in the understanding of mirror symmetry in the singular locus of the Hitchin system, since the
branes lie entirely over this locus. As far as we know, this is the first example of dual branes
lying over the singular locus, where mirror symmetry is explicitly realized by a Fourier–Mukai
transform. Finally, it is also important to note that among the branes we construct are the
fixed loci under tensorization by an order n line bundle, central in the work of Hausel and
Thaddeus [HT] on topological mirror symmetry, so our construction ought to be important in
a deeper understanding of the topological mirror symmetry phenomenon. In the remainder of
this section, we explain our constructions and results in more detail.

1.2. Context. N. Hitchin introduced in [Hi1] Higgs bundles over a smooth projective complex
curve X of genus g ě 2 as solutions to certain equations obtained by dimensional reduction
of the self-dual equations on a 4-manifold. These are pairs pE,ϕq, where E is a holomorphic
vector bundle over X and ϕ is a holomorphic one-form with values in EndpEq. The moduli
space MXpn, dq of Higgs bundles of rank n and degree d is a holomorphic symplectic manifold
carrying a hyperkähler metric. Moreover, it admits the structure of an algebraically completely
integrable system given by the Hitchin map hX,n : MXpn, dq ÝÑ BX,n. Here the Hitchin base
BX,n is an affine space whose dimension is half that of MXpn, dq, and the components of hX,n

are the coefficients of the characteristic polynomial of ϕ. The fiber of hX,n over a generic point
of the Hitchin base is a torsor for an abelian variety, namely the Jacobian of an associated
spectral curve.

The concept of a G-Higgs bundle can be defined for any complex (and even real) reductive
Lie group G. In these terms, the above definition becomes that of a GLpn,Cq-Higgs bundle.
The Hitchin map can also be defined in this generality, and it has been shown that it is an
algebraically completely integrable system for any complex reductive Lie group G [Hi2, Fa, Sco,
DG].

A new development arose with the discovery by T. Hausel and M. Thaddeus [HT] of a close
relation between Higgs bundles, mirror symmetry and the Langlands correspondence. They
proved that the moduli spaces of Higgs bundles for the group SLpn,Cq and its Langlands dual
group PSLpn,Cq form a pair of SYZ-mirror partners [SYZ], in the sense that the respective
Hitchin maps have naturally isomorphic bases and their fibers over corresponding points are,
generically, half-dimensional torsors for a pair of dual abelian varieties. This was subsequently
generalized by N. Hitchin [Hi4] for the self-dual group G2 and then by R. Donagi and T. Pantev
[DP] for any pair pG, LGq of Langlands dual groups. The duality is reflected by a Fourier–Mukai
transform between the moduli spaces interchanging fibers of the Hitchin map over corresponding
points in the base. These dualities were obtained over the locus of the Hitchin base where the
corresponding spectral curves are smooth.

As mentioned above, the moduli space MXpn, dq is hyperkähler. This means that it carries
three natural complex structures I1, I2 and I3 verifying the quaternionic relations and a metric
which is Kähler with respect to all three holomorphic structures. In the present case, I1 is the
natural complex structure on the moduli space of Higgs bundles MXpn, dq, while the complex
structures I2 and I3 “ I1I2 arise via the non-abelian Hodge Theorem, which identifies MXpn, dq
with the moduli space of projectively flat GLpn,Cq-connections (see [Hi1, Si1]).

A. Kapustin and E. Witten considered in [KW] certain special subvarieties of MXpn, dq,
equipped with special sheaves. The pair composed by such a subvariety and the corresponding
sheaf is called a brane. For each of the complex structures on MXpn, dq a brane is classified
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as follows: it is of type A if it is a Lagrangian subvariety with respect to the corresponding
Kähler form and the sheaf over it is equipped with a flat connection, and it is of type B if it is a
holomorphic subvariety and the sheaf over it is also holomorphic. Thus, for instance, a pBBBq-
brane is a subvariety equipped with a sheaf, holomorphic with respect to all three complex
structures I1, I2 and I3; in other words, it is a hyperholomorphic subvariety equipped with a
hyperholomorphic sheaf (this is a sheaf with a connection whose curvature is of type p1, 1q with
respect to all complex structures). A pBAAq-brane is a subvariety which is holomorphic with
respect to I1, and Lagrangian with respect to the Kähler forms ω2 and ω3 associated to I2 and
I3 (hence complex Lagrangian for Ω1 “ ω2 ` iω3), and which in addition supports a flat vector
bundle. There are only two other possible types of branes on MXpn, dq, namely pABAq- and
pAABq-branes. Again all this holds for any complex Lie group and not just GLpn,Cq.

According to [KW], mirror symmetry conjecturally interchanges pBBBq-branes and pBAAq-
branes, and mathematically this duality should again be realised via a Fourier–Mukai transform
(in complex structure I1). The support of the pBAAq-brane should depend not only on the
support of the dual pBBBq-brane but also on the hyperholomophic sheaf over it (and vice-
versa). A similar story holds for pairs of pABAq-branes and also for pairs of pAABq-branes.

Since Kapustin and Witten’s paper—and because of it—an intense study of several kinds of
branes on Higgs bundle moduli spaces has been carried out. Some examples may be found in
[Hi5, BS1, BGP, HeS, BCFG, Hi6, Ga, FJ, BS2, FP, B, HMP] (see also [AFES] for a survey
on this subject). Most of these works mainly focus either on the smooth locus of the Hitchin
system (exceptions are [BS2, FP, B]) or only deal with the support of the branes and not with
the sheaves on it (exceptions are [Hi5, Hi6, Ga, FJ, FP]).

1.3. Our construction. Starting from a connected unramified cover p : C ÝÑ X of degree n
and Galois group Γ, we introduce in this paper new types of pBBBq-branes and pBAAq-branes
on MXpn, dq, the moduli space for the self-dual group GLpn,Cq. As required in the general
picture, our pBBBq-branes come equipped with flat, hence hyperholomorphic, bundles. We
explicitly prove (when d “ 0) that their (fiberwise) Fourier–Mukai transform generically yields
a sheaf supported exactly over the support of our pBAAq-brane. As expected, the support of
the pBAAq-brane depends on the hyperholomorphic bundle over the pBBBq-brane.

These branes are supported on a subspace Bp Ă BX,n of the singular locus of the Hitchin
system. For a dense open subset Bp

ni Ă Bp of nodal and integral spectral curves, the normaliza-
tion of these curves is C itself. Since p : C ÝÑ X is unramified, Bp

ni is, by definition, contained
in the so-called endoscopic locus of hX,n (cf. [HPa, Ngo]). So our construction (more precisely,
its analogue for the Langlands dual groups SLpn,Cq and PSLpn,Cq) may eventually be relevant
in the context of geometric endoscopy, introduced by E. Frenkel and E. Witten in [FW].

In the following we outline our construction in more detail, starting with the pBBBq-branes.
Fix the rank n to coincide with the degree of p and set MXpn, dqp to be the locus of Higgs
bundles obtained as a pushforward under p of Higgs bundles in MCp1, dq – T ˚ JacdpCq. Let
Bp be the image of MXpn, dqp under the Hitchin map hX,n : MXpn, dq ÝÑ BX,n. As a direct
consequence of non-abelian Hodge theory, one concludes that MXpn, dqp is a hyperholomorphic
subvariety. The pushforward by p yields an isomorphism between MXpn, dqp and the quotient of
T ˚ JacdpCq by the Galois group, acting by pullback. From this, one defines a hyperholomorphic
line bundle L over MXpn, dqp, naturally associated to a flat line bundle L onX. We call the pair
pMXpn, dqp,L q a rank 1 Narasimhan–Ramanan pBBBq-brane. We represent it by pBBBqp

L
and

write pBBBqp,Lni for its restriction to Bp
ni. More generally, we can construct a rank n coherent

and hyperholomorphic sheaf F on MXpn, dqp which canonically associated to a flat line bundle
F over C, and we call the pair pMXpn, dqp,F q a rank n Narasimhan–Ramanan pBBBq-brane
and represent it by pBBBqp

F
.

Let p : C ÝÑ X be a Galois Zn-cover, and let ξ P Zn be the standard generator. Parallel
transport of the lifts from X to C provides a line bundle Lξ P Jac0pXq of order n. In this
case, it basically follows from [NR3] that the locus MXpn, dqp coincides with the subvariety
MXpn, dqξ Ă MXpn, dq of points pE,ϕq fixed by tensorization of by Lξ, i.e. pE,ϕq – pEbLξ, ϕq.
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The study of MXpn, dqξ was our original motivation. So this justifies the name chosen for the
pBBBq-branes appearing in this paper.

If our pBBBq-branes are intimately related to the work of Narasimhan–Ramanan in [NR3],
the construction of our pBAAq-branes is closely linked to their work on Hecke modifications of
vector bundles published in [NR1, NR2]. Hecke modifications in the context of Higgs bundles
have previously appeared in several papers; see, for example, [Hi7, HR, Ra, Wi, W]. Before
describing the construction, we recall that under certain assumptions on the values of the rank
and the degree, there exists a Hitchin section on the moduli space MCpr, d ` δq constructed
out of a line bundle J P Jacd`δpCq. The pushforward under p defines a Hitchin–type section of

MXpn, d`δqp ÝÑ Bp. We define the subvariety NR p,J
ni Ă MXpn, dq of those Higgs bundles over

B
p
ni obtained as Hecke modifications of this Hitchin–type section at the divisor of singularities

of the corresponding integral and nodal spectral curve (which has length δ) classified by Bp
ni.

The notation we use for this subvarieties is chosen to recognize the pioneer work Narasimhan

and Ramanan on Hecke modifications. We prove next that the subvarieties NR p,J
ni are complex

Lagrangian with respect the holomorphic symplectic form Ω1 “ ω2 ` iω3 on MXpn, dq. This
shows that this subvariety is the support of a pBAAq-brane on MXpn, dq, when endowed with
a flat bundle.

Our construction of NR p,J
ni (for d “ 0 and p of degree n) was aimed at obtaining the support

of a pBAAq-brane dual to the rank 1 pBBBq-brane pBBBqp
L
, for an appropriate choice of the

line bundle J . Towards this goal, we provide an extensive study of the spectral data of the

Higgs bundles appearing in NR p,J
ni and in MXpn, dqp, the support of pBBBqp

L
. For a given

b P Bp
ni, let Xb be the corresponding spectral curve and νb : C ÝÑ Xb the normalization. Over

the Hitchin fiber associated to Xb, the spectral data in NR p,J
ni are those contained in the closure

of the preimage of J by the pull-back under νb. On the other hand, the spectral data contained
in MXpn, dqp are those given by pushforward under νb. This paves the way for our main result,
Theorem 6.5, which is described below.

Theorem. Let p : C ÝÑ X be a connected unramified n-cover. Consider the moduli space
MXpn, 0q.

(i) Let J “ p˚pL b K
pn´1q{2
X q. The (fiberwisewise) dual of the rank 1 Narasimhan-Ramanan

pBBBq-brane pBBBqp
L
(restricted to the locus of nodal and irreducible spectral curves) is

the pBAAq-brane supported on NR p,J
ni , and whose flat bundle satisfies (6.28).

(ii) Let J “ Fbp˚K
pn´1q{2
X . The (fiberwise) dual of the rank n Narasimhan-Ramanan pBBBq-

brane pBBBqp
F

(restricted to the locus of nodal and irreducible spectral curves) is the

pBAAq-brane supported on NR p,J
ni , and whose flat bundle satisfies (6.30) .

It is important to note that this duality is proved by an explicit fiberwise Fourier–Mukai
transform, on the fibers over Bp

ni, mapping the hyperholomorphic sheaf to a sheaf supported

on NR p,J
ni . This Fourier–Mukai transform is carried out using the autoduality of compactified

Jacobians of integral curves with planar singularities, from the general results of D. Arinkin [Ar].

It uses a Hitchin section (which embeds Bp
ni as a subvariety of NR p,J

ni ) to identify Jac
δ
pXbq

with the corresponding Jac
0
pXbq, and then apply Arinkin’s Fourier–Mukai functor. In order to

explicitly do it, we relate this functor with the classical Fourier–Mukai functor of Jac δpCq, via
the pullback and the pushforward maps induced by the normalization morphism νb : C ÝÑ Xb.

It is worth noticing in this case that pBBBqp
F

appears as the pushforward of pBBBq-brane
pF ,∇F q ÝÑ MCp1, 0q supported over the whole moduli space, where F is the pullback under
MCp1, 0q ÝÑ Jac0pXq of the flat line bundle over Jac0pXq associated to F ÝÑ X. Mirror
symmetry conjectures that pF ,∇F q ÝÑ MCp1, 0q is dual to the pBAAq-brane given by the

Hitchin section associated to F . As we said before, pBAAqp,Fni can be interpreted in terms of
Hecke modifications of the pushforward of this Hitchin section. This suggests a deep relation
between duality of branes in MXpn, 0q, duality in MCp1, 0q and the Hecke operators appearing
in geometric Langlands conjecture (see [DP]). For d non-multiple of n a similar result should
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hold, but the duality should require a gerbe to work out properly. We also note that the results
in this paper provide evidence for the dualities suggested in [FP].

Remark 1.1. We actually construct the support of the pBBBq-brane (and describe its spectral
data) in a wider generality, namely in the case where the unramified cover p : C ÝÑ X is of
degree m not necessarily equal to the rank n. In such a case, one must consider polystable
Higgs bundles over C of rank r, such that n “ mr. It is however unclear how to endow such
pBBBq-branes with hyperholomorphic bundles.

Similarly, we construct NR p,J
ni in the more general setup of a degree m cover p : C ÝÑ X. In

the absence of a Hitchin section on MCpr, dq we make use of very stable bundles on C, which
define natural complex Lagrangian multisections of the Hitchin fibration. We explore this in
Section 7.

As mentioned above, when the Galois group is cyclic, the support of our pBBBq-branes is
MXpn, dqξ. It is interesting to notice that MXpn, dqξ plays a central role in the proof by T.
Hausel and M. Thaddeus [HT] of topological mirror symmetry for the moduli spaces of Higgs
bundles for the Langlands dual groups SLpn,Cq and PSLpn,Cq for n “ 2, 3 (the general case
has recently been proved by M. Groechenig, D. Wyss and P. Ziegler [GWZ], and, more recently,
by D. Maulik and J. Shen [MS]). One might thus hope that further study of our dual branes in
this setting would provide a better geometric understanding of the calculation by Hausel and
Thaddeus. We hope to come back to this question in a future article.

1.4. Organization of the paper. Here is a brief description of the organization of the paper.
In Section 2 we recall some background material on the Hitchin system. In Section 3 we study the
locus MXpn, dqp, including the corresponding spectral data, for p an unramified cover of degree
m, withm dividing n. Section 4 deals with the construction and description of the Narasimhan–

Ramanan pBBBq-branes. In Section 5 we construct the complex Lagrangian subvarieties NR p,J
ni ,

which support pBAAq-branes. In Section 6, after recalling some background facts on the Fourier–
Mukai transform for compactified Jacobians of integral curves and describing in Section 6.2 the
role of the normalization of the curve in the transform, we prove our main duality result, namely
Theorem 6.5. Finally, in Section 7, we generalize parts of the previous study to the case where
p : C ÝÑ X has degree strictly less than n and no Hitchin section exists on MCpr, dq.

Acknowledgments. The authors thank D. Arinkin, B. Collier, O. Garcia-Prada, T. Hausel, N.
Hitchin, C. Pauly and R. Wentworth for their interest and useful discussions, and also thank
the referee for helpful remarks and corrections.

2. Higgs bundles and the Hitchin system

The purpose of this section is to recall the basics on Higgs bundle moduli spaces which will
be used in the remaining part of the paper.

2.1. Higgs bundles and their moduli space. Let X be a smooth projective curve over C,
of genus g ě 2. A Higgs bundle over X is a pair pE,ϕq given by a holomorphic vector bundle
E ÝÑ X, and ϕ P H0pX,EndpEq b KXq, where KX is the canonical bundle. The section ϕ

is called the Higgs field. The rank and degree of a Higgs bundle are those of the underlying
vector bundle E. Such a rank n Higgs bundle is also said to be a GLpn,Cq-Higgs bundle.
Occasionally, we shall refer to SLpn,Cq-Higgs bundles, in which E is required to have a fixed
given determinant bundle and ϕ to be traceless.

Let MXpn, dq denote the moduli space os S-equivalence classes of semistable rank n and
degree d Higgs bundles on X. Its points are represented by the unique polystable representative
of the corresponding S-equivalence class. It is a quasi-projective variety of complex dimension

(2.1) dimMXpn, dq “ 2n2pg ´ 1q ` 2.

The closely related de Rham moduli space MdR
X pn, dq is the moduli space of connections with

constant central curvature on a fixed C8 vector bundle over X of rank n and degree d. Non-
abelian Hodge theory [Hi1, Si2, Si3, Do, Co] establishes the existence of a homeomorphism
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between these spaces, MXpn, dq – MdR
X pn, dq. This homeomorphism restricts to a diffeomor-

phism on the smooth locus of MXpn, dq, whose underlying manifold is a hyperkähler manifold
[Hi1] with complex structures

I1, I2 and I3 “ I1I2.

Here I1 is the complex structure coming fromMXpn, dq and I2 is the one coming fromMdR
X pn, dq.

Let also ωj be the Kähler form associated to Ij and ΩX,j “ ωj`1 ` iωj´1 the corresponding
holomorphic symplectic form.

2.2. The Hitchin system. We recall here the spectral construction given in [Hi2, BNR]. Let
pP1, . . . , Pnq be a basis of GLpn,Cq-invariant polynomials with degpPiq “ i; for instance, we
could take Pipxq “ p´1qitrp^ixq. The Hitchin map or Hitchin fibration is

(2.2)
hX,n : MXpn, dq ÝÑ BX,n :“

Àn
i“1H

0pX,Ki
X q

pE,ϕq ÞÝÑ pP1pϕq, . . . , Pnpϕqq .

Note that dimpBX,nq “ n2pg ´ 1q ` 1 “ 1
2
dimpMXpn, dqq.

Consider the total space |KX | of the canonical bundle and the surjective morphism π :
|KX | ÝÑ X. The pullback bundle π˚KX ÝÑ |KX | has a tautological section λ. Given an
element b P BX,n, with b “ pb1, . . . , bnq, the spectral curve Xb Ă |KX | is the vanishing locus of
the section of π˚Kn

X given by

(2.3) λn ` π˚b1λ
n´1 ` ¨ ¨ ¨ ` π˚bn´1λ` π˚bn P H0p|KX |, π˚Kn

Xq.

The restriction of π : |KX | ÝÑ X to Xb yields a ramified degree n cover denoted by

(2.4) πb : Xb ÝÑ X.

For generic b, the spectral curve Xb is smooth. For any b, the (arithmetic) genus of Xb is [Hi2]

gpXbq “ n2pg ´ 1q ` 1.

Additionally, πb,˚OXb
– OX ‘K´1

X ‘ ¨ ¨ ¨ ‘K1´n
X , thus

degpπb,˚OXb
q “ ´npn´ 1qpg ´ 1q.

Notation 2.1. For the remainder of the paper, let us denote the degree of the ramification divisor
of the spectral curve Xb ÝÑ X in BX,n, by

(2.5) δ :“ npn´ 1qpg ´ 1q.

Given a rank 1 torsion-free sheaf F over Xb of degree d` δ, we have that

(2.6) EF :“ π˚F

is a vector bundle on X of rank n and degree d. Tensorization by the tautological section yields

µF : F
bλ
ÝÝÑ F b π˚

bKX .

Since π is an affine morphism, µF corresponds to a Higgs field

(2.7) ϕF :“ πb,˚µF : EF ÝÑ EF bKX

on EF with characteristic polynomial determined by b P BX,n [BNR, Sch, Si3]. The pair pXb,Fq
is said to be the spectral datum of the Higgs bundle pEF , ϕF q. This establishes a one-to-one
correspondence, sometimes called spectral correspondence, between the Hitchin fiber h´1

X,npbq
and the moduli space of rank 1 torsion-free sheaves on Xb of degree d ` δ and linearization
naturally induced from the base [Si3, Corollary 6.9], and so

(2.8) h´1
X,npbq – Jac

d`δ
pXbq.

The construction of Jac
d`δ

pXbq follows from [Si2, Theorem 1.21] and it is a compactification
of the Jacobian Jac d`δpXbq of degree d ` δ line bundles on Xb, hence we refer to it as the
compactified Jacobian. Denote by X ÝÑ BX,n the family of n-to-1 spectral curves inside
|KX | and endow it with a linearization induced from a linearization on X. Thanks again to

[Si2, Theorem 1.21] one can consider the relative compactified Jacobian Jac
d`δ
BX,n

pX q. The



UNRAMIFIED COVERS AND BRANES ON THE HITCHIN SYSTEM 7

spectral correspondence promotes to the whole moduli space [Si3, Section 6], giving rise to the
isomorphism

(2.9)
SX,n : Jac

d`δ
BX,n

pX q ÝÑ MXpn, dq

F ÝÑ Xb ÞÝÑ pEF , ϕF q.

When the degree is a multiple of the rank, d “ nd1, the Hitchin fibration hX,n : MXpn, nd1q ÝÑ

BX,n admits a so-called Hitchin section associated to any line bundle L P Jac d
1`δ{npXq. This

section is constructed by assigning to each b P B the Higgs bundle whose spectral datum is
given by the line bundle π˚

bL ÝÑ Xb. In other words, we have a morphism

(2.10)
σX,L : BX,n ÝÑ MXpn, nd1q

b ÞÝÑ pπb,˚π
˚
bL, πb,˚µπ˚

b
Lq.

Hitchin [Hi3] considered such sections for L “ K
pn´1q{2
X . In this case we omit the reference to

the line bundle in our notation and we simply denote the corresponding Hitchin section by σX .

3. Unramified covers and Higgs bundles

3.1. Unramified covers and hyperholomorphic subvarieties in the moduli space. Let
p : C ÝÑ X be a connected unramified cover of degree m and Galois group Γ. In this section,
we study the subvarieties that arise in the moduli space of Higgs bundles out of this geometrical
setting. Some of the following results have been already obtained in [HPa].

Let KC be the canonical bundle of C, and let

η : |KC | ÝÑ C

be the corresponding projection. As p is unramified

(3.1) KC – p˚KX

and
|KC | – |KX | ˆX C,

hence we have a Cartesian diagram

(3.2) |KC |
η //

q

��

C

p

��
|KX |

π
// X,

q being the obvious projection. In particular, q is an unramified Γ-cover and η : |KC | ÝÑ C

is Γ-equivariant. Note that the automorphism γ : C ÝÑ C, associated to any element of the
Galois group, gives rise to an automorphism γ : |KC | ÝÑ |KC | that we still denote by γ by
abuse of notation.

By (3.1), the pullback under p : C ÝÑ X of a Higgs bundle is again a Higgs bundle. Moreover,
polystability is preserved (e.g. because it sends solutions to the Hitchin equations on X to
solutions to the Hitchin equations on C, cf. [Hi1]). So we have a morphism

(3.3)
p̂ : MXpn, dq ÝÑ MCpn,mdq

pE,ϕq ÞÝÑ pp˚E, p˚ϕq

between the moduli spaces.

Remark 3.1. The image of p̂ lies in MCpn,mdqΓ, the fixed point locus under the induced Galois
group action on MCpn,mdq by pullback.

By the projection formula and (3.1), if pF, φq is a Higgs bundle over C of rank r, then
pp˚F, p˚φq is a rank n “ mr Higgs bundle over X. Since p is unramified and X and C are
proper, p is finite, so by [NR3, Lemma 2.1 (ii)] we have

(3.4) p˚p˚pF, φq “
à

γPΓ

γ˚pF, φq.
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Consider the moduli space MCpr, dq of rank r and degree d Higgs bundles over C.

Proposition 3.2. Let p : C ÝÑ X be a connected unramified m-cover with Galois group Γ and
let n “ mr. The pushforward under p,

(3.5)
p̌ : MCpr, dq ÝÑ MXpn, dq

pF, φq ÞÝÑ pp˚F, p˚φq,

is a hyperholomorphic finite morphism. Moreover, two rank r Higgs bundles over C have the
same image if and only if they are in the same orbit under the Γ-action by pullback, so

MXpn, dqp :“ Impp̌q – MCpr, dq{Γ.

Proof. It follows from [NR3, Proposition 3.1] that p̌ has image contained in the semistable
locus and so it is well defined. Moreover, it is hyperholomorphic because it corresponds to
pushforward of projectively flat bundles under the Non-abelian Hodge Theorem.

Since p is unramified, it is obvious that two rank r Higgs bundles over C in the same orbit
under the Γ-action by pullback will give the same image under p̌. Thanks to (3.4), we see
that they have the same image only if they lie in the same Γ-orbit, so MXpn, dqp – MCpr, dq{Γ.
Note that MCpr, dq{Γ is naturally a geometric quotient since MCpr, dq is quasi-projective, hence
MCpr, dq ÝÑ MCpr, dq{Γ is finite. Thus p̌ is a finite morphism as it commutes with the
composition of the isomorphism MXpn, dqp – MCpr, dq{Γ with the finite quotient, which is a
finite morphism. �

3.2. The Hitchin map and unramified covers. Fix a connected unramified cover p : C ÝÑ
X of degree m, with Galois group Γ. In this section we study the restriction of the Hitchin map
to MXpn, dqp, with n a multiple of m. Let Bp :“ hX,npMXpn, dqpq Ă BX,n to be the image
under the Hitchin map of the image of p̌.

Notation 3.3. Let r “ n{m. We shall employ the same notation for the Hitchin system in
MCpr, dq as the one used in Section 2.2. So let

hC,r : MCpr, dq ÝÑ BC,r “
rà

i“1

H0pC,Ki
Cq

be the Hitchin map. For any given a “ pa1, . . . , arq P BC,r, denote by Ca the corresponding
spectral curve in |KC |, with projection map

(3.6) ηa “ η|Ca : Ca ÝÑ C,

where η is defined in (3.2). The curve Ca is defined by the equation

(3.7) λ̂r ` η˚a1λ̂
r´1 ` ¨ ¨ ¨ ` η˚ar “ 0,

with λ̂ the tautological section of η˚KC . Set γpaq :“ γ˚a for every element γ P Γ, and write
γpaq “ pγpaq1, . . . , γpaqrq where γpaqi P H0pC,Ki

Cq.

The next proposition establishes the behavior of the Hitchin map under pullback by the
Galois group.

Proposition 3.4. The Hitchin map hC,r : MCpr, dq ÝÑ BC,r is equivariant for the action of
the Galois group Γ of p : C ÝÑ X by pullback. Furthermore, for any a P BC,r, one has the
Cartesian diagram

(3.8) Cγpaq
γ //

ηγpaq

��

Ca

ηa

��
C

γ
// C.

In particular, for any γ P Γ, the spectral curves Cγpaq and Ca are isomorphic.
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Proof. Let pF, φq be a Higgs bundle in MCpr, dq such that hC,rpF, φq “ a P BC,r. Let Pi be
an invariant polynomial of degree i, and observe that Pipγ

˚φq “ γ˚Pipφq. It then follows that
hC,rpγ˚pF, φqq “ γ˚hC,rpF, φq and the first part follows.

Since the spectral curve Ca Ă |KC | is given by the vanishing of (3.7), then Cγpaq is given by
the vanishing of the pullback of (3.7) under γ. Note that pγpaqqi “ γ˚ai and that the embedding
Ca ãÑ |KC | is Γ-equivariant (so that η˚γ˚ “ γ˚η˚). Therefore, given y P Cγpaq, by definition of
pullback, one has that ´

λ̂r ` η˚pγ˚aq1λ̂
r´1 ` ¨ ¨ ¨ ` η˚pγ˚aqr

¯
pyq “ 0

is equivalent to ´
λ̂r ` pη˚a1qλ̂r´1 ` ¨ ¨ ¨ ` η˚ar

¯
pγpyqq “ 0

because λ̂ is Γ-invariant, since λ̂ “ q˚λ, where q : |KC | ÝÑ |KX | and λ is the tautological section
of π˚KX . Thus γpyq P Ca and the commutativity of (3.8) holds. The rest of the proposition
follows from this. �

Consider the moduli space of rank n and degree d Higgs bundles on C and its associated
Hitchin map

hC,n : MCpn, dq ÝÑ BC,n “
nà

i“1

H0pC,Ki
C q.

By (3.1), it follows that p induces

(3.9) p˚ : BX,n ÝÑ BC,n.

Lemma 3.5. The induced map p˚ : BX,n ÝÑ BC,n is injective and the following diagram com-
mutes, where p̂ is defined in (3.3):

MXpn, dq
p̂ //

hX,n

��

MCpn,mdq

hC,n

��
BX,n

� � p˚

// BC,n.

Proof. Since p is a local isomorphism, p˚ : H0pX,Ki
X q ÝÑ H0pC,Ki

Cq is injective for every i,
so p˚ : BX,n ÝÑ BC,n is injective as well. The commutativity of the diagram is immediate from
functoriality of pullback. �

Proposition 3.6. Let b P BX,n and b̃ “ p˚b P BC,n. Let Xb Ă |KX | and Cb̃ Ă |KC | be the
corresponding spectral curves. Then

C
b̃

– Xb ˆX C

and there is a Cartesian diagram

(3.10) C
b̃

η
b̃ //

q
b̃

��

C

p

��
Xb πb

// X,

where q
b̃
, η

b̃
and πb are the restrictions of the maps from (3.2). In particular,

(i) Xb is reduced if and only if C
b̃
is reduced,

(ii) q
b̃
: C

b̃
ÝÑ Xb is a connected unramified Γ-cover, and

(iii) η
b̃
is a Γ-equivariant ramified degree n cover, whose ramification locus is the pullback of

that of πb.

Proof. View the curve Xb as a divisor in |KX |. First we prove that the pullback by q : |KC | ÝÑ
|KX | of this divisor is Cb̃. Write b “ pP1pϕq, . . . , Pnpϕqq for some Higgs bundle pE,ϕq in the
Hitchin fiber of b. Then Xb Ă |KX | is defined by

λn ` π˚P1pϕqλn´1 ` ¨ ¨ ¨ ` π˚Pnpϕq “ 0
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where we recall that λ P H0p|KX |, π˚KXq is the tautological section. Thanks to Lemma 3.5,
C
b̃
is defined by

(3.11) λ̂n ` η˚p˚P1pϕqλ̂n´1 ` ¨ ¨ ¨ ` η˚p˚Pnpϕq “ 0,

where λ̂ P H0p|KC |, η˚KCq is the tautological section. Clearly λ̂ “ q˚λ and so, in view of (3.2),
the equation defining C

b̃
is

q˚λn ` q˚π˚P1pϕqq˚λn´1 ` ¨ ¨ ¨ ` q˚π˚Pnpϕq “ 0.

This shows that C
b̃

“ q˚Xb as desired.
Viewing Xb ˆX C inside |KX | ˆX C – |KC | one readily sees that it satisfies (3.11) and,

therefore, by the universal property of the fiber product, it is isomorphic to q˚Xb. The rest of
the lemma follows from this observation. �

We now study the relation of p̂˝ p̌ : MCpr, dq ÝÑ MCpn,mdq with the corresponding Hitchin
maps (recall that n “ mr).

Proposition 3.7. Let pF, φq be a Higgs bundle of rank r over C and consider p̂ ˝ p̌pF, φq. Let

a P BC,r and b̃ P BC,n be the image under the Hitchin map of pF, φq and p̂ ˝ p̌pF, φq respectively.
Then, the spectral curve Cb̃ Ă |KC | is given by the vanishing of the section

ź

γPΓ

´
λ̂r ` η˚γpaq1λ̂

r´1 ` ¨ ¨ ¨ ` η˚γpaqr

¯
P H0p|KC |, η˚Kn

Cq.

In particular Cb̃ is reduced if and only if Ca is reduced and γpaq ‰ γ1paq for all distinct γ, γ1 P Γ
(i.e., if a P BC,r is not fixed by any non-trivial element of the Galois group). In that case C

b̃
is

reducible and

(3.12) C
b̃

“
ď

γPΓ

Cγpaq.

Proof. From (3.4), one has that C
b̃
is given by the vanishing of

λ̂n ` η˚P1

´ à

γPΓ

γ˚φ
¯
λ̂n´1 ` ¨ ¨ ¨ ` η˚Pn

´ à

γPΓ

γ˚φ
¯

i.e., of ź

γPΓ

´
λ̂r ` η˚P1pγ˚φqλ̂r´1 ` ¨ ¨ ¨ ` η˚Prpγ˚φq

¯
.

The rest of the proposition follows immediately. �

We can now describe the subspace Bp “ hX,npMXpn, dqpq Ă BX,n.

Proposition 3.8. There exists a map,

ζ : BC,r ÝÑ Bp,

making the Γ-equivariant diagram

(3.13) MCpr, dq
p̌ //

hC,r

��

MXpn, dqp

hX,n

��
BC,r

ζ
// Bp

commutative, with Γ acting by pullback on MCpr, dq and BC,r, and trivially on MXpn, dqp and
Bp. The map ζ induces an isomorphism

(3.14) Bp – BC,r{Γ.

Hence,

(3.15) dimpBpq “ rnpg ´ 1q ` 1.
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Proof. By Proposition 3.4, p̂ ˝ p̌ induces the morphism BC,r ÝÑ BC,n defined by

pP1pφq, . . . , Prpφqq ÞÑ

ˆ
P1

´ à

γPΓ

γ˚φ
¯
, . . . , Pn

´ à

γPΓ

γ˚φ
¯˙

.

The image of this morphism is clearly contained in p˚pBpq, and by Lemma 3.5, p˚ is injective,
so the previous map defines the map ζ : BC,r ÝÑ Bp. Explicitly,

ζpP1pφq, . . . , Prpφqq “ pP1pp˚φq, . . . , P1pp˚φqq.

The commutativity of (3.13) is immediate from construction, and so is (3.14).
Since Bp is isomorphic to the finite quotient BC,r{Γ, its dimension is

dimpBpq “ dimpBC,rq “ r2pgpCq ´ 1q ` 1.

As C ÝÑ X is an unramified m-cover, the genus of C equals gpCq “ mpg ´ 1q ` 1 and (3.15)
holds. �

Definition 3.9. Let B sm
C,r be the dense open subset of BC,r given by those points a P BC,r whose

associated spectral curve Ca is smooth. Let us also consider the Γ-invariant subset B it
C,r to be

the open subset of B sm
C,r given by those elements where Γ acts freely. Next, define B ni

C,r Ă B it
C,r

as the subset given by those curves Ca whose intersection with Cγpaq has nodal singularities, for

every γ P Γ, and such that CaXCγpaq XCγ1paq “ H for all γ1 P Γzt1, γu. Set as well Bp
it :“ B it

C,r{Γ

and Bp
ni :“ B ni

C,r{Γ. Finally, define

MXpn, dqpni :“ MXpn, dqp ˆBp B
p
ni

and

MCpr, dqni :“ MCpr, dq ˆBC,r
B ni

C,r.

Remark 3.10. Note that Bp
it parametrizes reduced curves by Propositions 3.7 and 3.6 (i). By

Theorem 3.11 (v) below, such spectral curves are integral, explaining the notation. The notation
used for Bp

ni stands for nodal and integral.

Recall that we defined δ in (2.5) as the degree of the ramification divisor of the spectral curves
in BX,n. Accordingly, we define ρ to be the degree of the ramification divisor of the spectral
curves Ca ÝÑ C in BC,r,

(3.16) ρ :“ rpr ´ 1qpgpCq ´ 1q “ npr ´ 1qpg ´ 1q.

Next, we describe the geometry of the spectral curvesXb when b lies in B
p
it. For the statement

of the following theorem, recall the notation of the Cartesian diagrams (3.10) and (3.13).

Theorem 3.11. Let a P B it
C,r and consider b “ ζpaq P Bp

it and b̃ “ p˚b P BC,n.

(i) The spectral curve C
b̃
is reduced, connected, withm “ |Γ| irreducible components tCγpaquγPΓ,

all isomorphic to each other. The singular divisor singpC
b̃
q of C

b̃
is given by the intersec-

tions of distinct components, and has degree n2pm ´ 1qpg ´ 1q. The Galois group Γ of qb̃
permutes the components of Cb̃.

(ii) The spectral curve Xb is reduced but singular. Its singular divisor singpXbq satisfies
q˚
b̃
singpXbq “ singpCb̃q. In particular

(3.17) degpsingpXbqq “ δ ´ ρ “ npn´ rqpg ´ 1q.

If x P Xb is a singularity, and y P Cγ1paq X Cγ2paq (with γ1 ‰ γ2) is a singular point on C
b̃

mapping to x, then the m singularities of C
b̃
mapping to x are precisely the ones of the

form γpyq P Cγγ1paq X Cγγ2paq, for all γ P Γ.
(iii) Let Ca Ă Cb̃ be an irreducible component. Let q : |KC | ÝÑ |KX | be as in (3.2). Then

qpCaq “ qapCaq “ Xb and

(3.18) νa :“ qa : Ca ÝÑ Xb
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is a normalization fitting in the commutative diagram

(3.19) Ca
ηa //

νa

��

C

p

��
Xb πb

// X.

In addition,

(3.20) νγpaq “ qγpaq “ νa ˝ γ.

(iv) The (disconnected) curve in |KC | ˆBC,r given by

rC
b̃

“
ğ

γPΓ

Cγpaq ˆ tγpaqu

is the normalization of Cb̃, where the normalization morphism ν̃b̃ :
rCb̃ ÝÑ Cb̃ is given by

projecting onto the first factor. Furthermore, the diagram

(3.21) rC
b̃

ν̃
b̃ //

rqa
��

C
b̃

q
b̃

��
Ca νa

// Xb

is Cartesian, where rqa is the unramified Γ-cover given by rqapz, γpaqq “ γ´1pzq.
(v) The spectral curve Xb is integral.

Proof. Since a is taken in B it
C,r, Cb̃

satisfies the hypothesis of the second part of Proposition 3.7.

Then, Cb̃ is reduced and reducible, decomposing as described in (3.12). Again by hypothesis,
Ca is smooth and therefore irreducible. Furthermore, Ca – Cγpaq by Proposition 3.4. Therefore,
(3.12) is, in fact, a decomposition of C

b̃
into its irreducible components and the singularities of

C
b̃
are the intersections of the distinct components,

singpC
b̃
q “

ď

γ‰γ1

Cγpaq X Cγ1paq.

Note that all the Cγpaq lie in the linear system rC inside |KC |. This has two important con-
sequences. The first one is that we can perform the count of the intersection divisor taking a
generic element of Bp

it without triple intersections of the components Cγpaq. The second one is
that two distinct components, Cγpaq and Cγ1paq, lie in the linear system of rC inside |KC |, so
their intersection is

(3.22) r2 ¨ pCq2 “ r2pgpCq ´ 1q “ 2nrpg ´ 1q.

Hence,

degpsingpC
b̃
qq “

ˆ
m

2

˙
2nrpg ´ 1q “ n2pm ´ 1qpg ´ 1q.

It follows from Proposition 3.4 that the Galois group permutes the Cγpaq. This completes the
proof of (i).

For (ii), note that by (i) and Proposition 3.6 (i), Xb is reduced. The rest follows from the
fact that q

b̃
: C

b̃
ÝÑ Xb is an unramified Γ-cover, as we have shown in Proposition 3.6 (ii).

To see (iii), we start by observing that (3.20) follows from (3.8). Then, the maps tqγpaq “
νγpaquγPΓ, have all the same image. From this, in view of (i) and the fact that qb̃ : Cb̃ ÝÑ Xb

is surjective, we conclude that qγpaq “ νγpaq is surjective for each γ P Γ. Since Ca is smooth, in
order to prove that the maps νγpaq are normalization morphisms, it now suffices to show that
one of them (say νa) is generically injective. If x P Xb does not belong to the ramification locus
singpXbq then, by (i) and (ii), each point inside the fiber q´1

b̃
pxq lies in a different irreducible

component of C
b̃
. So νa is injective over the smooth locus of Xb. The commutativity of (3.10)

concludes the proof of (iii).
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Consider now (iv). The map ν̃b̃ :
rCb̃ ÝÑ Cb̃ is a normalization morphism by the description

of Cb̃ and its singularities given in (i). To see that (3.21) is Cartesian, note that by the universal
property of fibered products there is a morphism

rCb̃
// Ca ˆXb

Cb̃ .

Since any morphism of principal bundles is an isomorphism, the statement follows.
Finally, for (v), we already know that Xb is reduced. Since Ca is smooth, it is irreducible,

thus Xb is irreducible by (iii). �

Remark 3.12. For every b P Bp
it the corresponding spectral curve Xb is normalized by a smooth

spectral curve Ca in B sm
C,r.

We introduce some notation to describe the fibers of the Hitchin map restricted to the sub-
variety MXpn, dqp. Recall that ρ is defined in (3.16) as the degree of the ramification divisor
of the spectral curves Ca ÝÑ C. Consider the pushforward under the normalization morphism
νa : Ca ÝÑ Xb defined in (3.18),

(3.23) ν̌a : Jacd`ρpCaq ÝÑ Jac
d`δ

pXbq
L ÞÝÑ νa,˚L,

where δ ´ ρ “ degpsingpXbqq by (ii) of Theorem 3.11. Any other γpaq also projects to b under
the map ζ : BC,r ÝÑ Bp, defined in Proposition 3.8, and for such γpaq, a similar map ν̌γpaq

exists as well. Furthermore, (3.20) implies that all these morphisms share the same image,

Impν̌aq “ Impν̌γpaqq.

Recall the morphism p̌ in (3.5). The following proposition describes the fibers of the Hitchin
map over Bp

it restricted to MXpn, dqp.

Proposition 3.13. Let b P Bp
it, and pick a P B it

C,r such that ζpaq “ b. Then,

(i) the first line of diagram (3.13) restricts to

(3.24)
ğ

γPΓ

Jacd`ρpCγpaqq
p̌bÝÝÑ h´1

X,npbq X MXpn, dqp,

and p̌b is an unramified cover, with the Galois group Γ acting by pullback, hence permuting
the connected components of the domain.

(ii) the intersection of MXpn, dqp with the Hitchin fiber is

(3.25) h´1
X,npbq X MXpn, dqp –

ğ

γPΓ

Jacd`ρpCγpaqq{Γ – Jacd`ρpCaq – Impν̌aq Ă Jac
d`δ

pXbq.

where the inverse of the second isomorphism is defined by assigning to L P JacdpCaq its
Γ-orbit, which can be naturally identified with an element of

Ů
γPΓ Jac

d`ρpCγpaqq{Γ.

Proof. The first statement in (i) is clear by Proposition 3.8. The union is disjoint since a is not
fixed by any element of Γ, by definition of B it

C,r. This also shows that p̌b is an unramified cover
with Galois group Γ acting by pullback.

To see that (3.25) holds, by (i) we have

h´1
X,npbq X MXpn, dqp –

ˆ ğ

γPΓ

Jac ρ`dpCγpaqq

˙
{Γ,

hence, recalling that Cγpaq – Ca by Proposition 3.4, we can choose a representative and

h´1
X,npbq X MXpn, dqp – Jac ρ`dpCaq.

Since the restriction of p̌b to Jacρ`dpCaq coincides with ν̌a, (3.25) follows. �

We finish the section with an observation that will be useful in Sections 5.3 and 7.
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Remark 3.14. It follows from (3.4) that the image of the map p̂ ˝ p̌ is contained in the Levi
subgroup Lpr,mq “ GLpr,Cqˆm associated to the parabolic subgroup Ppr,mq “ NGLpn,CqpLpr,mqq.
Denote the unipotent radical of Ppr,mq by Upr,mq and recall that Ppr,mq “ Lpr,mq ˙ Upr,mq. Note
that Lp1,nq is the Cartan subgroup of GLpn,Cq while Pp1,nq is the Borel subgroup.

Before stating the following corollary, we need to briefly introduce some notation from [FP].
Denote by Mpr,mq Ă MCpn,md1q the image of the moduli space of Lpr,mq-Higgs bundles of
multidegree pd1, . . . , d1q. When r “ 1 and m “ n, Lp1,nq is the Cartan subgroup and Mp1,nq

is called in [FP] the Cartan locus of MCpn, nd1q (and, as proved in loc. cit., it supports a
pBBBq-brane). Let Vpr,mq Ă BC,n be the image of Mpr,mq under the Hitchin map hC,n.

Corollary 3.15. The commutative diagram of Lemma 3.5 restricts to

MXpn, nd1qp
p̂ //

hX,n

��

Mpr,mq

hC,n

��
Bp �

� p˚

// Vpr,mq.

Proof. It is enough to prove that p̂ maps MXpn, dqp to Mpr,mq and this follows from (3.4). �

3.3. Cyclic covers and tensorization by torsion line bundles. We study in this section
the fixed point subvariety of MXpn, dq under tensorization by a fixed line bundle of order n. For
the moduli of vector bundles, Narasimhan and Ramanan [NR3] proved that bundles on X which
are in the image of the pushforward map from C are fixed by tensorization with all line bundles
associated to characters of the Galois group Γ. When Γ satisfies a certain technical condition
(which is the case, for example, of cyclic covers, see [NR3, Lemma 2.5]), the converse is also
true for simple bundles. Nasser [Na] proved that when Γ – Zn is cyclic, the converse holds also
for non simple bundles. The study of these fixed points in the moduli of vector bundles with
fixed determinant, has also been carried out in [GR2] and, in detail in rank n “ 2, in [GR1].

Let JacpXqrns be the subgroup of n-torsion points of the Jacobian JacpXq “ Jac0pXq of X,

JacpXqrns :“ tL P JacpXq | Ln – OXu – Z
2g
n .

For convenience of notation, we shall use different symbols for an element ξ P JacpXqrns as an
abstract group and for the corresponding order n line bundle Lξ P JacpXqrns on X.

This group acts on MXpn, dq by tensorization,

ξ : MXpn, dq ÝÑ MXpn, dq
pE,ϕq ÞÝÑ pE b Lξ, ϕq.

Denote by MXpn, dqξ the subvariety of points fixed by ξ P JacpXqrns. It is a hyperholomorphic
subvariety since tensorization by a flat line bundle is holomorphic in the three complex structures
of MXpn, dq (see [GR2] for a proof in the case of SLpn,Cq-Higgs bundles, which also applies to
the case of GLpn,Cq).

Notation 3.16. Let m be the order of Lξ in JacpXqrns, and set r “ n{m.

Then Lξ P JacpXqrms is a primitive element. Consider the projection pξ : |Lξ| ÝÑ X and let
λξ : |Lξ| ÝÑ p˚

ξLξ be the tautological section. Define Cξ to be the curve in the total space |Lξ|

given by the zero locus of the section λmξ ´ p˚
ξ1 P H0p|Lξ|,O|Lξ |q. Denote the restriction to Cξ

of the projection morphism by the same symbol,

(3.26) pξ : Cξ ÝÑ X.

Then, (3.26) is a connected unramified regular cover of X with Galois group Zm.

Remark 3.17. Reciprocally, a connected unramified regular Zm-cover p : C ÝÑ X defines a line
bundle Lp ÝÑ X of order m by setting the holonomy of Lp to be given by parallel transport of
the lifts from X to C.

We next describe all the points fixed by any ξ P JacpXqrns.
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Proposition 3.18. Let ξ P JacpXqrns be of order m and let r “ n{m. A semistable Higgs
bundle pE,ϕq P MXpn, dq is fixed under ξ if and only if it is the pushforward of an element in
MCξ

pr, dq.

Proof. Since semistability and degree are preserved under pushforward by pξ (cf. [NR3, Lemma 3.1])
and since points in the image of the pushforward are fixed (this is a direct consequence of the
projection formula), all we need to prove is that all fixed points are in such image.

Let then pE,ϕq P MXpn, dqξ. Then there exists an isomorphism

f : E
–

ÝÑ E b Lξ

such that
ϕb IdLξ

“ f b IdLξ
˝ ϕ ˝ f´1.

We can then treat the pair pE, fq as an Lξ-twisted Higgs bundle of rank n (i.e. the Higgs field
f is twisted by Lξ instead of KX). The spectral correspondence described in section 2.2 also
holds for Lξ-twisted Higgs bundles [BNR, Sch], hence establishing a one-to-one correspondence
between isomorphism classes of pairs pE, fq and their spectral datum, L ÝÑ C 1, where L is a
rank one torsion free sheaf on the corresponding spectral curve C 1 Ă |Lξ|, given by the vanishing

of the section
řn

i“1 p
˚
ξ siλ

n´i
ξ of p˚

ξL
n
ξ – O|Lξ| ÝÑ |Lξ|, where si P H0pX,Li

ξq. Since Lξ has no

global sections unless it is trivial, in which case all the global sections are constant, we find that
C 1 is given by the vanishing of

(3.27) λm¨r
ξ ` p˚

ξ smλ
m¨pr´1q
ξ ` ¨ ¨ ¨ ` p˚

ξ smr,

where si P H0pX,L
mpr´iq
ξ q “ C. We can recover f : E

–
ÝÑ E b Lξ as the pushforward of the

tensorization morphism µλξ
: L

bλξ
ÝÑ L b p˚Lξ.

Consider now the curve C 1
0 Ă |Lm

ξ | – |OX | given by

(3.28) λr0 ` p˚
0s1λ

r´1
0 ` ¨ ¨ ¨ ` p˚

0sr,

where p0 : |OX | ÝÑ X and λ0 P H0p|OX |,O|OX |q is the tautological section. Note that C 1
0 is

naturally identified with the characteristic polynomial of fm : E ÝÑ E.
Since Lm

ξ – OX , there is a morphism |Lξ| ÝÑ |Lm
ξ | given by tensorization with itself m-times.

Under this morphism, C 1 is sent to C 1
0. Fixing a trivialization OX – X ˆ C, since the sections

si are constant, one has C 1
0 – X ˆ D, where D “

ř
i ℓidi with degD “ r is the divisor of the

points in C defined by the zeros of the polynomial associated to (3.28). It follows that (3.27)
can be rewritten as

tź

j“1

pλmξ ´ p˚djq
ℓj .

Since f is an isomorphism it follows that detpfq “
śt

j“1 d
ℓj
j ‰ 0, so all the dj are non-zero.

Then, the vanishing locus of λmξ ´ p˚dj is naturally isomorphic to Cξ after scaling. It then

follows that C 1 “
Ůt

j“1C
lj
ξ , where C

lj
ξ is the possibly non reduced curve given by the vanishing

of pλmξ ´ p˚djq
lj . As a consequence C 1 projects onto Cξ and the following diagram commutes

C 1

p1
  ❆

❆❆
❆❆

❆❆
❆

u // Cξ

pξ

��
X.

Then, setting E1 :“ u˚L one has that

pξ,˚E
1 – E.

Taking f 1 : E1 –
ÝÑ E1 b p˚

ξLξ to be the pushforward under u of L
bλξ
ÝÑ L b ppξ ˝ tq˚Lξ, one also

has
pξ,˚f

1 – f.
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Since pξ is unramified, one has that p˚
ξE is given by m copies of E1 although we denote them

by

(3.29) p˚
ξE –

m´1à

i“0

E1 b p˚
ξL

i
ξ,

where we recall that p˚
ξLξ is isomorphic to OCξ

. Note also that p˚
ξf is given by copies of f 1,

permuting cyclically the factors of p˚
ξE,

f 1 : E1 b p˚
ξL

i
ξ

–
ÝÑ E1 b p˚

ξL
i`1
ξ .

After (3.29), the pullback p˚
ξϕ can be described in terms of a m ˆ m matrix p˚

ξϕ “
´
ϕ1
ij

¯
,

where ϕ1
ij : E

1 b p˚
ξL

i
ξ ÝÑ E1 b p˚

ξL
i
ξ bKC . Taking a Jordan-Hölder filtration of pp˚

ξE, p
˚
ξϕq one

can always write p˚
ξϕ in a upper diagonal form, i.e. with ϕ1

ij “ 0 if i ă j. Observe that p˚
ξf

corresponds with the permutation of the factors of p˚
ξE by i ÞÑ i ` 1. Since ϕ and f commute,

so do p˚
ξϕ and p˚

ξf , and therefore ϕ1
ij “ 0 for any i ‰ j and ϕ1

ii “ ϕ1
jj. Picking φ “ ϕ1

ii, one has
that ϕ “ pξ,˚φ. �

The following is the fundamental result describing the fixed point subvariety MXpn, dqξ for
any ξ P JacpXqrns. This generalizes the description given in [HT] for r and d coprime.

Theorem 3.19. Let ξ P JacpXqrms be of order m with n “ mr. Then pushforward under
pξ : Cξ ÝÑ X induces a hyperholomorphic isomorphism

MXpn, dqξ – MXpn, dqpξ – MCξ
pr, dq{Zm,

with the Galois group Zm acting by pullback.

Proof. Straightforward from Propositions 3.2 and 3.18. �

4. Narasimhan–Ramanan pBBBq-branes for covers of maximal degree

By definition (cf. [KW]), a pBBBq-brane on a hyperkähler manifold M is a pair

pN, pF ,∇F qq,

where:

‚ N Ă M is a hyperholomorphic subvariety, i.e. a subvariety which is holomorphic with
respect to the three complex structures I1, I2 and I3.

‚ pF ,∇F q is a hyperholomorphic sheaf supported on N, i.e. a locally free sheaf F of
finite rank over the ring of C8-functions on N equipped with a connection ∇F whose
curvature is of type p1, 1q in the complex structures I1, I2 and I3.

In this section we construct natural pBBBq-branes on the moduli space of Higgs bundles
supported on the image under p̌. We shall construct two different hyperholomorphic sheaves
on this subvariety. Our constructions depend on the choice of a flat line bundle either on
X (yielding a rank 1 pBBBq-brane, in Gukov’s [Gu] terminology) or on C (yielding a rank n
pBBBq-brane).

Assumption 1. From now on, until the end of this section, we will be assuming that the rank n
coincides with the order of the unramified cover p : C ÝÑ X. So, in the notation of Proposition
3.2, m “ n and r “ 1. In this case we say that the cover p is of maximal degree (note that for
fixed rank n, the degree of p : C ÝÑ X yielding Narasimhan-Ramanan branes in MXpn, dq is
bounded by n).

Under this assumption p : C ÝÑ X is a connected unramified n-cover of X, with genus

(4.1) gpCq “ npg ´ 1q ` 1

and
p̌ : MCp1, dq ÝÑ MXpn, dqp

is the finite morphism (3.5).
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Since the moduli space of rank 1 Higgs bundles is the cotangent bundle of the Jacobian of
C, we have the natural projection

(4.2) β : MCp1, dq – T ˚JacdpCq ÝÑ JacdpCq,

which is Γ-equivariant.

Remark 4.1. The support of our pBBBq-branes will be N “ MXpn, dqp – MCp1, dq{Γ. Over the
generic locus, it is smooth, so it makes sense to speak of a hyperholomorphic sheaf on a dense
open subset of N. Moreover, it will be clear from our construction that the branes extend to
coherent sheaves (in complex structure I1) on MXpn, dq, supported on N.

Let

pF ,∇F q ÝÑ C

be a flat line bundle on C. Since π1pJacdpCqq is the abelianization of π1pCq, there is a unique
flat line bundle

(4.3) p qF , ∇̌F q ÝÑ JacdpCq

which restricts to pF ,∇F q on C Ă JacdpCq, viewed as subspace under the Abel–Jacobi map.
Define

(4.4) pF ,∇F q :“ p̌˚β
˚p qF , ∇̌F q.

Then pF ,∇F q is a rank n coherent sheaf over MXpn, dqp. Since p̌ is hyperholomorphic and

β˚p qF , ∇̌F q is flat (thus with curvature trivially of type p1, 1q in any complex structure), it is
also hyperholomorphic, and then so is pF ,∇F q. Hence the pair pMXpn, dqp, pF ,∇F qq is a
pBBBq-brane.

Definition 4.2. Let p : C ÝÑ X be a connected unramified n-cover and let pF ,∇F q be a flat
line bundle on C. The rank n Narasimhan–Ramanan pBBBq-brane is

pBBBqp
F
:“ pMXpn, dqp, pF ,∇F qq .

We will omit the cover from the name when it is clear from the context.

The brane just constructed is a rank n brane in Gukov’s language [Gu]. Next we construct
a rank 1 brane arising from a flat line bundle on the base curve X. Since β in (4.2) is Γ-
equivariant and the norm map Nm : JacdpCq ÝÑ JacdpXq of p is Γ-invariant, their composition
is also Γ-invariant, and we have the following quotient maps (denoted by a bar).

(4.5) α : MXpn, dqp – MCp1, dq{Γ
β
ÝÑ JacdpCq{Γ

Nm
ÝÝÑ JacdpXq,

where the isomorphism is given by Theorem 3.19.

Remark 4.3. The map α : MXpn, dqp ÝÑ JacdpXq can be interpreted as a twisted determi-
nant map. Indeed, if pE,ϕq “ p˚pF, φq with F P JacdpCq, then detpEq “ detpp˚F q “
NmpF qdetpp˚OCq, so

αpE,ϕq “ detpEqdetpp˚OCq´1.

Let now pL,∇Lq ÝÑ X be any flat line bundle on the base curve X and let

(4.6) p qL, ∇̌Lq ÝÑ JacdpXq

be the associated flat line bundle as above. Define the flat line bundle on MXpn, dqp by

(4.7) pL ,∇L q :“ α˚p qL, ∇̌Lq.

Definition 4.4. Let p : C ÝÑ X be a connected unramified n-cover and let pL,∇Lq be a flat
line bundle on X. The associated rank 1 Narasimhan–Ramanan pBBBq-brane is

pBBBqp
L
:“ pMXpn, dqp, pL ,∇L qq .
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In the remaining part of this section we shall study the restriction of the branes pBBBqp
L

and pBBBqp
F

to a certain Hitchin fiber. Recall that m “ n so r “ 1 in our case. Then,

Bred
C,1 “ B ni

C,1 “ B sm
C,1 “ BC,1 “ H0pC,KC q. Therefore Bp

it “ B
p
ni by Proposition 3.7. Also, note

that B it
C,1 is just the subset of elements with free Γ-orbits,

(4.8) H0pC,KC qfree :“ tφ P H0pC,KC q such that γpφq ‰ φ for any γ P Γu.

Proposition 3.8 and Theorem 3.11 imply that, in this particular case, Bp
ni “ H0pC,KCqfree{Γ.

Moreover, for b P Bp
ni such that b “ ζpφq P Bp

ni, for φ P H0pC,KCqfree, the spectral curve Xb is
singular and integral, with degpsingpXbqq “ δ. Furthermore, using the notation of (3.10),

(4.9) νφ :“ qφ : C ÝÑ Xb

is a normalization morphism and the following diagram commutes:

C
νφ

!!❇
❇❇

❇❇
❇❇

❇

p

��

Xb

πb}}⑤⑤
⑤⑤
⑤⑤
⑤

X.

In addition, the same statement holds for νγpφq “ qγpφq “ γ ˝ νφ : C ÝÑ Xb, for every γ P Γ.

Remark 4.5. Notice that in this case, namely when the cover p : C ÝÑ X has degree n, the
normalization of the spectral curve Xb with b in Bp

ni is Cφ, the spectral curve for the moduli
of rank 1 Higgs bundles over C, associated to φ. But Cφ is isomorphic to C via the section

φ : C
–
ÝÑ Cφ Ă |KC |, so all spectral curves share (up to isomorphism) the same normalization

C. This justifies the slightly different notation for the normalization morphism in (4.9), when
compared with (3.18). We have implicitly used the identification Cφ – C in (4.9), so that,
strictly speaking, νφ “ qφ ˝ φ.

In this case, we denote the pushforward morphism (3.23) by

(4.10) ν̌φ : JacdpCq ãÑ Jac
d`δ

pXbq,

and Proposition 3.13 (ii) reads as follows

(4.11) h´1
X,npbqXMXpn, dqp –

ˆ ğ

γPΓ

pJacdpCqˆtγpφquq

˙
{Γ – JacdpCq – Impν̌φq Ă Jac

d`δ
pXbq,

with the inverse of the second isomorphism defined by choosing one representative φ in the
Γ-orbit given by b, and taking

(4.12) fφpLq “ Γ ¨ pL, φq

for L P JacdpCq.
For each γ P Γ, let γ̂ : JacdpCq ÝÑ JacdpCq denote the pullback map associated to the

covering automorphism of C determined by γ. In the following proposition we study how F

and L , defining the Narasimhan-Ramanan pBBBq-branes, restrict to a Hitchin fiber in Bp
ni.

Proposition 4.6. Let b P B
p
ni, and let L and F be the hyperholomorphic bundles defined

in (4.6) and (4.4) respectively. The restrictions of L and of F to h´1
X,npbq X MXpn, dqp are

identified, under the isomorphism (4.11), with the bundles Nm˚ qL and
À

γPΓ γ̂
˚ qF respectively.
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Proof. Pick some φ P H0pC,KC qfree such that ζpφq “ b and consider the following commutative
diagram

JacdpCq – JacdpCq ˆ tφu

fφ
��

� � ĩ // T ˚ JacdpCq – MCp1, dq
β //

p̌

��

JacdpCq

Nm
��

h´1
X,npbq X MXpn, dqp �

�

i
// T ˚ JacdpCq{Γ – MXpn, dqp

α
// JacdpXq,

where left vertical isomorphism is the one given in (4.11), and i, ĩ are the obvious inclusions.

By definition, L “ α˚ qL hence, by commutativity of the diagram and the fact that β˝ĩ “ 1Jac,

it follows that i˚L is identified, via the isomorphism (4.11), with ĩ˚β˚Nm˚ qL “ Nm˚ qL, as
claimed.

Recall from (4.4) that F “ p̌˚β
˚ qF . Now, by Proposition 3.13 we have a commutative

diagram

JacdpCq – JacdpCq ˆ tφu

– **❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

� �

j
//

ĩ

++Ů
γPΓ Jac

dpCq ˆ tγpφqu

p̌b
��

� � // MCp1, dq

p̌

��
h´1
X,npbq X MXpn, dqp �

�

i
// MXpn, dqp.

where the diagonal isomorphism is the one given by (4.11), the rightmost square is Cartesian
and the central downward arrow is the unramified Γ-cover p̌b :

Ů
γPΓ Jac

dpCq ˆ tγpφqu ÝÑ

h´1
X,npbq X MXpn, dq, whose action of the Galois group in the bundle factor is given by the

pullback γ̂ associated to each γ P Γ. Under the isomorphism (4.11), i˚F is identified with
ĩ˚p̌˚F and, since β ˝ ĩ “ 1Jac,

ĩ˚p̌˚
F “ ĩ˚p̌˚p̌˚β

˚ qF “ ĩ˚
à

γPΓ

γ̂˚β˚ qF “ ĩ˚β˚
à

γPΓ

γ̂˚ qF “
à

γPΓ

γ̂˚ qF ,

completing the proof. �

Remark 4.7. In [FP], the first and fourth authors constructed a brane CarpLq supported on the
Cartan locus Mp1,nq Ă MCpn, ndq. Recall from Remark 3.14 that p̂pMXpn, dqpq is contained
in M1,n. One can check that the hyperholomorphic sheaf in CarpLq pulls-back under p̂ to
that of pBBBqp

L
. Note that moreover CarpLq “: MXpn, dqp for the trivial Zn-Galois cover

p :
Ů
X ÝÑ X. In that case however Theorem 3.19 fails.

5. Narasimhan–Ramanan dual pBAAq-branes

We have seen in Section 2.1 that MXpn, dq is a hyperkähler variety with Kähler structures
ppI1, ω1q, pI2, ω2q, pI3, ω3qq. Following [KW], a pBAAq-brane on MXpn, dq is, by definition, a
pair pΣ, pW,∇W qq, where:

‚ Σ is a subvariety of MXpn, dq, which is a complex Lagrangian for the holomorphic
symplectic form Ω1 “ ω2 ` iω3.

‚ pW,∇W q is a flat bundle supported on Σ.

The purpose of the present section is to construct a natural collection of complex Lagrangian
subvarieties, whose image by the Hitchin fibration hX,n ÝÑ BX,n is Bp

ni (cf. Definition 3.9).
Each of these subvarieties depends on the unramified cover p : C ÝÑ X and on a holomorphic

line bundle J on C, and will henceforth be denoted by NR p,J
ni . We will also see that the Higgs

bundles lying in NR p,J
ni can be constructed from Hecke modifications of a Hitchin section of

MXpn, d`δqp ÝÑ Bp constructed out of J . Up to the choice of a flat bundle on it, NR p,J
ni is thus

the support of a pBAAq-brane, the Narasimhan–Ramanan dual pBAAq-brane. In Section 6 will
be shown that these branes are the (fiberwise) mirror transform of the Narasimhan–Ramanan
pBBBq-branes. This justifies the notation for these subvarieties, as well as their name.
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5.1. Construction of the support. In this section we construct certain subvarieties that later
will be shown to be complex Lagrangian, hence the support of a pBAAq-brane after the choice
of a flat bundle on them.

Donagi and Pantev defined in [DP] the abelianized Hecke correspondence. For the general
linear group GLpn,Cq, this correspondence is given by tensorizing the spectral data by the dual
of the ideal of a point on the corresponding spectral curve. In the following lines we generalize
this correspondence to 0-dimensional subschemes of length ℓ as it constitutes the first ingredient
of our construction.

Recall the family of spectral curves X ÝÑ BX,n and consider its restriction to the subset
B

p
ni Ă BX,n that parametrizes nodal curves. The existence of the Jacobian JacBp

ni

pX q follows

by the seminal work of Grothendieck [Gr2, Thm. 3.1]. The existence of the relative compact-
ified Jacobian JacBp

ni

pX q follows by Altman and Kleiman’s work [AK, Theorem 3.1], being a

compactification of JacBp
ni

pX q, inducing the fiberwise compactification of the Jacobian by rank

one torsion-free sheaves. We define the tensorization morphism

tℓp : Jac
d`δ
B

p
ni

pX q ˆB
p
ni

Hilbℓ
B

p
ni

pX q ÝÑ Jac
d`δ`ℓ
B

p
ni

pX q

pF ,IZq ÞÝÑ F b I_
Z .

Since we are considering nodal curves, hence Cohen–Macaulay, the sheaves IZ are Cohen–
Macaulay too. In that case the dual sheaves I_

Z are Cohen–Macaulay as well, so torsion–free as
we are working on curves. Furthermore, one can see that the I_

Z are semistable (hence stable
since we our spectral curves are integral). It follows that F b I_

Z is semistable and torsion–free

provided that F is, proving that tℓp is well defined.

Remark 5.1. Recall the Abel–Jacobi map αℓ : Hilb
ℓpXbq ÝÑ Jac

ℓ
pXbq, IZ ÞÑ I_

Z . The preimage

α´1
ℓ pF 1q is identified with the open set of PpH0pXb,F

1qq of injective sections and the identifi-

cation is done by considering the short exact sequence 0 ÝÑ OXb

s
ÝÑ F 1 ÝÑ OZ ÝÑ 0. It

then follows that the preimage ptℓpq´1pF2q consists on the pairs pF ,IZq fitting in the short exact
sequence

0 ÝÑ F
sb1FÝÑ F

2 ÝÑ OZ ÝÑ 0.

Recall the isomorphism (2.9) provided by the spectral correspondence. One can define the
p-adapted length ℓ abelianized Hecke morphism by setting the morphism

hℓp :“ SX,n ˝ tℓp ˝ pS´1
X,n ˆ 1Hilbq,

hℓp : MXpn, dq ˆBX,n
Hilbℓ

B
p
ni

pX q ÝÑ MXpn, d ` ℓq ˆBX,n
B

p
ni.

The second ingredient of the construction of the Narasimhan–Ramanan dual branes is a

section of the structural morphisms of the relative Hilbert scheme Hilbδ´ρ

B
p
ni

pX q ÝÑ B
p
ni given

by the singularities of the spectral curves. Recall from (ii) Theorem 3.11 that for every b P Bp
ni,

associated to the spectral curve Xb “ X |b, one has that the singularity divisor singpXbq is
reduced and has length δ ´ ρ. Hence, one can construct the section

sing p
ni : B

p
ni ÝÑ Hilbδ´ρ

B
p
ni

pX q

b ÞÝÑ singpXbq.

We denote the image of this section by

Sing p
ni :“ Im

`
sing p

ni

˘
.

One obviously have a natural isomorphism provided by the structural projection

(5.1) MXpn, dq ˆBX,n
Sing p

ni – MXpn, dq ˆBX,n
B

p
ni.

The third ingredient of the construction of the Narasimhan–Ramanan dual brane is a Hitchin
section on MCpr, d ` δ ´ ρq. Such a section will only exists under certain conditions.

Assumption 2. From now on, until the end of Section 6, we will be assuming that d is a
multiple of r, hence d “ rd1 for some integer d1.
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Remark 5.2. Note that Assumption 1 forces r “ 1, so it implies Assumption 2.

As we have anticipated, the reason behind requiring Assumption 2 is because in this case one

can construct a Hitchin section associated to any J P Jacδ{r`d1
pCq,

σC,J : BC,r ÝÑ MCpr, rd1 ` δ ´ ρq.

Recall (2.10) and (2.7) from Section 2.2, and compose the Hitchin section with the pushforward
map p̌,

p̌ ˝ σC,J : BC,r ÝÑ MXpn, rd1 ` δ ´ ρqp.

Thanks to Proposition 3.8, p̌ ˝ σC,J factors through a Hitchin section for MXpn, rd1 ` δ ´ ρqp,

σp,J : Bp ÝÑ MXpn, rd1 ` δ ´ ρqp,

satisfying σp,J ˝ ζ “ p̌ ˝ σC,J .
As before, we use capital letters to denote their image,

ΣC,J :“ Im pσC,J q Ă MCpr, rd1 ` δ ´ ρq

and
Σp,J :“ Im pσp,J q Ă MXpn, rd1 ` δ ´ ρqp.

Note that for every γ P Γ one has that σp,J “ σp,γ˚J , hence

Σp,J “ Σp,γ˚J

only depends on the class of J under the action of Γ by pull-back.

Definition 5.3. For each rJ sΓ P Jacδ{r`d1
pCq{Γ, define the subvariety NR p,J

ni of MXpn, rd1q,
closed inMXpn, rd1qˆBX,n

B
p
ni, as the image under under the isomorphism (5.1) of the restriction

to MXpn, dq ˆB
p
ni

Sing p
ni of the preimage of Σp,J “ p̌pΣC,J q under the p-adapted length pδ´ ρq

abelianized Hecke morphism, i.e.

NR p,J
ni :“

ˆ´
hpδ´ρq
p

¯´1

pΣp,J q

˙
X

`
MXpn, rd1qpni ˆBX,n

Sing p
ni

˘
.

Remark 5.4. The justification for the notation used for this subvariety will be clear from Theo-

rem 6.5 below, where we show that NR p,J
ni supports the pBAAq-brane dual to the Narasimhan–

Ramanan pBBBq-brane.

We next turn to the description of the spectral data of NR p,J
ni in terms of Hecke modifications

of suitable Higgs bundles. These have been considered in several works, such as in [Hi7, HR,
Ra, Wi, W]. Let D be a reduced effective divisor on X, E ÝÑ X a vector bundle and αy P E˚

y

for each point y in the support of D. This defines

0 ÝÑ E1 ÝÑ E
α
ÝÑ OD ÝÑ 0

where E1 depends on D and on the projective class of α. The bundle E1 is said to be a Hecke
modification of E (along D and associated to α). If E is equipped with a Higgs field ψ, then
a Hecke modification of the Higgs bundle pE,ψq is a Higgs bundle pE1, ϕq where E1 is a Hecke
modification of E which is compatible with ψ and ϕ, i.e. such that the restriction of ψ to E1

equals ϕ.

The following theorem gives a description of NR p,J
ni in terms of Hecke modifications of the

Higgs bundles parametrized by the section σp,J . Note that πbpsingpXbqq is a reduced effective
divisor of length δ ´ ρ, whenever b P Bp

ni.

Theorem 5.5. Let pE,ϕq P MXpn, dq, with d “ rd1, and let b P Bp
ni. The following conditions

are equivalent:

(1) pE,ϕq P NR p,J
ni X h´1

X,npbq;

(2) pE,ϕq is a Hecke modification of the Higgs bundle

pEJ ,b, ψJ ,bq :“ σp,J pbq P MXpn, rd1 ` δ ´ ρqp

along the divisor πbpsingpXbqq on X.
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Proof. Choose a P B ni
C,r such that b “ ζpaq. By construction, we have EJ ,b – p˚ηa,˚η

˚
aJ .

Recalling the commuting diagram (3.19) (with γ “ 1), one has

(5.2) EJ ,b – πb,˚νa,˚η
˚
aJ .

As for the Higgs field, by definition (cf. (2.7)),

ψJ ,b – p˚ηa,˚µη˚
aJ

: EJ ,b ÝÑ EJ ,b bKX .

Then, ψJ ,b – πb,˚νa,˚µη˚
aJ

thanks to the commutativity of (3.19) (with γ “ 1). Recall also that

µη˚
aJ

is defined by the tensorization under the tautological section λ̂ : Ca ÝÑ η˚
aKC ,

µη˚
aJ

: η˚
aJ

bλ̂
ÝÝÑ η˚

aJ b η˚
aKC .

Let F ÝÑ Xb be the spectral datum of pE,ϕq. Recalling Remark 5.1 the first condition is
equivalent to F fitting in the exact sequence

(5.3) 0 ÝÑ F ÝÑ νa,˚η
˚
aJ ÝÑ OsingpXbq ÝÑ 0,

for any choice of a P B ni
C,r such that b “ ζpaq.

By definition, the second condition above is equivalent to saying that E is given by the short
exact sequence

(5.4) 0 ÝÑ E ÝÑ EJ ,b ÝÑ OπbpsingpXbqq ÝÑ 0,

and the Higgs field is obtained by the restriction, i.e.

(5.5) ϕ “ ψJ ,b|E

We can easily see that the first condition implies the second. Since πb is a finite morphism,
pushing forward the exact sequence (5.3) to X yields the exact sequence (5.4) after the identi-
fication (5.2), hence a Hecke modification of vector bundles.

Recall that λ̂ “ q˚
aλ, where λ is the tautological section of π˚

bKX , and that KC – p˚KX .
Since p ˝ ηa “ πb ˝ qa and since qa “ νa by definition, then

µη˚
aJ

: η˚
aJ

bλ̂
ÝÝÑ η˚

aJ b ν˚
aπ

˚
bKX .

Then, by the projection formula, one has that

νa,˚µη˚
aJ

“ µpνa,˚η
˚
aJ q : νa,˚η

˚
aJ

bλ
ÝÝÑ νa,˚η

˚
aJ b π˚

bKX

on Xb, so

(5.6) ψJ ,b “ πb,˚µpνa,˚η
˚
aJ q.

Since tensorization by λ restricts to subsheaves and F is a subsheaf of νa,˚η
˚
aJ , it is clear that

µF “ µpνa,˚η
˚
aJ q|F .

Taking the pushforward under πb yields ϕ “ ψJ ,b|E by (5.6), proving (5.5).
For the converse statement, suppose pE,ϕq is a Hecke modification of pEJ ,b, ψJ ,bq, so that

we have (5.4) and (5.5). If F ÝÑ Xb is again the spectral datum, then (5.4) is the same as

0 ÝÑ πb,˚F ÝÑ πb,˚νa,˚η
˚
aJ ÝÑ OπbpsingpXbqq ÝÑ 0.

Recall from [BNR, Si2] that the πb,˚OXb
-module structure on E and on EJ ,b is precisely given

by the corresponding Higgs fields, then (5.5) implies that this an exact sequence of πb,˚OXb
-

modules.
Since πb is a finite morphism, πb,˚ is an exact functor (as the higher direct image sheaves

vanish because its fibers are zero dimensional) from the category of OXb
-modules to the category

of πb,˚OXb
-modules. Moreover, since πb is affine, this is an equivalence of categories (cf. [Ha,

ex. 5.17 p.128], so the previous sequence holds if and only if we have that (5.3) holds and hence

pE,ϕq P NR p,J
ni X h´1

X,npbq. �

We finish the section showing that NR p,J
ni lies in the smooth locus.
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Proposition 5.6. The subvariety NR p,J
ni is contained in the stable locus of MXpn, rd1q.

Proof. NR p,J
ni maps to Bp

ni under the Hitchin map, hence every Higgs bundle in NR p,J
ni corre-

sponds to an irreducible (and reduced) spectral curve, by (v) of Theorem 3.11. But a destabi-
lizing Higgs subbundle of a strictly polystable Higgs bundle gives rise to a proper component
of the corresponding spectral curve, which hence is not irreducible. �

5.2. Spectral data and parabolic modules. We shall now provide the spectral description

of the subvarieties NR p,J
ni . The use of parabolic modules (cf. [Re, C1, C2, Bh]) will be crucial

along this section, as they provide a convenient way to relate rank one torsion-free sheaves on
a singular curve with line bundles over its normalization.

Given a nodal curve Xb, where b “ ζpaq P Bp
ni for some a P B ni

C,r, its normalization is Ca with

νa : Ca ÝÑ Xb being the normalization morphism, as described in (3.18). One can consider the
pull-back morphism,

(5.7)
ν̂a : Jac d`δpXbq ÝÑ Jacd`δpCaq

L ÞÝÑ ν˚
aL.

Note that ν̂a does not extend to Jac
d`δ

pXbq. One of the motivations to introduce parabolic

modules is that their moduli space is a compactification of Jac d`δpXbq (different to Jac
d`δ

pXbq)
where ν̂a extends naturally.

Consider
rDa :“ ν´1

a psingpXbqq.

Decompose the singular divisor as singpXbq “ D1
b ` ¨ ¨ ¨ ` Ds

b , in such a way that each sub-
divisor Di

b is supported on the reduced point xi P singpXbq, with xi ‰ xj. This induces the

decomposition rDa “ rD1
a ` ¨ ¨ ¨ ` rDs

a, where each subdivisor is rDi
a :“ ν´1

a pDi
aq.

Definition 5.7. A (rank 1) parabolic module over Ca associated to rDa, of degree d`δ and type
ℓ “ pℓ1, . . . , ℓsq, is a pair pM,V q whereM P Jacd`δpCaq and V is a vector subspace of M bO rDa

such that:

(1) V is
Às

i“1 V
i with V i Ă pM b O rDi

a
q;

(2) for every i, the vector space V i has dimension ℓi ą 0;
(3) V i is an Oxi

-submodule of M b O rDi
a
via pushforward under νa i.e. via the inclusion

OXb
ãÑ νa,˚OCa .

See [C1, C2] for more details.

Write PModd`δ
ℓ pCa, rDaq for the moduli space of parabolic modules over Ca associated to rDa,

of degree d` δ and type ℓ. It is an integral and projective variety (see [C1]).
Recall that we have defined B ni

C,r as the open subset of B it
C,r such that the intersection of Ca

with any Cγpaq as only nodal singularities.

Proposition 5.8. Take a P B ni
C,r, then degp rDaq “ 2 degpsingpXbqq and rDa ÝÑ singpXbq is a

2 : 1 cover.

Proof. Since a is chosen in B ni
C,r, it follows that C

b̃
has only nodal singularities given by the

intersection of two irreducible components. Since q
b̃
is a connected unramified cover by Propo-

sition 3.6 (ii) and the normalization νa is the restriction of qb̃ to the irreducible component Ca

of C
b̃
, one has that rDa “ ν´1

a psingpXbqq can be described as

rDa “ Ca X singpC
b̃
q

and so we have that rDa is the union of the nodal intersections Ca X Cγpaq, for all γ P Γ. Then,
it follows from (3.22) that

degp rDaq “ 2nrpm´ 1qpg ´ 1q,

which is twice degpsingpXbqq. Consider now a singular point x of Xb. If y P Ca X Cγpaq maps

under qb̃ to x so does γ´1pyq P Cγ´1paq XCa. Since the action of Γ is free in C, we conclude that
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y ‰ γ´1pyq. If there is another γ1 ‰ γ in Γ such that pγ1q´1pyq P Ca then y P Cγ1paq as well, so

y P Ca X Cγpaq X Cγ1paq is a triple intersection which it is excluded as a P B ni
C,r. We conclude

that among the nodal singularities of C
b̃
mapping to x under q

b̃
, there are exactly two which

lie in Ca, so the projection rDa ÝÑ singpXbq is a 2-cover. �

For the rest of the section we take a P B ni
C,r and b “ ζpaq P B

p
ni, so Xb is irreducible with

nodal singularities by Theorem 3.11. Observe that in this case degpDi
aq “ 1, degp rDi

aq “ 2 and
s “ degpsingpXbqq. Set also ℓ “ p1, . . . , 1q. We are under the assumptions considered in [C2],
so, by Theorem 1 in loc. cit., there is a finite morphism

(5.8) τ : PModd`δ
ℓ pCa, rDaq ÝÑ Jac

d`δ
pXbq,

pM,V q ÞÝÑ F

where F is defined by the short exact sequence

(5.9) 0 ÝÑ F ÝÑ νa,˚M ÝÑ νa,˚
`
M b O rDa

{V
˘

ÝÑ 0,

and the second map is the composition νa,˚M ÝÑ νa,˚
`
M bO rDa

˘
ÝÑ νa,˚

`
M bO rDa

{V
˘
. Note

that degpνa,˚pM b O rDi
a
q{V iq “ 1, so

(5.10) νa,˚
`
M b O rDa

{V
˘

– OsingpXbq.

By definition of V , the quotient M b O rDa
{V is an OXb

-module, so F inherits an OXb
-module

structure as well. In addition, degpνa,˚Mq “ d`δ`degpsingpXbqq and deg
`
νa,˚

`
MbO rDa

{V
˘˘

“

degpsingpXbqq, thus indeed degpFq “ d ` δ.
Let τ0 denote the restriction of τ to τ´1pJacd`δpXbqq. From [C2, Theorem 1] we know that

it is an isomorphism

(5.11) τ0 : τ
´1pJacd`δpXbqq

–
ÝÝÑ Jacd`δpXbq,

so Jacd`δpXbq can be seen as a dense open subspace of PModd`δ
ℓ pCa, rDaq via τ´1

0 . In other words,

PModd`δ
ℓ pCa, rDaq is a compactification of Jacd`δpXbq, which is different from Jac

d`δ
pXbq.

Lemma 5.9. The morphism τ : PModd`δ
ℓ pCa, rDaq ÝÑ Jac

d`δ
pXbq is surjective.

Proof. It follows from [AIK] that Jac
d`δ

pXbq is irreducible. The restriction τ0 is surjective,

hence the lemma is an immediate consequence of the compactness of PModd`δ
ℓ pCa, rDaq and

irreducibility of Jac
d`δ

pXbq. �

Consider the projection onto the first factor,

(5.12)
9νa : PModd`δ

ℓ pCa, rDaq ÝÑ Jacd`δpCaq
pM,V q ÞÝÑ M.

This is a fiber bundle, with projective fibers given by products of closed subschemes of Grass-

manians [C1]. The restriction of this morphism to Jacd`δpXbq Ă PModd`δ
ℓ pCa, rDaq coincides

with ν̂a from (5.7), i.e. the diagram

(5.13) Jacd`δpXbq� _

τ´1

0

��

ν̂a

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

PModd`δ
ℓ pCa, rDaq

9νa // Jacd`δpCaq

commutes. So PModd`δ
ℓ pCa, rDaq is a compactification of Jacd`δpXbq to which the pullback map

ν̂a extends, in contrast to what happens with Jac
d`δ

pXbq. The next lemma relates the closure
of the fiber of ν̂a with the fiber of 9νa.
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Lemma 5.10. Let M P Jacd`δpCaq. Then

(5.14) ν̂´1
a pMq “ τp 9ν´1

a pMqq,

and it classifies those F P Jac
d`δ

pXbq fitting in the short exact sequence

(5.15) 0 ÝÑ F ÝÑ νa,˚M ÝÑ OsingpXbq ÝÑ 0.

Furthermore, the restriction of τ to 9ν´1
a pMq is a closed embedding.

Proof. First of all, the image under τ of the fiber of 9νa over M is given by F fitting in (5.9).
Then, it follows from (5.10) that τp 9ν´1

a pMqq is given by those F fitting in (5.15).
We now address (5.14). The commutative diagram (5.13) can be completed as

ν̂´1
a pMq �

� //
� _

τ´1

0

��

Jacd`δpXbq.� _

τ´1

0

��

ν̂a

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

9ν´1
a pMq �

� // PModd`δ
ℓ pCa, rDaq

τ

��

9νa // Jacd`δpCaq

ν̂´1
a pMq �

� // Jac
d`δ

pXbq

Of course, ττ´1
0 is the identity on Jacd`δpXbq. Now, since τ is a closed morphism, τp 9ν´1

a pMqq is

closed in Jac
d`δ

pXbq; clearly, it contains τpτ´1
0 pν̂´1

a pMqqq “ ν̂´1
a pMq, so ν̂´1

a pMq Ă τp 9ν´1
a pMqq.

Conversely, given any parabolic module pM,V q P 9ν´1
a pMq, we know that there is a sequence

of elements ppjqj in Jacd`δpXbq such that its image under τ´1
0 converges to pM,V q. We can

find such a sequence in τ´1
0 pν̂´1

a pMqq as follows (so that PModd`δ
ℓ pCa, rDaq is actually fiberwise

compactification of Jacd`δpXbq). The pullback map ν̂b : Jac
d`δpXbq ÝÑ Jacd`δpCaq is a locally

trivial fibration, with the fiber F being isomorphic to products of powers of C
˚ and of C.

Trivialize this fibration on an open set U around M P Jacd`δpCaq, hence becoming a product
U ˆF . On this product, project the sequence ppjqj onto a sequence pqjqj on tMu ˆF (i.e. via

the map U ˆ F ÝÑ tMu ˆ F , pL, zq ÞÑ pM,zq). So pqjqj is a sequence on ν̂´1
b pMq and, since

(5.13) commutes, pτ´1
0 pqjqqj is a sequence in 9ν´1

a pMq, which converges to the same point as

pτ´1
0 ppjqqj , namely pM,V q. Now, taking the image under the closed morphism τ , we see that

that τpM,V q “ lim qj, thus τpM,V q P ν̂´1
a pMq, and therefore ν̂´1

a pMq Ą τp 9ν´1
a pMqq.

It remains to prove the last claim i.e. to prove that τ restricted to 9ν´1
a pMq is injective. Take

pM,V q and pM,V 1q in 9ν´1
a pMq, both mapping to F under τ . It follows that both V and V 1

must be isomorphic to F b OsingpXbq, hence pM,V q – pM,V 1q. �

Remark 5.11. The previous lemma shows that, for a fixed M , we can identify ν̂´1
a pMq and

9ν´1
a pMq via τ . However, the map τ is not generally injective, as there are M fl M 1 such that
τp 9ν´1

a pMqq X τp 9ν´1
a pM 1qq is non-empty, that is, the closures of ν̂´1

a pMq and of ν̂´1
a pM 1q will

intersect; cf. [GO1, Example 5.4] for an example of this phenomenon for A-type singularities.

We finish this section describing the restriction of the Hitchin map to NR p,J
ni .

Theorem 5.12. Let b P Bp
ni and a P B ni

C,r such that b “ ζpaq, then

(5.16) h´1
X,npbq X NR p,J

ni “
ď

γ˚J PΓpJ q

SX,n

´
ν̂´1
a pη˚

apγ˚J qq
¯
,

where ΓpJ q denotes the Γ-orbit of J . Furthermore,

(5.17) dim
´
h´1
X,npbq X NR p,J

ni

¯
“ δ ´ ρ “ npn´ rqpg ´ 1q.

Proof. As we have seen in the proof of Theorem 5.5, the points h´1
X,npbq X NR p,J

ni are those

Higgs bundles whose spectral data F fit in the exact sequence (5.3) for any choice of a P B ni
C,r



26 E. FRANCO, P. B. GOTHEN, A. OLIVEIRA, AND ANA PEÓN-NIETO

such that b “ ζpaq. Observing that η˚
γpaqJ “ η˚

apγ˚J q, if we fix a P B ni
C,r, we can understand

h´1
X,npbq X NR p,J

ni as the set of F fitting in

0 ÝÑ F ÝÑ νa,˚η
˚
aγ

˚
J ÝÑ OsingpXbq ÝÑ 0,

for every γ P ΓpJ q. Then, the first statement follows from Lemma 5.10. It then follows that

dim
´
h´1
X,npbq X NR p,J

it

¯
“ dim

´
ν̂´1
a pη˚

aJ q
¯

“ dim
`
ν̂´1
a pη˚

aJ q
˘
.

We can find in [Gr1] a description of the fibers of ν̂a, being a torsor for H0pXb,O
˚
singpXbqq.

Since,

dim
`
H0pXb,OsingpXbqq

˘
“ degpsingpXbqq,

the second statement follows from (ii) of Theorem 3.11. �

Remark 5.13. In particular, if J is pulled back from a line bundle over X then ΓpJ q “ tJ u,

thus (5.16) just becomes SX,n

´
ν̂´1
a pJ q

¯
. Notice that this condition on J P Jacδ{r`d1

pCq is only

possible if d1 is a multiple of m.

5.3. A complex Lagrangian subvariety. Keeping J P Jacδ{r`d1
pCq fixed, we now study

some properties of NR p,J
ni . Particularly relevant is the proof that NR p,J

ni is a complex Lagrangian
subvariety of MXpn, rd1q.

Recall that B denotes the Borel subgroup of GLpn,Cq and U its unipotent subgroup. Fix a

square root K
1{2
C of KC . We now study the relation of our subvariety NR p,J

ni with the unipotent
locus in MCpn, nd1q, as defined in [FP, Section 4] out of a line bundle L ÝÑ C of degree d1,

(5.18) UniC pLq “

$
&
%pE,ϕq P MCpn, nd1q

ˇ̌
ˇ̌
ˇ̌

Dσ P H0pX,E{Bq :
ϕ P H0pX,Eσpbq bKXq;

Eσ{U –
Àn

i“1 LK
pn`1´2iq{2
C .

,
.
- ,

The relevant line bundles for us are those of the orbit ΓpJ q “ tγ˚J for γ P Γu, and for
each of them the corresponding unipotent locus will be denoted by UniCpγ˚J q Ă MCpn, nd1q.
Recall the Cartan locus Mp1,nq of MCpn, nd1q, introduced before Corollary 3.15, and let V be

hC,npMp1,nqq. Then hC,npUnipγi,˚J qq “ V , for every i (cf. [FP]).
Recall the pullback map p̂ : MXpn, rd1q ÝÑ MCpn, nd1q from (3.3).

Proposition 5.14. Consider the open subvariety NR p,J
Jac of NR p,J

ni defined as the intersection of

NR p,J
ni with the open subset Jacd`δpXbq of every Hitchin fiber h´1

X,npbq. Then NR p,J
Jac is mapped

under the pullback map (3.3) to the union of UniCpγ˚J q, for γ P Γ, i.e.

p̂
´
NR p,J

Jac

¯
Ă

ğ

γ˚J PΓpJ q

UniCp γ˚J q.

Proof. By the spectral correspondence, the proposition can be proved by showing that the

pullback of the spectral data of any Higgs bundle in NR p,J
Jac gives the spectral data of a Higgs

bundle in
Ů

γ˚J PΓpJ q UniCp γi,˚J q.

Take b P B
p
ni Ă Bp and let b̃ “ p˚b. Then C

b̃
is integral and has nodal singularities.

Furthermore, by Corollary 3.15, b̃ P V . So, if pE,ϕq represents a point in NR p,J
Jac mapping to b,

then p̂pE,ϕq maps to b̃ P V . By Theorem 5.12, the spectral datum of pE,ϕq is given by a line
bundle L P Jacd`δpXbq such that ν˚

aL – γ˚J for some γ P Γ. Using the commutative diagram
of Theorem 3.11 (iv), we see that ν̃˚

b̃
q˚
b̃
L – q̃˚

aγ
˚J is the exterior product of all the elements

in the orbit ΓpJ q. Recall that C
b̃
is a disconnected curve, whose connected components are all

isomorphic to C. We see that the spectral datum of p̂ppE,ϕqq is a line bundle on C
b̃
(namely

q˚
b̃
L) which pulls back under the normalization map ν̃b̃ :

rCb̃ ÝÑ Cb̃ to the exterior product of

all the elements in the orbit ΓpJ q. By Proposition 4.5 (4.14) of [FP], this is the spectral datum
of an element of UniCp γ˚J q, proving that p̂pE,ϕq P UniCp γ˚J q. �
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Given a Higgs bundle pE,ϕq, the associated deformation complex is defined by

(5.19) C‚
pE,ϕq : EndpEq

r´,ϕs
ÝÝÝÑ EndpEq bK.

Its hypercohomology H
˚pC‚

pE,ϕqq fits in the long exact sequence

0 ÝÑ H
0pC‚

pE,ϕqq ÝÑ H0pX,EndpEqq ÝÑ H0pX,EndpEq bKXq ÝÑ H
1pC‚

pE,ϕqq ÝÑ

ÝÑ H1pX,EndpEqq ÝÑ H1pX,EndpEq bKXq ÝÑ H
2pC‚

pE,ϕqq ÝÑ 0.

(5.20)

If pE,ϕq is a stable Higgs bundle, then it represents a smooth point of the moduli space
MXpn, dq, with tangent space isomorphic to H

1pC‚
pE,ϕqq.

Recall from Section 2.1 the holomorphic symplectic form ΩX,1 “ ω2 ` iω3 on MXpn, rd1q
associated to the complex structure I1. We can now prove the main result of this section.

Theorem 5.15. NR p,J
ni is a Lagrangian subvariety of MXpn, rd1q with respect to ΩX,1.

Proof. First we prove that NR p,J
ni is isotropic. Recall the open subset NR p,J

Jac Ă NR p,J
ni defined

in the previous proposition. It is enough to show that the symplectic form ΩX,1 vanishes on

NR p,J
Jac .

Let pE,ϕq P NR p,J
Jac . It is a smooth point of MXpn, dq, by Proposition 5.6. Consider the

polystable Higgs bundle pẼ, ϕ̃q :“ p̂pE,ϕq “ pp˚E, p˚ϕq over C. By Proposition 5.14, pẼ, ϕ̃q P

UniCpγ˚J q Ă MCpn, nd1q for some γ˚J P ΓpJ q. In addition, by [FP, Proposition 4.5], pẼ, ϕ̃q
is stable, thus also represents a smooth point of MCpn, nd1q.

As pE,ϕq represents a smooth point of the moduli space, the corresponding tangent space is
isomorphic to H1pC‚

pE,ϕqq, where C
‚
pE,ϕq is the complex given by (5.19). Since H1pC‚

pE,ϕqq fits

in (5.20), any tangent vector in TpE,ϕqMXpn, rd1q – H
1pC‚

pE,ϕqq is determined by an element

in H0pX,EndpEq b KXq – H1,0pX,EndpEqq (providing the deformation of the Higgs field)
and by an element in H1pX,EndpEqq – H0,1pX,EndpEqq (providing the deformation of the
holomorphic structure of E). Thus, every v,w P TpE,ϕqMXpn, rd1q, may be represented as

v “ pα1, α2q and w “ pβ1, β2q, with α1, β1 P Ω1,0pX,EndpEqq and α2, β2 P Ω0,1pX,EndpEqq.
Then [Hi1],

(5.21) ΩX,1pv,wq “

ż

X

trpα1 ^ β2 ´ α2 ^ β1q P C.

Pick the holomorphic symplectic form ΩC,1 on MCpn, nd1q. Analogous statements hold for any
pair of tangent vectors ṽ, w̃ P TpẼ,ϕ̃qMCpn, nd1q – H

1pC‚
p rE,rϕq

q, where C‚
p rE,rϕq

is the deformation

complex of pẼ, ϕ̃q, defined in (5.19). Thus,

(5.22) ΩC,1pṽ, w̃q “

ż

C

pα̃1 ^ β̃2 ´ α̃2 ^ β̃1q P C.

If ṽ “ dp̂pvq and w̃ “ dp̂pwq, then α̃i “ p˚αi and β̃i “ p˚βi, for i “ 1, 2, hence (5.21) and
(5.22) imply that

(5.23) p̂˚ ΩC,1 “ dp̂tΩC,1 “ mΩX,1

because p : C ÝÑ X is a degree m map.

Assume now that v,w are tangent vectors to NR p,J
Jac . By Proposition 5.14, we have that

dp̂pvq and dp̂pwq are tangent vectors to the unipotent locus of MCpn, nd1q, which is isotropic,
by Proposition 4.2 of [FP]. Hence ΩC,1pdp̂pvq, dp̂pwqq “ 0, so ΩX,1pv,wq “ 0 by (5.23), proving

that NR p,J
Jac , thus NR

p,J
ni , is isotropic.

It remains to prove that NR p,J
ni is a mid-dimensional subvariety of MXpn, rd1q, that is,

dimpNR p,J
ni q “ n2pg ´ 1q ` 1, after (2.1). Since NR p,J

ni lies in the smooth locus of MXpn, rd1q
after Proposition 5.6, its dimension can be computed through the Hitchin map restricted to

NR p,J
ni , namely by adding the dimension of Bp

ni to the dimension of any fiber h´1
X,npbq XNR p,J

ni .
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From (3.15) we have that dimB
p
ni “ dimBp “ rnpg ´ 1q ` 1. On the other hand, by (5.17),

one has that dimph´1
X,npbq X NR p,J

ni q “ npn´ rqpg ´ 1q. Then, their sum equals

dimBp ` dimph´1
X,npbq X NR p,J

ni q “ rnpg ´ 1q ` 1 ` npn´ rqpg ´ 1q.

Adding up yields dimpNR p,J
ni q “ n2pg ´ 1q ` 1 as claimed. �

6. Mirror symmetry and branes

In two preceding sections we constructed the Narasimhan–Ramanan pBBBq-branes pBBBqp
F

and pBBBqp
L
(cf. Definitions 4.2 and 4.4) and the complex Lagrangian subvarieties NR p,J

ni (cf.
Definition 5.3). Recall that the Definitions 4.2 and 4.4 required Assumption 1, thus r “ 1. Note
as well that, by construction, both branes pBBBqp

L
and pBBBqp

F
determine coherent sheaves

on MXpn, dq (with respect to the complex structure I1), and their support fiber (via the Hitchin

map) over the locus Bp. On the other hand NR p,J
ni is only constructed over the open dense

subspace Bp
ni Ă Bp parametrizing integral and nodal spectral curves there.

Mirror symmetry predicts that a pBBBq-brane ought to be dual to a pBAAq-brane. It is
expected that such duality is realized via a Fourier–Mukai transform relative to a Lagrangian
fibration associated to the complex structure I1. In this section we prove that (the restriction
to Bp

ni of) the coherent sheaf on MXpn, dq given by the Narasimhan–Ramanan pBBBq-brane

pBBBqp
L
is Fourier–Mukai transformed into a sheaf supported over NR p,J

ni , for an explicit choice
of J depending on L. We obtain an explicit relation on this transformed sheaf which is enough
to find its support, but we do not have a full description of it. The only missing piece to
produce the complete (fiberwise) mirror symmetry is a global description of the corresponding

flat bundle over NR p,J
ni ; we have partial information on it, but not a global one. Starting with

pBBBqp
F

instead, we obtain a similar duality statement.
We address only the case of degree d “ 0 (thus the case of d multiple of n also follows),

because in this case we have the Hitchin sections [Hi3] as global Lagrangian sections of the
Hitchin fibration hX,n : MXpn, 0q ÝÑ BX,n. This allow us to perform the fiberwise Fourier–
Mukai transform without using a gerbe (or using a trivial one). For d non-multiple of n, then
hX,n has no such global Lagrangian section, hence a gerbe is required to properly perform the
relative Fourier–Mukai (cf. [HT]). On the other hand, we expect that all the analysis in the
preceding sections generalizes to the setting of parabolic Higgs bundles, and there, under mild
assumptions, the Fourier–Mukai duality can be performed for any degree d without the need for
a gerbe. This is because, for an appropriate choice of parabolic weights, the Hitchin fibration
always admits a Hitchin section (cf. [GO2]).

6.1. Review of autoduality of compactified Jacobians of integral curves. In this section
we review autoduality of compactified Jacobians of integral curves with planar singularities and
the associated Fourier–Mukai transform given by Arinkin in [Ar]. Since spectral curves are
contained in the surface |KX |, his construction applies to any integral spectral curve Xb, in
particular to all curves for b P Bp

ni by Theorem 3.11 (v). In this context, Arinkin’s autoduality

statement becomes becomes the autoduality of the corresponding Hitchin fibers h´1
X,npbq.

Take an integral curve with planar singularities Xb and consider an integer δ. Then every

semistable rank 1 torsion-free sheaf on Xb is indeed stable, and Jac
δ
pXbq is therefore a fine

moduli space with universal family Ub ÝÑ Xb ˆ Jac
δ
pXbq. Denote by U0

b its restriction to

Xb ˆ Jac δpXbq. Before constructing the Poincaré sheaf, we first construct the Poincaré bundle

using Ub and U0
b . Choose a point σXpbq in Jac

δ
pXbq and let Ub and U0

b be normalized with
respect to σXpbq.

Given a flat morphism f : Y ÝÑ S whose geometric fibers are curves, we can define the
determinant of cohomology (see [KM] and [Es, Section 6.1]) as follows. If E is an S-flat sheaf
on Y , the determinant of cohomology Df pEq is an invertible sheaf on S, constructed locally
as the determinant of complexes of free sheaves, which is locally quasi-isomorphic to Rf˚E .

Consider the triple product Xb ˆJac
δ
pXbq ˆJac δpXbq and the projection f23 : Xb ˆJac

δ
pXbq ˆ
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Jac δpXbq ÝÑ Jac
δ
pXbq ˆ Jac δpXbq, which is flat and whose fibers are curves. Consider as well

the corresponding projections f12 and f13. The Poincaré line bundle Pb ÝÑ Jac
δ
pXbqˆJac δpXbq

is the invertible sheaf

(6.1) Pb :“ Df23

`
f˚
12Ub b f˚

13U
0
b

˘´1
b Df23

`
f˚
13U

0
b

˘
b Df23 pf˚

12Ubq .

The restriction of the Poincaré bundle Pb to the point associated to M P Jac δpXbq, that is,

Pb,M :“ Pb|Jac δ
pXbqˆtMu

, is the line bundle over Jac
δ
pXbq given by

(6.2) Pb,M “ Df2pUb b f˚
1Mq´1 b Df2pf˚

1Mq b Df2pUbq,

where we have considered the projections f1 : XbˆJac
δ
pXbq ÝÑ Xb and f2 : XbˆJac

δ
pXbq ÝÑ

Jac
δ
pXbq.

Our Poincaré bundle is constructed over Jac
δ
pXbq ˆ Jac δpXbq. A similar construction can

be performed over Jac δpXbq ˆ Jac
δ
pXbq, which coincides with Pb after restricting both to

Jac δpXbq ˆ Jac δpXbq. Gluing both line bundles over Jac δpXbq ˆ Jac δpXbq, one can define the
line bundle

(6.3) P
7
b ÝÑ

´
Jac

δ
pXbq ˆ Jac

δ
pXbq

¯7
,

where

(6.4)
´
Jac

δ
pXbq ˆ Jac

δ
pXbq

¯7
:“

´
Jac δpXbq ˆ Jac

δ
pXbq

¯
Y

´
Jac

δ
pXbq ˆ Jac δpXbq

¯
.

Arinkin [Ar] extended this construction to the compactified Jacobian, obtaining the Poincaré
sheaf

Pb ÝÑ Jac
δ
pXbq ˆ Jac

δ
pXbq,

showing as well that it is a Cohen-Macaulay sheaf. Therefore, considering the injection

(6.5) j :
´
Jac

δ
pXbq ˆ Jac

δ
pXbq

¯7
ãÑ Jac

δ
pXbq ˆ Jac

δ
pXbq,

one has that the Poincaré sheaf satisfies [Ar, Lemma 6.1 (2)]

(6.6) Pb – j˚P
7
b .

Taking the projections π1, π2 onto the first and second factors

(6.7) Jac
δ
pXbq ˆ Jac

δ
pXbq

π1

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

π2

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

Jac
δ
pXbq Jac

δ
pXbq,

and using Pb as a kernel, we consider the Fourier–Mukai functor on the bounded derived category

of coherent sheaves on Jac
δ
pXbq,

(6.8)
Θb : Db

´
Jac

δ
pXbq

¯
ÝÑ Db

´
Jac

δ
pXbq

¯

F‚ ÞÝÑ Rπ2,˚pπ˚
1F

‚ b Pbq.

The following is due to Arinkin in the case of Xb integral.

Theorem 6.1 ([Ar]). Let Xb be an integral curve with planar singularities and δ an integer.

The moduli space of rank 1 torsion-free sheaves over Jac
δ
pXbq is Jac

δ
pXbq itself. Furthermore

the Fourier–Mukai functor Θb is a derived equivalence.
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6.2. Fourier–Mukai and normalization. Let us consider the normalization νa : Ca ÝÑ Xb

of an integral curve Xb with nodal singularities, and denote by δ ´ ρ the degree of the singular
divisor singpXbq, where δ and ρ are integers. In this section we study the interplay of νa with
the Fourier–Mukai transform constructed by Arinkin1.

Since Ca is smooth, the Jacobian Jac 0pCaq is a smooth abelian variety known to be autodual.
Choosing a point in Jac δpCaq and Jac ρpCaq provides an isomorphism from the abelian variety
Jac 0pCaq to the torsors Jac δpCaq and Jac ρpCaq. Using this isomorphism, we naturally obtain
a Poincaré line bundle

Pa ÝÑ Jac ρpCaq ˆ Jac δpCaq

from the Poincaré line bundle over Jac 0pCaq ˆ Jac 0pCaq. Then Pa is a universal family of
topologically trivial line bundles over Jac ρpCaq parametrized by Jac δpCaq.

Consider the pushforward morphism

ν̌a : Jac ρpCaq ÝÑ Jac
δ
pXbq

induced from the normalization map νa : Ca ÝÑ Xb, and the pullback map

ν̂a : Jac δpXbq ÝÑ Jac δpCaq.

Let 1ĄJac and 1Jac be the identity morphisms in Jac ρpCaq and Jac δpXbq respectively. Recall

from (6.6) that the Poincaré sheaf Pb on Jac
δ
pXbq ˆ Jac

δ
pXbq is constructed from the Poincaré

line bundle

Pb ÝÑ Jac
δ
pXbq ˆ Jac δpXbq

given in (6.1). Then both pν̌a ˆ 1Jacq˚
Pb and p1ĄJac ˆ ν̂aq˚Pa are bundles over Jac ρpCaq ˆ

Jac δpXbq. The next result shows that they differ from a line bundle which is a pullback from a
line bundle over Jac δpXbq.

Consider the projections

Jac ρpCaq ˆ Jac δpXbq
π1
1

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

π1
2

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

Jac ρpCaq Jac δpXbq.

Proposition 6.2. Let νa : Ca ÝÑ Xb be normalization of an integral curve Xb with planar
singularities. Then we have that

pν̌a ˆ 1Jacq
˚
Pb – p1ĄJac ˆ ν̂aq˚

Pa b pπ1
2q˚

W,

for some line bundle W ÝÑ Jac δpXbq.

Proof. After a certain adaptation, the proof is analogous to that of [FP, Lemma 5.2]. We include
it here for the sake of clarity. First note that pν̌a ˆ 1Jacq

˚
Pb is a family of topologically trivial

line bundles over Jac ρpCaq parametrized by Jac δpXbq. Since Pa ÝÑ Jac ρpCaq ˆ Jac δpCaq is a
universal family for such objects, there exists a morphism

g : Jac δpXbq ÝÑ Jac δpCaq,

such that

(6.9) pν̌a ˆ 1Jacq
˚
Pb – p1ĄJac ˆ gq˚

Pa b pπ1
2q˚

Wb,

for some line bundle Wb ÝÑ Jac δpXbq. We claim that g “ ν̂a. In order to prove it, we shall
need several preliminary statements.

Recall the description of Pb,M given in (6.2),

Pb,M “ Df2pUb b f˚
1Mq´1 b Df2pf˚

1Mq b Df2pUbq,

1The results contained in this section were previously known to D. Arinkin, to whom we are indebted for
conversations.
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for each M P Jac δpXbq, where

f1 : Xb ˆ Jac
δ
pXbq ÝÑ Xb and f2 : Xb ˆ Jac

δ
pXbq ÝÑ Jac

δ
pXbq.

Take also the projections

f̃1 : Ca ˆ Jac ρpCaq ÝÑ Ca, f̃2 : Ca ˆ Jac ρpCaq ÝÑ Jac ρpCaq

and

f 1
1 : Xb ˆ Jac ρpCaq ÝÑ Xb f 1

2 : Xb ˆ Jac ρpCaq ÝÑ Jac ρpCaq.

Obviously

(6.10) Xb ˆ Jac ρpCaq
1Xb

ˆν̌a
//

f 1
1

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯
Xb ˆ Jac

δ
pXbq

f1

��
Xb

commutes.
The following diagram is also obviously Cartesian,

Xb ˆ Jac ρpCaq
1Xb

ˆν̌a
//

f 1
2

��

Xb ˆ Jac
δ
pXbq

f2
��

Jac ρpCaq
ν̌a // Jac

δ
pXbq,

thus, since we know from [Es, Proposition 44 (1)] that the determinant of cohomology commutes
with base change,

(6.11) ν̌˚
aDf2 “ Df 1

2
p1Xb

ˆ ν̌aq˚.

Let Ua ÝÑ Ca ˆ Jac ρpCaq be the universal bundle of topologically trivial line bundles over
Ca. Since Ca is smooth, we may apply (6.2), so that the Poincaré bundle Pa satisfies

(6.12) Pa,N “ Df̃2
pUa b f̃˚

1Nq´1 b Df̃2
pf̃˚

1Nq b Df̃2
pUaq,

for any N P Jac δpCaq. Recall that Ub ÝÑ Xb ˆ Jac
δ
pXbq is the universal sheaf of degree

δ torsion-free sheaves on Xb and consider the pullback p1Xb
ˆ ν̌aq˚Ub which is a sheaf over

Xb ˆJacρpCaq. Observe that pνa ˆ1ĄJacq˚Ua is a family of rank 1 torsion-free sheaves of degree δ

over Xb. Then, by the universality property, there exists a morphism h : Jac ρpCaq ÝÑ Jac
δ
pXbq

and a line bundle Wa ÝÑ Jac ρpCaq such that

p1Xb
ˆ hq˚Ub – pνa ˆ 1ĄJacq˚Ua b pf 1

2q˚Wa.

Note that h coincides pointwise with ν̌a, since Jac
ρpCaq is smooth it follows that h “ ν̌a. Then,

(6.13) p1Xb
ˆ ν̌aq˚Ub – pνa ˆ 1ĄJacq˚Ua b pf 1

2q˚Wa.

Since the diagram

Ca ˆ Jac ρpCaq
νaˆ1ĄJac //

f̃2 **❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

Xb ˆ Jac ρpCaq

f 1
2

��
Jac ρpCaq,

commutes, the definition of the determinant of cohomology ensures that

(6.14) Df 1
2
pνa ˆ 1ĄJacq˚ – D

f̃2
.
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Finally,

Ca ˆ Jac ρpCaq
νa˝f̃1

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐
f̃2

++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱

pνaˆ1ĄJacq

��
Xb Xb ˆ Jac ρpCaq

f 1
1

oo
f 1
2

// Jac ρpCaq.

also commutes, so f 1
1ppf 1

2q´1pUqq “ νaf̃1pf̃´1
2 pUqq for every open subset U Ă Jac ρpCaq. It then

follows that for each M P Jac δpXbq and each open set U Ă Jac ρpCaq,

ppf 1
2q˚pf 1

1q˚MqpUq “ lim
WĚf 1

1
ppf 1

2
q´1pUqq

MpW q

“ lim
WĚνaf̃1pf̃´1

2
pUqq

MpW q

“ppf̃2q˚pνa ˝ f̃1q˚MqpUq,

so pf 1
2q˚pf 1

1q˚ “ pf̃2q˚pνa ˝ f̃1q˚. As a consequence of this identification, we have

(6.15) Df 1
2
pf 1

1q˚ – D
f̃2
f̃˚
1 ν

˚
a .

Using the projection formula and (6.9)–(6.15), we have that, for any M P Jac δpXbq,

Pa,gpMq – ν̌˚
aPb,M

– ν̌˚
a

´
Df2 pUb b f˚

1Mq´1 b Df2pf˚
1Mq b Df2 pUbq

¯

– ν̌˚
aDf2 pUb b f˚

1Mq´1 b ν̌˚
aDf2pf˚

1Mq b ν̌˚
aDf2 pUbq

–Df 1
2

pp1Xb
ˆ ν̌aq˚ pUb b f˚

1Mqq´1 b Df 1
2

pp1Xb
ˆ ν̌aq˚pf˚

1Mqq b Df 1
2

pp1Xb
ˆ ν̌aq˚Ubq

–Df 1
2

`
p1Xb

ˆ ν̌aq˚Ub b pf 1
1q˚M

˘´1
b Df 1

2

`
pf 1

1q˚Mq
˘

b Df 1
2

pp1Xb
ˆ ν̌aq˚Ubq

–Df 1
2

`
pνa ˆ 1ĄJacq˚Ua b pf 1

1q˚M b pf 1
2q˚

Wa

˘´1
b

b Df 1
2

`
pf 1

1q˚Mq
˘

b Df 1
2

`
pνa ˆ 1ĄJacq˚Ua b pf 1

2q˚Wa

˘

–Df 1
2

`
pνa ˆ 1ĄJacq˚Ua b pf 1

1q˚M
˘´1

b W´1
a b

b Df 1
2

`
pf 1

1q˚Mq
˘

b Df 1
2

`
pνa ˆ 1ĄJacq˚Ua

˘
b Wa

–Df 1
2

´
pνa ˆ 1ĄJacq˚

´
Ua b f̃˚

1 ν
˚
aM

¯¯´1

b Df 1
2

`
pf 1

1q˚Mq
˘

b Df 1
2

`
pνa ˆ 1ĄJacq˚Ua

˘

–D
f̃2

pUa b f̃˚
1 ν

˚
aMq´1 b D

f̃2

´
f̃˚
1 ν

˚
aM

¯
b D

f̃2
pUaq

–Pν˚
a M

–Pa,ν̂apMq.

This implies that gpMq “ ν̂apMq for any M P Jac δpXbq. Since Jac
δpXbq is smooth, this suffices

to state that g “ ν̂a, thus completing the proof. �

Consider now the projections

(6.16) Jac ρpCaq ˆ Jac δpCaq

η1

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

η2

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

Jac ρpCaq Jac δpCaq.

Using the Poincaré line bundle Pa ÝÑ Jac ρpCaqˆJac δpCaq as kernel, define the Fourier–Mukai
functor

(6.17)
Θa : DbpJac ρpCaqq ÝÑ DbpJac δpCaqq

E‚ ÞÝÑ Rη2,˚pη˚
1E

‚ b Paq.
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Mukai [Mu, Theorem 2.2] proved in this classical setting that the above functor is a derived
equivalence. Note also that it is the particular case of Arinkin’s Theorem 6.1 for smooth curves.

The next theorem establishes a relation between the Fourier–Mukai functors Θb in (6.8) and
Θa in (6.17), for complexes arising as pushforward via ν̌a. Recall the moduli space of parabolic

modules PModδℓpCa, rDaq of degree δ and type ℓ “ p1, . . . , 1q, and let OPMod be the corresponding
structure sheaf. Recall also the morphisms τ in (5.8) and 9νa in (5.12).

Theorem 6.3. Let νa : Ca ÝÑ Xb be normalization of an integral curve Xb with planar
singularities and let E‚ be a complex in DbpJac ρpCaqq. Then there is an isomorphism

ΘbpRν̌a,˚E
‚q b τ˚OPMod – Rτ˚ 9ν˚

aΘapE‚q b Pb|tνa,˚OCauˆJac.

Proof. Consider the pullback of the Poincaré sheaf to Jac
δ
pXbq ˆ PModδℓpCa, rDaq,

(6.18) 9Pb :“ p1Jac ˆ τq˚
Pb.

Applying the projection formula yields

(6.19) p1Jac ˆ τq˚
9Pb – Pb b p1Jac ˆ τq˚OJacˆPMod.

Consider the projections,

(6.20) Jac
δ
pXbq ˆ PModδℓpCa, rDaq

9π1

uu❦❦❦
❦❦
❦❦
❦❦
❦❦❦

❦❦
❦

9π2

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

Jac
δ
pXbq PModδℓpCa, rDaq

and notice that, since Jac
δ
pXbq is projective, connected and reduced,

9π2,˚OJacˆPMod – OPMod.

Note also that

π2 ˝ p1Jac ˆ τq “ τ ˝ 9π2 and 9π1 “ π1 ˝ p1Jac ˆ τq,

where π1 and π2 are the projections defined in (6.7). Now, recalling (6.8) and using these
relations, the identity (6.19), and the projection formula and the fact that the derived direct

image is functorial with respect to compositions, we have that, for F‚ P Db
`
Jac

δ
pXbq

˘
,

Rτ˚R 9π2,˚
`

9π˚
1F

‚ b 9Pb

˘
– Rπ2,˚Rp1Jac ˆ τq˚

`
p1Jac ˆ τq˚π˚

1F
‚ b 9Pb

˘

– Rπ2,˚
`
π˚
1F

‚ b p1Jac ˆ τq˚
9Pb

˘

– Rπ2,˚pπ˚
1F

‚ b Pbq b π2,˚p1Jac ˆ τq˚OJacˆPMod

– Rπ2,˚pπ˚
1F

‚ b Pbq b τ˚ 9π2,˚OJacˆPMod

“ ΘbpF
‚q b τ˚OPMod.

(6.21)

The next step consists of establishing a relation between 9Pb and Pa. As 9Pb parametrizes rank

1 torsion-free sheaves over Jac
δ
pXbq, then

pν̌a ˆ 1PModq˚ 9Pb ÝÑ Jac ρpCaq ˆ PModδℓpCa, rDaq

is a family of rank 1 torsion-free sheaves over Jac ρpCaq (i.e. line bundles on Jac ρpCaq) parametrized

by PModδℓpCa, rDaq. Since Pa ÝÑ Jac ρpCaqˆJac δpCaq is a universal bundle, there is a morphism

g : PModδℓpCa, rDaq ÝÑ Jac δpCaq,

such that

pν̌a ˆ 1PModq˚ 9Pb – p1ĄJac ˆ gq˚
Pa b pπ2

2q˚
W

1.
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where π2
2 is the projection given by

(6.22) Jac ρpCaq ˆ PModδℓpCa, rDaq
π2
1

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦ π2
2

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

Jac ρpCaq PModδℓpCa, rDaq,

and W 1 is some line bundle on PModδℓpCa, rDaq.

Thanks to (6.6) and to the definition of 9Pb given in (6.18), we see that that restricting it

to Jac δpXbq ãÑ τ´1
0 PModδℓpCa, rDaq gives 9Pb|JacˆJac – Pb. Then, with |ĄJacˆJac

denoting the

restriction to Jac ρpCaq ˆ Jac δpXbq via τ´1
0 ,

p1ĄJac ˆ gq˚Pa|ĄJacˆJac
b pπ2

2q˚W 1|ĄJacˆJac
– pν̌a ˆ 1PModq˚ 9Pb|ĄJacˆJac

– pν̌a ˆ 1Jacq
˚Pb.

So Proposition 6.2 shows that

p1ĄJac ˆ gq˚Pa|ĄJacˆJac
b pπ2

2q˚W 1|ĄJacˆJac
– p1ĄJac ˆ ν̂aq˚Pa b pπ1

2q˚Wb.

Then the diagram

Jac δpXbq� _

τ´1

0

��

ν̂a

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

PModδℓpCa, rDaq
g // Jac δpCaq

commutes, hence we conclude from (5.13) that g “ 9νa, as both coincide in the dense open subset
Jac δpXbq. As a consequence, we obtain

(6.23) pν̌a ˆ 1PModq˚ 9Pb – p1ĄJac ˆ 9νaq˚
Pa b pπ2

2q˚
W

1.

Restricting (6.23) to tOCau ˆ PModδℓpCa, rDaq yields

W 1 – ppν̌a ˆ 1PModq˚ 9Pbq|tOCa uˆPMod – 9Pb|tνa,˚OCauˆPMod,

because Pa is normalized as in (6.27). But 9Pb is the pullback of Pb under p1Jac ˆ τq, so

(6.24) W
1 – τ˚

`
Pb|tνa,˚OCauˆJac

˘
.

Combining this description with (6.23), we conclude that

(6.25) pν̌a ˆ 1PModq˚ 9Pb – p1ĄJac ˆ 9νaq˚
Pa b pπ2

2q˚τ˚
`
Pb|tνa,˚OCauˆJac

˘
.

We now address the last part of the proof. Recall the projections π2
1 and π2

2 from (6.22), 9π1
and 9π2 from (6.20) and finally η1 and η2 from (6.16), and observe that

π2
2 “ 9π2 ˝ pν̌a ˆ 1PModq,

π2
1 “ η1 ˝ p1ĄJac ˆ 9νaq.

(6.26)

Moreover,

Jac ρpCaq ˆ PModδℓpCa, rDaq
π2
1 //

� _

ν̌aˆ1PMod

��

Jac ρpCaq
� _

ν̌a
��

Jac
δ
pXbq ˆ PModδℓpCa, rDaq

9π1 // Jac
δ
pXbq,

and

Jac ρpCaq ˆ PModδℓpCa, rDaq
1ĄJacˆ 9νa

//

π2
2

��

Jac ρpCaq ˆ Jac δpCaq

η2

��

PModδℓpCa, rDaq
9νa // Jac δpCaq

are Cartesian diagrams.



UNRAMIFIED COVERS AND BRANES ON THE HITCHIN SYSTEM 35

The derived direct image and pullback are functorial with respect to compositions. Further-
more, the base-change formula applies to the two previous Cartesian diagrams. So, starting
from (6.21) and using these facts, together with (6.25) and with the projection formula, finally
yields

ΘbpRν̌a,˚E
‚q b τ˚OPMod –Rτ˚R 9π2,˚

`
9π˚
1Rν̌a,˚E

‚ b 9Pb

˘

–Rτ˚R 9π2,˚
`
Rpν̌a ˆ 1PModq˚pπ2

1q˚
E

‚ b 9Pb

˘

–Rτ˚R 9π2,˚Rpν̌a ˆ 1PModq˚

`
pπ2

1q˚
E

‚ b pν̌a ˆ 1PModq˚ 9Pb

˘

–Rτ˚Rπ
2
2,˚

`
pπ2

1q˚
E

‚ b pν̌a ˆ 1PModq˚ 9Pb

˘

–Rτ˚Rπ
2
2,˚

`
pπ2

1q˚
E

‚ b p1ĄJac ˆ 9νaq˚
Pa b pπ2

2q˚τ˚
`
Pb|tνa,˚OCauˆJac

˘˘

–Rτ˚Rπ
2
2,˚

`
pπ2

1q˚
E

‚ b p1ĄJac ˆ 9νaq˚
Pa

˘
b Pb|tνa,˚OCauˆJac

–Rτ˚Rπ
2
2,˚p1ĄJac ˆ 9νaq˚pη˚

1E
‚ b Paq b Pb|tνa,˚OCauˆJac

–Rτ˚ 9ν˚
aRη2,˚pη˚

1E
‚ b Paq b Pb|tνa,˚OCauˆJac

–Rτ˚ 9ν˚
aΘapE‚q b Pb|tνa,˚OCauˆJac,

as claimed. �

6.3. Branes and Fourier–Mukai transform. We are now at the last step towards the goal
of proving the duality statement between the branes we constructed.

Along this section we fix the degree to be trivial, d “ 0. We require also Assumption 1, so
p : C ÝÑ X has order m “ n (hence r “ 1 and ρ “ 0) and the spectral data of MXpn, dqp is as
described in (4.11). In particular, the normalization of the spectral curves is always C and Bp

ni

coincides with Bp
ni, the subset parametrizing integral and nodal curves.

Let us use the Hitchin section σC constructed from a spin structure K
1{2
C “ p˚K

1{2
X to choose

a point in Jac δpCq. Consider associated the Poincaré bundle

P ÝÑ Jac 0pCq ˆ Jac δpCq.

If N P Jac δpCq, then PN “ P|Jac0pCqˆtNu is the line bundle over Jac 0pCq corresponding to

the point N bK
´pn´1q{2
C of Jac 0pCq under autoduality of Jac 0pCq. We can assume that Pa is

normalized so that

(6.27) P|tOCuˆJac δpCq – OJac δpCq.

Let b P B
p
ni and φ P H0pC,KCqfree be a representative of b, and recall from (4.10) the

pushforward morphism ν̌φ : Jac0pCq ãÑ Jac
δ
pXbq. We wish to understand the Fourier–Mukai

transform of the sheaf ν̌φ,˚Nm
˚ qL over Jac

δ
pXbq – h´1

X,npbq under the derived equivalence

Θb : D
b
`
Jac

δ
pXbq

˘
ÝÑ Db

`
Jac

δ
pXbq

˘
. Indeed, by Proposition 4.6, ν̌φ,˚Nm

˚ qL is supported on

Impν̌φq – Jac0pCq and is the restriction to the Hitchin fiber over b (intersected with MXpn, 0qp)
of the hyperholomorphic line bundle L defining the rank 1 Narasimhan-Ramanan pBBBq-brane
pBBBqp

L
. It is a classical fact that that the Fourier–Mukai of a line bundle over Jac 0pCq is a

complex supported only in one degree (namely the genus of C), so it can be considered as a

sheaf as opposed to a complex. Hence, by Theorem 6.3, Θbpν̌φ,˚Nm
˚ qLq is a sheaf over Jac

δ
pXbq,

whose support is the intersection of the support of the dual pBAAq-brane with the Hitchin fiber
over b.

By considering the rank n Narasimhan-Ramanan pBBBq-brane pBBBqp
F
, we conclude by the

same token that the support of the sheaf Θbp
À

γPΓ ν̌φ,˚γ̂
˚ qFq determines the support of the dual

pBAAq-brane.

Theorem 6.4. Consider the moduli space MXpn, 0q and the Narasimhan-Ramanan pBBBq-
branes pBBBqp

L
and pBBBqp

F
on it associated to a connected unramified cover p : C ÝÑ X.
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Let b “ ζpφq P Bp
ni for some φ P H0pC,KCqfree. Let ν̂φ : JacδpXbq ÝÑ JacδpCq be the pullback

morphism associated to the normalization νφ (thus corresponding to (5.7)).

(i) Let

L̂ :“ p˚L bK
pn´1q{2
C P Jac δpCq.

The Fourier–Mukai transform of the hyperholomorphic sheaf L |
h´1

X,npbq – ν̌φ,˚Nm
˚ qL sat-

isfies the relation

(6.28) Θbpν̌φ,˚Nm
˚ qLq b τ˚OPMod – Pb|tνφ,˚OCuˆν̂´1

φ
pL̂q

and its support is

supppΘbpν̌φ,˚Nm
˚ qLqq “ ν̂´1

φ pL̂q “ NR p,L̂
ni X h´1

X,npbq.

(ii) Analogously, let

(6.29) F̂ :“ F bK
pn´1q{2
C

and let ΓpFq be the orbit of F by the Galois group Γ of p. The Fourier–Mukai transform

of the hyperholomorphic sheaf F |
h´1

X,npbq –
À

γPΓ ν̌φ,˚γ̂
˚ qF satisfies the relation

(6.30) Θb

ˆ à

γPΓ

ν̌φ,˚γ̂
˚ qF

˙
b τ˚OPMod –

à

γPΓ

τ˚Oν̂´1

φ pγ˚F̂q b Pb|tνφ,˚OCuˆJac

and its support is

supp

ˆ
Θb

ˆ à

γPΓ

ν̌φ,˚γ̂
˚ qF

˙˙
“

ď

γ˚F̂PΓpFq

ν̂´1
φ pγ˚F̂q “ NR p,F̂

ni X h´1
X,npbq.

Proof. By Theorem 6.3 we have

(6.31) Θbpν̌φ,˚Nm
˚ qLq b τ˚OPMod – τ˚ 9ν˚

φΘpNm˚ qLq b Pb|tνφ,˚OCuˆJac

so we need to compute ΘpNm˚ qLq; cf. (6.17), we have removed the index a since now all the Ca

are isomorphic to C. This is the classical Fourier–Mukai transform on an abelian variety, the
only difference being that Θ : DbpJac 0pCqq ÝÑ DbpJac δpCqq takes values in the derived category
of complexes over the torsor Jac δpCq and not over the actual abelian variety Jac 0pCq. So we

must use the identification we settled Jac 0pCq
–
ÝÑ Jac δpCq, by tensorization by K

pn´1q{2
C . As is

well-known, ΘpNm˚ qLq is the skyscraper sheaf over the point of Jac δpCq whose corresponding

point over Jac 0pCq corresponds to the line bundle Nm˚ qL under the autoduality of Jac 0pCq.
Consider the commutative diagram

(6.32) C
� � AC //

p

��

Jac 0pCq

Nm
��

X
� �

AX

// Jac0pXq,

where the horizontal maps are the Abel–Jacobi maps determined by chosen base points on Ca

and X, which correspond under p : C ÝÑ X. Since the isomorphisms yielding the autodu-
ality of Jac 0pCq and Jac0pXq are given by pullback of the Abel–Jacobi maps, this yields the
commutative diagram

Jac 0pCq_
A˚

C

–
// Jac 0pCq

–

´bK
pn´1q{2
C

// Jac δpCq

Jac0pXq_

A˚
X

– //

Nm˚

OO

Jac0pXq

p˚

OO
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(where the maps no longer depend on the choice of base points). Recall that by definition
qL is the line bundle over Jac0pXq which corresponds to the flat line bundle L over X under

autoduality, i.e. L – A˚
X

qL. So we conclude that ΘpNm˚ qLq – O
p˚LbK

pn´1q{2
C

“ O
L̂
.

Hence, τ˚ 9ν˚
φΘpNm˚ qLq – τ˚O 9ν´1

φ
pL̂q. Since τ is finite morphism, τ˚O 9ν´1

φ
pL̂q is a coherent sheaf,

hence (cf. [Ha, ex. 5.5, 5.6, p.124]) its support in Jac
δ
pXbq is closed and is the closure of

the image by τ of the support of O
9ν´1

φ
pL̂q which, by Lemma 5.10, is ν̂´1

φ pL̂q. In addition, by

the same lemma, the restriction of τ to 9ν´1
φ pL̂q is a closed embedding, thus we actually have

τ˚O 9ν´1

φ
pL̂q – O

ν̂´1

φ
pL̂q

.

Considering the transform just as a sheaf (thus ignoring the only degree where the complex
is non-zero), we then have, by (6.31),

Θbpν̌φ,˚Nm
˚ qLq b τ˚OPMod – Pb|tνφ,˚OCuˆν̂´1

φ pL̂q
.

The sheaf τ˚OPMod is supported in Jac
δ
pXbq, thus

supppΘbpν̌φ,˚Nm
˚ qLqq “ ν̂´1

φ pL̂q

as claimed. Note finally that ν̂´1
φ pL̂q is indeed the spectral data of the intersection NR p,L̂

ni X

h´1
X,npbq, by Theorem 5.12 (since L̂ “ p˚pL´1 b K

pn´1q{2
X q, then ΓpL̂q “ tL̂u in (5.16); cf.

Remark 5.13), completing the proof of (i).
For the proof of (ii), we have, again by Theorem 6.3,

Θb

ˆ à

γPΓ

ν̌φ,˚γ̂
˚ qF

˙
b τ˚OPMod –

à

γPΓ

pΘbpν̌φ,˚γ̂
˚ qFq b τ˚OPModq

–
à

γPΓ

τ˚ν̂
˚
φΘpγ̂˚ qFq b Pb|tνφ,˚OCuˆJac

and a similar argument to the one given above, proves Θpγ̂˚ qFq – O
γ˚F̂

. Thus

Θb

ˆ à

γPΓ

ν̌φ,˚γ̂
˚ qF

˙
b τ˚OPMod –

à

γPΓ

τ˚Oν̂´1

φ
pγ˚F̂q b Pb|tνφ,˚OCauˆJac.

As in the preceding case,
À

γPΓ τ˚Oν̂´1

φ
pγ˚F̂q is supported in the (not necessarily disjoint) union

Ť
γ˚F̂PΓpFq ν̂

´1
φ pγ˚F̂q, hence so is the right-hand side of the above isomorphism as τ˚OPMod is

supported on Jac
δ
pXbq. We conclude that

supp

ˆ
Θb

ˆ à

γPΓ

ν̌φ,˚γ̂
˚ qF

˙˙
“

ď

γ˚F̂PΓpFq

ν̂´1
φ pγ˚F̂q

which coincides with NR p,F̂
ni X h´1

X,npbq by Theorem 5.12. �

Since for each b P B
p
ni, Θb is a derived equivalence by Theorem 6.1, the previous theorem

provides the following fiberwise duality statement as an immediate consequence.

Theorem 6.5. Let p : C ÝÑ X be a connected unramified n-cover. Consider the moduli space
MXpn, 0q and let L̂ and F̂ as in Theorem 6.4.

(i) The (fiberwise) dual of the rank 1 Narasimhan-Ramanan pBBBq-brane pBBBqp
L
(over Bp

ni)

is the pBAAq-brane supported on NR p,L̂
ni , and whose flat bundle satisfies (6.28).

(ii) The (fiberwise) dual of the rank n Narasimhan-Ramanan pBBBq-brane pBBBqp
F

(over

B
p
ni) is the pBAAq-brane supported on NR p,F̂

ni , and whose flat bundle satisfies (6.30) .
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Remark 6.6. In [FP], duality is conjectured between the pBBBq-braneCarpLq (supported on the
Cartan locus Mp1,nq Ă MCpn, ndq) and the pBAAq-brane UnipLq (supported on the unipotent

locus UniCpLq Ă MCpn, ndq). Recall from Remark 4.7 that pBBBqp
L

pulls-back to CarpLq

under p̂ while NR p,L
ni is sent to UniCpLq under p̂ as we have seen in Proposition 5.14. Thus,

Theorem 6.5 give us some indications that the general principles of this conjecture seem to hold
true.

7. Branes in the absence of a Hitchin section

In Section 4 we worked under Assumption 1 to construct a family of pBBBq-branes supported
on MXpn, dqp. In Section 5 we required Assumption 2, which is weaker than Assumption 1, to

define the Lagrangian subvariety NR p,J
ni over the locus of Hitchin base Bp

ni of those spectral
curves whose normalization lives in B sm

C,r.
A straight-forward observation is that, when Assumption 1 fails, one can always define a

pBBBq-brane on MXpn, dqp by considering the trivial bundle on it.
Without Assumption 2 we face a problem for the construction of our Narasimhan–Ramanan

dual pBAAq-branes, namely the lack of a section for the Hitchin fibration hC,r : MCpr, dq ÝÑ
BC,r. Instead, we pick the Lagrangian multisection of the Hitchin fibration given by a very
stable bundle. With this multisection we define a Lagrangian subvariety which we study using
the branes associated with parabolic subgroups from [FP, Section 6].

Given a stable bundle V ÝÑ C, one has that pV, φq is a stable Higgs bundle for every
φ P H0pC,EndpVq bKCq. Then, we have a natural morphism

H0pC,EndpVq bKCq ÝÑ MCpr, dq
φ ÞÝÑ pV, φq,

which is an embedding as V is simple. We denote by ΣV the image of this map. It is well-known
that this provides a Lagrangian subvariety.

Proposition 7.1. For every stable bundle V, ΣV is Lagrangian.

Proof. Since V is stable it is simple, so one has that

dimΣV “ dimH0pC,EndpVq bKCq “
1

2
dimMCpr, dq.

Since the vector bundle is fixed along ΣV , note also that the projection

TpV ,φqΣV ÝÑ H1pC,EndpVqq

is constantly zero, so ΩC,1 vanishes there. �

After Laumon [La], a vector bundle V ÝÑ C is very stable if it has no non-zero nilpotent
Higgs field. It can be shown [La] that a very stable bundle is stable (provided g ě 2) and that
the locus of very stable bundles is a dense open subset of the moduli space of vector bundles.
The fourth author and C. Pauly proved the following (see [PP, Theorem 1.1 and Corollary 1.2]).

Theorem 7.2 ([PP]). Let V be a stable bundle. Then, V is very stable if and only if the
restriction hC,r|ΣV

of the Hitchin fibration hC,r to ΣV is finite and surjective.

One thus easily deduces the following.

Corollary 7.3. Under the hypotheses of Theorem 7.2, ΣV ÝÑ BC,r is a Lagrangian multisection
of hC,r.

In view of Corollary 7.3 we provide the following definition analogous to Definition 5.3.

Definition 7.4. For any very stable bundle V ÝÑ C of rank r and degree d´ ρ` δ, define the

subvariety NR p,V
ni of MXpn, dq closed in MXpn, dq ˆBX,n

B
p
ni as

NR p,V
ni :“

ˆ´
hpδ´ρq
p

¯´1

pΣVq

˙
X

´
MXpn, rd1qpni ˆB

p
ni

Sing p
ni

¯
.
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As we did in Theorem 5.12 for NR p,J
ni , let us study the spectral datum for NR p,V

ni . Let us
denote by ΣV ,a the fiber ΣV ÝÑ BC,r over a P BC,r. Set also

Σ1
V ,a :“ S´1

C,rpΣV ,aq,

note that, by definition of SC,r and ΣV ,a, for every J P Σ1
V ,a Ă Jac d`δpCaq one has

ηa,˚J – V.

Proposition 7.5. Let b P Bp
ni and a P B ni

C,r such that b “ ζpaq, then

(7.1) h´1
X,npbq X NR p,V

ni “
ď

J PΣ1
V,a,γ

˚J PΓpJ q

SX,n

´
ν̂´1
a pγ˚J q

¯
,

where ΓpJ q denotes the Γ-orbit of J . Furthermore,

(7.2) dim
´
h´1
X,npbq X NR p,V

ni

¯
“ δ ´ ρ “ npn´ rqpg ´ 1q

and

(7.3) dimNR p,V
ni “ n2pg ´ 1q ` 1 “

1

2
dimMXpn, dq.

Proof. After a trivial adaptation of the proof of Theorem 5.12 one gets the description given in
(7.1). The rest of the proposition follows from this fact, (7.2) is clear after the description of
the fibers of ν̂a given in [Gr1] and (ii) of Theorem 3.11. The proof of (7.3) follows from (7.2)
and (3.15). �

In order to prove that the above manifold is isotropic we compare it with some complex
Lagrangian submanifolds inside MCpn, dmq defined in [FP, Section 6].

Let V ÝÑ C of rank r and degree d ´ ρ ` δ, and choose an ordering o P OrdpΓq of the
elements of Γ, o “ pγo,1, . . . , γo,mq. For each o and each i “ 1, . . . ,m, define the vector bundle

Vo,i “ γ˚
o,iV bK

´rpm´i´1q
C be vector bundles, and consider the variety

(7.4) Uni
pr,mq
C pV, oq “

$
&
%pE,ϕq P MCpn, dmq

ˇ̌
ˇ̌
ˇ̌

Dσ P H0pX,E{Ppr,mqq :
ϕ P H0pX,Eσpppr,mqq bKXq;
Eσ{Upr,mq – Vo,1 ‘ ¨ ¨ ¨ ‘ Vo,m.

,
.
- ,

where we recall the notation introduced in Remark 3.14. These subvarieties are studied in [FP,

Section 6] and it follows from [FP, Theorem 6.7] that Uni
pr,mq
C pV, oq is Lagrangian (in particular,

it is isotropic).

We prove a relation between NR p,V
ni and Uni

pr,mq
C pV, oq analogous to that described in Propo-

sition 5.14.

Proposition 7.6. Let p̂ : MXpn, dq ÝÑ MCpn,mdq be the pullback morphism. Consider the

open subvariety NR p,V
Jac of NR p,V

ni defined as its intersection with the open subset Jacd`δpXbq of

every Hitchin fiber h´1
X,npbq. Then NR p,V

Jac is mapped under the pullback map (3.3) to the union

of Uni
pr,mq
C pV, oq for all different o P OrdpΓq, i.e.

p̂
´
NR p,V

Jac

¯
Ă

ğ

oPOrdpΓq

Uni
pr,mq
C pV, oq.

Proof. We will check that the spectral datum of p˚pE,ϕq satisfies the conditions of the spectral

datum of Uni
pr,mq
C pV, oq, which proves the statement.

Let L P Jacd`δpXbq be the spectral datum of pE,ϕq P NR p,V
ni . By Cartesianity of the square

in (3.10), we know that L̃ “ q˚
b̃
L P JacpX

b̃
q is the spectral datum for pẼ, ϕ̃q :“ p˚pE,ϕq. Also,

Cartesianity of (3.21) implies that

ν̃˚
b̃
L̃ “ q̃˚

aν
˚
aL.
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By (7.1), ν˚
aL equals γ˚Ji, with Ji P Σ1

V ,a. So, choosing an ordering o P OrdpΓq, we write

(7.5) ν̃˚
b̃
L̃ “ q̃˚

aγ
˚
Ji “ ppγo,1γq˚

Ji, . . . , pγo,mγq˚
Jiq.

Since the spectral data rL satisfies (7.5), it is then a line over C
b̃

“
Ť

γ1PΓ Cγ1paq whose

restriction to any Cγ1paq is pγ1γq˚Ji. Then, using the order o we can set Zj “
Ťm

i“j and

rLj “ kerprL ÝÑ rL|Zj
q. This defines a filtration of OC

b̃

0 Ă rL1 Ă rL2 Ă ¨ ¨ ¨ Ă rLm “ rL.
Taking the pushforward of this filtration to C provides a filtration

0 Ă rE1 Ă rE1 Ă ¨ ¨ ¨ Ă rEm “ rE
preserved by the Higgs field, and whose graded part grp rEq is precise

À
i Vi appearing in the

definition of Uni
pr,mq
C pV, oq. Then, p rE, rϕq lies in some Uni

pr,mq
C pV, oq and the proof is completed.

Alternatively, checking that the line bundles in (7.5) satisfy [FP, Assumption 1], we may
apply [FP, Proposition 6.6] to conclude. �

We can finally prove the main theorem of this section, whose proof mimics that of Theo-
rem 5.15 and is thus omitted.

Theorem 7.7. The manifold NR ξ,V
ni is Lagrangian.

Proof. Isotropicity is proved as in Theorem 5.15 making use in the proof of Proposition 7.6

instead of Proposition 5.14, and recalling that the subvarieties Uni
pr,mq
C pV, oq are isotropic. Then,

the proof follows from (7.3). �

The question of how to produce hyperholomorphic bundlesMCpr, dq dual to the pBAAq-brane
supported on a Lagrangian multisection ΣV associated to a very stable bundle is being studied
by Hausel and Hitchin [HH].
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